
Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg,
Im Neuenheimer Feld 368, 69120 Heidelberg, Germany.

Reconstructing Sensor Locations from
Distance Measurements Using the AIMMS

Software Framework

Janick Frasch, Dennis Janka, Robert Kircheis
Advisor: Stefan Körkel

June 15, 2011

1 Introduction

Localization problems in sensor networks stem from a broad range of real-world problems
such as civil protection, weather forecasting, and military applications. A large number
of comparatively cheap to produce sensors, that can, in most cases for budgetary reasons,
not be equipped with positioning systems like GPS, is distributed on a surface to measure
a certain quantity over a larger area. In order to map the measurements correctly, one
needs to reconstruct the sensors’ positions from certain local and relative data, which
in our case are distance measurements between sensors that are lying sufficiently close.
Additionally a set of sensing units with known global coordinates, which we will refer
to as anchors, is given. In order to ease the notation, by sensors we will only refer to
those sensing units whose global positions are yet to be determined.

If we assume to have exact data, the underlying mathematical problem is a feasi-
bility problem with, due to the Euclidean distance measurements, quadratic equality
constraints. During the first sections of this report we will stick to this assumption, as
well as we will only consider a small 2D localization problem in order to discuss the
considered approaches exemplarily. In Sections 6.1-6.3 we will show how to extend these
approaches for large-scale, noisy and 3D data in order to be able to cope with more
general problems. Note however, that even for this rather simple looking 2D no-noise
problem an underlying Phase-1 problem is non-convex and a general-purpose solver early
due to local infeasibilities even though, at a global scope, a feasible solution exists.

2 Related Work

Several formulations and relaxations, in particular for 2D problems can be found in the
literature. In [Tse07] Tseng proposed a second-order conic programmming (SOCP) re-

1

laxation, which will be explained and proposed for use in our context in Section 4.1.
An even more promising and widespread approach is the relaxation of the sensor net-
work localization problem (SNLP) to a semidefinite program (SDP), see, e.g., [BLWY06]
and [DKQW10]. The idea behind this is to convert the non-convex quadratic distance
constraints into convex constraints by introducing a relaxation to remove the quadratic
term in the formulation. This relaxation has the appealing property of providing an
exact solution in the case of unique solvability of the original problem [BLWY06]. These
ideas are also extendable to noisy problem classes.

Unfortunately however, the current version of AIMMS (3.11) does not feature lan-
guage elements to specify SDPs directly. Since reformulations of the semidefiniteness
condition as regular (in-) equality constraints typically are quite cumbersome and/or
require matrix factorizations (which are not available in AIMMS either), we disregard
this approach for our purposes.

As typically for SNLPs global solutions are of major interest, one reasonable yet
time consuming possibility would be to use a global NLP solver like Couenne [Bel09].
However again AIMMS does not feature an interface to global NLP solvers yet, so we
also withdraw this option. Other options that were neglected include a subdivision of the
considered x-y domain into cells using binary assignment variables, due to computational
complexity.

3 General Problem Formulation

3.1 General NLP Formulations

We first show two ways of formulating the SNLP as a general nonlinear program (NLP)
that can be solved by any general purpose NLP solver, however without taking any
specific structures into account.

The easiest way to state the localization problem of n sensors S := {1, 2, . . . , n} in two
dimensions while assuming to have exact distance measurements is the following: given
m anchor locations ak ∈ R2, k ∈ A := {1, 2, . . . ,m} and some distance measurements
dji, (j, i) ∈ Ns ⊂ S × S and djk, (j, k) ∈ Na ⊂ S ×A, find sj ∈ R2, j ∈ S, the location of
n sensors, such that

‖sj − si‖22 = d2ji, ∀(j, i) ∈ Ns

‖sj − ak‖22 = d2jk, ∀(j, k) ∈ Na

Or, expressed in NLP form:

min
sj

0 (1a)

subject to

‖sj − si‖22 = d2ji, ∀(j, i) ∈ Ns (1b)

‖sj − ak‖22 = d2jk, ∀(j, k) ∈ Na (1c)

2

Apparently, finding a feasible solution for this NLP would solve the (no-noise) SNLP. A
phase-1 like problem, which can be solved to obtain a feasible solution for (1), can also be
stated directly by introducing additional variables qji, q̃ji, (j, i) ∈ Ns and qjk, q̃jk, (j, k) ∈
Na:

min
sj ,qji,q̃ji,qjk,q̃jk

∑
(j,i)∈Ns

q̃ji +
∑

(j,k)∈Na

q̃jk (2a)

subject to

‖sj − si‖22 = d2ji + qji, ∀(j, i) ∈ Ns (2b)

‖sj − ak‖22 = d2jk + qjk, ∀(j, k) ∈ Na (2c)

qji ≤ q̃ji, ∀(j, i) ∈ Ns (2d)

−qji ≤ q̃ji, ∀(j, i) ∈ Ns (2e)

qjk ≤ q̃jk, ∀(j, k) ∈ Na (2f)

−qjk ≤ q̃jk, ∀(j, k) ∈ Na (2g)

Note that this is a non-convex quadratically-constrained program which usually exhibits
several local minima. As such, it is treatable in AIMMS 3.11 only by the available
general purpose NLP solvers.

Note that from the problem statement additional constraints

‖sj − si‖22 ≥ d2ji, ∀(j, i) /∈ Ns

‖sj − ak‖22 ≥ d2jk, ∀(j, k) /∈ Na

can be derived, which however did not proof to be beneficial for our problem formulations.
Interestingly, Formulation (2) showed to perform much worse in tests than Formu-

lation (1), even though it eases the inclusion fo additional structure. Seemingly, the
internal phase-1 like procedure of commercial NLP solvers make use of more effective
procedures trying to obtain feasible solutions, which annot be accessed by other problem
formulations.

3.2 Performance Measures for SNLP

After having defined the 2D no-noise SNLP it is imminent that an optimal solution is
characterized by fulfilling all given distances equations exactly. This however does not
imply uniqueness of a solution. A sufficient condition here is that (a) for each sensor
distances to at least three other (linearly independent) sensors or anchors are given and
(b) each component in the graph of sensors and given distances as a whole is at least
thrice adjacent (in terms of given distances) to each of at least three linearly independent
anchors.

Two measures of performance suggest themselves. Firstly, from the algorithmic point
of view, it seems reasonable to simply count the number of given distances that are
satisfied by an assignment of sensor positions. We will mostly stick to this performance
index here. However we propose to also take into consideration the number of sensors

3

with known correct positions for evaluating the quality of a solution. Whether a sensor
is known correct or not could be checked in an analogous fashion to the uniqueness
definition above, i.e., by checking whether it is part of a component that fulfills conditions
(a) and (b) with respect to the graph induced by the satisfied distances (up to numerical
errors).

When considering noisy data, i.e., error-prone distance measurements we have to relax
the definition of a satisfied distance further by not only introducing a tolerance to make
up for numerical errors, but also by considering a σ-dependent confidence interval around
the expectation of the given distance measurements, where σ is the standard deviation.

4 Relaxed Formulations and Approximations

In the context of sensor localization only feasible, i.e., globally optimal solutions are
desirable, as already the violation of few distances may allow major changes in the
sensors’ absolute positions while most of the relative distances are maintained. Therefore
good initializations for the NLP variables are necessary to avoid the general-purpose NLP
solver being stuck in local minima. To this end we present several relaxation-based and
heuristic approaches.

4.1 SOCP Relaxation

Basing on a paper by Tseng [Tse07], we propose to solve a convex feasibility problem
first by relaxing Constraints (1b) and (1c) to inequalities. The resulting program reads
as

min
sj

0 (3a)

subject to

‖sj − si‖22 ≤ d2ji, ∀(j, i) ∈ Ns (3b)

‖sj − ak‖22 ≤ d2jk, ∀(j, k) ∈ Na (3c)

and is hence convex. Clearly (3) is a relaxation of (1). After solving (3) to feasibility, we
can use the position assignments sj of the solution to initialize problem (1) and improve
feasibility for the original problem. Note that the sensors will lie in the convex hull of
the anchors.

4.2 l1 / l∞ Approximation as LP

Another approach to get rid of the quadratic equality constraints in Program (1) is to
approximate the Euclidean norm using different norms. In a first attempt we propose
to use the l1 norm. We yield the following optimization problem; note that we should
not formulate this problem as a feasibility problem anymore, as in general most distance

4

constraints will be violated by any feasible solution to the original problem.

min
sj ,qji,q̃ji,qjk,q̃jk

∑
(j,i)∈Ns

q̃ji +
∑

(j,k)∈Na

q̃jk (4a)

subject to

‖sj − si‖1 = dji + qji, ∀(j, i) ∈ Ns (4b)

‖sj − ak‖1 = djk + qjk, ∀(j, k) ∈ Na (4c)

|qji| ≤ q̃ji, ∀(j, i) ∈ Ns (4d)

|qjk| ≤ q̃jk, ∀(j, k) ∈ Na (4e)

For computational ease, Problem (4) can be relaxed to the following linear program
(LP):

min
sj ,qji,q̃ji,qjk,q̃jk,d̃

x
ji,d̃

y
ji,,d̃

x
jk,d̃

y
jk

∑
(j,i)∈Ns

q̃ji +
∑

(j,k)∈Na

q̃jk (5a)

subject to

sxj − sxi ≤ d̃xji, ∀(j, i) ∈ Ns (5b)

sxi − sxj ≤ d̃xji, ∀(j, i) ∈ Ns (5c)

syj − s
y
i ≤ d̃

y
ji, ∀(j, i) ∈ Ns (5d)

syi − s
y
j ≤ d̃

y
ji, ∀(j, i) ∈ Ns (5e)

sxj − axk ≤ d̃xjk, ∀(j, k) ∈ Na (5f)

axk − sxj ≤ d̃xjk, ∀(j, k) ∈ Na (5g)

syj − a
y
k ≤ d̃

y
jk, ∀(j, k) ∈ Na (5h)

ayk − s
y
j ≤ d̃

y
jk, ∀(j, k) ∈ Na (5i)

d̃xji + d̃yji = dji + qji, ∀(j, i) ∈ Ns (5j)

d̃xjk + d̃yjk = djk + qjk, ∀(j, k) ∈ Na (5k)

qji ≤ q̃ji, ∀(j, i) ∈ Ns (5l)

−qji ≤ q̃ji, ∀(j, i) ∈ Ns (5m)

qjk ≤ q̃jk, ∀(j, k) ∈ Na (5n)

−qjk ≤ q̃jk, ∀(j, k) ∈ Na (5o)

Inequalities (5b) through (5i) define the distance estimations in x and y direction. Equa-
tions (5j) and (5k) gather the slack between distance estimations and targets. Con-
straints (5l) through (5o) enable the objective function to drive the these slacks to zero
in norm.

To yield an even better approximation of the l2 norm in the original problem a combi-
nation of l1 and l∞ norm can be used, ‖x−y‖2 ≈ (

√
2−1)‖x−y‖1+(2−

√
2)‖x−y‖∞ =:

‖x− y‖1,∞. To motivate this approach, consider the shapes of the unit circles depicted
in Figure 1. While ‖ · ‖1,∞ still is an underestimation for ‖x − y‖2, the approximation

5

‖ · ‖2 = 1

‖ · ‖1 = 1

‖ · ‖1,∞ = 1

Figure 1: Unit circles of the l1, l2 and combined l1-l∞ norm

error is drastically reduced compared to using ‖ · ‖1 alone. Defining α := 2 −
√

2 we
obtain the following mathematical program as an approximation to (1):

min
sj ,qji,q̃ji,qjk,q̃jk,q̃jk,d̃

x
ji,d̃

y
ji,,d̃

x
jk,d̃

y
jk,d̃

∞
ji ,d̃

∞
jk

∑
(j,i)∈Ns

q̃ji +
∑

(j,k)∈Na

q̃jk (6a)

subject to

sxj − sxi ≤ d̃xji, ∀(j, i) ∈ Ns (6b)

sxi − sxj ≤ d̃xji, ∀(j, i) ∈ Ns (6c)

syj − s
y
i ≤ d̃

y
ji, ∀(j, i) ∈ Ns (6d)

syi − s
y
j ≤ d̃

y
ji, ∀(j, i) ∈ Ns (6e)

sxj − axk ≤ d̃xjk, ∀(j, k) ∈ Na (6f)

axk − sxj ≤ d̃xjk, ∀(j, k) ∈ Na (6g)

syj − a
y
k ≤ d̃

y
jk, ∀(j, k) ∈ Na (6h)

ayk − s
y
j ≤ d̃

y
jk, ∀(j, k) ∈ Na (6i)

d̃xji ≤ d̃∞ji , ∀(j, i) ∈ Ns (6j)

d̃yji ≤ d̃∞ji , ∀(j, i) ∈ Ns (6k)

d̃xjk ≤ d̃∞jk, ∀(j, k) ∈ Na (6l)

d̃yjk ≤ d̃∞jk, ∀(j, k) ∈ Na (6m)

6

α · d̃∞ji + (1− α) · (d̃xji + d̃yji) = dji + qji, ∀(j, i) ∈ Ns (6n)

α · d̃∞jk + (1− α) · (d̃xjk + d̃yjk) = djk + qjk, ∀(j, k) ∈ Na (6o)

qji ≤ q̃ji, ∀(j, i) ∈ Ns (6p)

−qji ≤ q̃ji, ∀(j, i) ∈ Ns (6q)

qjk ≤ q̃jk, ∀(j, k) ∈ Na (6r)

−qjk ≤ q̃jk, ∀(j, k) ∈ Na (6s)

In addition to the constraints of LP (5), inequalities defining the l∞ distance measure-
ments are introduced by Constraints (6j) through (6m). Equalities (6n) and (6o) are
updated accordingly to incorporate the l∞ distance measurements in the definition of
the slack variables q·,·.

4.3 l1 Approximation as MILP

The drawback in computing only LP-relaxations to the l1 and l1,∞ norm approximations
is the inexact estimation of the actually realized distances by (5b) through (5i). If d··,·
are nonzero, at most one constraint of each pair (5b,5c), etc. can be active in any
feasible solution for (5) or (6). However, in order to have exact estimates of the realized
distances in x and y direction it would be desirable to have exactly one active distance,
a requirement that cannot be formulated by means of linear programming. It even
cannot be modeled by soft constraints, as punishing slack in Constraints (5b) through
(5i) drives all sensors positions to one location, which counteracts the original objective
of satisfying the given distances as tightly as possible.

One way to overcome this drawback is to formulate the activeness condition of exactly
one of the mentioned constrains explicitly by means of mixed-integer linear programming
(MILP). Therefor Constraints (5b) and (5c) are complemented by

sxj − sxi ≥ d̃xji + b
(1)
ji ·M, ∀(j, i) ∈ Ns (7a)

sxi − sxj ≥ d̃xji + b
(2)
ji ·M, ∀(j, i) ∈ Ns (7b)

b
(1)
ji + b

(2)
ji = 1, ∀(j, i) ∈ Ns (7c)

b
(1)
ji , b

(2)
ji ∈ B, ∀(j, i) ∈ Ns (7d)

where M is a sufficiently large so called big-M constant. For all other pairs in Constraints
(5b) through (5i), the complementing constraints are built analogously.

A major drawback of this method that has to be mentioned is the computational
complexity of mixed-integer linear programming, which precludes the application of this
approach to large-scale problems.

5 Fixing Certain Sensors

We developed a scheme that successively fixes certain sensors and regards them as
pseudo-anchors. Afterwards, each of the emerging reduced SNLPs is solved with one

7

of the methods presented in this work.

5.1 Outline of the Algorithm

The idea of the algorithm is the following: If a sensor s̄ is adjacent to two anchors, there
exist exactly two possible locations for s̄, given by two circle intersection points. If we
fix s̄ to one of them, further sensors can be fixed by trilateration, namely those that are
adjacent to two anchors and to s̄. We refer to them as children of s̄ and to s̄ as their
father. Now we end up with two reduced SNLPs where s̄ and its children are regarded
as anchors. We can solve it now by one of the methods presented above.

This procedure can be iterated: We can successively take sensors that are adjacent
to two anchors, fix them to one of the two circle intersection points, and fix all their
children by trilateration. Of course, this leads to 2n reduced SNLPs, where n is the
number of fixed fathers. To limit the number of reduced SNLPs, one can define the
maximum number of father nodes to be fixed. The algorithm then tries to fix those
sensors with the largest number of children. Note that this is not always possible as
some sensors may only become fathers if some sensors (with a possibly smaller number
of children!) become fathers as well.

The algorithm is stated formally in two parts. We begin with a first sweep (see
Algorithm 1) to determine the father/children-structure of the given problem. In the
second run, Algorithm 2, we enumerate all possible choices of circle intersection points
and solve the corresponding reduced SNLPs. To simplify the notation, we will denote
all elements of the extended anchor sets Ā by āi. In this context, these can either be
anchors or (temporarily) fixed sensors.

5.2 Properties

An obvious advantage of the algorithm is that it can be parallelized in a straightforward
manner: For each choice of intersection points, the reduced SNLPs can be solved inde-
pendently. A disadvantage is that the algorithm is quite prone to roundoff errors due to
the computation of the intersection points which involves computing square roots, hence
special care has to be taken when setting computation tolerances.

5.3 Some modifications

By making some easy modifications, one can avoid solving all 2n reduced SNLPs: First
of all, one can judge a solution independently from other solutions depending on the
performance measure. In this case, one can terminate the algorithm as soon as an
optimal solution with respect to this measure is found. If, for example the number of
realized distances is used to measure the quality of a solution, one would terminate the
algorithm as soon as a solution is found which realizes all given distances. Secondly, one
can check before the solution of the reduced SNLP if all given distances between the fixed
sensors are realized, as certain choices of intersection points may lead to contradictions.
If this is the case, one can skip the solution of the reduced SNLP for this particular
choice of intersection points and prune this branch.

8

Ā = {a1, . . . , am};
S̄ = {s1, . . . , sn};
repeat

Ā′ = {};
for i = 1 to |Ā| do

for j = i to |Ā| do
E = {s ∈ S̄ | s adjacent to āi and āj};
father(sk) = sk, k = 1, . . . , |E|;
for k = 1 to |E| do

if father(sk) = sk then
Set father(sl) = sk for all sl adjacent to sk

end

end
Ā′ = Ā′ ∪ E;
S̄ = S̄ \ E;

end

end
Ā = Ā ∪ Ā′;

until Ā′ = {} ;
Algorithm 1: Determining the father/children structure of the problem

6 Extensions for More General Cases

So far all algorithmic ideas have been discussed exemplarily for the small 2D no noise
benchmark problem of the 2011 MOPTA competition. In the following we discuss how
these ideas can be transferred to be used for other, more general problem classes from
this competition.

6.1 Extensions for Treating Large Problems

Going from small scale to large scale problems, the problem formulations do not need
to be modified. However certain methods that are expensive in terms of computation
time and/or memory consumption might not be reasonably applicable anymore. This
particularly holds for the MILP formulation of the l1 approximation.

One approach to overcome such problems is to split the large-scale problem into several
smaller ones and compute solutions to the local problems for variable initialization before
computing a few iterations of the full NLP problem. To split the large-scale problem we
propose the following procedure: First a minimum distance spanning forest is computed
in the full graph induced by the set of all anchors, using a Kruskal-like greedy algorithm
that stops when only a certain number kMSF components is left. Next, the closest
anchor to each sensor (in terms of hops) is computed. Each component of the spanning
tree together with those sensors whose closest anchor is in that component induce a
subgraph of the large-scale problem. On these smaller problems solutions principally
can be computed by any of the algorithms and procedures explained earlier. However,

9

Choose q “branching sensors” s̄1, . . . , s̄q such that∑q
i=1 |{s ∈ Ā | father(s) = s̄i}| → max and dependencies fulfilled;

B = {s̄1, . . . , s̄q};
bestSolution = 0;
repeat

Pick choice of intersection points choice(s̄k) ∀s̄k ∈ B;
Ā = {a1, . . . , am} ∪B;
S̄ = {s1, . . . , sn} \B;
for k = 1 to q do

Recover elements āi and āj that lead to fixation of s̄k from algorithm 1;
E = {s ∈ S̄ | s adjacent to āi and āj};
Compute intersection point choice(s̄k) and fix coordinates of s̄k to this
location;
E = E \ {s̄k};
for l = 1 to |E| do

Compute position of sensor sl by trilateration from positions of āi, āj
and s̄k and fix coordinates of sl to this location;
Ā = Ā ∪ {sl};
S̄ = S̄ \ {sl};

end

end
Solve reduced SNLP with anchor set Ā and sensor set S̄ using one or several
of the techniques presented above, obtain performance measure
currSolution and corresponding positions s for all sensors;
if currSolution ” > ” bestSolution then

bestSolution = currSolution;
bestPos = s

end
until all choices enumerated ;
Terminate with bestSolution;

Algorithm 2: Enumerating and solving reduced SNLPs

10

in the current status of implementation, only the solution of generic NLP problems on
the subgraphs is supported. In the GUI this method can be accessed by the button
’Small NLP’.

6.2 Extension to Noisy Data

Considering noisy instead of exact distance measurements, we cannot demand exact ad-
herence of distances anymore, but rather aim to find a solution that keeps the deviation
between the true, but unaccessible distances and the distances achieved by the solution
small. To that end we compute means and standard deviations from given distance
measurements. Due to lack of further information we assume the errors in the distance
measurements to be normally distributed around the true distance. If two distance
measurements are given between a pair of objects, we compute the expectation as the
arithmetic mean and the standard deviation as the difference between either measure-
ment and the mean (maximum-likelihood estimators). If only one distance measurement
is available we choose this as the mean and assume a certain value for the standard de-
viation larger than all computed standard deviations. If no distance measures are given
between a pair of sensors, no constraints are induced.

Following an idea presented in [BLWY06] we replace equality constraints (1b) and
(1c) by confidence constraints

d2ji ≤ ‖sj − si‖22 ≤ d
2
ji, ∀(j, i) ∈ Ns (8a)

d2jk ≤ ‖sj − ak‖22 ≤ d
2
jk, ∀(j, k) ∈ Na (8b)

in the general formulation. This allows to retain the problem nature of a feasibility
problem, which proofed to yield better solutions than the more intuitive formulation by
introducing slack variables identically to Formulation (2).

Basing on the assumption of having normally distributed measurement errors we define
dji := d̂ji− (csol + 1) ·σji and dji := d̂ji + (csol + 1) ·σji, where d̂ji is the expectation and
σji the standard deviation of the distance measurements. csol is a positive constant to
be defined by the user. The definition for the sensor-anchor distances works analogously.

6.3 Extension to 3D Data

When considering 3D instead of 2D problems, the only major difference is that distance
measures between two sensor/anchor objects need to additionally incorporate the dif-
ference in their z coordinate, which is parametric in the objects x and y coordinate.
Therefore no additional variables or constraints are introduced in the general NLP and
SOCP formulations (though some additional constraints in the l1 and l1,∞ LP problems
are needed). There are however problems with our enumeration heuristic: The intersec-
tion of two-spheres in 3D is a circle. If we intersect this circle with the manifold defining
the surface profile it might be the case that there are more than two intersection points.
These intersections points have to be computed by solving a nonlinear system of equa-
tions which in particular involves the parametrization of the manifold. The solution of

11

this system in the general case is more tedious than the solution if the manifold is flat
(as in the 2D case).

The relaxations described in Section 4 can of course be applied to the 3D problems
by simply disregarding the third coordinate and perform all the computations with the
2D projections of the 3D problem. We obtain 3D values just by lifting the computed
2D positions on the parametrized manifold. In fact, we obtained good results with this
technique in our numerical experiments, see Section 8.

7 AIMMS Model Usage and User Interaction

On opening the submitted AIMMS project file the first user interaction page allows the
user to choose the desired problem class. A click will redirect the user to a graphical
interface corresponding to the chosen problem class (cf. Figure 2). The structure of
these GUI pages is essentially as follows:

The top menu allows the user to reload all variables and parameters of the current
problem class or to switch to a different problem class.

In the center of a page, a 2D graph plot shows the (projected) current sensor and
anchor positions. Here, anchors are black circles and sensors are blue squares. If distance
measurements are given between two objects an edge is drawn. It is colored green or
red depending on whether the distance is satisfied by the current solution or not (up to
a user defined equality tolerance to be introduced below). To the right of the 2D graph
plot, the x and y coordinates of all sensor positions of the current solution are listed.

To the left of the 2D graph plot, the user can choose from a variety of algorithmic
options to solve their problem instance. Depending on the chosen problem class several
solving routines are available. The corresponding solution procedures are explained in
Sections 3 through 5. The l1, l1/l∞, l1-MILP and SOCP procedures as well as the small
NLP approach solve slightly modified problems derived from the desired one and hence
are suggested to only be used to generate good initializations before using the NLP
procedure to finalize the solution completion. Alternatively the n-best enumeration
method explained in Section 5 can be used as initialization procedure where possible.
The parameter n sets the number of fathers that will be fixed. The heuristic tries to
choose good fathers with many children in order to reduce the variables in the reduced
SNLPs as much as possible. Furthermore, the user can choose which method should
be used to generate initial values for the reduced NLP. Similar the full SNLP case, we
provide the following options: SOCP relaxation, l1- and l1/l∞-relaxation. Additionally,
there is the possibility to initialize all free sensor positions to zero or randomly on a
circle around a neighbouring anchor. Note that in the worst case 2n reduced SNLPs
have to be solved.

Below the menu buttons for solution computation a tolerance or, in case of noise, a
confidence level parameter can be set. Depending on this choice, the number of realized
and not realized distances is shown below. The confidence level parameter ceq defines

a two-sided interval of distances d ∈ [d̂·,· − ceq · σ·,·, d̂·,· + ceq · σ·,·] around the mean of

the measured distances d̂·,· (where σ·,· is the corresponding standard deviation) which

12

Figure 2: Screenshot of the graphical AIMMS user interface.

13

are considered to be satisfied. Additionally, in the case of noise, the standard deviation
(SD) relaxation parameter csol introduced in Section 6.2 can be set.

In the lower part of the page, the distribution of the temperatures is drawn. If a
3D problem class is chosen, the surface profile of the corresponding problem instance is
additionally drawn left of the temperature chart.

In order to being able to read the data given for the MOPTA 2011 competition into
AIMMS a Perl file called ’convert2aimms.pl’ is enclosed to our submission, which con-
verts the given files into an AIMMS-conform format. For a given file ’3D NoNoise Small
Distances.txt’ for example, a new file ’3D NoNoise Small Distances aimms.txt’ is gener-
ated. Note that currently the file names for the external data sources unfortunately are
hard coded in AIMMS in the procedure ’MainInitialization’.

8 Results

All solutions described in this section are available as cases within our AIMMS submis-
sion. Within the GUI, a graphical and textual representation of the results is provided.
If not stated otherwise, we used MOSEK to solve LPs and QCPs and SNOPT to solve
NLPs.

8.1 No Noise 2D

8.1.1 Small Problem

We could solve the small instance of the 2D problem without noise to optimality, i.e.
all squared distances between the computed sensor positions matched the given squared
distances up to a tolerance of 10−1. We employed our enumeration heuristic with n = 2
and used the SOCP relaxation to generate initial values for the reduced NLPs. We used
MOSEK as QCP solver with the default settings for the solution of the SOCP relaxation
and SNOPT for the solution of the NLP. The feasibility tolerance of SNOPT should be
reduced to 10−1 because of the fact that the distances as well as all position values have
roundoff errors of the order of 10−3. Overall, our enumeration heuristic works pretty well
with this problem instance. By fixing only two sensors, the number of variable sensors
could be reduced by 15, which is about one third of the overall number of sensors. The
initialization of the reduced NLPs by the l1- or the l1/l∞-relaxation yielded results of
similar quality.

8.1.2 Large Problem

In the large problem instance, in our best solution 2070 distances could be realized,
with 76 not realized (see Figure 3). The solution was obtained by solving the l1/l∞-
approximation to generate initial values for the NLP and solving the NLP afterwards.
The solver parameters were the same as in the small case. One can see that large areas
are in fact identified correctly, the wrongly positioned sensors lie on the border or outside
the convex hull of the anchors. The enumeration was not as good as in the small instance,

14

Figure 3: Best solution found for large 2D no noise problem. 2070 distances realized
(green), 76 distances not realized (red). Sensors are drawn in blue, anchors in
black.

probably due to the roundoff errors mentioned earlier. Furthermore, one would need to
employ better heuristics to choose the branching sensors, e.g., try to locate them near
anchors in the problematic area, in order to make this heuristic more successful.

8.2 Noise 2D

8.2.1 Small Problem

The best solution obtained was 264 distances realized within the 3σ-confidence interval
and 20 distances where the difference was higher than 3 times the estimated standard
deviation. The SOCP relaxation was used to generate initial values for the NLP, which
is solved with a relaxation parameter csol = 1.0. In contrast to the no noise 2D large
problem instance, the wrongly (within the scope of our error model!) identified sensors
tend to lie more evenly spread in the interior of the convex hull of the anchors.

8.2.2 Large Problem

The best solution obtained was 1848 realized distances within the 3σ-confidence interval
and 291 distances not realized within this confidence level. Again, the standard deviation
relaxation parameter csol was set to 1.0. We used the SOCP relaxation to generate initial
values for the NLP. Generally, the solution quality of the noisy problems is harder to
assess than those of the problems without noise, especially because the statistical error
model is not known.

15

8.3 No Noise 3D

8.3.1 Small Problem

As in the 2D case, the small no noise problem instance in 3D could be solved pretty
well by our implementation. The best solution we found were 236 correctly realized
distances and 4 not realized. Due to termination problems with MOSEK we chose
CONOPT with the default parameters to solve the QCP resulting from projection of
the SOCP relaxation to 2 dimensions. The resulting NLP was again solved by SNOPT.

8.3.2 Large Problem

Also the large problem without noise instance performed similarly than its 2D coun-
terpart. The best solution was 1982 distances realized and 98 not realized. Again,
CONOPT was employed to solve the (2D projected) SOCP relaxation, afterwards SNOPT
for the NLP. Keep in mind that the enumeration technique is not yet available to yield
meaningful results in the 3D case.

8.4 Noise 3D

8.4.1 Small Problem

In our best solution, we could realize 171 distances within the 3σ-confidence interval,
with 38 distances not realized correctly. In our computations, the standard deviation
parameter was again set to 1.0. Again we first solved the QCP for the SOCP relaxation
and the feasibility NLP afterwards.

8.4.2 Large Problem

In this most general formulation, the solution quality of our methods could not reach the
level of the other testcases. Only 1447 distances were realized within the 3σ-confidence
level, 546 were not. Again, we chose the 2D projection of the SOCP relaxation with
CONOPT as initialization for the NLP.

9 Discussion and Outlook

We developed a toolkit to treat sensor network localization problems in 2D and 3D, both
with noisy and exact data. The problems without noise could be solved very well by our
methods. The best solutions in these cases were obtained by using several techniques:
An SOCP relaxation, a l1/l∞-relaxation, and an enumeration scheme to reduce the size
and complexity of the problem.

In the noisy case, there are still some open questions how to treat the measurement
errors adequately. Our formulation makes the most general assumptions on the statistical
model of the measurement errors, with satisfactory results in the 2D case.

The 3D noisy case currently suffers from the fact that on the one hand many ideas
were not yet implemented for noisy data and on the other hand they were not specifically

16

adapted for 3D data. The relaxation techniques should certainly take into account the
structure of the given manifold instead of solving a 2D projection only. Further directions
of research should also include a generalization of the enumeration scheme to 3D as well
as to noisy data. The method could be expanded by considering further structures that
can be fixed in this context, think, for example, a K3 which is adjacent to three fixed
components.

A large chapter which we have not considered so far is the integration of the temper-
ature measurements to generate further information that can be helpful in the solution
process, e.g., to generate further constraints, plausibility checks, etc.

As for the user interface it would be desirable to have more tools to visualize the quality
of a solution, for example identify and visualize components of a solution that are fixed.
Also, possibilities to assess the uncertainty of a solution – including the corresponding
temperature distribution – dependent on different statistical models to be specified by
the user can be thought of.

References

[Bel09] P. Belotti. Couenne: a user’s manual. Technical report, Lehigh University,
2009.

[BLWY06] Pratik Biswas, Tzu-Chen Lian, Ta-Chung Wang, and Yinyu Ye. Semidefinite
programming based algorithms for sensor network localization. ACM Trans.
Sen. Netw., 2:188–220, May 2006.

[DKQW10] Yichuan Ding, Nathan Krislock, Jiawei Qian, and Henry Wolkowicz. Sen-
sor network localization, euclidean distance matrix completions, and graph
realization. Optimization and Engineering, 11:45–66, 2010. 10.1007/s11081-
008-9072-0.

[Tse07] P. Tseng. Second-cone programming relaxation of sensor network localiza-
tion. SIAM Journal of Optimization, 18(2):156–185, 2007.

17

