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Zusammenfassung
Die Quellensuche in Graphen ist die Suche nach dem Ursprungs eines Ausbreitungsphänomens
in einem Netzwerk. Die Quelle ist ein Knoten des Graphen, der vor der Suche unbekannt ist.
Die Quelle könnte zum Beispiel der Ursprung einer Kontamination in einem Wasserverteil-
ungssystem oder einem Logistiksystem für Lebensmittel sein. Ebenso kann der Ursprung einer
Krankheit in einem Beförderungsnetz (Flug-, Straßen- oder Bahnverkehr, usw.) von Interesse
sein.

Aufgrund der Relevanz der Anwendungen wurden diese Themen von vielen Forschern aus
pratischer Sicht betrachtet. Es fehlt bisher eine abstrahierende und generische mathematis-
che Betrachtung. Die vorliengede Arbeit ist ein erster Schritt in diese Richtung. Dafür wird
eine allgemeine und einfache Modellvorstellung basierend auf endlichen Graphen und einer
konstanten Ausbreitungsgeschwindigkeit des Ausbreitungsphänomens angenommen.

Aufbauend auf dieser Modellierung wird die Problemstellung abstrakt eingeführt. Ins-
besondere wird zwischen der online und der o�ine Quellensuche unterschieden. Die online
Quellensuche �ndet gleichzeitig mit dem Ausbreitungsphänomen statt und es ist möglich wäh-
rend der Suche weitere Daten zu sammeln. Die o�ine Quellensuche �ndet dagegen zeitlich
nach dem Ausbreitungsphänomen statt und alle Daten sind zu Beginn der Suche vorhanden.

Eine weitere wichtige Unterscheidung liegt in der deterministischen und der stochastis-
chen Quellensuche. Die deterministische Quellensuche baut auf exakten Daten auf, während
die stochastische Quellensuche zufällige Fehler in den Daten zulässt und behandelt. Der deter-
ministische Fall is deutlich einfacher als der stochastische und es kann daher vor der Quellen-
suche angeben werden, welche Daten benötigt werden, um beliebige Quelle zu �nden. Hierbei
spielen besonders das Konzept der metrischen Dimension eines Graphen und hier vorgestellte
Erweiterungen eine Rolle.

Im stochastische Fall werden mindestens die Daten des deterministischen Falls benötigt
und zusätzliche Daten um die zufälligen Fehler durch mitteln zu verringern, sodass noch eine
hinreichend gute Schätzung der Quelle erreicht wird. Hier ist es a priori nicht möglich anzu-
geben, welche Daten benötigt werden. Genauso kann die Quelle nicht mehr exakt gefunden
werden sondern nur noch geschätzt werden. Für diese Aufgabe wird die lineare Regression ver-
wendet. Über die Fehleranalyse dieser Schätzer werden Heuristiken eingeführt, die angeben,
welche Daten gesammelt werden sollten.

Zur Lösung des stochatischen online Quellen�ndungsproblems wird ein iterativer Algorith-
mus vorgeschlagen. Dieser besteht aus dem linearen Regressionsschätzer und der Heuristik
zur Datensammlung. In jeder Iteration wird hierbei auf Grundlage der bisherigen Daten eine
Schätzung der Quelle vorgenommen. Abhängig von der Qualität dieser Schätzung werden
entweder weitere Daten gesammelt und eine nächste Iteration angestoßen oder die Schätzung
wird akzeptiert und der Algorithmus beendet.

Da die Sammlung der Daten nur heuristisch erfolgt, können keine theoretischen Garantien
bezüglich der Konvergenz eines Algorithmus basierend auf dem Schätzer und der Heursitik
gegeben werden. Um die Konvergenz zu beweisen wird eine Einschränkung für die Daten, die
die Heursitik aussuchen darf, eingeführt und im Algorithmus genutzt um die Konvergenz zu
erzwingen.

Die praktische Leistungsfähigkeit dieses Algorithmus wird anhand von numerischen Simu-
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lationen gezeigt. Zum einen wird der Algorithmus genutzt um in einer Simulation die Quelle
von Herzrhytmusstörungen zu �nden und zum anderen um auf allgemeinen Testgraphen die
Quelle eines simulierten Ausbreitungsphänomens zu �nden.

Eine neue mathematische Theorie für die Quellensuche in Graphen wird in dieser Arbeit
eingführt. Innerhalb der Theorie wird ein Algorithmus entwickelt, der das stochastische on-
line Quellen�ndungsproblem löst. Die Konvergenz des Algorithmus wird bewiesen und seine
Robustheit in numerischen Simulationen gezeigt.
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Summary
Source detection in graphs refers to the search for the origin of a spreading signal in a network.
The source is an unknown node in the graph, which could be the origin of contamination
in a water supply network, food logistics network, or the location of a disease outbreak in
a transportation network (air, road, or rail transport). While many researchers have focused
on practical applications of this problem, an abstract and generic mathematical examination
is lacking. This work provides a general and simple modeling of the problem based on �nite
graphs and constant speed of the spreading signal.

The problem is de�ned based on this modeling, with a distinction made between o�ine
and online source detection. O�ine source detection takes place after the signal has propagated
through the network and all data is available, while online source detection is conducted during
the spread of the signal, and new data may be collected during the search. Another important
distinction is between stochastic and deterministic source detection, where the latter is simpler
and allows for determining the necessary data, to �nd any source, before the search.

In the stochastic case, in contrast to the deterministic case, it is not possible to determine
the necessary data, to �nd any source, a priori. In general additional data is required to reduce
random errors by averaging, and the source can only be estimated, not found exactly. Linear
regression is used for this task, and the error analysis of this estimator leads to heuristics
for collecting necessary data. An iterative algorithm is proposed for stochastic online source
detection problem, consisting of the linear regression estimator and data collection heuristic.

However, as the data is collected heuristically, there are no theoretical guarantees regard-
ing the convergence of the algorithm. To address this, a feasibility constraint on the data is
introduced to enforce convergence. The algorithm’s practical performance is demonstrated
through numerical simulations on simulated cardiac tachycardia and general test graphs.

Overall, this thesis presents a novel mathematical framework for general source detection
in graphs, with a new solution algorithm for the stochastic online problem. The algorithm’s
convergence is proved, and its robustness is shown in numerical simulations.
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1 Introduction

Source detection in graphs is a mathematical problem that involves �nding the source of a
time-dependent spreading process on a given graph. This problem requires collecting time-
dependent data about the spreading process on the graph and using this information to esti-
mate the source. The �rst step of deciding where to collect information is challenging from
a complexity point of view, while the second step of source estimation in a �nite graph can
be done by enumeration. In o�ine source detection, these two steps are performed after the
spreading process, while in online source detection, the steps may be repeated iteratively during
the search while the spreading process is ongoing.

The �rst step can be interpreted as an experimental design problem, while the second step
is usually referred to as estimation, inference, detection, or localization. Both steps have been
studied in various settings, especially in Euclidean spaces.

Optimal experimental design is described in [37, 60]. An early idea to solve the experimen-
tal design problem is to minimize the variance of the model prediction [101]. This is called
G-optimality and is equivalent to the so called D-optimal criterion [61]. The D-optimal crite-
rion [103] maximizes the determinant of the Fisher information matrix. Another criterion is to
minimize the variance of the parameter estimates of the model [35], referred to as A-optimality.
Our approach is based on the discrete graph structure and inspired by these methods.

The comparison or correlation of the estimation step is solved with linear regression in
the case of stochastic problems. The use of regression is not a new idea for source detection
problems posed in the usual Euclidean space [12]. In the Euclidean space the di�culty is the
nonconvexity of the problem and convexi�cation is performed. In our graph based setting
nonconvexity is not a problem, as enumeration over the �nite number of possible source nodes
is feasible.

The source is a node on the graph that is unique and special because it initiates the sig-
nal spreading process. The signal spreads from the source over the graph, propagating to all
reachable locations. Given the notion of closeness or neighborhood on the graph, the signal
spreads from already reached nodes to nearby or neighboring nodes. Therefore, the distance
to the source of a node correlates with the time when the signal reaches the node, which leads
to the solution of the problem.

To �nd the source of a signal spreading process, the problem is analyzed to �nd nodes that
reveal the maximum amount of information about the source, and the arrival time of the signal
at these nodes is collected. For each possible source node, its distance to the measured nodes
is compared with the arrival times at these nodes. The node with the best �t or correlation
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between distance and time is the source estimate. In the online case, a termination check is
performed based on the quality of the estimate.

The source detection problem has many important applications, and source detection is es-
sential to understand the process and suppress the source in case of negative e�ects. In case of
positive e�ects, understanding how to support its spread, how to support the source to initiate
it more often, or how to create new sources at other locations is important. With the increasing
interconnectedness of the world, more networks are created, and their relevance increases, re-
quiring more research on how to use this data e�ciently. The thesis provides tools and theory
for this task.

This work presents a new mathematical framework for general source detection in graphs,
which includes weighted and directed graphs, as well as deterministic or stochastic measure-
ment information. The framework is applicable in both online and o�ine settings and is based
on linear models with known or unknown parameters. The thesis provides di�erent solution
approaches for this problem in various settings, including stochastic and deterministic infor-
mation, and online or o�ine scenarios. For the most challenging case of the stochastic online
problem, the work proposes a new algorithm that is proven to converge in the limit of in�nitely
many iterations. The algorithm’s practical performance is evaluated through numerical simula-
tions, which demonstrate its robustness and �exibility across a wide range of graphs, including
those that are weighted or unweighted, directed or undirected.

The work is structured as follows. In Chapter 2 of the thesis presents source detection ap-
plications, showcasing how the solution of special stochastic and di�erential models results in
linear time to distance relations. These relations motivate the linear spreading model assump-
tion, which is central to the thesis and its results.

In Chapter 3, the mathematical framework is described in detail. First, the source detection
problem in graphs is de�ned in Section 3.2. Next, the deterministic case of the problem is
considered in Section 3.3. In the deterministic o�ine case (Subsection 3.3.1), the solution is
connected to the (metric) basis of a graph. This concept is extended to fully match our problem
case. Possibilities to calculate graph bases e�ciently are proposed in Subsection 3.3.2, and in
Subsection 3.3.3, an online decomposition approaches to solve the problem are proposed. The
�nal section of the chapter is about the stochastic problem variant. In Subsection 3.4.1 the
o�ine case is presented, while Subsection 3.4.2 is about the online case and provides a proof
for convergence in the limit for the stochastic online source detection algorithm.

Parts of the chapter are based on [106], which is a pre-print submitted to Automatica.
Especially Section 3.2, Subsection 3.3.1 and Subsection 3.4.2 are from the paper. The problem
de�nition is taken from the paper to have a consistent naming. While I found the problem class,
provided algorithms and proofs, Sager and Kaibel provided inputs on how to name and de�ne
the concepts, present the theory in the paper, pointed out �aws, and suboptimal de�nitions.

In Chapter 4 a medical application of the proposed algorithm is presented. The chapter
was �rst published in [107]. Subsection 4.1.1 was added in this thesis as an introduction for
readers without medical background. In this application, the source of tachycardia in the heart
is identi�ed with our algorithm, which could facilitate medical treatment if applied.

The contributions among the authors Weber, Katus, Sager, and Scholz are distributed as
follows:
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• The authors Katus and Scholz provided the medical application, data, initial research
idea, and initial support.

• I developed the theoretical solution and the implementation of the algorithm as well as
the numerical results presented in the paper.

• Sager supervised my research with vision, motivation, and feedback, especially helping
to identify promising solution directions and potential problems and �aws in the solu-
tion.

• Scholz mainly wrote the main part of the paper, especially the medical parts.

• I wrote the smaller theoretical and numerical parts.

Chapter 5 contains simulation results over a wide variety of di�erent graphs. Sections 5.1–
5.5 are also from [106]. In these Sections the algorithm implementation is described and per-
formance regarding iterations and source estimation is presented. While I implemented and
executed the numerical simulations and provided the results, all three authors contributed to
the presentation of these results in the paper. In Section 5.6 additional results are presented,
that are original to this work. There results are presented for algorithm convergence, when
relaxing a constraint that is central for enforcing convergence in theory and practice.

Chapter 6 concludes and gives possible future research directions. It highlights the contri-
butions of this thesis and the shortcomings that should be overcome in future research. Also,
it closes the thesis by restating the important connection to practical applications.
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2 Relevance of source detection in graphs

In this thesis a speci�c type of process that occurs on networks is considered. For a comprehen-
sive overview of other network processes and networks in general from a practical standpoint,
please refer to [87, 21].

Our abstract setting can accommodate a variety of di�erent applications. If the graph’s
nodes represent individuals and the edges represent friendships or other human relations, then
the spreading process could be the dissemination of a new concept, a rumor, or some other form
of information. In this context, a disease may also be considered. Typically, this would be mod-
eled at a higher level, with nodes representing cities or countries and edges representing �ights
or other transportation methods. Similarly, logistic networks that distribute di�erent types of
goods may be modeled. The source would be the location where contamination, pollution, or
low-quality goods originate. In the case of water or food networks, sources of contamination
must be detected.

Deterministic source detection is intimately related to the metric dimension of a graph.
Research on metric dimension involves the localization of �res in buildings and LoRaN stations
by the coast guard LoRaN stations [27], as well as the classi�cation of chemical compounds
[26, 27] and the spread of information or disease [102].

Source detection of voltage sags in an electrical network [58, 89, 69] may also be regarded
as a source detection problem. This is not included as an example since it is usually based on di-
rectional measurement data. Nonetheless, there are methods that employ not only directional
information but also more sophisticated whole-network voltage models [57, 68]. Simpli�ca-
tions (i.e., linearizations) of these methods will also �t within our framework.

Medical applications are neural source detection in the brain for epilepsy research [51]
and the mapping and prediction of focal cardiac arrhythmias [107]. The latter is extensively
discussed in Chapter 4.

General linear source localization is described in [76], where the challenge of ill-posed
problems is tackled, while parameter estimation is considered in [12]. In [49] the detection of
objects in astronomical images is examined.

Continuous problems are not considered, as source detection in graphs is a problem that
comprises a �nite number of elements. In this chapter, several examples are scrutinized before
the theoretical framework is outlined. The reader may choose to skip this sections and proceed
to Chapter 3.
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2.1 Water network source detection

Water is one of the most important resources for human societies. Its distribution to and col-
lection from all members of society is a challenging task, usually performed via networks
of sewers and/or pipes. Due to the importance of these networks, optimizing their opera-
tion by controllers is an area of active research. To solve the optimization problems, usually
simpli�ed—mainly linear—models are used. Nonlinearity in these kinds of problems is due
to over�ow when the water levels exceed the maximum capacities of channels. This can be
treated by tailored algorithmic solution strategies for optimization problems [55].

Detecting the source of pollution in water networks is a practical and relevant task. Much
research in this area is focused on the sensors: which chemical or biological markers have
to be tested to distinguish di�erent kinds of pollution sources [8, 98, 15, 88]. Additionally,
location-dependent visualization and interpolation schemes are used [32]. Some researchers
try to detect the source in space. In [67] mainly linear simpli�ed models are used in an opti-
mization framework. Here, �ow conditions are assumed to be known and then used to calculate
time delays of pollution concentration over the network. These delays are used in a quadratic
optimization problem to calculate pollution injection pro�les over time for all nodes. A similar
�ow model-based approach to the o�ine problem can be found in [78], while in [36] the online
case is considered with the goal to place a minimal number of sensors to identify the source.

Ignoring concentrations and just looking at arrival times of the pollution at the sensor lo-
cations would simplify the problem from [67] even further and lead directly to our framework.
Then the ill-posedness of the problem and the placement of sensors could be treated a bit more
rigorously. This is only possible if the pollution starts at a distinct point in time that should be
inside the observation time interval. With this approach, one could get information about the
location of the source and the starting time of the pollution.

On the other hand, if the pollution is already ongoing, one could simplify the problem by
ignoring time and looking at concentration as a measure of distance. Then, one would model
the dilution as distance and get information about the source location and amount of pollution
material.

These simpli�cations might seem large. However, the placement of sensors in such net-
works can be approached with even simpler models [17].

2.2 Acoustic source detection

Humans naturally recognize objects and their positions by hearing their sound. If there is not
too much background noise, humans can identify known objects like cars or other people. Most
importantly, they can also locate the position of the object. This is possible because humans
have two sensors (the ears) with di�ering positions that give them spatial information about
the object. Thus, people can conclude how important it is to consider an object in planning
their behavior; usually, the closer the object, the sooner they have to deal with it. Over time,
by monitoring the position, they can even track the object’s route and speed.

Similarly, one can localize objects that produce sounds by using distributed microphones as
a sensor network. Applications range from localizing the talker in a room for camera pointing
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2.3. COMPUTER VIRUSES AS RANDOM MODELS

[14, 104, 23] to surveillance of outside areas (like crossroads, valleys or industrial facilities) or
underwater areas (sonar) [66, 28].

A good overview of algorithms for signal parameter estimation and some historical devel-
opment (radar and sonar usage in world war II) can be found in [66] while [28] focuses on
practical challenges (like wideband signals, near- and far-�eld, etc.) and the organization of
data exchange and network organization.

Acoustic waves traveling through air usually have constant transmission speed, such that
the time-distance relationship is linear. The least squares approach in [109] is very similar to
our approach but, in contrast, is based on the distances in the Euclidean space. The publica-
tion does not only consider acoustic signals but treats general surveillance and source local-
ization for sonar, radar, or radio applications. Sound traveling in water or soil, however, has
non-constant, changing speed characteristics. In the area of acoustic source localization, the
energy of the signal is also used for source localization [97], resulting in nonlinear relation-
ships. However, the basic dynamics are linear (as shown in [109]) and should therefore also �t
into our framework.

The main di�erence in our approach is that the signals usually travel through Euclidean
space, making the use of a graph setting unnecessary. In sonar settings, there is re�ection
present, which means that the signal may go around obstacles, i.e., the space is not Euclidean
(from a shortest path perspective) and might be represented as a graph. Seismic waves were
considered in [99, 56], focusing on partial di�erential equations describing the elastodynamics
of the ground. In seismic settings, long-distance signals travel the earth’s surface, a manifold
close to a sphere. Here, the use of a graph as a discretized representation is appropriate.

2.3 Computer viruses as random models

The spread of computer viruses and fault propagation in information networks has been mod-
eled as spreading phenomena on a graph [96, 29]. In [29] ordinary di�erential equations are
used. This situation is treated in the next section in the context of human diseases. In [96], a
stochastic model is used to describe the infection between nodes in the network. Their model
and some of their results will be presented �rst and the connection to our setting will be drawn
at the end.

In [96], the network is modeled as an undirected graph� (+ , �) on which the virus spreads.
An infected node can spread the virus to all its uninfected neighbors. The time until one of
them is infected is modeled as an exponential random variable for each edge. All of them are
identically distributed with rate _ and independent of each other (without loss of generality
they assume _ = 1). In their setting, the information to locate the unique source node E ∈ +
was just the subgraph of nodes # ⊆ + infected by the virus. It is E ∈ # because nodes do not
recover.

In general graphs, it is di�cult to determine the maximum likelihood (ML) estimator of E .
Hence, they restrict themselves to regular trees (the graph is in�nite, and all nodes have an
equal degree) and determine the ML estimator, which they call the rumor center. Then they
show that the rumor center is equal to the distance center in the subtree�# (for any tree) but
is di�erent for general graphs. In the end, they show some nice properties of their estimator
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and an algorithm to calculate it.
Here, the relation of this model to our setting with the constant spreading speed of the

virus or signal is of interest.

Proposition 2.3.1. Given a tree � (+ , �) with a source node E ∈ + and the independent and
identically distributed exponential random variables g8 9 ,∀(8, 9) ∈ � to model infection times be-
tween neighbors with rate _, then the arrival time of the virus at any node = ≥ 1 hops away from
the source is distributed according to the Erlang distribution with parameters = and _, and the
expected arrival time is =/_.

Proof. As� is a tree, there is a unique path from E to the node of interest with length =. Hence,
the random variable is just the sum of = independent and identically distributed exponential
random variables.

) =

=∑
8=1

)8 , )8 ∼ Exp(_)

Therefore, ) ∼ Erl(=, _) with corresponding expected value. �

Remark 2.3.2. The linear relationship between expected arrival time and distance is not restricted
to this special distribution. If the spreading time distributions are independent and have the same
expected value C4 , then the expected arrival time after at the end of a path with length = is =C4 , due
to the linearity of the expected value operator, i.e.,

E[) ] = E

[
=∑
8=1

)8

]
=

=∑
8=1

E[)8] = =C4 .

Remark 2.3.3. For general graphs, this linear relationship between expected arrival time and
distance does not hold anymore. Consider a tree and add one edge to form a loop. Then from any
source E , at least one node exists that is reachable by two distinct paths. Let’s count the common
edges of the two paths as = and the distinct edges of both paths as =1 and =2. Then the expected
arrival time is

E[) ] =
=∑
8=1

E[)8] + E
[
min

{
=1∑
8=1

)8+=,
=2∑
8=1

)8+=+=1

}]
To calculate the expected value of the random variable

)<8= = min

{
=1∑
8=1

)8+=,
=2∑
8=1

)8+=+=1

}
the following is used

1 − �)<8= (C) = % ()<8= > C) = %
(
=1∑
8=1

)8+= > C

)
%

(
=2∑
8=1

)8+=+=1 > C

)
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2.4. INFECTION SPREADING AS DETERMINISTIC MODEL

which is equal to (1−�=1 (C)) (1−�=2 (C)) using shorthand notation for the cumulative distribution
functions. The expected arrival time is

E[)<8=] =
∫ ∞

0
1 − �)<8= (C)3C =

∫ ∞

0
(1 − �=1 (C)) (1 − �=2 (C))︸        ︷︷        ︸

≤1

3C ≤ E[)=1]

and by symmetry, it is E[)<8=] ≤ min
{
E[)=1], E[)=2]

}
. Hence, the expected arrival time depends

on whether there is a unique path between the source and the destination.

In general, the signal passes more densely interconnected regions (with more circles) faster
than the same (shortest path distance) in a tree. Therefore, the linear relationship between
arrival time and distance is lost, but it is still monotone. However, one could compensate for
this by manipulating edge weights accordingly.

2.4 Infection spreading as deterministic model

The spread of epidemics can be modeled as a phenomenon on a graph [86, 24, 30, 42, 9]. The
spreading can be modeled as a stochastic process as described in the previous section or by
deterministic ordinary di�erential equations (ODEs), which is considered in this section. For
ODEs, thresholds that decide if an epidemic dies out fast or spreads over the graph/population,
(expected) sizes of infected subpopulations, vaccination schemes to suppress outbreaks, or
speed of propagation can be studied. In our context, interest lies in the source detection of
epidemics, similar to the approaches using correlation [24], spectrality [38], Bayesian [6], or
centrality based estimators [110, 74, 31]. To show the connection between ODEs and our ap-
proach, their speed of propagation is considered. Therefore, a simple variant of the standard
model �rst is used.

The so-called SIR-model divides a population into three parts. The �rst is the susceptible
(S) part of the population. These individuals might get infected and become part of the infected
(I) subpopulation until they recover and join the recovered (R) part. If there is no recovery, one
speaks of the SI-model. In the most simple variant, the population is assumed to be well-mixed,
but in this thesis the focus is on the case with a population spread over the nodes of a graph
� (+ , �), where infection occurs only between individuals at the same node, and the infection
is spread between nodes by traveling between nodes along edges.

De�nition 2.4.1 (SIR-model on a Graph).

¤( 9 = −U( 9 � 9/# 9 +
∑

=∈N( 9)
(F=8(= −F8=( 9 ) ∀ 9 ∈ + (2.1)

¤� 9 = U( 9 � 9/# 9 − V� 9 +
∑

=∈N( 9)
(F=8�= −F8=� 9 ) ∀ 9 ∈ + (2.2)

¤' 9 = V�= +
∑

=∈N( 9)
(F=8'= −F8=' 9 ) ∀ 9 ∈ + (2.3)
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Infections are proportional to the chance that infected individuals (� 9 ) meet susceptible
individuals (( 9 ) in the total population (# 9 ) at node 9 times the rate of infection U . The infected
recover with rate V . The individuals at a node 9 are either susceptible, infected or recovered
(i.e., # 9 = ( 9 + � 9 + ' 9 ). The last term describes the exchange of population between 9 and its
neighbors N(8), i.e.,F8 9 is the fraction of individuals at 9 that travel to 8 per unit of time.

One can simplify the model above by assuming a stable distribution of individuals over
nodes (i.e., # 9 const.) for example by setting F8 9#8 = F 98# 9 . Then The equation for ' 9 can be
dropped by using relative quantities (B 9 = ( 9/# 9 , 8 9 = � 9/# 9 ). Also, if one is only interested in
the initial spread of the epidemics, one can neglect recovery entirely and only consider either
B 9 or 8 9 , because both sum to one.

De�nition 2.4.2 (Simple SI-model on a Graph).

¤B 9 = −UB 9 (1 − B 9 ) +
∑

=∈N( 9)
F=8 (B= − B 9 ) ∀ 9 ∈ + (2.4)

Without the second term, this is a Bernoulli (more speci�cally, a logistic) di�erential equa-
tion for every node, which can be solved analytically ([16], quoted after [4]). However, the
coupling complicates the solution. If the equation on one node would be in�uenced by the
�xed and known solutions of its neighbors, then the model would correspond to a Riccati
equation at each node.

If the graph is an in�nite chain the equation can be seen as the discretization of a partial
di�erential equation (PDE) [13]: Fisher’s equation [39, 63]. The solution to this PDE is a trav-
eling wave with constant speed. Consequently, also in the discrete graph based setting, in real
epidemic data, the linear relationship (when using an appropriate distance measure) between
distance to the origin and time of arrival was found and already used to estimate the origin
location from arrival time data in di�erent epidemic outbreaks [24].
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3 Theory

3.1 Notation

Before the source detection problem is introduced the underlying mathematical structure, con-
cepts and notations are de�ned.

Our basic structure is a graph. A modern view on graph theory can be found in [33], while
the historically interested and German-speaking reader might be interested in the �rst book
on graph theory [64]. A review from a more practical perspective is given in [87].

De�nition 3.1.1 (Graph). The word graph refers to a directed weighted graph � = (+ , �) with
positive edge lengths ℓ (4) > 0 for all 4 ∈ � and shortest-path-distances 38, 9 with respect to the
length function ℓ from node 8 to node 9 for all 8, 9 ∈ + . Let = := #+ := card(+ ) and< := #� :=
card(�).

The words node and vertex are synonyms.

De�nition 3.1.2 (Distances to set). For a graph� (+ , �) and a set ( ⊂ + the vector 38,( is de�ned
as the vector of shortest path distances from 8 to all nodes in ( .

If the graph � is not clear from the context, the nodes + (�) and the edges � (�) refer
directly to the graph � , otherwise just + , � are used.

De�nition 3.1.3 (Restricted neighborhood). Given a directed Graph� (+ , �) andweightsF4 , 4 ∈
� the sets # +(E, 0) = {D ∈ + : {E,D} = 4 ∈ �,F4 = 0} and # −(E, 0) = {D ∈ + : {D, E} = 4 ∈
�,F4 = 0} are neighborhoods of E restricted by edge weight 0.

The vector 1 has all entries one.

3.2 Source detection problem

The source detection problem is based on a graph as basic structure (De�nition 3.1.1).

Assumption 3.2.1 (Graph). We assume to have complete knowledge of the graph � (+ , �) and
the length function ℓ , and hence also of the distance function 3 .
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In practical applications, the nodes 8 ∈ + correspond to spatial locations where measure-
ments are possible. Examples are communities, airports, cities, or countries for infectious dis-
eases, points on a 3d surface grid of the human heart, or sensors in water distribution net-
works. The edges correspond to connections between the nodes, along which “something may
be passed on”. This might, e.g., be a viral load via infections, electrical excitation of cells, or
transported and di�used pollutant. In the interest of a simpli�cation, and taking the risk that
this term does not intuitively match every application, we will simply use the term signal to
denote this in a general way in the following.

De�nition 3.2.2 (Signal Spreading Process). We consider a dynamic process on a time horizon
T := [CB , C5 ] that originates from an a priori unknown source B ∈ + and spreads the signal via
edges to other nodes of the graph. The edge lengths ℓ (4) quantify the distances the signal needs to
travel to arrive at adjacent nodes.

Note that the times CB and C5 are often unknown. The initial time CB , also called o�set and
indicating when the signal started at source node B , needs to be estimated. The end time C5 is
not relevant for the mathematical model. We make some assumptions for the following.

Assumption 3.2.3 (Signal Spreading Process). We assume that

1. The source B ∈ + is unique.

2. Signal spreading takes place in a di�usive way, i.e., a signal is passed on from a node 8 to
all nodes 9 that are adjacent to 8 .

3. We assume a constant and homogeneous spreading velocity 1/2 > 0. Hence, for known
distances 3B,8 we have

C8 := CB + 2 · 3B,8
as the arrival time at node 8 ∈ + .

While the �rst two assumptions are rather technical, the third assumption is an important
restriction of the problem class to a linear model. We note that some applications might need
less restrictive assumptions. For example, infections or electric conduction on the heart surface
do not have a constant velocity in reality. Also, we are not interested here in measuring the
strength of the signal, which may be relevant for certain applications. We now look at the
available measurement procedure, abstracted as a data oracle.

De�nition 3.2.4 (Data Oracle). An oracle allows to query nodes 8 ∈ + and obtain measurement
data A8 . The A8 indicate times C8 when the signal arrived at node 8 , but with measurement noise,

A8 = C8 + n8 .

Here, n8 ∈ R is a random variable for each 8 ∈ + . We call the special case of n8 = 0 ∀ 8 ∈ + the
deterministic and the general case the stochastic version.

Assumption 3.2.5 (Data Oracle Output). We assume to know the distributions of the measure-
ment errors n8 for all 8 ∈ + .

12



3.2. SOURCE DETECTION PROBLEM

Assumption 3.2.6 (Data Oracle). We assume that we query the oracle after all relevant times
C8 , i.e., data A8 is available at the time of oracle query. In particular, we do not have the possibility
to change the process.

De�nition 3.2.7 (Source Detection Problem). We consider a graph, a signal spreading process,
and an oracle as speci�ed in De�nitions 3.1.1, 3.2.2, 3.2.4 and the assumptions 3.2.1, 3.2.3, 3.2.5.
We denote the task to minimize the number of oracle queries to determine the source node B ∈ +
(possibly up to a tolerance with respect to graph distance) as the source detection problem.

The queries of the oracle provide (noisy) arrival times A8 , which can be used to infer the
unknown o�set CB , the velocity 1/2 , and the source B ∈ + . In this work, we consider the
following general approach to source detection.

De�nition 3.2.8 (Source Detection). The general source detection approach is: Repeat 8 =

1 . . . 8max rounds of

S1) choosing :8 nodes (8 = {81, . . . , 8:8 } ⊆ + ,

S2) querying the oracle to obtain A(8 ∈ R:8 , and

S3) estimating a current best guess for the source 9∗ ∈ + .

If 9∗ = B holds, then we call the approach successful. The source detection problem is to �nd a
successful approach with a minimal number # =

∑8max
8=1 :8 of oracle queries.

The special case of 8max = 1 is called the o�ine version of the problem. It corresponds to a
situation where it is not possible to do calculations between queries to the oracle. The online
version for 8max ≥ 2 is not to be confused with more general concepts in online optimization,
such as model predictive or dual control. Assumption 3.2.6 relates to the properties of the
source detection problem and states that our approach starts after the end of the spreading
process at time C5 . Note that some processes such as cardiac excitations have a repetitive nature
and a fast timescale, compare [107]. Thus, the results of the considered problem class may �nd
application not only in a posteriori analysis, but also in ongoing processes.

The oracle queries in S2) can be practically di�cult and/or expensive, giving rise to our
approach to minimize their overall number. Thus, all nodes chosen in S1) have to provide as
much information as possible. The problem to identify the corresponding nodes can be seen
as an optimal experimental design problem on a graph. The estimation or source inversion
problem in S3) can be approached based on regression. Note that the main assumption for
this model is a spreading of a signal from the source B to all other nodes via shortest paths at
a constant velocity 1/2 > 0. We also assume that the answer of the oracle does not depend
on the round in which it is queried. According to the classi�cation in [52], the above setting
corresponds to sensor observations in contrast to the the snapshot or full information cases. In
the interest of simplicity and if not stated otherwise, we will use notation, de�nitions, and
assumptions from this section, without explicit reference. We shall use the following example
for illustration throughout this thesis.
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Example 1 (Graph). The graph � = (+ , �) has nodes

+ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

and weights ℓ (4) = 1 for all undirected edges 4 in

� = {{0, 5},{0, 6},{0, 7},{0, 8},{0, 9},{1, 2},{1, 4},{1, 5},
{2, 4},{2, 5},{3, 5},{4, 5},{5, 6},{6, 7},{6, 8},{6, 9}}.

1

2 3

4

5

6

789

0

8

9 0 1 2 3 4 5 6 7 8 9

0 0 2 2 2 2 1 1 1 1 1
1 2 0 1 2 1 1 2 3 3 3
2 2 1 0 2 1 1 2 3 3 3
3 2 2 2 0 2 1 2 3 3 3
4 2 1 1 2 0 1 2 3 3 3
5 1 1 1 1 1 0 1 2 2 2
6 1 2 2 2 2 1 0 1 1 1
7 1 3 3 3 3 2 1 0 2 2
8 1 3 3 3 3 2 1 2 0 2
9 1 3 3 3 3 2 1 2 2 0

Figure 3.1: Left: visualization of the example graph. Right: symmetric matrix with shortest
path distances 38, 9 .

3.3 Deterministic source detection

In this section the deterministic version of the source detection problem (De�nition 3.2.8 is
discussed, i.e., n8 = 0 ∀ 8 ∈ + ). This problem class deserves special attention, because it is
interesting in its own right. It is the idealized limit case of stochastic versions and algorithmic
ideas for this case can be iteratively used in more complex settings. Of practical relevance
is the possibility to verify a source via querying the oracle. For the deterministic version one
possibility is a local enumeration.

De�nition 3.3.1 (Source Certi�cate). A node B ∈ + is the source of the spreading process if and
only if CB is �nite and CB < C 9 for all nodes 9 with (E 9 , EB) or (EB , E 9 ) ∈ �.

3.3.1 O�line source detection and graph basis

In this subsection we propose a solution to the deterministic o�ine version of the source detec-
tion problem, i.e., 8max = 1 and n8 = 0 ∀ 8 ∈ + . Note that it is purely combinatorial, asking for
subsets of + for which the oracle answer allows to infer (or resolve) the source.
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3.3. DETERMINISTIC SOURCE DETECTION

We start by considering the special case with CB = 0 and 2 = 1, where the oracle returns A8 =
3B,8 for 8 ∈ + . For source detection (De�nition 3.2.8) we need to choose a minimal cardinality
subset of + in S1) for which we question the oracle in S2). The answer shall enable us to
calculate the source in S3) no matter which node in + actually is the source. This concept is
known in graph theory as the metric dimension of a graph [27, 26, 80, 102] and depends on the
basis of a graph. Classically, the metric dimension of a graph is de�ned for unweighted graphs,
i.e., ℓ (4) = 1 ∀ 4 ∈ �. We generalize this to weighted graphs (+ , �) with weights ℓ (4) > 0 for
4 ∈ �.

De�nition 3.3.2 (�-metric Equivalence). Given a subset � ⊆ + , two nodes 8, 9 ∈ + are �-metric
equivalent if 38,: = 3 9,: ∀ : ∈ �.

De�nition 3.3.3 (Metric-Resolving Set). A set � ⊆ + is metric resolving, if 8, 9 ∈ + are �-metric
equivalent if and only if 8 = 9 .

Thus, � is metric-resolving if it uniquely de�nes all E ∈ + by their shortest path distances
to the elements of �.

De�nition 3.3.4 (Metric Basis). A (metric) basis � is a metric-resolving set with minimal car-
dinality.

If the graph � of the basis is not clear from the context, we use notation �(�).

De�nition 3.3.5 (Metric Dimension). Given a weighted graph� = (+ , �), the metric dimension
is the cardinality of one of its metric bases.

There are di�erent ways to check if a set � is metric-resolving. Equivalently to De�ni-
tion 3.3.3, one can check if either

∑
:∈� |3 9,: − 38,: | or (anticipating the stochastic regression

case) if
∑
:∈� (3 9,: −38,: )2 is zero for all pairs of nodes 8, 9 ∈ + with 8 ≠ 9 . If the value is strictly

positive for (the minimum of) all pairs, then � is metric-resolving.

Example 2. The graph from Example 1 has metric dimension 5 and one metric basis is � :=
{1, 2, 6, 7, 9}. Figure 3.2 shows that � is a resolving set, as there are no zeros on the o�-diagonal.
One can show (e.g., by enumeration) that no basis with fewer nodes exists.

Deciding whether a graph has metric dimension less than a given value is NP-complete
[59]. Hence, determining the metric dimension even of an unweighted graph is di�cult [46].
This computational complexity refers to step S1, the experimental design problem. To �nd
a basis one can enumerate all possible node sets from small to large cardinality until a basis
is found. In [46] an (1 + (1 + > (1)) log(=))-approximation algorithms is given which runs in
O(=3), with = = card(+ ). The metric dimension can not be approximated within > (log(=))
[45]. If a basis has been found in S1) and the oracle queries returned A: for all : ∈ � in S2), the
source B ∈ + can be uniquely determined in S3) by calculating 38,: for all 8 ∈ + and : ∈ � and
comparing it to A: = 3B,: .

Example 3. Assume that for the basis� from Example 2 the oracle returns A {1,2,6,7,9} = (3, 3, 1, 2, 2).
Comparison with the full distance table on the right hand side of Figure 3.1 reveals the source
node B = 8.
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1

2 3

4

5

6

789

0

8

9 0 1 2 3 4 5 6 7 8 9

0 0 2 5 1 4 17 24 16 24 14
1 2 0 5 1 4 17 24 16 24 14
2 5 5 0 2 5 12 13 5 13 9
3 1 1 2 0 3 14 19 11 19 11
4 4 4 5 3 0 5 12 8 12 4
5 17 17 12 14 5 0 5 5 5 1
6 24 24 13 19 12 5 0 4 8 4
7 16 16 5 11 8 5 4 0 4 4
8 24 24 13 19 12 5 8 4 0 4
9 14 14 9 11 4 1 4 4 4 0

Figure 3.2: Left: the graph from Example 1 with the basis in gray. Right: symmetric matrix
with entries

∑
:∈� (3 9,: − 38,: )2 for the metric basis from Example 2.

We are interested in a generalization of this concept to arbitrary and a priori unknown
velocity 1/2 > 0 and o�set CB ∈ R. Again, we want to be able to uniquely determine the source,
now for arbitrary 2 > 0, CB , and B ∈ + . While the concepts of a metric basis and of doubly
resolving sets [25, 65] can be found in the literature, the spread basis is a novel concept.

De�nition 3.3.6 (�-spread Equivalence). For � ⊆ + , two nodes 8, 9 ∈ + are �-spread equivalent
if

∃C8 , C 9 ∈ R, 28 , 2 9 > 0 : C8 + 2838,: = C 9 + 2 9 3 9,: : ∈ �.

Note that with the choice of C = (C 9 − C8)/28 and 2 = 2 9/28 this is equivalent to

∃C ∈ R, 2 > 0 : 38,: = C + 2 3 9,: ∀ : ∈ �.

De�nition 3.3.7 (Spread-Resolving Set). A set � ⊆ + is spread-resolving, if 8, 9 ∈ + are �-
spread equivalent if and only if 8 = 9 .

De�nition 3.3.8 (Spread Basis). A spread basis � is a spread-resolving set with minimal cardi-
nality.

De�nition 3.3.9 (Spread Dimension). Given a weighted graph � = (+ , �), the spread dimen-
sion is the cardinality of one of its spread bases.

Although the interpretation of a velocity 1/2 is not well posed for 2 = 0, we will require
2 ≥ 0 instead of 2 > 0 in the following minimization problems to avoid open sets. To �nd a
spread basis we consider the objective function

� 9 (C, 2, A( ) =
∑
:∈(
(C + 2 3 9,: − A: )2. (3.1)

Minimizing this objective with A: = 38,: and constraint 2 ≥ 0 results in an optimal objective
value q8, 9 (() depending on 8 , 9 , and ( . As above, an equivalent criterion to check if a set ( ⊂ +
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3.3. DETERMINISTIC SOURCE DETECTION

is spread-resolving is to check if

q∗(() = min
8, 9≠8∈+

q8, 9 (() = min
8, 9≠8∈+

min
C,2≥0

� 9 (C, 2, 38,( ) (3.2)

is strictly positive, compare Example 4.

Proposition 3.3.10 (Sign symmetric objective). For any subset ( of + the objective valuesq8, 9 (()
are sign symmetric, i.e., for 8, 9 ∈ + we have

q8, 9 (() = 0 ⇐⇒ q 9,8 (() = 0
q8, 9 (() > 0 ⇐⇒ q 9,8 (() > 0.

(3.3)

Proof. For q8, 9 (() = 0 with 2 > 0 and CB we have by equations (3.1) and (3.2):

2 3 9,: + CB = 38,: ∀: ∈ (.

Reformulating this results in

1/2 38,: − CB/2 = 3 9,: ∀: ∈ (

with new slope 1/2 > 0 and o�set −CB/2 . Then by equations (3.1) and (3.2) again we have
q 9,8 (() = 0. The second part follows from the �rst due to q 9,8 (() ≥ 0. �

Example 4. For the graph from Example 1 the metric basis � = {1, 2, 6, 7, 9} is not spread-
resolving. E.g., for CB = 2 = 1 we have 38,: = CB + 36: . The graph has spread dimension 7 and
�sp := {1, 2, 3, 6, 7, 8, 9} is a spread basis. Figure 3.3 shows that �sp is spread-resolving, as only

8
9 0 1 2 3 4 5 6 7 8 9

0 0.008.008.006.864.861.710.752.752.752.75
1 1.710.001.885.730.360.593.438.008.008.00
2 1.711.880.005.730.360.593.438.008.008.00
3 1.716.696.690.003.670.753.438.008.008.00
4 1.710.590.595.180.000.353.438.008.008.00
5 1.712.752.753.001.000.003.438.008.008.00
6 0.378.008.006.864.861.710.003.333.333.33
7 0.598.008.006.864.861.711.430.006.006.00
8 0.598.008.006.864.861.711.436.000.006.00
9 0.598.008.006.864.861.711.436.006.000.00

8
9 0 1 2 3 4 5 6 7 8 9

0 0.006.806.801.204.001.200.672.000.672.00
1 1.200.001.850.350.320.352.806.802.806.80
2 1.201.850.000.350.320.352.806.802.806.80
3 1.202.002.000.000.670.002.806.802.806.80
4 1.200.550.550.200.000.202.806.802.806.80
5 1.202.002.000.000.670.002.806.802.806.80
6 0.296.806.801.204.001.200.003.140.003.14
7 0.356.806.801.204.001.201.290.001.295.65
8 0.296.806.801.204.001.200.003.140.003.14
9 0.356.806.801.204.001.201.295.651.290.00

Figure 3.3: Left: matrix with objective values q8, 9 (�sp) for the spread-basis from Example 4.
Right: matrix with objective values q8, 9 (�) for the metric basis from Example 2. Both are not
symmetric, as q8, 9 can di�er from q 9,8 .

diagonal values are zero, and that � is not spread-resolving, as q6,8(�) = q8,6(�) = 0.

Our considerations suggest a (not necessarily e�cient) approach to �nd a spread basis.
In (3.2), one can detect infeasibility or solve the inner minimization problem analytically and
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enumerate the outer minimization problem over all (modulo symmetry because of Proposi-
tion 3.3.10) pairs of nodes and all subsets ( of + . Checking if q∗(() > 0 allows to �nd a
spread-resolving set ( of minimal cardinality, similar to the metric case.

To close the subsection, we collect some results on bounds for the spread dimension. We
are interested in behavior for large = = #+ , hence we assume = ≥ 4 to avoid the discussion of
special cases for the following results. If all edges have equal length, a trivial upper bound on
the spread dimension is = − 1. This bound is active for the special case of complete graphs.

Proposition 3.3.11 (Dimension of Complete Graphs). Let � be a complete graph with equal
weight ℓ > 0 on all edges. Then the spread dimension of � is = − 1.

Proof. We have AB = CB and the same oracle answer A8 = CB + 2ℓ > CB for all 8 ∈ + \{B} and for
all choices CB and 2 > 0. Hence, the source B can only be identi�ed if either B ∈ �, or if B is
the only node in + \�. As the spread basis needs to identify all possible B , we have necessarily
card(�) = = − 1. �

If the edge weights are not identical, we may even need all = nodes in the spread basis.
Thus, complete graphs are the worst case in terms of an upper bound for the spread dimension.
However, also other topologies, such as star graphs, may have large spread dimensions.

By de�nition, the metric dimension is a lower bound for the spread dimension. Further-
more, we have the following lower bound for all graphs.

Proposition 3.3.12 (Lower Bound for Dimension). Let� be a graph as in De�nition 3.1.1 with
= ≥ 4. Then the spread dimension of � is at least 3.

Proof. Assume a spread basis � = {8, 9} of cardinality two. Choose E,F ∈ + \� with E ≠ F .
If 3E,8 = 3E,9 and 3F,8 = 3F,9 hold then with

2 :=
3E,8

3F,8
=
3E,9

3F,9

we obtain 3E,8 = 23F,8 and 3E,9 = 23F,9 , contradicting � being spread-resolving.
Let hence w.l.o.g. E ∈ + \� be such that 3E,8 > 3E,9 . Now we can choose CB = −3E,92 and

2 =
3 9,8

3E,8−3E,9 > 0 and obtain for E, 9 ∈ +

3 9,: = 3E,:2 + CB = (3E,: − 3E,9 )
3 9,8

3E,8 − 3E,9
∀ : ∈ �,

contradicting De�nition 3.3.7 of a spread-resolving set. �

Again, there are graphs for which this bound is sharp, independent of =.

Proposition 3.3.13 (Lower Bound 3 is Active). Let+ = {1, . . . , =} and� = {{1, 2}, {2, 3}, . . . , {=−
1, =}} for = ≥ 4. The chain graph has spread dimension 3 and � = {1, 2, =} is a basis.
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Proof. Let� = {1, 2, =}. First we note that the distance between two nodes 8, 9 ∈ + is38, 9 = |8− 9 |.
Let w.l.o.g. 0 < 1 ∈ + and Δ = 1 − 0 > 0. We consider the three equations

30,: = CB + 2 31,: ∀ : ∈ �

from De�nition 3.3.6 and show that no CB , 2 > 0 exist which satisfy all of them.
If 0 > 1, we have the distances of 0 to the basis as 30,1 = 0 − 1, 30,2 = 0 − 2, 30,= = = −0 and

distances of 1 accordingly 31,1 = 0 − 1+Δ, 31,2 = 0 − 2+Δ, 31,= = = −0 −Δ. While the �rst two
equations result in CB = −Δ and 2 = 1, the equation for : = = is incorrect with these values.

If 0 = 1, we have distances 0, 1, = − 1 and 1 − 1, 1 − 2, = − 1, respectively. Here the �rst two
equations result in CB = 1 − 1 and 2 = −1, but negative 2 values are not permitted.

Thus, � is a spread-resolving set. With Proposition 3.3.12, it is also an spread basis. �

Summarizing, the spread dimension can be anything between 3 and = for graphs with =
nodes. The examples of chain and star graphs show that it is not the absolute number of edges,
but rather the graph topology that impacts the spread dimension. Tailored results for speci�c
graph topologies are interesting, but beyond the scope of this work.

3.3.2 E�cient basis calculation

In most of this subsection the word basis is used, not distinguishing between a metric basis
(De�nition 3.3.4) and a spread basis (De�nition 3.3.8). In this case the results hold for both
bases. If this is not the case, explicitly the word metric basis is used. However, with some
technicalities, this results should be transferable.

Calculating a basis, i.e., solving the deterministic o�ine version of the source detection prob-
lem, is di�cult (see Section 3.3.1). Graph decompositions approaches are a tool, to speed up
computations (i.e., reducing their time complexity).

One tool to decompose graphs are modules. Modules generalize connected components of
graphs, which obviously decompose the metric dimension problem. There exists a recursive
way to decompose a graph into modules, which represents all its modules, the modular de-
composition [41]. Modular decomposition has many applications in decomposing algorithmic
graph problems into smaller subproblems [83, 84]. To argue later that using modular decom-
position as an algorithmic tool to speed up computations is viable, it is important that it can
be computed in linear time [44, 79].

The de�nition of modules is extended to weighted (directed) graphs based on the De�ni-
tion 3.1.3 of a restricted neighborhood.

De�nition 3.3.14 (Module). Given a directed Graph� (+ , �) and weightsF4 , 4 ∈ � a set" ⊆ +
is called a module if ∀E ∈ + \" either" ⊆ # +(E, 0) or" ∩ # +(E, 0) = ∅ and" ⊆ # −(E, 1) or
" ∩ # −(E, 1) = ∅.

A module in general is a set where all elements have equal relationship to their neighbors
outside of the module. The following example visualizes the concept and also shows a modular
partition, which will be used in Subsection 3.3.3.
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0 0 2 2 2 2 1 2 1 1 1
1 2 0 1 2 2 1 2 3 3 3
2 2 1 0 2 1 1 2 3 3 3
3 2 2 2 0 2 1 2 3 3 3
4 2 1 1 2 0 1 2 3 3 3
5 1 1 1 1 1 0 1 2 2 2
6 2 2 2 2 2 1 0 1 1 1
7 1 3 3 3 3 2 1 0 2 2
8 1 3 3 3 3 2 1 2 0 2
9 1 3 3 3 3 2 1 2 2 0

Figure 3.4: Left: visualization of a modular partition with four members (red, yellow, green,
blue). Right: symmetric matrix with shortest path distances 38, 9 , showing in each column to
which module it belongs, the light color coding showing the equal shortest paths distances of
all module members to all nodes outside of the module.

Example 5 (Modular partition). Consider the graph from Example 1. Some modules in this
graph are the sets {1}, {1, 2, 4}, and {0, 6}. Figure 3.4 shows a modular partition of the graph.

Proposition 3.3.15 (Shortest paths distance module). Given a Graph� (+ , �) and a module"
a node outside of the module has the same distance to all vertices in the module, i.e., ∀E ∈ + \"
3E,8 = 3E,9 and 38,E = 3 9,E∀ 8, 9 ∈ " .

Proof: If there is a shortest path from E to any vertex in the module it is also a shortest
path to all other vertices in the module (exchanging the last edge into the module). Hence they
all have the same length. With the same argumentation the paths in the other direction are
also of equal length. �
In this sense the distance between a module and a vertex outside of the module is well de�ned,
especially the distance between disjoint modules.

De�nition 3.3.16 (Subresolving). Given a graph � (+ , �) a set + ′ ⊆ + is subresolving + ′, if
8, 9 ∈ + ′ are equivalent if and only if 8 = 9 .

De�nition 3.3.17 (Subbasis). Given a graph � (+ , �) a set + ′ ⊆ + is a subbasis �+ ′ , if it is a
minimal cardinality set subresolving + ′.

In general �+ ′ * + ′.

Proposition 3.3.18 (Subbasis of modules). A Subbasis of a module" is contained in the module,
i.e., �" ⊆ " .

Proof. A Subbasis would not be minimal if one would add vertices from outside the module
that do not contribute to resolving vertices of the module, as by Proposition 3.3.15 they have
the same distance to all vertices in the module. �
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Proposition 3.3.19 (Subbasis of complement of modules). A Subbasis of the complement of a
module" contains at most one vertex from the module, i.e., |�+ \" ∩" | ≤ 1.

Proof. Because all vertices outside of the module have the same shortest path distance to ver-
tices in the module (Proposition 3.3.15), by the minimality of the basis, only one vertex of the
module can be part of �(� . �

Note that exchanging the module node in the subbasis with any other module node results
in other subbases, if it exists.

De�nition 3.3.20 (Outer path). Given a graph � (+ , �), a set + ′ ⊂ + and vertices E, E ′ ∈ + ′ a
outer path is a path between E, E ′ including including at least one > ∈ + \+ ′.

An outer path might not exist.

De�nition 3.3.21 (Shortest outer path). Given a graph � (+ , �), a set + ′ ⊂ + and vertices
E, E ′ ∈ + ′ the shortest outer path is the outer path with minimal distance.

De�nition 3.3.22 (Shortest external outer path). Given a graph � (+ , �), a set + ′ ⊂ + and
vertices E, E ′ ∈ + ′ the external shortest outer path is the part of the outer path that is not in + ′.

If+ ′ ⊂ + is a module, complement of a module or side of a split, the external shortest outer
path is equal for all E, E ′ ∈ + ′ and hence only depends in + ′.

De�nition 3.3.23 (Extended subgraph). Given a graph� (+ , �) and a module, complement of a
module or split side + ′ ⊂ + the extended subgraph �+ ′ is the subgraph induced by + ′ extended
by + ′ external shortest outer path. All vertices in + ′ with connection to the start or end of the
external shortest outer path, keep their connection to this vertices as in the original graph.

If no outer path exists, the extended subgraph is equal to the subgraph induced by + ′.

Remark 3.3.24 (Outer path shortening). If the shortest outer path has more than two vertices
outside of+ ′ one would collapse it into only two vertices and one edge, adjusting the length of the
middle edge such that the total path length stays the same.

Proposition 3.3.25 (Extended module subgraph shortest path distances). Given a graph� (+ , �)
and a module" all shortest path distances between vertices in" are the same in � and �" .

Proof. All vertices in the module are connected to the second and second last vertex of the
outer shortest path. All shortest paths between vertices in the module are either this outer
path or shorter and inside of the module. This is true for the original graph and the extended
module subgraph. Hence, all this (shortest) paths are equivalent in length. �

Proposition 3.3.26 (Extended complement of module subgraph shortest path distances). Given
a graph� (+ , �) and a module" all shortest path distances between vertices in+ \" are the same
in � and �+ \" .
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Proof. The shortest outer path of + \ " just contains one (any) vertex < ∈ " . All module
neighbors are connected to< (and any other member of "). Shortest paths between vertices
in + \ " are either fully contained in + \ " or pass through a module neighbor, then (any)
module vertex and a module neighbor again. This is true for the original graph and the extended
complement of module subgraph. Hence, all this (shortest) paths are equivalent in length. �

De�nition 3.3.27 (Constrained subbasis). Given a graph � (+ , �), a set + ′ ⊆ + and a vertex
E ∈ + a constrained subbasis �+ ′ |E is a minimal cardinality set subresolving + ′ and including E .

De�nition 3.3.28 (Cross resolving subbases). Given a graph � (+ , �) and two sets +1,+2 ⊆ +
subbases �+1 and �+2 are cross resolving+1,+2 if no vertex pair E1 ∈ +1, E2 ∈ +2 is equivalent with
respect to �+1 ∪ �+2 .

The basis can now be constructed from the extended subgraphs of one of its modules and
the complement of the module.

Lemma 3.3.29 (Modular basis construction). Given a graph� (+ , �) and a nontrivial module"
a basis �(�) is given by �" (�" ) ∪ (�+ \" (�+ \" ) |E) \ {E} if �" (�" ) and (�+ \" (�+ \" ) |E) \ {E}
are cross resolving",+ \" in � . The vertex E is the single extension vertex of �(�+ \" ).

Proof. First it is shown that �" (�" ) ∪ (�+ \" (�+ \" ) |E \ {E} is a resolving set and then that it
is minimal.

By Propositions 3.3.25 and 3.3.26 the shortest path distances in the extended subgraphs are
equal to the shortest path distances in� between vertices in" and between vertices in+ \" .
Hence �" (�" ) is subresolving " in � and (�+ \" (�+ \" ) |E \ {E} in combination with any
vertex from �(�" ), which has the same distance properties in � as E in �+ \" for all vertices
in+ \" , is subresolving+ \" . As �" (�" ) and (�+ \" (�+ \" ) |E) \ {E} are also cross resolving
",+ \" in � their union is resolving + .

Lets assume �(�" )∪(�(�+ \" ) |E)\{E} is not minimal. Then there exists a basis �′with less
elements. By Proposition 3.3.18�′∩" is resolving" and by Proposition 3.3.19�′∩(+ \")∪{E ′}
is resolving + \" (E ′ is any element of �′ ∩") and by Propositions 3.3.25 and 3.3.26 this also
holds in the respective extended subgraphs. Then either |�′ ∩" | < |�" (�" ) |, contradicting
that �" (�" ) is a subbasis, or | (�′ ∩ (+ \")) ∪ {E ′}| < |�(�+ \" ) |E |, contradicting that it is a
constrained subbasis. �

This result can be used to calculate the basis of a graph in a recursive algorithm given a
modular decomposition tree, traversing it from the bottom to the top. Depending on the graph
and its partition, this can be much more e�cient than the solution on the original graph. The
main problem is that the bases one combines have to be cross resolving.

De�nition 3.3.30 (All cross resolving subbasis). Given a graph � (+ , �) and a set + ′ ⊆ + a
subbasis �+ ′ is all cross resolving if for no set, ⊆ + \ + ′ any vertex pair E ′ ∈ + ′,F ∈ , is
equivalent with respect to �+ ′ ∪ �, , with any subbases �, .

Proposition 3.3.31 (All cross resolving metric basis of module). Given a graph � (+ , �) and a
module" a subbases �" with more than one element is all cross resolving if no vertex< ∈ " has
equal distance to all elements of �" .

22



3.3. DETERMINISTIC SOURCE DETECTION

Proof. Because a vertices outside of the module has the same shortest path distance to vertices
of �" (by Proposition 3.3.15) and no vertex in the module has the same shortest path distance
to all elements of �" , no vertex outside of " is equivalent to any vertex in " . �

In case not cross resolving subbases come up during tree traversal, expensive recalculation
of the basis in that tree node might be necessary. However, depending on the situation one
could exploit already calculated information of children of the current node to warm start the
calculations.

In the second part splits are considered as a decomposition tool for graphs, here they are
de�ned for weighted and directed graphs.

De�nition 3.3.32 (Split). Given a directed Graph � (+ , �) and weights F4 , 4 ∈ � a split is par-
tition of + in two sets +1 and +2 with |+1 | > 1, |+2 | > 1 such that there exists sets, +1 ,,

−
1 ⊂ +1

and, +2 ,,
−

2 ⊂ +2 such that ∀E ∈, +1 , # −(E, 0) ∩+2 =, −2 and ∀E ∈ +1 \, +1 , # −(E, 0) ∩+2 = ∅
and ∀E ∈, −1 , # +(E, 1) ∩+2 =,

+
2 and ∀E ∈ +1 \, −1 , # +(E, 1) ∩+2 = ∅. There are no more edges

than these between the two sides +1 and +2 of the split.

In a split all edges from +1 to +2 have the same weight 0 and form a complete directed
bipartite graph. The same holds true for all the edges in the other direction with a di�erent
edge weight 1. This is not a strict generalization of our module de�nition.

Example 6. Consider the graph from Example 1. Some splits in this graph are ({1, 2, 3, 4},
{0, 5, 6, 7, 8, 9}), ({1, 2, 4}, {3, 0, 5, 6, 7, 8, 9}) or ({1, 2, 3, 4, 0, 5, 6, 7}, {8, 9}). Figure 3.5 shows a
split of the graph.
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0 0 2 2 2 2 1 2 1 1 1 0
1 2 0 1 2 2 1 2 3 3 3 2
2 2 1 0 2 1 1 2 3 3 3 2
3 2 2 2 0 2 1 2 3 3 3 2
4 2 1 1 2 0 1 2 3 3 3 2
5 1 1 1 1 1 0 1 2 2 2 1
6 2 2 2 2 2 1 0 1 1 1 0
7 1 3 3 3 3 2 1 0 2 2 0
8 1 3 3 3 3 2 1 2 0 2 0
9 1 3 3 3 3 2 1 2 2 0 0
S 0 2 2 2 2 1 0 0 0 0 1

Figure 3.5: Left: visualization of a split (red, blue). Right: symmetric matrix with shortest path
distances 38, 9 , showing for each column to which side of the split the vertex belongs (red/blue),
including an additional row/column giving the distance of the vertex to the split. The distance
of the split is the length of all its edges, i.e., the gap over the split, which might be di�erent in
each direction. One can see the decomposition of shortest path lengths across the split.
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Proposition 3.3.33 (Shortest paths split decomposition). Given a Graph � (+ , �) and a split
+1,+2 with, −1 ⊆ +1 and, +2 ⊆ +2 the shortest path distance from E1 ∈ +1 to E2 ∈ +2 is 3E1,E2 =

31 + 0 + 32. Where 31 is the shortest path distance from E1 to, −1 , 32 is the shortest path distance
from, +2 to E2, and a is the length of edges from, −1 to, +2 .

Proof: The two shortest paths from E1 to, −1 and from, +2 to E2 with the corresponding
edge of length 0 form a path. There can not exist a shorter path, because then one could con-
struct from it shorter shortest paths for either side of the split from and to E1, E2. �

Remark 3.3.34 (Shortest path recursion). By Proposition 3.3.33 shortest path calculation can be
simpli�ed in two ways, one can just calculate all shortest paths from (and to) all vertices to (and
from) their side of the split, which already contains all information about every possible shortest
path (length). Also given a split decomposition tree one could calculate all shortest paths on much
smaller sides of splits traversing the tree from bottom to top.

Proposition 3.3.35 (Subbasis of split side). A Subbasis �+1 of one side+1 of a split+1,+2 contains
at most one vertex from the other side of the split, i.e., |�+1 ∩+2 | ≤ 1.

Proof. If two vertices in +1 are equivalent with respect to one vertex from +2 this means that
their distance to the split (i.e., to, −1 ) is the same. Therefore by Proposition 3.3.33 their distance
to any other vertex in +2 is the same and they are equivalent to any vertex in +2. By the
minimality of the subbasis at most one vertex of +2 is in �+1 . �

Proposition 3.3.36 (Extended split side subgraph shortest path distances). Given a graph
� (+ , �) and a split +1,+2 all shortest path distances between vertices in +1 are the same in �
and �+1 .

Proof. Shortest paths in� and in�+1 must have the same length, otherwise one would be able
to construct from the shorter path a path with equal length in the other graph. If the path is
contained in +1 the construction is trivial. Otherwise one would have to replace the part not
in +1 with a (possibly new and shorter or the same) outer path. �

The metric basis of a graph� can be constructed from the extended subgraphs of the split
sides.

Lemma 3.3.37 (Split metric basis construction). Given a graph � (+ , �) and a split +1,+2 a
basis �(�) is given by ((�+1 (�+1) |E) \ {E}) ∪ (�+2 (�+2) |F) \ {F} if (�+1 (�+1) |E) \ {E} and
(�+2 (�+2) |F) \ {F} are cross resolving +1,+2 in � . The vertex E is the extension vertices of �+1

andF is the extension vertex of �+2 .

Proof. First it is shown show that ((�+1 (�+1) |E) \ {E}) ∪ (�+2 (�+2) |F) \ {F} is a resolving set
and then that it is minimal.

By Proposition 3.3.33 the shortest path distances in the extended subgraphs are equal to
the shortest path distances in � between vertices in +1 and between vertices in +2. Hence
(�+1 (�+1) |E) \ {E} in combination with any vertex from (�+2 (�+2) |F) \ {F}, which has the
same distance properties in � as E in �+1 for all vertices in +1, is subresolving +1 in � . The
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same holds for vertices in+2 with the mirrored argument (by symmetry). As the two subbases
are cross resolving +1,+2 in � their union is resolving + .

Lets assume ((�+1 (�+1) |E) \ {E}) ∪ (�+2 (�+2) |F) \ {F} is not minimal. Then there exists a
basis �′ with less elements. By Proposition 3.3.35 �′∩+1∪{E ′} distinguishes elements in+1 (E ′
is any element of �′∩+2) and by Propositions 3.3.36 this also holds in�+1 . The same is true for
+2 (by symmetry). Then either |�′∩+1∪{E ′}| < |�+1 (�+1) |E |, contradicting that �+1 (�+1) |E is a
constrained subbasis, or this contradiction is on the other side of the split (by symmetry). �

Based on this result one can design a recursive algorithm traversing a split decomposition
tree from bottom to top, solving the basis problem only on the leaves and combining the so-
lutions on the way up the tree to the root to the full basis. Depending on the graph (and its
decomposition) this might be more e�cient than the direct solution in the original graph. The
problem of not cross resolving bases during algorithm runtime is the same as in the case of
modular decomposition.

Proposition 3.3.38 (All cross resolving metric basis of split side). Given a graph � (+ , �) and
a split +1,+2 a subbases �+1 is all cross resolving if no vertex E ∈ +1 has distances to all elements
in �+1 that are equal to the shortest shortest path distances of, −2 to all elements in �+1 plus a
common positive o�set, i.e., � E ∈ +1,F ∈, −2 , X > 0 such that 3E,�+1

= 3F,�+1
+ X .

Proof. As all vertices from +2 have by Proposition 3.3.33 a distance to all vertices in �+1 which
is equal to shortest shortest path distances of, +1 to all elements in �+1 plus an positive o�set,
there can not be any vertex in +2 having the same distances to �+1 as any vertex in +1. �

For not cross resolving bases special treatment in the algorithm is necessary.
It is beyond the scope of this work to investigate these possibilities to calculate bases in

detail. The following example for the metric basis and the modular decomposition tree is given.

Example 7 (Metric basis from modular decomposition tree). Consider the modular decompo-
sition tree of the graph � (+ , �) from Example 1 with vertices

+) = {+ , 0, 1, 2, 0′, {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}

representing the following original vertices

0 = {1, 2, 3, 4}

1 = {0, 6}

2 = {7, 8, 9}

0′ = {1, 2, 4}

and edges
�) = {{+ , 0}, {+ , 5}, {+ ,1}, {+ , 2}, {0, 0′}, {0, 3}, {1, 0}, {1, 6},

{2, 7}, {2, 8}, {2, 9}}.
The root of the Tree is the node + , which is the full vertex set of the original graph. The

leaves of the tree are single vertex modules that can not be decomposed further. The children
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Figure 3.6: Modular decomposition tree of the example graph with quotient graphs depicted
right to the non leave nodes of the tree.

of the root are a partition of maximal modules of the whole graph: 0, 1, 2 , and 5. The subgraphs
induced by the children are further decomposed by their children. The children of 0 partition 0
into the modules {3} and 0′. The children of 1 are two single vertex sets, as well as the children
of 2 are three single vertex sets.

Then, the tree is traversed bottom-up, in the leaves nothing is to do. For each node the
subgraph induced by this module is investigated. The quotient graph of this subgraph de�ned
by the partition given by its children vertices (modules) is formed. For this quotient a basis
has to be found, that ideally would include vertices representing lower level modules where
already basis elements were selected for solving lower level basis problems.

Looking at 0′we have to include two of the vertices 1, 2, 4 into the basis because its quotient
is the complete graph with three vertices. For 1 we have to take 0 or 6 and for c two from 7, 8, 9
because they are complement of complete graphs with two and three vertices. As 0 has as
quotient the complement of the complete graph with two vertices ({3} and 0′) and in 0′ we
already choose a basis element, we do chose 0′ as our basis element here. Finally in the root
the quotient is a path graph with four vertices 0, {5}, 1, and 2 . As we already chose three basis
elements 0, 1, and 2 from the underlying children, we are done.

Hence, a metric basis of our graph must contain: two of the vertices 1, 2, 4; 0 or 6; and two
of the vertices 7, 8, 9. The metric dimension is 5.

Possible questions are: which graph classes are suited for this kind of method, from the
complexity theoretic viewpoint and the practical side. Modular and split decompositions are
not yet investigated for weighted graphs, such that the above results can only be applied to un-
weighted graphs at the moment. Open source implementations even for unweighted/undirected
graphs for the above decompositions are rare or nonexistent, especially in their linear time
complexity variants. The only implementation known to the author has no linear time com-
plexity [94].

3.3.3 Online source detection and graph decomposition

In this subsection a solution to the deterministic online version of the source detection problem
is proposed, i.e., 8max > 1 and n8 = 0 ∀ 8 ∈ + . The tool that was introduced for basis calculation
is now used to derive an online algorithm. Modular decomposition is used to show the general
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idea for the metric case (velocity one and initial time zero), the extension to the split decompo-
sition and/or unknown speed and initial time should be straightforward. The considerations
are based on the directed modular decomposition [79], as modular decomposition for weighted
(directed) graphs was not yet investigated in the literature.

Let us recall some known facts. The following is an direct consequence of De�nition 3.3.14.

Proposition 3.3.39 (Neighbourhood of modules). Given a graph� (+ , �) and two disjoint mod-
ules"1, "2 ⊂ + either all edges from all vertices in"1 to all vertices in"2 exists, or none.

In this sense one can speak of an "edge" from one module to another or neighbouring
modules. Hence, it is hence possible to view the graph on a level of disjoint modules.

De�nition 3.3.40 (Modular partition). Given a graph � (+ , �) a modular partition of � is a
partition % of + where all elements of % are modules of � .

The Example 5 shows such a partition and its neighbour relations on the partition level.
This leads to the following de�nition.

De�nition 3.3.41 (Quotient graph). Given a graph � (+ , �) and a modular partition % of � .
The quotient graph �/% is the graph representing the neighbour relations of the modules in % ,
i.e., each vertex in �/% represents one module in % and each edge in �/% represents a directed
connection between the corresponding modules in � .

The quotient graph represents all edges between modules in % . All other edges are repre-
sented by the subgraphs induced by the modules in the partition.

De�nition 3.3.42 (Factor). Given a graph � (+ , �) and a modular partition % of � . A factor is
the subgraph induced by a module ? ∈ % .

A graph is completely represented by its quotient and factors. As each factor can be split
again into a quotient and factors, this leads to a recursive decomposition until factors with only
one vertex are left. This structure can be represented as a tree.

De�nition 3.3.43 (Modular decomposition tree). Given a graph� (+ , �) a modular decompo-
sition tree ) of � is a rooted tree with the following properties:

• The root of the tree corresponds to the the full vertex set + .

• Each leave of the tree corresponds to a vertex in + .

• Each vertex C ∈ ) in the tree corresponds to a module " (C) including all vertices of leaves
of the subtree rooted at this vertex.

• The children of a node C ∈ ) , represent a modular partition of the subgraph induced by
" (C).
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Note that it is not required that the modular decomposition is the unique modular decom-
position that implicitly represents all others. For each node C of the modular decomposition
tree) , its quotient is the quotient graph for the subgraph induced by " (C) and the partition of
this subgraph into modules given by the children of C .

After this repetition of the concept of the modular decomposition tree some of its concepts
are extended to state the algorithm.

De�nition 3.3.44 (Extended quotient graph). Given a graph� (+ , �) and a modular decompo-
sition tree ) of � . The extended quotient graph �/%4G (C) of a tree vertex C ∈ ) is its quotient
graph extended by the shortest outer path (De�nition 3.3.21) of the module it represents in� . The
extension adds the vertices and edges of the shortest outer path except start and end vertex. All
vertices in �/% (modules of �) with connection to the second or second last vertex of the shortest
outer path, keep their connection to this vertices as in the original graph.

To describe the shortest paths of the extended quotient graph, some basis on shortest paths
and modules is needed.

Lemma 3.3.45 (Shortest Path in Module). Let " ⊆ + be a module of a graph � (+ , �) and
8, 9 ∈ + distinct vertices. If the shortest path %Bℎ>AC ⊂ + between 8, 9 intersects" , then:

%Bℎ>AC ∩" =


{8, 9},
%Bℎ>AC ,

{?}, ? ∈ %Bℎ>AC .

Either the shortest path is completely contained in" , or only its start and end are in" , or one of
its vertices is in" .

Proof. Lets �rst consider the case that {8, 9} ⊆ " and show that only the �rst two cases can
occur. For |%Bℎ>AC | < 4 this is trivial. Lets assume |%Bℎ>AC | ≥ 4. To proof that either all or none of
the intermediate nodes of the path are in" , assume that a path with consecutive intermediate
nodes 0, 1 ∈ %Bℎ>AC with 0 ∉ " and 1 ∈ " exists (any non conformant path must have such
a pair of nodes). Assume �rst that 0 is before 1 in the path (i.e., closer to 8). Then a shorter
path can be constructed by just connecting 0 directly to 9 instead of 1 ( 9 and 1 are in " and
hence both neighbours of 0). In the case that 1 is before 0, 0 is connected with 8 . In both cases
a shorter path exists, violating our assumption. Proving the �rst two cases.

Lets now assume that either 8 or 9 or none of the two vertices is in " and show that this
enforces the third case. For |%Bℎ>AC | < 3 this is trivial. Lets assume |%Bℎ>AC | ≥ 3 and %Bℎ>AC∩� > 1.
Either 8 ∉ (%Bℎ>AC ∩ "), then one can just connect the vertex before the �rst of the vertices
directly to the last of them (because both of them are in " and hence neighbours of the vertex
before the �rst), or 9 ∉ (%Bℎ>AC ∩"), then one connects the vertex after the last to the �rst. In
both cases a shorter path exists, hence at most one vertex can be in " in this case. �

This leads to the following properties.

Proposition 3.3.46 (Shortest path equivalence of quotient graph). Let % be a modular partition
of � (+ , �) and 8, 9 ∈ + vertices of di�erent modules of the partition % , i.e., 8 ∈ %8 ∈ %, 9 ∈ % 9 ∈
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%, %8 ≠ % 9 . Then the shortest path P from %8 to % 9 in the quotient graph induced by the partition
can be used to construct a shortest path from 8 to 9 in the original graph with equal length. For all
modules in the shortest path in the quotient graph one takes any node in the correspondingmodules
from the original graph except for %8 and % 9 where 8 and 9 are chosen. The inverse construction is
trivial.

Proof. Every module of P contains at most one vertex from a shortest path from 8 to 9 by
Lemma 3.3.45. All paths with at most one vertex per module in P are contained in the quotient
graph with the above construction. The path in the quotient graph and the corresponding in
the original have the same length. Therefore, a shortest path in the quotient corresponds to a
shortest path in the original graph. �

Proposition 3.3.47 (Shortest path equivalence of extended quotient graph). Given a graph
� (+ , �), a modular decomposition tree ) of � and a extended quotient graph �/%4G of a node in
) a shortest paths between vertices in�/%4G is equivalent to the shortest paths between the nodes
of the modules in � that are represented by the vertices in �/%4G . From a shortest path in �/%4G
a shortest path can be created by choosing for a vertex in �/%4G representing a module in � any
vertex from the module and for the extension part of �/%4G choosing the shortest outer path in �
used to create the extension.

Proof. By Lemma 3.3.45 a shortest path in�/%4G is either inside the non extended quotient part
of the graph, or inside the extension shortest outer path, at most having start and/or end vertex
inside the non extension part. In the �rst case the equivalence is due to Proposition 3.3.46. In
the second case the equivalence is trivial. �

For a node 8 of a modular decomposition tree or a (extended) quotient graph, " (8) denotes
the module that the node represents in the original graph.

The key problem is, that the distance of a node to itself in the (extended) quotient is zero,
while in the original graph it might not be zero, i.e., two nodes in the module represented by
the node in the quotient do not have zero distance (unless they are the same node).

De�nition 3.3.48 (Indirect Extended Quotient �-metric Equivalence). Given a graph� , one of
its extended quotient graphs �/%4G and a subset � ⊆ + (�/%4G ), two nodes 8, 9 ∈ + (�/%4G ) are
indirect extended quotient �-metric equivalent if either ∃8 ′, 8 ′′ ∈ " (8) : 3 9,8 = 38′,8′′ or 8 ∉ � and
either ∃ 9 ′, 9 ′′ ∈ " ( 9) : 38, 9 = 3 9 ′, 9 ′′ or 9 ∉ �.

De�nition 3.3.49 (Direct Extended Quotient �-metric Equivalence). Given a graph � , one of
its extended quotient graphs �/%4G and a subset � ⊆ + (�/%4G ), two nodes 8, 9 ∈ + (�/%4G ) are
direct extended quotient �-metric equivalent if 38,: = 3 9,: ∀ : ∈ (� \ {8, 9}) and if 8 ∈ �

38,: = 3 9,: ∀ : ∈ (� \ {8, 9}).

De�nition 3.3.50 (Extended Quotient Metric-Resolving Set). A set � ⊆ + is extended quotient
metric resolving, if 8, 9 ∈ + are direct and indirect extended quotient �-metric equivalent if and
only if 8 = 9 .

De�nition 3.3.51 (Extended Quotient Metric Basis). A extended quotient metric basis � is a
metric-resolving set with minimal cardinality.

29



This directly leads to the following property.

Proposition 3.3.52 (Unique module resolvability in quotient). Given an extended quotient
graph �/%4G and a extended quotient metric basis � one questions for all 8 ∈ � the oracle to
any node 9 ∈ " (8) each. Then, the source can be uniquely attributed to a module in the original
graph corresponding to a vertex in �/%4G , if the source is in any of the modules represented by
nodes in �/%4G .

Proof. Lets assume that it is not possible to uniquely attribute the source to a module, then
∃8, 9 ∈ + (�/%4G ) are directly and indirectly extended quotient �-metric equivalent, which is
not possible as � is extended quotient metric resolving �/%4G . �

As the modular decomposition is recursively de�ned/calculated by splitting a graph into
quotients and factors the deterministic online source detection is recursively �nding the source
factor in the quotients of the current tree node.

Algorithm 1 Deterministic Online Source Detection
Input: � (+ , �), 38, 9∀8, 9 ∈ + ,V and )
Output: Source 9∗

1: C ← A>>C () )
2: while C ∉ ;40E4B () ) do ⊲ End search in a leave of the tree
3: Calculate �/%4G (C) ⊲ De�nition 3.3.44
4: Calculate �(�/%4G (C)) ⊲ De�nition 3.3.51
5: Calculate source B and set C ← CA44#>34 (B) ⊲ Continue search in child/source
6: 9∗ ← C ⊲ The leave is the source

The algorithm starts with the root of ) in Line 1. In each iteration the extended quotient
graph is calculated (Line 3). Then, the subbases for the extended quotient graph for the vertices
of the not extended quotient (+ (�/%)) is calculated in Line 4. Questioning the oracle about
the basis elements reveals the source. Here, any vertex in the modules of the original graph
corresponding to the basis vertices in the extended quotient can be questioned. The child of the
current tree node corresponding to the source CA44#>34 (B) is the tree node where the search
continues (if it is not a leave of the tree). If a leave is found, it corresponds to the single source
node in the original graph.

Proposition 3.3.53 (Correctness of Algorithm 1). Algorithm 1 solves the deterministic online
source detection problem.

Proof. It is proven that, when the module represented by the current node C includes the true
source, this is true also for the module represented by the child of C that corresponds to the
source in the extended quotient of C . If the source is in the module" (C) of the current tree node
C , then there is a module" ′ ⊂ " in the partition % given by the children of C , that includes the
source. By Proposition 3.3.52 the source is uniquely attributable to the child representing the
module including the source. Then, as this property holds for the root, it carries down to the
leave of the tree, that is returned as source. �
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Remark 3.3.54 (Implementation Algorithm 1). Implementing Algorithm 1 one would reuse al-
ready questioned vertices in the current module and calculate corresponding restricted subbases.
Also one would try to take oracle vertices from a module, that are as reusable as possible in future
iterations, e.g., by always (recursively) choosing the vertex in a module that is included in the
maximal submodule of this module, i.e., vertices corresponding to deepest branches in the modular
decomposition tree.

Also extended quotients shortest outer paths must not be recalculated in the original graph,
but can, by Proposition 3.3.47, be calculated in the extended quotient of the parent (for the root the
extended quotient equals the quotient graph).

For extended quotient calculations one would also shorten the shortest outer paths to only add
one additional node and adjust edge lengths to keep the length of the shortest outer path.

The calculation of extended quotient bases might be impossible, then one would have to delete
child nodes from the modular decomposition tree of the current node andmake their children direct
children of the current node.

3.4 Stochastic source detection

In the present work it is assumed that the distributions involved are known. If this is not
the case the parameters of the distributions are estimated and then one can proceed as if this
estimates would be true. In the context of source detection in continuous space already further
work has been done [19].

In this subsection the general case with normally distributed random measurement errors
n8 is considered. The measurements A: become random variables, and thus also the estimated
parameters CB , 2 , and B ∈ + . It may make sense to measure multiple times at a particular node.

De�nition 3.4.1 (Stochastic Source Certi�cate). For a given U ∈ (0, 1) we call a node B the
probable source of the spreading process, if CB is �nite and if a given statistical test passes with
an error probability 1 − (1 − U) (1/# ) for the hypothesis CB < C 9 for all nodes 9 for which an edge
(E 9 , B) or (B, E 9 ) ∈ �. Here # is the number of edges (E 9 , B), (B, E 9 ) ∈ �.

3.4.1 O�line source detection

We start by looking at the source inversion (resolving) problem S3) from De�nition 3.2.8.

De�nition 3.4.2 (Source Estimator). Given a multiset (nodes can be queried multiple times) of
nodes (̂ and the corresponding oracle answers A

(̂
, we de�ne the source estimator similar to (3.1) as

9∗ := arg min
9 ∈+

� ∗
9,(̂

:= arg min
9 ∈+

min
CB ,2≥0

�
9,(̂
(CB , 2) (3.4)

:= arg min
9 ∈+

min
CB ,2≥0

∑
:∈(̂

(2 3 9,: + CB − A: )2 (3.5)

as the most likely source for (̂ in a least squares sense.
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For �xed source estimate 9 ∈ + , the solution of the linear regression problem (De�ni-
tion 3.4.2) can be derived analytically [20, pages 4–5 for the unconstrained solution] as

2 ( 9, (̂) = max

(
0,

∑
8∈(̂ (A8 − Ā ) (3 9,8 − 3̄ ( 9))∑

8∈(̂ (3 9,8 − 3̄ ( 9))2

)
, (3.6)

CB ( 9, (̂) = Ā − 2 ( 9, (̂) 3̄ ( 9) (3.7)

with Ā = mean(A
(̂
) and 3̄ ( 9) = mean(3

9,(̂
). This allows to evaluate � ∗

9,(̂
for all 9 ∈ + and derive

an estimate 9∗ via enumeration, similar to the deterministic case. If the source can be resolved
with a certain probability depends obviously on the choice of the multiset (̂ .

To derive error estimates and oracle questioning node choosing strategies the estimator
properties are investigated.

De�nition 3.4.3 (Source estimator set). Given a multiset (nodes can be queried multiple times)
of nodes (̂ with |(̂ | = @ the source estimator set for all nodes is

�̃8 = {G | G ∈ '@, min
CB ,2≥0

∑
:∈(̂

(2 38,: + CB − G: )2 ≤ min
CB ,2≥0

∑
:∈(̂

(2 3 9,: + CB − G: )2 ∀ 9 ∈ + },

i.e., all oracle answers G which would lead to 8 being the (or a) most likely source.

To help conceptualize the set and derive some properties of the source estimator set its
center set is de�ned.

De�nition 3.4.4 (Source estimator set center). Given a multiset (nodes can be queried multiple
times) of nodes (̂ with |(̂ | = @ the source estimator set center for all nodes is

�8 = {G | G ∈ '@, G = 23
8(̂
+ CB ,∀ 2 ≥ 0, CB ∈ '}.

It includes all oracle answers G which would lead to 8 being the (or a) most likely source with perfect
�t (�

8,(̂
(CB , 2) = 0).

Basically half of a two dimensional subspace spanned by the vector 1 and the vector 38�
is including the set. As the velocity is positive one can cut the subspace along the subspace
spanned by 1 and choose the half in which the vector 38� points to get the center set. This
center sets have the following properties.

Proposition 3.4.5 (Trivial source estimator set center intersection). If (̂ is spread-resolving
(De�nition 3.3.7) the source estimator set centers intersect only in the one dimensional subspace
spanned by 1.

Proof. As (̂ is spread resolving no two vertices are spread equivalent, which is the same as
to say there is no intersection between the set centers with positive 2 . The solution 2 = 0 is
trivial. �

The intersection of the centers is the physically uninteresting case, where the oracle gave
the same answer to all questions and in�nite signal speed is estimated (2 = 0), hence having
no information about the source at all, i.e., all vertices are equally (un)likely.

Now the probability of source detection for the above estimator is derived.
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De�nition 3.4.6 (Source estimation probability). Given a spread-resolving multiset (̂ , the true
source : ∈ + and the true parameters 2, CB as well as the f the source estimation probability of a
vertex 8 :

%8,: (2, C0) =
∫
�̃8

I exp(−‖3:�/2 + C0 − G ‖2/(2f2))3G . (3.8)

Where I is the normalization constant of the multidimensional Gaussian distribution density func-
tion.

Proposition 3.4.7. For every source : the source estimation probabilities for all vertices sum to
one, i.e.,

∑
8∈+ %8,: (2, C0) = 1.

Proof. Let the source be any node k, with (unknown) speed and initial time. Then, the integra-
tion is performed over the density of a Gaussian distribution in the regions �̃8 , 8 ∈ + . It su�ces
to show that the points contained in more than one of these sets have measure zero. The sub-
space spanned by 1 is contained in all of them, but has measure zero. As the source estimation
set centers are distinct everywhere else, the intersections between the source estimator sets
have measure zero everywhere. �

Based on this the oracle query placement problem S3) from De�nition 3.2.8 can be solved.
There are di�erent approaches.

De�nition 3.4.8 (Minimal estimation probability). Given the oracle variance f the minimal
estimation probability is

%4BC = min
8∈+

∫
(0,inf)×R

%8,8 (2, CB)323CB .

De�nition 3.4.9 (Minimal number oracle question placement). Given the oracle variance f and
a minimal con�dence level U ∈ (0, 1) the minimal cardinality multiset (̂ is given by

(̂ = arg min
(̂

|(̂ |, B .C . : %4BC ≥ 1 − U.

De�nition 3.4.10 (Maximal detection probability oracle question placement). Given the oracle
variance f and a maximal cardinality* the maximal minimal estimation probability multiset (̂
is given by

(̂ = arg max
(̂

%4BC , B .C . : |(̂ | ≤ * .

The same can be done for type II errors instead of type I errors (De�nition 3.4.9).

De�nition 3.4.11 (Maximal misestimation probability). Given the oracle variance f the maxi-
mal misestimation probability is

%4BC = max
8∈+

∑
9 ∈+ \{8 }

∫
(0,inf)×R

%8, 9 (2, CB)323CB .
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Also one could think of combining type I and II errors with the number of oracle queries in
one criteria (e.g., minimizing queries while controlling error of type I+II). However all of this
approaches su�er from the problem, that very di�cult potentially high dimensional integrals
have to be solved while enumerating over many di�erent possible multisets. Hence practically
this are challenging problems.

Additionally, even if such an o�ine search with controlled error strategy for oracle question
placement is performed, the actual oracle answers can still be uninformative (e.g., close to
boundaries of the source estimator sets) and therefore the most likely source does not meet the
a priory chosen error bounds (type I and/or type II). This is a major drawback of the stochastic
setup, and can not be changed.

Therefore the stochastic setup is inherently suited for an online approach, where in every
iteration one can decide on termination based on the actual oracle answers and the information
they include about the source.

3.4.2 Online source detection

To solve the source detection problem S3) from De�nition 3.2.8 in the online setting we use the
estimator from De�nition 3.4.2. The estimator for the o�ine case, given a multiset of oracle
queries to calculate a best �t source vertex once, can be used in every iteration during the
online source detection.

As the true source estimation probabilities are di�cult to calculate, we use a di�erent ap-
proach.

De�nition 3.4.12 (Stochastic Spread-Resolving Set). Given 0, 1 ∈ R+, a source estimate 9∗ ∈ + ,
a resolution radius W > 0, and values � ∗

9,(̂
∀ 9 ∈ + , we de�ne

�
9∗
W = {8 ∈ + : 3 9∗,8 ≤ W } (3.9)

and call the multiset (̂ stochastically spread-resolving (SSR), if an F-Test is successful for a con-
�dence U with (

min
9 ∈+ \� 9

∗
W
� ∗
9,(̂

)
− � ∗

9∗,(̂

� ∗
9∗,(̂

1

0
≥ �−1

0,1
(U) (3.10)

Note that this approach is heuristic, because the statistic is not F-distributed.

Example 8 (Stochastic Source Inversion). We consider our example graph with oracle queries
at (̂ = {1, 4, 6, 7, 9} resulting in

A
(̂
= (1.44327, 0.31493, 3.43784, 5.48041, 4.77700) .

We can calculate best �t regression lines for all ten nodes:
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node 2 CB objective value
0, 6, 7, 8, 9 14 − 10 3.09069 19.09375

1 1.49215 0.40482 3.95344
2 2.12480 −1.15892 1.03461
3 3.39669 −5.06137 5.24874
4 1.65808 0.10614 0.39891
5 3.39669 −1.66468 5.24874

The smallest objective value is obtained for node 4. However, (̂ does not spread-resolve nodes
3 and 5 (e.g., for CB = 2 = 1 we have 33,: = CB + 235,: ), resulting in not distinguishable optimal
solutions (objective value, 2) with di�erent CB . For 0 = 1 = 1, U = 0.05 and the ball �2

1.5 = {1, 2, 4}
the F-test fails with 12.158 and a cuto� value of 161.45. Thus (̂ is not SSR, and 4 is not a probable
source, which is accurate as A� was simulated for B = 2, 2 = 2, CB = −1, and a standard deviation
of 1.

For the experimental design problem S1) in De�nition 3.2.8 we use A-optimality, i.e., we
choose oracle queries that minimize the following function.

De�nition 3.4.13 (Set Variance). For a given multiset (̂ , variances f 9 , and _ ∈ [0, 1] we de�ne
the set variance

Φ((̂) :=
∑
9 ∈+

_
Var[2 ( 9, (̂)]

f2
9

+ (1 − _)Var[CB ( 9, (̂)]
f2
9

, (3.11)

calculated using the variances of the parameter estimates (3.6-3.7) according to [108, Section 2.4],

Var[2 ( 9, (̂)] = f2∑
8∈(̂ (3 9,8 − 3̄ 9 )2

Var[CB ( 9, (̂)] =
f2 ∑

8∈(̂ 3
2
9,8

|(̂ |∑
8∈+̂ (3 9,8 − 3̄ 9 )2

with an unknown, but �xed f2.

To prove convergence, and also to avoid observed unwanted numerical behavior, we restrict
the multiplicities of the multiset (̂ . The number of queries per node must not di�er by more
than 1. This avoids that speci�c nodes are queried signi�cantly more often than others.

De�nition 3.4.14 (Feasible Oracle Queries). Let+ be given. A multiset (̂ of+ is called feasible,
if the multiplicities of all 8 ∈ + within (̂ do not di�er by more than 1. We denote by+ (̂ the subset
of + containing all nodes that can be added to a feasible (̂ and maintain feasibility.

Now, we can now formulate a source detection algorithm realizing De�nition 3.2.8.
The goal of Algorithm 2 is to �nd a probable source 9∗with a small number of oracle queries,

assuming considerable practical costs (e.g., increased risk of side e�ects for intracardiac mea-
surements). Concerning the computational complexity per iteration of Algorithm 2, the main
calculations happen in Lines 5, 6, and 10. The inner optimization problems can be solved ana-
lytically, compare (3.6-3.7), with an e�ort proportional to |+ |. This is similar to calculating the
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Algorithm 2 Stochastic Source Detection
Input: Graph (+ , �)with shortest distances3 , access to oracleV , parameters0, 1, U, _, variance
weights f 9
Output: Probable source 9∗, SSR set (̂

1: 81, 82 ← arg min
81≠82∈+

Φ({81, 82}) ⊲ See Def. 3.4.13

2: (̂ ← {81, 82} ⊲ Initialize set (̂
3: for 8 in 3 . . . 8max do
4: A

(̂
←V((̂) ⊲ Update oracleV query

5: Calculate 2 ( 9, (̂), CB ( 9, (̂) ∀ 9 ∈ + ⊲ See (3.6-3.7)
6: Calculate objectives � ∗

9,(̂
and 9∗ ⊲ See (3.4-3.5)

7: Calculate W =
� ∗
9∗,(̂

( |(̂ |−2)2 ( 9∗,(̂)
⊲ For SSR test

8: if (̂ is SSR then ⊲ See (3.9-3.10)
9: break

10: 8+ ← arg min
9 ∈+ (̂

Φ((̂ ∪ { 9}) ⊲ See Defs. (3.4.13-3.4.14)

11: (̂ ← (̂ ∪ {8+} ⊲ Add node to (̂

set variance in (3.11). The overall e�ort to evaluate all objective functions � ∗
9,(̂

and minimizing

over+ \� 9
∗
W in Line 8 and over+ (̂ in Line 10 is then proportional to |+ |2, where clever look-up

tables can be applied to increase performance. Note that the distance resolution in Line 7 is
calculated by dividing the estimated standard deviation by the estimated slope 2 ( 9∗, (̂).

Given the general applicability of Algorithm 2 and the stochasticity of the task, we can not
expect that the algorithm has a deterministic bound on the number of necessary iterations.
However, the well-posedness follows from the following result.

Corollary 3.4.15 (Convergence in the limit). Assume we remove Lines 8–9 in Algorithm 2. Then
there is an 8max such that the output of Algorithm 2 is 9∗ = B .

Proof. In Line 6 of Algorithm 2 we calculate (3.4-3.5)

9∗ = arg min
9 ∈+

� ∗
9,(̂
.

We want to show that 9∗ = B , i.e., that

� ∗
9,(̂

= min
CB ,2≥0

∑
:∈(̂

(2 3 9,: + CB − A: )2

is smallest for 9 = B , if (̂ is large enough. As (̂ is augmented by one node in every iteration in
Line 11, this correlates to a longer runtime and a larger 8max.

We use De�nition 3.2.4 and the true model for B for

A: = 3B,:2 + CB + n:
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and the analytical solutions (3.6-3.7) to obtain

� ∗
9,(̂

=
∑
:∈(̂

(2 ( 9, (̂) 3 9,: + CB ( 9, (̂) − A: )2

=
∑
:∈(̂

(2 ( 9, (̂) 3 9,: + Ā − 2 ( 9, (̂) 3̄ ( 9) − A: )2

=
∑
:∈(̂

(2 ( 9, (̂) (3 9,: − 3̄ ( 9)) + (Ā − A: ))2

=
∑
:∈(̂

(
2 ( 9, (̂) (3 9,: − 3̄ ( 9))

−2 (3B,: − 3̄ (B)) − (n: − n̄)
)2
.

We look at 2 ( 9, (̂) separately and use

5 (G
(̂
, 9) =

∑
8∈(̂ (G8 − Ḡ) (3 9,8 − 3̄ ( 9))∑

8∈(̂ (3 9,8 − 3̄ ( 9))2

as abbreviation:

2 ( 9, (̂) = max
(
0, 5 (A

(̂
, 9)

)
= max

(
0, 2 5 (3

B,(̂
, 9) + 5 (n

(̂
, 9)

)
The term n̄ in 5 (n

(̂
, 9) is a Gaussian distribution N(0, f2/|(̂ |). As the probability % ( |n̄ | <

W), W > 0 tends towards one there is no in�uence of this term in the limit. Then 5 (n
(̂
, 9) can

be rewritten with notation 68 = (3 9,8 − 3̄ ( 9))/
∑
8∈(̂ (3 9,8 − 3̄ ( 9))

2 as
∑
8∈(̂ n868 ∼ N(0, f̂

2) with
variance

f̂2 = f2
∑
8∈(̂

62
8 = f

2/
∑
8∈(̂

(3 9,8 − 3̄ ( 9))2.

As also this Gaussian stochastically converges towards 0 (as n̄ above), it has no in�uence.
Inserting the remaining parts of 2 ( 9, (̂) back into the objective yields

� ∗
9,(̂

=
∑
:∈(̂

(
ℎ 9,: − n:

)2
=

∑
:∈(̂

ℎ2
9,:
− 2ℎ 9,:n: + n2

:
.

As above, the term n̄ is neglected because of its stochastic convergence to zero and we used

ℎ 9,: = max
(
0, 2 5 (3

B,(̂
, 9)

) (
3 9,: − 3̄ ( 9)

)
− 2

(
3B,: − 3̄ (B)

)
The di�erence between the true source objective and any other objective is in this term. Be-
cause 5 (3

B,(̂
, B) = 1 we have ℎB,: = 0.
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For all other objectives the term
∑
:∈(̂ ℎ

2
9,:

grows at least linear in the size of (̂ because
with + as spread-resolving set

∑
:∈+ ℎ

2
9,:

is bounded from below by a positive value and we
add elements to (̂ in chunks of + .

The term −2
∑
:∈(̂ ℎ 9,:n: is Gaussian N(0, f̃2) with variance f̃2 = 4f2 ∑

:∈(̂ ℎ
2
9,:

which
grows at most linearly in the size of (̂ because

∑
:∈+ ℎ

2
9,:

is bounded from above.
The last term is j̃2 distributed with |(̂ | degrees of freedom. In the limit this tends to a

Gaussian distribution with mean |(̂ | and variance 2|(̂ |. For the true source objective this is the
only existing term.

Subtracting the true source objective from any other objective the result is GaussianN(`, f̂2)
with ` =

∑
:∈(̂ ℎ

2
9,:

and f̂2 = f̃2 + 2|(̂ |. The probability that it is greater than zero tends to one
because the mean grows at least linearly and the variance grows at most linearly. �
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4 Medical application

We start with the medical background information for the non medical reader in Section 4.1.1.
The following Sections of this chapter are from [107].

4.1 Medical background

The reader familiar with the medical background might skip this subsection.

4.1.1 Cardiovascular system

The description of the anatomy and the physiology here is based on [50]. A more detailed
and thorough description can be found there. The cardiovascular system in humans is the
transportation system of the body. It transports oxygen and nutrients as well as many other
substances to all organs to sustain live. It was even seen so central to live that the indication of
death was that the heart stopped beating [91]. The heart is the central part of the cardiovascular
system supplying the energy to ful�ll the transportation by pumping the blood through the
arteries and veins. The blood is the liquid that actually carries the substances. Together the
heart, the blood vessels (arteries and veins), and the blood form the circulatory system. Also
the lymphatic system is part of the cardiovascular system but we will not consider it here.

We are interested in a speci�c disease of the heart, hence we will continue our description
of the heart and do not take into account the blood itself or the blood vessels directly. Also we
will focus on the key factors of the disease in contrast to normal heart function.

The heart consists of four chambers: right and left atrium, right and left ventricle. The right
atrium and ventricle as well as the left atrium and ventricle form two pairs that work together
to pump blood through part of the body to the other pair of chambers. The right pair is weaker
because it only pumps the blood trough the lung to the left pair. The left pair is stronger and
pumps the blood through the whole body. In both cases the blood �rst enters the atrium and
is pumped from there to the bigger ventricle. The ventricle pumps the blood out of the heart.
Back �ow of blood is prevented by a valve at each chamber outlet. A chamber pumps blood by
a concurrent contraction of its tissue. The coordination of the contraction in one chamber and
between the chambers is achieved by the conduction system of the heart [7].

The conduction system of the heart triggers synchronized contraction of the heart muscle
tissue by electrical activation. The activation is initiated by the sinus node. It is located on
the top of the right atrium inside the atrium’s wall. The sinus node autonomously produces
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and rhythmic electric activation. This activation then spreads over the walls (muscular tissue)
of the atrium chambers and causes their contraction. Then the activation is blocked by the
cardiac skeleton which isolates the atria from the ventricles. Only the atrioventricular node is
conducting through this barrier. It is located right in the middle of the heart between all four
chambers. It delays the electrical activation such that the blood from the atria can �ll the ven-
tricles before the ventricles contract. From the atrioventricular node the signal is conducted via
the Bundle of His. The Bundle of His is a structure branching over the ventricles ensuring a fast
conduction of the signal over the whole ventricle. Due to this fast pathway the activation can
simultaneously reach from the bundle of His over the Purkinje �bers to the ventricular muscle
tissue. Therefore, this tissue contracts together and pumps the blood out of the ventricles into
the body.

Note that this is a very short and simpli�ed description of the cardiovascular system, espe-
cially the cellular and detailed tissue level are not considered here. Also the upper organ level,
regulation of heart activity, heart rate, pumping volume, regulation of blood �ow through dif-
ferent parts of the body, especially the heart itself1 are not described.

4.1.2 Premature ventricular beats

Premature ventricular beats (PVB) are a ventricular tachycardia in which a single source lo-
cation causes arrhythmic o� beats that break the sine rhythm. This source location acts like
the sine node, causing too early contraction when the ventricles are not �lled fully with blood
yet. This o� beats increase the heart rate but decrease the pumped blood volume. When they
are frequent they can have serious impact on the patients health and need to be treated. In [1]
PVBs are described as highly symptomatic, when patients have another heart disease and can
even cause cardiomyopathy.

The treatment of PVBs is done via catheter ablation [90, 112]. The procedure is performed
in two steps: First an catheter with an electric sensor at the tip is used to localize the source of
the PVB. Then another catheter is used to ablate the source. This is usually done by heating or
cooling of the tissue with the tip of the catheter. This forms a scar in the source region, which
looses its electrical conduction properties and its ability to initiate PVBs.

The more time consuming part of the procedure is the source localization part. Here the
doctor usually performs an heuristic search and measures at di�erent locations the time dif-
ference for a PVB between the time when the signal passes the catheter tip and the time when
the signal is recorded in the external ECG device. The largest found time di�erence, i.e. the
earliest activation point is the unknown source. Especially when the PVBs do not occurs fre-
quently under surgery, it is time consuming to take a single measurement. Therefore it is of
high interest to reduce the number of measurements needed to perform the search. Here we
use our graph based search algorithm.

1The muscular tissue of the heart is supplied with oxygen and nutrients like any other organ through arteries and
veins from the outside because the muscular tissue is too thick to be supplied from the blood inside the chambers.
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4.2. INTRODUCTION

4.2 Introduction

Premature beats (PBs) are a common �nding in patients with structural heart disease, but they
can also occur in otherwise healthy individuals. In patients with drug refractory symptomatic
PBs or frequent monomorphic ventricular PBs in patients with reduced left ventricular ejec-
tion fraction, catheter ablation is well indicated [90, 112]. Since the introduction by Gepstein
et al [43], 3-dimensional (3D) electroanatomic mapping systems are increasingly applied to
locate the exact site of origin of PBs. However, infrequent occurrence of PBs during the proce-
dure can hinder the creation of a detailed activation map within an acceptable period of time,
thereby limiting procedural success. In these particular cases, it may be reasonable to �rst re-
construct the anatomy of the heart chamber during sinus or paced rhythm, adding the local
activation times (LATs) to the existing anatomical information within a second step as a so-
called remap. Figure 4.1A exemplarily displays the electrocardiogram of a young patient with
long QT syndrome su�ering from recurrent episodes of torsade de pointes tachycardia trig-
gered by short-coupled left ventricular PBs. In this particular case, the operator decided to �rst
reconstruct left ventricular anatomy. By obtaining LAT measurements (exemplarily displayed
in Figure 4.1B for 3 [image I], 5 [image II], 7 [image III], and 27 [image IV] LAT measurements)
at di�erent locations within the previously generated geometry (remap), the site of origin could
be identi�ed (Figure 4.1BII-IV).

Motivated by established systematic search routines as, for example, applied for the rescue
of avalanche victims, we strived for developing an algorithm for optimized data acquisition
to accelerate the mapping procedure in cases of rare arrhythmia occurrence [100]. Our strat-
egy was based on the assumption that when deciding about the localization of each next LAT
measurement, the amount of additional information may largely di�er depending on the exact
location of the measuring point. We therefore developed a mapping algorithm that is able to
calculate the amount of additive value at each nodal point of the geometry and automatically
position the next LAT measurement at the site of maximum additive information. Furthermore,
the algorithm is able to predict earliest activation by extrapolation on the basis of the acquired
LAT measurements with high accuracy.

4.3 Methods

4.3.1 Electrophysiological procedures and data acquisition

Seventeen patients who underwent catheter ablation of focal arrhythmias guided by a 3D map-
ping system (CARTO 3, Biosense Webster Inc., Diamond Bar, CA) between March 1, 2014 and
August 31, 2015 were selected retrospectively from our database. The study was approved by
the local ethics committee and was performed in accordance with the Declaration of Helsinki
(64th WMA General Assembly, Fortaleza, Brazil, 2013). Data were recorded and analyzed using
the LABSYSTEM PRO electrophysiological recording system (Boston Scienti�c, Marborough,
MA,). Electroanatomic maps were established with the point-by-point acquisition mode of the
CARTO system.
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Figure 4.1: Electroanatomic mapping of short-coupled ventricular premature beats triggering
TdP tachycardia. A: ECG of a young female patient with long QT syndrome su�ering from
recurrent episodes of TdP tachycardia triggered by monomorphic ventricular PBs (denoted
by asterisk). Atrial pacemaker stimulation is highlighted by built-in pacemaker detection. B:
Because of the infrequent occurrence of PBs during the ablation procedure, an anatomical ge-
ometry was �rst established (image BI). Excitation propagation during PBs was then analyzed
within the previously established anatomic map by point-by-point acquisition of LATs (images
BII-IV). The displayed remaps are based on the spatiotemporal information of 3 (image I), 5
(image II), 7 (image III), and 27 (image IV) mapping points. LATs are color coded, with red rep-
resenting early activation times and blue late activation times. The site of successful ablation
(image BIV, red region) was located within the Purkinje system of the anteroseptal midventric-
ular segment of the left ventricle. ECG = electrocardiogram; LAT = local activation time; PB =
premature beat; TdP = torsade de pointes.
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Figure 4.2: Supplementary Figure: Schematic plot of regression analysis.
This simple Figure visualizes the terms used in Formula 4.1. When performing regression
analysis for a nodal point, the distance (3) between this point and any other mapping point (8)
is plotted on the x-axis. The corresponding LAT is plotted on the y-axis (C8 ). Based on distances
and LATs of all mapping points, a linear �t could be calculated. The y-intercept (C0) represents
the LAT at the source of excitation. Every point, including the point at 3 = 0 (y-intercept),
exhibits a certain variance (VAR) (red lines). Conduction velocity (CV) can be obtained from
the linear �t by dividing time by distance. CV=conduction velocity, d=distance, LAT=local
activation time, t=time, VAR=variance.

4.3.2 Development of patient-speci�c geometric models

For each patient, the raw data of the geometry of the heart chamber exported from the CARTO
system consist of a triangular mesh. Some points (measurement points) are further labeled
with a LAT obtained by the operator. On the basis of the spatiotemporal information exported
from the CARTO system, we established a 3D geometry for each patient using the MATLAB
software package (MathWorks, Natick, MA). Figure 4.3A schematically displays the structure
of the surface of this mesh/graph. Within this graph, the distance between 2 nodal points was
measured using the shortest distance over the connecting edges. The shortest distance between
the 2 nodal points 8 and 9 is denoted as 38 9 .

Considering the focal character of the arrhythmia, we assumed that electric excitation
would spread centrifugally over the connecting edges of the mesh geometry with a constant
conduction velocity (CV). CV for each patient was calculated on the basis of the acquired LATs
and the geometric positions of the mapping points (Table 4.1). When �tting a straight line
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through these data, CV could be simply obtained from the slope of the line (Supplemental Fig-
ure 4.2). The LAT at a certain nodal point (C8 ) is given by a linear model using the shortest path
distances and the following Formula:

C8 =
38:

CV
+ C0 − SEM (4.1)

where C8 is the arrival time of the signal at point 8 , 38: is the shortest distance between
nodal point 8 and source : , CV is the conduction velocity, C0 is the unknown earliest activation
time, and SEM is an individual measurement error. This error had to be included because the
estimated CV obtained from the exported nodal points exhibited a certain degree of uncertainty,
re�ected by the A 2 value (Table 4.1).

Table 4.1: Correlation coe�cients, estimated CVs, and analyzed heart chambers of all patients
(CV = conduction velocity; LA = left atrium; LV = left ventricle; RA = right atrium; RV = right
ventricle).

Patient no. A 2 CV (m/s) Heart chamber

1 0.86 1.8 LV
2 0.74 1.1 RA
3 0.81 1.4 LV
4 0.73 1.1 LA
5 0.56 1.8 LV
6 0.85 1.0 RV
7 0.81 1.3 LV
8 0.96 0.73 LV
9 0.61 1.2 RA
10 0.63 2.0 RV
11 0.90 0.85 LV
12 0.57 0.83 RV
13 0.80 1.1 LA
14 0.73 1.0 RV
15 0.77 0.93 RV
16 0.54 1.4 RV
17 0.64 1.6 LV

4.3.3 Prediction of earliest activation

When the algorithm obtained a measurement within the previously generated geometric model,
the LAT at this speci�c nodal point was computed by the distance to the origin and the CV using
Formula 4.1. On the basis of the location and LAT of the obtained measurements, the algorithm
predicted the origin of the signal by solving a linear regression problem for every nodal point
of geometry 9 . To estimate the CV and the initial time C0, we minimized the objective
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�8 =

=∑
8=1

38:

CV
+ C0 − C8

Solving this problem for every nodal point on the geometry, the nodal point exhibiting the
best �t (highest A 2 value) was considered the origin of the signal or at least the best estimate of
the origin on the basis of the available information. An example is considering that a number
of mapping points have been acquired and the algorithm tries to identify the site of earliest
activation. In this case, it would go through all other nodal points each time establishing a
regression analysis (see Supplemental Figure 4.2) with all available mapping points. Figure 4.3
explains the search routine within a simple planar mesh geometry. The red nodal point marks
the true origin of excitation, and the black points (labeled a, b, and c) mark the measurement
points already obtained at this time point. When assuming the blue point as the possible source,
the calculated distances to the measurements points are 1, 3, and 3 numbers of edges. However,
as the LATs at the measurement points in fact characterize the distance to the true origin (red
point), there is no good correlation between distance and time (Figure 4.3C). In contrast, when
assuming the red point as the possible source, the distances as well as the time delays to the
measurement points (black points) are 1, 2, and 3. Figure 4.3D displays the excellent correlation
of these points, thereby identifying the red point as true origin.

4.3.4 Optimizing the localization of the next measurement point

Using the aforementioned strategy, the algorithm is able to predict the most likely localization
of the origin. However, a main goal of our work was to develop an algorithm that considerably
reduces the number of measurement points. For this purpose, the algorithm needs to select that
next measurement point that increases the quality of our estimate best. To identify the optimal
next measurement point, the algorithm tried to minimize the standard error of the y-intercept
of the regression curves for all nodal point using the following formula:

#∑
;=1

0;VAR(C0; )
f2 =

0;
∑=
8=1 3

2
8;∑=

8=1(38; − 3̄; )2

where 0; is the positive weight used to de�ne how important a nodal point and its detection
as source is. The second regression parameter of the regression at nodal point 8 is C08 . In other
words, we wanted to minimize the variance of the y-intercept for all regressions we perform
by picking the next measurement point. The reason for this approach is that every point of the
regression curve possesses a certain degree of uncertainty. This is re�ected by the variance (see
red lines in Supplemental Figure 4.2). In addition to the correlation coe�cient, the variance
of the y-intercept (at distance 0) provides information about the quality of �t. Therefore, to
identify the speci�c nodal point where a next mapping point would best improve the quality of
the map, the algorithm again went through all nodal points checking how much a measurement
at this speci�c point would reduce the variance of the y-intercept of the regression curves at all
other points. This speci�c nodal point that results in the maximum reduction of the variance
of the y-intercept of all other nodal points was identi�ed as the next mapping point. The mean
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Figure 4.3: Schematic illustration of regression analysis within a simpli�ed mesh graph. On
the basis of the electroanatomic maps exported from the CARTO system, simpli�ed mesh ge-
ometries were established. A: Within this simple example, the red point represents the true
site of origin of a focally spreading electrical activation. The black points (labeled a, b, and
c) represent nodal points at which LAT measurements have been performed. Considering a
time delay of 1 arbitrary unit for the conduction from one to the next nodal point, the LATs
at the measurement points a, b, and c are 1, 2, and 3, respectively (equivalent to the distance
to the red point). C: Not knowing the site of origin and questioning whether the blue point
might possibly be the source of the arrhythmia, one could draw a simple graph plotting the
distance between the blue and black points (3, 1, and 3) in correspondence to the LATs (1, 2,
and 3). Regression analysis within this plot reveals no correlation, thereby excluding the blue
point as the true site of origin. B and D: When performing the same analysis for the red point,
the graph reveals an excellent correlation, thereby identifying the red point as the true site of
origin. LAT = local activation time.
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overall computing time for the calculation of the optimal position of the next mapping point
as well as the revised prediction of earliest activation was 124 ms.

4.3.5 Detecting the source

In order to locate the site of earliest activation, the algorithm, at a certain point in time, stops
taking mapping points based on the degree of maximum additive information and starts lo-
calizing the site of origin by a direct search close to the predicted site of origin. This change
of the search strategy seems reasonable, as points collected on the basis of maximum additive
information are generally remote and not close to the predicted origin. To identify the point in
time, when this second phase of the search routine needed to be entered, the algorithm con-
tinuously compared the quality of �t (derived from regression analysis) between the predicted
site of origin and all points within 1 cm around it. As soon as the di�erence of the quality of �t
to the surrounding points reached a certain threshold (surrounding points signi�cantly worse),
the search routine was changed to a more or less heuristic search around the predicted site of
origin.

4.4 Results

4.4.1 Mapping of earliest activation by the operator

Electroanatomic maps from 17 patients who underwent ablation of focal arrhythmias were
selected retrospectively from our database. On average, a number of 55.1 6 8.8 (n 5 17) LAT
measurements had been acquired by the operator before ablation. The geometry of the afore-
mentioned patient with long QT syndrome is displayed exemplarily in Figure 4.4A. The LAT
measurements obtained by the operator are displayed as color-coded points, with red repre-
senting early activation times and purple late activation times (see timescale). The projection
of the search path followed by the operator is displayed. Figure 4.4B displays the distance be-
tween the measuring points and the origin in relationship to the corresponding LATs. In this
particular case, a total number of 27 LAT measurements were obtained. The corresponding
linear regression exhibited a good correlation, yielding an r 2 value of 0.86 (slope 0.55 ± 0.044
ms/ mm; y-intercept 271.1 ± 1.1 ms; n = 27). Table 4.1 gives an overview of the correlation
coe�cients, the calculated CVs, and the mapped heart chambers of all patients.

4.4.2 Mapping of earliest activation by the algorithm

Next, we analyzed mapping performance of the developed algorithm. For this purpose, realis-
tic models of excitation propagation had to be �rst established for each patient. We therefore
computed the LAT for each nodal point of the mesh geometry using the electroanatomic map
created by the operator, the identi�ed origin, the calculated CV, and the individual measure-
ment error. These geometries served as a test environment for the algorithm. At the beginning
of the automated mapping procedure, the algorithm had information only about the anatomical
situation derived from the mesh geometry, such as the exact localization of the nodal points and
the connecting edges, which means that the algorithm was blinded to all LATs of the geometry.
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Figure 4.4: Evaluation of the mapping approach of the operator. A: Reconstructed mesh ge-
ometry obtained from the ablation procedure in the aforementioned patient with long QT syn-
drome. LAT measurement points obtained by the operator are displayed as points with color-
coded activation times, with red representing early activation times and purple late activation
times (see color scale). The search path from the LAT measurement to the LAT measurement
followed by the operator is displayed as a projection on the frontal and sagittal planes. B:
Distance between measurement points and the corresponding LATs shows a good correlation
when assuming the site of best �t as the true origin (red point). LAT = local activation time.

At the very beginning of the automated mapping procedure, the �rst 3 LAT measurements
were chosen en bloc because the selection of only 2 points would result in a perfect linear
regression �t, rendering all points equally likely to be the origin. These 3 measurements are
automatically performed by the algorithm purely on the basis of the shape of the geometry.
Now that the LAT and localization of the initial 3 measurement points had been obtained, the
algorithm went through all nodal points of the geometry, each time calculating the distance to
the 3 initial measurement points and the linear regression for distance and LAT. The nodal point
with the best �t was then assumed to be the origin (predicted origin). Figure 4.5A exemplarily
displays the situation for the previously described patient (Figure 4.1) at this exact point in time.
The initial 3 measurement points are displayed as black points. The quality of correlation (A 2)
of each nodal point is color coded, with blue representing strong correlation and white weak
correlation. The nodal point with the best correlation (predicted origin) is highlighted as a
large blue point. The red point indicates the localization of the true origin. Since only 3 LAT
measurements had been performed at this point in time, the predicted origin is still remarkably
displaced from the true origin. The correlation between the distance to the measurement points
and the LATs for the predicted origin (large blue point) is displayed in Figure 4.5B.

Next, the algorithm aimed at identifying that speci�c nodal point that would add maximum
information about the localization of the true origin. Considering that the y-intercept of the
regression curve represents the predicted origin, the algorithm searched for that speci�c nodal
point at which an LAT measurement would reduce the variance of the y-intercept for the re-
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Figure 4.5: Mapping approach of the automated algorithm. A: The situation of the automated
mapping algorithm at the time point of the third iteration in our exemplary simulation. Ob-
tained LAT measurements are displayed as black points, with 1 measurement point hidden on
the backside of the geometry. Nodal points of the geometry are color coded, with white repre-
senting unlikely sites of the predicted origin and blue likely sites of the predicted origin. The
blue point represents the best site of the predicted origin based on the 3 LAT measurements
obtained so far, and the red point represents the true origin. B: Regression analysis for the
predicted origin (nodal point with the best available regression coe�cient). C: Based on the
measurements obtained so far, the additive value at each nodal point was calculated and visual-
ized, with white representing low additive value and black high additive value. The location of
maximum additive information (indicated by arrow) is selected as the next measurement point.
D–F: The situation at the time point of the �fth iteration. Of note, the split point represents
2 measurements at di�erent locations with the same distance to the origin and the same LAT.
LAT = local activation time.
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gression curves of all nodal points most. Figure 4.5C displays a mesh geometry showing the
additive value at each nodal point, with black representing maximum additive information and
white minimum additive information. The location of the maximum additive value is marked
by an arrow (Figure 4.5C). Two iterations later and now based on the information of 5 LAT
measurements, the predicted origin evidently migrates toward the true origin (Figures 4.5D–F).
Figure 4.6A displays the situation after the seventh iteration when the algorithm located the
true origin by placing the last measurement in this position. Comparable to Figure 4.4A, the
acquired measurement points are color coded, with red representing early activation times
and purple late activation times. Again, the search path is displayed on the frontal and sagittal
planes. In contrast to the operator (27 measurements), the algorithm identi�ed the true origin
with 7 LAT measurements. Figure 4.6B displays the correlation between the distance to the
origin and the LAT. To allow a direct comparison between the map automatically generated by
our algorithm with the original CARTO map, we created a color-coded CARTO-like activation
map (Figure 4.6C). Identically to the remap displayed in Figure 4.1BIII, our map is based on
the spatiotemporal information of 7 LAT measurements. A direct comparison of both maps
visualizes the obvious di�erence in accuracy.

4.4.3 Comparison between the operator and the algorithm

Next, we analyzed the diagnostic performance of the algorithm within all previously gener-
ated test geometries. Figure 4.7A displays the mean number of iterations that were necessary
to identify the origin of the arrhythmia in each patient. Overall, the mean number of LAT
measurements that were needed by the algorithm to identify the origin was 10 ± 0.51 (n = 17).
Compared to the algorithm, the operator, on average, took 5 times as many LAT measurements
(55 ± 8.8; n = 17; P < .0001). However, when performing a head-to-head comparison between
the mapping performance of the operator and the algorithm, it has to be taken into account
that the algorithm always started mapping within an existing anatomy whereas the operator
in some cases had reconstructed the anatomy simultaneously while mapping activation times.
For this purpose, Figure 4.7B compares only those particular cases in which the operator was
able to map activation times within a preexisting anatomy (remap). In these 10 cases, the site
of origin could be identi�ed within 11 ± 0.89 LAT measurement points by the algorithm as
compared to 42 ± 7.0 LAT measurement points by the operator (n = 10; P < .001).

4.5 Discussion

4.5.1 Clinical implications

The algorithm outperformed the operator in almost every case in terms of the number of map-
ping points necessary to locate the site of origin, thereby pointing to shorter procedure times.
In our opinion, there are 2 main reasons for this observed e�ect: (1) When directly comparing
the number needed based on iterative linear regression analyses, our algorithm is able to calcu-
late the degree of redundancy from each nodal point of the geometry, thereby identifying the
nodal point with maximum additive information. This optimized search routine guarantees
that the site of earliest activation can be located with a low number of LAT measurements. (2)
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Figure 4.6: Evaluation of the mapping approach of the algorithm. A: Within the simpli�ed ge-
ometry of the aforementioned patient, the algorithm identi�ed the exact site of the true origin
within 7 iterations. Again, the LAT measurements are displayed as color-coded points and the
search path is displayed as a projection. B: Regression analysis of the 7 LAT measurements. C:
To allow a direct comparison with the CARTO map based on the spatiotemporal information
of the same number of LAT measurements (see Figure 4.1BIII), a CARTO-like activation map
was established, with red representing early activation times and purple late activation times.
LAT = local activation time.
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Figure 4.7: Systematic comparison of the mapping performance between the algorithm and
the operator. A: Mean values and standard error of the LAT measurements obtained by the
automated algorithm within 100 test runs per patient (displayed as black points). The number
of LAT measurements taken by the operator are displayed as red squares. B: Compared to
a mean number of 42 ± 7.0 LAT measurements taken by the operator in 10 patients with a
remap, the algorithm was able to locate the site of earliest activation within 11 ± 0.89 LAT
measurement points. LAT = local activation time.

Except for optimized data acquisition, our algorithm exhibits a second feature that might con-
tribute to the signi�cant reduction of mapping points. The linear regression analyses calculated
for each nodal point are used not only to calculate the amount of additive information but also
to predict the site of earliest activation. This means that LATs of any nodal point is extrapo-
lated from the acquired LATs. In contrast, activation maps generated by the CARTO system are
based on interpolation between the acquired mapping points. This di�erence might account
for the higher quality of the activation map generated by our algorithm. As an example, when
comparing the CARTO map based on the spatiotemporal information of 7 LAT measurements
displayed in Figure 4.1BIII with our map based on the same number of LAT measurements (Fig-
ure 4.5C), a clear di�erence in the accuracy is visible. Interestingly, a quite similar approach
using regression analyses has been published recently for the identi�cation of the source of
network-driven contagion phenomena such as the 2009 H1N1 in�uenza pandemic or the 2003
severe acute respiratory syndrome epidemic [24]. In their work the authors report that on the
basis of geographical locations, arrival times of infection, and predicted traveling times, the
source of the infection can be located using correlation analyses. Compared to our simple 3D
electroanatomic model, these simulations are quite complex because of the inhomogeneous
network structure and limited knowledge about the exact traveling times [52]. However, moti-
vated by the good results of these studies, it might be a promising approach to further increase
the degree of complexity of our models, for example, by including anatomical structures (ie,
mitral or tricuspid annulus) or by including areas of scared tissue with reduced CV, for example,
to allow fast activation mapping in scar-related ventricular tachycardia.
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4.5.2 Alternative mapping techniques

Mapping of focally spreading cardiac arrhythmias is a relevant clinical topic, and a variety
of strategies have been developed to accelerate localization, thereby increasing success rates.
Hocini and coworkers [90, 112, 48] recently published promising data from a multicenter study
applying a novel technique of high-resolution noninvasive mapping for the ablation of focal
arrhythmia. However, it has to be taken into account that this technique requires a thoracic
computed tomography scan, an electrode vest, and an additional mapping system (ECVue, Car-
dioInsight Technologies, Inc., Cleveland, OH). A similar approach of inverse potential mapping
based on the combination of a magnetic resonance imaging scan and a body surface potential
map has recently been published by Bhagirath and coworkers [43, 18]. However, noninvasive
mapping techniques have not yet entered clinical routine. Similar to noninvasive mapping
techniques, the use of multielectrode catheters has also been proposed to accelerate endocar-
dial mapping of focal arrhythmias. Using noncontact [100, 113] or contact [90, 95, 2] acqui-
sition of endocardial electrograms, these systems allow simultaneous assessment of a larger
number of LATs using basket or balloon catheters. Compared to all technologies described
above, our algorithm o�ers the advantage that it may easily be implemented into standard 3D
electroanatomic mapping systems without any need for additional hardware components or
preprocedural imaging modalities.

4.5.3 Studi limitations

Because of obvious technical reasons, the diagnostic performance of the algorithm could be
assessed only retrospectively using electroanatomic maps that had been exported from the
CARTO system. Furthermore, operators with di�erent degrees of expertise conducted the
mapping procedures. Therefore, it can be suspected that fewer LAT measurements might have
been necessary when the operator with most experience would have performed all procedures.
However, in this way, the results of the study might even be more representative for a real-
world situation.

4.5.4 Conclusion

We developed an automated mapping algorithm for the identi�cation of the site of earliest acti-
vation within 3D electroanatomic maps. We further show that when compared to an operator,
the algorithm is able to locate the site of earliest activation with a signi�cantly lower number of
LAT measurements. When integrated into an electroanatomic mapping system, this algorithm
might signi�cantly accelerate the procedure by guiding the operator to the optimal position
for the next LAT measurement, thereby reducing the number of points with a high degree of
redundant information. Furthermore, the algorithm would be able to predict the site of origin
with high accuracy early during the mapping procedure.
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5 Numerical results

5.1 Implementation

We have implemented Algorithm 2 in octave 5.2.0 [34]. The code is available with a
permissive license in the GitHub repository https://github.com/TobiasWeber/
IMLR/.

The implementation is a set of octave functions and scripts that should work in any
octave installation with the statistics package. For Algorithm 2 only core octave
was used. Data structures for graph representation were taken from the octave network
toolbox [22], where also simple graph information and manipulation algorithms can be found.
However, the algorithm works standalone as we implemented a di�erent shortest path algo-
rithm for e�ciency reasons. It is closely related to the fast matrix multiplication shortest path
algorithms and more suited to the octave programming language than the Dijkstra algo-
rithm in the toolbox. For the numerical random scenarios and errors we use the statistics
package of octave.

Remark 5.1.1 (Treating in�nities). There are two di�erent sources of in�nite values.
For directed graphs that are not strongly connected or graphs that are not connected, some pairs

of nodes might have no shortest path between them, or just in one direction. The in�nity pattern
can be exploited to �nd the source by a clustering into connected subgraphs. These subgraphs can
be used in step S3), and determined in an extra run of S1) by replacing in�nity by 1 and �nite
values by 0.

Also the variances Var[2 ( 9, (̂)] and Var[CB ( 9, (̂)] in Def. 3.4.13 may be in�nite. As we are
minimizing, this is not a problem though, if implemented carefully. If all variances in + (̂ are
in�nite, we “minimize” by counting the non �nite values in the sum over the variances and choose
the “solution” with the least in�nities (or NaNs).

In the following and if not stated otherwise, we use hyperparameters U = 0.05, 0 = 1, and
1 = |(̂ | −4 (see Def. 3.4.12) and _ = 0 and f 9 = 1+ � ∗

9,(̂
(see Def. 3.4.13). Here, the f 9 were chosen

to have larger weight on nodes with a smaller objective function value.
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Figure 5.1: Regression after iteration 12 at the true (and estimated) source node B . Despite
signi�cant outliers, the estimated spreading approximates the true spreading quite well.

5.2 Illustration on Example Graph

We use our example graph with the same spreading process as in Example 8 (B = 2, 2 = 2, CB =
−1) to illustrate the behavior of Algorithm 2. The output for an instance with “average” behav-
ior in terms of iteration count is as follows.

iter 8+ 9∗ 2 ( 9∗, (̂) CB ( 9∗, (̂)
� ∗
9∗,(̂
|(̂ |

min
9 ∈+ \� 9

∗
W

� ∗
9,(̂

|(̂ |
U∗

1, 2 0, 5 5 3.34 −0.38 0.00 0.00 1.0000
3 1 2 3.79 −4.62 0.14 0.14 1.0000
4 7 1 2.09 −1.67 0.25 0.32 1.0000
5 2 4 2.97 −3.89 0.37 0.55 0.6137
6 4 2 2.25 −2.19 0.52 0.72 0.4716
7 8 2 2.44 −2.34 0.53 0.72 0.3800
8 3 2 2.48 −2.30 0.53 0.70 0.3255
9 9 2 2.71 −2.52 0.74 0.90 0.3434

10 6 2 2.72 −2.48 0.70 0.85 0.3054
11 2 2 2.56 −2.10 0.73 0.95 0.1905
12 1 2 2.60 −2.24 0.72 1.21 0.0494

The initialization in Line 1 results in {81, 82} = {0, 5}. Until iteration 10 all nodes are selected
once. In iterations 11 and 12 a second query at nodes 2 and 1 results in objective function
values that are far enough apart such that the heuristic termination criterion (3.10) is ful�lled.
In this instance the feasibility requirement in Def. 3.4.14 leads to oracle queries that might not
be necessary. The last column depicts the converging U∗ value, obtained by evaluating (3.10)
(stopping criterion is that U∗ is below 0.05). The parameters 2 ( 9∗, (̂) and CB ( 9∗, (̂) converge
slowly towards the real values and are still inaccurate at termination. The resulting regression
line is a good �t for the measurements, though, compare Figure 5.1.

In summary, the strict termination criterion and feasibility requirement for oracle queries
seem to be robust and avoid early termination, even when by chance a good �t is achieved as
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5.3. PROBLEM INSTANCES

in the iterations 2 and 3.

5.3 Problem Instances

We used graph instances that we collected in three sets.
Col. The �rst set is an operations research library [11] with 30 instances from [40] and 79
DIMACS graph coloring instances [54] from di�erent sources, e.g., [53, 70].
Misc. The second set comprises miscellaneous instances. It contains three simple water net-
work instances from the epanet software for modeling of water networks [92], eight train
networks from the lintim software [3], �ve instances from Mark Newman’s webpage [85]
(original sources [105, 75, 111, 62]), seven instances from the Weizmann laboratory collection
of complex networks [5, 77, 82, 81], and 41 instances from the Pajek dataset [10].
Snap. The last set of instances is a subset of the Stanford large network dataset collection
(Snap). It contains 16 graphs derived from an internet topology [71], 9.629 graphs describing
user interaction on the music streaming service deezer [93], �ve graphs describing email
interactions of members in a large European research institution [72], and ten graphs as friend
networks of Facebook users [73].

All instances were chosen to have up to 1000 nodes and a possible spreading process appli-
cation. Some of the instances are directed graphs, some are weighted, others are not connected.
If not provided, all edge weights were set to one. For all of the di�erent sources and their dif-
ferent graph formats parsers in octave are available. We conducted 100 randomized test
runs on each instance (only the 9629 deezer graphs were only run once). For each run B was
chosen randomly, just as 2 (exponential distribution with mean 1) and CB (Gaussian with mean
0 and standard deviation 10). We used f = 1

52 as standard deviation for the random error of
oracle queries.

5.4 Benchmark Library: Convergence

To evaluate the convergence behavior of Algorithm 2, we assess the quality of the detected
source 9∗ in comparison to the true source B: of instance : . We use the following normalization
and evaluation measure.

De�nition 5.4.1 (Normalization). Let& be the set of all instances (test runs) and : ∈ & a speci�c
one.

Let 8: be the number of iterations until Algorithm 2 terminated for instance : . We then trans-
form all iterations 8 ∈ {8min = 3, . . . , 8: } to normalized iterations 8= via 8= = (8−8min)/(8:−8min) ∈
[0, 1], omitting the dependence on : for notational simplicity. Then we de�ne

@(:, 8=) :=

���{ 9 ∈ + : � ∗
9,(̂
≤ � ∗

B,(̂

}���
| + | (5.1)

as the uniqueness level of a given true source B for an oracle query set (̂ . It depends on the instance
: ∈ & and on the normalized iteration counter 8= of Algorithm 2. The level @(:, 8=) ∈

[
1
|+ | , 1

]
is
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Figure 5.2: Using De�nition 5.4.1, @(:, 8=) is visualized for all instances : ∈ & . Left: a color
gradient indicates for how many instances : ∈ & the value @(:, 8=) is in a given box. While for
small iteration numbers 8= the values � ∗

B: ,(̂:,8=
are almost randomly distributed among all 9 ∈ + ,

for large iterations we have � ∗
B: ,(̂:,8=

≤ � ∗
9,(̂:,8=

for almost all instances : and all 9 ∈ + , indicating
the probable proximity of 9∗ to the true source B: of instance : . Right: for di�erent values of
X the lines plot the fraction |&1(8=) |/|& | with &1(8=) := {: ∈ & : @(:, 8=) ≤ X + 1

|+ | }. E.g., for
X = 0 the lowest blue line depicts the fraction of instances for which at iteration 8= the source
B: was the unique minimizer of � ∗, increasing from approximately 5% to 95%.

evaluated for the least squares function � ∗
9,(̂:,8=

. If @(:, 8=) = 1
|+ | then 9

∗ = B .

First, Table 5.1 shows the median and mean distances between 9∗ and B after termination
(i.e., 8= = 1) of Algorithm 2, indicating its accuracy. There are no signi�cant di�erences between
the test sets, indicating the general applicability of Algorithm 2. As the following results are
very similar for all test sets, we present them from now on for & as the union of the test sets
Col, Misc, and Snap.

Table 5.1: Distance between 9∗ at 8= = 1 and B for di�erent test sets & . Note that for test set
Misc with weighted graphs the distances of 9∗ to B were divided by the maximum non-in�nite
shortest path lengths, and the special in�nity treatment was applied, see Remark 5.1.1. Mostly,
Algorithm 2 returned 9∗ ≈ B .

Problems Median Mean Max # Inf

Col 0.000 0.0177 3.000 0
Misc 0.000 0.7064 1485.110 12
Misc corrected 0.000 0.0028 0.804 12
Snap 0.000 0.0111 4.000 0
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5.5. BENCHMARK LIBRARY: NUMBER OF ITERATIONS

Second, to investigate the e�ciency of Algorithm 2, we illustrate in Figure 5.2 the unique-
ness level @ as a function of normalized iterations and instances : ∈ & . Both plots indicate
that for the chosen sets (̂:,8= the termination criterion is a good choice and that Algorithm 2 is
well-posed in the sense that at termination, the true source B: is detected with high probability
(as @(:, 8= = 1) ≈ 0 for almost all : ∈ &). From Figure 5.2 we deduce on the one hand that
an earlier termination of Algorithm 2, as seemed plausible from the example in Subsection 5.2,
would often result in 9∗ that are not minimal with respect to the least squares regression. On
the other hand, more iterations are not necessary.

5.5 Benchmark Library: Number of Iterations
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Figure 5.3: Color gradients showing how many instances : ∈ & needed (on the y-axis) how
many iterations until termination of Algorithm 2. Left: Plotted over the graph size = = |+ |,
suggesting a linear relation 8: ≤ 21= for a constant 21 and most : ∈ & . Right: Plotted over the
spread dimension V , suggesting a linear relation 8: ≤ 22V for a constant 22 and most : ∈ &small
where&small ⊆ & contains all graphs in& with= ≤ 60. Up to this size a brute force enumeration
of the spread dimension was computationally feasible.

In this section we have a closer look at how the iteration numbers 8: until Algorithm 2
terminated relate to properties of the graphs. Figure 5.3 (left) shows them for di�erent graph
sizes = = |+ |. For most : ∈ & we have 8: ≤ 1

2=. As the spread dimension is the number of
necessary oracle queries (iterations in the online case), this is plausible when looking at the
upper bound from Proposition 3.3.11 for complete graphs. Note that the spread dimension is
not a strict lower bound on 8: due to the advantage that in the online setting we can place
oracle queries with knowledge gained in previous iterations.

For small graphs (= ≤ 60), we could determine the spread dimension by brute force enu-
meration. The result in Figure 5.3 (right) con�rms the impression that the number of iterations
of Algorithm 2 is in many cases below the spread dimension, and only in few cases above.
Thus it seems valid to see 8: , at least for the chosen variance of measurement errors, as an
approximation of the spread dimension.
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This result does not consider other graph properties. An investigation of the topological
diameter and of the connectivity (number of edges divided by =) of the graph did not reveal ob-
vious correlations (negative results are not shown here, the color gradients were rather erratic).
Known results for the metric dimension V , which is a lower bound for the spread dimension as
discussed in Section 3.3.1, indicate that the graph topology could have a strong impact (on the
lower and not necessarily active bound). E.g., for the diameter 3 it was shown that

= ≤
(⌊

23
3

⌋
+ 1

)V
+ V

d3/3e∑
8=1
(28 − 1)V−1

by [47, Theorem 3.1]. Also the simpler, but less strict inequality

= ≤ 3V + V

from [59] emphasizes the role of the diameter. Not �nding a correlation between the diameter
3 and 8: might indicate that the diameter is not as relevant for the spread dimension as it is
for the metric dimension or that 8: di�ers from the spread dimension for speci�c graphs. Note
also that the spread dimension depends on the edge weights of the graph. Two graphs with
the same edge sets can have di�erent spread dimensions, if the edge weights are di�erent.
The connection between graph properties on the one hand and spread dimension and iteration
numbers on the other hand should be investigated in future research.

5.6 Benchmark Library: Relaxation of Oracle Query Feasibility

For the previous results the algorithm with De�nition 3.4.14 was used, i.e., a maximal di�erence
in the number of oracle queries between di�erent nodes of one was allowed. This can be relaxed
to any �nite number, not altering the results on conversion of the algorithm in the limit. Short
term performance can be impacted by this, as more �exibility for oracle queries is given to the
heuristic that chooses which nodes to query. In the Example in Subsection 5.2 it was already
noted, that it could have been bene�cial not to measure all nodes once, but instead concentrate
on nodes revealing most about the source.

Remark 5.6.1 (Convergence with relaxed Oracle Query Feasibility). The idea to proof that
relaxation of De�nition 3.4.14 does not alter the convergence result is the following. A maximal
�nite di�erence 3 of oracle queries between di�erent nodes and the graph size = is given. The
estimator is agnostic to the order in which the oracle queries are performed. Hence, it is possible to
reorder all queries in the following way. The maximal number of queries are put to the front, such
that they ful�ll De�nition 3.4.14, i.e., 3 = 1. All other queries are put at the end, this are at most
3 times = queries. As in the limit this �nite amount of queries does not have in�uence compared
to the in�nitely many queries before them, the convergence is the same as before.

Ten additional randomized test runs were conducted on each instance, each with a di�erent
allowed maximal oracle query di�erence from 1 to 10. Figure 5.3 depicts the results. The left
part shows that the distance to the true source of the source estimate has no dependency on the
relaxation of feasibility. This is expected, as the termination criteria is independent of Oracle
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5.6. BENCHMARK LIBRARY: RELAXATION OF ORACLE QUERY FEASIBILITY

Query Feasibility. On the right one sees a clear dependency of the iteration number on the
Oracle Query Feasibility. This is also expected, as the convergence (and hence the iteration
number given a �xed termination criteria) is mainly depended on the oracle queries.
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Figure 5.4: Distance to source and iterations are plotted over maximal allowed di�erence for
queries at di�erent nodes. Left: Mean distance to true source for the three test sets, plotted
over the allowed maximal oracle query di�erence from 1 to 10. For the Misc test set corrected
values are plotted, i.e., distances divided by the maximum �nite shortest path lengths. No trend
is visible and values are in general comparable to Table 5.1. Right: Iterations are normalized by
problem size. The mean of the normalized iterations for the three test sets is plotted over the
allowed maximal oracle query di�erence from 1 to 10. A clear trend of increasing iterations
with feasibility relaxation is visible.

The negative dependency between iteration number and feasibility relaxation could indi-
cate, that the used heuristic is not optimal for the majority of the instances of the test set or
that the strong negative trend of some instances dominates the overall mean.

In Figure 5.5 the distribution of slopes of the instances is depicted. There are more negative
slopes with larger absolute value explaining the overall negative mean. A small graph instance
from the test set Misc with small (large absolute) negative slope is presented in Example 9. As
the graph is acyclic, the source estimation is purely combinatorial, cf. Remark 5.1.1. All nodes
di�er in their in�nity pattern, a second query at a node is never required. Source estimation
just needs to identify the correct pattern. The problem is that the heuristic behaves determin-
istically in the following way, if node 8 is the true source: At the start the nodes 1 and 7 are
chosen, then nodes 1 to 6 are queried as often as possible (if the maximal di�erence is 10 then
node 1 is queried 9 times), and �nally node 8 is queried, leading to a successful source estimate.

The problem in this case is, that the heuristic is based on a continuous variance criterium
of linear regression, it does not include direct topology information, previous oracle queries or
estimation information.

Example 9 (Directed graph). The graph � = (+ , �) has nodes

+ = {1, 2, 3, 4, 5, 6, 7, 8}
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Figure 5.5: For all simulation runs the slope of the normalized iterations over the allowed
maximal oracle query di�erence from 1 to 10 was calculated. This is a histogram of these
slopes. The number of runs (y-axis) falling in a certain slope range (x-axis) is indicated by the
height of the blue boxes (logarithmic scale).

and directed edges

� = {{1, 3},{2, 3},{3, 4},{3, 6},{4, 5},{5, 6},{6, 7},{6, 8}}.

The weights are ℓ (4) = 1 for all edges except edge {5, 6} with weight 0.8. The graph has no
loops. It is shown in Figure 5.6.

In general the oracle query heuristic can fail, but the Oracle Querry Feasibility, enforces
convergence in the long run for every maximal di�erence value. This gives a lot of freedom to
tune the algorithm to the application at hand.
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9 1 2 3 4 5 6 7 8

1 0.0 1.0 ∞ 2.0 3.0 2.0 3.0 3.0
2 ∞ 0.0 ∞ 1.0 2.0 1.0 2.0 2.0
3 ∞ 1.0 0.0 2.0 3.0 2.0 3.0 3.0
4 ∞ ∞ ∞ 0.0 1.0 1.8 2.8 2.8
5 ∞ ∞ ∞ ∞ 0.0 0.8 1.8 1.8
6 ∞ ∞ ∞ ∞ ∞ 0.0 1.0 1.0
7 ∞ ∞ ∞ ∞ ∞ ∞ 0.0 ∞
8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.0

Figure 5.6: Left: visualization of the directed example graph. Right: symmetric matrix with
shortest path distances 38, 9 .
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6 Conclusion

The thesis introduced an abstract framework for source detection on graphs. First, the source
detection problem was de�ned and a solution for the deterministic o�ine case was derived
based on the concept of spread dimension, which is an extension of the metric dimension. Mod-
ular decomposition and split decomposition were applied to e�ciently compute the solution
and an online algorithm for the deterministic source detection problem using these concepts
was proposed.

For stochastic source detection, a general source estimator was introduced and the esti-
mation quality was investigated. In the o�ine case, it is impossible to know a priori which
oracle questions would be su�cient for correct estimation or even for an estimation with a
certain probability. Therefore, an online algorithm to overcome this limitation was proposed,
which is proven to converge with feasible oracle queries to the true source. Its performance
and robustness are demonstrated in extensive numerical simulations.

The algorithm was applied to �nd the source of cardiac arrhythmias in a medical simulation
study, showing promising performance for treatment improvements. In numerical random
simulations on problems from a new graph library, the algorithm was robust and e�ective,
with the source estimate usually being correct and the number of iterations (oracle queries)
being in the order of the graph size.

Finally, the relaxation of the feasibility in De�nition 3.4.14 was investigated in simulations
on the same library, with mixed results. The algorithm performance either improved or wors-
ened, depending on the instance, while the general trend was negative, indicating a suboptimal
oracle query heuristic with respect to the library. However, even with this suboptimal heuristic,
the algorithm generally performed well on the library.

The oracle question placement is currently heuristic and needs to be found depending on
the application. A general, theoretically sound, oracle placement strategy that leads to theo-
retically fast convergence and good source estimates should be investigated. It would also be
interesting to know what part of the oracle placement is independent of the estimator and what
is needed for a given estimator at hand.

The current linear regression estimator could be improved or extended by various methods
from the linear regression literature. Other estimators based on Bayes’ theorem or optimal
estimators for non-Gaussian error distributions could also be considered, depending on the
application. In general, it would be interesting to know what kind of features an estimator
would need, to converge under mild assumptions on the oracle questions (e.g., feasibility). The
termination criteria should not be heuristic, but should be derived directly from the stochastic
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error analysis of the used estimator.
All these stochastic algorithm ingredients are only loosely connected to the graph topology,

and more research could be done in this area. Up to now, only feasibility is used, and more
such criteria may be needed, and the tools should consider the graph topology directly. The
algorithm should be applied to more real-world problems, especially larger instances, and the
use of decomposition strategies presented in this thesis should be applied.

Another future research direction is to study the problem with more than one source, either
in the sense that the signal is received only once everywhere from the nearest source or in the
sense that all signals are received, and one does not know which signal is from which source.
Another question is whether it is known how many sources are present, or whether this is an
unknown problem parameter.

Source detection on graphs is important due to its applications and the relevance of net-
works in modern life. I believes that these applications will pose theoretical challenges to the
theoretical and algorithmic side, inducing fruitful research. The research results will bring for-
ward solutions to practical problems, improving our performance in the management of these
networks.
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