Obere Schranken für die Kusszahl

An der Fakultät für Mathematik der Otto-von-Guericke-Universität Magdeburg zur Erlangung des akademischen Grades Bachelor of Science angefertigte

BACHELORARBEIT

vorgelegt von ROBERT SCHOLZ geboren am 20.09.1988 in Langenhagen, Studiengang Mathematik, Studienrichtung Computermathematik.

22. März 2013

Betreut am Institut für Mathematische Optimierung von Prof. Dr. SEBASTIAN SAGER

Inhaltsverzeichnis

1	Einf	ührung	3				
2	Her 2.1 2.2	eitung eines OptimierungsproblemsKusszahlen und unabhängige MengenLovázs ϑ -Funktion	5 5 6				
3	Die 3.1 3.2 3.3	LP-Methode Gegenbauer-Polynom	10 10 11 21				
4	Die 4.1 4.2 4.3	SDP-Methode Multivariate Gegenbauer-Polynome Erweiterung vom Satz von Schoenberg Semidefinites Programm	23 23 25 34				
5	Rec 5.1 5.2 5.3	henresultate Diskretisierung	38 38 39 41				
6	Fazi	t	45				
Lit	Literaturverzeichnis 4						

1 Einführung

Die *n*-te Kusszahl π_n ist die maximale Anzahl von *n*-dimensionalen Einheitssphären, die gleichzeitig eine weitere Einheitsphäre, ohne paarweise Überlappung, berühren können. Die Kusszahl ist bisher nur in den Dimensionen n = 1, 2, 3, 4, 8, 24 bekannt.

In allen übrigen Dimensionen sind nur untere, bzw. obere Schranken für die Kusszahl bekannt. Während man untere Schranken hauptsächlich über die Angabe konkreter Konfigurationen findet, werden obere Schranken in erster Linie durch lineare oder semidefinite Programmierung gefunden.

In der Dimension n = 1 ist die Kusszahl $\pi_1 = 2$; für n = 2 gilt $\pi_2 = 6$. Dies ist durch eine graphische Betrachtung leicht ersichtlich und auch leicht zu beweisen.

Für die Dimensionen $n \ge 3$ wird die Bestimmung von π_n wesentlich aufwendiger. Schon für n = 3 war die genaue

Kusszahl lange unbekannt. Die Frage nach π_3 war Gegenstand einer berühmten Diskussion zwischen den Mathematikern Isaac Newton und David Gregory im Jahr 1692 zur Keplerschen Vermutung. Während Newton behauptete $\pi_3 = 12$, vertrat Gregory die Meinung, es würde $\pi_3 = 13$ gelten. Tatsächlich ist es leicht, zwölf Kugeln um eine Kugel anzuordnen. Dabei bleibt jedoch so viel Platz, dass es möglich ist, die Position von zwei beliebigen Kugeln zu tauschen, ohne den Kontakt zur zentralen Kugel zu verlieren. Es ist also nicht offensichtlich, ob man die Kugeln so anordnen kann, dass eine dreizehnte Kugel Platz hat. Erst 1953 gelang es Kurt Schütte und Bartel Leendert van der Waerden formell zu beweisen, dass $\pi_3 = 12$ gilt.

Die übrigen bekannten Kusszahlen, also $\pi_4 = 24$, $\pi_8 = 240$ und $\pi_{24} = 196.560$ sind erst seit Anfang des 21.Jahrhunderts bekannt,[1].

Die Suche nach der Kusszahl ist eng mit Themen der Codierungstheorie verwandt. So ist die Kusszahl π_n gleichzeitig die maximale Kardinalität eines sphärischen Codes in nDimensionen, mit einem bestimmten minimalen Abstand. Die hier verfolgten Ansätze kann man leicht verallgemeinern, um maximale Kardinalitäten von sphärischen Codes mit beliebigen minimalen Abstand zu berechnen. Auch bei der Untersuchung von dichtesten Gitterpackungen trifft man auf ähnliche Problemstellungen.

Die zentrale Fragestellung dieser Arbeit wird sein, wie wir obere Schranken für die Kusszahl berechnen können. Wir werden das Problem der Kusszahl so umformulieren, dass es für die Methoden der mathematischen Optimierung zugänglich wird. Das Ziel wird es sein, möglichst gute obere Schranken für die Kusszahl zu errechnen. Um dieses Ziel zu erreichen, werden wir Aussagen und Methoden aus der Graphentheorie, der Analysis sowie der linearen Funktionalanalysis verwenden. Diese verschiedenen Ansätze werden wir nutzen, um Optimierungsprobleme für obere Schranken zu erstellen. Abschließend werden wir Methoden betrachten, um die erstellten Programme zu berechnen und die so gewonnenen Ergebnisse vergleichen.

Die Arbeit ist wie folgt aufgebaut: In Kapitel 2 werden wir mit der Hilfe der Graphentheorie das Kusszahl-Problem in ein Optimierungs-Problem umformen. Kapitel 3 wird die sogenannte "LP-Methode" vorstellen. Dazu werden wir den Satz von Schoenberg beweisen und anschließend ein lineares Programm erstellen. In Kapitel 4 werden wir den Satz von Schoenberg erweitern. Diese Erweiterung werden wir nutzen um die sogenannte "SDP-Methode" einzuführen. In Kapitel 5 werden wir verschiedene Rechenmethoden präsentieren und die Rechenergebnisse, die die beiden Programme geliefert haben, zusammenfassen.

Das lineare Programm, dass in Kapitel 3 konstruiert wird, wurde zuerst von Delsarte 1973 in [8] vorgestellt. Die Herangehensweise, die wir benutzen werden, ist jedoch an den Ausführungen von Frank Vallentin angelehnt, [19]. Die in Kapitel 4 behandelte "SDP-Methode" wurde zuerst von Frank Vallentin und Christine Bachoc 2007 eingeführt, [7]. Den Gedankengang, den wir in Kapitel 4, verfolgen werden, basiert jedoch auf den Veröffentlichungen von Oleg Musin, der den Ansatz von Vallentin und Bachoc weiter verallgemeinert hat, [14]. In Kapitel 5 werden wir unsere Ergebnisse mit den von Mittelmann und Vallentin 2009 publizierten Resultaten vergleichen, [11].

2 Herleitung eines Optimierungsproblems

Um eine einheitliche Notation für die Kusszahl π_n einzuführen, assoziieren wir die zentrale Sphäre mit der Einheitssphäre

$$S^{n-1} := \{ x \in \mathbb{R}^n : x \cdot x = 1 \}$$

im *n*-dimensionalen euklidischen Raum. Konkrete Konfigurationen werden mit endlichen Teilmengen $C \subseteq S^{n-1}$ identifiziert, wobei die Elemente aus C die Berührpunkte der anliegenden Sphären angeben.

Bemerkung. Als Multiplikation wird hier das standard Skalarprodukt verwendet. Also

$$x \cdot y = \sum_{i=1}^{n} x_i y_i \qquad \qquad f \ddot{u} r \ x, y \in \mathbb{R}^n$$

2.1 Kusszahlen und unabhängige Mengen

Für n = 2 ist durch graphische Betrachtungen leicht zu sehen, dass der Winkel zwischen zwei Berührpunkten mindestens $\frac{\pi}{3}$ betragen muss, damit es zwischen zwei anliegenden Spähren keine Überschneidungen gibt. Diese Bedingung lässt sich auf jede beliebige Dimension verallgemeinern. Es gilt also

$$\pi_n = \max\{|C| : C \subseteq S^{n-1}, \measuredangle(x,y) \ge \frac{\pi}{3} \ \forall x, y \in C\}.$$

Verwendet man $\frac{\pi}{3} \leq \measuredangle(x,y) = \arccos(x \cdot y) \Leftrightarrow x \cdot y \geq \frac{1}{2}$ so ist

$$\pi_n = max\{|C| : C \subseteq S^{n-1}, x \cdot y \le \frac{1}{2} \ \forall x, y \in C\}.$$

Um das Problem aus graphentheoretischer Sicht zu betrachten, benötigen wir einige Definitionen:

Definition 2.1 (Unabhängige Menge). Sei G = (V, E) ein Graph mit einer endlichen Knotenmenge. Eine Menge $C \subseteq V$ heißt unabhängig oder stabil, wenn

$$\forall x, y \in C : \{x, y\} \notin E$$

gilt.

Definition 2.2 (Unabhängigkeitszahl). Für einen Graphen G = (V, E) heißt

 $\alpha(G) = \max\{|C| : C \subseteq V, C \text{ unabhängige Menge}\}$

die Unabhängigkeitszahl von G.

Definition 2.3. Der Graph G(n) ist definiert durch $G(n) = (S^{n-1}, E)$ mit

$$E = \{\{x, y\} : x, y \in S^{n-1}, \ x \cdot y \in \left(\frac{1}{2}, 1\right)\}.$$

Das Kusszahlproblem ist somit äquivalent zu der Suche nach einer maximalen unabhängigen Menge in dem Graphen G(n). Allerdings ist die genaue Bestimmung von $\alpha(G)$ schon für endliche Graphen ein \mathcal{NP} -schweres Problem. Eine Möglichkeit, mit den Methoden der Optimierung $\alpha(G)$ anzunähern, bietet die Lovázs ϑ -Funktion.

2.2 Lovázs ϑ -Funktion

s

Definition 2.4 (Lovázs ϑ -Funktion). Sei G = (V, E) ein Graph mit |E| = n. Die Lovázs ϑ -Funktion ist

$$\begin{split} \vartheta(G) &= max \sum_{1 \leq i,j \leq n} a_{ij} \\ \text{.t.} & A \in \mathbb{R}^{n \times n} \quad A \text{ symmetrisch, positiv semidefinit} \\ & \sum_{i=1}^{n} a_{ii} = 1 \\ & a_{ij} = 0 \qquad \text{falls } \{i,j\} \in E \end{split}$$

Theorem 2.5. Set G = (V, E) ein Graph mit $V = \{1, ..., n\}$. Dann gilt

$$\alpha(G) \le \vartheta(G).$$

Beweis. Sei $C \subseteq V$ eine unabhängige Knotenmenge maximaler Kardinalität und sei $\chi_C \in \{0,1\}^n$ der charakteristische Vektor von C, also

$$\chi_{C,v} = \begin{cases} 1 & \text{falls } v \in C \\ 0 & \text{sonst.} \end{cases}$$

Die Matrix $A_C \in \mathbb{R}^{n \times n}$ sei definiert als

$$A_C := \frac{\chi_C \chi_C^{\perp}}{|C|}.$$

Nun gilt für die Matrix A_C und für ein beliebiges $q \in \mathbb{R}^n$

$$q^{\top}A_Cq = \frac{q^{\top}\chi_C\chi_C^{\top}q}{|C|} = \frac{(q^{\top}\chi_C)^2}{|C|} \ge 0.$$

Die Matrix A_C ist also positiv semidefinit und aufgrund der Definition auch symmetrisch. Zusätzlich gilt

$$\sum_{i=1}^{n} a_{i,i} = \frac{\sum_{i=1}^{n} \chi_{C,i}^2}{|C|} = \frac{|C|}{|C|} = 1$$

und da die Menge C unabhängig ist $a_{i,j} = 0$ falls $\{i, j\} \in E$. Die Matrix A_C erfüllt also die Nebenbedingung der Lovázs ϑ -Funktion und es ist

$$\sum_{1 \le i,j \le n} a_{i,j} = \frac{|C|^2}{|C|} = |C| = \alpha(G).$$

Daraus folgt also $\alpha(G) \leq \vartheta(G)$.

Die Lovázs ϑ -Funktion bietet also eine Möglichkeit, die Unabhängigkeitszahl für finite Graphen anzunähern. In unserem Fall werden jedoch Graphen verwendet, mit überabzählbar vielen Knoten. Um die Lovázs ϑ -Funktion für indefinite Graphen formulieren zu können, benötigen wir sogenannte Hilbert-Schmidt Kerne.

Definition 2.6. Eine Funktion f heißt Hilbert-Schmidt Kern, wenn gilt

$$f \in \mathcal{C}(S^{n-1} \times S^{n-1}) := \{f : S^{n-1} \times S^{n-1} \to \mathbb{R} \mid f \text{ stetig}\}.$$

Ein Hilbert-Schmidt Kern f heißt

- symmetrisch falls $f(x, y) = f(y, x) \quad \forall x, y \in S^{n-1}$
- positiv falls $\forall m \geq 1, \forall x_1, ..., x_m \in S^{n-1}, u \in \mathbb{R}^m$

$$u^{\top} (f(x_i, x_j))_{1 \le i,j \le m} u = \sum_{1 \le i,j \le m} f(x_i, x_j) u_i u_j \ge 0$$

gilt.

Für einen Kern $f \in \mathcal{C}(S^{n-1} \times S^{n-1})$ positiv symmetrisch schreiben wir auch $f \succeq 0$. Die Menge der positiven, symmetrischen Hilbert-Schmidt Kerne bezeichnen wir mit $\mathcal{C}(S^{n-1} \times S^{n-1})^{\succeq 0}$.

Bemerkung. Ein stetiger Hilbert-Schmidt Kern f ist genau dann positiv, wenn für ein beliebiges $p \in C(\mathbb{R})$

$$\int_{S^{n-1}} \int_{S^{n-1}} f(x,y) p(x) p(y) d\omega(x) d\omega(y) \ge 0$$

qilt.

Dies ist eine äquivalente Charakterisierung der Positivtät. Wir werden im Folgenden jedoch in erster Linie mit dem in der Definition angegebenen Kriterium arbeiten. Für den Beweis wird auf [5] verwiesen.

Bemerkung. Die Oberfläche von S^{n-1} wir mit $\omega(S^{n-1})$ bezeichnet. Analog dazu notieren wir das Oberflächenelement über die Einheitssphäre mit $d\omega$.

Bemerkung. Zusammen mit dem Skalarprodukt

$$\langle f,g \rangle := \int_{S^{n-1}} \int_{S^{n-1}} f(x,y) g(x,y) d\omega(x) d\omega(y)$$

wird $\mathcal{C}(S^{n-1} \times S^{n-1})$ zu einem Prä-Hilbertraum.

Um die Lovázs ϑ -Funktion auf Graphen mit überabzählbar vielen Knoten zu verallgemeinern, ersetzten wir die positiv definiten Matrizen durch positive Hilbert-Schmidt Kerne. Das resultierende Optimierungsproblem, das dazugehörige duale Problem sowie der anschließende Beweis ist aus [19, Lecture 2] entnommen.

Definition 2.7. Die Lovázs ϑ -Funktion für den Graphen G(n) ist:

s.t.

$$\begin{split} \vartheta_1(G(n)) &= \max \int_{S^{n-1}} \int_{S^{n-1}} f(x,y) d\omega(x) d\omega(y) \\ &\quad f \in \mathcal{C}(S^{n-1} \times S^{n-1}) \\ &\quad f \succeq 0 \\ \int_{S^{n-1}} f(x,x) d\omega(x) &= 1 \\ &\quad f(x,y) = 0 \qquad falls \ \{x,y\} \in E \end{split}$$

ſ

Das dazugehörige duale Programm ist:

s.t.

$$\begin{aligned}
\vartheta_2(G(n)) &= \min \lambda \\
f \in \mathcal{C}(S^{n-1} \times S^{n-1}) \\
f \succeq 0 \\
f(x,x) &= \lambda - 1 \\
f(x,y) &\leq -1
\end{aligned}$$

$$\forall x \in S^{n-1} \\
\forall \{x,y\} \notin E$$

Die Aussage 2.5 gilt auch im indefiniten Fall:

Theorem 2.8. Für das duale Programm von $\vartheta(G(n))$ gilt:

$$\alpha(G(n)) \le \vartheta_2(G(n)).$$

Beweis. Sei $C \subseteq S^{n-1}$ eine unabhängige Menge mit $|C| = \alpha(G(n))$. Sei f ein positiver Hilbert-Schmidt Kern, der die Bedingungen des dualen Programms erfüllt. Dann gilt laut Definition 2.6:

$$0 \leq \sum_{x,y \in C} f(x,y)$$

$$= \sum_{\substack{x \in C \\ = |C|(\lambda-1)}} f(x,x) + \sum_{\substack{x,y \in C, x \neq y \\ \leq (-1)(|C|^2 - |C|)}} f(x,y)$$

$$\leq |C|(\lambda-1) + (-1)(|C|^2 - |C|)$$

$$= \lambda |C| - |C|^2$$

$$\implies |C| \leq \lambda$$

Man beachte, dass hier Gleichheit herrscht, falls die Ungleichung scharf ist. Für den Fall, dass für alle f(x, y) = -1 für alle $x, y \notin E$ gilt, ist $\alpha(G(n)) = \vartheta_2(G(n))$. Diese Beobachtung wurde für die genaue Berechnung von π_8 und π_{24} ausgenutzt.

Wir sind also an effizienten Methoden interessiert, das duale Programm aus Definition 2.7 zu lösen. Diese Idee verfolgen wir in den folgenden Kapiteln.

3 Die LP-Methode

Der Lösungsraum der in Definition 2.7 eingeführten Optimierungsprobleme ist der Raum der positiven Hilbert-Schmidt Kerne $\mathcal{C}(S^{n-1} \times S^{n-1})^{\succeq 0}$. Da wir für den Raum $\mathcal{C}(S^{n-1} \times S^{n-1})^{\succeq 0}$ keine Parametrisierung haben, ist das Programm in dieser Form für die Methoden der Optimierung nicht zugänglich. In diesem Kapitel beschäftigen wir uns damit, den Lösungsraum einzuschränken, um so eine Berechnung von $\vartheta_2(G(n))$ zu ermöglichen. Es ist für eine mögliche Konfiguration von Sphären unerheblich, welche konkrete Ausrichtung sie hat. Also schränken wir den Lösungsraum des Programmes auf den Unterraum von $\mathcal{C}(S^{n-1} \times S^{n-1})^{\succeq 0}$ ein, der invariant unter Operationen der orthogonale Gruppe $\mathcal{O}(n)$ ist. Wir bezeichnen diesen Unterraum mit $\mathcal{C}(S^{n-1} \times S^{n-1})_{\mathcal{O}(n)}^{\succeq 0}$. So können wir die Lösungskandidaten mit der Hilfe des Satzes von Schoenberg als Linearkombination von Gegenbauer-Polynomen darstellen.

3.1 Gegenbauer-Polynom

Definition 3.1. Die orthogonale Gruppe $\mathcal{O}(n)$ ist definiert als

$$\mathcal{O}(n) := \{ O \in \mathbb{R}^{n \times n} : O^{\top} O = I \}$$

Definition 3.2. Ein Hilbert-Schmidt Kern f heißt $\mathcal{O}(\mathbb{R}^n)$ -invariant, wenn gilt

$$f(x,y) = f(Ox, Oy) \quad \forall O \in \mathcal{O}(\mathbb{R}^n), \quad x, y \in \mathbb{R}^n.$$

Definition 3.3. Die Gegenbauer-Polynome sind für ein festes $n \in \mathbb{N}$ rekursiv gegeben durch

$$\begin{aligned} G_0^n(t) &= 1\\ G_1^n(t) &= t\\ G_k^n(t) &= \frac{(2k+n-4)tG_{k-1}^n(t) - (k-1)G_{k-2}^n(t)}{k+n-3} \qquad \qquad k \ge 2. \end{aligned}$$

Bemerkung. So wie die Gegenbauer-Polynome hier definiert sind, gilt $G_k^n(1) = 1$ für alle k und n. Dies wird induktiv schnell deutlich: Für k = 0 und k = 1 ist die Aussage offensichtlich richtig. Für $G_k^n(1)$ gilt dann

$$G_k^n(1) = \frac{(2k+n-4) - (k-1)}{k+n-3} = \frac{k+n-3}{k+n-3} = 1$$

Bemerkung. Die Gegenbauer-Polynome $G_k^n(t)$ sind orthogonal auf [-1,1] mit dem Gewicht $(1-t^2)^{\frac{n-3}{2}}$. Es gilt also

$$\int_{-1}^{1} G_i^n(t) G_j^n(t) (1-t^2)^{\frac{n-3}{2}} dt = 0 \qquad i \neq j$$

Sie sind ein Spezialfall der Jacobi-Polynome mit $\alpha = \beta = \frac{n-3}{2}$ und bilden also eine Basis des $C^2([-1,1],(1-t^2)^{\frac{n-3}{2}}dt)$.

3.2 Der Satz von Schoenberg

Das zentrale Ergebnis dieses Kapitels ist der Satz von Schoenberg. Mit der Hilfe des Satzes von Schoenberg sind wir in der Lage, den Raum $\mathcal{C}(S^{n-1} \times S^{n-1})_{\succeq 0}^{\mathcal{O}(n)}$ zu parametrisieren. Die Gegenbauer-Polynome stellen eine entsprechende Basis dar.

Um den Satz von Schoenberg zu beweisen benötigen wir jedoch einige Zwischenschritte. Der folgende Beweis ist eine Mischung aus [19] und [9]. Um deutlich zu machen, dass wir mit Hilbert-Schmidt Kernen umgehen, setzen wir die folgenden Notation fest:

Definition 3.4. Für $k \in \mathbb{N}_0$ ist der Hilbert-Schmidt Kern $E_k : S^{n-1} \times S^{n-1} \to \mathbb{R}$ definiert durch

 $E_k(x,y) = G_k^n(x \cdot y) \quad mit \ x, y \in S^{n-1}.$

Definition 3.5. Set $p \in \mathbb{R}[x_1, x_2, ..., x_n]$ ein reelles Polynom in n Variablen.

• Das Polynom p heißt homogen, wenn für jedes Monom m von p

$$deg(m) = deg(p)$$

gilt.

• Das Polynom p heißt harmonisch, wenn es homogen ist und unter dem Laplace-Operator verschwindet. Also

$$\Delta p = \frac{\partial^2 p}{\partial x_1^2} + \ldots + \frac{\partial^2 p}{\partial x_n^2} = 0$$

gilt.

 Die Einschränkung eines harmonischen Polynoms p auf die Einheitspähre Sⁿ⁻¹ heißt "spherical harmonic".

Das folgenden Theorem verwenden wir im Laufe des Beweises. Für die Herleitung wird auf [10, Kapitel 15] verwiesen.

Theorem 3.6 (Zweite Greensche Identität). Sei $U \subset \mathbb{R}^n$ kompakt mit glattem Rand. Seien ϕ und ψ zweifach stetig differenzierbare Funktionen auf U. Dann gilt

$$\int_{U} \phi \Delta \psi - \psi \Delta \phi dU = \int_{\partial U} \phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} dS,$$

wobe
i $\frac{\partial}{\partial n}$ die Normalenableitung beziehungsweise das Skalar
produkt von Gradient und Normalenvektor ist.

Definition 3.7. In dem Raum $\mathcal{C}(S^{n-1})$ benutzen wir

$$(f,g) = \int_{S^{n-1}} f(x)g(x)d\omega(x) \qquad f,g \in \mathcal{C}(S^{n-1})$$

als inneres Skalarprodukt.

Behauptung 3.8. Seien $p, q \in \mathbb{R}[x_1, x_2, ..., x_n]$ harmonische Polynome mit $deg(p) \neq deg(q)$. Dann gilt (p, q) = 0.

Beweis. Der Beweis für diese Behauptung ist eine Folgerung aus der zweiten Greenschen Identität. Seien also p_k und p_l harmonische Polynome mit dem Grad k und l. Sei $\overline{B} = \{x \in \mathbb{R}^n : ||x|| \leq 1\}$ und somit $\partial \overline{B} = S^{n-1}$. Da der Normalenvektor zu einem $x \in S^{n-1}$ wieder x ist, gilt für die Normalenableitung $\frac{\partial p_l}{\partial n} = (\nabla p_l) \cdot x$, beziehungsweise $\frac{\partial p_k}{\partial n} = (\nabla p_k) \cdot x$. Somit folgt aus 3.6

$$(\star) \quad \int_{\overline{B}} p_k(x)(\Delta p_l)(x) - p_l(x)(\Delta p_k)(x)dx \\ = \int_{S^n - 1} p_k(x)(\nabla p_l)(x) \cdot x - p_l(x)(\nabla p_k)(x) \cdot xd\omega(x).$$

Da die Polynome p_k , p_l harmonisch sind, gilt $\Delta p_k = \Delta p_l = 0$ und somit ist die linke Seite von (\star) null. Nun gilt, da p_k ein homogenes Polynom vom Grad k ist,

$$(\nabla p_k) \cdot x = x_1 \frac{\partial p_k}{\partial x_1} + \ldots + x_n \frac{\partial p_k}{\partial x_n} = k p_k.$$

Genauso gilt $(\nabla p_l) \cdot x = lp_l$. Setzten wir das in (\star) ein, so erhalten wir

$$0 = \int_{S^{n-1}} p_k(x)(\nabla p_l)(x) \cdot x - p_l(x)(\nabla p_k)(x) \cdot x d\omega(x)$$
$$= \int_{S^{n-1}} lp_k(x)p_l(x) - kp_k(x)p_l(x)d\omega(x)$$
$$= (l-k)\int_{S^{n-1}} p_k(x)p_l(x)d\omega(x).$$

Daraus folgt

$$(p_k, p_l) = \int_{S^{n-1}} p_k(x) p_l(x) d\omega(x) = 0$$

Nun betrachten wir den Raum $C^2(S^{n-1})$. Wir sind daran interessiert, diesen Raum in Unterräume zu zerlegen. Dies motiviert uns zu folgender Definition:

Definition 3.9. Für k = 0, 1, ... sei V_k der Unterraum von $C^2(S^{n-1})$, der von den "spherical harmonics" mit dem Grad k aufgespannten wird.

Aus der Behauptung 3.8 folgt, dass die V_k orthogonal zueinander sind.

Definition 3.10. Set v_k die Dimension des Raumes V_k und set $e_{k,1}, \dots, e_{k,v_k}$ eine orthonormale Basis von V_k . Dann dann definieren wir den Kern $B_k : S^{n-1} \times S^{n-1} \to \mathbb{R}$ durch

$$B_k(x,y) = \sum_{i=1}^{v_k} e_{k,i}(x) e_{k,i}(y).$$

Bemerkung. Aus Behauptung 3.8 folgt, dass für $k \neq l$

$$\langle B_k, B_l \rangle = 0$$

gilt.

Behauptung 3.11. Für jedes $k \in \mathbb{N}_0$ ist der Kern B_k invariant unter der orthogonalen Gruppe $\mathcal{O}(n)$, dass heißt es gilt

$$B_k(Ax, Ay) = B_k(x, y) \quad \forall A \in \mathcal{O}(n) \text{ und } \forall x, y \in S^{n-1}.$$

Beweis. Zunächst definieren wir die Gruppenoperation von $\mathcal{O}(n)$ auf $\mathcal{C}(S^{n-1})$:

$$(A, f) \mapsto Af \in \mathcal{C}(S^{n-1}), \text{ wobei } (Af)(x) = f(Ax) \qquad A \in \mathcal{O}(n), f \in \mathcal{C}(S^{n-1}).$$

Man beachte, dass das innere Produkt (.,.) invariant unter der orthogonalen Gruppe ist. Für $f, g \in \mathcal{C}(S^{n-1})$ gilt also $(Af, Ag) = (f, g) \forall A \in \mathcal{O}(n)$.

Des Weiteren ist für alle $x \in S^{n-1}$ die Auswertungsfunktion $ev_x : V_k \to \mathbb{R}$ mit $ev_x(f) = f(x)$ eine lineare Funktion. Da alle V_k endlich dimensional sind, gilt der Darstellungssatz von Riesz. Dieser Satz ist beispielsweise in [4, Kapitel 4] nachzulesen. Für alle $x \in S^{n-1}$ existiert also eine Funktion $r_x \in V_k$, so dass $(f, r_x) = f(x)$ ist. Auch gilt für $A \in \mathcal{O}(n)$ $r_{Ax} = A^{-1}r_x$. Dies kann man leicht sehen, da für ein beliebiges $f \in V_k$

$$(f, A^{-1}r_x) = (Af, r_x)$$
$$= (Af)(x)$$
$$= f(Ax)$$

gilt.

Da $e_{k,1}, \cdots, e_{k,v_k}$ eine orthonormale Basis von V_k ist und $r_x \in V_k$ gilt, können wir r_x als Linearkombination bezüglich dieser Basis darstellen. Es gibt also $\alpha_{x,1}, \ldots, \alpha_{x,v_k}$ sodass $r_x = \sum_{j=1}^{v_k} \alpha_{x,j} e_{k,j}$ ist. Analog für r_y . Somit können wir den Kern B_k darstellen durch

$$B_{k}(x,y) = \sum_{i=1}^{v_{k}} e_{k,i}(x)e_{k,i}(y)$$

= $\sum_{i=1}^{v_{k}} (e_{k,i}, r_{x})(e_{k,i}, r_{y})$
= $\sum_{i=1}^{v_{k}} (e_{k,i}, \sum_{j=1}^{v_{k}} \alpha_{x,j}e_{k,j})(e_{k,i}, \sum_{j=1}^{v_{k}} \alpha_{y,j}e_{k,j})$
= $\sum_{i=1}^{v_{k}} \alpha_{x,i}\alpha_{y,i}(e_{k,i}, e_{k,i})\underbrace{(e_{k,i}, e_{k,i})}_{=1}$
= $(\sum_{j=1}^{v_{k}} \alpha_{x,j}e_{k,j}, \sum_{j=1}^{v_{k}} \alpha_{y,j}e_{k,j})$
= $(r_{x}, r_{y}).$

Somit haben wir also für ein beliebiges $A \in \mathcal{O}(n)$

$$B_k(Ax, Ay) = (r_{Ax}, r_{Ay}) = (A^{-1}r_x, A^{-1}r_y) = (r_x, r_y) = B_k(x, y),$$

was zeigt, dass B_k invariant unter Operationen der orthogonalen Gruppe $\mathcal{O}(n)$ ist.

Da die B_k invariant unter Operationen der orthogonalen Gruppe sind, ist also für $B_k(x, y)$ nur die relative Lage von x und y wichtig. Wir zeigen nun, dass B_k nur von dem Skalarprodukt $x \cdot y$ abhängt.

Behauptung 3.12. Für jedes $k \in \mathbb{N}_0$ gibt es ein reelles Polynom R_k vom Grad k, welches nur von einer Variable abhängt und für das $B_k(x, y) = R_k(x \cdot y)$ gilt.

Beweis. Sei $e = (1, 0, ..., 0) \in S^{n-1}$ der erste Einheitsvektor. Sei $p(x) := B_k(e, x)$. Somit können wir p als ein Polynom sehen, welches von n Variablen abhängt und den Grad k hat.

Für ein beliebiges $u \in [-1, 1]$ sei $w(u) = (u, \sqrt{1 - u^2}, 0, ..., 0) \in S^{n-1}$. Durch die Behauptung 3.11 wissen wir, dass die B_k invariant sind unter $\mathcal{O}(n)$.

Wir wollen zeigen, dass $B_k(x, y) = p(w(x \cdot y))$ für alle $x, y \in S^{n-1}$ gilt. Wir suchen also eine orthogonale Transformationsmatrix $O \in \mathcal{O}(n)$, für die Ox = e und $Oy = w(x \cdot y) = w(u)$ gilt. So eine Matrix existiert und kann durch die Gram-Schmidt Orthonormalisierung erzeugt werden. Der erste Zeilenvektor o_1 der Matrix O muss xenthalten. Die Zeilenvektoren o_3, \ldots, o_n erhalten wir durch die Gram-Schmidt Orthonormalisierung. Sie müssen sowohl paarweise, als auch zu x und y orthonormal sein. Der zweite Zeilenvektor o_2 ist durch die anderen Zeilen bis auf das Vorzeichen eindeutig festgelegt. Auch muss gelten $o_2 \cdot y = \pm \sqrt{1 - u^2}$, da sonst $Oy \notin S^{n-1}$ wäre. Mit so einer Matrix gilt also

$$B_k(x,y) = B_k(Ox,Oy) = B_k(e,w(x \cdot y)) = p(w(x \cdot y)).$$

Nun betrachten wir für ein $u \in [-1, 1]$ die Funktion p(w(u)). Wegen der Definition von w(u) brauchen wir bei der Berechnung von p(w(u)) nur die Monome zu betrachten, welche ausschließlich die Variablen x_1 oder x_2 enthalten.

Als nächstes stellen wir p(w(u)) als Summe von $p_0(w(u))$ und $p_1(w(u))$ dar. Dabei ist $p_0(w(u))$ die Summe aller Monome der Form $cx_1^{k_1}x_2^{k_2}$ mit k_2 gerade und $p_1(w(u))$ die Summe aller Monome der Form $cx_1^{k_1}x_2^{k_2}$ mit k_2 ungerade. Für ein $u \in [-1, 1]$ haben wir also

$$p(w(u)) = p_0(w(u)) + p_1(w(u)).$$

In dieser Darstellung gilt:

$$p(w(u)) = p_0(w(u)).$$

Um dies zu sehen, betrachten wir den Vektor $w'(u) = (u, -\sqrt{1-u^2}, 0, ..., 0) \in S^{n-1}$ für $u \in [-1, 1]$. Da die B_k invariant sind und $e \cdot w(u) = e \cdot w'(u)$ ist, muss gelten p(w(u)) = p(w'(u)). Wegen der geraden Potenz der Variable x_2 in p_0 muss auch $p_0(w(u)) = p_0(w'(u))$ gelten. Wegen der Definition von p_1 gilt also $p_1(w(u)) = -p_1(w'(u))$ und gleichzeitig muss gelten $p_1(w(u)) = p_1(w'(u))$. Dies ist nur möglich wenn $p_1(w(u)) = 0$ ist für alle $u \in [-1, 1]$.

Dies bedeutet, dass x_2 nur mit geraden Potenzen vorkommt und somit sich die Wurzel in jedem Fall auflöst. Man kann also $R_k(u) = p_0(w(u))$ als ein Polynom in einer Variable sehen. Des Weiteren gilt also $B_k(x, y) = R_k(x \cdot y)$ für alle $x, y \in S^{n-1}$. Da die B_k den Grad k hatten, hat R_k ebenfalls den Grad k.

Um die R_k aus der vorherigen Behauptung mit den Gegenbauer-Polynomen G_k^n in Verbindung zu bringen, zeigen wir nun, dass sie orthogonal bezüglich des mit $(1-t^2)^{\frac{n-3}{2}}$ gewichteten Skalarproduktes sind.

Behauptung 3.13. Die R_k sind orthogonal bezüglich des mit $(1-t^2)^{\frac{n-3}{2}}$ gewichteten

Skalarproduktes. Das heißt, für $k \neq l$ gilt

$$\int_{-1}^{1} R_k(t) R_l(t) (1-t^2)^{\frac{n-3}{2}} dt = 0.$$

Beweis. Wir haben

(3.1)

$$0 = \langle B_k, B_l \rangle$$

$$= \int_{S^{n-1}} \int_{S^{n-1}} B_k(x, y) B_l(x, y) d\omega(x) d\omega(y)$$

$$= \int_{S^{n-1}} \int_{S^{n-1}} R_k(x \cdot y) R_l(x \cdot y) d\omega(x) d\omega(y).$$

Da die $B_k(x, y) = R_k(x \cdot y) \mathcal{O}(n)$ -invariant sind, können wir $x^{\top} = N = (0, ..., 0, 1)$ wählen. Es gilt also:

(3.2)

$$0 = \int_{S^{n-1}} \int_{S^{n-1}} R_k(Ny) R_l(Ny) d\omega(x) d\omega(y)$$

$$= \int_{S^{n-1}} R_k(Ny) R_l(Ny) \int_{S^{n-1}} 1 \ d\omega(x) d\omega(y)$$

$$= \omega(S^{n-1}) \int_{S^{n-1}} R_k(Ny) R_l(Ny) d\omega(y).$$

Um dieses Integral weiter auflösen zu können, benötigen wir eine Transfomation in *n*-dimensionale Polarkoordinaten. Sei $\Omega := (0, 2\pi) \times (0, \pi)^{n-2}$. Dann gilt $S^{n-1} = \Phi(\Omega)$ mit $\Phi : \Omega \to \mathbb{R}^n$ definiert als:

$$\Phi_{1}(\varphi, \vartheta) = \cos(\varphi) \prod_{l=1}^{n-2} \sin(\vartheta_{l})$$

$$\Phi_{2}(\varphi, \vartheta) = \sin(\varphi) \prod_{l=1}^{n-2} \sin(\vartheta_{l})$$

$$\Phi_{i}(\varphi, \vartheta) = \cos(\vartheta_{i-2}) \prod_{l=i-1}^{n-2} \sin(\vartheta_{l}) \qquad i = 3, ..., n$$

und

$$Det(D\Phi(\varphi,\vartheta)) = \prod_{i=1}^{n-2} \sin(\vartheta_i)^i.$$

Wenden wir diese Transformation auf (3.2) an, so erhalten wir:

$$\begin{split} I &:= \int_{S^{n-1}} R_k(Ny) R_l(Ny) d\omega(y) \\ &= \int_{\Omega} R_k(\cos(\vartheta_{i-2})) R_l(\cos(\vartheta_{i-2})) |Det(D\Phi(\varphi,\vartheta))| d(\varphi,\vartheta) \\ &= \int_{(0,2\pi) \times (0,\pi)^{n-3}} \int_0^{\pi} R_k(\cos(\vartheta_{i-2})) R_l(\cos(\vartheta_{i-2})) \prod_{i=1}^{n-2} \sin(\vartheta_i)^i d(\varphi,\vartheta). \end{split}$$

Mit $\omega(S^{n-2}) = \int_{(0,2\pi)\times(0,\pi)^{n-3}} \prod_{i=1}^{n-3} \sin(\vartheta_i)^i d(\varphi,\vartheta_1,...,\vartheta_{n-3})$ gilt:

$$I = \omega(S^{n-2}) \int_0^\pi R_k(\cos(\vartheta_{i-2})) R_l(\cos(\vartheta_{i-2})) \sin(\vartheta_{n-2})^{n-2} d(\vartheta_{n-2}).$$

Substituiert man hier $t := \cos(\vartheta_{i-2})$ und $d(\vartheta_{i-2}) = \frac{d(t)}{-\sin(\vartheta_{i-2})}$ so erhalten wir:

$$I = \omega(S^{n-2}) \int_{-1}^{1} R_k(t) R_l(t) \sin(\vartheta_{n-2})^{n-3} dt$$

= $\omega(S^{n-2}) \int_{-1}^{1} R_k(t) R_l(t) (\sin(\vartheta_{n-2})^2)^{\frac{n-3}{2}} dt$
= $\omega(S^{n-2}) \int_{-1}^{1} R_k(t) R_l(t) (1-t^2)^{\frac{n-3}{2}} dt.$

Setzt man in (3.2) ein, so erhält man:

$$0 = \langle B_k, B_l \rangle$$

= $\int_{S^{n-1}} \int_{S^{n-1}} B_k(x, y) B_l(x, y) d\omega(x) d\omega(y)$
= $\omega(S^{n-1}) \omega(S^{n-2}) \int_{-1}^1 R_k(t) R_l(t) (1-t^2)^{\frac{n-3}{2}} dt.$

Daraus folgt

$$\int_{-1}^{1} R_k(t) R_l(t) (1 - t^2)^{\frac{n-3}{2}} dt = 0.$$

Behauptung 3.14. Die in Definition 3.10 eingeführten Kerne B_k sind positiv, das heißt $B_k \succeq 0 \ \forall \ k \in \mathbb{N}$.

Beweis. Durch die Definition von den B_k ist Symmetrie leicht ersichtlich. Zu zeigen bleibt die Positivität. Um dies zu beweisen, werden wir wieder den Darstellungssatz von Riesz benutzen. Wie in dem Beweis zu Behauptung 3.11 nutzen wir wieder, dass für alle $x \in S^{n-1}$ die Auswertungsfunktion $ev_x : V_k \to \mathbb{R}$ mit $ev_x(f) = f(x)$ eine lineare Funktion ist. Es gilt also wie in dem Beweis zu Behauptung 3.11:

$$B_k(x,y) = \sum_{i=1}^{v_k} e_{k,i}(x) e_{k,i}(y) = \sum_{i=1}^{v_k} (e_{k,i}, r_x) (e_{k,i}, r_y) = (r_x, r_y).$$

Mit dieser Darstellung kann man die Positivität leicht zeigen. Für $x_1, ..., x_m \in S^{n-1}$ und $u_1, ..., u_m \in \mathbb{R}$, wie in Definition 2.6 gilt also:

$$\sum_{i=0}^{m} \sum_{j=0}^{m} B_k(x_i, x_j) u_i u_j = \sum_{i=0}^{m} \sum_{j=0}^{m} (r_{k,x_i}, r_{k,x_i}) u_i u_j$$
$$= \sum_{i=0}^{m} \sum_{j=0}^{m} (u_i r_{k,x_i}, u_j r_{k,x_j})$$
$$= \sum_{i=0}^{m} (u_i r_{k,x_i}, \sum_{j=0}^{m} u_j r_{k,x_j})$$
$$= (\sum_{i=0}^{m} u_i r_{k,x_i}, \sum_{j=0}^{m} u_j r_{k,x_j})$$
$$\ge 0,$$

da die Argumente des Skalarproduktes identisch sind. Es gilt also $B_k \succeq 0$

Bemerkung. In der Behauptung 3.13 wird gezeigt, dass die R_k orthogonal bezüglich des mit $(1 - t^2)^{\frac{n-3}{2}}$ gewichteten Skalarproduktes sind. Da die R_k den Grad k haben, müssen sie also ein Vielfaches von den Gegenbauer-Polynomen G_n^k sein, da diese eine orthogonale Basis des $C^2([-1,1],(1-t^2)^{\frac{n-3}{2}}dt)$ bilden.

Des Weiteren gilt wegen der Positivität der B_k beziehungsweise der R_k , dass $R_k(1) > 0$ ist. Da $G_k^n(1) = 1$ ist, muss R_k also auch ein positives Vielfaches von G_k^n sein. Die Positivität bleibt bei dem Übergang von den R_k zu den G_k^n also unberührt.

Somit müssen die B_k auch positive Vielfache von den E_k sein. Die E_k sind also ebenfalls positiv und orthogonal.

In den folgenden Ausführungen, sowie in Kapitel 4, benötigen wir das Schur-Theorem. Für den Beweis wird beispielsweise auf [18, Theorem 3.1] verwiesen.

Theorem 3.15 (Schur-Theorem). Seien $A = (a_{i,j})_{1 \le i,j \le n}$ und $B = (b_{i,j})_{1 \le i,j \le n}$ positive semidefinite Matrizen. Dann ist die Matrix

$$C := (a_{i,j}b_{i,j})_{1 \le i,j \le n}$$

ebenfalls positiv semidefinit.

Bemerkung. Das Schur-Theorem impliziert hier, dass das Produkt von zwei positiven Kernen wieder positiv ist.

Theorem 3.16 (Satz von Schoenberg). Sei $\mathcal{C}(S^{n-1} \times S^{n-1})_{\geq 0}^{\mathcal{O}(n)}$ die Menge der positiven, $\mathcal{O}(n)$ -invarianten Hilbert-Schmidt Kerne. Dann gilt:

$$\mathcal{C}(S^{n-1} \times S^{n-1})_{\succeq 0}^{\mathcal{O}(n)} = \left\{ \sum_{k=0}^{\infty} f_k E_k(x, y) : f_k \in \mathbb{R}, f_k \ge 0, \sum_{k=0}^{\infty} f_k \le \infty \right\}$$

Beweis. Zuerst behandeln wir die \supseteq -Beziehung. Seien f_0, f_1, \dots nicht negative Zahlen, so dass $\sum_{k=0}^{\infty} f_k$ konvergiert.

Zunächst zeigen wir, dass

(*)
$$|G_k^n(u)| \le G_k^n(1) = 1$$
 $u \in [-1, 1]$

gilt. Dies kann man leicht aus der Positivität der E_k folgern: Sei also $u \in [-1, 1]$ und $x, y \in S^{n-1}$ mit $x \cdot y = u$. Da E_k positiv ist, gilt für alle $u_1, u_2 \in \mathbb{R}$:

$$0 \leq (u_1, u_2) \begin{pmatrix} E_k(x, x) & E_k(x, y) \\ E_k(y, x) & E_k(y, y) \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
$$= (u_1, u_2) \begin{pmatrix} G_k^n(x \cdot x) & G_k^n(x \cdot y) \\ G_k^n(y \cdot x) & G_k^n(y \cdot y) \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
$$= (u_1, u_2) \begin{pmatrix} 1 & G_k^n(u) \\ G_k^n(u) & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$
$$= u_1^2 + 2u_1 u_2 G_k^n(u) + u_2^2.$$

Also ist mit $u_1 = u_2 = 1$

$$1 + 2G_k^n(u) + 1 \ge 0 \quad \Leftrightarrow \quad -1 \le G_k^n(u)$$

und mit $u_1 = 1$ und $u_2 = -1$

$$1 - 2G_k^n(u) + 1 \ge 0 \quad \Leftrightarrow \quad G_k^n(u) \le 1.$$

Dies ist äquivalent zu (\star) .

Dadurch wird impliziert, dass die Reihe

$$\sum_{k=0}^{\infty} f_k G_k^n(u)$$

absolut für alle $u \in [-1, 1]$ konvergiert. Somit konvergiert auch die Reihe

$$\sum_{k=0}^{\infty} f_k G_k^n(x \cdot y) = \sum_{k=0}^{\infty} f_k E_k(x, y)$$

für alle $x, y \in S^{n-1}$. So wird deutlich, dass ein Kern $A: S^{n-1} \times S^{n-1} \to \mathbb{R}$ mit

$$A(x,y) = \sum_{k=0}^{\infty} f_k G_k^n (x \cdot y)$$

stetig ist, wenn die Reihe $\sum_{k=0}^{\infty} f_k$ konvergiert.

Kommen wir nun zur \subseteq -Inklusion. Sei $f \in \mathcal{C}(S^{n-1} \times S^{n-1})_{\geq 0}^{\mathcal{O}(n)}$ beliebig. Die Funktion f ist $\mathcal{O}(n)$ -invariant. Es gibt also nach Behauptung 3.12 eine Funktion $h : [-1, 1] \to \mathbb{R}$, sodass $f(x, y) = h(x \cdot y)$ für alle $x, y \in S^{n-1}$ ist. Da die G_0^n, G_1^n, \dots eine vollständige Basis bilden, gibt es Zahlen f_0, f_1, \dots für die

$$h = \sum_{k=0}^{\infty} f_k G_k^n$$

ist. Folglich ist auch

$$f(x,y) = \sum_{k=0}^{\infty} f_k E_k(x,y).$$

Wir zeigen nun, dass die Koeffizienten f_k positiv sind. Man beachte, dass

$$\langle \sum_{k=0}^{\infty} f_k E_k, E_l \rangle \ge 0$$

ist, da es sich um das innere Produkt von zwei positiven Kernen handelt. Dieser Zusammenhang ist klar, da

$$\langle \sum_{k=0}^{\infty} f_k E_k, E_l \rangle = \int_{S^{n-1}} \int_{S^{n-1}} \underbrace{\sum_{k=0}^{\infty} f_k E_k(x, y) E_l(x, y)}_{\succeq 0} d\omega(x) d\omega(y) \ge 0$$

wegen Theorem 3.15 und der Bemerkung zu Definition 2.2 ist. Nun können wir die Orthogonalität der E_k ausnutzen. Es folgt also

$$\langle \sum_{k=0}^{\infty} f_k E_k, E_l \rangle = f_l \underbrace{\langle E_l, E_l \rangle}_{>0} \ge 0.$$

Dies ist nur möglich, wenn $f_l \ge 0$ ist.

Als Letztes zeigen wir noch, dass die Reihe $\sum_{k=0}^{\infty} f_k$ konvergiert. Dazu seien die Funktionen $h_m: [-1,1] \to \mathbb{R}$ definiert durch

$$h_m(u) = h(u) - \sum_{k=0}^m f_k G_k^n(u) \qquad m \in \mathbb{N}_0$$

Diese Funktionen sind stetig und positiv, da die E_k positiv sind. Insbesondere gilt wegen der Positivität $h_m(1) \ge 0$. Somit haben wir auch

$$h(1) - \sum_{k=0}^{m} f_k = h(1) - \sum_{k=0}^{m} f_k G_n^k(1) = h_m(1) \ge 0.$$

Es gilt also $h(1) \ge \sum_{k=0}^{m} f_k \ge 0$ für alle $m \in \mathbb{N}_0$. Dies zeigt die Konvergenz der Reihe. \Box

3.3 Lineares Programm

s.t

Mit diesem Ergebnis sind wir in der Lage, unser duales Programm aus Definition 2.7 umzuformen:

$$\begin{split} \vartheta_2(G(n)) &= \min \lambda \\ s.t. & f \in \mathcal{C}(S^{n-1} \times S^{n-1}) \\ f \succeq 0 \\ f(x,x) &= \lambda - 1 & \forall x \in S^{n-1} \\ f(x,y) &\leq -1 & \forall \{x,y\} \notin E. \end{split}$$

Schränken wir bei diesen Programm den Lösungsraum auf $\mathcal{C}(S^{n-1} \times S^{n-1})_{\geq 0}^{\mathcal{O}(n)}$ ein, so können wir den Satz von Schoenberg anwenden. Dabei erhalten wir

$$\vartheta_2(G(n)) = \min \lambda$$

$$f_k \ge 0 \qquad \forall k \in \mathbb{N}$$

$$\sum_{k=0}^{\infty} f_k E_k(x, x) = \lambda - 1 \qquad \forall x \in S^{n-1}$$

$$\sum_{k=0}^{\infty} f_k E_k(x, y) \le -1 \qquad \forall \{x, y\} \notin E.$$

Setzt man hier die Definition der E_k ein, so erhält man:

s.t.

$$\vartheta_{2}(G(n)) = \min \lambda$$

$$s.t.$$

$$f_{k} \ge 0 \qquad \forall k \in \mathbb{N}$$

$$\sum_{k=0}^{\infty} f_{k}G_{k}^{n}(1) = \lambda - 1$$

$$\sum_{k=0}^{\infty} f_{k}G_{k}^{n}(t) \le -1 \qquad \forall t \in \left[-1, \frac{1}{2}\right]$$

Nun können wir noch $G_k^n(1) = 1$ und

$$\lambda = 1 + \sum_{k=0}^{\infty} f_k G_k^n(1) = 1 + \sum_{k=0}^{\infty} f_k$$

nutzen, um unser Programm weiter zu vereinfachen. Zusätzlich begrenzen wir die Anzahl der f_k , um unser Programm für den Computer berechenbar zu machen. So erhalten wir folgendes lineare Programm:

$$\vartheta_2^d(G(n)) = \min 1 + \sum_{k=0}^d f_k$$

s.t.
$$f_k \ge 0 \qquad \qquad \text{für } k = 0, 1, ..., d$$
$$\sum_{k=0}^d f_k G_k^n(t) \le -1 \qquad \qquad \forall t \in \left[-1, \frac{1}{2}\right]$$

Dies ist das lineare Programm, was von Delsarte 1973 vorgestellt wurde und bis 2007 die Grundlage für die Berechnung von oberen Schranken für die Kusszahl bildete, [8]. Für n = 8 und n = 24 ist die obere Schranke aus dem linearen Optimierungsproblem scharf. Somit können wir mit diesem Programm auch die genauen Werte für π_8 und π_{24} berechnen.

4 Die SDP-Methode

In diesem Kapitel schränken wir wieder den Lösungsraum auf einen Unterraum von $\mathcal{C}(S^{n-1} \times S^{n-1})^{\succeq 0}$ ein, um die obere Schranke weiter zu verbessern. In dem vorherigen Kapitel haben wir nur diejenigen Hilbert-Schmidt Kerne betrachtet, welche lediglich von der relativen Lage von x und y abhängen. Wir verfolgen in diesem Kapitel die Idee, einen Punkt auf der Einheitssphäre zu fixieren. Das heißt, wir beschränken uns auf die Hilbert-Schmidt Kerne, welche nur von den Skalarprodukten $x \cdot y, x \cdot e$ und $y \cdot e$ abhängen. Um dies im Sinne der Lovázs ϑ -Funktion zu verwirklichen, betrachten wir folgenden Raum:

Definition 4.1. Set $e \in S^{n-1}$ fixiert. Dann set

$$PD(S^{n-1}, e) := \{ f \in \mathcal{C}(\mathbb{R}^3) | f(x \cdot y, x \cdot e, y \cdot e) \succeq 0, \ x, y \in S^{n-1} \}.$$

Bemerkung. Sei H der Stabilisator von e in $\mathcal{O}(n)$, also die Menge der orthonormalen Transformationsmatrizen für die Oe = e gilt. Dann bildet die Menge der Funktionen $(x,y) \mapsto f(x \cdot y, x \cdot e, y \cdot e)$ mit $x, y \in S^{n-1}$ und $f \in PD(S^{n-1}, e)$ den Unterraum von $\mathcal{C}(S^{n-1} \times S^{n-1})^{\succeq 0}$, der invariant unter H ist.

4.1 Multivariate Gegenbauer-Polynome

Um den Raum $PD(S^{n-1}, e)$ wieder mit Hilfe einer orthogonalen Basis zu zerlegen, benötigen wir die multivariaten Gegenbauer-Polynome. Oleg Musin hat diese für einen Stabilisator von m Punkten, $0 \le m \le n-2$, definiert, [14]. Hier beschränken wir uns jedoch auf den Fall m = 1.

Definition 4.2. Set $t, u, v \in \mathbb{R}$. Dann set

$$G_k^{(n,1)}(t,u,v) := (1-u^2)^{\frac{k}{2}} (1-v^2)^{\frac{k}{2}} G_k^{n-1} \left(\frac{t-uv}{\sqrt{(1-u^2)(1-v^2)}}\right).$$

Man beachte, dass so $G_k^{(n,1)}(t,0,0) = G_k^{n-1}(t)$ gilt.

Bemerkung. Das Gegenbauer-Polynome G_k^n ist für gerade k ein gerades Polynom und für ein ungerade k ein ungerades Polynom. Dies bedeutet, dass das multivariate Gegenbauer-Polynom $G_k^{(n,1)}$ auch ein Polynom in u und v ist, da sich die Wurzeln auflösen. Um den Raum $PD(S^{n-1}, e)$ zerlegen zu können, brauchen wir noch eine andere Darstellung von positiven, symmetrischen Polynomen.

Definition 4.3. Wir definieren die Matrix $Z_d(u, v)$ mit der Dimension $(d+1) \times (d+1)$ durch $Z_d(u, v) := (z_d(u))^\top (z_d(v))$. Dabei sind $u, v \in \mathbb{R}$ und

$$z_d(x) := (x^0, x^1, ..., x^d)$$

der Vektor der Monome bis zum Grad d.

Definition 4.4. Für quadratische Matrizen $A, B \in \mathbb{R}^{n \times n}$ sei das Skalarprodukt $\langle ., . \rangle$ definiert durch

$$\langle A, B \rangle = Spur(AB) = \sum_{i,j=1}^{n} a_{i,j} b_{i,j}.$$

Theorem 4.5. Set f(u, v) ein positives, symmetrisches Polynom mit $u, v \in \mathbb{R}$. Dann existiert ein $d \ge 0$ und eine positiv semidefinite Matrix $H \in \mathbb{R}^{(d+1) \times (d+1)}$, sodass

$$f(u,v) = \langle H, Z_d(u,v) \rangle$$

ist.

Beweis. Zuerst stellen wir fest, dass $\langle H, Z_d(u, v) \rangle = \sum_{0 \le i,j \le d} h_{i,j} u^i v^j = z_d(u) H z_d(v)^\top$ ist. Es gibt also für jedes Polynom f eine Matrix H, sodass $f(u, v) = \langle H, Z_d(u, v) \rangle$ mit hinreichend großem d. Ebenso ist die Symmetrie der Matrix H gegeben.

Zu zeigen bleibt, dass $H \succeq 0$ falls $f \succeq 0$ ist. Der Beweis wird indirekt geführt. Sei also H nicht positiv semidefinit. Dann existiert ein $y \in \mathbb{R}^{d+1}$ sodass $y^{\top}Hy \leq 0$ ist. Nun gilt mit $x_1, ..., x_{d+1}, u_1, ..., u_{d+1} \in \mathbb{R}$ wie in Definition 2.6 :

$$\sum_{0 \le i,j \le d} f(x_i, x_j) u_i u_j = \sum_{0 \le i,j \le d} \langle H, Z_d(x_i, x_j) \rangle u_i u_j$$
$$= \sum_{0 \le i,j \le d} z_d(x_i) H z_d(x_j)^\top u_i u_j$$
$$= \left(\sum_{i=0}^d u_i z_d(x_i)\right) H\left(\sum_{j=0}^d u_j z_d(x_j)\right)^\top$$

Da die $z_d(x_i)$ für paarweise verschiedene x_i linear unabhängig sind, gibt es eine Wahl für die u_i beziehungsweise x_i , so dass $y = \sum_{j=0}^d u_j z_d(x_j)$ gilt. Somit folgt:

$$\sum_{0 \le i,j \le d} f(x_i, x_j) u_i u_j = y H y^\top$$

< 0

Dies ist ein Widerspruch zu der Annahme $f \succeq 0$.

4.2 Erweiterung vom Satz von Schoenberg

Nun gilt es wieder zu zeigen, dass die multivariaten Gegenbauer-Polynome orthogonal zueinander sind. Der Beweis ist zum größten Teil aus [14] entnommen. Dazu benötigen wir noch folgende Definition:

Definition 4.6. Set $t, u, v \in \mathbb{R}$. Dann set

$$Q(t, u, v) := \begin{pmatrix} 1 & u & v \\ u & 1 & t \\ v & t & 1 \end{pmatrix}$$

und

$$D := \left\{ (t, u, v) \in \mathbb{R}^3 : Q(t, u, v) \succeq 0 \right\}.$$

Lemma 4.7. Es gilt $(t, u, v) \in D$ genau dann, wenn

$$(t - uv)^2 \le (1 - u^2)(1 - v^2), \qquad |u| \le 1.$$

Beweis. Da die Matrix Q symmetrisch ist, können wir hier über die Positivität der Hauptminoren argumentieren.

$$det(1) = 1 \ge 0$$
$$det \begin{pmatrix} 1 & u \\ u & 1 \end{pmatrix} = 1 - u^2$$

Der 2. Hauptminor ist also genau dann positiv, wenn $|u| \leq 1$ ist. Für den 3. Hauptminor gilt :

$$det \begin{pmatrix} 1 & u & v \\ u & 1 & t \\ v & t & 1 \end{pmatrix} = (1 - u^2)(1 - v^2) - (t - uv)^2.$$

Die Determinante von Q ist also genau dann positiv, wenn $(t - uv)^2 \le (1 - u^2)(1 - v^2)$ und $|u| \le 1$ gilt.

Wir legen die Notation $\rho(t, u, v) := (det(Q))^{\frac{n-4}{2}} = ((1-u^2)(1-v^2) - (t-uv)^2)^{\frac{n-4}{2}}$ fest. Lemma 4.8. Sei $F: D \mapsto \mathbb{R}$ eine beliebige, stetige Funktion. Dann gilt

$$\int_{(S^{n-1})^2} F(x \cdot y, x_1, y_1) d\omega(x) d\omega(y)$$
$$= \omega(S^{n-2})\omega(S^{n-3}) \int_D F(t, u, v)\rho(t, u, v) dt du dv.$$

Dabei sind x_1 und y_1 die ersten Einträge der Vektoren x und y.

Beweis. Für diesen Beweis werden wir die Variablentransformationen

$$(x,y) \longrightarrow (a,b,u,v) \longrightarrow (s,u,v) \longrightarrow (t,u,v)$$

durchführen. Die Variablen sind für $x, y \in S^{n-1}$ definiert durch: $u = x_1, v = y_1$,

$$a = \frac{(x_2, \dots, x_n)^{\top}}{h(u)}, \quad b = \frac{(y_2, \dots, y_n)^{\top}}{h(v)}, \quad \text{wobei } h(u) = \sqrt{1 - u^2}$$

ist, sowie $s = a \cdot b$ und $t = x \cdot y = h(u)h(v)s + uv$. Für den Beweis werden wir zuerst die Transformationen bestimmen und die dazugehörigen Funktionaldeterminaten berechnen.

$$(x, y) \longrightarrow (a, b, u, v)$$

Wegen ||a|| = ||b|| = 1, sind $a, b \in S^{n-2}$. Die Koordinaten u, v sind die ersten Einträge von x, y, es gilt also $u, v \in [-1, 1]$. An dieser Stelle führen wir also eine Koordinatentransformation von S^{n-1} zu der Zylinderoberfläche $S^{n-2} \times [-1, 1]$ durch. Man beachte, dass es sich hierbei um die Koordinatentransformation zwischen zwei Untermannigfaltigkeiten handelt. Wir können hier also nicht den normalen Transformationssatz anwenden. Stattdessen verfolgen wir die Strategie, beide Untermannigfaltigkeiten mit dem Zylinder

$$\Omega = \left\{ (\alpha, u) \in \mathbb{R}^{n-1} : u \in [-1, 1], \|\alpha\|^2 \le 1 \right\}$$

zu parametrisieren und anschließend die Oberflächenelemente zu vergleichen.

Betrachten wir also zunächst die Parametrisierung $\Phi_{1,1}: \Omega \to S^{n-2} \times [-1,1]$ mit

$$x = \Phi_{1,1}(\alpha, u) = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_{n-2} \\ \sqrt{1 - \|\alpha\|^2} \\ u \end{pmatrix}$$

Die Form dieser Parametrisierung erlaubt es uns, folgenden, bekannten Zusammenhang auszunutzen [10, Kapitel 14]:

$$\int_{S^{n-1}} f(x)d\omega(x) = \int_{S^{n-2}\times[-1,1]} f(\alpha,\psi(\alpha),u)\sqrt{1+\|\nabla\psi(\alpha)\|^2}d(\alpha,u),$$

mit $\psi(\alpha) = \sqrt{1 - \|\alpha\|^2}$. Hierbei gilt

$$\nabla \psi(\alpha) = \left(-\frac{\alpha_1}{\sqrt{1 - \|\alpha\|^2}}, ..., -\frac{\alpha_{n-2}}{\sqrt{1 - \|\alpha\|^2}}\right)$$

und somit auch

$$\sqrt{1 + \|\nabla\psi\|^2} = \sqrt{1 + \frac{\|\alpha\|^2}{1 - \|\alpha\|^2}} = \frac{1}{\sqrt{1 - \|\alpha\|^2}}.$$

Für das Oberflächen element gilt also $d\omega(a)du = \frac{1}{\sqrt{1-\|\alpha\|^2}}d(\alpha,u).$

Kommen wir nun zu der Transformation $\Phi_{1,2}:\Omega\to S^{n-1}$ mit

$$x = \Phi_{1,2}(\alpha, u) = \begin{pmatrix} \alpha_1 h(u) \\ \vdots \\ \alpha_{n-2} h(u) \\ \sqrt{1 - ||\alpha||^2} h(u) \\ u \end{pmatrix}.$$

Für die Berechnung der Gramschen Determinante betrachten wir zuerst die Jacobi Matrix:

$$D\Phi(\alpha, u) = \begin{pmatrix} h(u) & 0 & \dots & 0 & -\frac{\alpha_1 u}{h(u)} \\ 0 & h(u) & \dots & 0 & -\frac{\alpha_2 u}{h(u)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & h(u) & -\frac{\alpha_{n-2} u}{h(u)} \\ -\frac{\alpha_1 h(u)}{\sqrt{1-\|\alpha\|^2}} & -\frac{\alpha_2 h(u)}{\sqrt{1-\|\alpha\|^2}} & \dots & -\frac{\alpha_{n-2} h(u)}{\sqrt{1-\|\alpha\|^2}} & -\frac{u\sqrt{1-\|\alpha\|^2}}{\sqrt{1-u^2}} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

somit gilt auch

$$D\Phi(\alpha, u)^{\top} D\Phi(\alpha, u) = \begin{pmatrix} (1 - u^2) + \frac{\alpha_1^2(1 - u^2)}{1 - \|\alpha\|^2} & \frac{\alpha_1 \alpha_2(1 - u^2)}{1 - \|\alpha\|^2} & \dots & 0\\ \frac{\alpha_1 \alpha_2(1 - u^2)}{1 - \|\alpha\|^2} & (1 - u^2) + \frac{\alpha_2^2(1 - u^2)}{1 - \|\alpha\|^2} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \frac{1}{1 - u^2} \end{pmatrix}$$
$$= \frac{1 - u^2}{1 - \|\alpha\|^2} \begin{pmatrix} 1 - \|\alpha\| + \alpha_1^2 & \alpha_2 \alpha_1 & \dots & 0\\ \alpha_1 \alpha_2 & 1 - \|\alpha\| + \alpha_2^2 & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & \frac{1 - \|\alpha\|}{(1 - u^2)^2} \end{pmatrix}.$$

Nun können wir, mit der Hilfe des Entwicklungssatzes von Laplace, die Gramsche Determinante berechnen:

$$|D\Phi(\alpha, u)^{\top} D\Phi(\alpha, u)| = \left(\frac{1-u^2}{1-\|\alpha\|^2}\right)^{n-1} \frac{1-\|\alpha\|^2}{(1-u^2)^2} \left|\alpha\alpha^{\top} + (1-\|\alpha\|^2)E_{n-2}\right|.$$

Die Matrix $\alpha \alpha^{\top}$ hat den einfachen Eigenwert $\|\alpha\|^2$ und den (n-3)-fachen Eigenwert 0. Daraus folgt $|\alpha \alpha^{\top} + (1 - \|\alpha\|^2)E_{n-2}| = (1 - \|\alpha\|^2)^{n-3}$ und somit ist

$$\begin{split} \sqrt{|D\Phi(\alpha, u)^{\top} D\Phi(\alpha, u)|} &= \sqrt{\left(\frac{1-u^2}{1-\|\alpha\|^2}\right)^{n-1} \frac{1-\|\alpha\|^2}{(1-u^2)^2} (1-\|\alpha\|^2)^{n-3}} \\ &= (1-u^2)^{\frac{n-3}{2}} \frac{1}{\sqrt{1-\|\alpha\|^2}}. \end{split}$$

Somit ergibt sich für das Flächenelement

$$d\omega(x) = (1 - u^2)^{\frac{n-3}{2}} \frac{1}{\sqrt{1 - \|\alpha\|^2}} d(\alpha, u).$$

Verknüpfen wir nun die beiden Transformationen miteinander, so erhalten wir $\Phi_1: S^{n-2} \times [-1, 1] \to S^{n-1}$ mit

$$x = \Phi_1(a, u) = \Phi_{1,2}^{-1}(\Phi_{1,1}(a, u)) = \begin{pmatrix} 0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} h(u) + \begin{pmatrix} u \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Durch den Vergleich der Oberflächenelemente von $\Phi_{1,1}$ und $\Phi_{1,2}$ erhalten wir das Oberflächenelement

$$d\omega(x) = (1 - u^2)^{\frac{n-3}{2}} d\omega(a) du$$

für die vollständige Transformation. Des Weiteren gilt:

$$F(x \cdot y, x, y) = F(\Phi_1(a, u) \cdot \Phi_1(b, v), u, v)$$

= $F(h(u)h(v)(a \cdot b) + uv, u, v)$

 $(a,b,u,v) \longrightarrow (s,u,v)$

 Φ_2 ist wie in 3.13 definiert. Wir können also wieder die Invarianz des Skalarproduktes unter der orthogonalen Gruppe ausnutzen und $\omega(S^{n-2})$ rausziehen. Dann können wir die Transformation auf $N \cdot b$ anwenden. Wir erhalten also

$$F(h(u)h(v)(a \cdot b) + uv, u, v) = F(h(u)h(v)s + uv, u, v)$$

und

$$d\omega(b) = \omega(S^{n-2})\omega(S^{n-3})\rho(s,0,0)d(s).$$

 $(s,u,v) \longrightarrow (t,u,v)$

Mit der obigen Definition gilt:

$$|t - uv| = |h(u)h(v)s| = h(u)h(v)|s| \le h(u)h(v),$$

da $|s|\leq 1$ ist. Es gilt also $(t,u,v)\in D.$ Se
i $\Phi_3:[-1,1]\mapsto [-1,1]$ mit der Abbildungsvorschrift

$$\Phi_3(t) = \frac{t - uv}{h(u)h(v)} = s$$

und der Funktionaldeterminante

$$det(D\Phi_3(t)) = det(h(u)^{-1}h(v)^{-1}) = h(u)^{-1}h(v)^{-1}.$$

Mit diesen Vorüberlegungen und $\delta(u, v) = (1 - u^2)^{\frac{n-3}{2}} (1 - v^2)^{\frac{n-3}{2}}$ gilt:

$$\begin{split} I &= \int_{(S^{n-1})^2} F(x \cdot y, x_1, y_1) d\omega(x) d\omega(y) \\ &= \int_{(S^{n-2})^2} \int_{u,v=-1}^1 F(h(u)h(v)a \cdot b + uv, u, v)\delta(u, v) dudv d\omega(a) d\omega(b) \\ &= \int_{(S^{n-2})^2} \int_{u,v=-1}^1 F(h(u)h(v)N \cdot b + uv, u, v)\delta(u, v) dudv d\omega(a) d\omega(b) \\ &= \int_{S^{n-2}} 1 d\omega(a) \int_{S^{n-2}} \int_{u,v=-1}^1 F(h(u)h(v)N \cdot b + uv, u, v)\delta(u, v) dudv d\omega(b) \\ &= \omega(S^{n-2})\omega(S^{n-3}) \int_{s=-1}^1 \int_{u,v=-1}^1 F(h(u)h(v)s + uv, u, v)\delta(u, v)\rho(s, 0, 0) dudv ds \end{split}$$

und mit

 $\delta(u,v)\rho(s,0,0)h(u)^{-1}h(v)^{-1} = (1-u^2)^{\frac{n-3}{2}}(1-v^2)^{\frac{n-3}{2}}\rho(s,0,0)h(u)^{-1}h(v)^{-1} = \rho(t,u,v)$ gilt nun

$$I = \omega(S^{n-2})\omega(S^{n-3}) \int_D F(t, u, v)\rho(t, u, v) dt du dv$$

Lemma 4.9. Sei q(u, v) eine beliebige, stetige Funktion auf der Menge

$$\{(u, v) \in \mathbb{R}^2 : |u| \le 1, |v| \le 1\}.$$

Dann gilt, falls $k \neq l$

$$\int_{D} G_{k}^{(n,1)}(t,u,v)G_{l}^{(n,1)}(t,u,v)q(u,v)\rho(t,u,v)dtdudv = 0.$$

Beweis. Für diesen Beweis führen wir wieder eine Variablentransformation $t\longrightarrow s$ durch. Dafür sei

$$s := \frac{t - uv}{\sqrt{(1 - u^2)(1 - v^2)}}$$
 und somit $t = \Phi(s) = s\sqrt{(1 - u^2)(1 - v^2)} + uv$

Die Funktionaldeterminante ist

$$det(D\Phi(s)) = det(\sqrt{(1-u^2)(1-v^2)}) = \sqrt{(1-u^2)(1-v^2)}.$$

Da $(t, u, v) \in D$ gilt

$$\begin{aligned} (t-uv)^2 &\leq (1-u^2)(1-v^2) &\Leftrightarrow \\ \frac{|t-uv|}{\sqrt{(1-u^2)(1-v^2)}} &\leq 1 &\Leftrightarrow \\ |s| &\leq 1. \end{aligned}$$

Es ist also

$$D = \{(s, u, v) \in \mathbb{R}^3 : |s| \le 1, |u| \le 1, |v| \le 1\}.$$

Des Weiteren gilt für die multivariaten Gegenbauer-Polynome

$$G_k^{(n,1)}(t,u,v) = (1-u^2)^{\frac{k}{2}}(1-v^2)^{\frac{k}{2}}G_k^{n-1}\left(\frac{t-uv}{\sqrt{(1-u^2)(1-v^2)}}\right)$$
$$= (1-u^2)^{\frac{k}{2}}(1-v^2)^{\frac{k}{2}}G_k^{n-1}(s).$$

Nun können wir die Variablentransformation durchführen. Es ist also:

$$\begin{split} I &= \int_{D} G_{k}^{(n,1)}(t,u,v) G_{l}^{(n,1)}(t,u,v) q(u,v) \rho(t,u,v) dt du dv \\ &= \int_{D} \left((1-u^{2})(1-v^{2}) \right)^{\frac{n-3+k+l}{2}} G_{k}^{n-1}(s) G_{l}^{n-1}(s) q(u,v) (1-s^{2})^{\frac{n-4}{2}} ds du dv \\ &= I_{0} \underbrace{\int_{-1}^{1} G_{k}^{n-1}(s) G_{l}^{n-1}(s) (1-s^{2})^{\frac{n-4}{2}} ds}_{=0} \\ &= 0 \end{split}$$

$$I_0 = \int_{u,v=-1}^{1} q(u,v)((1-u^2)(1-v^2))^{\frac{n-3+k+l}{2}} du dv.$$

Theorem 4.10. Set f(u, v) eine beliebige, stetige Funktion auf

$$\{(u,v) \in \mathbb{R}^2 : |u| \le 1, |v| \le 1\}.$$

Wenn $k \neq l$, dann gilt

mit

$$\int_{(S^{n-1})^2} G_k^{(n,1)}(x \cdot y, x_1, y_1) G_l^{(n,1)}(x \cdot y, x_1, y_1) f(x_1, y_1) d\omega(x) d\omega(y) = 0.$$

Beweis. Der Beweis folgt direkt aus der Kombination von Lemma 4.8 und Lemma 4.9. $\hfill \Box$

Theorem 4.11. Set $x, y \in S^{n-1}$. Dann gilt für alle $k \ge 0$

$$G_k^{(n,1)}(x \cdot y, e \cdot x, e \cdot y) \succeq 0.$$

Beweis. Diesen Satz können wir aus Behauptung 3.14 folgern. Dafür seien wieder $p_1, ..., p_r \in S^{n-1}$ beliebige Punkte wie in Definition 2.6. Sei nun $v_i = p_{i,1}$ und $x_i = (p_{i,2}, ..., p_{i,n})^{\top}$ für i = 1, ..., r. Mit dieser Notation gilt

$$||v_i||^2 + ||x_i||^2 = ||p_i||^2 = 1.$$

Des Weiteren sei $y_i = \frac{x_i}{\|x_i\|}$; damit gilt $y_i \in S^{n-2}$.

So können wir folgende Umformungen vornehmen:

$$G_k^{n-1}\left(\frac{p_i \cdot p_j - v_i v_j}{\sqrt{(1 - v_i^2)(1 - v_j^2)}}\right) = G_k^{n-1}\left(\frac{x_i \cdot x_j}{\|x_i\| \|x_j\|}\right)$$
$$= G_k^{n-1}(y_i \cdot y_j).$$

Und Behauptung 3.14 zeigt, dass $(G_k^{n-1}(y_i \cdot y_j))_{1 \le i,j \le r} \ge 0$ ist. Weiter sei $h_i = (1 - v_i^2)^{\frac{k}{2}}$.

Dann ist $A := hh^{\top} = \begin{pmatrix} h_1 \\ \vdots \\ h_r \end{pmatrix} (h_1, ..., h_r)$ wegen der Symmetrie positiv semidefinit. So

ist durch einsetzten zu sehen, dass $G_k^{(n,1)}(p_i \cdot p_j, e \cdot p_i, e \cdot p_j) = h_i h_j G_k^{n-1}(y_i \cdot y_j)$ ist. Insgesamt gilt also

$$\left(G_k^{(n,1)}(p_i \cdot p_j, e \cdot p_i, e \cdot p_j)\right)_{1 \le i,j \le r} = \left(h_i h_j G_k^{n-1}(y_i \cdot y_j)\right)_{1 \le i,j \le r}$$

und da $A \succeq 0$, sowie $(G_k^{n-1}(y_i \cdot y_j))_{1 \le i,j \le r} \succeq 0$ ist, gilt, laut dem Schur-Theorem,

$$\left(G_k^{(n,1)}(p_i \cdot p_j, e \cdot p_i, e \cdot p_j)\right)_{1 \le i,j \le r} \succeq 0.$$

Nun haben wir die Orthogonalität, sowie die Positivität der multivariaten Gegenbauer-Polynome nachgewiesen. Wir können jetzt den Satz von Schoenberg auf die Menge $PD(S^{n-1}, e)$ erweitern. Dazu zeigen wir zuerst folgenden Satz.

Theorem 4.12. Set d > 0 und set F(t, u, v) ein Polynom, welches in der Form

$$F(t, u, v) = \sum_{k=0}^{d} f_k(u, v) G_k^{(n,1)}(t, u, v)$$

geschrieben werden kann, wobei $f_k(u, v) \succeq 0$ für alle $0 \le k \le d$ gilt. Dann ist für $r \ge 1$ und beliebige Punkte $p_1, ..., p_r \in S^{n-1}$ die Matrix $(F(p_i \cdot p_j, e \cdot p_i, e \cdot p_j))_{1 \le i,j \le r} \succeq 0$, beziehungsweise $F \in PD(S^{n-1}, e)$.

Beweis. Laut der Voraussetzung gilt $f_k(u, v) \succeq 0$ für alle $0 \le k \le d$. Daher ist auch die Matrix $(f_k(e \cdot p_i, e \cdot p_j))_{1 \le i,j \le r} \succeq 0$. In 4.11 haben wir gesehen, dass auch für die multivariaten Gegenbauer-Polynome die Matrix $(G_k^{(n,1)}(p_i \cdot p_j, e \cdot p_i, e \cdot p_j))_{1 \le i,j \le r} \succeq 0$ ist. Sei nun die Matrix C_k defniert durch $(C_k)_{i,j} = f_k(e \cdot p_i, e \cdot p_j)G_k^{(n,1)}(p_i \cdot p_j, e \cdot p_i, e \cdot p_j)$. Wie in dem Beweis zu Theorem 4.11, impliziert das Schur Theorem auch hier, dass $C_k \succeq 0$ gilt. Es gilt also

$$(F(p_i \cdot p_j, e \cdot p_i, e \cdot p_j))_{1 \le i,j \le r} = \sum_{k=0}^d C_k \succeq 0$$

da die $C_k \succeq 0$ sind.

Theorem 4.13. Set F(t, u, v) ein Polynom in t, und ein symmetrisches Polynom in u und v. Falls $F(t, u, v) \in PD(S^{n-1}, e)$, dann kann F(t, u, v) als

$$F(t, u, v) = \sum_{k=0}^{d} f_k(u, v) G_k^{(n,1)}(t, u, v)$$

dargestellt werden. Dabei ist $f_k \succeq 0$ für alle $0 \le k \le d = deg_t(F)$.

Beweis. Zuerst stellen wir fest, dass $G_k^{(n,1)}(t, u, v)$ ein Polynom vom Grad k in der Variable t ist. Jedes Polynom F können wir also eindeutig durch

$$F(t, u, v) = \sum_{k=0}^{d} f_k(u, v) G_k^{(n,1)}(t, u, v)$$

darstellen. Dabei ist $f_k(u, v)$ ein symmetrisches Polynom bezüglich den Variablen uund v mit Grad d_k . Also ist $f_k(u, v) = \langle F_k, Z_{d_k} \rangle$, für eine symmetrische Matrix F_k . Zu zeigen bleibt $F_k \succeq 0$.

Seien f(t, u, v), g(t, u, v) beliebige stetige Funktionen auf D. Wir setzten folgendes Skalarprodukt fest:

$$\{f,g\} := \int_{(S^{n-1})^2} f(x \cdot y, x \cdot e, y \cdot e)g(x \cdot y, x \cdot e, y \cdot e)d\omega(x)d\omega(y).$$

In 4.9 wurde gezeigt, dass die multivariaten Gegenbauerpolynome bezüglich dieses Skalarproduktes orthogonal sind. Es gilt also für jede beliebige stetige Funktion h(u, v)

$$\left\{F, hG_k^{(n,1)}\right\} = \left\{f_k G_k^{(n,1)}, hG_k^{(n,1)}\right\} = \left\{f_k h, \left(G_k^{(n,1)}\right)^2\right\}$$

Diesen Zusammenhang benutzen wir, um ein neues Skalarprodukt einzuführen. Seien f(u, v) und g(u, v) stetige Funktionen auf $\{(u, v) : |u| \le 1, |v| \le 1\}$. Dann setzten wir

$$[f,g] := \left\{ fg, \left(G_k^{n,1}\right)^2 \right\}$$

fest.

Da [.,.] ein Skalarprodukt auf $\mathbb{R}[u, v]$ ist, gibt es eine orthonormale Basis $\alpha_1, \alpha_2, ...$ des Raumes der reellen Polynome $\mathbb{R}[u, v]$. Man beachte, dass F_k eine quadratische Form definiert. Sei \tilde{F}_k die Matrixdarstellung dieser quadratischen Form bezüglich der orthonormalen Basis $\alpha_1, \alpha_2, ...$ Dann gibt es eine Matrix A, sodass $F_k = A^{\top} \tilde{F}_k A$ gilt. Deswegen ist F_k genau dann positiv semidefinit, wenn $\tilde{F}_k \succeq 0$ ist. Sei $h(u, v) = \langle H, Z_{d_k}(u, v) \rangle$ mit einer Matrix $H \succeq 0$ und \tilde{H} die entsprechende Matrixdarstellung bezüglich der orthonormalen Basis. Dann gilt

$$[f,h] = \langle \tilde{F}_k, \tilde{H} \rangle.$$

Die Bemerkung zu Definition 2.6 zeigt, dass $\{f, 1\} \ge 0$ für ein $f \in PD(S^{n-1}, e)$ gilt. Des Weiteren zeigt das Schur-Theorem, dass für $f, g \in PD(S^{n-1}, e)$ auch $fg \in PD(S^{n-1}, e)$ ist. Deswegen habe wir auch

$$\left\{ fg, \left(G_k^{(n,1)}\right)^2 \right\} = [f,g] \ge 0$$

Für jedes positive Polynom h(u, v) mit einer positv semidefiniten Darstellungsmatrix H bezügliche der orthonormalen Basis gilt also, $[f_k, h] = \langle \tilde{F}_k, \tilde{H} \rangle \geq 0$. Man beachte, dass für alle $x \in \mathbb{R}^{d_k}$ durch xx^{\top} eine positiv semidefinite Matrix definiert wird. Diese Matrix können als Darstellungsmatrix eines positiven Polynoms bezüglich der orthonormalen Basis $\alpha_1, \alpha_2, \ldots$ interpretieren. Dass heißt für alle $x \in \mathbb{R}^{d_k}$ gilt

$$\langle \tilde{F}_k, xx^\top \rangle = \sum_{1 \le i,j \le d_k} \left(\tilde{F}_k \right)_{i,j} x_i x_j \ge 0.$$

Die Matrix \tilde{F}_k ist also positiv semidefinit; somit muss auch $F_k \succeq 0$ sein.

Theorem 4.14. Eine Funktion F ist genau dann Element $PD(S^{n-1}, e)$, wenn

$$F(t, u, v) = \sum_{k=0}^{\infty} f_k(u, v) G_k^{(n,1)}(t, u, v)$$

gilt, mit $f_k \succeq 0$ für alle $k \ge 0$.

Beweis. In Theorem 4.12 und Theorem 4.13 wurde die Aussage für Polynome gezeigt. Da die Polynome dicht in $PD(S^{n-1}, e)$ liegen, gibt es, laut dem Satz von Stone-Weierstraß, zu jeder Funktion F eine Folge von Polynomen $f_r \in PD(S^{n-1}, e)$, mit $f_r \to F$. Also ist die Aussage auch für F gültig.

4.3 Semidefinites Programm

Mit der Hilfe von Theorem 4.14 können wir also $PD(S^{n-1}, e)$ durch semidefinite Matrizen parametrisieren. So haben wir die Möglichkeit, die Kusszahl durch semidefinite Programmierung anzunähern. Um dies zu vereinfachen, führen wir noch einige Notationen ein.

Bemerkung. Sei

$$Y_{k,d}^{n}(t, u, v) = Z_{d}(u, v)G_{k}^{(n,1)}(t, u, v).$$

Dann gibt es zu jeder Funktion f, die in der Form 4.14 geschrieben werden kann, semidefinite Matrizen F_0, F_1, \ldots sodass gilt:

$$f(t, u, v) = \sum_{k=0}^{\infty} f_k(u, v) G_k^{(n,1)}(t, u, v) = \sum_{k=0}^{\infty} \langle F_k, Y_{k, d_k}^n(t, u, v) \rangle$$

Dabei entspricht d_k dem Grad des Polynoms $f_k(u, v)$ und die Matrix F_k hat dementsprechend auch die Dimension $(d_k + 1) \times (d_k + 1)$.

Die Matrizen F_k werden letztlich die Variablen sein, über die optimiert wird. Mit dieser Notation erhalten wir durch Einsetzten in die Lovázs ϑ -Funktion aus Definition 2.7 ein berechenbares semidefinites Programm:

$$\begin{split} \vartheta_3^d(G(n)) &= \min \lambda \\ s.t. & F_k \succeq 0 & F_k \in \mathbb{R}^{d_k \times d_k} \quad k = 0, ..., d \\ \sum_{k=0}^d \langle F_k, Y_{k,d_k}^n(1, u, u) \rangle &= \lambda - 1 & -1 \le u \le 1 \\ & \sum_{k=0}^d \langle F_k, Y_{k,d_k}^n(t, u, v) \rangle \le -1 & -1 \le t \le 0.5 \\ & -1 \le u, v \le 1 \end{split}$$

Man beachte, dass d + 1 die Anzahl der multivariaten Gegenbauer-Polynome angibt, die wir zur Berechnung von $\vartheta_3^d(G(n))$ verwenden wollen. Der Index d_k gibt den Grad des symmetrischen Polynoms an, das zu dem Gegenbauer-Polynom vom Grad k gehört. Das bedeutet, dass die Matrix F_k für eine beliebige Funktion $f \in PD(S^{n-1}, e)$ beliebig groß werden kann. Um $\vartheta_3^d(G(n))$ berechenbar zu machen, muss also d_k für alle k fixiert werden.

Um die Nebenbedingung noch etwas konkreter zu formulieren, nehmen wir noch einige Umformungen vor. Dazu führen wir zunächst eine Symmetrisierung durch.

Definition 4.15. Sei

$$S_{k}^{n}(t, u, v) = \frac{1}{6} \sum_{\sigma \in S_{3}} Y_{k, d_{k}}^{n}(\sigma(t, u, v)),$$

wobei S_3 die symmetrische Gruppe ist.

Bemerkung. Der Beweis zu Theorem 4.14 wurde für e = (1, 0, ...) geführt. Durch eine orthonormale Basentransformation kann man jedoch die Aussage für einen beliebigen Punkt p benutzen. Dies ist einfach zu sehen, da $PD(S^{n-1}, p) = PD(S^{n-1}, Oe)$ für eine orthonormale Matrix O ist. Somit gilt für beliebige Punkte $p_1, p_2, ... \in S^{n-1}$

$$f((Op_i) \cdot Op_j, (Op_i) \cdot e, (Op_i) \cdot e) = f(p_i \cdot p_j, p_i \cdot p, p_i \cdot p).$$

Und damit ist die Matrix $(f((Op_i) \cdot Op_j, (Op_i) \cdot e, (Op_i) \cdot e))_{i,j}$ genau dann positiv semidefinit, wenn die Matrix $(f(p_i \cdot p_j, p_i \cdot p, p_i \cdot p))_{i,j} \succeq 0$ ist.

Theorem 4.16. Sei C eine unabhängige Menge des Graphen G(n). Also $C \subseteq S^{n-1}$ und für alle $x, y \in C$ gilt $x \cdot y \leq \frac{1}{2}$. Sei $F : (S^{n-1})^3 \mapsto \mathbb{R}$ eine Funktion, mit der Darstellung

$$F(x, y, z) = \sum_{k=0}^{\infty} \langle F_k, S_k^n(x \cdot y, y \cdot z, z \cdot x) \rangle, \qquad F_k \succeq 0.$$

Dann gilt

$$\sum_{(x,y,z)\in C^3} F(x,y,z) \ge 0.$$

Beweis. Der Beweis für dieses Theorem ist eine Folgerung aus 4.11 und aus der vorherigen Bemerkung.

Sei $O_z \in \mathcal{O}(n)$, sodass $O_z e = z$ ist, für ein $z \in S^{n-1}$. Dann gilt

$$\sum_{(x,y,z)\in C^3} F(x,y,z) = \sum_{z\in C} \sum_{(x,y)\in C^2} F(x,y,z)$$
$$= \sum_{z\in C} \sum_{(x,y)\in C^2} \sum_{k=0}^{\infty} \langle F_k, S_k^n(x\cdot y, y\cdot z, z\cdot x) \rangle$$
$$= \sum_{z\in C} \sum_{(x,y)\in C^2} \sum_{k=0}^{\infty} \langle F_k, S_k^n(O_z x\cdot O_z y, O_z y\cdot e, e\cdot O_z x) \rangle$$
$$\underset{\in PD(S^{n-1},e)}{\overset{(x,y)\in C^2}{\longrightarrow}}$$

Da die Matrix $\left(\sum_{k=0}^{\infty} \langle F_k, S_k^n(O_z x \cdot O_z y, O_z y \cdot e, e \cdot O_z x) \right)_{(x,y) \in C}$ positiv definit ist, gilt also

$$\sum_{(x,y,z)\in C^3} F(x,y,z) = \sum_{z\in C} \sum_{\substack{(x,y)\in C^2 \\ k=0}} \sum_{k=0}^{\infty} \langle F_k, S_k^n(O_z x \cdot O_z y, O_z y \cdot e, e \cdot O_z x) \rangle$$

$$\geq 0.$$

Mit dieser Aussage können wir nun beweisen, dass folgendes, semidefinite Programm eine obere Schranke für $\alpha(G(n))$ liefert. Die Definition und der anschließende Beweis basieren zum größten Teil auf [6].

Theorem 4.17. Es gilt $\alpha(G(n)) \leq \vartheta_4^{(d,p)}(G(n))$ wobei

$$\begin{split} \vartheta_4^{(d,p)}(G(n)) &= \min \ 1 + \langle F_0, S_0^n(1,1,1) \rangle \\ s.t. & F_k \succeq 0 & F_k \in \mathbb{R}^{p \times p} \ k = 0, ..., d \\ \sum_{k=0}^d \langle F_k, S_k^n(1,u,u) \rangle &\leq -\frac{1}{3} & -1 \leq u \leq \frac{1}{2} \\ \sum_{k=0}^d \langle F_k, S_k^n(t,v,u) \rangle &\leq 0 & -1 \leq u \leq v \leq t \leq \frac{1}{2} \end{split}$$

Beweis. Es seien F_0, F_1, \ldots, F_d Matrizen, die die Nebenbedingung des obigen Programms erfüllen. Es sei

$$F(x, y, z) = \sum_{k=0}^{d} \langle F_k, S_k^n(x \cdot y, y \cdot z, z \cdot x) \rangle.$$

Zusätzlich setzen wir noch

$$\Sigma = \sum_{(x,y,z) \in C^3} F(x,y,z)$$

für eine beliebige unabhängige Menge C von $\alpha(G(n))$ fest. Die Menge C^3 können wir wie folgt partitionieren:

$$C_{1} = \{(x, x, x) \in C^{3}\}$$

$$C_{2} = \{(x, y, z) \in C^{3} : |\{x, y, z\}| = 2\}$$

$$C_{3} = \{(x, y, z) \in C^{3} : |\{x, y, z\}| = 3\}.$$

Des Weiteren gilt $|C_1| = |C|$ und $|C_2| = 3|C|(|C| - 1)$. So können wir Σ mit dieser Partitionierung umsortieren. Mit Theorem 4.16 gilt:

$$0 \le \Sigma = \sum_{(x,x,x)\in C_1} F(x,x,x) + \sum_{(x,y,z)\in C_2} F(x,y,z) + \sum_{(x,y,z)\in C_3} F(x,y,z).$$

Nun können wir die Nebenbedingungen aus dem Programm anwenden :

$$0 \le \Sigma \le |C_1| \sum_{k=0}^d \langle F_k, S_k^n(1,1,1) \rangle - |C_2| \frac{1}{3}.$$

Die Ungleichungen aus dem Programm gelten, da $x \cdot y \leq \frac{1}{2}$ für alle $x, y \in C$ ist. Durch die Symmetrisierung können die Argumente so umsortiert werden, dass $u \leq v \leq t$ gilt. Man beachte, das $S_k^n(1, 1, 1) = 0$ gilt für alle k > 0. Wir haben also

$$0 \le \Sigma \le |C| \langle F_0, S_0^n(1, 1, 1) \rangle - |C|(|C| - 1).$$

Durch umstellen erhalten wir:

$$|C| \le 1 + \langle F_0, S_0^n(1, 1, 1) \rangle.$$

Die Erweiterung des Satzes von Schoenberg hat also ein semidefinites Programm geliefert, deren optimale Lösung eine obere Schranke für die Kusszahl angibt. Konkrete Möglichkeiten, diese optimale Lösung zu finden, diskutieren wir im nächsten Kapitel.

5 Rechenresultate

Die in Kapitel 3 und 4 erstellten Programme haben die Nebenbedingung, dass ein Polynom in einem bestimmten Intervall positiv sein soll. Dies bedeutet, dass wir hier mit überabzählbar vielen Nebenbedingungen arbeiten. Wir stellen zwei verschiedene Möglichkeiten vor, um damit umzugehen.

5.1 Diskretisierung

Die erste Möglichkeit ist, die Intervalle, in denen die Nebenbedingungen gelten müssen, zu diskretisieren. Das heißt, die Polynome werden nur an einer bestimmten Anzahl von Stützstellen innerhalb des Intervalls ausgewertet. Dies liefert schon für eine geringe Anzahl von Stützstellen gute Rechenresultate. Allerdings ist so nicht sichergestellt, dass die Nebenbedingungen auf dem gesamten Intervall erfüllt sind.

Bemerkung. Im folgenden sei $N \in \mathbb{N}$ die Anzahl der Teilintervalle, in die das Intervall $\left[-1, \frac{1}{2}\right]$ geteilt werden soll. Dann bezeichne

$$u_i = -1 + \frac{3}{2}iN^{-1}, \qquad i = 0, \dots, N$$

die äquidistanten Diskretisierungsstellen.

Die folgenden Optimierungsprobleme erhalten wir, wenn wir die Nebenbedingungen auf die Diskretisierungstellen einschränken.

Definition 5.1. Das diskretisierte Programm $\vartheta_2^{d,N}(G(n))$ mit N + 1 Stützstellen ist definiert durch:

$$\begin{split} \vartheta_{2}^{d,N}(G(n)) &= \min \ 1 + \sum_{k=0}^{d} f_{k} \\ s.t. & f_{k} \geq 0 & f \ddot{u} r \ k = 0, 1, ..., d \\ & \sum_{k=0}^{d} f_{k} G_{k}^{n}(u_{i}) \leq -1 & i = 0, ..., N \end{split}$$

Definition 5.2. Das diskretisierte Programm $\vartheta_4^{d,p,N}(G(n))$ mit N + 1 Stützstellen ist

definiert durch:

$$\begin{split} \vartheta_4^{(a,p,N)}(G(n)) &= \min \ 1 + \langle F_0, S_0^n(1,1,1) \rangle \\ s.t. & F_k \succeq 0 & F_k \in \mathbb{R}^{p \times p} \ k = 0, ..., d \\ \sum_{k=0}^d \langle F_k, S_k^n(1, u_i, u_i) \rangle &\leq -\frac{1}{3} & i = 0, ..., N \\ \sum_{k=0}^d \langle F_k, S_k^n(u_i, u_j, u_t) \rangle &\leq 0 & 0 \leq i \leq j \leq t \leq N \ i, j, t \in \mathbb{N} \end{split}$$

Abbildung 5.1 zeigt den Graph von $\sum_{k=0}^{d} f_k P_k^n(t)$ nach der Optimierung. Durch die Abbildung wird deutlich, dass eine zu geringe Anzahl an Stützstellen das Ergebnis entscheidend verfälschen kann. Für nur sechs Diskretisierungstellen sind die Nebenbedingungen auf großen Teilen des Intervalls verletzt. Erst für eine deutlich höhere Anzahl von Teilintervallen ist die Einhaltung der Nebenbedingungen gegeben. Für das semidefinite Programm fällt es noch schwerer zu verifizieren, dass eine ausreichende Anzahl von Stützstellen verwendet wurde.

Abbildung 5.1: Beispiel für zu grobe Diskretisierung

5.2 Sum-of-Squares

Eine andere Möglichkeit die Positivität eines Polynoms über einem bestimmten Intervall zu sichern bietet die "Sum-of-Squares"-Optimierung. Wir behandeln diese Methode hier nur oberflächlich. Für genauere Ausführungen wird auf [15], [17] und [13] verwiesen. Die Idee hierbei ist ein Polynom $f(x) = f(x_1, x_2, ..., x_n) \in \mathbb{R}[x_1, x_2, ..., x_n]$ mit dem Grad *d* als Summe von Quadraten von Polynomen darzustellen. Es werden also Polynome $p_0, p_1, ..., p_s \in \mathbb{R}[x_1, x_2, ..., x_n]$ gesucht, sodass

$$f(x) = \sum_{i=0}^{s} (p_i(x))^2$$

ist. Sei $z_{\frac{d}{2}}(x)$ der Vektor der Monome bis zum Grad $\frac{d}{2}$. Dann sind Polynome $p_i = c_i \cdot z_{\frac{d}{2}}(x)$ mit einem geeigneten Vektor c_i . Dies können wir benutzen, um das Polynom f durch eine positiv definite Matrix Q darzustellen:

$$f(x) = \sum_{i=0}^{s} (p_i(x))^2 = \sum_{i=0}^{s} (c_i^{\top} z_{\frac{d}{2}}(x))^2 = \sum_{i=0}^{s} z_{\frac{d}{2}}(x)^{\top} c_i c_i^{\top} z_{\frac{d}{2}}(x) = z_{\frac{d}{2}}(x)^{\top} Q z_{\frac{d}{2}}(x)$$

Hierbei wird deutlich, dass Q eine positiv definite, symmetrische Matrix ist. Diese Überlegungen führen zu folgender Definition:

Definition 5.3. Ein Polynom $f(x) = f(x_1, x_2, ..., x_n) \in \mathbb{R}[x_1, x_2, ..., x_n]$ ist ein "Sumof-Squares", wenn es ein $d \in \mathbb{N}$ und eine symmetrische, positiv definite Matrix $Q \in \mathbb{R}^{d \times d}$ gibt, sodass

$$f(x) = z_{\frac{d}{2}}(x)^{\top} Q z_{\frac{d}{2}}(x)$$

gilt.

Es ist klar, dass $f(x) \ge 0$ für alle $x \in \mathbb{R}^n$ gilt, wenn f ein "Sum-of-Squares" ist. In unserem speziellen Fall reicht es jedoch nicht aus, die Positivität für alle reellen Zahlen zu sichern. Wir benötigen die Positivität auf einem bestimmten Intervall. Um dies zu gewährleisten, benötigen wir den Positivstellensatz. In der Form ist dieser Satz aus [16] entnommen.

Theorem 5.4. Seien $p_1, p_2, ..., p_s \in \mathbb{R}[x_1, ..., x_n]$ Polynome. Sei

$$K = \{x \in \mathbb{R}^n : p_1(x) \ge 0, p_2(x) \ge 0, ..., p_s(x) \ge 0\}$$

eine kompakte algebraische Menge. Angenommen es gibt ein Polynom P in der Form $P = q + q_1p_1 + \ldots + q_sp_s$, wobei q und die q_i "Sum-of-Squares" sind, sodass die Menge $\{x \in \mathbb{R}^n : P(x) \ge 0\}$ kompakt ist. Dann kann jedes Polynom p, welches positiv auf K ist, geschrieben werden als

$$p = r + p_1 r_1 + \ldots + p_s r_s,$$

wobei das r und die r_i "Sum-of-Squares"sind.

Bemerkung. Insbesondere beinhaltet der Satz 5.4 auch die Notwendigkeit von Definition 5.3. Ein Polynom $f(x) = f(x_1, x_2, ..., x_n) \in \mathbb{R}[x_1, x_2, ..., x_n]$ ist also genau dann ein "Sum-of-Square", wenn

$$f(x) \ge 0 \quad \forall x \in \mathbb{R}^n$$

gilt.

Den Satz 5.4 können wir also ausnutzen, um die Nebenbedingungen der Programme umzuformulieren. Dazu verwenden wir beispielsweise das Polynom $p \in \mathbb{R}[x]$ mit

$$p(x) = -\left(x + \frac{1}{4}\right)^2 + \frac{9}{16}$$

Da p positiv auf dem Intervall $\left[-1, \frac{1}{2}\right]$ ist, können wir es verwenden um die Ungleichungen aus den Programmen zu ersetzen. So wird aus $\vartheta_2^d(G(n))$ das semidefinite Programm

$$\begin{split} \vartheta_2^d(G(n)) &= \min 1 + \sum_{k=0}^d f_k \\ s.t. & f_k \geq 0 & \text{für } k = 0, 1, ..., d \\ & \sum_{k=0}^d f_k G_k^n(t) = q(t) + p(t)q_1(t) & q, q_1 \text{ ,Sum-of-Squares"}. \end{split}$$

Aus $\vartheta_4^{(d,p)}(G(n))$ wir mit der Hilfe der "Sum-of-Squares"-Optimierung

$$\begin{split} \vartheta_4^{(d,p)}(G(n)) &= \min 1 + \langle F_0, S_0^n(1,1,1) \rangle \\ s.t. & F_k \succeq 0 & F_k \in \mathbb{R}^{p \times p} \quad k = 0, ..., d \\ &- \sum_{k=0}^d \langle F_k, S_k^n(1,u,u) \rangle - \frac{1}{3} = q(u) + p(u)q_1(u) & q, q_1 \text{ ,,Sum-of-Squares}^{"} \\ &- 1 - \sum_{k=0}^d \langle F_k, S_k^n(t,v,u) \rangle = C & r, r_i \text{ ,,Sum-of-Squares}^{"} \\ &i = 1, 2, 3 \end{split}$$

 mit

$$C = r(t, u, v) + p(t)r_1(t, u, v) + p(u)r_2(t, u, v) + p(v)r_3(t, u, v).$$

5.3 Ergebnisse

Alle folgenden Berechnungen wurden in Matlab durchgeführt. Als Modellierungssprache wurde "Yalmip" in der Version R20130213 benutzt, [3], und der verwendete Solver war "SeDuMi" in der Version 1.3, [2]. Der Testrechner war mit einem "Intel Core Duo T5800" Prozessor mit 2 Ghz und 4 Gb Arbeitsspeicher ausgestattet. Das Betriebssystem war "Windows 8" in der 64-bit Variante.

Wir diskutieren zunächst die Unterschiede zwischen der Diskretisierung und der "Sumof-Square"-Methode am Beispiel der LP-Methode. Wie man in den unteren Quellcode-Ausschnitten sehen kann, werden bei der Diskretisierung N + 1 Nebenbedingungen erstellt, um die Ungleichung der Programme zu simulieren. Bei der "Sum-of-Square"- Methode hingegen haben wir nur vier Nebenbedingungen. Jedoch benötigen wir dafür eine Vielzahl an zusätzlichen Optimierungsvariablen, die die Koeffizienten der "Sumof-Squares" angeben. Außerdem verbirgt sich hinter den Nebenbedingungen sos(r)sowie sos(r1) jeweils wieder ein semidefinites Optimierungsproblem. Die Lösung dieser Optimierungsprobleme ist in "Yalmip" jedoch automatisiert. Die weitere Nebenbedingung 0==coe+M*f+[1 zeros(1,d)], sichert die Gleichheit der Polynome durch einen Vergleich der Koeffizienten. Die Matrix M enthält zeilenweise die Koeffizienten der Gegenbauer-Polynome.

```
f=sdpvar(d+1,1);
Constraints=[f>=0];
for j=-1:(3/2)*N^-1:0.5
    Constraints=Constraints+[polyev(M*f,j)<=-1];
end
Objective=1+sum(f);
```

Code 5.1: Definition der diskretisierten Nebenbedingungen

```
%Dptimierungsvariablen
f=sdpvar(d+1,1);
sdpvar x;
c=sdpvar(d+1,1);
c1=sdpvar(d-1,1);
%Sum of Squares
r=monolist(x,d)'*c;
r1=monolist(x,d-2)'*c1;
"Berechnung der Koeffizienten von r+p_1*r_1
coe=c;
coe(1:d-1)=coe(1:d-1)+(1/2)*c1;
coe(2:d)=coe(2:d)-(1/2)*c1;
coe(3:d+1)=coe(3:d+1)-c1;
Webenbedingungen und Zielfunktion
Constraints=[f>=0,sos(r),sos(r1),0==coe+M*f+[1 zeros(1,d)]'];
Objective=1+sum(f);
```

Code 5.2: Definition der "Sum-of-Squares" Nebenbedingungen

Die Tabellen 5.1 und 5.2 zeigen einen direkten Vergleich von dem Ansatz der Diskretisierung und der "Sum-of-Squares"-Methode. Sie zeigen die Ergebnisse und die Rechenzeit in Sekunden für verschiedene Übergabeparameter. Was in beiden Tabellen auffällt, ist, dass für $d \ge 12$ nahezu keine Veränderung in der optimalen Lösung mehr auftritt. Diese Beobachtung deckt sich mit den Ergebnissen von Vallentin und Mittelmann, die 2009 in [11] veröffentlicht wurden. Des Weiteren bemerkt man, dass die Rechenzeiten für die "Sum-of-Squares"-Methode in allen Fällen wesentlich niedriger

ausfallen, als die Rechenzeit für die diskretisierten Programme. Dies ist hauptsächlich durch die hohe Anzahl von Stützstellen zu erklären. Für niedrige Werte für d und n kann man dieselben Ergebnisse mit wesentlich weniger Stützstellen erwarten. Jedoch sieht bei hohen Werten von d und n, dass die Ergebnisse der diskretisierten Programme niedriger ausfallen, als die der "Sum-of-Squares"-Methode. Dies kann ein Hinweis auf eine zu niedrige Anzahl an Diskretisierungsstellen sein. Zusammenfassend ist die "Sum-of-Squares"-Methode der Diskretisierung sowohl in Effizienz, als auch in Genauigkeit überlegen. Der Nachteil an der "Sum-of-Squares"-Methode ist, neben der komplexeren Theorie, auch die aufwendigere Implementierung.

	d=11		d=12		d=13		d=14	
n	$\vartheta_2^d(G(n))$	Zeit	$\vartheta_2^d(G(n))$	Zeit	$\vartheta_2^d(G(n))$	Zeit	$\vartheta_2^d(G(n))$	Zeit
3	13,1582	1,66	13,1582	1,48	13,1582	1,49	13,1582	1,54
4	$25,\!5544$	$1,\!36$	$25,\!5544$	$1,\!42$	25,2044	$1,\!54$	25,5544	1,71
5	46,3286	$2,\!05$	46,3286	$1,\!47$	46,3286	$1,\!69$	46,3286	$1,\!83$
6	82,6106	$1,\!61$	82,6106	1,78	82,6106	$1,\!99$	82,6106	$1,\!90$
7	140, 1486	$2,\!20$	140,1486	$2,\!04$	140,1486	1,73	140,1486	1,75
8	240,0000	$1,\!38$	240,0000	$1,\!47$	240,0000	$1,\!63$	240,0000	1,78
9	382,0718	$1,\!48$	380,0057	$2,\!03$	380,0057	$2,\!21$	380,0057	$2,\!27$
10	$604{,}5316$	$1,\!50$	595,7865	$1,\!62$	595,7865	$1,\!61$	595,7865	$1,\!80$

Tabelle 5.1: Berechnung von $\vartheta_2^d(G(n))$ mit N=50 Diskretisierungstellen

	d=11		d=12		d=13		d=14	
n	$\vartheta_2^d(G(n))$	Zeit	$\vartheta_2^d(G(n))$	Zeit	$\vartheta_2^d(G(n))$	Zeit	$\vartheta_2^d(G(n))$	Zeit
3	$13,\!1583$	$1,\!98$	13,1583	$0,\!99$	13,1583	$1,\!08$	13,1583	$1,\!02$
4	$25,\!5584$	$1,\!20$	25,5584	$1,\!13$	$25,\!5584$	$1,\!35$	$25,\!5584$	$1,\!45$
5	$46,\!3376$	$1,\!08$	46,3376	$1,\!00$	46,3376	$1,\!04$	46,3376	$1,\!04$
6	82,6312	$1,\!01$	82,6312	$1,\!04$	82,6312	$1,\!09$	82,6312	$1,\!03$
7	140,1624	$0,\!99$	140,1624	$0,\!99$	140,1624	$1,\!07$	140,1624	$1,\!03$
8	240,0000	$1,\!03$	240,0000	$1,\!07$	240,0000	$1,\!09$	240,0000	$1,\!29$
9	$382,\!1260$	1,02	380,0991	$1,\!07$	380,0991	$1,\!10$	380,0991	$1,\!08$
10	$605,\!0000$	1,06	595,8288	$1,\!09$	$595,\!8288$	$1,\!15$	$595,\!8288$	$1,\!11$

Tabelle 5.2: Berechnung von $\vartheta_2^d(G(n))$ mit "Sum-of-Squares "

Die folgende Tabelle wurde mit der Hilfe der SDP-Methode und Diskretisierung erstellt. Sie enthält die übergebenen Parameter, die Ergebnisse, sowie die benötigte Zeit in Sekunden. Durch die vorherigen Betrachtungen und die Ausführungen von Mittelmann und Vallentin ist davon auszugehen, dass sich die Ergebnisse für höhere Werte von d noch weiter verbessern werden. Jedoch liefert der verwendete Solver "SeDuMi" für d > 10 keine brauchbare Ergebnisse mehr. Um die von Mittelmann und Vallentin veröffentlichen Ergebnisse zu erzielen, werden Solver mit einer höheren Genauigkeit benötigt. Mittelmann und Vallentin verwendeten beispielsweise "SDPA-GMP" [12] um die in Tabelle 5.3 vorgestellten Ergebnisse zu erzielen. Dieser Solver ist jedoch nicht nur wesentlich genauer, sondern auch wesentlich langsamer. Die Berechnungen dauerten schon für d = 12 pro Fall zwischen fünf und zehn Wochen. Dennoch zeigt die Tabelle, dass die SDP-Methode auch für geringe Werte von N und d weitaus genauere Ergebnisse liefert als die LP-Methode. Jedoch kann man an der Tabelle auch den für höhere Parameter stark ansteigenden Aufwand ablesen.

n	d	Ν	$\vartheta_4^{d,N}(G(n))$	Zeit
3	8	10	12,284	15, 19
4	8	10	24,242	12,09
5	8	15	45,513	$33,\!97$
6	8	20	79,717	89,10
7	8	20	136,921	98,11
8	10	30	240	444,85
9	9	25	$367,\!840$	$213,\!60$
10	9	25	$574,\!399$	$259,\!54$

Tabelle 5.3: $\vartheta_4^{d,N}$ mit der SDP-Methode

Die folgende Tabelle ist ein kompletter Überblick über die bisher bekannten oberen und unteren Grenzen für die Kusszahl. Die Daten für die LP-Methode basieren auf eigenen Berechnungen. Die übrigen Daten sind aus [11] entnommen.

n	unter	LP	SDP	endeckt von	Jahr
	Grenze	Methode	Methode		
3	12	13	12	Schütte, v.d. Waerden	1953
4	24	25	24	Musin	2008
5	40	46	44	Mittelmann, Vallentin	2009
6	72	82	78	Bachoc, Vallentin	2008
7	126	140	134	Mittelmann, Vallentin	2009
8	240	240	240	Odlyzko, Sloane, Levenshtein	1979
9	306	380	364	Mittelmann, Vallentin	2009
10	500	595	554	Mittelmann, Vallentin	2009
11	582	915	870	Mittelmann, Vallentin	2009
12	840	1416	1357	Mittelmann, Vallentin	2009
13	1130	2233	2069	Mittelmann, Vallentin	2009
14	1582	3492	3182	Mittelmann, Vallentin	2009
15	2564	5431	4866	Mittelmann, Vallentin	2009
16	4320	8313	7355	Mittelmann, Vallentin	2009
17	5346	12218	11072	Mittelmann, Vallentin	2009
18	7398	17877	16572	Mittelmann, Vallentin	2009
19	10668	25900	24812	Mittelmann, Vallentin	2009
20	17400	37974	36764	Mittelmann, Vallentin	2009
21	27720	56851	54584	Mittelmann, Vallentin	2009
22	49896	86537	82340	Mittelmann, Vallentin	2009
23	93150	128095	124416	Mittelmann, Vallentin	2009
24	196560	196560	196560	Odlyzko, Sloane, Levenshtein	1979

6 Fazit

In dieser Arbeit haben wir die Methoden, die heute für die Berechnung von Schranken für die Kusszahl verwendet werden, vorgestellt und hergeleitet. Dabei haben wir die Entwicklung der momentan aktuellen Lösungsstrategien in chronologischer Reihenfolge nachvollzogen. Als Ergebnis haben wir zwei aufeinander aufbauende Methoden zur Berechnung von oberen Schranken für die Kusszahl erhalten.

Am Anfang haben wir nach Methoden gesucht, um das Kusszahl-Problem in ein mathematisches Optimierungsproblem zu transformieren. Dazu haben wir Konfigurationen von Kugeln aus graphentheoretischer Sicht betrachtet. Die zentrale Kugel wurde mit der Einheitssphäre S^{n-1} assoziiert und die Kusszahl wurde als Kardinalität einer unabhängigen Knotenmenge interpretiert. Diese Herangehensweise ermöglichte es uns, die Lovázs ϑ -Funktion auszunutzen. Die Lovázs ϑ -Funktion ist die optimale Lösung eines semidefiniten Optimierungsproblems und gibt eine obere Schranke für die Unabhängigkeitszahl eines Graphen an.

Um den Lösungsraum $\mathcal{C}(S^{n-1} \times S^{n-1})^{\succeq 0}$ der Lovázs ϑ -Funktion zu parametrisieren, haben wir den Ansatz verfolgt, uns auf $\mathcal{O}(n)$ -invariante Kerne zu beschränken. So konnten wir mit der Hilfe des Satzes von Schoenberg den Lösungsraum als Span der Gegenbauer-Polynome sehen und über die Koeffizienten von Linearkombinationen optimieren. Das Ergebnis war die LP-Methode.

Darauf hin haben wir die Idee verfolgt, einen Punkt auf der Einheitssphäre zu fixieren. Dazu haben wird den Unterraum von $\mathcal{C}(S^{n-1} \times S^{n-1})^{\succeq 0}$ betrachtet, der invariant unter Operationen des Stabilisators von e in $\mathcal{O}(n)$ ist. Dies führte uns zu den multivariaten Gegenbauer-Polynomen und zu einer Erweiterung des Satzes von Schoenberg. So wurde es möglich Lösungskandidaten aus dem Raum $PD(S^{n-1}, e)$ mit der Hilfe von semidefiniten Matrizen zu charakterisieren. Diese Betrachtungen machten das Problem für semidefinite Lösungsalgorithmen geeignet und resultierten in der SDP-Methode.

Bei beiden Methoden wurde die Positivität eines Polynoms in einem bestimmten Intervall gefordert. In dieser Form bedeutet dies, dass wir überabzählbar viele Nebenbedingungen haben. Abschließend haben wir verschiedene Rechenmethoden vorgestellt, um mit infiniten Nebenbedingungen umzugehen. Zum einen haben wir versucht, das Intervall zu diskretisieren und zum andern haben wir die "Sum-of-Square"-Methode zusammengefasst. Zum Schluss haben wir die so gewonnenen Rechenergebnisse miteinander verglichen und interpretiert. Dabei hat sich herausgestellt, dass die SDP-Methode einerseits deutlich bessere Schranken für die Kusszahl liefert als die LP-Methode, andererseits aber auch wesentlich mehr Rechenaufwand fordert. Jedoch wird die Lücke zwischen den besten, bekannten oberen und unteren Schranken mit ansteigender Dimension immer größer. Ein möglicher Ansatz, die Ergebnisse weiter zu verbessern, wäre es, weitere Punkte auf der Einheitssphäre zu fixieren. Die theoretische Grundlage dafür wurde von Musin in [14] bereits veröffentlicht. Dabei steigt jedoch die Anzahl der Optimierungsvariablen stark an. So würde man schon für einen weiteren fixierten Punkt mit Polynomen in fünf Variablen arbeiten. Da die Größe einer Polynombasis mit der Anzahl der Veränderlichen exponentiell ansteigt, ist jedoch mit einen viel höheren Aufwand zu rechnen. Weil die SDP-Methode schon sehr lange Rechenzeiten in Anspruch nimmt, wird die Berechnung bei diesem Ansatz die meisten Probleme aufwerfen.

Literaturverzeichnis

- [1] http://de.wikipedia.org/wiki/Kusszahl.
- [2] Sedumi. http://sedumi.ie.lehigh.edu/.
- [3] Yalmip. http://users.isy.liu.se/johanl/yalmip/.
- [4] H.W. Alt. *Lineare Funktionalanalysis:*. Springer London, Limited, 2007.
- [5] S. Bochner. Hilbert distances and positive definite functions. Annals of Mathematics, 1941.
- [6] C. Dion A. Schrijver F. Vallentin C. Bachoc, Gijswijt. In Handbook on Semidefinite, Conic and Polynomial Optimization, volume 166, pages 219–269. 2012.
- [7] F. Vallentin C. Bachoc. New upper bounds for kissing numbers from semidefinite programming. *Journal of the American Mathematical Society*, 21:909–924, 2007.
- [8] P. Delsarte. An Algebraic Approach to the Association Schemes of Coding Theory. N.V. Philips' Gloeilampenfabrieken, 1973.
- [9] F.M.O. Filho. New Bounds for Geometric Packing and Coloring Via Harmonic Analysis and Optimization. http://books.google.de/books?id=8Ib-ZwEACAAJ, 2009.
- [10] O. Forster. Analysis 3. Vieweg, 2007.
- [11] F. Vallentin H. D. Mittelmann. High accuracy semidefinite programming bounds for kissing numbers. *Experimental Mathematics*, 19:174–178, February 2009.
- [12] K. Kobayashi M. Kojima K. Nakata M. Nakata M. Yamashita K. Fujisawa, M. Fukuda. Sdpa (semidefinite programming algorithm) and sdpa-gmp user's manual. 2008.
- [13] J. Lofberg. Pre- and post-processing sum-of-squares programs in practice. Automatic Control, IEEE Transactions on, (5), 2009.
- [14] O. R. Musin. Multivariate positive definite functions on spheres. ArXiv e-prints, 2007.
- [15] P. A. Parrilo. Structured semidefinite programs and semialgebraic geometry me-

thods in robustness and optimization. Technical report, 2000.

- [16] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal, 42(3):969–984, 1993.
- [17] T. Wörmann R. Berr. Positive polynomials on compact sets. manuscripta mathematica, 104:135–143, 2001.
- [18] G. P.H. Styan. Hadamard products and multivariate statistical analysis. *Linear Algebra and its Applications*, 6:217 240, 1973.
- [19] F. Vallentin. New applications of semidefinite programming. https://sites. google.com/site/arcminicourse/home, 2011.

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe.

Ort, Datum, Unterschrift