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Zusammenfassung

Das Ziel der vorgelegten Arbeit ist die Entwicklung von numerischen Methoden zur
Lösung gemischt–ganzzahliger optimaler Steuerungsprobleme. Sie führt dabei in die
Grundlagen der optimalen Steuerung und der ganzzahligen Programmierung ein, um
auf diesen aufbauend einen neuen Algorithmus zu entwickeln. Dieser ist durch theo-
retische Resultate motiviert und basiert auf Bocks direkter Mehrzielmethode, einer
Konvexifizierung wie Relaxierung des Ausgangsproblemes, einer adaptiven Verfeine-
rung des unterliegenden Kontrolldiskretisierungsgitters und ganzzahligen Methoden
heuristischer oder deterministischer Art. Seine Anwendbarkeit wird anhand einer
Vielzahl von Referenzproblemen aus der Literatur und erstmals lösbaren Anwen-
dungsproblemen aufgezeigt. Die in dieser Arbeit vorgestellten Neuerungen beinhal-
ten

• einen rigorosen Beweis, dass die optimale Lösung eines konvexifizierten und
relaxierten Steuerungsproblemes eine untere Schranke liefert, die beliebig ge-
nau durch eine ganzzahlige Lösung approximiert werden kann. Dieses wird für
eine sehr allgemeine Problemklasse gezeigt, in der die rechte Seite nichtline-
ar von differentiellen und algebraischen Zuständen wie von Parametern und
gewöhnlichen Steuerfunktionen abhängen kann.

• einen auf diesem Beweis beruhenden Algorithmus, der unter gewissen Bedin-
gungen und Vorgabe einer Toleranz eine ganzzahlige Lösung mit einem Ziel-
funktionswert liefert, der dichter als diese Toleranz am optimal erreichbaren
Wert liegt.

• neue Heuristiken, die eine Enumeration der ganzzahligen Variablen vermeiden
und durch eine Kombination mehrerer Konzepte die Strukturen von optimalen
Lösungen relaxierter Probleme ausnutzen.

• die Lösung mehrerer, aus unterschiedlichsten Gründen anspruchsvoller Opti-
mierungsaufgaben. Die in dieser Arbeit gelösten Steuerungsprobleme beinhal-
ten Transitionsstufen, gekoppelte und entkoppelte Innere Punkte Gleichungs–
und Ungleichungsbeschränkungen, Pfad– und Steuerbeschränkungen, differen-
tielle und algebraische Variablen, zeitunabhängige Parameter, freie Stufendau-
ern und kontinuierliche wie ganzzahlige Steuerfunktionen. Es werden ferner
Probleme behandelt, die extrem instabil sind oder zustandsabhängige Unste-
tigkeiten aufweisen.

• die Entwicklung eines Softwarepaketes, mit dem gemischt–ganzzahlige opti-
male Steuerungsprobleme effizient und generisch gelöst werden können, ohne
analytische Vorarbeiten leisten zu müssen.

Ein wichtiges Ergebnis dieser Arbeit ist, dass gemischt–ganzzahlige optimale Steue-
rungsprobleme, trotz der hohen Komplexität der Problemklasse vom theoretischen
Standpunkt aus, in der Praxis oft ohne exponentielle Laufzeiten lösbar sind.



Abstract

This thesis aims at developing numerical methods for mixed–integer optimal control
problems. Based on the foundations of optimal control and integer programming a
new algorithm is developed. This algorithm is motivated by theoretical results and
based on Bock’s direct multiple shooting method, a convexification and relaxation of
the original problem, an adaptive refinement of the underlying control discretization
grid and deterministic as well as heuristic integer methods. Its applicability is shown
by a number of reference problems from the literature and applications that can be
solved for the first time. The novelties presented in this thesis include

• a rigorous proof that the optimal solution of a convexified and relaxed control
problem yields a lower bound that can be approximated arbitrarily close by an
integer solution. This is shown for a very general problem class, in which the
right hand side may depend nonlinear on differential and algebraic states as on
parameters and ordinary control functions.

• an algorithm based upon this proof that, under certain conditions and given a
tolerance, yields an integer solution that has an objective function value closer
than the prescribed tolerance to the lower bound.

• novel heuristics that avoid an enumeration of the integer variables and exploit
the structures of optimal solutions of relaxed problems by a combination of
several concepts.

• the solution of several, for different reasons challenging optimization tasks. The
control problems that are being solved in this work contain transition stages,
coupled and decoupled interior point inequality and equality constraints, path
and control constraints, differential and algebraic variables, time–independent
parameters, free stage lengths and continuous as well as binary control func-
tions. Furthermore we treat problems that are extremely unstable and contain
state–dependent discontinuities.

• the development of a software package that solves efficiently and generically
mixed–integer optimal control problems, without the need for analytic a priori
work.

One important result of this work is that mixed–integer optimal control problems
can, despite the high complexity of the problem class from a theoretical point of
view, in practice often be solved without exponential running times.



Chapter 0

Introduction

Mathematical modeling, simulation and optimization techniques had a great impact
in the history of mankind and helped to understand and improve many processes of
different kinds. The term process in the broadest sense is understood as defined in
the online encyclopedia Wikipedia (2005):

Process (lat. processus - movement) is a naturally occurring or designed
sequence of operations or events, possibly taking up time, space, expertise or
other resource, which produces some outcome. A process may be identified
by the changes it creates in the properties of one or more objects under its
influence.

Since first pioneering works, most of them in the middle of the last century, more and
more complex processes from economy, physics, engineering, chemistry and biology
have been simulated, analyzed and optimized by mathematical methods. This work
is meant as a contribution to the further extension of the class of processes that can
be investigated in this sense with mathematical methods.
One very intuitive way of understanding what this work is about, is to think about
a simple switch that can be either on or off. This switch is connected to a complex
system and influences it in a certain way. For example a subway with a discrete gear
is either accelerated if the switch is on — or it is not accelerated if the switch is off.
In optimization one usually has an objective and constraints that one wants to be
fulfilled. To stick to the above subway example, reaching a target station in a certain
time is one constraint that has to be fulfilled and doing so with minimum energy is
a possible objective. The question we want to answer for such systems is: given a
mathematical model, constraints and an objective function, how can we operate the
switch in an optimal way? This question arises whenever time–dependent yes–no
decisions have to be made, e.g., for certain types of valves or pumps in engineering,
investments in economics, or the choice of discrete operation modes in vehicles.
The optimization of processes that can be described by an underlying system of
differential and algebraic equations with so–called control functions is referred to as
optimal control. Whereas this expression is based upon common agreement, there
are several names for optimal control problems containing binary or integer variables
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2 CHAPTER 0. INTRODUCTION

in the literature. Sometimes it is referred to as mixed–integer dynamic optimization
or mixed-logic dynamic optimization (MIDO or MLDO, see, e.g., Oldenburg et al.
(2003)), sometimes as hybrid optimal control (e.g., Antsaklis & Koutsoukos (1998),
Sussmann (1999) or Buss et al. (2002)), sometimes as a special case of mixed–integer
nonlinear program (MINLP) optimization. As controls that take only values at their
boundaries are known as bang–bang controls in the optimal control community, very
often expressions containing bang–bang are used, too (e.g., Maurer & Osmolovskii
(2004)). Although there may be good reasons for each of these names, we will use the
expressions mixed–integer optimal control (MIOC) and mixed–integer optimal control
problem (MIOCP) in this dissertation. The reason is that the expression mixed–
integer describes very well the nature of the variables involved and is well–established
in the optimization community, while optimal control is used for the optimization
of control functions and parameters in dynamic systems, whereas the term dynamic
optimization might also refer to parameter estimation or optimal experimental design,
e.g., Körkel (2002).
As diverse as the names for the problem class are the ways to approach it. These
approaches are typically based upon either one of two different points of view:

• MIOCPs can be seen as members of the mixed–integer problem family, as
are mixed–integer linear programs (MILP), mixed–integer quadratic programs
(MIQP), mixed–integer nonlinear programs (MINLP) or others. The difference
between MIOCPs and other mixed–integer problems then is that the subprob-
lems with fixed or relaxed integer functions resp. variables are optimal control
problems instead of linear, quadratic or nonlinear programs.

• A MIOCP can be seen as a special kind of optimal control problem, where
restrictions on the control functions are added.

The first point of view makes clear, why the problem class under consideration is
so extremely difficult and no general purpose algorithms exist that yield acceptable
results for all problem instances. Static, pure integer optimization problems that
consist of a convex quadratic function and linear constraints are a subclass of the
problem class under consideration here. Such problems and therefore the general
class of MINLPs were proven to be NP–hard, Garey & Johnson (1979), Murty
(1987), Vavasis (1995). This means from a theoretical point of view, if NP 6= P,
then there are problem instances which are not solvable in polynomial time.
For optimal control problems the direct methods, in particular all–at–once approaches,
Bock & Plitt (1984), Bär (1984), Biegler (1984), have become the methods of choice
for almost all practical control problems. These methods are based upon a discretiza-
tion of the infinite–dimensional control space to a finite–dimensional one. For many
problems a high accuracy in the approximation of the control space is necessary
which results in a high number of binary control variables and, as mentioned above,
to a high overall computing time.
From the second point of view it is well known that for certain systems, in particular
linear ones, so–called bang–bang controls are optimal. On the other hand it is not
clear what to do if this is not the case and the feasible set of the controls is a priori
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restricted to two (or more) discrete values only. Here new methods are needed that
determine automatically the optimal switching structure and the optimal switching
times between the discrete values.

Although the first mixed–integer optimal control problems, namely the optimization
of subway trains that are equipped with discrete acceleration stages, were already
solved in the early eighties by Bock & Longman (1982) for the city of New York, the
so–called indirect methods used there do not seem appropriate for generic large–scale
optimal control problems with underlying nonlinear differential algebraic equation
systems. Most progress after this pioneering work has been achieved in the fields of
MINLP and recently also for the solution of optimal control problems with time–
independent binary parameters respectively logical decisions.

Several authors treat optimal control problems in chemical engineering where binary
parameters often occur as design alternatives, e.g., the location of the feed tray for
distillation columns or a mode of operation. This is either done by assuming phase
equilibrium, i.e., a steady state of the process, and solving a static optimization
problem, e.g., Duran & Grossmann (1986), Grossmann et al. (2005), or by solving
time–dependent dynamic subproblems, e.g., Schweiger & Floudas (1997) or Olden-
burg et al. (2003). The algorithmic approaches are extensions of the algorithms de-
veloped for MINLPs, possibly in a form that is based on disjunctive (or logic–based)
programming, see Turkay & Grossmann (1996) or Oldenburg (2005). A compari-
son between results from integer programming and from disjunctive programming is
given in Grossmann et al. (2005).

As most practical optimization problems in engineering are nonconvex, several au-
thors extended methods from static optimization that seek the global optimum, e.g.,
Esposito & Floudas (2000) and Papamichail & Adjiman (2004). Both present spa-
tial Branch & Bound algorithms for dynamic systems. For spatial Branch & Bound
schemes that are built upon an underestimation of the objective function and an over-
estimation of the feasible set by appropriate convex functions, Floudas et al. (2005)
claim considerable progress. Barton & Lee (2004) and Lee et al. (2004) determine
theoretical results on when optimal control problems are convex.

In the theory of hybrid systems one distinguishes between state dependent and con-
trollable switches. For the first class, the switching between different models is caused
by states of the optimization problem, e.g., ground contact of a robot leg or over-
flow of weirs in a distillation column. For the second class, which is the one we are
interested in in this work, the switchings are degrees of freedom. Algorithms for the
first class are given in Barton & Lee (2002) and Brandt-Pollmann (2004). For the
second class the literature reports mainly on discrete time problems, for which the
optimization problem is equivalent to a finite–dimensional one which can be solved
by methods from MINLP. Introductions to the theory of hybrid systems are given in
Antsaklis & Koutsoukos (1998) and Johansson et al. (2004). Recent research includes
Zhang et al. (2001) and Stursberg et al. (2002).

Theoretical results on hybrid systems have been determined, e.g., by Sussmann
(1999) and Shaikh (2004). Based on hybrid maximum principles or extensions of
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Bellman’s equation approaches to treat switched systems have been proposed, e.g.,
by Shaikh & Caines (2006), Attia et al. (2005) or Alamir & Attia (2004), that extend
indirect methods or dynamic programming.

Direct methods have been applied only rarely to problems including discrete valued
control functions so far. Burgschweiger et al. (2004) investigate a water distribution
network in Berlin with on/off pumps, using a problem specific, nonlinear, continuous
reformulation of the control functions. Terwen et al. (2004) treat powertrain control
of heavy duty trucks with a rounding heuristics for the optimal gear choice on a
fixed control discretization in a model predictive control context. Kaya & Noakes
(1996), Kaya & Noakes (2003), Lee et al. (1999) and Rehbock & Caccetta (2002) use
a switching time approach related to the one described in section 5.2. Buss et al.
(2002) and Stryk & Glocker (2000) focus on problems in robotics, applying a com-
bination of Branch and Bound and direct collocation.

Goals and results of this thesis

All named approaches to the problem class of mixed–integer optimal control problems
and in particular to the treatment of binary control functions have drawbacks at one
point or another that will be pointed out in the course of this thesis. The goal of
this work is to derive methods that can be applied to a broad class of mixed–integer
optimal control problems from different application areas with possibly completely
different characteristics as dimension, stability or stiffness of the underlying dynamic
system, involving algebraic variables, continuous control functions and parameters
and path as well as interior point constraints. The methods are meant to work
for systems regardless of the type of solution from a theoretical point of view, i.e.,
whether an optimal trajectory contains singular or bang–bang arcs resp. constraint–
seeking or compromise–seeking arcs. The main contribution of this work consists of
a development of algorithms that solve problems fitting into this problem class to
optimality without any a priori assumptions on the solution structure.

We propose a novel approach that is based on an all–at–once approach, namely
Bock’s direct multiple shooting method, Bock & Plitt (1984), that has been applied
successfully to a huge variety of challenging problems in industry and research and
has advantages compared to other methods of optimal control as will be pointed
out in this thesis. We treat the binary control functions by iterating on an adaptive
refinement of the control discretization grid, making use of a convex relaxation of the
original optimal control problem. We prove that this reformulated problem yields an
objective value that can be reached up to any given ε > 0 by binary control func-
tions. Upper bounds are obtained by solution of intermediate problems with fixed
dimension on the given control discretization grids. Several methods, among them
different rounding heuristics and deterministic approaches as Branch & Bound as
well as a penalty term homotopy are presented to solve these intermediate problems
and advantages resp. disadvantages are discussed.
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The novelties presented in this thesis include

• a rigorous proof that the optimal solution of a convexified and relaxed control
problem yields a lower bound that can be approximated arbitrarily close by an
integer solution. This is shown for a very general problem class, in which the
right hand side may depend nonlinear on differential and algebraic states as on
parameters and ordinary control functions.

• an algorithm based upon this proof that, under certain conditions and given a
tolerance, yields an integer solution that has an objective function value closer
than the prescribed tolerance to the lower bound.

• novel heuristics that avoid an enumeration of the integer variables and exploit
the structures of optimal solutions of relaxed problems by a combination of
several concepts.

• the solution of several, for different reasons challenging optimization tasks. The
control problems that are being solved in this work contain transition stages,
coupled and decoupled interior point inequality and equality constraints, path
and control constraints, differential and algebraic variables, time–independent
parameters, free stage lengths and continuous as well as binary control func-
tions. Furthermore we treat problems that are extremely unstable and contain
state–dependent discontinuities.

• the development of a software package that solves efficiently and generically
mixed–integer optimal control problems, without the need for analytic a priori
work.

The theoretical results obtained allow a decoupling of the problems to find the optimal
binary parameters and the optimal binary control functions, which will speed up the
computing time for problems involving both types of discrete decisions significantly.
To show the broad applicability of the developed methods, several case studies and
applications are treated within this thesis. Case studies are examples from the lit-
erature resp. a new benchmark problem for which the solution structure is known
and the behavior of our methods can be analyzed in detail. Three challenging ap-
plications from mechanics, cell biology and chemical engineering are presented and
solved.
One important result of this work is that mixed–integer optimal control problems
can, despite the high complexity of the problem class from a theoretical point of view,
in practice often be solved without exponential running times. This is due to the
fact that relaxed linear problems often have bang–bang arcs in the optimal solution
for which the main task is to determine the switching structure and points. Both can
be done efficiently by our proposed approach. For path–constrained or singular arcs
the same approach of relaxation and adaptive refinement of the control discretization
grid is the basis for a novel rounding heuristics that is tailored to the special ordered
set type one structure of the convexified control functions and the intuitively clear
fact that solutions in the interior have to be approximated by frequent switching.
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Thesis overview

In this work we describe dynamic processes involving switches, but also other, con-
tinuous, control functions and time-independent variables in a mathematical way. In
chapter 1 we will give a very general definition of multistage mixed–integer optimal
control problems with underlying systems of differential–algebraic equations, state,
control and interior point constraints. Three examples will be given to familiarize
the reader with the problem class. In our novel problem formulation we distinguish
between time–independent and time–dependent integer variables and consider cases
when fixed time grids are given for the controls. In the latter case, the structure
of the optimization problem corresponds more to time–independent variables and
methods from integer programming have to be applied that avoid a complete enu-
meration, but still deliver the globally optimal solution.

In chapter 2 we will investigate optimal control problems without binary variables
to create a basis for methods and theory to be presented in later chapters. First we
present optimality conditions for optimal control problems, based on Pontryagin’s
maximum principle, and highlight the solution structure and how it depends on
switching functions. In this context we explain the differences between constraint–
seeking and compromise–seeking arcs on the one hand and bang–bang and singular
arcs on the other hand.

Section 2.2 treats numerical solution methods. We will review indirect and direct
methods and discuss respective advantages and disadvantages. It becomes clear
why direct multiple shooting is the most promising approach for the optimization of
practical and generic mixed–integer optimal control problems. Sequential quadratic
programming and the concept of internal numerical differentiation to obtain deriva-
tive information are presented.

Section 2.4 gives a brief overview of global optimization of optimal control problems
and discusses the question under which assumptions these problems are convex.
Again we point out advantages of all–at–once approaches.

Methods for static MINLPs will be reviewed in chapter 3. These methods can and
have to be applied for binary parameters and for problems on a fixed control dis-
cretization grid, as they will occur as intermediate subproblems in our algorithm.

In chapter 4 we will present a methodology to convexify optimal control problems
with respect to the binary control functions. We will state several theorems that
clarify the connection between the nonlinear and a convexified problem on the one
hand and between binary and relaxed control problems on the other hand. In par-
ticular we will prove that, assumed there exists an optimal trajectory to the relaxed
convexified problem with objective value ΦRL, there also exists a feasible trajec-
tory for the original, mixed–integer optimal control problem with an objective value
ΦRL ≤ ΦBN ≤ ΦRL + ε for any given ε > 0.
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We prove that binary parameters v∗ that are optimal for the control problem with
relaxed binary control functions will also be optimal for the integer problem. This
allows to decouple the determination of the computationally expensive integer prob-
lems if parameters as well as control functions are present. This is very beneficial
with respect to the overall run time of a solution procedure.

In section 4.3 we formulate an optimal control problem enriched by an additional
penalty term in the objective functional and investigate some properties of such a
control problem. In section 4.4 we discuss extensions to general multistage mixed–
integer optimal control problems and occurring problems in the presence of path and
control constraints.

In chapter 5 we will present our novel algorithm to solve mixed–integer optimal con-
trol problems. The algorithm is based on an interplay between the direct multiple
shooting method, rigorous lower and upper bounds, adaptivity of the control dis-
cretization grid and the usage of either heuristics or deterministic methods to solve
subproblems on a given grid.

In section 5.1 several rounding strategies are presented, among them specialized
ones that take into account the fact that some variables are connected as they dis-
cretize the same control function. Furthermore rounding strategies for the multi–
dimensional case with special ordered set restrictions on the control functions are
given. The switching time optimization approach will be presented in section 5.2.
This approach reformulates the optimal control problem as a multistage problem
with fixed binary control function values. After an introduction of this approach
we discuss its disadvantages and give an illustrative example for the most impor-
tant one, the introduction of additional nonconvexities. In appendix B.4 we will
present an example with multiple local minima for which the direct multiple shoot-
ing method converges to the global minimum while direct single shooting converges
to a local minimum with bad objective value, although the stage lengths as the only
independent degrees of freedom are initialized in both methods with the same values.

Our algorithm is based upon an adaptive refinement of the control discretization grid.
In section 5.3 we motivate and present algorithms to obtain an estimation of the
objective value corresponding to the optimal trajectory for the infinite–dimensional
control problem and to refine a grid such that, under certain assumptions, the optimal
trajectory of the relaxed problem can be approximated with a trajectory that is
binary admissible. In section 5.4 we present a penalty term homotopy that adds
quadratic penalty terms to the control problem on a given control discretization grid.
This heuristics can be used to obtain integer values for the control discretization
variables. Using a homotopy, we stay inside the convergence radius of the SQP
method and we can detect when and where the underlying grid is too coarse.

This is used in the multiple shooting based mixed–integer optimal control algorithm
(MS MINTOC ) presented in section 5.5. Making use of the knowledge obtained in
chapter 4 that the optimal binary solution of the nonlinear optimal control problem
has a corresponding optimal binary solution of a convexified control problem for
which we get an attainable lower bound by solving its relaxation, we first determine
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this lower bound. We apply some heuristics, namely rounding and applying the
switching time optimization, to get upper bounds and compare them with the lower
bound. If the result is not satisfactory, we iterate on a refinement of the control grid
and an application of the penalty term homotopy, until we end up with a binary
admissible trajectory with objective value that is closer than a prescribed tolerance
to the attainable optimum. We will prove that under certain theoretic assumptions
the MS MINTOC algorithm will terminate with such a solution.

In chapter 6 we perform five case studies, i.e., applications of the MS MINTOC algo-
rithm to optimal control problems for which the structure of the optimal trajectory
T ∗ for the infinite–dimensional relaxed optimal control problem is known. In section
6.1 we will see that problems having a bang–bang structure in the relaxed binary
control functions can be solved with only very little additional effort compared to
the relaxed solution. For such problems the main problem is to find the switching
points, the relaxed solution will then coincide with the binary admissible solution. In
sections 6.2 and 6.3 we will investigate problems with chattering controls. They differ
in a theoretical way, as example 6.2 does not possess an optimal solution although
a limit of trajectories exists and example 6.3, the famous problem of Fuller, does
have a solution that can be proven to be chattering. For both problems we obtain
solutions with a finite number of switches that are closer than a prescribed tolerance
ε to the globally optimal objective function value resp. an estimation of it. For such
problems the main task is to first determine an adequate control discretization grid
and then apply a method to obtain an integer solution on this grid. In section 6.4 we
derive an approximation for an example with a singular arc and again get arbitrarily
close to the optimal solution. Singular arcs are closely related to arcs that have a
chattering solution, as they can be approximated by one. In section 6.5 we extend
our study to the case where we need a global solution for a fixed control discretization
grid. We demonstrate how a Branch & Bound algorithm can be applied to find such
a global solution and point out which role heuristics play in such a scheme.

Applications that involve multistage processes, algebraic equations, interior point
constraints, state–dependent discontinuities, path constraints and unstable dynamic
systems are presented in chapter 7. In section 7.1 we solve the problem of an energy–
optimal operation of a subway train with discrete operation modes in several scenar-
ios, including for the first time point and path constraints. In section 7.2 the phase
resetting of calcium concentration oscillations is investigated as an application of the
MS MINTOC algorithm. This problem is of special mathematical interest as the
underlying system is highly unstable in two components and only a very accurate
refinement of the control grid yields a feasible solution with an acceptable impact on
the system. A batch process with tray– and time–dependent reusage of waste cuts is
optimized in section 7.3. By applying our novel method we obtain a new operation
strategy for this process that improves the efficiency by more than 13% compared
to the best solution given in the literature. The optimal control problem includes
transition stages, coupled and decoupled interior point inequalities and equalities,
differential and algebraic variables, free, time–independent parameters, free stage
lengths and continuous as well as binary control functions. As to our knowledge,
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for the first time an optimal control problem of this challenging type is solved to
optimality.

In the appendix some basic definitions and theorems that are used throughout the
thesis are stated for the convenience of the reader. The fishing benchmark problem is
investigated in detail with respect to its optimal solution structure, to a reformulation
with a bang–bang structure in its optimal solution and to occurring nonconvexities
in the switching time optimization approach in contrast to an optimization of the
relaxed original problem. Furthermore all parameter values for the applications and
an overview of the notation used throughout the thesis are given.



Chapter 1

Mixed–integer optimal control
problems

The scope of this chapter is to give a general formulation of mixed-integer optimal
control problems. In section 1.1 the underlying system of differential equations is
given, including assumptions. The step towards optimization is taken in section
1.2, the main keywords of this thesis are defined there. In section 1.3 an extension
to multistage problems is undertaken. Some illustrating examples are delivered in
section 1.4.

1.1 Differential–algebraic equation model

Many complex processes can be modeled by systems of differential–algebraic equa-
tions (DAE), e.g., Leineweber et al. (2003). In a fully–implicit form these systems
read as

0 = f impl(t, ẏ(t),y(t),u(t),p) (1.1)

Here t ∈ [t0, tf ] ⊂ R is the time. p ∈ R
np is the parameter vector, including all

time–independent degrees of freedom. The control functions1 u : [t0, tf ] 7→ R
nu are

assumed to be measurable, u ∈ Um = {u : [t0, tf ] 7→ R
nu ,u(·) measurable}. At this

point p and u(·) can be regarded as fixed. The state variables y : [t0, tf ] 7→ R
ny

describe the state of the system, their respective time derivatives are given by ẏ =
dy
dt

: [t0, tf ] 7→ R
ny . This formulation also covers models obtained by the method

of lines from a system of partial differential–algebraic equations (PDAE), see, e.g.,
Schäfer (2005) or Toumi et al. (2006), and of course ordinary differential equations
(ODE). Important subclasses of (1.1) are semi–explicit DAE systems of the form

B(t,x(t), z(t),u(t),p) ẋ(t) = f(t,x(t), z(t),u(t),p), (1.2a)

0 = g(t,x(t), z(t),u(t),p) (1.2b)

1or simply controls, in the engineering community sometimes referred to as inputs or manipulated

variables

10
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with a distinction between differential variables x : [t0, tf ] 7→ R
nx and algebraic

variables z : [t0, tf ] 7→ R
nz without time derivative. We write y = (x, z). Many

chemical engineering problems are of semi–explicit form, see, e.g., Marquardt (1995)
or Unger et al. (1995), and so are all the applications considered in this thesis. The
matrix B ∈ R

nx×nx is assumed to be regular and could thus be inverted. Although
an explicit inversion has to be avoided in practice, we will in the following leave
away the matrix B for the sake of notational simplicity and as the applications in
this thesis are of explicit form anyway. Furthermore we assume that the derivative
of the algebraic right hand side function g : [t0, tf ] × R

nx × R
nz × R

nu × R
np 7→ R

nz

with respect to z, namely ∂g/∂z ∈ R
nz×nz , is regular. This guarantees that system

(1.2) is of index 1 as differentiating once with respect to t will transform system
(1.2) into an ODE. For the practical treatment of higher–order index systems and
the exploitation of occurring invariants we refer to Schulz et al. (1998) for details.
The right hand side function f : [t0, tf ] × R

nx × R
nz × R

nu × R
np 7→ R

nx has to
be piecewise Lipschitz continuous to ensure existence and uniqueness of a solution
y. Systems without an explicit dependence on time t are called autonomous. Non–
autonomous systems can be transformed into autonomous systems by introduction
of an additional differential variable and the equation

ẋnx+1 = 1 (1.3)

with initial value xnx+1(t0) = t0. Therefore the argument t will be omitted in the
following.

Definition 1.1 (Trajectory)
A trajectory (also referred to as solution) is given by

T = (x, z,u,p) = { (x(t), z(t),u(t),p) | t ∈ [t0, tf ] }

with functions x : [t0, tf ] 7→ R
nx, z : [t0, tf ] 7→ R

nz , u : [t0, tf ] 7→ R
nu and a

parameter vector p ∈ R
np that satisfy (1.2). The components x(·) and z(·) will be

referred to as state trajectories.

To find trajectories that satisfy (1.2) one has to solve a DAE system. For this solution
initial values may be subject to optimization or are given implicitly or explicitly. The
latter can be achieved in a general way with the interior point equality constraints

0 = req(x(t0), z(t0),x(t1), z(t1), . . . ,x(tf ), z(tf ),p) (1.4)

with ti being interior points in the considered time interval [t0, tf ]. In most cases the
initial differential values are given explicitly by

x(t0) = x0 (1.5)

and initial algebraic values for given (u(·),p) are determined as the solution of

0 = g(x(t0), z(t0),u(t0),p). (1.6)
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Another important special case of (1.4) are periodic processes with conditions that
can be formulated as

y(t0) = y(tf ). (1.7)

For given parameters p, continuous controls u(·) and initial conditions we obtain
an initial value problem (IVP). This problem can be solved with tailored numerical
methods.
We would like to stress that the control functions u(·) are assumed to be measurable
only. This means that they can be discontinuous, which is also often the case if they
are determined as optimal controls. In this thesis we will consider problems where
some control functions take values from a disjunct feasible set exclusively. The
solution of the DAE is still unique and well–defined if we only have finitely many
discontinuities, the integration consists simply of several consecutive initial value
problems. The integration has to be stopped and restarted whenever a discontinuity
occurs in the controls.
The goal of optimal control is to determine control functions u(·), parameters p and
state trajectories (x(·), z(·)) that minimize a certain objective functional and for
which the trajectory fulfills equations (1.2), (1.4) and additional constraints on the
process.

1.2 Problem formulation

Before we come to the main point of this section and have a look at mixed-integer
optimal control problems, we define what type of continuous optimal control prob-
lems we consider in this thesis and what integer variables are. Furthermore we will
classify trajectories into admissible and non admissible ones.

Definition 1.2 (Continuous optimal control problem)
A continuous optimal control problem (OCP) is a constrained optimization problem
of the following form:

min
x,z,u,p

Φ[x, z,u,p]

s.t. ẋ(t) = f (x(t), z(t),u(t),p), t ∈ [t0, tf ],
0 = g(x(t), z(t),u(t),p), t ∈ [t0, tf ],
0 ≤ c(x(t), z(t),u(t),p), t ∈ [t0, tf ],

0 ≤ rieq(x(t0), z(t0),x(t1), z(t1), . . . ,x(tf ), z(tf ),p),
0 = req(x(t0), z(t0),x(t1), z(t1), . . . ,x(tf), z(tf),p).

(1.8)

The variables t, x(·), z(·), u(·) and p are as introduced in section 1.1. The pa-
rameter vector p ∈ R

np includes all time–independent degrees of freedom, possibly
also the stage length h := tf − t0 for problems with free end time. The right hand
side function f : R

nx × R
nz × R

nu × R
np 7→ R

nx is assumed to be piecewise Lips-
chitz and the derivative of the algebraic right hand side function g : R

nx × R
nz ×

R
nu × R

np 7→ R
nz with respect to z, namely ∂g/∂z ∈ R

nz×nz , to be regular. The



1.2. PROBLEM FORMULATION 13

objective functional Φ[x, z,u,p] :=
∫ tf

t0
L(x(t), z(t),u(t),p)dt +E(x(tf), z(tf ),p) is

of Bolza-type, containing a Lagrange term
∫ tf

t0
L(x(t), z(t),u(t),p)dt and a Mayer

term E(x(tf), z(tf ),p). Both E and L are assumed to be twice differentiable, as are
the path constraints c ∈ R

nc, the interior point inequality rieq ∈ R
n

rieq and equality
constraints req ∈ R

nreq .

We will now introduce the concepts of admissibility and optimality of trajectories
that are helpful in describing solutions of the OCP.

Definition 1.3 (Admissibility)
A trajectory is said to be admissible if x(·) is absolutely continuous, u(·) is measurable
and essentially bounded and the functions (x(·), z(·),u(·),p) satisfy all constraints
of problem (1.8). We say that a control function û(·) is feasible or admissible, if
there exists at least one admissible trajectory (x(·), z(·), û(·),p).

Definition 1.4 (Optimality)
A trajectory (x∗, z∗,u∗,p∗) is said to be globally optimal, if it is admissible and it
holds

Φ[x∗, z∗,u∗,p∗] ≤ Φ[x, z,u,p] (1.9)

for all admissible trajectories (x, z,u,p). A trajectory is said to be locally optimal,
if it is admissible and there exists a δ > 0 such that (1.9) holds for all admissible
trajectories with

||u∗(t) − u(t)|| ≤ δ ∀ t ∈ [t0, tf ], ||p∗ − p|| ≤ δ.

A control function is optimal, if it is a component of an optimal trajectory.

The problem class of OCPs, optimality conditions and algorithms will be investigated
in detail in chapter 2. At this point we take all this as given and think about possible
extensions to include discrete decisions. To do so, we need the following

Definition 1.5 (Integer and binary variables)
Let w : [t0, tf ] 7→ R

nw be a measurable function and v ∈ R
nv a vector. A time–

dependent or time–independent variable wi(·), 1 ≤ i ≤ nw resp. vi, 1 ≤ i ≤ nv is
called an integer variable, if it is restricted to values in Z. If it is restricted to values
in {0, 1}, it is called a binary variable or, in the case of wi(·), also a binary control
function.

In the applications considered in this thesis the integer variables are restricted to val-
ues in a finite set. Therefore all integer variables v̂ ∈ {v1, . . . , vnv

} can be represented
by ⌈log2 nv⌉ binary variables b̃i via a transformation to ṽ ∈ {1, . . . , nv} and

ṽ = 1 +

⌈log2 nv⌉∑

i=1

b̃i 2i−1 (1.10)
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For the sake of notational simplicity we will use binary variables from here on exclu-
sively, as they are mathematically (not computationally though!) equivalent. They
will be referred to as binary or integer variables. We need some more definitions,
before we can investigate mixed-integer optimal control problems. A possible limi-
tation occurs when switching of the binary control functions can only take place at
time points from a prefixed given set. This limitation is motivated by machines that
can only switch in discrete time steps and by laws or investments that can only be
applied resp. made at certain times, e.g., on the first of a month or year. Having
this in mind we define

Definition 1.6 (Switching)
Let w(·) be a binary control function. If we have a discontinuity in at least one
component of w(·) at time t̃, we say that the control function w(·) switched or that
a switching took place. The time point t̃ is called switching time.

Definition 1.7 (Feasible switching set)
The feasible switching set Ψ is the set of time points when a discontinuity in the
binary control function vector w(·) may occur. Ψ is either

Ψτ = {τ1, τ2, . . . , τnτ
} (1.11)

a finite set of possible switching times or

Ψfree = [t0, tf ] (1.12)

the whole time interval.

If Ψ = Ψfree there are no restrictions on the switchings and the controls can switch
infinitely often, as w(·) is only assumed to be measurable. A limitation on the
number of switchings of the binary control functions must be taken into consideration
for some problems, though, as an infinitely often occurring switching from one value
to the other is not applicable in practice. This inhibition is achieved by a lower limit
ΨMIN ≥ 0 on the length of the time interval between two consecutive switching times.

Definition 1.8 (Binary admissibility)
w(·) is called a binary admissible control function on [t0, tf ], if

w(·) ∈ Ω(Ψ), (1.13)

where Ω(Ψ) is defined as

Ω(Ψ) := {w : [t0, tf ] 7→ {0, 1}nw ,w(·) piecewise constant with

jumps only at times τi ∈ Ψ and τi − τi−1 ≥ ΨMIN, i > 1} .

Remark 1.9 Of course different components of w may have different grids or some
might have no switching restrictions while others do. As we do not encounter such
problems throughout this thesis and it would complicate the notation in an unneces-
sary manner, we restrict ourselves to cases where all components of w have the same
restrictions.
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Remark 1.10 The restrictions of the feasible switching set Ψτ may also enter the
optimal control problem in a different way. In a multistage formulation, see section
1.3, stages could be introduced for each time horizon [τi, τi+1] and with parameters
pnp+i := τi+1 − τi that are fixed or free an equivalent optimal control problem can be
formulated without the notation of feasible switching sets. The main difference in
this formulation is the question whether the number of possible switches is finite and
a priori known or not. As we follow different algorithmic approaches for problems
with an a priori given switching structure, we will use the feasible switching sets as
defined in definition 1.7. Stages in a multistage formulation of the original problem
are then not caused by restrictions on the binary control functions.

With the concept of binary admissible control functions we can now define mixed-
integer optimal control problems:

Definition 1.11 (Mixed-integer optimal control problem)
A mixed-integer optimal control problem (MIOCP) is a constrained optimization
problem of the following form:

min
x,z,w,u,v,p

Φ[x, z,w,u,v,p] (1.14a)

subject to the DAE system

ẋ(t) = f (x(t), z(t),w(t),u(t),v,p), t ∈ [t0, tf ], (1.14b)

0 = g(x(t), z(t),w(t),u(t),v,p), t ∈ [t0, tf ], (1.14c)

control and path constraints

0 ≤ c(x(t), z(t),w(t),u(t),v,p), t ∈ [t0, tf ], (1.14d)

interior point inequalities and equalities

0 ≤ rieq(x(t0), z(t0),x(t1), z(t1), . . . ,x(tf ), z(tf),v,p), (1.14e)

0 = req(x(t0), z(t0),x(t1), z(t1), . . . ,x(tf ), z(tf ),v,p), (1.14f)

binary admissibility of w(·)

w(·) ∈ Ω(Ψ), (1.14g)

and integer constraints on some of the parameters

vi ∈ {0, 1}, i = 1 . . . nv. (1.14h)

The designators Φ, L, E,f , g, c, rieq, req,x, z,u,p, t are as in definition 1.2 besides
changes of dimension due to the additional integer variables v ∈ {0, 1}nv and the
binary control functions w : [t0, tf ] 7→ {0, 1}nw.
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Remark 1.12 While the concepts of admissibility and global optimality can be car-
ried over to mixed–integer optimal control problems, this is not possible for local
optima, as it makes no sense to speak about a δ neighborhood in the common sense.
One possibility to define a neighborhood for binary variables is to use the Hamming
distance, which is defined as the count of bits different in two given patterns of same
length. This distance corresponds to the ||·||1 norm in the space {0, 1}n. Nevertheless
the concepts of continuous optimization as Karush–Kuhn–Tucker points, see section
2.3.1, are based upon the first definition of local optimality. If we use the expression
local optimum or sometimes brief optimum for a trajectory (x∗, z∗,u∗,w∗,p∗,v∗) it
is meant as local optimality for fixed w∗ and v∗ in the usual sense and the binary
variables w∗ and v∗ are not necessarily part of the global optimum.

In chapters 3 and 5 we will often relax the mixed-integer optimal control problem
to a continuous one, more precisely we will relax all constraints wi(·) ∈ {0, 1} resp.
vi ∈ {0, 1} to the supersets wi(·) ∈ [0, 1], vi ∈ [0, 1]. The solution of the OCP
obtained by this relaxation is then analyzed and used to obtain the solution of the
MIOCP.

Definition 1.13 (Relaxed control problem)
The relaxation of a MIOCP is the OCP obtained by replacing the conditions (1.14g)
and (1.14h) by

w(·) ∈ Ω̄(Ψ), (1.15a)

vi ∈ [0, 1], i = 1 . . . nv (1.15b)

and rewriting the controls u(·) and w(·) resp. the parameter vectors p and v into
new variables u(·) and p. The relaxed function space Ω̄(Ψ) is defined as

Ω̄(Ψ) := {w : [t0, tf ] 7→ [0, 1]nw ,w(·) piecewise constant with

jumps only at times τi ∈ Ψ and τi − τi−1 ≥ ΨMIN, i > 1} .
As mentioned by Allgor (1997) such a relaxation may yield theoretical and practical
difficulties. Examples for systems that have a unique solution for all integer variables,
but none for relaxed values in the interval in between, can be constructed quite easily.
Allgor (1997) gives the pathological example

(
−2v1t 2v2t

2

−1 2v1t

)(
ẋ1

ẋ2

)

=

(
−x1

−x2

)

, (1.16a)

v1 + v2 ≤ 1. (1.16b)

Brenan et al. (1996) showed that this DAE is not uniquely solvable for v fixed to
(0.5, 0.5). For every integer realization of v satisfying (1.16b) the solution is unique,
though. Still the index of the DAE may change depending on the time t for such
integer realizations, yielding a practical difficulty for generic DAE solvers.
We assume for the following that the DAE system is uniquely solvable for all realiza-
tions of the relaxation of the MIOCP, even if such a relaxation does not necessarily
have to have an interpretable physical meaning as is the case for on–off pumps, valves
or gears.
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1.3 Multistage problems

In section 1.2 an optimal control problem was formulated with a constant number
of variables and continuous differential states over the considered time horizon. For
practical problems this is often not sufficient. Transitions as well as changes in the
dynamics may occur that are best modeled by multistage optimal control problems,
see, e.g., Leineweber (1999) or Diehl et al. (2002). To this end we introduce a finite
number nmos of intermediate time points into the set of time points ti that were
already used for interior point constraints, see (1.14e-1.14f). We obtain a set of nms

2

ordered time points

t0 ≤ t1 ≤ · · · ≤ tnms
= tf (1.17)

and an ordered subset {t̃0, t̃1, . . . , t̃nmos
} with time points, whenever a new model

stage occurs and t̃0 = t0, t̃nmos
= tnms

= tf .

Definition 1.14 (Multistage mixed-integer optimal control problem)
A multistage mixed-integer optimal control problem (MSMIOCP) is a constrained
optimization problem of the following form:

min
xk,zk,wk,uk,v,p

nmos−1∑

k=0

Φk[xk, zk,wk,uk,v,p] (1.18a)

subject to the DAE model stages (from now on k = 0 . . . nmos − 1)

ẋk(t) = fk(xk(t), zk(t),wk(t),uk(t),v,p), t ∈ [t̃k, t̃k+1] (1.18b)

0 = gk(xk(t), zk(t),wk(t),uk(t),v,p), t ∈ [t̃k, t̃k+1] (1.18c)

control and path constraints

0 ≤ ck(xk(t), zk(t),wk(t),uk(t),v,p), t ∈ [t̃k, t̃k+1], (1.18d)

interior point inequalities and equalities with ki denoting the index of a model stage
containing ti, that is ti ∈ [t̃ki

, t̃ki+1],

0 ≤ rieq(yk0
(t0),yk1

(t1), . . . ,yknms
(tnms

),v,p), (1.18e)

0 = req(yk0
(t0),yk1

(t1), . . . ,yknms
(tnms

),v,p), (1.18f)

binary admissibility of all wk(·)

wk(·) ∈ Ω(Ψ), (1.18g)

integer constraints on some of the parameters

vi ∈ {0, 1}, i = 1 . . . nv, (1.18h)

2subscript ms because these points will later on correspond to multiple shooting nodes
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and stage transition conditions

xk+1(t̃k+1) = trk(xk(t̃k+1), zk(t̃k+1),v,p). (1.18i)

The objective Bolza functionals Φk :=
∫ t̃k+1

t̃k
Lk(xk(t), zk(t),wk(t),uk(t),v,p)dt +

Ek(xk(t̃k+1), zk(t̃k+1),v,p) as well as the designators Lk, Ek, fk, gk, ck, r
ieq, req,

xk, zk, uk,p, t correspond to those in definition 1.11 without index k. The dimen-
sions change towards not necessarily identical values nxk

, nzk
, nuk

, nwk
for each stage

k.
If no integer variables are present, that is nv = 0 and nwk

= 0 for all k, then problem
(1.18) is called a multistage optimal control problem (MSOCP).

Note that consecutive time points may be identical, as stages with length zero do
make sense in some cases. Clearly, regularization strategies must be used in a prac-
tical implementation to avoid singularities.
Definitions 1.1, 1.3 and 1.4 are extended in a straightforward way to include the
multistage formulation and the integer variables. Then we can define

Definition 1.15 (Feasibility of binary control functions)
A vector w(·) of binary control functions is said to be feasible, if it is binary admis-
sible (1.18g) and there exists an admissible trajectory for problem (1.18). A binary
control function is called infeasible, if it is not feasible.

1.4 Examples

Definition 1.14 includes several classes of optimal control problems. Compared to
standard optimal control problems as, e.g., in Leineweber (1999) or Diehl et al.
(2002), the additional integer restrictions (1.18g) and (1.18h) turn the problem class
into a combinatorial one. Still, depending on Ψ and whether the integer variables
are time–dependent or not, completely different problems fit into it that also require
different tailored solution methods as will be shown in the following chapters. In this
section we will formulate three examples to exemplify definition 1.14.

1.4.1 Time–independent integer variables

An illustrative example for time–independent 0-1 variables in the context of optimal
control is given in Oldenburg et al. (2003). A distillation process used to separate
components of a quaterny mixture is investigated. The energy necessary for the
batch process to separate the mixture is to be minimized under purity constraints
on the products. The model contains component concentrations and tray holdups
as state variables and reflux–ratios of the three batch stages as control functions.
The time–independent discrete decisions are whether each batch stage is operated
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in regular or in inverse mode3 and which withdrawal is fed to which batch, yielding
altogether 40 different reasonable possibilities.
The algorithmic approach followed by Oldenburg et al. (2003) for the model study is
based upon outer approximation, see section 3.4. Although 40 possibilities could still
be enumerated, the number of possibilities grows exponentially with each additional
logical decision and becomes prohibitive for extended models very soon.
As in the operation mode case study time–independent binary variables v are often
logical decisions. Therefore, as proposed by Oldenburg et al. (2003), it often makes
sense to formulate these problems as mixed–logic optimization problems and to ne-
glect those parts of the model that are not active. This makes calculations more
efficient.

1.4.2 Fixed time–grid

As D’Ancona and Volterra (1926) observed, due to an unexpected decrease in the
fishing quota after World War I — everybody expected an increase as fishing was
almost completely abandoned in the war years — there is a nontrivial interconnection
between the evolution in time of biomasses of fish and fishing. In Sager et al. (2006)
a simple model was presented as a benchmark problem with discrete decisions on
a fixed control time–grid. The biomasses of two fish species — one predator, the
other one prey — are the differential states of the model, the binary control is the
operation of a fishing fleet. The mode of operation can only be changed at fixed
time points, say the first of a month or a year. The optimization goal is to bring
the system to a steady state, in this example to x = (1, 1)T . This is achieved by
penalizing deviations from it over the whole time horizon with a Lagrange term. The
Lotka–Volterra based optimal control problem reads as

min
x,w

tf∫

t0

(x0(t) − 1)2 + (x1(t) − 1)2 dt (1.19a)

subject to the ODE

ẋ0(t) = x0(t) − x0(t)x1(t) − c0x0(t) w(t), (1.19b)

ẋ1(t) = −x1(t) + x0(t)x1(t) − c1x1(t) w(t), (1.19c)

initial values

x(t0) = x0, (1.19d)

and the integer constraints

w(·) ∈ Ω(Ψ) (1.19e)

3within this distillation column configuration the charge pot is located at the top of the column
and the product is withdrawn at the bottom
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with fixed c and x0 (see Appendix B) and nτ = 60 equidistant time points in
Ψ = Ψτ = {τ1, τ2, . . . , τ60}, [t0, tf ] = [0, 12]. Figure 1.1 shows one out of 260 possible
control realizations that fulfill (1.19e) and the corresponding states x0(·) and x1(·).
In this example we do have a similar structure as in example 1.4.1, namely a fixed

Figure 1.1: Random fishing control w(·), fulfilling (1.19e), the corresponding state
trajectories x0(·), x1(·) and the Lagrange term L(·). Note the nondifferentiabilities
in the state trajectories whenever the control switches.

number of discrete variables. To find feasible and optimal solutions, methods from
integer programming as Branch & Bound have to be applied. Such methods will be
investigated in chapter 3, the fishing problem will be reviewed in section 6.5.

1.4.3 Free switching times

One of the easiest examples for a binary control function is that of a vehicle that
can only be accelerated or decelerated by fixed values wmax resp. wmin, see, e.g.,
Seguchi & Ohtsuka (2003). A model neglecting friction and aiming at bringing the
vehicle in minimum time T to a point xT reads as

min
T

T∫

0

1 dt (1.20a)



1.4. EXAMPLES 21

subject to the ODEs

ẋ0(t) = x1(t), (1.20b)

ẋ1(t) = w(t) wmax + (1 − w(t)) wmin, (1.20c)

initial values

x(0) = x0, (1.20d)

end point constraints

x(T ) = xT , (1.20e)

and the integer constraint

w(·) ∈ Ω(Ψ) (1.20f)

with Ψ = Ψfree.
For this simple system the optimal control of bang–bang type can be calculated an-
alytically from the necessary conditions of optimality of the relaxed problem, see
chapter 2 or Bryson & Ho (1975) for details. With x0 as the origin (0, 0)T , the ter-
minal point xT = (300, 0)T and bounds wmax = 1, wmin = −2 we obtain acceleration
with wmax until t = 20 and deceleration with wmin until t = T = 30. Figure 1.2
shows covered distance and velocity for this optimal binary control.

Figure 1.2: Covered distance and velocity of the vehicle for the time optimal control.

Examples 1.4.1 and 1.4.2 have a combinatorial nature — they have a finite though
very large number of possible realizations of the integer variables and can thus in
theory be enumerated. For binary control functions without a fixed time grid, that
is with Ψ = Ψfree, things are different. A control may switch at any given time on
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the horizon, the number of possible realizations is thus infinite and other solution
strategies have to be applied. In practice this will not be as easy as for example 1.4.3
if one wants to use direct methods (see chapter 2) and apply them to more complex
problems.

On the other hand the rocket car example shows that there is structure in optimal
solutions that has to be exploited. It clearly makes no sense to optimize this simple
control problem by simply discretizing the control function and applying, e.g., a
Branch & Bound algorithm to a huge number of binary variables that stamp from
this discretization.

1.5 Summary

In this chapter we gave a very general definition of multistage mixed–integer optimal
control problems with underlying systems of differential–algebraic equations, state,
control and interior point constraints. Three examples are given to familiarize the
reader with the problem class.
In our novel problem formulation we distinguish between time–independent and
time–dependent integer variables and consider cases when fixed time grids are given
for the controls. In the latter case, the structure of the optimization problem corre-
sponds more to time–independent variables and methods from integer programming
have to be applied that avoid a complete enumeration, but still deliver the globally
optimal solution. Such methods will be investigated in chapter 3, while chapters
4 and 5 aim at developing numerical methods to solve problems involving time–
dependent binary control functions without prefixed control grid.



Chapter 2

Optimal control

The problem class of mixed–integer optimal control problems has been defined in
chapter 1. This chapter now aims at having a deeper look into optimal control
theory and existing algorithms for the non–integer case. First we will review the
necessary conditions of optimality, the maximum and the bang–bang principle.
The next step in sections 2.2 and 2.3 will be to investigate the different approaches to
treat optimal control problems, namely indirect and direct methods. We investigate
methodological extensions in the context of the direct multiple shooting method,
therefore we will go more into detail in section 2.3 and also present the framework
of sequential quadratic programming and of internal numerical differentiation.
In section 2.4 we will have a closer look at the questions of convexity and local or
global optimality.

2.1 Optimality conditions

Most work that has been done in the area of optimality conditions for optimal control
problems focuses on a special case of problem (1.18) with a single stage, no algebraic
and time–independent variables z(·) resp. p and special interior point conditions.
We will follow this line of work and investigate the well known special case first,
before we consider more general cases in section 2.1.3. We consider the problem

min
x,u

E(x(tf)) (2.1a)

subject to the ODE system

ẋ(t) = f(x(t),u(t)), t ∈ [t0, tf ], (2.1b)

mixed path and control constraints

0 ≤ c(x(t),u(t)), t ∈ [t0, tf ], (2.1c)

initial values

x(t0) = x0, (2.1d)

23



24 CHAPTER 2. OPTIMAL CONTROL

and end point equalities

0 = req(x(tf )) (2.1e)

on a fixed time horizon [t0, tf ]. Figure 2.1 illustrates this optimal control problem.

end–point
constraint

s
req(x(tf ))

6 state and control constraints 0 ≤ c(x,u)

initial value
x0 s

states x(t)

controls u(t)
-p

t0 t
p
tf

Figure 2.1: Schematic illustration of problem (2.1).

To state the maximum principle we will need the very important concept of the
Hamiltonian.

Definition 2.1 (Hamiltonian, Lagrange multipliers)
The Hamiltonian of an optimal control problem (2.1) is given by

H(x,u,λ,µ) := λTf(x,u) + µTc(x,u). (2.2)

The end–point Lagrangian function ψ is defined as

ψ(x(tf),ν) := E(x(tf)) + νTreq(x(tf)). (2.3)

λ : [t0, tf ] → R
nx , µ : [t0, tf ] → R

nc and ν ∈ R
nreq are called adjoint variables,

co–states or Lagrange multipliers.

As in Definition 2.1 we will sometimes leave away the argument (t) in the following
for the time dependent functions u,x,λ, . . . for convenience.

2.1.1 Maximum principle

The maximum principle in its basic form, also sometimes referred to as minimum
principle, goes back to the early fifties and the works of Hestenes, Boltyanskii,
Gamkrelidze and of course Pontryagin. Precursors of the maximum principle as
well as of the Bellman equation can already be found in Carathéodory’s book of
1935, compare Pesch & Bulirsch (1994) for details.
The maximum principle states the existence of Lagrange multipliers λ∗(·), µ∗(·)
and ν∗ that satisfy adjoint differential equations and transversality conditions. The
optimal control u∗(·) is characterized as an implicit function of the states and the ad-
joint variables — a minimizer u∗(·) of problem (2.1) also minimizes the Hamiltonian
subject to additional constraints.
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Theorem 2.2 (Maximum principle)
Let problem (2.1) have a feasible optimal solution u∗(·) with a system response x∗(·).
Then there exist Lagrange multipliers λ∗(·), µ∗(·) and ν∗ such that for t ∈ [t0, tf ] it
holds almost everywhere

ẋ∗(t) = Hλ(x∗(t),u∗(t),λ∗(t),µ∗(t)) = f(x∗(t),u∗(t)), (2.4a)

λ̇
∗T

(t) = −Hx(x∗(t),u∗(t),λ∗(t),µ∗(t)), (2.4b)

x∗(t0) = x0, (2.4c)

λ∗T (tf ) = −ψx(x∗(tf ),ν
∗), (2.4d)

0 ≤ c(x∗(t),u∗(t)), (2.4e)

0 = req(x∗(tf)), (2.4f)

u∗(t) = arg min
u

H(x∗(t),u(t),λ∗(t),µ∗(t)), (2.4g)

0 = µ∗T (t) c(x∗(t),u∗(t)), (2.4h)

0 ≤ µ∗(t). (2.4i)

Here and in the following Hλ = ∂H
∂λ

denotes the partial derivative of H with respect to
λ and equivalently for other functions and variables. The complementarity conditions
(2.4h) are to be understood componentwise, such that either µ∗

i = 0 or ci = 0 for all
i = 1 . . . nc. For a proof of the maximum principle and further references see, e.g.,
Bryson & Ho (1975) or Pontryagin et al. (1962).
If the objective function in (2.1) is to be maximized, then (2.4g) is replaced by a
pointwise maximization (this is of course where the name maximum principle comes
from). As we chose the minimization formulation for the problems investigated in
this thesis, we do the same for the Hamiltonian. In Appendix B.2 an example mini-
mization problem is treated with a maximum formulation of the necessary conditions
of optimality.

From the maximum principle first order necessary conditions can be deduced. In
particular the pointwise minimization of the Hamiltonian almost everywhere requires
that its derivative with respect to the control vector u vanishes almost everywhere

0T = Hu(x∗,u∗,λ∗,µ∗(t)) = λ∗Tfu(x∗,u∗) + µ∗Tcu(x∗,u∗) (2.5a)

and that the Legendre–Clebsch condition

Huu =
∂2H
∂u2

≥ 0, (2.5b)

holds on unconstrained arcs, i.e., the Hessian of the Hamiltonian is a nonnegative–
definite matrix. Note that equalities (2.5) are only necessary and not sufficient for
optimality. Second order sufficient conditions have been derived and formulated, e.g.,
in Maurer & Osmolovskii (2004).
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2.1.2 Solution structure

In this work we are particularly interested in finding optimal solutions that take the
values 0 or 1 and are the extreme values of the relaxed interval [0, 1]. To investigate
this further, we define

Definition 2.3 (Admissible region)
The admissible region R(t,x(t)) at time t and state x(t) is the union of all admissible
control functions u(·) evaluated at time t for which the path and state constraints
(2.1c) hold.

Definition 2.4 (Boundary and interior of admissible region)
The surface ∂R(t,x(t)) limiting the admissible region is called boundary. The union
of all controls u(t) with c(x(t),u(t)) < 0 is called the interior of the admissible
region, int (R). A constraint ci with ci < 0 is called inactive and active if ci = 0,
1 ≤ i ≤ nc.

The first order necessary conditions of optimality can be investigated in more detail
to learn about the structure of an optimal solution u∗(·)1. This is also the path that
indirect methods follow, compare section 2.2.1. As stated above, we are particularly
interested whether a solution lies in the interior or on the boundary of the admissible
region, thus we have to investigate when a constraint ci, 1 ≤ i ≤ nc, is active.
Let us assume we have an optimal control function u(·) and therewith (2.5a) and
also point– and componentwise 0 = Hui

(x(t),u(t),λ(t),µ(t)), i = 1 . . . nu. Now two
cases can be distinguished for each control ui(t): either λTfui

6= 0 or λTfui
= 0.

Based on this difference λTfu will be called switching function.

Definition 2.5 (Switching function)
The nu-dimensional switching function is given by

σT (x,u,λ) = λT ∂f

∂u
. (2.6)

If the i-th entry of the switching function is not equal to zero at time t, then also
µTcui

(x,u) 6= 0. As µ ≥ 0, at least one entry of µ must be strictly positive. With
the complementarity condition (2.4h) we have that one constraint which explicitly
depends upon ui (as its entry in cui

(x,u) is non–zero) must be active. This con-
straint can be used to obtain an analytic expression for ui(t), we say that ui(t) is
constraint–seeking, following the terminology and argumentation of Srinivasan et al.
(2003). Please note that if numerical methods are based upon the necessary con-
ditions of optimality as in section 2.2.1, special attention has to be given to the
question whether t is a touch point or a boundary arc2, that is if the component of

1we will leave away the asterisk from now on and assume u(·) to be an optimal solution with
corresponding Lagrange multipliers λ(·), µ(·), ν and system response x(·)

2Intervals [tentry, texit] with the same behavior are referred to as arcs
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c(t) is an isolated zero or zero on a whole interval [tentry, texit] with tentry < texit. See
Bock (1978b), Pesch (1994) or Schulz et al. (1998) for details and efficient implemen-
tations. Here we will assume that this behavior is constant in a small neighborhood
of t.
If the i-th entry of the switching function is equal to zero at time t, we have to
further distinguish between two cases. If λTfui

does explicitly depend upon ui, the

control can be determined from the equation λTfui
= 0. If this is not the case, we

differentiate the Hamiltonian with respect to time. Since Hui
= 0 for all t, all time

derivatives will vanish, too. Differentiating (2.5a) delivers

dHui

dt
= λ̇

T
fui

+ λT

(
∂f ui

∂x
ẋ+

∂fui

∂u
u̇

)

+ µ̇Tcui
+ µT

(
dcui

dt

)

= λ̇
T
fui

+ λT

(
∂f ui

∂x
ẋ+

∂fui

∂u
u̇

)

as µTcui
= 0 over an interval and the complementarity conditions (2.4h) hold. Using

(2.4a) and (2.4b) to replace ẋ and λ̇ one obtains

dHui

dt
= λT

(
∂f ui

∂x
f − ∂f

∂x
fui

+
∂fui

∂u
u̇

)

− µT ∂c

∂x
fui

(2.7)

= λT ∆1fui
− µT ∂c

∂x
fui

(2.8)

where the operator ∆1 is given by3

∆1F =
∂F

∂x
f − ∂f

∂x
F +

∂F

∂u
u̇ (2.9)

and represents the time differentiation of a vector function F along the trajectories
of the dynamic system (2.4a, 2.4c). This operator is studied in the systems literature
using tools of Lie algebra. Differentiating (2.8) j− 1 more times in a similar manner
leads to an expression consisting of two parts, a system dependent and a constraint
dependent one:

djHui

dtj
= λT ∆jfui

− µT ∂c

∂x
∆j−1fui

. (2.10)

Here ∆j := ∆1(∆j−1) with ∆0 := id is recursively defined. The time differentiation
(2.10) is repeated for increasing j until one of two cases occurs — either we have
λT ∆jfui

6= 0 and with the same argumentation as above it follows that the con-

trol is constraint–seeking or we have λT ∆jfui
= 0 and ui appears explicitly in the

expression, leading to a compromise–seeking control.
Figure 2.2 illustrates the logic behind the two different control types, constraint–
seeking and compromise– (or sensitivity–) seeking controls.

3if F is not a function of the time derivatives of u, else additional terms are needed
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Necessary condition
Hui

= λTfui
+µTcui

= 0

Differentiate
djHui

dtj
=

λT ∆jfui
−µT ∂c

∂x∆j−1fui

until condition fulfilled

Constraint–seeking
⇒ µ 6= 0 ⇒ constraint
active, determines ui

Compromise–seeking
ui is determined by
λT ∆jfui

= 0

λTfui
6= 0

λTfui
= 0

λTfui
does not

depend on ui

λTfui
depends

explicitly on ui

λT ∆jfui
6= 0

λT ∆jfui
= 0

and λT ∆jfui

depends
explicitly on

ui

-

-

-

6

?

Figure 2.2: Constraint–seeking and compromise–seeking controls

It is worthwhile to look at the special case of control–affine systems. These systems
have a linear entry of the controls u(·) in the appearing functions, namely

f (x,u) = F 0(x) + FU(x) u, (2.11a)

c(x,u) = C0(x) +CU(x) u. (2.11b)

For control–affine systems there is another important case differentiation between
singular and nonsingular arcs. Those are defined by

Definition 2.6 (Singularity)
A control function u is said to be singular of rank r over a non–zero time interval
[tentry, texit] with tentry < texit, if r components of u cannot be determined from the
condition Hu = 0T over this interval. If r = 0, u is called nonsingular. An input ui

is said to have a degree of singularity r if ui appears for the first time in the (r+1)-th
time derivative of Hu.
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Necessary condition
Hui

= λTfui
+µTcui

= 0

Differentiate
djHui

dtj
= λT ∆jfui

until
condition fulfilled

Nonsingular
⇒ µ 6= 0 ⇒ constraint
active, determines ui

Singular
ui is determined by
λT ∆jfui

= 0

λTfui
6= 0

λTfui
= 0

λTfui
does not

depend on ui

λT ∆jfui
= 0

and λT ∆jfui

depends
explicitly on

ui

-

-

?

Figure 2.3: Nonsingular and singular controls in the case of a control–affine system
and state–independent constraints. Compared to figure 2.2 two things changed: First

Huu = 0, thus λTfui
never depends on ui and second ∂c

∂x = 0, thus λT ∆jfui

!
= 0.

Definition 2.7 (Bang–bang controls)
If a nonsingular control is determined by a bound constraint ui = umax

i or ui = umin
i ,

it is said to be of bang–bang type and called a bang–bang control.

Remark 2.8 It was shown by Robbins (1967) that in the singular case the control
functions ui first appear in an even derivative of Hu as a result of the second–order
necessary conditions of optimality.

Consider the case where c consists of bounds on the inputs only, say

c(u) =

(
u− umax

umin − u

)

. (2.12)

For a control–affine system the switching function of control ui

σi(x,u,λ) = λT ∂f

∂ui

= λT Fu·i (x) (2.13)
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plays an important role4. If it is strictly positive, the pointwise minimizer of the
Hamiltonian function ui must be as small as possible, thus at its lower bound. If it
is strictly negative it holds ui = umax

i , in both cases we do have a bang–bang arc.
If σi = 0, we cannot deduce ui from this expression as Huu = 0. In this singular
case Hui

has to be differentiated with respect to time until the degree of singularity
of ui is reached, assumed it is finite. The resulting singular control will lie in the
interior of the admissible region (besides rare exceptional cases when the singular
control takes exactly the value at the boundary).
In the general nonlinear case this differentiation between singular and nonsingular
controls is not appropriate if emphasis is given to the question whether a control
lies in the interior of the admissible region (compromise–seeking) or at its boundary
(constraint–seeking). For control–affine systems, when the constraints are state–
independent (e.g., they consist of bounds on the control functions only), a nonsingu-
lar arc implies that the control is on the boundary of the admissible region whereas
a singular arc implies that it is in the interior of it as stated above. But in general
singular controls can also be constraint–seeking in the case of state–dependent con-
straints and, for nonlinear systems, nonsingular controls can be compromise–seeking
and lie in the interior of the admissible region. For control–affine systems the latter is
not possible as the Hamiltonian is linear in u, too. Therefore the switching function
λTfui

does not depend explicitly on ui and we can neglect the bottommost case in
Figure 2.2.

Figure 2.3 shows the the logic behind the two different control types, singular and
nonsingular controls for the case of control–affine systems with state–independent
constraints.

2.1.3 Extensions

Problem (2.1) is only a special case of the multistage optimal control problem class
defined in Definition 1.14 (with nv = nw = 0). The maximum principle has to
be extended to treat the more general problem class. In particular the following
extensions are necessary to treat (1.18):

• Lagrange term

If the objective functional does contain a Lagrange term L(x,u) (that could of
course be included by an additional differential state and equation, too), the
Hamiltonian is modified in the following way:

H(x,u,λ,µ) := λLL(x,u) + λTf (x,u) + µTc(x,u) (2.14)

and theorem 2.2 holds as before. The multiplier λL ∈ R is typically scaled to
the value 1 and neglected.

• Parameters

4Fu
·i (x) is the i–th column of matrix Fu(x)
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Time–independent parameters p can be formally included by introducing ad-
ditional differential state variables with ṗ = 0, therefore they need not be
considered explicitly.

• Free end time

If the end time T is free for optimization, we obtain a second transversality
condition besides (2.4d). If we add

0 =

(

H +
∂E

∂t
+ µ∗T ∂req

∂t

)

t=T

to (2.4), theorem 2.2 holds as before.

• Multistage problems

In optimal control often arcs have to be concatenated, for example singular and
nonsingular or state–constrained and –unconstrained arcs. For them, as well
as for multiple stages, the principle of optimality holds: the optimal trajectory
(x(·),u(·)) over the whole time horizon is also optimal for every subinterval,
that is in our case, arc resp. stage. Therefore the necessary conditions for all
substages can be concatenated directly to obtain the necessary conditions of
optimality for the multistage problem, if matching conditions are considered.

• Algebraic variables

For the optimal control problems considered in this thesis we made the index
1 assumption that ∂g/∂z ∈ R

nz×nz is regular. By this assumption the alge-
braic variables are determined uniquely and can be neglected when necessary
conditions of optimality are investigated.

• More general boundary constraints

If the boundary constraints are given in a more general form than (2.4c, 2.4f),
as might, e.g., be the case for periodic processes, as

0 = req(x(t0),x(tf)), (2.15)

then the end–point Lagrangian function ψ has to be redefined as

ψ(x(tf),ν) := E(x(tf)) + νTreq(x(t0),x(tf )). (2.16)

• Interior point constraints

If we do have interior point equalities or inequalities, that is,

0 = req(x(t0),x(t1), . . . ,x(tf)), (2.17a)

0 ≤ rieq(x(t0),x(t1), . . . ,x(tf )), (2.17b)

then additional jump conditions on the co–states occur and the transversality
conditions have to be modified. See Bryson & Ho (1975) for details.

Proofs of the maximum principle for these special cases can be found, e.g., in Bryson
& Ho (1975).
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2.1.4 Bang–bang principle

So far we considered implications of the necessary conditions of optimality and saw
that an optimal solution may be on the boundary or in the interior of the admissible
region. As we are interested in the case where binary control functions are binary
feasible only if they are on the boundary of the unit cube [0, 1]nw , we will next
examine if and when controls in the interior may be replaced by controls on the
boundary. We will stick here to a standard formulation of the bang–bang principle
that can usually be found in the literature. In chapter 4 we will reinvestigate this
principle in more detail and apply it to more general optimal control problems.
Following the line of investigation of the textbooks by Hermes & Lasalle (1969) and
Macki & Strauss (1995), we consider the following linear control problem

ẋ(t) = A1(t) x+A2(t) u, t ∈ [t0, tf ], (2.18a)

with initial values

x(t0) = x0, (2.18b)

and measurable control functions u(·) ∈ Um that are bounded by

umin ≤ u(t) ≤ umax, t ∈ [t0, tf ]. (2.18c)

A1 and A2 are time–dependent, continuous matrices. We define

Definition 2.9 (Controllable set)
The controllable set at time T is the set of all points x0 that can be steered back to
the origin in time T ,C(T ) = {x0 : ∃u(·) ∈ Um such that x(T ;x0,u) = 0}.

The controllable set is the union of all sets C(T ) for positive T ,C = ∪T>0 C(T ).

Equivalently, we define CBB(T ) and CBB for u(·) ∈ UBB, where

UBB = {u ∈ Um, ui(t) = umax
i or ui(t) = umin

i ∀ t ∈ [t0, tf ], i = 1 . . . nu},

as the controllable sets of bang–bang functions.

With the definitions made we can state the following theorem.

Theorem 2.10 (Bang–bang principle)
For the system (2.18) we have C(T ) = CBB(T ) (2.19)

for all T ≥ 0. This set is compact, convex and depends continuously on T .
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Proofs can be found in Hermes & Lasalle (1969) or Macki & Strauss (1995). One
very important conclusion of theorem 2.10 is that, if there is a solution at all to
a linear time–optimal control problem, there is also a bang–bang solution that is
optimal. For general nonlinear problems this is not true any more. Consider the
one–dimensional example

ẋ(t) = u(t) + u2(t) (2.20)

with umin = −1 and umax = 1. Obviously ẋ(t) ≥ 0 for u(t) ∈ {−1, 1}, while positive
x0 can be steered to the origin by controls in the interior, e.g, by u(t) = −0.5,
ensuring ẋ(t) < 0.

2.2 Solution methods

There are several methods in the literature to solve optimal control problems of
the kind (1.8). The first differentiation considers the optimization space. Indirect
methods do optimize in an infinite dimensional function space, while direct methods
do transform the problem to a finite–dimensional space first before the optimization
takes place. Dynamic programming is based on the Hamilton–Jacobi–Bellman partial
differential equations. Direct methods can be further distinguished based on the type
of discretization that is used to transform the infinite–dimensional optimal control
problem to a finite–dimensional nonlinear program. While direct single shooting
discretizes the controls only and integrates the differential equations with a DAE
solver to get corresponding states, collocation also discretizes the states and ensures
continuity of the solution by additional constraints. A third direct method that
combines the advantages of both approaches is direct multiple shooting. Figure 2.4
gives an overview of the mentioned methods. We will base all methods developed
in this thesis on the direct multiple shooting method, therefore we will go more into
detail in section 2.3 and comment on sequential quadratic programming, one way to
solve the occurring nonlinear program, and on efficient methods to obtain derivatives
in this section. All other methods are shortly described in the sequel. For a more
detailed overview and comparison between indirect and direct methods, sequential
and simultaneous approaches (in particular single shooting, multiple shooting and
collocation) we refer to Binder et al. (2001).

2.2.1 Indirect methods

The classical approach to solving optimal control problems is based on Pontryagin’s
maximum principle, see theorem 2.2 in section 2.1.1. The necessary conditions of
optimality are used to transform the optimization problem to a multipoint boundary
value problem that is solved, e.g., by multiple shooting, see Osborne (1969), Bulirsch
(1971) or Bock (1978b).
An optimal solution typically consists of several arcs. On each arc we do have
constraint–seeking or compromise–seeking controls, as investigated in section 2.1.2.
These controls are determined by the necessary conditions of optimality and have
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2.2.1: Indirect Methods
Boundary Value Problem

2.2.2: Hamilton–Jacobi–
Bellman Equation

Tabulation in state space

Direct Methods
Nonlinear program

2.2.3: Single Shooting
(sequential)

2.2.4: Collocation
(simultaneous)

2.3: Multiple Shooting
(simultaneous/hybrid)

-

-

-

Figure 2.4: Optimal control solution methods described in this chapter

to be calculated analytically. Introduction of switching times τi as additional vari-
ables and switching conditions S(x(τi),λ(τi)) = 0 for the transition from one arc to
another leads to a multipoint boundary value problem with unknown parameters τi
that can be determined by appropriate numerical methods. The derivation of cor-
rect and numerically stable switching conditions S(x(τi),λ(τi)) = 0 is by no means
trivial. Special cases have to be distinguished, compare section 2.1.2. Especially
general path and control constraints c(·) and interior point constraints rieq(·) lead
to an a priori unknown switching structure. Constraints may get active or inactive,
jumps in the adjoint variables may occur and special care has to be taken for active
constraints whether touch points or boundary arcs are involved. See Bock (1978a),
Hartl et al. (1995) or Pesch (1994) for details.
The disadvantages of indirect methods are quite obvious. The formulation of the
boundary value problem in a numerically stable way requires a lot of know how
and work. Furthermore already small changes in the value of a parameter or in the
problem definition, e.g. an additional constraint, may change the switching structure
completely.
The switching times have to stay in the multiple shooting intervals, otherwise conver-
gence of Newton’s method is not ensured anymore. Only if the switching structure
is guessed correctly in advance and does not change during the iterations of the mul-
tiple shooting algorithm, it is possible to transform the problem onto fixed switching
times.
Start values for all variables have to be delivered, which is often difficult especially
for the adjoints. This is crucial, because one has to start inside the convergence
region of Newton’s method. In case of path constraints usually homotopies have to
be applied to obtain such start values.
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The main advantage of indirect methods is the high accuracy of the obtained solution,
as the infinite–dimensional problem has been solved. In particular, no approxima-
tions of the controls have been undertaken, in contrast to direct methods, see sections
2.2.3, 2.2.4 and 2.3. Also, the resulting boundary value problem has a dimension of
2nx only compared to dynamic programming, see section 2.2.2. As all degrees of
freedom in the controls vanish, this approach seems appropriate for problems with a
high number of control functions when compared to direct methods. If the number
of states is large compared to the number of controls, direct methods are usually
more efficient.
In general, an interactive iterative process involving the solution of several multipoint
boundary value problems is necessary to get a solution using indirect methods. Both,
insight into the problem and specific numerical knowledge are typically required for
this task. Consequently, nowadays indirect methods are most often applied when
high accuracy of the solution is crucial and enough time for obtaining the solution
is available, e.g., in the aerospace domain, Pesch (1994) or Caillau et al. (2002).
Typically, initial guesses for the variables are generated by applying direct methods,
Bulirsch et al. (1991).
In Appendix B.3 the solution of example 1.4.2 is given in detail to illustrate the
indirect approach.

2.2.2 Dynamic Programming and the HJB equation

Dynamic Programming is a discrete–time technique based on the principle of opti-
mality, that is, any subarc of an optimal trajectory is also optimal. If we do have
an optimal solution (x(·),u(·)) of problem (2.1) and an intermediate time point
t̄ ∈ [t0, tf ], then the subarc (x(·),u(·)) on [t̄, tf ] is the optimal solution for the initial
value x̄ = x(t̄).

Definition 2.11 (Optimal–cost–to–go function)
The optimal–cost–to–go function on [t̄, tf ] is given by

J(x̄, t̄) := min
x,u

∫ tf

t̄

L(x,u)dt + E(x(tf )) (2.21)

subject to x(t̄) = x̄ and equations (2.1b), (2.1c) and (2.1e).

With a time grid t0 < t1 < · · · < tnDP
= tf the optimal-cost-to-go function at time

tk can be written as

J(x̄k, tk) = min
x,u

∫ tk+1

tk

L(x,u)dt + J(x(tk+1), tk+1) (2.22)

subject to x(tk) = x̄k and equations (2.1b), (2.1c) and (2.1e). Now, starting from
J(x, tf ) = E(x), the optimal-cost-to-go functions can be computed recursively back-
wards, k = nDP − 1 . . . 0. The short horizon problems (2.22) have to be solved for all
possible xk. These values are stored, a tabulation in state space is performed.
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Dynamic Programming with infinitely small time steps leads to the Hamilton–Jacobi–
Bellman (HJB) equation, see Bellman (1957) or Locatelli (2001), that can be used
to determine the optimal control for continuous time systems:

−∂J
∂t

(x, t) = min
u

(

L(x,u) +
∂J

∂x
(x, t) f(x,u)

)

(2.23)

This partial differential equation has to be solved backwards for t ∈ [t0, tf ], starting
at the end of the horizon with

J(x, tf) = E(x). (2.24)

Remark 2.12 Optimal controls for state x at time t are obtained from

u∗(x, t) = arg min
u

(

L(x,u) +
∂J

∂x
(x, t) f (x,u)

)

(2.25)

subject to the constraints of problem (2.1). The optimal controls depend only on the
derivative ∂J/∂x, but not on J itself. If adjoint variables λ(·) are introduced as

λ(t) =
∂J

∂x
(x(t), t)T ∈ R

nx , t ∈ [t0, tf ], (2.26)

then the connection to Pontryagin’s maximum principle (see section 2.1.1) is obvi-
ous. The expression to be minimized in (2.25) is the Hamiltonian. The dynamic
equations and transversality conditions for λ(·) are obtained by differentiation of the
HJB equation (2.23) resp. of the terminal condition (2.24) with respect to x:

−λ̇T
(t) =

∂

∂x
(H(x(t),u∗(t,x,λ),λ(t))) , t ∈ [t0, tf ], (2.27)

λ(tf)
T =

∂E

∂x
(x(tf)). (2.28)

Dynamic programming (resp. the solution of the partial differential HJB equation)
has two advantages when compared to all other methods presented. First, the whole
state space is searched, thus an optimal solution is also the global optimum (compare
section 2.4). Second, all controls are precomputed once a solution is found – in online
optimization the feedback controls can be readily applied. For some specific problems
as Riccati equations, e.g., Locatelli (2001), analytic solutions can be derived.
In general this is not possible though. The main drawback is the so–called ”curse
of dimensionality”, as a partial differential equation has to be solved in a high–
dimensional state space. The HJB equation and dynamic programming are thus
mainly used for small scale systems. See Locatelli (2001) for details.

2.2.3 Direct single shooting

In contrast to indirect methods or solution of the HJB equation, direct methods are
based upon a transformation into a finite–dimensional optimization problem that
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can be solved by nonlinear programming techniques. In direct single shooting, collo-
cation and direct multiple shooting the control functions u(·) are discretized. These
methods differ in the way the corresponding state variables are treated, whether
a sequential approach is used or a so–called all–at–once approach that solves the
optimization problem and the integration of the system at the same time.
In direct single shooting, the sequential approach, the states y(·) on [t0, tf ] are re-
garded as dependent variables. Numerical integration is used to obtain the states as
functions y(·;y0, q,p) of finitely many control parameters

q = (q0, q1, . . . , qnss−1)
T .

A piecewise approximation û of the control functions u on a fixed grid is defined by

û(t) = ϕi(t, qi), t ∈ [ti, ti+1], i = 0, . . . , nss − 1, (2.29)

using control parameter vectors qi. In practice the functions ϕi are typically vectors
of constant or linear functions. In each iteration of the solution procedure, an ODE

6

x0 t
states x(t; q)

discretized controls u(t; q)

q0

q1

qnss−1 -q
t0 t

q
tf

Figure 2.5: Illustration of direct single shooting. The controls are discretized, the
corresponding states obtained by integration. The interval lengths do not have to
be equidistant. E.g., the last interval may be larger than the preceding ones, as is
typical for online optimization problems.

resp. a DAE has to be solved. The optimal control problem (1.14) is then a problem
in the finite–dimensional variables q , the initial values y0 and the parameters p
only. If we write them in one nξ–dimensional vector

ξ = (x0, z0, q0, . . . , qnss−1,p)T , (2.30)

we obtain a finite–dimensional optimization problem

min
ξ

F (ξ) (2.31a)

subject to G(ξ) = 0, (2.31b)

H(ξ) ≤ 0. (2.31c)
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Here the objective function F (ξ) is given by

F (ξ) = Φ[x, z,u,p], (2.32)

where the functions x(·; ξ) and z(·; ξ) are uniquely determined by ξ via integration.
The interior point inequality resp. equality constraints as well as bounds on pa-
rameters and controls are subsumed into the finite–dimensional constraints G(·) and
H(·). There are different ways to treat the infinite–dimensional control and path
constraints, e.g., inclusion into the objective function by penalty terms or discretiza-
tion to pointwise constraints that can be added to G(·) and H(·).
Problem (2.31) can be solved with a finite–dimensional optimization solver, e.g. by
sequential quadratic programming, compare section 2.3.1.
Direct single shooting is an often–used method of optimization, in particular in
engineering applications, as it is easily implemented if ODE/DAE solver and NLP
solvers are available. Furthermore only few degrees of freedom are left in problem
(2.31), if the number of controls is small and the initial values are fixed.
The drawback of direct single shooting is that only knowledge about the controls
can be brought in, while no knowledge about the process itself, that is about x(·),
can be used for the initialization of the optimization problem. This is, e.g., crucial
in tracking problems and whenever the states y(·; ξ) depend nonlinearly on q or the
system is unstable.

2.2.4 Collocation

Often the behavior of the process itself is well–known, while the controls q are what
one is looking for. To take advantage of this fact, in collocation the states are not
regarded as dependent variables any more, but discretized too. Collocation goes back
to Tsang et al. (1975) and has been extended, e.g., by Bär (1984), Biegler (1984)
and Schulz (1998).
In collocation not only the controls, but also the states are discretized on a fine grid
with ncol time points and node values sx

i
≈ x(ti) resp. sz

i
≈ z(ti). The ODE

0 = ẋ(t) − f (x(t),u(t)), t ∈ [0, tf ] (2.33)

is replaced by finitely many equality constraints

G̃i(qi, s
x
i
, sx

i+1) = 0, i = 0 . . . ncol − 1, (2.34a)

e.g., by the first–order approximation

G̃i(qi, s
x
i
, sx

i+1) =
sx

i+1 − sx
i

ti+1 − ti
− f

(
sx

i
+ sx

i+1

2
, qi

)

. (2.34b)

A similar idea is used to treat algebraic variables. The Lagrange term is replaced by
summation formulae. Path and control constraints are evaluated on the discretization
grid. Subsuming all constraints one obtains a large scale, but sparse NLP in the nξ–
dimensional vector

ξ = (sx
0 , s

z
0, q0, s

x
1 , s

z
1, . . . , qncol−1, s

x
ncol

, sz
ncol

,p)T , (2.35)
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that is given by

min
ξ

F (ξ) (2.36a)

subject to G(ξ) = 0, (2.36b)

H(ξ) ≤ 0. (2.36c)

In contrast to program (2.31) we do not have any dependent variables y(·) any more
that have to be determined by integration in every iteration. This structured NLP
can be solved with an appropriate nonlinear solver, e.g., with an interior point solver
or a tailored sequential quadratic programming method for sparse problems.
As stated in the beginning of this section, collocation allows to use the knowledge
about the process behavior in the initialization of the optimization problem. There-
fore it is possible to treat highly nonlinear systems efficiently. Furthermore the algo-
rithm is stable if the problem is well–posed, e.g., an unstable system with a terminal
constraint, because small perturbations do not spread over the whole time horizon,
but are damped out by the tolerance in the matching conditions. Sequential ap-
proaches are only stable, if the system itself is stable. Path and terminal constraints
are handled in a more robust way than in direct single shooting. Although the op-
timization problem gets typically very large in the number of variables, it has been
applied successfully to large–scale problems too, making use of structure–exploiting
algorithms.
An adaptivity in time cannot be incorporated in a straightforward way, as it changes
the dimensions of the underlying nonlinear program. This is crucial, though, es-
pecially for stiff systems. Stiff systems require small step sizes in the integration
process, thus the underlying grid has to be chosen very fine – often too rigorous for
the whole time horizon, if adaptivity is not used. Furthermore, such an adaptive
scheme would be solver–specific, while integrator–based methods allow to use any
available state–of–the–art DAE solver. This is a disadvantage of collocation and
the reason why we chose direct multiple shooting as the basis for our methods. See
Weiser & Deuflhard (2001) for a hybrid approach between indirect methods and
collocation, based on an interior point algorithm.

2.3 Direct multiple shooting

Direct multiple shooting goes back to the diploma thesis of Plitt (1981) supervised by
Georg Bock. It was first published in Bock & Plitt (1984) and has been extended and
applied by different researchers over the years, recently e.g., by Santos et al. (1995),
Franke et al. (2002), Leineweber et al. (2003), Brandt-Pollmann (2004), Terwen
et al. (2004) or Schäfer (2005). It combines the advantages of direct single shooting
and collocation. It is also a direct method and based upon a transformation of the
infinite–dimensional problem to a finite–dimensional one by a discretization of the
control functions, see (2.29). As in collocation, a time grid of multiple shooting nodes
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Figure 2.6: Illustration of direct multiple shooting. The controls are discretized, the
corresponding states obtained by piecewise integration. The matching conditions are
violated in this scheme — the overall trajectory is not yet continuous.

is introduced,

t0 ≤ t1 ≤ · · · ≤ tnms
= tf , (2.37)

with corresponding node values sx
i
≈ x(ti) in R

nx and sz
i
≈ z(ti) in R

nz , from now on
0 ≤ i < nms. This grid is coarser though and all values x(t) in between are obtained
by integration with an ODE/DAE solver. The DAE is solved independently on each
of the multiple shooting intervals. On interval [ti, ti+1] the initial values of differential
and algebraic states are given by node values sx

i
and sz

i
, respectively. The algebraic

equations (1.18c) are relaxed (see Bock et al. (1988), Leineweber (1999)). They enter
as conditions in ti into the NLP. Continuity of the state trajectory at the multiple
shooting grid points

sx
i+1 = x(ti+1; s

x
i
, sz

i
, qi,p) (2.38)

is incorporated by constraints into the optimization problem. Here x(·) denotes the
differential part of the DAE solution on interval [ti, ti+1] with initial values sx

i
, sz

i

at time ti. These equations are not necessarily satisfied during the iterations of the
nonlinear programming algorithm used to solve the NLP, but only when convergence
has been achieved. Direct multiple shooting is therefore a so–called all–at–once ap-
proach that solves the dynamic equations and the optimization problem at the same
time opposed to the sequential approach of single shooting that creates a continuous
trajectory in every iteration. Figure 2.6 illustrates the concept of direct multiple
shooting.

The control variables qi, the global parameters p, that may include the time horizon
lengths hi = t̃i+1 − t̃i, and the node values sx

i
, sz

i
are the degrees of freedom of the

discretized and parameterized optimal control problem. If we write them in one
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nξ–dimensional vector

ξ = (sx
0 , s

z
0, q0, s

x
1 , s

z
1, . . . , qnms−1, s

x
nms

, sz
nms

,p)T , (2.39)

similar to (2.35), but with less discretization points nms < ncol, rewrite the objective
function as F (ξ), subsume all equality constraints with the continuity conditions
(2.38) into a function G(ξ) and all inequality constraints into a function H(ξ), then
the resulting NLP can be written as

min
ξ

F (ξ) (2.40a)

subject to G(ξ) = 0, (2.40b)

H(ξ) ≤ 0. (2.40c)

This NLP can be solved with tailored iterative methods exploiting the structure of
the problem, e.g., by sequential quadratic programming that will be highlighted in
subsection 2.3.1. In this procedure special care has to be taken how derivative infor-
mation is generated, as the model equations contain differential equations. This will
be investigated further in subsection 2.3.2.

Due to the direct approach and the parameterization of the state space, direct mul-
tiple shooting is similar to collocation in many aspects and shares its advantages. In
particular, knowledge about the process behavior may be used for the initialization
of the optimization problem. The algorithm is stable, as mentioned already for col-
location. This is important for the treatment of unstable and nonlinear systems, but
also plays a role in the context of local or global optima, compare section 2.4. As in
collocation, path and terminal constraints are handled in a more robust way than in
direct single shooting. The main difference to the other all–at–once approach, collo-
cation, lies in the fact that the differential equations are still solved by integration.
This allows the usage of state–of–the–art error–controlled DAE integrators.

In addition to the conceptual advantages mentioned above, direct multiple shooting
has a very beneficial structure that can be extensively exploited. The use of structure
exploiting condensing algorithms for the Hessian as proposed in Plitt (1981) and
Bock & Plitt (1984) reduces the dimensions of the matrices in the quadratic programs
considerably to the size of those of the direct single shooting approach. Together with
high–rank block–wise updates it reduces the computing time considerably. Other
structure exploiting measures are the relaxed formulation of algebraic conditions and
invariants that allows inconsistent iterates, Bock et al. (1988), Schulz et al. (1998),
and the projection onto an invariant manifold to improve convergence and reduce
the degrees of freedom, Schlöder (1988), Schulz et al. (1998) and Schäfer (2005).
Furthermore the intrinsic parallel structure with decoupled problems can be used for
an efficient parallelization, Gallitzendörfer & Bock (1994).
For more details on direct multiple shooting, see one of the aforementioned works or
in particular Bock & Plitt (1984), Leineweber (1999) or Leineweber et al. (2003). An
efficient implementation of the described method is the software package MUSCOD-II,
see Diehl et al. (2001).
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2.3.1 Sequential Quadratic Programming

For all direct methods a NLP of the form (2.40) has to be solved. For general theory
and algorithms for finite–dimensional constrained optimization problems we refer to
standard textbooks in the field, e.g., Fletcher (1987) or Nocedal & Wright (1999).
At this point we will focus on one very efficient way to solve NLP (2.40), namely on
sequential quadratic programming (SQP), first proposed by Wilson (1963), and only
mention very shortly definitions and results from the general optimization theory.
To state necessary and sufficient conditions of optimality we need the concepts of
the Lagrangian, the active set and linear independence constraint qualification.

Definition 2.13 (Lagrangian)
The Lagrangian L of a constrained nonlinear program is defined by

L(ξ,λ,µ) = F(ξ) + λTG(ξ) + µTH(ξ), (2.41)

where λ ∈ R
nG and µ ∈ R

nH are the Lagrange multipliers of the systems equality
resp. inequality constraints.

Definition 2.14 (Active set)
The active set A(ξ) of an inequality–constrained NLP at a point ξ is the set of all
indices 1 ≤ i ≤ nH for which the corresponding equality constraint is active,

A(ξ) = {i : Hi(ξ) = 0, 1 ≤ i ≤ nH}. (2.42)

Definition 2.15 (Linear independence constraint qualification)

If the gradients of the equality constraints ∂Gi

∂ξ
, i = 1 . . . nG and of the active inequal-

ity constraints ∂H i

∂ξ
, i ∈ A(ξ) at a point ξ are linearly independent, we say that the

linear independence constraint qualification (LICQ) holds.

First order necessary conditions of optimality are given by the following theorem of
Karush (1939), Kuhn & Tucker (1951).

Theorem 2.16 (First order necessary conditions of optimality)
Let ξ∗ be a local minimizer of NLP (2.40) for which (LICQ) holds. Then there exist
unique Lagrange multipliers λ∗ ∈ R

nG and µ∗ ∈ R
nG such that at (ξ∗,λ∗,µ∗) the

following conditions hold:

∂L
∂ξ

(ξ∗,λ∗,µ∗) = 0 (2.43a)

G(ξ∗) = 0 (2.43b)

H(ξ∗) ≤ 0 (2.43c)

µ∗ ≥ 0 (2.43d)

µ∗T H(ξ∗) = 0 (2.43e)
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(ξ,λ,µ) is called a Karush Kuhn Tucker (KKT) point, if conditions (2.43) hold.
A proof for theorem 2.16 can be found in Fletcher (1987). Second order necessary
conditions are given by

Theorem 2.17 (Second order necessary conditions of optimality)
Let (ξ,λ,µ) be a KKT point and assume that (LICQ) holds.
For every vector ∆ξ ∈ R

nξ with

∂Gi

∂ξ
(ξ) ∆ξ = 0, i = 1 . . . nG (2.44a)

∂H i

∂ξ
(ξ) ∆ξ = 0, i ∈ A(ξ) (2.44b)

it holds that

∆ξT ∂2L
∂ξ2 (ξ,λ,µ) ∆ξ ≥ 0. (2.45)

Sufficient conditions are given by

Theorem 2.18 (Second order sufficient conditions of optimality)
Let (ξ,λ,µ) be a KKT point and assume that (LICQ) holds.
For every vector ∆ξ ∈ R

nξ with

∂Gi

∂ξ
(ξ) ∆ξ = 0, i = 1 . . . nG (2.46a)

∂H i

∂ξ
(ξ) ∆ξ = 0, i ∈ A(ξ) and µi > 0 (2.46b)

∂H i

∂ξ
(ξ) ∆ξ ≥ 0, i ∈ A(ξ) and µi = 0 (2.46c)

(2.46d)

it holds that

∆ξT ∂2L
∂ξ2 (ξ,λ,µ) ∆ξ > 0. (2.47)

A proof for these theorems can be found, e.g., in the textbook of Nocedal & Wright
(1999).
In the following we will also use the operator ∇ for derivatives with respect to ξ and
leave away the argument for notational convenience. Now we do want to sketch the
algorithm we use to solve the occurring nonlinear programs. The general form of an
SQP algorithm is the following.
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Algorithm 2.1 (SQP)

1. Set the iteration counter k = 0 and start with guesses ξ0 for the unknown
parameters (2.39) and λ0, µ0 for the Lagrange multipliers.

2. Evaluate F (ξk), G(ξk), H(ξk) and derivatives ∇F (ξk), ∇G(ξk) and ∇H(ξk)
with respect to ξ by solution of DAEs. Calculate Hk.

3. Compute correction term ∆ξ and Lagrange multipliers λ̃, µ̃ by solution of the
quadratic program

min
∆ξ

∇F (ξk)T∆ξ +
1

2
∆ξTHk∆ξ (2.48a)

subject to

G(ξk) + ∇G(ξk)T∆ξ = 0, (2.48b)

H(ξk) + ∇H(ξk)T∆ξ ≤ 0. (2.48c)

4. Perform steps

ξk+1 = ξk + α ∆ξ (2.49a)

λk+1 = λk + α
(

λ̃− λk
)

(2.49b)

µk+1 = µk + α
(
µ̃− µk

)
(2.49c)

with step length α.

5. If terminal condition is not fulfilled, increase k and GOTO 2.

The SQP algorithm is based on a series of quadratic approximations of the nonlinear
program. There are different versions of it that differ mainly in the way how the
approximation of the Hessian of the Lagrangian,

Hk ≈ ∂2L
∂ξ2 (ξ,λ,µ) (2.50)

is calculated, how the step length α ∈ (0, 1] for the globalization is determined and
which terminal condition is used. The most common step length methods are based
upon line search, trust region or watchdog techniques.

The termination criterion is typically either the value of a merit function, the KKT
conditions being inside a certain tolerance or a small increment of the Lagrangian in
the search direction, ||∇L∆ξ|| ≤ ε. Hk can be the exact Hessian or an approximation
obtained, e.g., by update techniques. The QP can be solved by active set strategies,
interior point methods or crossover techniques (e.g., Huber (1998)). For details and
further references see the aforementioned textbooks.
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The quadratic program (2.48) has been chosen such that, if Hk is the exact Hessian,
the original Lagrangian and the Lagrangian of the QP are identical up to second
order as we have

∂LQP

∂∆ξ
= ∇F + Hk∆ξ + λT∇G+ µT∇H . (2.51)

This guarantees that an optimal solution of the nonlinear program is also a minimizer
of the quadratic program.

Remark 2.19 If ∆ξ fulfills conditions (2.44), it will be orthogonal to the gradients
of the equality and active inequality constraints. Furthermore for inactive constraints
with Hi < 0 we have µi = 0 because of (2.43e). Thus we have

∇L = ∇F (2.52)

and the minimization of QP (2.48) corresponds to minimizing the second order ap-
proximation of the Lagrangian.

The convergence rates of SQP algorithms are deduced from corresponding Newton
methods. We have

Theorem 2.20 (Equivalence between SQP and Newton’s method)
If Hk = ∂2L

∂ξ
2 (ξ,λ,µ) and α = 1, the SQP algorithm is equivalent to Newton’s method

for the KKT conditions of the nonlinear optimization problem.

and therewith locally quadratic convergence of the SQP method with exact Hessian.
In general Hk will be an approximation of the Hessian only, as evaluations of the
second derivatives would be computationally expensive. Nevertheless superlinear
convergence can be achieved making use of appropriate update schemes. Again, we
refer to the textbooks above for a general treatment and to Boggs et al. (1982) or
Boggs & Tolle (1995) for details. The methods available in our software implemen-
tation are described in detail in Leineweber (1999). Further techniques exploiting
special structures of the QP arising from the direct multiple shooting parameteriza-
tion are described in Schlöder (1988) and Schäfer et al. (2003).

2.3.2 Derivatives

For derivative–based optimization methods derivatives with respect to the variables
ξ are needed. When the NLP (2.40) is obtained from the direct multiple shooting
method, the derivatives ∇F (ξ), ∇G(ξ) and ∇H(ξ) depend upon the variational
trajectories

∂y

∂q
,
∂y

∂s
,
∂y

∂p
(2.53)

that have to be calculated together with the solution y = (x, z) of the system
(1.14b,1.14c). y is also referred to as nominal trajectory. The derivatives have to
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be calculated with a certain accuracy required by the optimization algorithm, this
typically takes most of the overall computing time to solve optimal control problems.

The classical way to obtain an approximation for the variational trajectories is called
external numerical differentiation (END) and based upon the difference quotient.
One approximates

∂x(t, ξ)

∂ξ
∆ξ =

x(t, ξ + ε∆ξ) − x(t, ξ)

ε
+ O(ε) (2.54)

by neglecting the ε–dependent terms. x(t, ξ + ε∆ξ) is calculated for perturbed
variables ξ in a direction ∆ξ with a given factor ε.

External numerical differentiation gets its name from the fact that the trajectories
are differentiated outside the discretization scheme of the DAE integrator. This is
a severe disadvantage. Typically already for small perturbations of ξ one gets a
different step size, order and error control. These adaptive components cannot be
differentiated, though, as was already stressed by Ortega & Rheinboldt (1966) and
later on by Gear & Vu (1983). If all adaptive components are fixed, the accuracy
of nominal and varied trajectories has to be increased dramatically, leading to an
augmented overall computing time. As a rule of thumb the accuracy of the derivative
is at best about half the digits of the accuracy of the nominal trajectory.

A more sophisticated approach to obtain approximations of variational trajectories
is based upon a differentiation inside the discretization scheme of the integrator and
is therefore called internal numerical differentiation (IND). Internal numerical differ-
entiation goes back to Bock (1981) and is also stable for low integration accuracies,
Bock (1987). If one differentiates the parameterized DAE system on a multiple
shooting interval,

ẋ(t) = f (x(t), z(t), q,p), (2.55a)

0 = g(x(t), z(t), q,p), (2.55b)

x(ti) = sx
i
, (2.55c)

z(ti) = sz
i
, (2.55d)

where t ∈ [ti, ti+1], i ∈ {1, . . . nms−1}, with respect to ξ = (sx
i
, sz

i
, q,p)T , one obtains

the variational DAE system consisting of a differential
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and an algebraic part

0 =
(
gx gz gq gp

)
·
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with initial values
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. (2.56d)

Here W ·
· denote the Wronskian matrices of the system trajectories,

Wxsx
i

=
∂x

∂sx
i

(t; sx
i
, sz

i
, q,p), Wzsx

i
=

∂z

∂sx
i

(t; sx
i
, sz

i
, q,p), (2.57)

and equivalently for subscripts sz
i
, q and p. Note that for a relaxation of the algebraic

equations, see Bock et al. (1988), Bauer (1999) or Leineweber (1999), an additional
term has to be included in (2.55b).
The variational DAE system can be solved by two different IND techniques. The first
one, called varied trajectories, uses finite differences to approximate the solution. An
initial value problem is solved for the nominal system and for a perturbed ξ yielding
a first order approximation of the derivative. In contrast to external numerical
differentiation it is possible to vary the adaptive components of the integrator, as long
as these are identical for nominal and variational trajectory. The main drawback this
approach shares with external numerical differentiation is the difficulty to choose an
appropriate step size ε and the reduced accuracy due to the first order approximation.
These are also the reasons why we do not follow this approach.
The second one is the solution of the linear equation system obtained by a discretiza-
tion of system (2.56). This can be done by either Newton’s method or by a direct
solution of the linear equation system. The discretization of system (2.56) can be
performed very efficiently with the backward differentiation formulae (BDF). For an
overview of multi–step integration techniques see, e.g., Ascher & Petzold (1998).
The main advantage of this approach is that iteration matrices can be used for the
nominal as well as for the variational solutions.
It can be shown that formulation of the BDF scheme for the variational DAEs and
differentiation of the BDF scheme for the nominal DAEs lead to the same equations.
This principle, the commutativity of integration scheme and differentiation operator,
leads to an exact numerical derivative of the numerical solution of the DAE if exact
derivatives of the model equations f and g are supplied. This is referred to as the
analytical limit of IND, Bock (1983).
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The accuracy of this approach and the efficient computation of required iteration
matrices lead to the choice to use internal numerical differentiation for derivative
generation in our work. A detailed discussion and details, e.g., about computation
of directional derivatives, can be found in Bauer (1999). In Brandt-Pollmann (2004)
one finds a detailed discussion on how to exploit sparsity and efficiently combine
these concepts with automatic differentiation to reach the analytical limit.

2.4 Global optimization

Both the conditions of optimality given by the maximum principle for the infinite–
dimensional optimal control problem, see section 2.1.1, as the necessary and sufficient
conditions for the finite–dimensional discretized nonlinear program (2.40), see section
2.3.1, are conditions that guarantee a local minimum only. As discussed before, the
solution of the Hamilton–Jacobi–Bellman equation is the only approach guaranteeing
a global optimum. This approach is prohibitive though for problems involving more
than only few variables because of the curse of dimensionality. The question is risen,
what can be said about the relation between local and global minima in discretized
optimal control problems.
It is a well–known fact that a sufficient condition for a local optimum to be also
globally optimal is convexity of the objective function as well as of the feasible set5.
For NLPs of the form (2.40) the objective function F has to be convex. The feasible
set is determined by equalities and inequalities. It is clear that on the one hand
equalities G = 0 may yield disconnected and thus non–convex feasible sets, if they
are nonlinear, no matter if they are convex or non–convex. Inequalities H ≤ 0 on
the other hand may yield disconnected feasible sets only if they are non–convex as
illustrated in the one–dimensional example H(x) = −x2 + 1 ≤ 0 with feasible set
[−∞,−1]∪ [1,∞]. Convexity of F and H and linearity of G do suffice for convexity
of the optimization problem (2.40).
An interesting question is when optimal control problems with dynamic equations
and Mayer term are convex. Recently, Barton & Lee (2004), Lee et al. (2004) in-
vestigated this. One important result of Barton & Lee (2004) is that a function
F (x(t; ξ), ξ, t) is convex on R

nξ if two conditions hold. First the function F has to
be convex in both arguments x and ξ. Second, x(t; ξ) has to be affine with respect
to ξ. The basic assumption besides convexity of F andH and linearity ofG to guar-
antee convexity then is that the system can be described by a linear time–variant
DAE. If one assumes that the algebraic variables can be computed from (1.14c) and
substituted into (1.14b) or that there are no algebraic variables at all and if (1.14b)
has the form

ẋ(t) = A1(t) x(t) +A2(t) u(t) +A3(t) p, t ∈ [t0, tf ] (2.58)

with time–dependent matrices A1(·), A2(·) and A3(·), then it is possible to derive
analytic properties of the solution x(·). In particular it can be shown that x(·) is

5See A.1 in the appendix for a definition of convexity
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affine in the controls u(·), the parameters p and the initial value x0. If the controls
are discretized according to (2.29) it is also affine in the control parameterization vec-
tor q and therefore in ξ as defined by (2.39). The differential state can be expressed
by

x(ξ, t) = Wxξ + a(t), t ∈ [t0, tf ], (2.59)

with the Wronskian Wx (2.57) and a time–dependent vector a(·) defined by the
solution of the linear time–variant dynamic system. Although it will in general not
be possible to obtain an explicit analytic expression for x(·), it is of great help
to know that it is affine in the optimization variable to apply the aforementioned
theorem.

Remark 2.21 The above considerations can be applied to the objective function as
well as to the constraints. As the sum of convex functions is again convex multistage
problems with objective functions of the type (1.18a) can be treated, too. But this
holds only for fixed stage lengths (t̃i+1− t̃i) and explicit discontinuities, as the affinity
property does no longer hold for a time transformation of the DAE.

Remark 2.22 A very interesting result, Oldenburg (2005), concerning direct meth-
ods of optimal control is that the conditions for convexity lead to exactly the same
set of restrictions for direct single shooting, collocation and direct multiple shooting.
Thus there is no advantage of one method over the other with respect to guaranteed
convexity of the optimal control problem.

For general optimal control problems, convexity cannot be assumed, though, and
methods of global optimization have to be applied if globality of the solution is a
practical issue. In nonlinear programming the methodology is well developed by now.
Progress has been made in rigorous resp. complete methods that are typically based
upon spatial Branch & Bound schemes, underestimation of the objective function and
overestimation of the feasible set (see figure 2.7) by appropriate convex functions,
Falk & Soland (1969), Tawarmalani & Sahinidis (2002) or Floudas et al. (2005), as
well as additional techniques, e.g., interval arithmetic or constraint propagation.
Besides the deterministic methods there are several asymptotically complete or in-
complete methods in use, sometimes also referred to as heuristics, that are in most
cases based upon random search, tabu search or biological resp. physical archetypes,
such as melting iron for simulated annealing, behavior of insects for ant colony op-
timization and particle swarm optimization and of course evolutionary concepts for
genetic algorithms. See Neumaier (2004) for an excellent overview of methods in
global optimization and further references.
For optimal control problems such methods are rarely applied as the computational
effort is prohibitive. Esposito & Floudas (2000) and Papamichail & Adjiman (2004)
do present spatial Branch & Bound algorithms for dynamic systems. Their algo-
rithms are based upon a series of upper bounds obtained from local solutions of the
non–convex problem and lower bounds obtained by solution of a convexified prob-
lem. The convexification of occurring functions and in particular of the dynamic
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Figure 2.7: Convex underestimation (dotted) of an objective function F (ξ) (solid)
and convex overestimation (dotted) of a feasible region C (solid).

system is based upon convex envelopes, e.g., for bilinear functions first proposed by
McCormick (1976). This approach seems to be computationally expensive, though,
and not appropriate for the solution of real–life problems yet.

Besides theoretical results on globality issues a lot of experience has been gained
with the solution of practical optimal control problems. If multiple local solutions
exist, they are often due to (near–) symmetry as in robotics and mechanics. Anyway,
in contrast to time–independent optimization problems, one has in most cases addi-
tional knowledge or at least an idea about the optimal behavior of the system (not
necessarily about the controls and parameters, though). The direct multiple shooting
method and collocation allow to exploit this additional information and incorporate
this knowledge into the optimization problem, avoiding local minima far away from
the optimal solution. This advantage of the simultaneous approaches proved to be
very successful in the past for real–life applications.

2.5 Summary

In this chapter we investigated optimal control problems without binary variables to
create a basis for methods and theory to be presented in later chapters. First we
presented optimality conditions for optimal control problems, based on Pontryagin’s
maximum principle, and highlighted the solution structure and how it depends on
switching functions. In this context we explained the differences between constraint–
seeking and compromise–seeking arcs on the one hand and bang–bang and singular
arcs on the other hand. In section 2.1.4 we stated the bang–bang principle which
ensures that for linear systems, if a solution exists, there is always a bang–bang
solution that is optimal.
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Section 2.2 treats numerical solution methods. An overview is given about indirect
and direct methods and they are presented with a short description of respective
advantages and disadvantages. It becomes clear why direct multiple shooting is
the most promising approach for the optimization of practical and generic mixed–
integer optimal control problems. The most important concepts including sequential
quadratic programming and the concept of internal numerical differentiation to ob-
tain derivative information are presented.
Section 2.4 gives a brief overview of global optimization of optimal control problems
and discusses the question under which assumptions these problems are convex.

Before the concepts of this section can be used in the progress of this work, we shall
review mixed–integer techniques for nondynamic optimization problems first. This
is the topic of the following chapter.



Chapter 3

Mixed–integer nonlinear
programming

Finite–dimensional static optimization problems that involve continuous as well as
integer variables are referred to as mixed–integer nonlinear programs (MINLPs).
This problem class has received growing interest over the past twenty years. While
enormous progress has been made in the field of mixed–integer linear programming,
see, e.g., Johnson et al. (2000), Jünger & Reinelt (2004), Wolsey & Nemhauser (1999)
or Bixby et al. (2004) for progress reports and further references, it turns out to be
extremely challenging to bring together concepts from (linear) integer programming
and nonlinear optimization. Pure integer optimization problems without continuous
variables that consist of a convex quadratic function and linear constraints are a
subclass of the problem class under consideration here. Such problems and therefore
the general class of MINLPs were proven to be NP–hard, Garey & Johnson (1979),
Murty (1987), Vavasis (1995). This means from a theoretical point of view, if it
is true that NP 6= P, then there are problem instances which are not solvable in
polynomial time.
Several approaches have been proposed to solve MINLPs. The aim of this chapter
is to give an overview of these methods and give indications where to find addi-
tional information. Excellent surveys are given by Grossmann & Kravanja (1997),
Grossmann (2002), Bussieck & Prüssner (2003) and recently in Nowak (2005). Kall-
rath (2002) focuses on modeling issues in practice. The GAMSWORLD home page,
Bussieck (2005), has a lot of further references, including a list of available MINLP
solvers and benchmark problem collections.
The optimization problems we consider in this chapter are of the form

min
x,y

F (x,y)

s.t. 0 ≥H (x,y),

x ∈ X, y ∈ Y ,
(3.1)

with F : X × Y 7→ R and H : X × Y 7→ R
nH twice differentiable functions. X is

a convex, compact set and Y corresponds to a polyhedral set of integer points, e.g.,
Y = {0, 1}ny . Please note that the meaning of the variables changes in this chapter in

52
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comparison to the rest of the thesis and that we restrict our presentation on problems
of type (3.1) and do not discuss logic–based problem formulations. For such an
overview and further references we refer to Lee et al. (1999), Grossmann et al. (2005)
or Oldenburg (2005). Equality constraints are not considered explicitely for the
conceptual presentation of MINLP algorithms, as they can be formally transformed
into inequality constraints.
We will need the notion of special ordered set restrictions in this thesis.

Definition 3.1 (Special ordered set property)
The variables y1, . . . , yny

are said to fulfill special ordered set restrictions of type one
(SOS1), if they fulfill the constraints

ny∑

i=1

yi = 1, (3.2a)

y1, . . . , yny
∈ {0, 1}. (3.2b)

If they fulfill

ny∑

i=1

yi = 1, (3.3a)

y1, . . . , yny
∈ [0, 1], (3.3b)

and at most two of the yi are nonzero and if so, they are consecutive, then y is said
to have the SOS type two property (SOS2).

SOS1 restrictions will be very important in this work, as they occur automatically
after the convexifications of chapter 4. SOS2 restrictions typically occur when non-
linear functions are approximated by piecewise linear functions.

We will shortly describe MINLP methods in the literature, in particular reformulation
techniques in section 3.1, Branch & Bound in section 3.2, Branch & Cut in section 3.3,
Outer Approximation in section 3.4, Generalized Benders decomposition in section
3.5, Extended cutting planes in section 3.6, and LP/NLP based Branch & Bound in
section 3.7. We mention extensions to treat nonconvex problems in section 3.8 and
sum up in section 3.9.

3.1 Reformulations

The best way to avoid the complexity of integer variables is to avoid integer variables
in the first place. For some problems it is indeed possible to replace integer variables
by continuous variables and additional constraints. The first idea to replace an
integer variable y ∈ {0, 1} by a continuous variable x ∈ [0, 1] is to add the constraint

x (1 − x) = 0 (3.4)



54 CHAPTER 3. MIXED–INTEGER NONLINEAR PROGRAMMING

to the problem formulation. Unfortunately this equality constraint is nonconvex with
a disjoint feasible set and optimization solvers perform badly on such equations, as
the constraint qualification (compare definition 2.15) is violated. There are a couple
of approaches to enlargen the feasible set. A homotopy with a parameter β ≥ 0
going towards zero and a constraint

x (1 − x) ≤ β (3.5)

is a well known regularization technique, especially in the field of mathematical
programs with equilibrium constraints (MPECs), which are optimization problems
with complementarity conditions in the constraints, see Luo et al. (1996), Leyffer
(2003), Raghunathan & Biegler (2003).
Continuous reformulations of discrete sets, e.g., of (y1, y2) ∈ {(0, 1), (1, 0)}, are typi-
cally motivated geometrically. Raghunathan & Biegler (2003) propose to use

y1 y2 = 0, (3.6a)

y1, y2 ≥ 0, (3.6b)

y1 + y2 = 1, (3.6c)

which corresponds to the intersection of the line from (0, 1) to (1, 0) with the positive
parts of the axes. (3.6a) can of course be regularized as above as y1 y2 ≤ β. Stein
et al. (2004) propose to use a circle instead of the axes with the kink at the origin
and replace (3.6a) with

(

y1 −
1

2

)2

+

(

y2 −
1

2

)2

=
1

2
,

respectively in a regularized form to replace (3.6) with

(

y1 −
1

2

)2

+

(

y2 −
1

2

)2

≤ 1

2
, (3.7a)

(

y1 −
1

2

)2

+

(

y2 −
1

2

)2

≥
(

1√
2
− β

)2

, (3.7b)

y1 + y2 = 1. (3.7c)

A third reformulation is based on the Fischer–Burmeister function

F FB(y1, y2) = y1 + y2 −
√

y2
1 + y2

2 (3.8)

which is zero when y1, y2 are binary, as this implies y1 = y2
1 and y2 = y2

2. Leyf-
fer (2003) shows how to overcome the nondifferentiability of the Fischer–Burmeister
function at the origin and successfully applies an SQP algorithm with only minor
modifications to the solution of MPECs.

Another target for reformulations are the nonlinearities. The basic idea to use un-
derestimating and overestimating linear functions is best exemplified by replacing a
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bilinear term xy by a new variable z and additional constraints. This reformulation
was proposed by McCormick (1976). For the new variable z we obtain the linear
constraints

ylox+ xloy − xloylo ≤ z ≤ ylox+ xupy − xupylo,
yupx+ xupy − xupyup ≤ z ≤ yupx+ xloy − xloyup,

(3.9)

for given bounds on x and y, i.e., x ∈ [xlo, xup] and y ∈ [ylo, yup]. The inequalitites
follow from (x− xlo)(y − ylo) ≥ 0 and three similar equations. The snag is of course
that very tight bounds are needed for a successful optimization, which is not the
case in the presence of strong nonlinearities. See Tawarmalani & Sahinidis (2002)
or Floudas et al. (2005) for references on general under– resp. overestimation of
functions.

3.2 Branch & Bound

Branch & Bound is a general framework that was developed to solve integer and
combinatorial problems. The LP–based Branch & Bound algorithm for integer pro-
gramming was developed in the sixties by Land & Doig (1960) and Dakin (1965).
It was later on also applied to MINLPs, e.g., Gupta & Ravindran (1985), Leyffer
(1993) or Borchers & Mitchell (1994), as well as to global optimization, see e.g.,
Tawarmalani & Sahinidis (2002) for an overview. We will assume in this section that
F and H are convex functions. Extensions for the nonconvex case are discussed in
section 3.8.
Branch & Bound performs a tree search in the space of the binary (integer) vari-
ables, with NLPs resp. LPs on every node of the search tree. The root consists of
the original problem with all binary variables relaxed. All nodes in the tree are sons
of this father node with additional inequalities. This principle is repeated in every
subtree. The inequalities partition recursively the full integer problem into small
subproblems, based on the fact that the minimum of all solutions of these subprob-
lems is identical to the optimal solution of the full problem.

For the case of binary variables, we first solve the relaxed problem with y ∈ [0, 1]ny

and decide on which of the variables with non–integral value we shall branch, say yi.
Two new subproblems are then created with yi fixed to 0 and 1, respectively. These
new subproblems are added to a list and the father problem is removed from it. This
procedure is repeated for all problems of the list until none is left. There are three
exceptions to this rule, when a node is not branched on, but abandoned directly:

1. The relaxed solution is an integer solution. Then we have found a feasible
solution of the MINLP resp. MILP and can compare the objective value with
the current upper bound (and update it, if possible).

2. The problem is infeasible. Then all problems on the subtree will be infeasible,
too.
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3. The objective value is higher than the current upper bound. As it is a lower
bound on the objective values of all problems on the subtree, they can be
abandoned from the tree search.

Figure 3.1: Branch and Bound concept. Nodes in the search tree are fathomed when
they are infeasible or bounded from below (grey) or yield an integer solution (black).
Otherwise they are split up in smaller subproblems (white).

Although it is in theory possible that all leaves of the tree have to be visited, which
corresponds to a complete enumeration of all 2ny possible binary assignments, Branch
& Bound does perform quite well for MILPs, Johnson et al. (2000), and also for
MINLPs that comprise more costly subproblems in form of NLPs, Leyffer (2001).
This performance depends crucially on several aspects.

• Good primal heuristics are important, as more subtrees can be fathomed right
away with a good upper bound on the optimal value. A heuristics is everything
that tries to come up with a feasible, probably suboptimal solution, e.g., by
combinatorial or purely LP–based means. There are problem specific heuristics,
e.g., for machine scheduling, Hall et al. (1997), or the Traveling Salesman
Problem, the iterated Lin–Kerningham heuristics of Mak & Morton (1993), as
well as heuristics for general integer programs. The Pivot–and–Complement
heuristics from Balas & Martin (1980) for binary variables is based on the fact
that nonbasis variables are fixed at their respective bounds. Pivoting slack
variables into the basis, one obtains a solution with all variables fixed to either
0 or 1. This heuristics has later been extended to Pivot–and–Shift that can
also treat mixed–integer problems. A completely different approach aims at
an enumeration of 0-1 vectors in the neighborhood of the relaxed solution.
Balas et al. (2001) propose an algorithm (OCTANE) that sorts all 0-1 vectors
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in the order as they are intersected by a hyperplane, that is orthogonal to a
search direction d, when this hyperplane is moved from the solution x of the
relaxed LP in direction d. The main drawback of this approach seems to be
the difficulty to find a search direction d with a high probability of yielding
feasible solutions. An alternative approach that also enumerates 0-1 vectors
is mentioned in Johnson et al. (2000). This approach uses the intersections of
the rays of the cone generated by the LP basic solution with the hyperplanes
of the unit cube to determine candidate solutions.

• Typically more than one variable will be fractional. Therefore a decision has
to be made, which variable is chosen to branch on. This choice may depend on
a priori given user preferences, on the value of the fractional variables, e.g., in
most–violation–branching, or on the impact of a variable on the objective func-
tion. In strong branching the son problems for all open nodes are solved, before
a decision is taken dependent on, e.g., the objective value of these problems.
State–of–the–art Branch & Bound codes exploit structural information about
the variables (such as special ordered set constraints) and tailored branching
rules are applied. A survey of branching rules is presented by Linderoth &
Savelsbergh (1999).

• Another important issue is the decision in which order the subproblems will be
proceeded, with the extreme options depth–first search, i.e., the newly created
subproblems are proceeded first with the hope of obtaining an upper bound as
early as possible deep down in the search tree and the possibility of efficient
warm starts, and breadth–first search, i.e., one of the subproblems on the highest
level in the tree is proceeded first. Dür & Stix (2005) investigate different rules
with respect to their performance from a stochastical point of view.

Branch & Bound techniques have been so successful in linear programming, as the
relaxation from MILPs to LPs is extremely beneficial regarding computation times.
LPs are in P (which was first shown by Khachiyan’s ellipsoid method), whereas
MILPs are NP–complete. Furthermore LP–solvers are nowadays so competitive
that the solution of underlying subproblems is not really an obstacle any more. For
MINLPs and their relaxation to NLPs this is not true yet. On each node of the
search tree a NLP has to be solved, which may be very costly. A more efficient way
of integrating the Branch and Bound scheme and SQP has thus been proposed by
Borchers & Mitchell (1994) and Leyffer (2001). Here branching is allowed after each
iteration of the NLP solver. In this way, the nonlinear part of the MINLP problem
is solved at the same time as the tree is being searched to solve the integer part. The
problem that nodes cannot be fathomed any more, as no guaranteed lower bound is
available when no convergence has been achieved is overcome by Borchers & Mitchell
(1994) by solving dual problems. As this is computationally expensive, Leyffer (2001)
proposes to include an additional inequality in the SQP procedure that cuts off all
solutions that are worse than the current upper bound. The fathoming rule can
then be replaced by a feasibility test of the nonlinear program. This nice concept
helps to speed up the performance of the Branch & Bound method by a given factor,
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approximately the quotient of the mean number of iterations needed for the solution
of the nonlinear programs and the number of iterations after which a new branch-
ing is performed. This factor, approximately 2 to 5, is unfortunately fixed and does
not help to move into a new dimension of solvable mixed–integer nonlinear programs.

As for linear programs, e.g., Wunderling (1996), primal–dual active set–based meth-
ods will typically outperform interior point methods due to their excellent restart
possibilities after adding inequalities resp. variables. Note that the Branch & Bound
method is computationally attractive in the MINLP context, whenever the integer
part is more dominant than the nonlinear part, that is, the relaxed NLPs are not
too costly to solve.

3.3 Branch & Cut

In the Branch & Bound scheme presented above binary variables have been fixed on
each node. This fixation of variables can be seen as the introduction of an additional
inequality

yi ≤ 0

respectively

yi ≥ 1

for the relaxed variable yi ∈ [0, 1]. For general integer programs these equations read
as

yi ≤ ⌊yi⌋

respectively

yi ≥ ⌈yi⌉,

where ⌊yi⌋ means rounding down and ⌈yi⌉ rounding up the value of yi to the next
integer value. These inequalities cut off a part of the feasible domain of the problem
relaxation that does not contain any integer solution. These inequalities are only
locally valid, i.e., they hold in a certain part of the search tree. This concept of
adding cutting planes can be extended to more general inequalities that are globally
valid.

Let us first consider the linear case. The main idea of a Branch & Cut algorithm is
based on the fact that the optimal solution of a linear optimization problem lies on a
vertex of the feasible region. If we had a description of the convex hull of the integer
solutions, its solution would be on a vertex and therefore integer and the optimal
solution to the original problem. The Branch & Cut algorithm aims at adding more
and more cuts to a basic problem, until the convex hull is approximated at least
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Figure 3.2: Feasible set of a LP relaxation and included integer points (left). Convex
hull of these integer points (middle) and corresponding cuts (right).

locally well enough such that the optimal solution of the relaxed problem is integer.
This concept is shown in figure 3.2.
Much effort in integer programming has been spent on the question how to efficiently
determine strong cuts that cut off as much as possible from the relaxed feasible
set. The task to determine such a constraint that is fulfilled by all feasible integer
solutions, but not for all points of the relaxed set is referred to as separation problem,
compare Grötschel et al. (1988).
According to Johnson et al. (2000) there are three different types of valid inequalities
at a very high level that can be used to achieve integrality.

• Type I – No structure: these inequalities are based only on variables being
integral or binary. Therefore they can always be used to separate a fractional
point. The earliest and best known class of Type I inequalities are the Gomory–
Chvatal cuts introduced by Gomory (1958) and Chvatal (1973). For integer
variables yi ≥ 0 and an inequality

ny∑

i=1

aji yi ≤ bj

a Gomory–Chvatal cut is given by

ny∑

i=1

⌊aji⌋ yi ≤ ⌊bj⌋.

This concept can be extended to include continuous variables as well. Another
type of type I inequalies are lift–and–project inequalities. An LP has to be
solved for every inequality, which may turn out to be expensive. However,
given any fractional solution, a violated inequality can always be found. See,
e.g., Balas et al. (1993), Körkel (1995) or Balas & Perregaard (1999) for details.

• Type II – Relaxed structure: these inequalities are derived from relaxations
of the problem, for example by considering a single row of the constraint set.
Therefore, they can at best only separate fractional points that are infeasible
to the convex hull of the relaxation. However, these inequalities are usually
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facets of the convex hull of the relaxation and may therefore be stronger than
type I inequalities.

• Type III – Problem specific structure: these inequalities are typically derived
from the full problem structure, or a substantial part of it. They are usually
very strong in that they may come from known classes of facets of the convex
hull of feasible solutions (compare rightmost illustration in figure 3.2). Their
application is limited to the particular problem class and the known classes of
inequalities for that problem class.

Remark 3.2 Another concept that is very important in the solution of large–scale
MILPs is Branch & Price resp. Branch, Cut & Price. If a large number of integer
variables, say millions, is involved, it is beneficial to work on a small subset of these
variables only and add resp. remove dynamically variables to this subset. Recently,
Hoai et al. (2005) could solve an airline scheduling problem with a large number
of binary variables with such an approach. For MINLPs this approach seems to be
somewhat premature as the number of binary variables is in the range of tens or
hundreds instead of millions, compare the reference problems in Bussieck (2005).
Still, a Branch, Cut & Price algorithm for MINLPs can already be found in Nowak
(2005).

Branch & Cut techniques are well developped for MILPs. The work to transfer the
methodology to the nonlinear case has just started, though. This is not straight-
forward, as the separation problems that have to be solved to determine cutting
planes may be nonconvex and therefore hard to solve. Stubbs & Mehrotra (1999),
Stubbs & Mehrotra (2002) use nonlinear cuts for convex problems of the form (3.1).
Iyengar (2001) proposes quadratic cuts for mixed 0-1 quadratic programs. A Branch-
Cut-and-Price algorithm that is based on Lagrangian cuts, a decomposition of the
MINLP and MINLP heuristics is presented in Nowak (2005), together with a frame-
work that can also handle nonconvex problems by polynomial underestimation of the
nonconvex functions.

3.4 Outer approximation

While Branch & Bound and Branch & Cut methods were first developped for MILPs
and then transferred to the solution of MINLPs, the outer approximation algorithm
of Duran & Grossmann (1986) was explicitely developped for MINLPs. Again we
assume that the functions F and H are convex and treat extensions later.
Outer approximation is motivated by the idea to avoid a huge number of NLPs, that
may be very costly to solve, and instead to use available well–advanced MILP solvers.
It is based on a decoupling of the integer and the nonlinear part, by an alternating
sequence of MILPs and NLPs. The solution of the linear integer problem yields an
integer assignment and a lower bound to the convex MINLP. The solution of the
NLP, with the integer variables fixed to the result of the last MILP, gives (maybe) a
feasible solution and therefore an upper bound and a point around which to linearize
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and modify the MILP. This iteration is persued until the lower bound is close enough
to the upper bound or infeasibility is detected.
Let k denote the index of an outer iteration. The NLP mentioned above is derived
from (3.1) by fixing the binary variables y to yk:

min
x

F (x,yk)

s.t. 0 ≥H (x,yk),

x ∈X.

(3.10)

The MILP is referred to as master problem and given by

min
x,y,α

α

s.t. α ≥ F (xk,yk) + ∇F (xk,yk)T

(
x− xk

y − yk

)

∀ (xk,yk) ∈ K,

0 ≥ H (xk,yk) + ∇H (xk,yk)T

(
x− xk

y − yk

)

∀ (xk,yk) ∈ K,

x ∈X, y ∈ Y .

(3.11)

The set K contains a certain number of points (xk,yk) that are used for linear in-
equalities. In the outer approximation algorithm they are chosen as solution points
of the convex NLPs (3.10) and lie therefore on the boundary of these problems –
by adding a linear constraint at such points the feasible convex set is approximated
from the outside, motivating the name of the algorithm. Duran & Grossmann (1986)
and Fletcher & Leyffer (1994) showed that, assumed the set K contains all feasible
solutions (xk,yk) of (3.10) (resp. the solution of a proposed feasibility problem in
case the NLP has no solution), the solutions of the MILP (3.11) and the MINLP
(3.1) are identical.

Motivated by this theorem one iterates between the two subproblems, adding lin-
earization points to K until the lower bound provided by the MILPs reaches the
upper bound provided by the NLPs. Note that we obtain a series of nondecreasing
optimal objective function values of the MILPs that are all lower bounds, no matter
how many inequalities are added, compare figure 3.3.
To avoid to get stuck, additional care has to be taken to make the integer assignments
yk that were already chosen infeasible. This guarantees the finiteness of the outer
approximation algorithm, if Y is finite, and can be achieved by the cuts

∑

i∈Bk

yi −
∑

i∈Nk

yi ≤ |Bk| − 1, ∀ (xk,yk) ∈ K (3.12)

with index sets

Bk =
{
i | yk

i = 1
}
,

Nk =
{
i | yk

i = 0
}
.
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Figure 3.3: Adding a cut at one linearization point reduces the feasible set of the
linear program (3.11), but does not cut off any feasible points of (3.1).

These are known to be weak cuts, but achieve exactly what one wants: all (·,yk) ∈ K
are infeasible while all other binary assignments of y fulfill (3.12).
The outer approximation algorithm has been extended to disjunctive programming
and applied to mixed–integer optimal control problems with time–independent bi-
nary variables, see Grossmann (2002), Oldenburg (2005) for further references.

3.5 Generalized Benders decomposition

Generalized Benders decomposition was proposed by Geoffrion (1972) and is there-
fore older than the outer approximation algorithm. Nevertheless we presented outer
approximation first, as Generalized Benders decomposition is more conveniently de-
rived starting from the outer approximation master problem (3.11)1.
For convenience we write F k = F (xk,yk) and Hk = H(xk,yk). As every single
(xk,yk) ∈ K is the optimal solution of an NLP, the Karush–Kuhn–Tucker conditions
(2.43) are fulfilled with a Lagrange multiplier µk ≥ 0 and it holds

∇xF
k + ∇xH

kµk = 0. (3.13)

If, for every (xk,yk) ∈ K, we multiply the nH lower inequalities in (3.11) with the
Lagrange multiplier vector µk ≥ 0 and add the first inequality of (3.11), we obtain
the inequality

α ≥ F k + µkT
Hk + (∇F k + ∇Hkµk)T

(
x− xk

y − yk

)

(3.14)

for all (xk,yk) ∈ K. By applying (3.13) we can eliminate the variables x completely
and obtain

α ≥ F k + µkT
Hk + (∇yF

k + ∇yH
kµk)T (y − yk). (3.15)

1this derivation is based on a personal communication of Sven Leyffer
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Remembering the definition of the Lagrangian on page 42,

Lk = F k + µkT
Hk,

and noting that the expression

∇yF
k + ∇yH

kµk

is nothing but the multipliers λk of the condition y = yk in NLP (3.10), we write
(3.15) as

α ≥ Lk + λkT
(y − yk),

for all (xk,yk) ∈ K. Benders master problem is therefore given by

min
y,α

α

s.t. α ≥ Lk + λkT
(y − yk) ∀ (xk,yk) ∈ K,

y ∈ Y .
(3.16)

Generalized Benders decomposition is identical to outer approximation with the only
difference that problem (3.16) instead of (3.11) is used as a master program. This
makes it fairly easy to compare the two methods. Obviously, (3.16) has less con-
straints and variables, as the continuous variables x have been eliminated. It is
almost a pure integer program with α as the only continuous variable. Therefore
(3.16) can typically be solved much easier. But, as is clear from the above deriva-
tion, where inequalities were summed up, the formulation is weaker than (3.11). This
is also the reason why Generalized Benders decomposition is hardly used anymore
today and outer approximation is more popular.

3.6 Extended cutting planes

The Extended cutting planes method does not solve any nonlinear programs. It is
an extension of Kelley’s cutting plane method, Kelley (1960), and only iterates on
mixed–integer linear programs, completely ignoring the nonlinear part. The main
idea is to linearize the original function around the solution of the linear master
problem and to add the most violated constraint to it. The extended cutting plane
method is described in detail in Westerlund & Pettersson (1995). It has also been
extended to pseudo–convex functions. As both the nonlinear as the integer part are
solved in the same MILP of type (3.11), the method may need a large number of
iterations and typically shows slow nonlinear convergence.

3.7 LP/NLP based Branch & Bound

Quesada & Grossmann proposed a new method to solve MINLPs in 1992 with the
catchy title LP/NLP based Branch & Bound. The main idea of this approach is to
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reduce the number of MILPs that have to be solved in the outer approximation algo-
rithm. Instead, only one single master program of type (3.11) is solved by a Branch
& Bound approach. Every time a new yk is found in this procedure, compare the
first exception on page 55, the Branch & Bound algorithm is stopped. The variable
yk is fixed and a NLP of type (3.10) is solved, just as in the outer approximation
algorithm. Also, we add the solution (xk,yk) to the set K and linearizations around
this point to the master program (3.11). These linearizations are included dynami-
cally into the stopped Branch & Bound method by updating all open nodes and the
tree search is then continued, avoiding the need to restart.

The advantage of the LP/NLP based Branch & Bound compared to outer approx-
imation is considerable. Experience shows that about the same number of NLPs
has to be solved, but only one MILP. Leyffer (1993) reports substantial savings with
this method. The drawback of the method seems to be on the practical side. One
needs access to a state–of–the–art MILP solver to realize the necessary changes, i.e.,
the stop of the algorithm and the modification of the underlying constraints. The
fact that this is not possible for the best (commercial) MILP solvers as CPLEX or
XPRESS, leads to the fact that no fair comparison has been made and no commercial
implementation of the method exists. A recent implementation is available in the
COIN-OR environment and gives hope to further developments in the near future, see
Bonami et al. (2005).

The general idea can of course be transfered to General Benders decomposition and
cutting plane methods. Akrotirianakis et al. (2001) propose to use Gomory–Chvatal
cuts in the tree search and report a speedup of approximately 3 when compared to
a standard Branch & Bound.

3.8 Nonconvex problems

We assumed so far that the functions F (·) and H(·) are convex or even linear. If
they are nonconvex, local minima are not necessarily global minima any more and
the issue of global optimization arises again that was already addressed in section
2.4. There are two main problems, when nonconvexities occur:

• The solution of an NLP may have several local minima.

• Linearizations do not yield a valid lower bound any more, as parts of the feasible
set may be cut off. Compare the left picture in figure 3.4.

To overcome this problem, methods of global optimization have to be used that were
already mentioned in section 2.4, most importantly the concepts of underestimation
resp. overestimation of the nonconvex functions, compare figure 2.7, and application
of spatial Branch & Bound, going back to Falk & Soland (1969). See Neumaier
(2004), Tawarmalani & Sahinidis (2002), Floudas et al. (2005) or Nowak (2005) for
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more information.

For Branch & Bound and outer approximation some heuristics were proposed, too.
As the nodes cannot be fathomed any more without risking to neglect feasible, better
solutions, a Branch & Bound approach should not be applied to nonconvex optimiza-
tion problems. A heuristics to overcome this problem is proposed in Leyffer (2001).

For outer approximation an augmented penalty approach has been proposed by
Viswanathan & Grossmann (1990). This approach is based on including a security
distance by slack variables β. The master program (3.11) is modified to

min
x,y,α,β

α+

nH∑

i=1

wiβi

s.t. α ≥ F (xk,yk) + ∇F (xk,yk)T

(
x− xk

y − yk

)

∀ (xk,yk) ∈ K,

β ≥ H (xk,yk) + ∇H (xk,yk)T

(
x− xk

y − yk

)

∀ (xk,yk) ∈ K,

|Bk| − 1 ≥
∑

i∈Bk

yi −
∑

i∈Nk

yi, ∀ (xk,yk) ∈ K,

x ∈X, y ∈ Y , β ≥ 0.

(3.17)

with penalty parameters wi sufficiently large. This concept is illustrated in figure 3.4.

Figure 3.4: Outer approximation augmented penalty method. While the outer ap-
proximation method may cut off parts of the feasible set (left), introduction of slack
variables β may avoid this effect (right).

Other concepts that are of interest include quadratic master problems that use second
order information, Fletcher & Leyffer (1994), and an efficient handling of constraints,
Grossmann (2002), in outer approximation.
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3.9 Summary

In this chapter we gave an overview of methods to solve mixed–integer nonlinear
programs. We started by presenting reformulation techniques and the general frame-
works of Branch & Bound respectively Branch & Cut.

We introduced outer approximation, Generalized Benders decomposition and ex-
tended cutting planes, that have a strong focus on the integer part of MINLPs and
perform typically well when the functions do not show strong nonlinear behavior,
but the NLPs are expensive to solve. To deal with nonlinear effects, one might use
quadratic master problems (MIQPs) that use second order information, Fletcher &
Leyffer (1994).

If the NLPs are not too costly to solve and the bottleneck is the MILP, a Branch &
Bound approach will probably be the better choice, Fletcher & Leyffer (1994). To
reduce the high costs of solving NLPs on every node of the search tree, an algorithm
to integrate SQP and Branch & Bound should be applied.

See Skrifvars et al. (1998) for a performance comparison of these algorithms when
applied to model structure determination and parameter estimation problems.

The most promising way seems to be a consequent integration of nonlinear and
integer parts, either by the presented LP/NLP based Branch & Bound algorithm or
by a combination of global optimization and Branch, Cut & Price methods with a
set of rounding, combinatorial or dual heuristics, as proposed in Nowak (2005).



Chapter 4

Binary control functions

The algorithms of chapter 3 are based upon a fixed discretization of the controls,
yielding a constant number of variables. This is typically not sufficient to determine
an optimal solution, if the switching points are free. Before we come to methods
that take this into account, we will investigate some properties that motivate the
algorithms of chapter 5.

For our approach it is crucial to obtain lower and upper bounds on the objective
value to judge the quality of an obtained solution. While upper bounds are obtained
from any binary feasible solution, it is not as straightforward to get a good estimate
for the obtainable objective value. As illustrated by a one–dimensional example in
section 2.1.4, the reachable sets of generic measurable control functions u ∈ Um and
bang–bang functions u ∈ UBB not necessarily coincide for nonlinear optimal control
problems. Therefore it is not correct to assume that the objective value obtained by
a relaxed control can also be obtained by a bang–bang control. As this is different for
convex problems, we will convexify the optimal control problem and use the obtained
solution as a reachable lower bound for the nonlinear binary problem. The different
optimal control problems considered in this chapter are described in section 4.1 and
bounds are derived in section 4.2.

To obtain a bang–bang solution we will also use penalty terms. In section 4.3 aspects
concerning such penalizations are highlighted. Extensions to the simplified control
problems in the first sections will be discussed in section 4.4 with a special focus on
constraint and path constraints.

4.1 Convexification

As formulated in definitions 1.11 and 1.14 in chapter 1, our goal is to find an optimal
solution of general MIOCPs. Here we will first consider a less general problem to
state our ideas. In particular we restrict our investigations to singlestage problems
without constraints, algebraic variables and time–independent binary variables v to
avoid an unnecessary complication of the notation.

67
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Definition 4.1 (Nonlinear problem in binary and relaxed form)
Problem (BN) is given by

min
x,w,u,p

Φ[x,w,u,p] (4.1a)

subject to the ODE system

ẋ(t) = f(x(t),w(t),u(t),p), t ∈ [t0, tf ], (4.1b)

with initial values

x(t0) = x0, (4.1c)

and binary admissibility of w(·),
w(·) ∈ Ω(Ψ), (4.1d)

with Ψ = Ψfree. We write ΦBN for the objective value obtained by an admissible
solution. The relaxed problem obtained by replacing constraint (4.1d) with (1.15a)
will be denoted as problem (RN) with corresponding optimal objective value ΦRN.

We will then need a convexification with respect to the binary control functions w(·).
Again we consider both, the binary feasible and the relaxed case.

Definition 4.2 (Convexified linear problem in binary and relaxed form)
Problem (BL) is given by

min
x,w̃,u,p

2nw
∑

i=1

Φ[x,wi,u,p] w̃i(·), (4.2a)

subject to the ODE system

ẋ(t) =
2nw
∑

i=1

f(x(t),wi,u(t),p) w̃i(t), t ∈ [t0, tf ], (4.2b)

with initial values

x(t0) = x0, (4.2c)

binary admissibility of the new control function vector w̃ = (w̃1, . . . , w̃2nw )T ,

w̃(·) ∈ Ω(Ψ), (4.2d)

again with Ψ = Ψfree, and the special ordered set property

2nw
∑

i=1

w̃i(t) = 1, t ∈ [t0, tf ]. (4.2e)

The vectors wi ∈ R
nw are fixed and enumerate all possible binary assignments of

w, i = 1 . . . 2nw . We write ΦBL for the objective value obtained by an admissible
solution. The relaxed problem with constraint (1.15a) instead of (4.2d) will be denoted
as problem (RL) with corresponding optimal objective value ΦRL.
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Remark 4.3 Equality constraint (4.2e) allows the direct elimination of one control
function, e.g., of w̃2nw (·). For t ∈ [t0, tf ] the term

f
(
x(t),w2nw

,u(t),p
)
w̃2nw (t), (4.3)

can be replaced by

f
(
x(t),w2nw

,u(t),p
)

(

1 −
2nw−1∑

i=1

w̃i(t)

)

, (4.4)

if equality constraint (4.2e) is replaced by

2nw−1∑

i=1

w̃i(t) ≤ 1. (4.5)

The same holds for the term related to w̃2nw (·) in the objective functional.

Remark 4.4 The convexification yields an exponentially growing number of control
functions with respect to nw. The number of control functions of the convexified
problem is nw̃ = 2nw − 1. The convexification approach in connection with a direct
method to solve the relaxed problem (RL) is therefore not suited for problems with a
high number of nonconvex binary control functions, say nw > 8.

Remark 4.5 For one–dimensional binary controls w(·) with nw = 1, the convexifica-
tion yields no increase in the number of binary control variables, nw = nw̃ = 2nw −1.
If furthermore the right hand side and the objective functional are affine in the con-
trol w(·), then problems (BN) and (BL) resp. (RN) and (RL) are identical. In other
words: a one–dimensional, control–affine optimal control problem is already in the
convex form (4.2).

The connection between the problem classes introduced above for general nonlinear
and multidimensional binary control functions will be the topic of the next section.

4.2 Bounds

We defined four problem classes in the preceding section, namely binary and relaxed
optimal control problems that are either nonlinear or linear in the control functions
w resp. w̃. We will now investigate how optimal objective values correlate to each
other, assuming an optimal solution exists.

Theorem 4.6 (Comparison of binary solutions)
If problem (BL) has an optimal solution (x∗, w̃∗,u∗,p∗) with objective value ΦBL,
then there exists an nw–dimensional control function w∗ such that (x∗,w∗,u∗,p∗) is
an optimal solution of problem (BN) with objective value ΦBN and

ΦBL = ΦBN.

The converse holds as well.
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Proof. Assume (x∗, w̃∗,u∗,p∗) is a minimizer of (BL). As it is feasible, we have
the special ordered set property (4.2e) and with w̃∗

i (·) ∈ {0, 1} for all i = 1 . . . 2nw

it follows that there exists one index 1 ≤ j(t) ≤ 2nw for all t ∈ [t0, tf ] such that
w̃∗

j(t) = 1 and w̃∗
i = 0 for all i 6= j(t).

The binary control function

w∗(t) := wj(t), t ∈ [t0, tf ]

is therefore well–defined and yields for fixed (x∗,u∗,p∗) an identical right hand side
function value

f (x∗(t),w∗(t),u∗(t),p∗) = f (x∗(t),wj(t),u∗(t),p∗)

=

2nw
∑

i=1

f (x∗(t),wi,u∗(t),p∗) w̃∗
i (t)

and an identical objective function

Φ(x∗(t),w∗(t),u∗(t),p∗) = Φ(x∗(t),wj(t),u∗(t),p∗)

=

2nw
∑

i=1

Φ(x∗(t),wi,u∗(t),p∗) w̃∗
i (t)

compared to the feasible and optimal solution (x∗, w̃∗,u∗,p∗) of (BL). Thus the
vector (x∗,w∗,u∗,p∗) is a feasible solution of problem (BN) with objective value
ΦBL. Now assume there was a feasible solution (x̂, ŵ, û, p̂) of (BN) with objective
value Φ̂BN < ΦBL. As the set {w1, . . . ,w2nw } contains all feasible assignments of ŵ,
one has again an index function ĵ(·) such that ŵ can be written as

ŵ(t) := wĵ(t), t ∈ [t0, tf ].

With the same argument as above w̃ defined as

w̃i(t) =

{
1 i = ĵ(t)
0 else

i = 1, . . . , 2nw , t ∈ [t0, tf ],

is feasible for (BL) with objective value Φ̂BN < ΦBL which contradicts the optimality
assumption. Thus (x∗,w∗,u∗,p∗) is an optimal solution of problem (BN).
The converse of the statement is proven with the same argumentation starting from
an optimal solution of (BN).

Theorem 4.6 holds only for controls w̃i(t) ∈ {0, 1}, not for the relaxed problems (RN)
and (RL) with w̃i(t) ∈ [0, 1]. This can be seen in a simple one–dimensional example.
Consider the (BN) problem

min
x,w

−x(tf ) (4.6a)
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subject to the ODE

ẋ(t) =
1

2
− 4

(

w(t) − 1

2

)2

, t ∈ [t0, tf ], (4.6b)

with given initial value x0 and time horizon [t0, tf ], where w(·) is restricted to values
in {0, 1}. Binary feasible assignments are therefore w0 = 0 and w1 = 1, yielding the
convexified problem (BL)

min
x,w̃1,w̃2

−x(tf ) (4.7a)

subject to the ODE

ẋ(t) = −1

2
w̃1(t) −

1

2
w̃2(t), t ∈ [t0, tf ], (4.7b)

with given initial value x0 and time horizon [t0, tf ] and

w̃1(t) + w̃2(t) = 1. (4.7c)

w̃1(t) and w̃2(t) are restricted to values in {0, 1}.
Clearly, for both (BN) and (BL) ẋ(t) = −1

2
holds for all binary feasible choices of

w(t) resp. w̃(t). Objective function as well as right hand side of the ODE coincide
as stated by theorem 4.6. For relaxed w(t) ∈ [0, 1] one has ẋ(t) ∈ [−1

2
, 1

2
], while a

relaxation of w̃ does not change the value of ẋ(t) = −1
2
.

This example allows some generalizations. As the reachable sets are different for (RN)
and (RL), the optimal objective values of optimal control problems will typically be
different, too, ΦRN ≤ ΦRL. Furthermore we saw that a relaxation of (BN) to (RN)
may indeed largen the reachable set. Theorem 4.7 investigates whether this is also
the case for (RL) and (BL). For the proof of this theorem we will need the famous
theorem of Krein–Milman and the Gronwall lemma. Both, as well as some basic
definitions, are given in appendix A.

Theorem 4.7 (Comparison of solutions of the convexified problem)
If problem (RL) has an optimal solution (x∗, w̃∗,u∗,p∗) with objective value ΦRL,
then for any given ε > 0 there exists a binary feasible control function w̄ and a state
trajectory x̄ such that (x̄, w̄,u∗,p∗) is an admissible solution of problem (BL) with
objective value ΦBL and

ΦBL ≤ ΦRL + ε.

Proof. The proof can be split up in several elementary steps.

1. We reformulate (RL) by transforming the Lagrange term to a Mayer term by
introduction of an additional differential variable as described in chapter 2.
The right hand side of the differential equations can still be written as in (RL).
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2. Assume we have a feasible solution (x∗, w̃∗,u∗,p∗) of (RL) that is optimal and
in particular fulfills

w̃ ∈ Ω =

{

w : [t0, tf ] 7→ [0, 1]nw̃ with

nw̃∑

i=1

wi(t) = 1, t ∈ [t0, tf ]

}

. (4.8)

We fix (x∗,u∗,p∗)T and regard f as a function of w̃ only:

f̃ (w̃) := f (x∗, w̃,u∗,p∗) =

nw̃∑

i=1

f(x∗,wi,u∗,p∗) w̃i,

pointwise, all functions evaluated almost everywhere in [t0, tf ]. We define the
sets

ΓN =

{

w̃ ∈ Ω :

∫ tk+1

tk

f̃ (w̃) dt =

∫ tk+1

tk

f̃ (w̃∗) dt, k = 0 . . . N − 1

}

where the time points tk depend on N and are given by

tk+1 = tk +
tf − t0
N

, k = 0 . . .N − 1.

3. The linear operators Tk defined by

Tkw̃ =

∫ tk+1

tk

nw̃∑

i=1

f (x∗,wi,u∗,p∗) w̃i dt

are continuous. Since for a continuous operator the inverse image of a closed
set is closed and the intersection of finitely many closed sets is closed, ΓN is
closed. Furthermore it is convex and nonempty for all N , as w̃∗ ∈ ΓN . Hence
all ΓN are compact in a weak ∗ topology.

4. The nonemptyness and compactness of ΓN in a Hausdorff topology allows the
application of the Krein–Milman theorem A.7. Hence, ΓN has an extreme point
w̄N = (w̄N,1, . . . , w̄N,nw̃

).

5. The functions w̄N,i : [t0, tf ] 7→ [0, 1] take values almost everywhere in {0, 1}.
Otherwise there is a contradiction to w̄N being an extreme point as one can
construct two functions in ΓN of which w̄N is a nontrivial convex combination,
as follows.

Suppose w̄N ∈ {0, 1}nw̃ almost everywhere was not true. In this case there
exists a set E1 ⊂ [tk, tk+1] for an index 0 ≤ k < N and a function ζ(·) nonzero
on E1 and zero elsewhere on [t0, tf ] with

∫

E1

nw̃∑

i=1

f (x∗,wi,u∗,p∗) ζi(τ) dτ = 0, (4.9)
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and w̄N ± ζ fulfills (4.8).

The proof of this statement will be by induction on the dimension nx of f (·)
(the dimension of x is kept fixed, though). Let us first consider the case nx = 1.
We write f i

j = fj(x
∗,wi,u∗,p∗) for the j–th entry of the function vector f .

As w̄N ∈ {0, 1}nw̃ almost everywhere is not true, there is at least one index
0 ≤ k < N , one set E1 ⊂ [tk, tk+1] with positive measure and a δ > 0 such that

||w̄N(t) − σi||2 > δ > 0, t ∈ E1, i = 1 . . . 2nw̃ . (4.10)

Here the σi enumerate all vertices of the polytope [0, 1]nw̃ . Let E2 ⊂ E1 be
such that both E2 and its complement E3 := E1 − E2 have positive measure.
This is possible for a nonatomic measure as the Lebesgue measure.

We partition the set E2 into 2nw̃ sets E2,i by defining

E2,i = {t ∈ E2 with i = arg min |w̄N(t) − σi|, smallest index if not unique}.

Obviously
⋃

iE2,i = E2, E2,i ∩E2,j = {} for i 6= j and each E2,i is measurable.

Next we define a function ζ2(·) : [t0, tf ] 7→ [0, 1]nw̃ by

ζ2(t) =

{
0 t ∈ [t0, tf ] −E2

1
2
(w̄N(t) − σi) t ∈ E2,i

Because of (4.10) ζ2 6= 0. Furthermore w̄N ± ζ2 fulfill by construction (4.8).
We define similarly a function ζ3(·) on E3 and ζ(t) = α2ζ2(t) + α3ζ3(t). Now
it is clearly possible to choose α2 and α3 such that

|α2| ≤ 1, |α3| ≤ 1, |α2| + |α3| > 0 (4.11)

and

∫

E1

nw̃∑

i=1

f i
1 ζi(τ) dτ = α2

∫

E2

nw̃∑

i=1

f i
1 ζ2,i(τ) dτ + α3

∫

E3

nw̃∑

i=1

f i
1 ζ3,i(τ) dτ

= 0. (4.12)

The induction step is performed in a similar way. By induction hypothesis
(4.9) with E1 replaced by E2 resp. E3 we have nonzero measurable functions
ζ2(·) and ζ3(·) such that

∫

E2

nw̃∑

i=1

f i
j ζ2,i(τ) dτ = 0, (4.13)

∫

E3

nw̃∑

i=1

f i
j ζ3,i(τ) dτ = 0, (4.14)

for j = 1 . . . nx − 1, ζ2(·) and ζ3(·) are identical zero on [t0, tf ] − E2 resp.
[t0, tf ] − E3 and w̄N ± ζ2, w̄N ± ζ3 fulfill (4.8). Again we define ζ(t) =
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α2ζ2(t)+α3ζ3(t) and choose α2 and α3 such that (4.11) and the integral of the
last component vanishes over E1

∫

E1

nw̃∑

i=1

f i
nx
ζi(τ) dτ = α2

∫

E2

nw̃∑

i=1

f i
nx
ζ2,i(τ) dτ + α3

∫

E3

nw̃∑

i=1

f i
nx
ζ3,i(τ) dτ

= 0.

Because of (4.8) and

∫ tk+1

tk

nw̃∑

i=1

f i (w̄N,i(τ) ± ζi(τ)) dτ =

∫ tk+1

tk

nw̃∑

i=1

f i w̄N,i(τ) dτ

we have w̄N ± ζ ∈ ΓN . This is a contradiction to w̄N being an extreme point.
Therefore the functions w̄N,i : [t0, tf ] 7→ [0, 1] take values in {0, 1} almost
everywhere.

6. With fixed (w̄N,u
∗,p∗)T we define x̄N(·) as the unique solution of the ODE

(4.2b-4.2c). We write f (x,w) for f (x(t),w(t),u∗(t),p∗) and | · | for the eu-
clidian norm || · ||2. It remains to show that |x̄N(tf ) − x∗(tf)| gets arbitrarily
small for increasing N as this ensures that the continuous Mayer term does so,
too. We have

|x∗(t) − x̄N(t)| =

∣
∣
∣
∣

∫ t

t0

f(x∗, w̃∗) − f(x̄N , w̄N) dτ

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ t

t0

f (x∗, w̃∗) − f (x∗, w̄N) + f (x∗, w̄N) − f (x̄N, w̄N) dτ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t

t0

f(x∗, w̃∗) − f (x∗, w̄N) dτ

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ t

t0

f (x∗, w̄N) − f(x̄N , w̄N) dτ

∣
∣
∣
∣

(4.15)

For a fixed N and a given t we define 0 ≤ k∗ < N as the unique index such
that tk∗ ≤ t < tk∗+1. The first term of (4.15) can then be written as

∣
∣
∣
∣

∫ t

t0

f (x∗, w̃∗) − f (x∗, w̄N) dτ

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ tk∗

t0

f(x∗, w̃∗) − f(x∗, w̄N) dτ +

∫ t

tk∗

f (x∗, w̃∗) − f (x∗, w̄N) dτ

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

∫ tk∗

t0

f̃(w̃∗) − f̃ (w̄N) dτ

︸ ︷︷ ︸

=0

+

∫ t

tk∗

f̃ (w̃∗) − f̃(w̄N) dτ

∣
∣
∣
∣
∣
∣
∣
∣

≤ √
nx

∫ t

tk∗

∣
∣
∣f̃(w̃∗)

∣
∣
∣ +
∣
∣
∣f̃ (w̄N)

∣
∣
∣ dτ

≤ √
nx 2M (tf − t0) / N.
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M is the supremum of |f(·)| on the compact set [0, 1]nw̃ with all other arguments
fixed to (x∗,u∗,p∗). As N is free, it can be chosen such that

∣
∣
∣
∣

∫ t

t0

f(x∗, w̃∗) − f(x∗, w̄N) dτ

∣
∣
∣
∣
≤ δe−

√
nxK|tf−t0| (4.16)

for any given δ > 0, where K is the Lipschitz constant of f (·) with respect to
the state variable x. The second term of (4.15), by Lipschitz continuity

∣
∣
∣
∣

∫ t

t0

f (x∗, w̄N) − f (x̄N, w̄N) dτ

∣
∣
∣
∣

≤ √
nx K

∫ t

t0

|x∗ − x̄N| dτ (4.17)

depends on an estimation of |x∗ − x̄N|. With (4.16) we have

|x∗(t) − x̄N(t)| ≤ δe−
√

nxK|tf−t0| +
√
nx K

∫ t

t0

|x∗(τ) − x̄N(τ)| dτ. (4.18)

An application of the Gronwall inequality A.8 gives

|x∗(t) − x̄N(t)| ≤ δe−
√

nxK|tf−t0| e
√

nxK|t−t0| = δ (4.19)

for all t ∈ [t0, tf ].

7. The Mayer term E(x(tf )) is a continuous function of x, hence for all ε > 0 we
can find a δ > 0 such that

E(x̄(tf )) ≤ E(x∗(tf )) + ε

for all x̄ with |x̄(tf )−x∗(tf )| < δ. For this δ we find an N sufficiently large such
that there is a binary feasible function w̄ = w̄N and a state trajectory x̄ = x̄N

with |x̄(tf )−x∗(tf)| < δ and (x̄, w̄,u∗,p∗) is an admissible trajectory. As there
is no Lagrange term left after the reformulation of the objective functional, the
proof is complete.

One of the main ideas of the proof is the approximation of the optimal state trajectory
x∗(·). As shown in the proof, x∗(·) can be approximated arbitrarily close, uniformly.
Figure 4.1 illustrates this approximation for a one–dimensional example. It is possible
though that the state trajectory of a singular solution cannot be obtained by a bang–
bang solution, although the state trajectories obtained by bang–bang controls lie
dense in the space of state trajectories obtained by relaxed controls. We will review
an example in chapter 6.
In our proof we used a form of extension to the bang–bang principle, as we need
the fact that the state trajectories can be approximated arbitrarily close, allowing
thus to transfer the results of the linear system investigated in section 2.1.4 to the
more general control–affine case needed for the applications under consideration in
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-
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x̄N (tf ) = x∗(tf )
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x̄N (t0) = x∗(t0) = x0
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x̄N (t1) = x∗(t1)
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Figure 4.1: Approximation of a state trajectory x∗(·) with x̄N(·) ∈ ΓN for N = 2.
Note that both states x∗(t1) and x∗(tf) are reached exactly, which may take place if
the right hand side function f (·) does not depend on x. As N goes to infinity, the
difference |x̄N(t) − x∗(t)| will fall under any given tolerance δ, regardless of f (·).

this work. The fact that the reachable sets of bang–bang and relaxed controls in a
convexified system of the form (4.2) coincide, can be further generalized. In fact,
Aumann (1965) showed that this holds true for the convex hull of a function. We
state his theorem without proof in the appendix on page 172 for the convenience of
the reader, but it is of no practical impact for the following. Let us now dwell on the
question how the maximum principle relates to the relaxed convex problem (RL).

Remark 4.8 Assume we have a solution (x∗, w̃∗,u∗,p∗) of (RL) that is optimal.
For this solution, the maximum principle must hold. Therefore we have the condition
(2.4g) on the controls w̃∗ almost everywhere in [t0, tf ]:

w̃∗(t) = arg min
w

H(x∗(t),w,u∗(t),p∗,λ∗(t)). (4.20)

As the Hamiltonian of the convexified system reads as

H(x∗, w̃,u∗,p∗,λ∗) = λ∗Tf(x∗, w̃,u∗,p∗)

= λ∗T

(
2nw
∑

i=1

f(x∗,wi,u∗,p∗) w̃i

)

=

2nw
∑

i=1

λ∗Tf (x∗,wi,u∗,p∗)
︸ ︷︷ ︸

αi:=

w̃i

≥
2nw
∑

i=1

min
j
{αj} w̃i

= min
j
{αj}

2nw
∑

i=1

w̃i

= min
j
{αj},
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it follows

min
w̃

H(x∗, w̃,u∗,p∗,λ∗) = min
j
{αj}

and the minimum of αj with 1 ≤ j ≤ 2nw determines the vector w̃. If

k = arg min {αj , 1 ≤ j ≤ 2nw}

is unique, then the pointwise minimization of the Hamiltonian requires

w̃i =

{
1 i = k
0 i 6= k

and the optimal solution is purely bang–bang.
If the minimum of the αj’s is not unique, things are more complicated. Consider
a one–dimensional (nw = 1), control–affine optimal control problem with equality
α1 = α2. The Hamiltonian of the convexified problem reads as

H = λT (f(x, 0) w̃2 + f (x, 1) w̃1)

= λT (f(x, 0) (1 − w̃1) + f(x, 1) w̃1)

therefore one has for the switching function

Hw̃1
=

∂

∂w̃1

(
λTf(x, 0) (1 − w̃1) + λTf(x, 1) w̃1

)

= λTf (x, 1) − λTf(x, 0)

= α1 − α2.

It follows that if we have λTf (x, 0) = λTf(x, 1) on an interval, the control on this
interval is singular (characterized by Hw = λTfw = 0 independent of w, compare
definition 2.6).

Subsuming the results obtained so far, we can now state the final result of this
section.

Theorem 4.9 (Comparison of solutions)
If problem (RL) has an optimal solution (x∗, w̃∗,u∗,p∗) with objective value ΦRL,
then for any given ε > 0 there exists a binary feasible control function w̄ and a state
trajectory x̄ such that (x̄, w̄,u∗,p∗) is an admissible solution of problem (BL) with
objective value ΦBL and a nw–dimensional control function w such that (x̄,w,u∗,p∗)
is an admissible solution of problem (BN) with objective value ΦBN and it holds

ΦRN ≤ ΦRL ≤ ΦBL = ΦBN ≤ Φ̂BN

and

ΦBN = ΦBL ≤ ΦRL + ε,

where Φ̂BN is the objective function value of any feasible solution to problem (BN).
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Proof. Admissibility follows from the fact that w̄ is constructed as an extreme
point of a set ΓN with values in {0, 1} and is therefore binary feasible. The corre-
sponding state trajectory is determined such as to guarantee admissibility. These
results transfer directly to the solution (x̄,w,u∗,p∗) of problem (BN), see theorem
4.6.
ΦRL ≤ ΦBL holds as the feasible set of the relaxed problem (RL) is a superset of
the feasible set of problem (BL). The equality ΦBN = ΦBL is given by theorem 4.6.
The global minimum ΦBN is not larger by definition than any feasible solution Φ̂BN.
Theorem 4.7 states that ΦBL ≤ ΦRL + ε for any given ε > 0. It remaines to show
that ΦRN ≤ ΦRL. Assume ΦRN > ΦRL. Set ε = (ΦRN − ΦRL)/2, then we have

ΦBN = ΦBL ≤ ΦRL + ε < ΦRN,

which contradicts ΦRN ≤ ΦBN as the feasible set of problem (RN) is a superset of
the one of problem (BN).

Theorem 4.7 is a theoretical result. If an optimal control problem has singular arcs,
a bang–bang solution may have to switch infinitely often in a finite time interval
to approximate this singular solution. This behavior is referred to as chattering
in the optimal control community, Zelikin & Borisov (1994). The first example
of an optimal control problem exhibiting chattering behavior was given by Fuller
(1963). This example and another control problem with chattering control will be
investigated in chapter 6.
In the engineering community chattering behavior is called Zeno’s phenomenon1,
e.g., Zhang et al. (2001).
For our purposes we do not have to care about chattering resp. Zeno’s phenomenon
too much, as we are interested in an approximate, near–optimal solution on a finite
control grid only. Knowing the best objective value that can be achieved with a
bang–bang control, we can stop an iterative process to adapt the control grid (to be

1This refers to the great ancient philosopher Zeno of Elea. Zeno of Elea was a pre–Socratic
Greek philosopher of southern Italy and a pupil of Parmenides, see Vlastos (1967). He is mostly
known for his 40 paradoxes, among which the most famous are

• The Dichotomy

Motion is impossible since ”that which is in locomotion must arrive at the half-way stage
before it arrives at the goal.”

• The Arrow

”If everything when it occupies an equal space is at rest, and if that which is in locomotion
is always occupying such a space at any moment, the flying arrow is therefore motionless.”

• The Achilles

”In a race, the quickest runner can never overtake the slowest, since the pursuer must first
reach the point whence the pursued started, so that the slower must always hold a lead.”

These paradoxes can be found, e.g., in Physics of Aristotle (350 B.C.), VI:9, 239. Zeno of Elea
was the first to draw attention to the apparent interpretational problems occurring whenever an
infinite number of events has to take place in a finite time interval.
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presented in the next chapter) when we get closer than a prescribed small tolerance
to this optimal value, obtaining a control with a finite number of switches only.

4.3 Penalty terms

As proven in the preceding section, one can always find a bang–bang solution to
a convexified problem with the same objective function value up to ε, if there is
a solution at all. In practice this solution is not necessarily unique and is, when
applying a direct method, based on an approximation of the control space. Therefore
a solution will typically contain values w̃i(t) ∈ (0, 1) and will not be bang–bang. In
this section we are interested in manipulating the optimal control problem such that
its optimal solution is purely bang–bang, even in the space of approximated controls.
This is achieved by adding a penalty term to the objective functional.

Definition 4.10 (Problem with penalty terms)
Problem (PRN) is given by

min
x,w,u,p

Φ[x,w,u,p] +

nw∑

i=1

βi

∫ tf

t0

wi(t) (1 − wi(t))dt (4.21a)

subject to the ODE system

ẋ(t) = f(x(t),w(t),u(t),p), t ∈ [t0, tf ], (4.21b)

with initial values

x(t0) = x0, (4.21c)

and relaxed binary admissibility of w(·),

w(·) ∈ Ω̄(Ψ), (4.21d)

with Ψ = Ψfree. The parameters βi ∈ R are nonnegative, βi ≥ 0.

If we assume that problem (PRN) has an optimal trajectory (x∗,w∗,u∗,p∗) for

(β1, . . . , βnw
)T = 0,

then there will also be an optimal trajectory for any other choice of

βi ≥ 0, i = 1 . . . nw,

as (x∗,w∗,u∗,p∗) is feasible for the modified problem and yields an upper bound
ΦPRN and a lower bound ΦRN at the same time. We see furthermore that if problem
(BN) has an optimal trajectory, this solution will also be optimal for (PRN), if all
βi are chosen sufficiently large. Otherwise, as for at least one 1 ≤ i ≤ nw

∫ tf

t0

wi(t) (1 − wi(t)) > δ > 0,
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and βi can be chosen such that the objective value

ΦBN < ΦRN + βiδ ≤ ΦPRN

contradicts the nonoptimality assumption.

Remark 4.11 As investigated in section 4.2, for convex systems there exists always
a trajectory with a bang–bang control w(·) and an objective value

ΦRL ≤ ΦBL ≤ ΦRL + ε

if there is an optimal trajectory for problem (RL). By adding a penalty term with

(β1, . . . , βnw
)T > 0

any solution that is not bang–bang almost everywhere has an increased objective value
with respect to every bang–bang solution. Therefore there may be no optimal solutions
any more that are not purely bang–bang. This, of course, is only a theoretical result,
as chattering controls cannot be represented exactly by numerical methods.

Assume we have two different penalty parameter vectors βk and βl with

βk
i < βl

i, i = 1 . . . nw,

and an optimal trajectory of problem (PRN)k, defined as problem (PRN) with β =
βk. Now let us consider the Hamiltonian Hl of problem (PRN)l, evaluated at the
optimal trajectory of problem (PRN)k,

Hl = L+ λTf +

nw∑

i=1

βl
i wi(t) (1 − wi(t)) (4.22)

= Hk +
nw∑

i=1

(βl
i − βk

i ) wi(t) (1 − wi(t)). (4.23)

The derivative with respect to wi reads as

Hl
wi

= Hk
wi

+ (βl
i − βk

i )
︸ ︷︷ ︸

>0

(1 − 2wi(t)). (4.24)

We have Hl
wi
> Hk

wi
for wi(t) < 0.5 and Hl

wi
< Hk

wi
for wi(t) > 0.5. For singular

controls with Hk
wi

= 0 an augmentation of βk thus leads to a movement of the
minimizer of the Hamiltonian. This principle is depicted in figure 4.2 for a two–
dimensional static optimization example with β = β1 = β2 ranging from 0 to 25.
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Figure 4.2: Function values of a two–dimensional example function given by
f(x1, x2) = 0.7 sin(0.5 + 15 x1 + 6 x2) + 3 (x1 − 0.7)2 + 3 (x2 − 0.4)2 (top left)
and function values for f(x1, x2)+β(x1−x2

1)+β(x2−x2
2) with β = 0, 5, 10, 15, 20, 25

from top left to right bottom.

4.4 Constraints and other extensions

In the preceding sections we investigated optimal control problems that are a special
case of definition 1.14. With one exception, the extensions to general multistage
mixed–integer optimal control problems are done in a straightforward way, though.
This exception is general path and control constraints c(·). Assume we have a feasi-
ble solution of the relaxed problem (RL). Here two cases can be differentiated: for
constraints that depend only on x(·), u(·) and p, but not on w(·), the inequalities
can be fulfilled to a certain tolerance with a bang–bang control as the states x(·) can
be approximated arbitrarily close (see proof of theorem 4.7). This is different, if c(·)
depends explicitly upon w(·). Consider the pathological one–dimensional example
with control constraints given by

0 ≤ c(w) =

(
1 − 10−n − w(t)
w(t) − 10−n

)

, n ≥ 1. (4.25)

These constraints exclude all binary solutions w(t) ∈ {0, 1}, while singular controls
might still be feasible. Thus it is obvious that no general bang–bang theorems are
possible for general path and control constraints c(·) and open questions remain that
may be the topic of future research. We will restrict ourselves in the following to
an assumption concerning the control constraints and replace the general path and
control constraint (1.18d) by

−εc ≤ ck(xk(t), zk(t),uk(t),v,p), t ∈ [t̃k, t̃k+1], (4.26)

for a given tolerance εc > 0.
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As investigated in section 2.1.3, algebraic variables, due to the index 1 assumption,
and multiple stages do not yield any theoretical difficulties and the results of this
chapter can be transformed to such problems.
Having this in mind we can now state the following theorem for the general multistage
case that allows us to decouple the determination of the optimal binary parameters
from the determination of the optimal binary functions. Let (BN) denote the mul-
tistage mixed–integer optimal control problem (1.18), where the constraints (1.18d)
are replaced by (4.26). Let (RL) denote the same problem in relaxed (with respect
to the binary control functions, not to the binary parameters) and convexified form.

Theorem 4.12 (Comparison of solutions with binary parameters)
Let k = 0 . . . nmos − 1 denote the model stage index. If problem (RL) has an op-
timal solution T ∗ = (x∗

k, z
∗
k, w̃

∗
k,u

∗
k,v

∗,p∗) with objective value ΦRL, then for any
given ε > 0, εc > 0 there exist binary feasible control functions w̄k and state trajec-
tories x̄k, z̄k such that (x̄k, z̄k, w̄k,u

∗
k,v

∗,p∗) is an admissible solution of problem
(BL) with objective value ΦBL and nw–dimensional control functions wk such that
(x̄k, z̄k,wk,u

∗
k,v

∗,p∗) is an admissible solution of problem (BN) with objective value
ΦBN and it holds

ΦRN ≤ ΦRL ≤ ΦBL = ΦBN ≤ Φ̂BN

and

ΦBN = ΦBL ≤ ΦRL + ε,

where Φ̂BN is the objective function value of any feasible solution to problem (BN).

Proof. We show that an admissible trajectory (x̄k, z̄k, w̄k,u
∗
k,v

∗,p∗) of (BL)
exists with objective value ΦBL ≤ ΦRL + ε. The other claims follow with the same
arguments as in theorem 4.9. We only state the necessary extensions to this proof.
We fix v∗, that fulfills by assumption the binary constraint (1.18h), as we do with all
u∗

k and with p∗. Then we notice that by the index 1 assumption an additional dif-
ferentiation of the algebraic constraints (1.18c) will formally transform the algebraic
variables into differential ones. Therefore all algebraic variables can be determined
such that for any given δ (1.18b,1.18c) hold and |z̄k(t)−z∗(t)| < δ for all t ∈ [t0, tf ],
if this is possible for differential variables.
The singlestage case can be transferred directly to the multistage one, as the stage
transition conditions are continuous and depend only on the states that can be
approximated arbitrarily close and on the parameters (v∗,p∗) that are fixed. Leaves
to consider the path constraints (4.26) and the interior point constraints (1.18e,
1.18f) that were temporarily neglected in theorem 4.9. For the path constraints we
can choose δ > 0 in

|(x̄k, z̄k)(t) − (x∗, z∗)(t)| < δ, t ∈ [t0, tf ]

as a minimum of the values necessary to ensure that the continuous objective function
and the continuous path controls are within the prescribed tolerances ε resp. εc. For
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the interior point constraints we can proceed in a similar manner. We prescribe a
tolerance εr and can fulfill all interior point inequality and equality constraints up
to this precision by an adequate choice of δ. This completes the proof.

Theorem 4.12 has one very important consequence. To determine optimal binary pa-
rameters v∗ it is sufficient to solve an associated control problem with relaxed binary
control functions. For v∗ fixed we may then in a second step find the optimal binary
admissible control functions w̄k. This decoupling of the computationally expensive
integer problems to determine binary parameters and binary control functions is
beneficial with respect to the overall run time of a solution procedure.

For penalty terms constraints pose additional difficulties, too. In the presence of
path constraints the derivative of the Hamiltonian with respect to wi reads as

Hl
wi

= Hk
wi

+ µTcwi
+ (βl

i − βk
i ) (1 − 2wi(t)). (4.27)

Now a penalty increase (βl
i − βk

i ) not necessarily leads to a different trajectory. The
derivative of the Hamiltonian evaluated for an optimal trajectory of (PRN)k with
wi(t) being a singular control, has to vanish as stated by the maximum principle.
For unconstrained systems the penalty increase lead to a ”movement” of the optimal
trajectory of (PRN)k towards an optimal solution of (PRN)l such that the maximum
principle is again satisfied. If path constraints are active, the additional term

(βl
i − βk

i ) (1 − 2wi(t))

may also be ”compensated” by an augmented Lagrange multiplier µ. In other words,
the solution is ”pushed” against constraints that are cutting off a binary solution from
the feasible region, the trajectory may get stuck in this point.

Figure 4.3 illustrates this situation for the two–dimensional nondynamic example
given in figure 4.2. Iterative descent–based optimization methods will get stuck in
such a point. If no additional degrees of freedom in continuous variables are avail-
able to change the position of the constraint with respect to the binary variables,
multistart or backtracking techniques have to be applied. This is more likely in
pure integer than in mixed–integer problems. This possibility to get stuck is indeed
the reason, why penalty term techniques are not very popular in integer program-
ming and why we treat binary parameters v as described in chapter 3 instead of
applying the same convexification and penalization techniques as will be presented
in chapter 5.
But, for optimization problems resulting from discretized optimal control problems,
compare chapter 2, there exists a remedy to overcome this problem. By modify-
ing the control discretization grid, i.e., by refining the control approximation, the
optimization problem is transformed into a related one with additional degrees of
freedom that may be used to fulfill the constraint. Details will be given in chapter 5.
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Figure 4.3: Two–dimensional example function of figure 4.2 with a constraint cutting
off the bottom left binary solution (0, 0).

4.5 Summary

In this chapter we presented a methodology to convexify optimal control problems
with respect to the binary control functions. We stated several theorems that clarify
the connection between the nonlinear and a convexified problem on the one hand
and between binary and relaxed control problems on the other hand. In partic-
ular we proved that, assumed there exists an optimal trajectory to the relaxed
convexified problem with objective value ΦRL, there also exists a feasible trajec-
tory for the original, mixed–integer optimal control problem with an objective value
ΦRL ≤ ΦBN ≤ ΦRL + ε for any given ε > 0. This fact will be exploited in the
following chapter, where the solution of the relaxed convexified problem serves as a
(reachable!) lower bound and stopping criterion of an iterative solving procedure.
We proved in theorem 4.12 that binary parameters v∗ that are optimal for the control
problem with relaxed binary control functions will also be optimal for the integer
problem. This allows to decouple the determination of the computationally expensive
integer problems if parameters as well as control functions are present. This is very
beneficial with respect to the overall run time of a solution procedure.
In section 4.3 we formulated an optimal control problem enriched by an additional
penalty term in the objective functional and investigated some properties of such a
control problem. In particular we saw that the optimal trajectory of it will be binary
admissible if the penalty parameter vector β is chosen sufficiently large. In section 4.4
we discussed extensions to general multistage mixed–integer optimal control problems
and occurring problems in the presence of path and control constraints.
The theoretical results obtained in this chapter will be used to motivate the numerical
methods that are presented in chapter 5.



Chapter 5

Numerical methods for binary
control functions

As shown in the last chapter, the determination of optimal binary parameters v∗ can
be decoupled from the determination of optimal binary control functions w∗(·) to
make solution algorithms more efficient. In this chapter we are going to define algo-
rithms to solve mixed–integer optimal control problems of the form (1.14) without
resp. with fixed binary parameters v, i.e.,

min
x,z,w,u,p

Φ[x, z,w,u,p] (5.1a)

subject to the DAE system

ẋ(t) = f (x(t), z(t),w(t),u(t),p), t ∈ [t0, tf ], (5.1b)

0 = g(x(t), z(t),w(t),u(t),p), t ∈ [t0, tf ], (5.1c)

control and path constraints

0 ≤ c(x(t), z(t),w(t),u(t),p), t ∈ [t0, tf ], (5.1d)

interior point inequalities and equalities

0 ≤ rieq(x(t0), z(t0),x(t1), z(t1), . . . ,x(tf ), z(tf),p), (5.1e)

0 = req(x(t0), z(t0),x(t1), z(t1), . . . ,x(tf ), z(tf ),p), (5.1f)

and binary admissibility of w(·)

w(·) ∈ Ω(Ψ). (5.1g)

Please note that we restrict our investigation to the singlestage case only because of
notational simplicity. All algorithms can be applied to multistage problems as well.
We will base all algorithms that are presented in the sequel of this work on the direct
multiple shooting method. We discretize the control space as described in chapter 2
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with constant functions. We restrict the optimization space thus to functions that
can be written as

w(t) = qi, t ∈ [ti, ti+1], i = 0, . . . , nms − 1, (5.2)

compare (2.29). The constant functions qi ∈ R
nw have to take values qi ∈ {0, 1}nw

or, for the relaxed problem, qi ∈ [0, 1]nw to be admissible. The continuous control
functions u(·) are discretized in a similar manner, not necessarily with constant
functions, but in this chapter qi will refer to a discretization of w(·) exclusively for
the sake of notational simplicity. The underlying control discretization grid depends
upon the number nms and positions ti of possible changes in the constant control
function values. We will refer to it as

G = {t0, t1, . . . , tnms
}.

If the feasible switching set is free, i.e. Ψ = Ψfree, the number of multiple shooting
nodes nms and the time points ti are free parameters of the direct multiple shooting
method and G can be chosen by a user or appropriate methods, see section 5.3. If
Ψ = Ψτ , then we set

nms := nτ and ti := τi, i = 0 . . . nms

to guarantee that the jump conditions in (1.13) are satisfied. In this case we lose
some degrees of freedom. The methods presented in sections 5.2, 5.3 and 5.5 are
based upon the freedom to determine switching points, thus these methods can only
be applied when Ψ = Ψfree.
We will first mention rounding strategies, followed by an investigation of the switching
time approach in section 5.2. The latter is based on a reformulation of the single stage
model to a multistage model with free stage lengths. In section 5.3 we will examine
adaptivity issues in the control discretization and propose an algorithm to refine the
discretization wherever controls are not at their respective bounds. In section 5.4 we
present a penalty term homotopy. In section 5.5 we will finally formulate our new
algorithm to solve mixed–integer optimal control problems.

5.1 Rounding strategies

Rounding strategies are based upon a fixed discretization G of the control space.
This discretization may be enforced by a Ψτ or may result from a users choice resp.
an adaptive refinement procedure. Despite the fact that we have a finite–dimensional
binary optimization problem, there is a difference to generic static integer optimiza-
tion problems of the form (3.1), because there is a ”connection” between some of the
nw ·nms variables. More precisely we have nw sets of nms variables that discretize the
same control function, only at different times.
The rounding approach to solve problem (5.1) consists of relaxing the integer re-
quirements qi ∈ {0, 1}nw to q̃i ∈ [0, 1]nw and to solve a relaxed problem first. The



5.1. ROUNDING STRATEGIES 87

obtained solution q̃ can then be investigated – in the best case it is an integer feasible
bang-bang solution and we have found an optimal solution for the integer problem.
In case the relaxed solution is not integer, one of the following rounding strategies
can be applied. The constant values qj,i of the control functions wj(t), j = 1 . . . nw

and t ∈ [ti, ti+1], are fixed to

• Rounding strategy SR (standard rounding)

qj,i =

{
1 if q̃j,i ≥ 0.5
0 else

.

• Rounding strategy SUR (sum up rounding)

qj,i =

{
1 if

∑i

k=0 q̃j,k −
∑i−1

k=0 qj,k ≥ 1
0 else

.

• Rounding strategy SUR-0.5 (sum up rounding with a different threshold)

qj,i =

{
1 if

∑i

k=0 q̃j,k −
∑i−1

k=0 qj,k ≥ 0.5
0 else

.

Figure 5.1: One–dimensional example of the rounding strategies. From left to right
the relaxed solution q̃ and solutions q obtained by rounding strategy SR, SUR and
SUR-0.5.

Figure 5.1 shows an illustrative example of the effect of the different rounding strate-
gies. For strategies SUR and SUR-0.5 the values of the q̃j,i are summed up over the
intervals to have

∫ tf

t0

wj(τ) dτ ≈
∫ tf

t0

w̃j(τ) dτ

for all j = 1 . . . nw.
Special care has to be taken if the control functions have to fulfill the special ordered
set type one restriction (see page 53) as it arises from a convexification, compare
chapter 4. Many rounded solutions will violate (3.2b). Rounding strategy SR pre-
serves this property if and only if exactly one value q̃j,i ≥ 0.5 on each interval i. For
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the sum up rounding strategies this is not enough, the sum of several controls may
show similar behavior over the multiple shooting intervals. For problems with the
SOS1 property we therefore propose to use one of the following rounding strategies
that guarantee (3.2b). We fix the constant values qj,i of the control functions wj(t),
j = 1 . . . nw and t ∈ [ti, ti+1], to

• Rounding strategy SR-SOS1 (standard)

qj,i =

{
1 if q̃j,i ≥ q̃k,i ∀ k 6= j and j < k ∀ k : q̃j,i = q̃k,i

0 else
.

• Rounding strategy SUR-SOS1 (sum up rounding)

q̂j,i =
i∑

k=0

q̃j,k −
i−1∑

k=0

qj,k

qj,i =

{
1 if q̂j,i ≥ q̂k,i ∀ k 6= j and j < k ∀ k : q̂j,i = q̂k,i

0 else
.

Rounding strategies yield trajectories that fulfill the integer requirements, but are
typically not optimal and often not even admissible. Nevertheless rounding strategies
may be applied successfully to obtain upper bounds in a Branch and Bound scheme,
to get a first understanding of a systems behavior or to yield initial values for the
switching time optimization approach. Rounding strategy SUR-SOS1 is specifically
tailored to the special ordered set restrictions that stem from the convexification and
works well for a suitably chosen discretization grid, as it reflects the typical switching
behavior for singular resp. on constrained arcs.

5.2 Switching time optimization

One possibility to solve problem (5.1) is motivated by the idea to optimize the switch-
ing structure and to take the values of the binary controls fixed on given intervals, as
is done for bang-bang arcs in indirect methods. Let us consider the one–dimensional
case, nw = 1, first. Instead of the control w(·) : [t0, tf ] 7→ {0, 1} we do get nmos fixed
constant control functions

wk : [t̃k, t̃k+1] 7→ {0, 1}

defined by

wk(t) =

{
0 if k even
1 if k odd

, t ∈ [t̃k, t̃k+1] (5.3)

with k = 0 . . . nmos − 1 and t0 = t̃0 ≤ t̃1 ≤ · · · ≤ t̃nmos
= tf .
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Figure 5.2: Switching time optimization, one–dimensional example with nmos = 5.

These control functions will enter a multistage optimal control problem of the form
(1.18). If we assume that an optimal binary control function w(·) switches only
finitely often, then problem (5.1) is equivalent to optimizing nmos and the time vector
t̃, respectively the vector h of stage lengths hk := t̃k+1−t̃k, in a multistage formulation

min
xk,zk,uk,p,h,nmos

nmos−1∑

k=0

Φk[xk, zk,wk,uk,p] (5.4a)

subject to the DAE model stages (from now on k = 0 . . . nmos − 1)

ẋk(t) = fk(xk(t), zk(t),wk(t),uk(t),p), t ∈ [t̃k, t̃k+1] (5.4b)

0 = gk(xk(t), zk(t),wk(t),uk(t),p), t ∈ [t̃k, t̃k+1] (5.4c)

control and path constraints

0 ≤ ck(xk(t), zk(t),wk(t),uk(t),p), t ∈ [t̃k, t̃k+1], (5.4d)

interior point inequalities and equalities with ki denoting the index of a model stage
containing ti, that is ti ∈ [t̃ki

, t̃ki+1],

0 ≤ rieq(yk0
(t0),yk1

(t1), . . . ,yknms
(tnms

),p), (5.4e)

0 = req(yk0
(t0),yk1

(t1), . . . ,yknms
(tnms

),p), (5.4f)

and for positive hk ≥ 0 the constraint

nmos−1∑

k=0

hk = tf − t0. (5.4g)

In (5.4) all wk(t) are fixed to either 0 or 1. This approach is visualized in figure 5.2
with nmos = 5.
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For fixed nmos we have an optimal control problem that fits into the definition of
problem (1.18) and can be solved with standard methods, where the stage lengths
hk take the role of parameters that have to be determined. The approach can be
extended in a straightforward way to a nw–dimensional binary control function w(·).
Instead of (5.3) one defines wk as

wk(t) = wi if k = j 2nw + i− 1, t ∈ [t̃k, t̃k+1] (5.5)

for some j ∈ N0 and some 1 ≤ i ≤ 2nw . The wi enumerate all 2nw possible assign-
ments of w(·) ∈ {0, 1}nw , compare chapter 4.
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Figure 5.3: Switching time optimization, two–dimensional example with nmos = 8
and h5 = 0.

Figure 5.3 shows a two–dimensional example. For nw = 2 we have

w1 = (0, 0)T ,w2 = (0, 1)T ,w3 = (1, 0)T ,w4 = (1, 1)T .

If we choose nmos = 8 we obtain eight stages with

w0(t) = w1,w1(t) = w2,w2(t) = w3,w3(t) = w4,

w4(t) = w1,w5(t) = w2,w6(t) = w3,w7(t) = w4.

Depicted is an example where h5 = 0, the assignment w2 = (0, 1)T enters effectively
only once on the second stage [t̃1, t̃2].
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This two–dimensional example already indicates some intrinsic problems of the switch-
ing time approach. First, the number of model stages grows exponentially not only
in the number of control functions, but also in the number of expected switches of
the binary control functions. Starting from a given number of stages, as depicted in
figure 5.3, allowing a small change in one of the control functions requires additional
2nw stages. If it is indeed exactly one function wi(·) that changes while all others
stay fixed, 2nw − 1 of the newly introduced stages will have length 0. This leads to a
second drawback, namely a nonregular situation that may occur when stage lengths
are reduced to zero. Consider the situation depicted in figure 5.4. The length of an
intermediate stage corresponding to control w2(t) = 0 has been reduced to zero by
the optimizer. Therefore the sensitivity of the optimal control problem with respect
to h1 and h3 is given by the value of their sum h1 + h3 only. Thus special care has
to be taken to treat the case where stage lengths diminish during the optimization
procedure. Kaya & Noakes (1996, 2003) and Maurer et al. (2005) propose an algo-
rithm to eliminate such stages. This is possible, still the stage cannot be reinserted,
as the time when to insert it is undetermined.
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Figure 5.4: Switching time optimization, one–dimensional example with diminishing
interior stage and occurring nonregularity. t̃2 = t̃3 can take any value in the interval
[t̃1, t̃4] without any influence on the optimal control problem.

The third drawback is that the number of switches is typically not known, left alown
the precise switching structure. Some authors propose to iterate on nmos until there is
no further decrease in the objective function of the corresponding optimal solution,
Rehbock & Caccetta (2002) and Kaya & Noakes (1996, 2003). But it should be
stressed that this can only be applied to more complex systems, if initial values for
the location of the switching points that are close to the optimum are available, as
they are essential for the convergence behavior of the underlying method. This is
closely connected to the fourth and most important drawback of the switching time
approach. The reformulation yields additional nonconvexities in the optimization
space. Even if the optimization problem is convex in the optimization variables
resulting from a constant discretization of the control functionw(·), the reformulated
problem may be nonconvex.
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To demonstrate this effect we will investigate the fishing problem introduced in sec-
tion 1.4.2. We will not prove nonconvexity in mathematical rigor, but instead show
some results obtained by simulation that give an insight into the issue. The opti-
mization problem that results from a switching time approach with nmos = 5 stages
reads as

min
xk,h

tf∫

t0

(x0(t) − 1)2 + (x1(t) − 1)2 dt (5.6a)

subject to the ODE system

ẋ0(t) = x0(t) − x0(t)x1(t), (5.6b)

ẋ1(t) = −x1(t) + x0(t)x1(t), (5.6c)

for t ∈ [t0, t̃1] ∪ [t̃2, t̃3] ∪ [t̃4, tf ] and to

ẋ0(t) = x0(t) − x0(t)x1(t) − c0x0(t), (5.6d)

ẋ1(t) = −x1(t) + x0(t)x1(t) − c1x1(t), (5.6e)

for t ∈ [t̃1, t̃2] ∪ [t̃3, t̃4]. The initial values are given by

x(t0) = x0 (5.6f)

and we have the constraint

4∑

k=0

hk = tf − t0 (5.6g)

on the model stages with

hk = t̃k+1 − t̃k ≥ 0, (5.6h)

k = 0 . . . 4. Note that the binary control assignments w1 = 0 and w2 = 1 have been
inserted directly into the formulation. A local optimum of problem (5.6) with initial
values given in appendix B is

h∗ = (2.46170, 1.78722, 0.89492, 0.31169, 6.54447)T (5.7)

with a switching structure similar to that of figure 5.2 and an objective value of
Φ = 1.34967.
We fix some variables1 to obtain an objective landscape by varying h2, h3 and h4

and integrating system (5.6). The length of the third stage, given by h2, can take
all values in [0, h∗2 + h∗3 + h∗4]. The length of the fourth stage, i.e. h3, can take
all values in [0, h∗2 + h∗3 + h∗4 − h2]. The length of the terminal stage h4 is set to
tf − t0 − h0 − h1 − h2 − h3 to satisfy constraint (5.6g). The chosen step size for

1h0 = h∗

0 = 2.46170 and h1 = h∗

1 = 1.78722.



5.2. SWITCHING TIME OPTIMIZATION 93

 1

 2

 3

 4

 5

 6

 7

 0

 1

 2

 3

 4

 5

 6

 7
 0  1  2  3  4  5  6  7

 1

 2

 3

 4

 5

 6

 7

objective function

Length stage 3

Length stage 4

objective function

Figure 5.5: Objective function value of the fishing problem in switching time formu-
lation, dependent on t̃3 and t̃4, the begin respectively end of the fourth stage.

the visualization is 0.1. Figure 5.5 shows the landscape obtained by a simulation.
Obviously the objective function is nonconvex and contains multiple local minima.
The nonconvexity is even more apparent, when the case nmos = 3 is considered, as we
are not close to the global minimum by fixing some of the variables to their optimal
values. Figure B.2 in appendix B shows a simulation for it and a comparison with
the optimal control problem in another formulation that is less nonconvex.

Despite the mentioned drawbacks of the switching time optimization approach, it can
be applied to practical problems, if it is combined with a bunch of other concepts.
This includes rigorous lower and upper bounds, good initial values, a strategy to
deal with diminishing stage lengths and the direct multiple shooting method that
helps when dealing with nonconvexities, compare the comments in section 2.4 and
the explicit example in the appendix. In B.4 it is shown how the initialization of the
multiple shooting node values for the differential states can help to let the solution
converge towards the local optimum one is looking for.

An advantage of the switching time approach is that solutions can be formulated in
a compact way that we will define here. We will use this formulation for notational
brevity in the proceeding of this thesis.
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Definition 5.1 (Stage lengths solution)
The stage lengths solution

S(q; h0, h1, . . . hnmos
)

with q ∈ {0, 1}, hi ≥ 0 denotes the one–dimensional control function w(·) mapping
[t0, tf ] 7→ {0, 1} given by

w(t) =

{
q t ∈ [t̃2 k, t̃2 k+1]
1 − q t ∈ (t̃2 k+1, t̃2 k+2]

, k = 0 . . .
⌈nmos

2

⌉

with t̃k := t0+
∑k

i=1 hi−1, k = 0 . . . nmos+1. If q is a vector, then S(q; h0, h1, . . . hnmos
)

denotes the solution w(t) = qk for t ∈ [t̃k, t̃k+1].

In other words, a stage lengths solution yields the value of a one–dimensional binary
control function on the very first interval [t̃0, t̃1] and all interval lengths, thus all
information necessary to reconstruct w(·) on [t0, tf ]. To give an example, the solution
corresponding to (5.7) can be written as

w(·) = S(0; 2.46170, 1.78722, 0.89492, 0.31169, 6.54447).

5.3 Adaptive control grid

When control functions are discretized with piecewise constant functions (5.2), we
restrict the search for an optimal admissible trajectory to a subspace. In this space
there may be no admissible trajectory at all. If an admissible optimal solution
exists, it typically has a higher objective value than the optimal trajectory of the
full, relaxed, infinite–dimensional control space that will be denoted by T ∗ in the
following. But, as was shown in chapter 4, the trajectories with piecewise constant
controls, being a superset of the trajectories with bang–bang controls, lie dense in
the space of all trajectories. In other words, given a tolerance ε, one can always
find a control discretization t1 . . . tnms

such that the Euclidean distance between the
corresponding optimal trajectory and T ∗ is less than ε for each time t ∈ [t0, tf ]. The
goal of this section is to describe adaptivity in the control discretization grid G that
serves two purposes: first, we can use it to obtain an estimation for the optimal
objective function value of T ∗ via extrapolation and second, we can use it to get a
grid on which we may approximate T ∗ arbitrarily close with a bang–bang solution.
The control grid can be modified in two different ways to get a better objective
function value. The first one would be to change the position of the time points ti
where jumps in the controls may occur. This approach corresponds to the switching
time approach presented in section 5.2. The second way we will follow here is to
insert additional time points.
When we add a time point where a control may change its constant value, we enlarge
the reachable set. In fact, the insertion of an additional time point τ ∈ [ti, ti+1] is
equivalent to leaving away the restriction

w(τ−) = w(τ+)
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Figure 5.6: The main idea of an adaptive control grid. By inserting an additional
time point t2 + γ(t3 − t2) where w(·) may change its value, the noninteger control
0 < q2 < 1 is transformed to two binary controls ∈ {0, 1} and the optimal objective
value is reduced.

that enforces continuity of the constant control w(·) on [ti, ti+1].

To show that uniform convergence towards trajectory T ∗ is possible, we used an
equidistant control parameterization with an increasing number N ≈ nms of intervals
in section 4.2. For practical purposes this is not a good approach for two reasons.
First, information from the previous solution cannot be reused directly as the time
points change in every iteration. Second, we lose computational efficiency as the
control discretization grid may be too fine in regions where it is not necessary, e.g.,
where the control is at its upper bound for a considerable time interval.

Let us consider two control discretization grids Gk and Gk+1. If we keep all time
points when changing the grid Gk to a finer grid Gk+1, i.e. Gk ⊆ Gk+1, and if we
insert time points only in intervals [tki , t

k
i+1] if 0 < q̃k

i < 1, where q̃k is an optimal
solution of the relaxed problem with control discretization grid Gk, both drawbacks
are avoided.

In the following we will use the assumptions

q̃i = 0 ⇒ w∗(t) = 0 almost everywhere in [ti, ti+1] (5.8a)

q̃i = 1 ⇒ w∗(t) = 1 almost everywhere in [ti, ti+1] (5.8b)

0 < q̃i < 1 ⇒ neither w∗(t) = 0 a.e. nor w∗(t) = 1 a.e. in [ti, ti+1] (5.8c)

that correlate the value of q̃ to the optimal trajectory T ∗. This allows us to formulate
an algorithm to determine an estimation for the objective function value correspond-
ing to T ∗.
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Algorithm 5.1 (Estimation of Φ∗)

1. Set k := 0. Choose an initial control discretization grid G0.

2. Solve the relaxed optimization problem for the control discretization grid Gk.
Obtain objective function value Φk.

3. Set

Gk+1 := Gk ∪
{
tki + tki+1

2
: 0 < q̃i < 1, i = 0 . . . nk

ms − 1

}

.

4. Increment k. Extrapolate the values (2−k,Φk) to obtain (0,Φ∗).

5. If Φk ≈ Φ∗ set next = k, STOP.

6. Go to step 2.

For a description of extrapolation see a standard textbook on numerical analysis,
e.g., Stoer & Bulirsch (1992). While bisection is a good choice for an extrapolation,
the grids that are created in algorithm 5.1 are not necessarily suited for a bang–bang
solution. It remains to answer the question how many time points are to be inserted
in an interval [tki , t

k
i+1] and where to insert them. This answer depends very much on

the structure of T ∗, more precisely on the question whether T ∗ contains arcs with
singular resp. bang–bang controls. If w∗(·) ∈ T ∗ contains bang–bang arcs in the
interval [tki , t

k
i+1], the points where the switchings take place are the optimal choice

to insert the new time points. But if T ∗ is a chattering or singular solution, there
may be infinitely many switching points. As the structure of T ∗ is furthermore a
priori unknown in direct methods, we consider a homotopy {Gk} and only insert one
or two additional time points per interval in each iteration. The solution on grid Gk+1

is then used to determine grid Gk+2 and so on until a stopping criterion is fulfilled.

Let us first consider a single control w(·) with value 0 < q̃i < 1 on an interval [ti, ti+1],
see the left diagram of figure 5.6. If, as in the figure, q̃i−1 = 1 and q̃i+1 = 0, it is
possible that T ∗ consists of two bang–bang arcs on [ti−1, ti+2] with the switching
point

τ = ti + γ(ti+1 − ti), 0 < γ < 1 (5.9)

somewhere in the interval [ti, ti+1]. To determine γ, we write

f(w) = f(x(t), z(t), w(t),u(t),p).

We would like to have

∫ ti+1

ti

f (q̃i) dt =

∫ τ

ti

f (1) dt+

∫ ti+1

τ

f(0) dt.
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on [ti, ti+1], compare the right diagram of figure 5.6. A first order approximation,
which is exact for linear systems, yields

∫ ti+1

ti

f(0) + fw q̃i dt =

∫ τ

ti

f (0) + fw 1 dt+

∫ ti+1

τ

f (0) dt

which is equivalent to

q̃i

∫ ti+1

ti

fw dt =

∫ τ

ti

fw dt. (5.10)

τ can thus be determined by integration of fw. For our purposes it turned out that
a further simplification yields good results. If we assume fw ≈ const. on [ti, ti+1] for
small ti+1 − ti, we obtain an estimate

γ ≈ q̃i (5.11)

for τ from (5.10) that can be readily inserted without any additional calculations.
This is the motivation for a choice of γ based on an estimated 1− 0 structure. If we
assume that the structure of T ∗ is first 0 and then 1, (5.11) becomes

γ ≈ 1 − q̃i. (5.12)

For a structure 0 − 1 − 0 the integral equality (5.10) reads as

q̃i

∫ ti+1

ti

fw dt =

∫ τ2

τ1

fw dt

and with τ1 − ti = ti+1 − τ2 we have γ1 = 1−q̃i

2
and γ2 = q̃i + 1−q̃i

2
.

If the structure contains multiple bang–bang arcs or at least one singular arc in
[ti, ti+1], we cannot a priori estimate which location will yield the optimal improve-
ment in the objective value. For these cases we have to rely on the bisection effect.
Led by these considerations, we propose different adaptive modes to insert time points
τ into a control discretization grid Gk. For each interval [tki , t

k+1
i ] with control q̃i we

proceed in one of the following modes.

• Adaptive mode 1 (Bisection)

If q̃i 6∈ {0, 1}, insert one additional point

τ = tki + γ(tki+1 − tki ) (5.13)

with γ = 0.5 into Gk+1.

• Adaptive mode 2 (Bang–bang mode)

Again we insert one point τ . The location depends on q̃i−1, q̃i and q̃i+1. If
q̃i 6∈ {0, 1}, insert the additional point

τ = tki + γ(tki+1 − tki ) (5.14)
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into Gk+1. γ is determined by

τ =







q̃i if q̃i−1 > q̃i+1

1 − q̃i if q̃i−1 < q̃i+1

0.5 if q̃i−1 = q̃i+1

. (5.15)

• Adaptive mode 3 (Structure determining mode)

If q̃i 6∈ {0, 1} we insert two points τ1, τ2 ∈ [tki , t
k
i+1], depending on q̃i,

τ1 = tki + q̃i(t
k
i+1 − tki ), τ2 = tki + (1 − q̃i)(t

k
i+1 − tki ) (5.16)

into Gk+1.

• Adaptive mode 4 (Pulse)

If q̃i 6∈ {0, 1} we insert two points τ1, τ2 ∈ [tki , t
k
i+1],

τ1 = tki +
1 − q̃i

2
(tki+1 − tki ), τ2 = tki +

1 + q̃i
2

(tki+1 − tki ) (5.17)

into Gk+1.

The choices of τ in the adaptive modes are based on the considerations above and
guesses for the switching structure in the interval [tki , t

k+1
i ]. While adaptive mode

1 is a simple bisection of the control discretization grid, adaptive mode 2 aims at
inserting time points that are close to possible switching times of a simple bang–
bang solution. It is assumed that if the control value q̃i−1 on the previous interval
is higher than the value on the following one, q̃i+1, we have a 1 − 0 structure on
[tki , t

k+1
i ]. We derived (5.11) for this structure, compare also figure 5.6. If q̃i−1 < q̃i+1,

e.g., q̃i−1 = 0, q̃i+1 = 1, adaptive mode 2 guesses a 0 − 1 structure of T ∗ on [tki , t
k+1
i ]

and takes (5.12) to determine τ . Figure 5.7 illustrates this idea. If the values are
identical, adaptive mode 2 divides into two equidistant intervals as in mode 1.
The assumptions taken in adaptive mode 2 may be wrong for certain trajectories
T ∗. To handle the case where the structure is 0− 1 although q̃i−1 > q̃i+1 resp. 1− 0
although q̃i−1 < q̃i+1, adaptive mode 3 enters both points (5.11) and (5.12) into Gk+1.
The price for the flexibility is of course an additional, possibly redundant time point.
Adaptive mode 4 allows ”pulses” in the middle of interval [tki , t

k
i+1], see the illustration

in picture 5.8.
For the case nw > 1 we have to extend the algorithms presented. There are two
possible ways to determine adequate τ ’s for an interval [tki , t

k
i+1], if several q̃j,i 6∈ {0, 1}.

The first would be to add several τ ’s by applying one of the adaptive modes presented
above to each control function. The second is to apply it only to a control function
wj∗(·), if

min(q̃j∗,i, 1 − q̃j∗,i) = max
j

min(q̃j,i, 1 − q̃j,i),

i.e., it has the maximum integer violation of all j. As the introduction of additional
time points is part of an iterative procedure, the other functions are treated in future
iterations. The latter approach is the one we prefer for our method.
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Figure 5.7: Adaptive mode 2, case where 0 = q̃i−1 < q̃i+1 = 1. Time point τ is chosen
as (5.11) assuming a 0 − 1 structure as depicted in the right hand side.

Remark 5.2 The choice of the time points is based upon assumptions and may
yield an unnecessary high number of iterations with respect to an optimal choice.
As this choice depends on a combinatorial choice of possible switching structures in
each interval, one may as well apply deterministic methods as Branch and Bound
or enumeration to find the switching times. This may be topic of a future research
study and is beyond the scope of this thesis for which the presented adaptive modes
worked sufficiently well.

Remark 5.3 In an iterative procedure there will be more and more redundant time
points. By redundant we mean time points that are very close to their neighbors,
not needed for a beneficial behavior of the multiple shooting method and in which no
change in the binary control functions occurs. In practice, one may detect such points
and remove them from the problem formulation to improve computational efficiency.
From a theoretical point of view we still need these points to guarantee convergence
of our algorithm.

Remark 5.4 The adaptive scheme is built upon a homotopy, as the optimization
problem with control discretization grid Gk+1 is initialized with values of the optimal
trajectory of grid Gk. For state variables and continuous controls on newly inserted
time points we use integration resp. interpolation. For the relaxed binary control
functions w(·) we either set the values on each subinterval of [ti, ti+1] to q̃i and try
to ensure binary admissibility by an outer loop, or we fix the values to an assumed
structure coherent with the choice of the τ ’s. If the latter approach is chosen, we fix
lower and upper bounds of the control variables on the corresponding intervals both
to 0 or 1, but keep the value q̃i for the initialization of the optimization problem to
stay inside the convergence region of the SQP method. This idea is closely related to
initial value embedding, compare Diehl (2001).
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Figure 5.8: Adaptive mode 4. The bang–bang control with 0 − 1 − 0 structure and
switching time points τ1 = tki + 1−q̃i

2
(tki+1− tki ) and τ2 = tki + 1+q̃i

2
(tki+1− tki ) is depicted

with a dotted line.

5.4 Penalty term homotopy

We consider an optimal control problem P k = P (βk), k ∈ N0 defined as in (4.21)
and dependent on the penalty parameter vector βk. Remember that problems of the
form (4.21) are identical to the relaxed versions of the mixed–integer optimal control
problem (5.1), but also penalize all measurable violations of the integer requirements
with a concave quadratic penalty term.

The proposed penalty term homotopy consists of solving a series of continuous opti-
mal control problems {P (βk)}, k ∈ N0 with relaxed w(t). Problem P k+1 is initialized
with the solution of P k and β0

i = 0 so that P 0 is the relaxed version of problem
(5.1). The penalty parameters βk

i are raised monotonically until all wj(·) ∈ {0, 1},
j = 1 . . . nw, or a stopping criterion is fulfilled.

Algorithm 5.2 (Penalty term homotopy)

1. Set k := 0 and βk = 0.

2. Solve the relaxed optimization with penalty parameter vector βk.

3. Increment k, choose βk ≥ βk−1.

4. If solution integer or stopping criterion fulfilled STOP else go to step 2.

As shown in section 4.3 the solution of problem P (β) will be integer, if β is chosen
sufficiently large. Still, for a given grid the optimal solution is not necessarily admis-
sible, as constraints c(·) may cut off an integer solution. If it is feasible, it may have
a very bad objective value with respect to T ∗. Therefore we stop algorithm 5.2, if
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one of the following stopping criteria is fulfilled:

Definition 5.5 (Stopping criteria of penalty term homotopy)
The stopping criteria of algorithm 5.2 are given by

• The objective value Φk of the optimal solution wk(·) of problem P k is much
worse than the solution of problem P k−1, when the penalty term is neglected:

Φk −
nw∑

i=1

βk
i

∫ tf

t0

wk
i (t) (1 − wk

i (t)) dt

≫ Φk−1 −
nw∑

i=1

βk−1
i

∫ tf

t0

wk−1
i (t) (1 − wk−1

i (t)) dt. (5.18)

As one reasonable choice for ”≫” we choose the tolerance given by a user for
the gap between integer and relaxed solution, ε.

• For more than nstuck iterations the optimal trajectory T k has not moved further
than a certain tolerance.

• The maximum number of iterations has been reached, k ≥ npen.

If one of the first two criteria is met, the control discretization grid G is probably too
coarse. When we use the penalty term homotopy as a part of an outer algorithm, it
makes sense to stop the penalty homotopy to first refine the grid, see section 5.5.
If the first criterion is met, the optimal trajectory of the secondlast problem solved,
P k−1, should be used for a further refinement of the control grid. In practice this
requires the storage of the secondlast optimal trajectory.
The third criterion is used to guarantee finiteness of the algorithm.
For the presented algorithm a good choice for the βk

i is crucial for the behavior of the
method. A too fast increase in the penalty parameters results in less accuracy and
is getting closer to simple rounding, while a slow increase leads to an augmentation
in the number of QPs that have to be solved. We choose βk

i according to

β0
i = 0, βk

i = βinit · βk−1
inc ≥ 0 k = 1, . . . , nk. (5.19)

For a system with all variables scaled to 1.0 we made good experiences with a choice
of βinit ≈ 10−4 and βinc ≈ 2.

Remark 5.6 Another possibility to penalize the nonintegrality is proposed by Stein
et al. (2004), compare section 3.1. The authors introduce additional inequalities,
prohibiting nonintegral domains of the optimization space. For our purposes we prefer
to penalize nonintegrality instead of forbidding it, as a nonintegral solution will be
used to further refine the control grid discretization.

Figure 5.9 shows an example, the solution of the relaxed fishing problem on a fixed
grid that will be investigated in more detail in section 6.5.



102
CHAPTER 5. NUMERICAL METHODS FOR BINARY CONTROL

FUNCTIONS

Figure 5.9: The fishing problem of section 6.5 as an example for the penalty homotopy
applied on a fixed, equidistant control discretization grid with nms = 60. The penalty
parameter β is chosen as β = 10−4 2k. The top left plot shows the solution to the
unaltered problem. The other plots show, from top middle to bottom right, the
solutions for augmented k until binary admissibility is achieved at k = 9, neglecting
k = 7 for lack of space. The objective value of the relaxed problem is Φ0 = 1.34465.
It rises up to Φ9 = 1.34996. The largest gap is between the solutions for k = 8 and
k = 9, as Φ8 = 1.34693, penalty terms neglected.
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5.5 MS MINTOC

In this section we will bring together the concepts presented so far in this thesis and
formulate our novel algorithm to solve mixed–integer optimal control problems. We
will call this algorithm multiple shooting based mixed–integer optimal control algo-
rithm, in short MS MINTOC . The algorithm gets a user specified tolerance ε > 0 as
problem specific input. ε determines how large the gap between relaxed and binary
solution may be. Furthermore an initial control discretization grid G0 with nms stages
is supplied.

Algorithm 5.3 (MS MINTOC )

1. Convexify problem (5.1) as described in section 4.1.

2. Relax this problem to w̃(·) ∈ [0, 1]nw̃ .

3. Solve this problem for control discretization G0, obtain the grid–dependent
optimal value ΦRL

G0 .

4. Apply algorithm 5.1 for next steps and obtain ΦRL
Gnext as the objective function

value on the finest grid Gnext . Set ΦRL = ΦRL
Gnext to this upper bound on Φ∗.

5. If the optimal trajectory on Gnext is binary admissible then STOP.

6. Apply a rounding or penalty heuristics, see section 5.1. If the trajectory is
binary admissible, obtain upper bound ΦROU . If ΦROU < ΦRL + ε then STOP.

7. Use switching time optimization, see section 5.2, initialized with the rounded
solution of the previous step. If the obtained trajectory is binary admissible,
obtain upper bound ΦSTO. If ΦSTO < ΦRL + ε then STOP.

8. Reconsider the optimal trajectory T = T 0 of the relaxed, convexified problem
with the initial control discretization G0, set the counter k = 0.

9. REPEAT

(a) Refine the control grid Gk by a method described in section 5.3, based on
the control values of trajectory T .

(b) Apply a penalty term homotopy given by algorithm 5.2, see section 5.4.
If Φ ≤ ΦRL + ε, update trajectory T = T k, else define T as the initial
trajectory of the homotopy.

(c) k = k + 1.

10. UNTIL (w̃(·) ∈ {0, 1}nw̃ AND Φ ≤ ΦRL + ε)

In the first steps of the algorithm we try to obtain a binary admissible trajectory
by heuristic methods. If this is not successful, we iterate in a loop on the control
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problem with a stepwise refined control discretization grid Gk. The trajectories
obtained from the last control problem (resp. the secondlast, compare section 5.4)
are used to initialize the following control problem and to set up the refined control
grid Gk+1. The penalty parameters β are reset to 0 in each iteration. This aims at
avoiding local minima caused by the nonconvex concave penalty terms.
Algorithm 5.3 may end with different results. If no convergence can be achieved for
any of the subproblems, different initializations or different algorithmic settings have
to be tried. For example one might consider changing from a line search to a trust
box or a watchdog technique. We do assume here that convergence up to a given
tolerance can be achieved for the relaxed problem. All subproblems thereafter are
part of a homotopy, they start thus with an admissible trajectory. This strategy
aims at ”staying” inside the convergence radius of Newton’s method respectively the
SQP algorithm 2.1.

Theorem 5.7 (Behavior of algorithm 5.3)
If

• the relaxed control problem on grid G0 possesses an admissible optimal trajectory

• all considered problems can be solved precisely to global optimality in a finite
number of iterations

• bisection is used to adapt the control grid on all intervals (independent of the
values q̃i’s)

then for all ε > 0 algorithm 5.3 will terminate with a trajectory that is binary ad-
missible and a corresponding objective value Φ such that

Φ ≤ ΦRL
Gnext + ε

where ΦRL
Gnext is the objective value of the optimal trajectory for the relaxed problem

with the grid Gnext of the last iteration in the estimation of ΦRL.

Proof. There are several possibilities where algorithm 5.3 may stop. The first one
is that one of the optimal control problems that have to be solved is infeasible or no
convergence can be achieved for its solution. As we assume that there is an admissible
trajectory for the relaxed problem on the coarsest grid G0, this trajectory will be
admissible for all other occurring problems, too, as all other control discretization
grids are supersets of G0 and a modification of the objective function does not concern
admissibility. In addition we assume that all considered problems can be solved to
global optimality.
A second possibility is that the algorithm gets stuck in the inner loop 9.-10. and
does not terminate at all. As shown in chapter 4 there exists a number N such that
the exit condition 10. is fulfilled for all optimal bang–bang trajectories with a finer
discretization than an equidistant control discretization with N time points. As a
bisection of all intervals is performed, we have

ti+1 − ti ≤
tf − t0

2k
, i = 0 . . . nk

ms
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where k is the iteration counter of the loop 9.-10. There exists a k such that the
maximum distance of all ti+1 − ti < 1/N . For this control grid we still have to find
the optimal binary admissible solution. By adding a penalty term that is sufficiently
large, the optimal binary admissible solution is the optimal solution for the relaxed
problem on this control discretization grid and will therefore by assumption be found.
This yields the wanted contradiction to the assumption condition 10. could rest
unfulfilled in an infinite loop.

Therefore algorithm 5.3 must stop in either step 5., 6., 7. or 10. In all cases we find
a trajectory which fulfills the integer requirement, is admissible and which has an
objective value which is closer than the prescribed tolerance ε, completing the proof.

Theorem 5.7 needs some strong assumptions. While the first, the existence of an ad-
missible optimal trajectory for the relaxed optimal control problem on a user specified
grid is an absolute must before wanting to solve a mixed–integer problem, the second
assumption does not hold for optimal control solvers looking for local minima. Typ-
ically the optimal control problems under considerations are nonconvex. By adding
a concave penalty term the number of local minima may reach 2nw , compare figure
4.2. One possibility to overcome this problem is to use an optimal control solver
that can handle nonconvex problems and determine a global solution in each step of
the iteration. We will give an example in section 6.5 for a globally optimal solution
on a fixed control grid. For all control problems we treated so far, the penalty term
homotopy was sufficiently good. First of all, as we see in an example in section 6.2,
the adaptivity can compensate the fact that a solution is only local. If it is chosen
fine enough, even a local solution will satisfy the terminal condition. Another issue
is related to the multiple shooting method. As already pointed out in section 2.4 and
exemplified in appendix B.4, all–at–once approaches have advantages with respect
to avoiding local minima. One important reason why we prefer the penalty term
homotopy is that one can deduce from its solution the regions where the control dis-
cretization grid is too coarse. Applying, e.g., a Branch&Bound method would deliver
the globally optimal integer solution, but in case the corresponding objective value
was not good enough, one has no information on where to refine the grid. Still there
is place for future research in this direction and the penalty term homotopy should
be regarded as only one possible approach to solve the optimal control problem on a
given grid. In fact, for the applications and case studies presented in this thesis, the
rounding heuristics SUR-SOS1 showed to be a very good alternative if it is included
in a grid refinement sequence.

Furthermore, as all calculations are performed on a computer, there are numerical
issues as the machine accuracy that gives a lower bound on the distance of two
switching points that have to be considered. For this reason the theoretical theorems
do not hold for arbitrarily small ε. As stated in section 5.3 we will not only use
bisection for practical problems but also try to get closer to supposed switching points
by a nonequidistant partition of the intervals [ti, ti+1]. This might lead to a series of
monotonically decreasing interval lengths that is bounded by 1/N from below. This
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destroys the theoretical argument and it may cause numerical problems as extinction
because time points are accumulated. Furthermore we rely on assumption (5.8) and
only adapt the grid where the binary control functions of the optimal trajectory on
the current control grid take noninteger values.
All these issues prevent the MS MINTOC algorithm from being used as a deter-
ministic black–box algorithm. Tuning with respect to the initial grid, termination
criteria, the adaptivity mode, penalty parameters and initial values is necessary to
obtain the wanted results. On the other hand, this holds true for continuous control
problems, as well.

5.6 Summary

In this chapter we presented our novel algorithm to solve mixed–integer optimal con-
trol problems. The algorithm is based on an interplay between the direct multiple
shooting method, rigorous lower and upper bounds, the usage of heuristics, adap-
tivity of the control discretization grid and a penalty term homotopy to obtain a
trajectory fulfilling integer requirements.
In section 5.1 several rounding strategies were presented, among them specialized
ones that take into account the fact that some variables are connected as they dis-
cretize the same control function. Furthermore rounding strategies for the multi–
dimensional case with special ordered set restrictions on the control functions were
given. Rounding strategies yield trajectories that fulfill the integer requirements,
but are typically not optimal and often not even admissible. Nevertheless round-
ing strategies may be applied successfully to obtain upper bounds in a Branch and
Bound scheme, to get a first understanding of the behavior of a system or to yield
initial values for the switching time optimization approach presented in section 5.2.
This approach reformulates the optimal control problem as a multistage problem
with fixed binary control function values. After an introduction of this approach we
discussed its disadvantages and gave an illustrative example for the most important
one, the introduction of additional nonconvexities. In appendix B.4 we will present
an example with multiple local minima and show that the direct multiple shooting
method may converge to the global minimum while direct single shooting converges
to a local minimum with bad objective value, although the stage lengths as the only
independent degrees of freedom in both methods are initialized with the same values.
Our algorithm is based upon an adaptive refinement of the control discretization grid.
In section 5.3 we motivated and presented algorithms to obtain an estimation of the
objective value corresponding to the optimal trajectory for the infinite–dimensional
control problem and to refine a grid such that, under certain assumptions, the optimal
trajectory of the relaxed problem can be approximated with a trajectory that is
binary admissible.
In section 5.4 we presented a penalty term homotopy that adds quadratic penalty
terms to the control problem on a given control discretization grid. This heuristics
is used to obtain integer values for the control discretization variables. Using a
homotopy, we stay inside the convergence radius of the SQP method and we can
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detect when and where the underlying grid is too coarse.
This is used in the MS MINTOC algorithm 5.3 presented in section 5.5. Making
use of the knowledge obtained in chapter 4 that the optimal binary solution of the
nonlinear optimal control problem has a corresponding optimal binary solution of a
convexified control problem for which we get an attainable lower bound by solving its
relaxation, we first determine this lower bound. We apply some heuristics, namely
rounding and applying the switching time optimization, to get upper bounds and
compare them with the lower bound. If the result is not satisfactory, we iterate on
a refinement of the control grid and an application of the penalty term homotopy,
until we end up with a binary admissible trajectory with objective value that is
closer than a prescribed tolerance to the attainable optimum. We proved that under
certain theoretic assumptions algorithm 5.3 will terminate with such a solution.



Chapter 6

Case studies

Our algorithm is based on direct multiple shooting and needs therefore no a priori
analysis of the structure of the optimal control problem to be solved. In this chapter
we will apply it to problems for which this structure is already known to show the
applicability of our method and to investigate typical behavior of the algorithm.

Five case studies will be presented. Case studies are applications of the MS MINTOC
algorithm presented on page 104, to optimal control problems for which the structure
of the optimal trajectory T ∗ for the infinite–dimensional relaxed optimal control
problem is known. All problems presented contain differential states and a single
binary control function only to focus on the structure of this function w(·). We
will investigate the behavior of the algorithm on different kinds of trajectories,in
particular we will treat one example with bang–bang structure, section 6.1, two
examples where different kinds of chattering controls occur in the optimal trajectory,
sections 6.2 and 6.3, and one example containing a singular arc, section 6.4.

For the last example we will furthermore investigate the case where the switching
times are fixed and algorithm MS MINTOC can not be applied. In section 6.5 we
will present a Branch and Bound method for optimal control problems which is an
extension to the Branch and Bound method for mixed–integer nonlinear problems,
compare section 3.2.
All calculations of this thesis were done on a PC with AMD Athlon 3000+ processor
under Linux. If not otherwise stated, we used a trust box technique, a finite difference
approximation of the Hessian, the DAE solver DAESOL with the BDF method for
the solution of the DAEs and the generation of derivatives and accuracies of 10−6 for
the KKT condition and 10−7 for the integration. The times that will be given for
the solution of optimal control problems include graphics, initializations and so on.
We will furthermore state the number of QPs that had to be solved as an indication
of the number of iterations in the SQP algorithm.

6.1 F–8 aircraft

First we will consider an example with a bang–bang structure in the optimal control
function w∗(·). Kaya & Noakes (2003) discuss the time–optimal control problem of

108



6.1. F–8 AIRCRAFT 109

an F–8 aircraft. The model they consider goes back to Garrard & Jordan (1977) and
is given by

min
x,w,T

T (6.1a)

subject to the ODE

ẋ0 = −0.877 x0 + x2 − 0.088 x0 x2 + 0.47 x2
0 − 0.019 x2

1 − x2
0 x2

+3.846 x3
0 − 0.215 w + 0.28 x2

0 w + 0.47 x0 w
2 + 0.63 w3 (6.1b)

ẋ1 = = x2 (6.1c)

ẋ2 = −4.208 x0 − 0.396 x2 − 0.47 x2
0 − 3.564 x3

0

−20.967 w + 6.265 x2
0 w + 46 x0 w

2 + 61.4 w3 (6.1d)

with initial condition

x(0) = (0.4655, 0, 0)T , (6.1e)

terminal constraint

x(T ) = (0, 0, 0)T , (6.1f)

and a restriction of the control to values in

w(t) ∈ {−0.05236, 0.05236}, t ∈ [0, T ]. (6.1g)

We write xi = xi(t) for the three differential states of the system. x0 is the angle of
attack in radians, x1 is the pitch angle, x2 is the pitch rate in rad/s, and the control
function w = w(t) is the tail deflection angle in radians. See Kaya & Noakes (2003)
for further references and details for this problem.
Applying algorithm 5.3, we first convexify problem (6.1). We introduce a control
function w̃(·) at the place of w(·), replace (6.1g) by

w̃(·) ∈ {0, 1} (6.2a)

and (6.1b-6.1d) by

ẋ = f (x,−0.05236) (1 − w̃) + f (x, 0.05236) w̃ (6.2b)

as described in section 4.1.
We solve the obtained linear optimal control problem with a relaxation of (6.2a),
in short problem (RL), on an equidistant grid G0 with nms = 25. We require the
terminal condition to be fulfilled to an accuracy of 10−5 in each component. The
optimal trajectory for this problem is shown in figure 6.1, the corresponding objective
value in seconds is ΦRL

G0 = T = 5.86255.
We now apply algorithm 5.1 to get an estimate for the objective function value of
T ∗. We get a series of control grids Gk with corresponding trajectories and objective
function values ΦRL

Gk . The grid Gk+1 is obtained from grid Gk by bisection (adaptive
mode 1). The optimal binary control functions w̃(·) are plotted in figure 6.2 for
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Figure 6.1: Trajectory of optimal solution of the relaxed F–8 aircraft problem on an
equidistant control discretization grid with nms = 25.

next = 6. The objective values are

ΦRL
G0 = 5.86255, (6.3a)

ΦRL
G1 = 5.73275, (6.3b)

ΦRL
G2 = 5.73202, (6.3c)

ΦRL
G3 = 5.73174, (6.3d)

ΦRL
G4 = 5.73157, (6.3e)

ΦRL
G5 = 5.73147. (6.3f)

The objective values yield a monotonically falling series. The convergence is very
slow, still. If we do not a bisection, but apply adaptive mode 2, compare section 5.3,
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Figure 6.2: Optimal control functions w̃(·) of the relaxed F–8 aircraft problem for
control grids G0 (top left) to G5 (bottom right).

we obtain the values

ΦRL
G0 = 5.86255, (6.4a)

ΦRL
G1 = 5.73187, (6.4b)

ΦRL
G2 = 5.73049, (6.4c)

ΦRL
G3 = 5.73046, (6.4d)

ΦRL
G4 = 5.73046, (6.4e)

ΦRL
G5 = 5.73046. (6.4f)

For the last three grid refinements we did not get any progress in the objective
function up to 10−5 and the objective function looks almost binary admissible at a
first glance, see the left plot in figure 6.3. But if we apply a rounding strategy to
this solution, we obtain1

w̃ = S(1; 0.11200, 1.90169, 0.16773, 2.74897, 0.33019, 0.46988), (6.5)

a solution which fulfills terminal constraint (6.1f) only with an accuracy of 10−4

instead of 10−5 and is therefore not admissible. Applying the switching time opti-
mization algorithm initialized with (6.5), we get

w̃ = S(1; 0.10235, 1.92812, 0.16645, 2.73071, 0.32994, 0.47107) (6.6)

which is admissible and has an objective function value of ΦSTO = 5.72864 seconds.
This control function is plotted on the right hand side of figure 6.3. The optimal

1compare definition 5.1 of S
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Figure 6.3: Left: Optimal control function w̃(·) of the relaxed F–8 aircraft problem
for control grid G5 (adaptive mode 2). The solution is not completely integer and
rounding leads to a violation of the terminal constraint. Right: optimal control
function (6.6) obtained by a switching time optimization, initialized with the rounded
solution of the left plot.

trajectory is slightly better than the one given in Kaya & Noakes (2003),

w̃Kaya = S(1; 0.10292, 1.92793, 0.16687, 2.74338, 0.32992, 0.47116) (6.7)

with ΦKaya = 5.74217. Solution (6.7) violates furthermore the terminal constraint
(6.1f) by more than 10−3. This poor quality is probably due to an inaccurate inte-
gration of Kaya & Noakes (2003) as they state

The efficiency of TOS can be increased further by implementing . . . , using
a more efficient ODE solver such as the Runge–Kutta–Fehlberg solver . . .

while our calculations were done using an error–controlled BDF method with an
accuracy of 10−7.
Coming back to our intention to solve problem (6.1), we can easily transform solution
(6.6) to a solution w(·) of (6.1) and notice that algorithm 5.3 stops in step 7., yielding
an objective function value ΦSTO = 5.72864 even smaller than the estimation from
the relaxed problems.
The calculation of the relaxed solution takes 1.5 seconds and 19 QPs. For the refined
grid we have 5 seconds and 43 QPs. If we add the switching time optimization, it is
6 seconds and 47 QPs.

6.2 Sliding mode chattering control

In chapter 4 we introduced chattering controls as a special type of bang–bang controls
that switch infinitely often in a finite time interval. We will now and in section 6.3
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investigate how algorithm 5.3 performs on problems for which chattering controls are
known to be the best solution. Both problems do not exactly fit into the problem
class we are interested in, as they are already in relaxed form. Nevertheless we apply
our method to these problems assuming an integer requirement would hold.
Two different cases of chattering controls can be distinguished. The first one to be
considered in this section is related to problems for which a minimizing trajectory
does not exist. Consider the following example of Bolza that can be found in Zelikin
& Borisov (1994).

min
x,w

∫ √
2

0

x2 + (1 − (−1 + 2 w)2)2 dt (6.8a)

subject to the ODE

ẋ = 1 − 2 w (6.8b)

with initial condition

x(0) = 0, (6.8c)

terminal constraint

x(
√

2) = 0, (6.8d)

path constraints

x(t) ≥ 0, (6.8e)

and a restriction of the control to values in

w(t) ∈ [0, 1], t ∈ [0,
√

2]. (6.8f)

Obviously every control function given by

w = S







1;
1

nms

, . . . ,
1

nms
︸ ︷︷ ︸

nms






, (6.9)

with alternating values 1 and 0 on an equidistant grid yields an admissible trajec-
tory for (6.8) if nms is an even number. The objective function value falls strictly
monotonic with rising nms. States and the objective function are plotted in figure 6.4
for some values of nms. The objective function values converge towards 0, a function
value which would require x ≡ 0. This state cannot be obtained by a bang–bang
control, though. Therefore no optimal trajectory T ∗ exists. Nevertheless, as stated
by theorem 4.9, for each ε > 0 there exists a bang–bang control with an objective
value smaller ε. In fact, (6.9) is such a solution if nms is chosen sufficiently large.
We do not want to plug in an analytical solution, though, but rather test our algo-
rithm 5.3. The first step will be to convexify the problem under consideration. In
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Figure 6.4: State x(·) (top row) and Lagrange term
∫ t

0
L(x, w) dτ (bottom row) of

trajectories corresponding to (6.9) with values nms = 2, 4, 8, 16 from left to right.

this case the linear ODE is left unchanged and the objective function (6.8a) simplifies
to

min
x,w

∫ √
2

0

x2 dt (6.10)

as (1 − (−1 + 2 · 1)2) = (1 − (−1 + 2 · 0)2) = 0. The optimal solution of the relaxed
problem on any grid G will of course be w ≡ 0.5, x ≡ 0. A rounding strategy will
be useful, if the control is rounded up on all odd and rounded down on all even
intervals. This is indeed achieved with rounding strategy SUR-0.5 for w ≡ 0.5. If
for a given ε we refine the grid, apply the rounding heuristics, compare the obtained
objective value with ε to either refine the grid further in a next iteration or to stop
the iteration, we obtain trajectories as plotted in figure 6.4. For ε = 10−3, e.g., we
have to iterate three times starting with nms = 4. On the grid

G3 =

{

0,
1

32

√
2, . . . ,

31

32

√
2,
√

2

}

we get the objective function value Φ = 9.29 10−4, the values on G0, G1 and G2 are
shown in figure 6.4.
The rounding approach is critical, though. First, numerical round off errors may
have a large effect. In this example much depends on the question whether the
control on the first interval is rounded up or down as x ≥ 0 is required. As the
value is exactly 0.5, no guarantee can be given. Furthermore it is very unlikely that
the optimal relaxed control is exactly 0.5 as in this case, if sliding mode chattering
occurs in practical problems.
Therefore we will apply steps 9 to 10 of algorithm 5.3. Again we have a peculiar
situation, the extreme case where w ≡ 0.5 is the exact maximum of the concave
penalty function. Starting from a nonequidistant grid, to make things a little harder,
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Figure 6.5: Control w(·), state x(·) and Lagrange term
∫ t

0
L(x, w) dτ of the trajectory

obtained by MS MINTOC . Although the solution is obviously a local minimum on
the given grid, is suffices the terminal condition.

with nms = 4, we get four outer iterations. As the solutions obtained in the first
iterations from an application of the penalty term homotopy do not yield an objective
value smaller than ε, we have to refine the grid using the relaxed solution to determine
the switching points. The result is again a bisection as w ≡ 0.5, the resulting
trajectory with objective value 8.79 10−4 is shown in figure 6.5. The solution is only
a local minimum, as one readily sees in the behavior of the state variable x(·). This
is also the reason why the grid has to be finer than the one for the global optimal
solution (6.9). Let us see it the other way around: this implies that by a refinement
of the control grid we can compensate the fact that we do only find a local solution
with the penalty heuristics.
The calculation of the solution takes 5 seconds and 27 QPs.

6.3 Fuller’s problem

The first control problem with an optimal chattering solution was given by Fuller
(1963). This problem reads as follows.

min
x,w

∫ 1

0

x2
0 dt (6.11a)

subject to the ODE

ẋ0 = x1 (6.11b)

ẋ1 = 1 − 2 w (6.11c)
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with initial condition

x(0) = x0, (6.11d)

terminal constraint

x(1) = xT , (6.11e)

and a restriction of the control to values in

w(t) ∈ [0, 1], t ∈ [0, 1]. (6.11f)

In contrast to the chattering control example presented in section 6.2, an optimal tra-
jectory does exist for all x0 and xT in a vicinity of the origin. As Fuller showed, this
optimal trajectory T ∗ contains a bang–bang control function that switches infinitely
often in the interval [0, 1]. An extensive analytical investigation of this problem and
a discussion of the ubiquity of Fuller’s problem can be found in Zelikin & Borisov
(1994), a recent investigation of chattering controls in relay feedback systems in Jo-
hansson et al. (2002). We will use x0 = xT = (0.01, 0)T for our calculations. The
optimal trajectory for the relaxed control problem on an equidistant grid G0 with
nms = 19 is shown in the top row of figure 6.6. Note that this solution is not bang–
bang due to the discretization of the control space. Even if this discretization is
made very fine, a trajectory with w(t) = 0.5 on an interval in the middle of [0, 1]
will be found as a minimum. To obtain a bang–bang solution, we have to apply
our algorithm. The trajectory obtained by a switching time optimization, initialized
with the result of rounding strategy SR, is shown in the middle row of figure 6.6.
The switching time optimization method yields an objective value of 1.89 10−4. As
the objective function value of the relaxed problem is smaller, ΦRL = 1.53 10−5, one
might want to reduce the function value further, e.g. closer than ε = 10−6 to ΦRL.
If we apply algorithm 5.3, we obtain the trajectory shown in the bottommost row of
figure 6.6 that yields an objective function value of 1.52 10−5 and switches 35 times.
The calculation of the optimal trajectory of the relaxed problem takes approximately
1 second and 16 QPs, the switching time optimization 5 seconds and 42 QPs and the
MS MINTOC algorithm takes 36 seconds and 163 QP solutions.

6.4 Fishing problem

An optimal trajectory of a control problem may contain compromise–seeking (sin-
gular) arcs, compare chapter 2. In this section we will review the fishing example
introduced in section 1.4.2. We will replace the switching restriction w(·) ∈ Ω(Ψτ )
in problem formulation (1.19) by w(·) ∈ Ω(Ψfree). In appendix B it is shown that
the optimal trajectory of the control problem given by

min
x,w

tf∫

t0

(x0(t) − 1)2 + (x1(t) − 1)2 dt (6.12a)
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Figure 6.6: Control w(·) and states x(·) for Fuller’s problem. Top: optimal trajectory
for the relaxed problem on grid G0. Middle: trajectory obtained by switching time
optimization. Bottom: trajectory obtained by MS MINTOC with higher accuracy.
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subject to the ODE

ẋ0(t) = x0(t) − x0(t)x1(t) − c0x0(t) w(t), (6.12b)

ẋ1(t) = −x1(t) + x0(t)x1(t) − c1x1(t) w(t), (6.12c)

initial values

x(t0) = x0, (6.12d)

and the integer constraints

w(·) ∈ Ω(Ψfree) (6.12e)

contains a singular arc, compare figures B.1 and 6.7.

Remark 6.1 The occurring singular arc is caused by the objective function. If prob-
lem (6.12) is replaced by problem (B.9) to minimize the time to get into the steady
state xT = (1, 1)T , the optimal solution will be entirely bang–bang. See section B.6
in the appendix for further details and a plot of the optimal trajectory.

When singular arcs are present, it is not sufficient to refine the grid to obtain a bang–
bang solution as, e.g., for the F–8 aircraft problem in section 6.1 or the switching
point between the first two arcs in this example. But, as a first step, an adaptation
of the control grid is useful to give insight into the switching structure and to ob-
tain an estimation for ΦRL. Figure 6.7 shows optimal control functions on different
control discretization grids. We obtain an objective value of ΦRL

G5 = 1.34409 which
is indeed a good estimate for the value of the infinite–dimensional problem solved
in the appendix, Φ∗ = 1.34408. Figure 6.8 shows the states that correspond to this
solution.

To obtain a binary admissible solution we proceed as follows. We apply a penalty
homotopy on either of the grids G0 . . .G5 and use the obtained solution to initialize
the switching time optimization. In algorithm MS MINTOC , we start with a given
tolerance ε and check in each step whether we are close enough. Here we will present
all values up to the grid G5 with nms = 264 grid points to illustrate typical behavior
for systems comprising singular arcs. We write Φ̃k for the solution of the relaxed
problem, Φ̂k for the objective value obtained after termination of the penalty homo-
topy and Φk for the objective value after the switching time optimization, everything
on the fixed grid Gk. Table 6.1 then gives a comparison of the obtained objective
values. For the grid G5 numerical problems occur, as some time points are too close
to each other. This leads to cycling phenomena in the active set based QP solution
procedure. Therefore we have to be content with the solution on grid G4, which
yields the objective function value of 1.34424 and is therefore closer than 2 10−4 to
Φ̃4. Note that MS MINTOC decides on its own whether a grid has to be further
refined or not. The determination of Φ4 took 135 seconds and the solution of 75
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Figure 6.7: Optimal control functions w(·) of the relaxed fishing problem on different
grids Gk. The initial grid G0 is chosen equidistantly with nms = 12, all other grids are
obtained by bisection of the preceding grid, wherever a control is not at its bounds.
The final grid G5 consists of nms = 264 intervals.

QPs. The corresponding control function switches 22 times, is given by

w(·) = S(0; 2.43738, 1.57402, 0.0897238, 0.118878,

0.109465, 0.101335, 0.13225, 0.088103,

0.159216, 0.0772873, 0.193265, 0.0679251, (6.13)

0.238052, 0.0593931, 0.301416, 0.0511773,

0.398989, 0.0428478, 0.57489, 0.0336509,

1.01055, 0.0211654, 4.11901).

and depicted in figure 6.9. Note that the stage lengths where w(·) = 1 are monoton-
ically decreasing as the stage lengths where w(·) = 0 are monotonically increasing
on the singular arc.

6.5 Fishing problem on a fixed grid

The main strength of our method is the adaptivity in the control discretization. It
may happen though that no solution can be found that is close enough to the optimal
value of the relaxed problem, ΦRL. This might either be because the control grid is
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Figure 6.8: States x(·) from the best binary admissible trajectory (6.13) for the
fishing problem. They yield an objective function value of Φ4 = 1.34424. Note the
non-differentiabilities in the states caused by the switching of the control function.

Grid Φ̃k Φ̂k Φk

G0 1.38568 1.38276 1.38276
G1 1.34751 1.42960 1.38276
G2 1.34563 1.35750 1.34632
G3 1.34454 1.35384 1.34461
G4 1.34409 1.34613 1.34424
G5 1.34409 − −

Table 6.1: Objective values Φ̃k of the relaxed problem, Φ̂k after termination of the
penalty homotopy and Φk of the resulting trajectories after a switching time opti-
mization, performed on several grids Gk.

fixed, Ψ = Ψτ , or because the heuristics do not yield a sufficient solution for a given
discretization.

In these cases we have to apply a global optimization approach, compare section 2.4
and chapter 3. In this section we will consider problem (1.19) on a fixed grid and
apply a Branch & Bound strategy to find the global solution on a given discretization
of the control grid. We will consider the case where G is given by an equidistant dis-
cretization with nms = 60 and choose the control parameterization intervals [ti, ti+1]
such that they coincide with the intervals [τi, τi+1], i = 0 . . . nms = nτ .

Optimal trajectories of relaxed problems have already been determined in section 6.4
for different grids. For G the objective function value is ΦRL = 1.34465, the optimal
control function w(·) looks very similar to those plotted in figure 6.7. 19 QPs have
to be solved to obtain this solution.
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Figure 6.9: Best binary admissible control function w(·) of the fishing problem, given
by (6.13).
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Table 6.2 gives an overview of the objective function values that correspond to binary
admissible trajectories found by different heuristics. As it indicates, the trajectories

Heuristics # QPs Objective value

w(·) ≡ 0 0 6.06187
w(·) ≡ 1 0 9.40231
Rounding SR 19 1.51101
Rounding SUR 19 1.45149
Rounding SUR-0.5 19 1.34996
Penalty homotopy 47 1.34996

Table 6.2: Number of QPs to be solved and obtained objective value for several
heuristics to get a binary admissible solution.

for rounding strategy SUR-0.5 and the penalty homotopy are indeed identical for the
chosen parameters and this example. This solution is given by

w(t) =

{
1 t ∈ [τi, τi+1] and i ∈ Ion = {13, 14, . . . , 20, 22, 24, 28}
0 t ∈ [τi, τi+1] and i ∈ {1, . . . , 60} / Ion (6.14)

As the optimal solution of the relaxed problem is a lower bound on the optimal
solution of the binary problem, the difference between the relaxed solution, that is,
ΦRL = 1.34465 and a binary admissible solution Φ̂ gives an indication about how
good this heuristic solution is. At runtime one could determine if the relative gap of

1.34996 − 1.34465

1.34465
≈ 0.004

is sufficient. We will now assume this is not the case and apply a Branch & Bound
algorithm to find the global optimal solution of problem (1.19). Branch & Bound
only works for convex problems, compare section 3.2. In the following we assume that
both the objective function and the feasible set of the fishing problem are convex.
That this assumption is justified at least in the vicinity of the solution is shown in
appendix B.5. Using depth-first search and most violation branching we obtain the
global optimal solution

w(t) =

{
1 t ∈ [τi, τi+1] and i ∈ Ion = {13, 14, . . . , 20, 22, 25, 28}
0 t ∈ [τi, τi+1] and i ∈ {1, . . . , 60} / Ion . (6.15)

after 6571 SQP iterations and about 15 minutes2, yielding an objective function value
of ΦGO = 1.34898.
The large number of necessary SQP iterations can be reduced significantly by making
use of the obtained binary admissible solutions as upper bounds. Making use of the
solution obtained by the penalty homotopy, the number of iterations can be reduced

2A large part of this computing time goes into graphics and I/O. Note that the number of
iterations is much smaller than given in Sager et al. (2006) for this problem as a trust box technique
and no updates for the Hessian have been used here
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by 20%. For the calculations done in Sager et al. (2006) this number was even up to
50%.
Rounding strategy SUR-0.5 and the penalty homotopy give a result close to the
optimal solution (close in the sense that the Hamming distance, the count of bits
different in two patterns, is only 2), differing only on intervals 22, 23 and 27, 28. If
we start with the global solution as an upper bound, further 756 nodes have to be
visited and 3705 SQP iterations are needed to verify the globality of the solution
in our Branch and Bound implementation. See figure 6.10 for a plot the optimal
trajectory.

6.6 Summary

In this chapter we presented several case studies to illustrate the broad applicability
of our methods. We saw in section 6.1 that problems having a bang–bang structure
in the relaxed binary control functions can be solved with only very few additional
effort compared to the relaxed solution. For such problems the main problem is to
find the switching points, the relaxed solution will then coincide with the binary
admissible solution.
In sections 6.2 and 6.3 we investigated problems with chattering controls. They differ
in a theoretical way, as example 6.2 does not possess an optimal solution although
a limit of trajectories exists and example 6.3, the famous problem of Fuller, does
have a solution that can be proven to be chattering. For both problems we obtain
solutions with a finite number of switches that are closer than a prescribed tolerance
ε to the globally optimal objective function value resp. an estimation of it. For such
problems the main task is to first determine an adequate control discretization grid
and than apply a method to obtain an integer solution on this grid.
In section 6.4 we derive an approximation for an example with a singular arc and
again get very close to the optimal solution (that is derived in the appendix for com-
pleteness). Singular arcs are closely related to arcs that have a chattering solution,
as they can be approximated by one.
In section 6.5 we extend our study to the case where we need a global solution for a
fixed control discretization grid. We demonstrate how a Branch & Bound algorithm
can be applied to find such a global solution and point out which role heuristics play
in such a scheme.
The various control problems are, from an optimal control point of view, completely
different in their solution structure. We showed that the MS MINTOC algorithm
solves all of them up to a prescribed tolerance — without any a priori guesses on
the switching structure or values of Lagrange multipliers. Therefore we may and
indeed do assume that our methods are applicable to a broad class of optimal control
problems.
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Figure 6.10: Optimal trajectory on the fixed grid G of the fishing problem. The
solution is given by (6.5). Note again the approximation by switching of the optimal
state trajectory by a nondifferentiable one, compare figure 4.1.



Chapter 7

Applications

In this chapter we present mixed–integer optimal control problems of the form (1.18)
and give numerical results. The applications are from three different fields, namely
mechanics, systems biology and chemical engineering.

In section 7.1 we solve a minimum energy problem related to the New York sub-
way system. A subway train can be operated in discrete stages only and several
constraints have to be fulfilled. This example is particularly challenging as state–
dependent nondifferentiabilities in the model functions occur.

In section 7.2 a model to influence a signalling pathway in cells, based on the concen-
tration of calcium ions, is presented. Although the model consists of an ODE only
and has no difficult path constraints, it is very hard to find an integer solution. This
is due to the fact that the system is extremly unstable. The results of this section
have partly been published in Lebiedz et al. (2005).

In section 7.3 we present the example of a batch distillation process with so–called
waste cuts. Recycling of the waste cuts is formulated as a cyclically repeated batch
distillation process, where the waste cuts are recycled at intermediate points in time.
We solve the resulting multipoint boundary value optimization problem including
binary control functions and derive a time– and tray–dependent reusage of these
cuts that improves the objective functional significantly and helps to give insight
into the process.

Please note that the notation partly changes in this chapter. Explanations are given
in the text and in the appendix.

7.1 Subway optimization

The optimal control problem we treat in this section goes back to work of Bock &
Longman (1982) for the city of New York. It aims at minimizing the energy used for
a subway ride from one station to another, taking into account boundary conditions
and a restriction on the time. It is given by

min
x,w,T

∫ T

0

L(x(t), w(t)) dt (7.1a)
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subject to the ODE system

ẋ(t) = f (x(t), w(t)), t ∈ [t0, T ], (7.1b)

path constraints

0 ≤ x(t), t ∈ [t0, T ], (7.1c)

interior point inequalities and equalities

0 ≤ rieq(x(t0),x(t1), . . . ,x(T ), T ), (7.1d)

0 = req(x(t0),x(t1), . . . ,x(T ), T ), (7.1e)

and binary admissibility of w(·)

w(t) ∈ {1, 2, 3, 4}. (7.1f)

The terminal time T denotes the time of arrival of a subway train in the next station.
The differential states x0(·) and x1(·) describe position resp. velocity of the train.
The train can be operated in one of four different modes,

w(t) =







1 Series
2 Parallel
3 Coasting
4 Braking

(7.1g)

that influences the acceleration resp. deceleration of the train and therewith the
energy consumption. The latter is to be minimized and given by the Lagrange term

L(x(t), 1) =







e p1 for x1(t) ≤ v1

e p2 for v1 < x1(t) ≤ v2

e
∑5

i=0 ci(1)
(

1
10
γ x1(t)

)−i
for x1(t) > v2

, (7.1h)

L(x(t), 2) =







0 for x1(t) ≤ v2

e p3 for v2 < x1(t) ≤ v3

e
∑5

i=0 ci(2)
(

1
10
γ x1(t) − 1

)−i
for x1(t) > v3

, (7.1i)

L(x(t), 3) = 0, (7.1j)

L(x(t), 4) = 0. (7.1k)

The right hand side function f (·) is dependent on the mode w(·) and on the state
variable x1(·). For all t ∈ [0, T ] we have

ẋ0(t) = x1(t). (7.1l)

For operation in series, w(t) = 1, we have

ẋ1(t) = f1(x, 1) =







f 1A
1 (x) for x1(t) ≤ v1

f 1B
1 (x) for v1 < x1(t) ≤ v2

f 1C
1 (x) for x1(t) > v2

, (7.1m)
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with

f 1A
1 (x) =

g e a1

Weff
,

f 1B
1 (x) =

g e a2

Weff

,

f 1C
1 (x) =

g (e T (x1(t), 1) −R(x1(t))

Weff
.

For operation in parallel, w(t) = 2, we have

ẋ1(t) = f1(x, 2) =







f 2A
1 (x) for x1(t) ≤ v2

f 2B
1 (x) for v2 < x1(t) ≤ v3

f 2C
1 (x) for x1(t) > v3

, (7.1n)

with

f 2A
1 (x) = 0,

f 2B
1 (x) =

g e a3

Weff
,

f 2C
1 (x) =

g (e T (x1(t), 2) −R(x1(t))

Weff

.

For coasting, w(t) = 3, we have

ẋ1(t) = f1(x, 3) = −g R(x1(t))

Weff

− C (7.1o)

and for braking, w(t) = 4,

ẋ1(t) = f1(x, 4) = −u(t) = umax. (7.1p)

The braking deceleration u(·) can be varied between 0 and a given umax. It can be
shown easily that for the problem at hand only maximal braking can be optimal,
hence we fix u(·) to umax without loss of generality.
The occurring forces are given by

R(x1(t)) = ca γ2x1(t)
2 + bWγx1(t) +

1.3

2000
W + 116, (7.1q)

T (x1(t), 1) =

5∑

i=0

bi(1)

(
1

10
γx1(t) − 0.3

)−i

, (7.1r)

T (x1(t), 2) =
5∑

i=0

bi(2)

(
1

10
γx1(t) − 1

)−i

. (7.1s)

The interior point equality constraints req(·) are given by initial and terminal con-
straints on the state trajectory,

x(0) = (0, 0)T , x(T ) = (S, 0)T . (7.1t)
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The interior point inequality constraints rieq(·) consist of a maximal driving time
Tmax to get from x(0) = (0, 0)T to x(T ) = (S, 0)T ,

T ≤ Tmax. (7.1u)

In the equations above the parameters e, p1, p2, p3, bi(w), ci(w), γ, g, a1, a2, a3,
Weff , C, c, b, W , umax, T

max, v1, v2 and v3 are fixed. They are given in appendix C.
Details about the derivation of this model and the assumptions made can be found
in Bock & Longman (1982) or in Krämer-Eis (1985).
Bock & Longman (1982) solved the problem at hand for different values of S and
W already in the early eighties by the Competing Hamiltonians approach. This
approach computes the values of Hamiltonian functions for each possible mode of
operation and compares them in every time step. As the maximum principle holds
also for disjoint control sets, the maximum of these Hamiltonians determines the
best possible choice. This approach is based on indirect methods, therefore it suffers
from the disadvantages named in chapter 2 — in particular from the need to supply
very accurate initial values for the Lagrange multipliers and the switching structure.
Our direct approach does not require such guesses. We transform the problem with
the discrete–valued function w(·) to a convexified one with a four–dimensional control
function w̃ ∈ [0, 1]4 and

∑4
i=1 w̃i(t) = 1 for all t ∈ [0, T ] as described in chapter 4.

This allows us to write the right hand side function f̃ and the Lagrange term L̃ as

f̃(x, w̃) =

4∑

i=1

w̃i(t) f (x, i)

respectively as

L̃(x, w̃) =
4∑

i=1

w̃i(t) L(x, i).

Both functions still contain state–dependent discontinuities. Recent work in the area
of such implicit discontinuities has been performed by Brandt-Pollmann (2004), who
proposes a monitoring strategy combined with switching point determination and
Wronskian update techniques. Fortunately the order of the different areas is quite
clear in our case. As the distance S that has to be covered in time Tmax, a certain
minimum velocity greater than v3 is required for a given time and any admissible
solution has to accelerate at the beginning, keep a certain velocity and decelerate by
either coasting or braking towards the end of the time horizon. Therefore we assume
that every optimal admissible trajectory fits into the structure of the multistage
problem

• Stage 0, [t̃0, t̃1] : 0 ≤ x1(·) ≤ v1, only series, w̃2 = w̃3 = w̃4 = 0

• Stage 1, [t̃1, t̃2] : v1 ≤ x1(·) ≤ v2, only series, w̃2 = w̃3 = w̃4 = 0

• Stage 2, [t̃2, t̃3] : v2 ≤ x1(·) ≤ v3
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• Stage 3, [t̃3, t̃4] : v3 ≤ x1(·)

• Stage 4, [t̃4, t̃5] : v3 ≤ x1(·)

• Stage 5, [t̃5, t̃6] : 0 ≤ x1(·) ≤ v3, only coasting or braking, w̃1 = w̃2 = 0

with t̃0 = t0 = 0 and t̃6 = T ≤ Tmax. The fourth stage has been split up in two
stages, because we will insert additional constraints later on. The first two stages are
pure acceleration stages. As f2(x, 2) ≡ 0 on the first two stages, we fix w̃1 = 1 and
w̃2 = w̃3 = w̃4 = 0 on both. This allows us to compute the exact switching times
t̃1 and t̃2 between these stages and fix them. On the sixth stage we assume that no
further acceleration is necessary once the threshold velocity v3 has been reached and
allow only further deceleration by coasting or braking. Therefore no discontinuity
will occur on this stage any more. As the constraint v3 ≤ x1(·) avoids discontinuities,
the only switching point to determine is t̃3. We determine t̃3 by the addition of an
interior point constraint

x1(t̃3) = v3,

although this approach may yield numerical difficulties as the model is only accurate
when this condition is fulfilled. If, on the other hand, we obtain an admissible solution
that fulfills the conditions on x1(·) given above, the model restrictions are also fulfilled
and the discontinuities take place at times where the model stages change and all
derivative information is updated. For this reason all given solutions are indeed
local optima that are admissible, also in the sense that the model discontinuities are
treated correctly. Within our approach we use a line search instead of a trust box or
watchdog technique to globalize convergence.
We will now investigate problem (7.1) with the same parameters used in Krämer-
Eis (1985), namely n = 10, W = 78000, S = 2112, Tmax = 65, e = 1.0 and all
other parameters as given in the appendix. We obtain a multistage problem with six
model stages on which different interior point and path constraints are given. For
these parameters we determine the switching times of the series mode in stages 0
and 1 as

t̃1 = 0.631661, t̃2 = 2.43955. (7.2)

We will first have a look at a trajectory of a relaxation of this problem. This solution
is optimal on a given grid G0 with nms = 34 intervals. This grid is not equidistant,
due to the multitude of stages that partly have fixed stage lengths. The obtained
solutions for the binary control functions w̃i(·) on this and a refined grid are shown in
figure 7.1. The corresponding trajectories yield objective values of 1.15086 resp. of
1.14611. Applying a second refinement the solution is almost completely integer with
Φ = 1.14596. We round this solution and initialize a switching time optimization
with it. The obtained trajectory, including the differential states distance x0(·) and
velocity x1(·) is plotted in figure 7.2. The solution is given by

w(t) = S(1, 2, 1, 3, 4; 3.64338, 8.96367, 33.1757, 11.3773, 7.84002). (7.3)
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Figure 7.1: The controls for operation in series, w̃1(·), in parallel, w̃2(·), coasting,
w̃3(·) and braking, w̃4(·), from left to right. The upper solution is optimal for the
relaxed problem on a given grid G0, the middle one for a grid G1 obtained from G0

by adaptive mode 2. The lowest row shows the optimal solution on grid G2 that is
used to initialize the switching time optimization algorithm.
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Time t Mode f1 = x0(t)[ft] x1(t)[mph] x1(t)[ft/s] Energy

0.0 S f 1A
1 0.0 0.0 0.0 0.0

0.631661 S f 1B
1 0.453711 0.979474 1.43656 0.0186331

2.43955 S f 1C
1 10.6776 6.73211 9.87375 0.109518

3.64338 P f 2B
1 24.4836 8.65723 12.6973 0.147387

5.59988 P f 2C
1 57.3729 14.2658 20.9232 0.339851

12.607 S f 1C
1 277.711 25.6452 37.6129 0.93519

45.7827 C f1(3) 1556.5 26.8579 39.3915 1.14569
46.8938 C f1(3) 1600 26.5306 38.9115 1.14569
57.16 B f1(4) 1976.78 23.5201 34.4961 1.14569
65.00 - − 2112 0.0 0.0 1.14569

Table 7.1: Trajectory corresponding to the optimal solution (7.3). The rows of the
table give typical values for the different arcs.

In other words, first we operate in series until t̂1 = 3.64338 ∈ [t̃2, t̃3] with state–
dependent changes of the right hand side function at t̃1 and t̃2 as given by (7.2),
then we operate in parallel mode until t̂2 = 12.607 ∈ [t̃3, t̃5], then again in series
until t̂3 = 45.7827 ∈ [t̃3, t̃5]. At t̂4 = 57.16 ∈ [t̃3, t̃5] we stop coasting and brake until
T = Tmax = 65. All results are given as an overview in table 7.1.
This solution is identical in structure to the one given in Krämer-Eis (1985). The
switching times are a little bit different, though. This may be connected to the
phenomenon of multiple local minima that occur when applying a switching time
approach, compare section 5.2. The trajectory given in Krämer-Eis (1985) yields an
energy consumption of Φ = 1.14780. If we use either this solution or the rounded
solution of the relaxed solution without adaptive refinement of the control grid as an
initialization of the switching time approach, we obtain the local minimum

w(t) = S(1, 2, 1, 3, 4; 3.6415, 8.82654, 34.5454, 10.0309, 7.95567),

which switches earlier into the parallel mode, has an augmented runtime in series
and a shorter coasting arc. The objective function value of Φ = 1.14661 is worse
than the one given above, but still close enough to the relaxed value that serves as
an estimate for Φ∗.
Our algorithm has therefore the ability to reproduce the optimal results of Bock &
Longman (1982) and Krämer-Eis (1985). But we can go further, as we can apply
our algorithm also to extended problems with additional constraints. To illustrate
this, we will add constraints to problem (7.1). First we consider the point constraint

x1(t) ≤ v4 if x0(t) = S4 (7.4)

for a given distance 0 < S4 < S and velocity v4 > v3. Note that the state x0(·) is
strictly monotonically increasing with time, as ẋ0(t) = x1(t) > 0 for all t ∈ (0, T ).
We include condition (7.4) by additional interior point constraints

0 ≤ rieq(x(t̃4)) = v4 − x1(t̃4), (7.5a)

0 = req(x(t̃4)) = S4 − x0(t̃4), (7.5b)
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assuming that the point of the track S4 will be reached within the stage [t̃3, t̃5]. For
a suitable choice of (S4, v4) this holds of course true. We do not change anything in
the initialization resp. in the parameters of our method and obtain for S4 = 1200
and v4 = 22/γ the optimal solution for problem (7.1) with the additional interior
point constraints (7.5) as

w(t) = S(1, 2, 1, 3, 4, 2, 1, 3, 4;

2.86362, 10.722, 15.3108, 5.81821, (7.6)

1.18383, 2.72451, 12.917, 5.47402, 7.98594).

The corresponding trajectory with Φ = 1.3978 is plotted in figure 7.3. Compared
to (7.3), solution (7.6) has changed the switching structure. To meet the point
constraint, the velocity has to be reduced by an additional coasting and braking arc.
After this track point S4, the parallel mode speeds up as soon as possible and the
series mode guarantees that the velocity is high enough to reach the next station in
time.

Not only the additional constraint influences the optimal switching structure, but
also the values of the parameters. For a speed limit at a track point in the first half
of the way, say S4 = 700, we obtain the solution

w(t) = S(1, 2, 1, 3, 2, 1, 3, 4;

2.98084, 6.28428, 11.0714, 4.77575, (7.7)

6.0483, 18.6081, 6.4893, 8.74202)

that is plotted in figure 7.4. For this solution there is only one braking arc (w(t) = 4)
left. The reason is that the speed limit comes early enough such that the main
distance can be covered afterwards and no high speed at the beginning, followed
by braking, which is very energy consuming, is necessary. On the other hand, the
braking arc at the end of the time horizon is longer, as we have an increased velocity
with respect to solution (7.6) for all t ≥ 40. This can be seen in a direct comparison
in figure 7.9. The energy consumption is Φ = 1.32518, thus lower than for the
constraint at S4 = 1200.

Point constraints like (7.4) may be quite typical for practical subway problems, e.g.,
when parts of the track are not in the best shape. Another typical restriction would be
path constraints on subsets of the track. We will consider a problem with additional
path constraints

x1(t) ≤ v5 if x0(t) ≥ S5. (7.8)

We include condition (7.8) by one additional path and one additional interior point
constraint

0 ≤ c(x, t) = v5 − x1(t), t ∈ [t̃4, T ] (7.9a)

0 = req(x(t̃4)) = S5 − x0(t̃4), (7.9b)
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assuming again that the point of the track S5 will be reached within the stage [t̃3, t̃5].
The additional path constraint changes the qualitative behavior of the relaxed so-
lution. While all solutions considered this far were bang–bang and the main work
consisted in finding the switching points, we now have a constraint–seeking arc. Fig-
ure 7.5 shows the relaxed solution. The path constraint (7.9) is active on a certain
arc and determines the values of series mode and coasting. The sum of these two
yields ẋ1 ≡ 0, ensuring x1(t) = v5. Any optimal solution will look similar on this
arc, no matter how often we refine the grid. We showed in preceding chapters that it
is possible to approximate this singular solution arbitrarily close. This implies a fast
switching between the two operation modes, though, which is not suited for practi-
cal purposes. Our algorithm allows to define a tolerance ε such that a compromise
is found between a more energy–consuming operation mode which needs only few
switches and is therefore more convenient for driver and passengers and an operation
mode consuming less energy but switching more often to stay closer to the relaxed
optimal solution.

By a refinement of the grid we get an estimate for Φ∗. The optimal solutions for
refined grids yield a series of monotonically decreasing objective function values

1.33108, 1.31070, 1.31058, 1.31058, . . . (7.10)

We use the different grids to use rounding strategy SUR-SOS1 on them and initialize
a switching time optimization with it. On the coarsest grid we obtain a solution
that may only switch once between acceleration in series mode and coasting. The
optimal solution looks thus as depicted in figure 7.6 — the velocity is reduced by
braking strictly below the velocity constraint, such that it touches the constraint
exactly once before the final coasting and braking to come to a hold begins. This
solution is given by

w(t) = S(1, 2, 1, 3, 4, 1, 3, 4;

2.68054, 13.8253, 12.2412, 4.03345, (7.11)

1.65001, 15.3543, 7.99192, 7.22329)

and yields an energy consumption of Φ = 1.38367. This value is quite elevated
compared to (7.10). If we use the same approach on refined grids we obtain

w(t) = S(1, 2, 1, 3, 4, 1, 3, 1, 3, 1, 3, 4;

2.74258, 12.7277, 13.6654, 4.57367, (7.12)

1.08897, 1.77796, 1.35181, 6.41239,

1.34993, 6.40379, 5.43439, 7.47134)
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with Φ = 1.32763 depicted in figure 7.7 respectively

w(t) = S(1, 2, 1, 3, 4, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 4;

2.74458, 12.5412, 13.5547, 5.08831,

0.964007, 0.0571219, 0.739212, 3.56618, (7.13)

0.744176, 3.58963, 0.745454, 3.59567,

0.71566, 3.45484, 0.111917, 0.549478,

4.69464, 7.54318)

with Φ = 1.31822 depicted in figure 7.8. An additional refinement yields a solution
with 51 switches and Φ = 1.31164 which is already quite close to the limit of (7.10).
The results show the strength of our approach. Neglecting numerical problems when
stage lengths become to small, we may approximate the singular solution arbitrarily
close. As this often implies a large number of switchings, one may want to obtain
a solution that switches less. Our approach allows to generate candidate solutions
with a very precise estimation of the gap between this candidate and an optimal
solution.

7.2 Phase resetting of calcium oscillations

Biological rhythms as impressing manifestations of self–organized dynamics associ-
ated with the phenomenon life have been of particular interest since quite a long time,
see, e.g., Goldbeter (1996). Even before the mechanistic basis of certain biochemical
oscillators was elucidated by molecular biology techniques, their investigation and the
issue of perturbation by external stimuli has attracted much attention. Reasoning
that limit cycle attractors are topologically equivalent to the circle

S1 = {x ∈ R
n | ||x|| = 1},

Winfree could rigorously prove via topological arguments that for particular phase
resetting behavior there exists a critical stimulus, depending on strength and timing,
which annihilates the oscillations completely. Without further stimuli, oscillations
will finally be regained due to the instability of the steady state, but with an in-
definite phase relation to the original oscillation. This can be seen as a kind of
phase resetting. This situation corresponds to a stimulus–timing–phase singularity,
see Winfree (2001) for a comprehensive overview and in–depth discussion. By deter-
mining families of phase resetting curves depicting the phase shift as a function of
stimulus strength and timing, it is sometimes possible to identify such singularities
either experimentally or theoretically by model–based numerical simulations. This
can be done by finding the transition from so called type-1 to type-0 phase resetting
curves depending on the stimulus strength, see Winfree (2001).
However, in complex multi–component systems occurring in cell biology the over-
whelming variety of the kind, strength and timing of possible stimuli make simulation–
based approaches via phase resetting curves impractical. For this reason, a systematic
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Figure 7.2: The controls for operation in series, w̃1(·), in parallel, w̃2(·), coasting,
w̃3(·) and braking, w̃4(·). The last row shows covered distance x0(·) and velocity
x1(·). This is the optimal trajectory for problem (7.1), given by (7.3).
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Figure 7.3: As in figure 7.2. This is the optimal trajectory for problem (7.1) with
the additional point constraints (7.5), given by (7.6). The vertical dotted line
indicates the time t̃4 when the track point x0(t̃4) = S4 = 1200 is reached. The
horizontal dotted line shows the constraint velocity v4 = 22/γ.
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Figure 7.4: As in figure 7.3, but this time with a restriction at the track point
x0(t̃4) = S4 = 700 instead of S4 = 1200. The first braking arc disappears, therefore
the braking arc at the end of the track has to be longer.
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Figure 7.5: The plots are as before. This is the optimal trajectory for the relaxed
problem (7.1) with the additional path constraints (7.9). Note that this constraint
is active on a certain arc and determines the values of series mode and coasting. The
sum of these two yields ẋ1 ≡ 0. Any optimal solution will look similar on this arc,
no matter how often we refine the grid. The energy consumption is Φ = 1.33108.
After one refinement it is Φ = 1.31070, after two refinements Φ = 1.31058.
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Figure 7.6: The plots are as before. This is an admissible trajectory for the integer
problem (7.1) with the additional constraints (7.9). Note that the path constraint
is active on only one touch point. The controls are chosen such that the state x1 is
below the constraint at the beginning of the arc and only touches it once at its end.
The energy consumption is Φ1 = 1.38367.
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Figure 7.7: As in figure 7.6. Note that the path constraint is now active on three
touch points. This arc is better approximated, therefore the energy consumption
Φ2 = 1.32763 is better than Φ1 = 1.38367.
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Figure 7.8: As in figure 7.6. Note that the path constraint is now active on six touch
points. The constraint–arc is even better approximated than before, therefore the
energy consumption Φ3 = 1.31822 is better than Φ2 = 1.32763.



142 CHAPTER 7. APPLICATIONS

Figure 7.9: Final comparison of the different states x1(·). Top left: the state tra-
jectory for problem (7.1) without constraints on the velocity. Top right and two
plots in the middle: solutions for the problem with path constraint, with increasing
accuracy of the approximation of the singular solution. Bottommost plots: optimal
trajectories for point constraint. The vertical dotted lines show when x0 = 1200
resp. x0 = 700 are reached. The horizontal lines show the velocities v4 resp. v5.
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and automatic algorithmic procedure for identification of the phase singularities is
attractive. We demonstrate how our methods can be applied to limit cycle oscilla-
tions coexisting with stable or unstable steady states. This is possible in any kind
of physical or chemical system, if a kinetic model is available.
As an important biochemical example, we choose a calcium oscillator model describ-
ing intracellular calcium spiking in hepatocytes induced by an extracellular increase
in adenosine triphosphate (ATP) concentration to demonstrate the performance of
our optimal control method. The calcium signaling pathway is initiated via a re-
ceptor activated G–protein inducing the intracellular release of inositol triphoshate
(IP3) by phospholipase C. The IP3 triggers the opening of endoplasmic reticulum
(ER) and plasma membrane calcium channels and a subsequent inflow of calcium
ions from intracellular and extracellular stores leading to transient calcium spikes.
The ODE model for the calcium oscillator consists of four variables describing the
time–dependent concentrations of activated G-protein x0(·), active phospholipase C
represented by x1(·), intracellular calcium x2(·) and intra–ER calcium x3(·) respec-
tively. The model takes into account known feedback–regulations of the pathway, in
particular CICR (calcium induced calcium release), and active transport of calcium
from the cytoplasm across both ER–membrane and plasma membrane via SERCA
(sarco–endoplasmic reticulum Ca2+–ATPase) and PMCA (plasma membrane Ca2+–
ATPase) pumps. We leave away the argument (t) for notational convenience. The
dynamics are then described by the following ODE system ẋ = f (x,u)

ẋ0 = k1 + k2x0 −
k3x0x1

x0 +K4

− k5x0x2

x0 +K6

(7.14a)

ẋ1 = (1 − u2) · k7x0 −
k8x1

x1 +K9

(7.14b)

ẋ2 =
k10x1x2x3

x3 +K11
+ k12x1 + k13x0 −

k14x2

u1x2 +K15
− k16x2

x2 +K17
+
x3

10
(7.14c)

ẋ3 = −k10x1x2x3

x3 +K11
+

k16x2

x2 +K17
− x3

10
(7.14d)

with initial values x(0) = x0 and fixed parameters p = (k1, . . . , K17)
T that are given

in appendix D and two external controls u1 and u2. Modeling details including a
comprehensive discussion of parameter values and the dynamical behavior observed
in simulations with a comparison to experimental observations can be found in Kum-
mer et al. (2000). In our study the model is identical to the one derived there, except
for an additional first–order leakage flow of calcium from the ER back to the cyto-
plasm, which is modeled by ±x3

10
in equations 3 and 4 of system (7.14). It reproduces

well experimental observations of cytoplasmic calcium oscillations as well as bursting
behavior and in particular the frequency encoding of the triggering stimulus strength,
which is a well known mechanism for signal processing in cell biology, see Berridge
(1997).
As a source of external control we additionally introduced a temporally varying con-
centration u1 of an uncompetitive inhibitor of the PMCA ion pump and an inhibitor
u2 of PLC activation by the G-protein. The inhibitor influence u1 is modeled ac-
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cording to standard Michaelis-Menten kinetics for uncompetitive enzyme inhibition
in (7.14c), compare Bisswanger (2002). The influence on PLC activation is modeled
by a multiplication with (1 − u2) in (7.14b). According to Kummer et al. (2000))
u2 indicates the blocking extent of the PLC activation, where u2 ≡ 1 corresponds to
full inhibition. In practice, La3+ is often used as a potent PMCA inhibitor, Morgan
& Jacob (1998), and RGS proteins (regulators of G-protein signaling) are known as
inhibitors of activated G-protein effects like PLC activation.
The aim of our control approach is to identify strength and timing of inhibitor stimuli
(u1, u2) that lead to a phase singularity which annihilates the intracellular calcium
oscillations. We address this problem by formulating an objective function that aims
at minimizing the state deviation from the desired steady state integrated over time.
We are interested in particular control functions (u1, u2) that switch between the
value u1 ≡ 1 (zero PMCA inhibitor concentration) and u1 = umax

1 ≥ 1 corresponding
to a maximum PMCA inhibitor concentration and u2 = 0 and u2 = 1 for zero and
full RGS inhibition of PLC activation respectively. By setting u1 ≡ 1+w1(u

max
1 − 1)

and u2 ≡ w2 this can be formulated with the help of two binary control functions
(w1, w2). We add two terms p1w1 and p2w2 with p1, p2 ≥ 0 given in the appendix
to the objective functional for two purposes. First, we want to favor solutions that
use small total amounts of inhibitors. Second, this leads to a regularization of the
unstable problem in the sense that solutions with short stimuli at the end of the
control horizon, that are local minima, are avoided. Leaving the intensity umax as a
time–independent degree of freedom, i.e., as an additional free parameter, we finally
obtain the mixed–integer optimal control problem to minimize

min
x,w

∫ T

0

3∑

i=0

(xi(t) − xs
i )

2 + p1w1(t) + p2w2(t) dt (7.15a)

subject to the ODE

ẋ0 = k1 + k2x0 −
k3x0x1

x0 +K4
− k5x0x2

x0 +K6
(7.15b)

ẋ1 = (1 − w2) · k7x0 −
k8x1

x1 +K9
(7.15c)

ẋ2 =
k10x1x2x3

x3 +K11
+ k12x1 + k13x0 −

k16x2

x2 +K17
+
x3

10

− k14x2

(1 + w1(umax
1 − 1))x2 +K15

(7.15d)

ẋ3 = −k10x1x2x3

x3 +K11
+

k16x2

x2 +K17
− x3

10
(7.15e)

initial values

x(t0) = x0, (7.15f)

bounds

1 ≤ umax
1 ≤ 1.3, (7.15g)

0 ≤ x0, x1, x2, x3 (7.15h)
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and the integer constraints

w1, w2 ∈ Ω(Ψfree). (7.15i)

The fixed parameter values k1, . . . , K17, p1, p2, the initial values x0 and the refer-
ence values xs are given in appendix D. The latter have been determined by using
the XPPAUT software, Ermentrout (2002), by path-following of a Hopf-bifurcation
through variation of the parameter k2,

Remark 7.1 Another possibility to formulate the objective function includes a scal-
ing of the deviations, i.e.,

min
x,w

∫ T

0

3∑

i=0

(
xi(t) − xs

i

xs
i

)2

+ p1w1(t) + p2w2(t) dt

instead of (7.15a).

The set of parameters and initial values gives rise to bursting–type limit cycle os-
cillations. Figure 7.10 shows this behavior in simulation results. Three scenarios
are plotted, the first one for no inhibition at all, i.e., w1 ≡ 0 and w2 ≡ 0. The
middle column shows the differential states x0(·), x1(·), x2(·) and x3(·) for w1 ≡ 1,
umax

1 = 1.3 and w2 ≡ 0, i.e., constant maximum inhibition of the PMCA ion pump
and no channel blocking. The dotted horizontal lines show the reference state xs.
To solve problem (7.15) we proceed as follows. First we convexify the system with
respect to the binary control functions as shown in section 4.1. w2 enters linearly.
The convexification with respect to w1 gives

ẋ2 =
k10x1x2x3

x3 +K11
+ k12x1 + k13x0 −

k16x2

x2 +K17
+
x3

10

−
(

w̃1
k14x2

umax
1 x2 +K15

+ (1 − w̃1)
k14x2

x2 +K15

)

(7.16)

The next step is then to solve a relaxed problem on a fixed grid G0. We choose a grid
with nms = 25. We will first fix w2 to zero and investigate the optimal trajectory for
a one–dimensional control. Figure 7.11 shows the optimal control functions for the
relaxed system on the grid G0 and grids Gi obtained by an iterative refinement with
adaptive mode 2. The objective function values Φi on grid Gi decrease as

Φ0 = 1760.13,Φ1 = 1744.77,Φ2 = 1725.49,Φ3 = 1719.27,Φ4 = 1715.38,

Φ5 = 1713.72,Φ6 = 1712.60,Φ7 = 1712.14,Φ8 = 1711.81,Φ9 = 1711.68.

The iterative procedure to determine the optimal trajectory on grid G9 takes 35
seconds and 84 SQP iterations. Having a closer look at the control functions for the
relaxed problem, we decide to apply a simple rounding heuristics to obtain a binary
admissible trajectory from the relaxed solutions. Rounding yields a considerable gap
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Figure 7.10: Simulation of system (7.15). The rows show the four differential states
x0, . . . , x3. The dotted horizontal lines indicate the reference state xs. The left-
most column shows the states for no inhibition, w1 ≡ 0 and w2 ≡ 0. The middle
column shows a simulation for w1 ≡ 1, umax

1 = 1.3 and w2 ≡ 0, i.e., a constant max-
imum inhibition of the PMCA ion pump. The rightmost column shows the states
corresponding to the optimal trajectory (7.17).
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Figure 7.11: Relaxed solutions on different adaptive grids G0 to G8.

Figure 7.12: Relaxed (left) and rounded (right) control function w1(·) and corre-
sponding state x3(·) on the grid G8.
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Figure 7.13: Corresponding states x0, . . . , x3 of solution (7.17), integrated over the
whole time horizon after rounding to six digits.

in the objective function values, though. Figure 7.12 shows the relaxed and a rounded
control function on the grid G8 with one corresponding differential state trajectory.
The objective value of this rounded, binary admissible trajectory is Φ̄ = 4143.78,
which corresponds to a high integrated deviation from the steady state.
This is also the reason, why so many adaptive iterations are necessary to come close
to a binary admissible solution with an acceptable system response. Bisection, i.e.,
adaptive mode 0, is even slower than adaptive mode 2. After six refinements the
objective value is still up at 1726.87, worse than after two refinements with adaptive
mode 2. The switching time approach yields local minima with an objective value
way above 4000 for all initializations with the rounded solutions on the grids G0 to
G7. In iteration 8 we obtain finally the binary admissible result

w1(t) = S(0, 1, 0; 4.51958, 1.16726, 16.31317), (7.17a)

w2(t) = 0 (7.17b)

with Φ = 1711.49 and umax
1 = 1.11880. The corresponding state trajectories are

plotted in the rightmost column of figure 7.10.
Rounding to six digits in (7.17) and a single shooting integration, that is, with no
matching tolerances at the multiple shooting nodes, leads to the trajectory depicted
in figure 7.13. This trajectory leaves the unstable steady state earlier than in picture
7.10 and has an augmented objective function value. This is caused by the extreme
sensitivity of the system to small perturbations in the stimulus.
Simulating the solution further in time, figure 7.14, we see that the limit cycle oscil-
lations restart at about the end of the control horizon. This is different, if at least
two stable steady states exist. In Lebiedz et al. (2006) our methods are applied not
only to find a stimulus to switch from one limit cycle resp. steady state to another,
but also to identify a second one, within the same optimal control problem, to switch
back to the original periodic limit cycle.
The simple structure of solution (7.17) allows a more detailed investigation of the
objective function landscape, as already performed in section 5.2. We vary the begin
and the length of the stimulus over the feasible time domain, determine all other
variables such that the trajectory is admissible and integrate the resulting ODE.
Figure 7.16 shows the corresponding objective function values in two– respectively
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Figure 7.14: Restart of limit cycle oscillations, integration of (7.17) over the pro-
longed time interval [0, 52].

three–dimensional plots.
Obviously the PMCA inhibitor suffices to reset the phase of the limit cycle oscilla-
tions. Still we apply our algorithm also to the two–dimensional case, where also an
inhibition of the PLC activation by the G-protein is possible (w2(·)). With the same
procedure as above, i.e., an iterative refinement of the grid, rounding and a switching
time optimization until we reach the lower bound, we obtain the binary admissible
result

w(t) = S( (0, 1), (0, 0), (1, 0), (0, 0);

1.60631, 2.78085, 0.71340, 16.8994 ). (7.18)

with Φ = 1538.00 and umax
1 = 1.13613. This objective value neglects the term p1w1 +

p2w2. Compared with the objective function value of Φ = 1604.13 obtained by (7.17),
again neglecting p1w1, this is a considerable improvement from a mathematical point
of view. The corresponding trajectory is plotted in figure 7.15.
The results obtained here for the calcium oscillator example demonstrate that we can
successfully identify critical phase resetting stimuli leading to the (transient) annihi-
lation of limit cycle oscillations by applying MS MINTOC . Based on detailed kinetic
models such control strategies for complex self–organizing systems may turn out to
be of great benefit in various applications ranging from physicochemical systems
in technical processes, Kiss & Hudson (2003), to drug development and biomedical
treatment strategies of dynamical diseases, see Walleczek (2000) or Petty (2004).
Despite this possibly still far ahead practical applicability of optimal control methods
to biological systems, it may give an insight into underlying principles by analysis
of optimal trajectories. Furthermore such models have interesting properties from
a mathematical point of view. The instability of the steady state makes it compar-
atively hard to determine the switching points, although the switching structure is
known in this case. We cannot make use of any switching time optimization ap-
proach without a very accurate initialization, otherwise we will run into one of the
local minima connected to an early restart of the oscillation.
As already pointed out in section 5.2 and appendix B.4, typically a very high number
of local minima occurs in a switching time problem formulation. An a posteriori
analysis of the present case study shows that an optimization of the switching times
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Figure 7.15: Optimal trajectory with two control functions.
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of w1 only yields acceptable results if the initial values are closer than 10−3 time
units to the optimal values. For the behavior of our algorithm it is crucial that we
use the underlying direct multiple shooting method, a method that has shown to be
suitable for other unstable dynamical systems with complex self–organizing behavior
before, Lebiedz & Brandt-Pollmann (2003) or Brandt-Pollmann et al. (2005).

7.3 Batch distillation with recycled waste cuts

In this section we will treat a mixed–integer optimal control problem from chemical
engineering, namely a batch distillation process with recycled waste cuts. Waste
cut recycling problems are treated, e.g., by Mayur et al. (1970) and Christensen &
Jorgensen (1987) for binary batch distillation, where it is possible to find time optimal
reflux policies in the framework of Pontryagin’s maximum principle. Luyben (1988,
1990) treats a ternary mixture, but does not solve an optimal control problem. In
Diehl et al. (2002) the authors optimize stage durations, recycling ratios and controls
simultaneously for a ternary mixture, using a cost function that incorporates energy
costs, product prices and possible waste cut disposal costs. The model presented
there will be the basis for our study. We extend this model by additional degrees of
freedom – the waste cuts may not only be reinserted as batch at the beginning of
the production cuts to the reboiler, but distributed over time to any tray.
We will proceed as follows. We will first present the model of the process, followed
by a review of the results of Diehl et al. that will serve as reference solutions. Then
we formulate the mixed–integer optimal control problem and apply MS MINTOC to
solve it.

The multiple–fraction batch distillation process has as its goal the separation of a
mixture of ncomp components into different fractions of prespecified purity levels. We
will refer to this mixture as feed in the following.
In this study we treat the complete separation of a ternary mixture, which is accom-
plished by four consecutive distillation phases: the lightest component is separated
in a first production cut, remaining traces of it are removed in a following waste
cut1, which helps to attain the desired purity of the second lightest fraction in the
following second production cut. The purity of the third and heaviest fraction is
achieved by a last waste cut that removes remaining impurities from the bottoms
product.
The process is controlled by the reflux ratio R, which can be varied over time. A
sketch of the distillation column and the process under investigation is shown in
Figure 7.17.
The mathematical model of the distillation column, developed, e.g., by Farhat et al.
(1990), is based on the following simplifying assumptions:

• Ideal trays
• No liquid holdup

1also referred to as slop cut
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Figure 7.16: Objective function landscape of the calcium example, obtained by
brute–force simulation of the ODE by variation of h0, h1 and h2 = 22 − h0 − h1.
The x-axis gives the length h0 before the stimulus begins, the y-axis the length h1

of this stimulus. In the top left plot the whole time domain [0, 22] is shown. Note
the periodic nature of the landscape with a period of ≈ 11 time units. Of course
the second valley at h0 ≈ 15 is not so deep as the one at h0 ≈ 4.5, as the resetting
takes place a whole period later. The top right and bottom left plots show a zoom
into the vicinity of the optimal values h∗0 = 4.51958, h∗1 = 1.16726. The bottom right
plot illustrates the topography of the border of the narrow channel depicted in the
bottom left plot. The main problem to optimize this problem is the fact that the
border line consists of local maxima on the lines orthogonal to the border. Therefore
all descent–based methods will iterate away from the channel, instead of following it
to its deepest point.
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Figure 7.17: Ternary batch distillation with two production cuts P1, P2 and two
waste cuts S1, S2 in a column with N = ntray ideal trays.

• No pressure drop
• Total condenser
• Constant molar overflow for vapor V and liquid L
• Tray phase equilibria as for ideal mixture, with partial pressures determined

by the Antoine-equation

We assume that the heating power is kept constant, so that the vapor flow V is not
a control, but a fixed parameter. Using the reflux ratio R, L and D can directly be
eliminated,

L = V
R

R+ 1
and D = V

1

R+ 1
. (7.19)

The concentrations in the reboiler are denoted by Xk,0 and those in the condenser
by Xk,N+1, analogously to the tray concentrations (Xk,ℓ).
The only non-neglected mass in the system is the molar reboiler content M . During
the distillation process, M is reduced by the distillate flow D,

dM

dt
= −D =

−V
R+ 1

. (7.20a)

The mass conservation of the different components k requires analogously

d(MXk,0)

dt
= −DXk,N+1
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which is equivalent to

d(Xk,0)

dt
=

V

M(R + 1)
(Xk,0 −Xk,N+1) (7.20b)

for k = 1, 2. The conservation of the third component is implicitly given by (7.20a),
(7.20b). Therefore, the three dynamic equations for the differential variables M ,
X1,0, and X2,0 are specified.
As algebraic equations we first require the componentwise mass conservation in the
column section above the (ℓ+ 1)st tray,

V Kk(Tℓ)Xk,ℓ − LXk,ℓ+1 −DXk,N+1 = 0

or equivalently

Kk(Tℓ)Xk,ℓ −
R

R+ 1
Xk,ℓ+1 −

1

R+ 1
Xk,N+1 = 0 (7.20c)

for k = 1, 2 ℓ = 0, 1, . . . , N . The first term corresponds to the vapor flow entering
into the (ℓ + 1)st tray, the second to the outflowing liquid, and the third to the
distillate flow D. The vapor concentrations on the ℓth tray are calculated as the
product of the equilibrium values Kk(Tℓ) with the liquid concentration Xk,ℓ.
The concentration of the third component is determined by the closing condition

1 −
3∑

k=1

Xk,ℓ = 0, ℓ = 0, 1, . . . , N+1. (7.20d)

The tray temperature Tℓ is implicitly defined by the closing condition for the vapor
concentrations,

1 −
3∑

k=1

Kk(Tℓ)Xk,ℓ = 0, ℓ = 0, 1, . . . , N. (7.20e)

Assuming an ideal mixture, the equilibrium values Kk(Tℓ) are determined according
to Raoult’s law,

Kk(Tℓ) =
ρs

k(Tℓ)

ρ
, k = 1, 2, 3. (7.20f)

Here, ρ is the total pressure assumed to be constant over the whole column, and
ρs

k(Tℓ) are the partial pressures of the undiluted components – they are determined
by the Antoine equation for k = 1, 2, 3,

ρs
k(Tℓ) = exp10

(

Ak −
Bk

Tℓ + Ck

)

. (7.20g)

The Antoine coefficients used in the presented example are given in appendix E. The
total number of algebraic variables (X3,0 , Xk,ℓ for k = 1, 2, 3 and ℓ = 1, . . . , N +1 as
well as Tℓ for ℓ = 0, . . . , N) in the given formulation is 4N +5. By resolving (7.20d),
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the concentrations X3,ℓ for ℓ = 1, 2 . . . , N can be eliminated directly, so that only
3N +5 algebraic states remain. In the computations presented in this paper we have
used a model with N = 5 trays.
The described model, with holdups neglected on trays and in the reflux drum, is
similar to models considered by Diwekar et al. (1987) or Logsdon et al. (1990). It
has to be noted, however, that the inclusion of holdups in the model may lead to
quite different optimal profiles, as demonstrated e.g. by Logsdon & Biegler (1993)
and Mujtaba & Macchietto (1998). Other approaches towards batch distillation
modeling and optimization have been developed by Diwekar (1995), and by Mu-
jtaba & Macchietto (1992, 1996).

Diehl et al. (2002) show that it is profitable to recycle the waste cuts instead of
removing them from the distillation process under certain assumptions. For the
separation of an amount of feedstock considerably larger than a single batch, carried
out by a sequence of identical batches, this could be achieved by adding the waste
material of one batch to the feed of the following one. Although this reduces the
amount of fresh feedstock which can be processed in a single batch (due to limited
reboiler holdup) and thus results in a longer overall distillation time T for a given
total amount of feedstock, the product outputs P1, P2 and P3 are increased and
disposal of the slop cuts S1 and S2 becomes unnecessary.
If the product prices are specified by constants ciprice, and the costs for the energy
consumption per time unit by cenergy and for slop cut disposal by sj, the profit P for
the whole process is given by

P =

3∑

i=1

cipricePi −
2∑

j=1

sjS
′
j − cenergyT, (7.21)

where S ′
j are the amounts of slop cut material that are not recycled. The costs for

the feed purchase are constant for a fixed amount of feedstock and are left out of
consideration in the problem formulation.
To treat the recycling problem, we consider the limiting case of a total amount
of feed that is considerably larger than the reboiler holdup; this would result in a
large number of consecutive, nearly identical batches: here, one batch produces the
amount of slop cut material that is available for recycling in the following batch. If
we assume that all batches are identical, we need to treat only one single batch which
produces exactly the same slop cut material as its output which was previously given
to it as an input for recycling. This quasi–periodic process formulation leads to a
coupled multipoint boundary value problem.
The first slop cut is added at the beginning of the first production cut, as it contains
mainly components 1 and 2, while the second slop cut is recycled in the second
production cut, because it mainly consists of components 2 and 3.
To allow for partial recycling of the slop cuts the recycling ratios R1, R2 are intro-
duced as free optimization parameters. Thus, the non–recycled parts of the slop cuts
become

S ′
j = (1 − Rj)Sj, j = 1, 2. (7.22)
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Figure 7.18: Quasi–periodic ternary batch distillation with waste cut recycling.

For the determination of the total distillation time we proceed as follows: instead
of determining the increased number of batches due to the slop cut recycling, we
artificially increase the initial reboiler filling of a single batch by the amount of the
recycled material from slop cut S1 – this leaves the total amount of batches fixed but
increases the time for one batch by exactly the same factor, by which the amount
of batches should have been increased. This is due to the fact that the differential
equations (7.20a), (7.20b) are invariant with respect to simultaneous rescaling of
time t and reboiler content M . Note also that the vapor flow V enters all differential
equations linearly and only leads to a rescaling of the time axis. Therefore, by varying
V as a control over time (instead of keeping it constant), no additional gains would
be produced in the considered cost model.
If we neglect the cost of the preparation time needed between two batches (during
which no energy costs occur), we can restrict the objective formulation to material–
and energy–costs of one single batch only. We note that experimentation with al-
ternate problem formulations, e.g., the fixing of production and optimization of raw
material, are easy to accomplish in the framework of our approach. For the sake
of simplicity, however, we will restrict ourselves to one single formulation in the
following.

Formulation as a multipoint boundary value problem

The process under consideration is formulated as a periodic multistage optimal con-
trol problem. The idea is illustrated in figure 7.18.
By conceptionally introducing intermediate transition stages to describe the addition
of the slop cuts, we can formulate interior point constraints of type (1.18f) on the
value of the reboiler holdup M as a linear coupling between the value of M at the
interior points 0 = t̃0, t̃1, . . . , t̃6 = T in the following way:

M |t̃1 − M |t̃0 = R1S1

= R1(M |t̃2 − M |t̃3),
(7.23a)

M |t̃4 − M |t̃3 = R2S2

= R2(M |t̃5 − M |t̃6).
(7.23b)
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Remark 7.2 Note that the transition stages are artificial and have zero length in
our formulation. This leads to, e.g., t̃0 = t̃1, but M |t̃0 6= M |t̃1 resp. x0(t̃0) 6= x0(t̃1).

Analogously, the transition equations for the two other differential variables, the
reboiler concentrations Xk,0 (k = 1, 2), are formulated by using the conservation of
the component quantities Xk,0M ,

Xk,0M |
t̃1
− Xk,0M |

t̃0
= R2(Xk,0M |

t̃2
− Xk,0M |

t̃3
), (7.24a)

Xk,0M |
t̃4
− Xk,0M |

t̃3
= R2(Xk,0M |

t̃5
− Xk,0M |

t̃6
), (7.24b)

for k = 1, 2. Altogether, we obtain six coupled interior point constraints that deter-
mine the jumps of the three differential states in the two transition stages.
The purity requirements for the three product fractions are imposed by additional
interior point constraints of the form (1.18e),

X1,0M |
t̃1
− X1,0M |

t̃2

M |t̃1 − M |t̃2
≥ XP1

, (7.25a)

X2,0M |
t̃4
− X2,0M |

t̃5

M |t̃4 − M |t̃5
≥ XP2

, (7.25b)

X3,0|t̃6 ≥ XP3
. (7.25c)

Here, XP1
= 98%, XP2

= 96%, and XP3
= 99% are the required minimum purities

of the main component in the product fractions.

TS P1 S1 TS P2 S2 End
nr t̃0 t̃1 t̃2 t̃3 t̃4 t̃5 t̃6

0 x0 −x0 − pr0
1 x0x1 −x0x1 − pr1
2 x0 −x0 − pr0
3 x0x1 −x0x1 − pr1
4 x0 −x0 x0 p2 −x0 p2

5 x0x1 −x0x1 x0x1 p2 −x0x1 p2

6 x0x2 −x0x2 x0x2 p2 −x0x2 p2

7 x0 −x0 x0 p3 −x0 p3

8 x0x1 −x0x1 x0x1 p3 −x0x1 p3

9 x0x2 −x0x2 x0x2 p3 −x0x2 p3

dc pr1

pr0

pr1

pr0
1 − x1 − x2

≥ XP1
≥ XP2

≥ XP3

Table 7.2: Interior point constraints overview for time–independent slop cuts to
reboiler.
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Table 7.2 shows all interior point constraints in an overview. The differential states
are x0(·) as the still pot holdup M , x1(·) and x2(·) as the mole fractions X1,0 re-
spectively X2,0. The time independent parameters are p0 as the vapor flow rate V ,
p1 as the system pressure ρ, and p2 and p3 as the recycling ratios R1 and R2 of the
first respectively second slop cut. The table is to be read in the following way. The
columns correspond to time points t̃i when a new model stage begins, i.e., for the
first six columns to the begin of either transition stage (TS), production stage (P1 or
P2) or slop stage (S1 or S2). The last time point is the end of the last slop stage at
t̃6 = T . The entries xi in column j are to be understood as xi|t̃j (remember remark

7.2). The rows of the table correspond to nine coupled and three decoupled inte-
rior point constraints, a differentiation that makes computations more efficient, see
Leineweber (1999). The coupled constraints 0–9 are equality constraints. For each
row the sum of all columns has to be zero. While constraints 0 to 3 determine the
local parameters pr0, pr1 that are needed to calculate the purity of the components in
the production stages, constraints 4 to 9 are the mass conservation laws given above.
Constraints 4 and 7 are reformulations of (7.23), constraints 5, 6 and 8,9 are the
mass conservation laws (7.24) for the two slop cuts and two components. The three
decoupled constraints in row dc are the inequality constraints (7.25) that guarantee
the prescribed purity of the product.

Time–dependent slopcut inflow to any tray

We extend the optimal control problem by introducing additional degrees of freedom.
We allow a recycling of the slop cuts S1 and S2 of the previous batch process not
only at the stage transition times into the reboiler, but at any given time t to any
of the N trays. To this end we introduce additional differential variables, namely
x3 which gives the content of slop cut reservoir S1 and x4 for the one of reservoir
S2. Additional time–independent parameters are p4 and p5 for the mole fractions of
components 1 resp. 2 in the first reservoir and p6 and p7 for those in the second.
The control functions ui(·), i = 1 . . .N + 1 describe the inflow of reservoir S1 to tray
i− 1, where tray 0 is the reboiler. The functions ui(·), i = N + 2 . . . 2N + 2 describe
the inflow from reservoir S2 to tray i− (N +2). We will first consider the case where
these functions can take any continuous value, i.e., there exists a pump for every
single connection. This scenario is illustrated in comparison to the preceding ones in
figure 7.19.

The differential equations have to be modified. Using L = V R
R+1

and D = V
R+1

we
derive again from mass conservation

ẋ0 =
dM

dt
= −D +

2N+2∑

i=1

ui =
−V
R + 1

+
2N+2∑

i=1

ui (7.26a)
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Figure 7.19: Illustration of the three different scenarios – without recycling (A,
top), with recycling in transition stages only (B, middle) and with time– and tray–
dependent reusage (C, bottom).
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for the liquid holdup in the column, compare (7.20a). From

d(MXk,0)

dt
= Xk,0

dM

dt
+M

dXk,0

dt

= −DXk,N+1 +

N+1∑

i=1

ui p3+k +

2N+2∑

i=N+2

ui p5+k

it follows that

ẋk =
dXk,0

dt
=

V

M(R + 1)
(Xk,0 −Xk,N+1) −

Xk,0

M

2N+2∑

i=1

ui

+
1

M

N+1∑

i=1

ui p3+k +
1

M

2N+2∑

i=N+2

ui p5+k

=
V (Xk,0 −Xk,N+1)

M(R + 1)
+

1

M

N+1∑

i=1

ui(p3+k −Xk,0)

+
1

M

2N+2∑

i=N+2

ui(p5+k −Xk,0) (7.26b)

for k = 1, 2, with additional terms when compared to (7.20b). The differential
equations for the slop reservoirs are given by

ẋ3 = −
N+1∑

i=1

ui, (7.26c)

ẋ4 = −
2N+2∑

i=N+2

ui. (7.26d)

No additional algebraic variables are needed for the extended model. The existing
equations (7.20c) to (7.20g) have to be modified, though. We use the same approach
as above and require the componentwise mass conservation in the column section
above the (ℓ+ 1)st tray,

0 = V Kk(Tℓ)Xk,ℓ − LℓXk,ℓ+1 −DXk,N+1

+

N∑

i=ℓ+1

(ui+1 p3+k + ui+N+2 p5+k) (7.27)

with Lℓ being the liquid flow entering tray ℓ, given by

Lℓ = L+

N∑

i=ℓ+1

(ui+1 + ui+N+2).
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Dividing (7.27) by V yields

0 = Kk(Tℓ)Xk,ℓ −
R

R + 1
Xk,ℓ+1 −

Xk,N+1

R + 1

+
(p3+k −Xk,ℓ+1)

V

N∑

i=ℓ+1

ui+1 +
(p5+k −Xk,ℓ+1)

V

N∑

i=ℓ+1

ui+N+2, (7.28)

for k = 1, 2 and ℓ = 0, 1, . . . , N , compare (7.20c). The other algebraic equations,
(7.20d) to (7.20g), remain unaltered, as the objective function (7.21).

The interior point constraints are modified and extended. Table 7.3 gives an overview
that can be compared directly with table 7.2.

TS P1 S1 TS P2 S2 End
nr t̃0 t̃1 t̃2 t̃3 t̃4 t̃5 t̃6

0 x0 −x0 − pr0

+x3 + x4 −x3 − x4

1 x0x1+ −x0x1 − pr1

p4x3 + p6x4 −p4x3 − p6x4

2 x0 −x0 − pr0

+x3 + x4 −x3 − x4

3 x0x2 −x0x2 − pr1

p5x3 + p7x4 −p5x3 − p7x4

4 x0 −x0 x0 p2 −x0 p2

5 x0x1 −x0x1 x0x1 p2 −x0x1 p2

6 x0x2 −x0x2 x0x2 p2 −x0x2 p2

7 x0 −x0 x0 p3 −x0 p3

8 x0x1 −x0x1 x0x1 p3 −x0x1 p3

9 x0x2 −x0x2 x0x2 p3 −x0x2 p3

10 x3 −(1 − p2)x0 (1 − p2)x0

11 x4 −(1 − p3)x0 (1 − p3)x0

12 x0x1 − p4x0 p4x0 − x0x1

13 x0x2 − p5x0 p5x0 − x0x2

14 x0x1 − p6x0 p6x0 − x0x1

15 x0x2 − p7x0 p7x0 − x0x2

dc pr1

pr0

pr1

pr0

1 − x1 − x2

≥ XP1
≥ XP2

≥ XP3

Table 7.3: Interior point constraints overview for time– and tray–dependent slop cuts
to reboiler. The bold constraint numbers indicate modifications of the constraints
given in table 7.2.

The first four constraints 0 to 3 have been altered, as the mass that is distilled in
the two production cuts is not the difference between the mass in the reboiler at the
begin and at the end of a production cut any more, but may include mass from one
or both of the slop reservoirs that has been fed during the production cut. Therefore
the differences between the slop reservoir contents x3 resp. x4, also componentwise,
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are contained in the new interior point constraints

pr0 = x0(t̃1) − x0(t̃2) + x3(t̃1) − x3(t̃2) + x4(t̃1) − x4(t̃2)

pr1 = x0x1(t̃1) − x0x1(t̃2) + p4 (x3(t̃1) − x3(t̃2)) + p6 (x4(t̃1) − x4(t̃2))

(and equivalently for t̃4, t̃5) that determine the local parameters pr0, pr1 that yield
the purities pr1/pr0 for the decoupled interior point inequalities.
Additional interior point conditions are needed to determine the initial values of
the two slop reservoirs that contain the fraction of the two waste cuts that is refed
dynamically. These equations read as

x3(t̃1) = (1 − p2) (x0(t̃2) − x0(t̃3))

x4(t̃1) = (1 − p3) (x0(t̃5) − x0(t̃6))

and can be found in rows 10 and 11 in table 7.3. Recall that 0 ≤ p2, p3 ≤ 1 are
the fractions of the waste cuts that are fed in the transition stages directly to the
reboiler, as in the previous scenario. The right hand side describes thus what is left
of the produced waste cuts in the reservoirs after this fill–in.
We need to determine the parameters p4, p5, p6 and p7, i.e., the fractions of compo-
nents 1 and 2 in each of the two slop reservoir tanks. These parameters are given
by

p4 =
x0x1(t̃2) − x0x1(t̃3)

x0(t̃2) − x0(t̃3)
, p5 =

x0x2(t̃2) − x0x2(t̃3)

x0(t̃2) − x0(t̃3)
,

p6 =
x0x1(t̃5) − x0x1(t̃6)

x0(t̃5) − x0(t̃6)
, p7 =

x0x5(t̃5) − x0x5(t̃6)

x0(t̃5) − x0(t̃6)

and can be found in rows 12 to 15.

The extensions we made require an additional pump for each possible connection
between the reservoirs and the trays, i.e., a number of 2N +2 pumps. As pumps are
comparatively expensive, we consider the case where we only have one pump at hand
for each slop reservoir plus a valve that determines to which tray the recycled waste
cut is fed. The control functions ui(·) are thus replaced by the product between the
continuous inflow controls and binary control functions, i.e.,

ui = û1 wi, i = 1 . . .N + 1 (7.29a)

ui = û2 wi, i = N + 2 . . . 2N + 2 (7.29b)

and constraints

wi ∈ {0, 1}, i = 1 . . . 2N + 2 (7.29c)
N+1∑

i=1

wi =
2N+2∑

i=N+2

wi = 1. (7.29d)

The resulting optimal control problem is of type (1.18) and includes transition stages,
coupled and decoupled interior point inequalities and equalities, differential and alge-
braic variables, free, time–independent parameters, free stage lengths and continuous
as well as binary control functions.
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Optimization Results

We make the same assumptions for costs and prices as in Diehl et al. (2002). Corre-
sponding to the authors, these are made as careful as possible not to encourage the
recycling of slop cuts. In particular no costs at all are assigned to slop cut disposal
and the prices for the products are chosen so low that in the non–recycling case the
gains are only marginally higher than the energy consumption costs. The parameters
s1, s2, c

1
price, c

2
price, c

3
price and cenergy are given together with the other parameters in

the appendix.

Before we apply MS MINTOC to obtain a solution of the mixed–integer optimal
control problem, we will review and reproduce the two scenarios presented in Diehl
et al. (2002). These are the optimal control without any recycling of the slop cuts,
i.e., with recycling ratios R1, R2 fixed to be zero (from now on scenario A), and a
second one following the description given above, with full freedom to choose the
recycling ratios between 0 and 1, but no recycling at any time during a stage or to
a tray other than the reboiler (scenario B).
The optimization for scenario A yields process duration (energy) costs of 3.51 units,
and a product sale income of 3.96 units, i.e., P = 0.45 units of profit. The slop cut
outputs are small, with relatively short durations and high reflux ratios, as these
outputs are lost for the process.

When a time–independent slop cut recycling is allowed, the optimization of scenario
B results in a full recycling, i.e., R1 = R2 = 1 with an increased total time resp.
energy cost of 3.74 units and a product sale income of 4.50 units. The net profits of
0.76 units are increased by 69% compared to the non–recycling value of 0.45.
Parts of the optimal trajectories are depicted in the top rows of figure 7.20. The
reflux ratio is generally smaller than before, as the purity constraints are satisfied by
taking bigger slop cuts, that are no longer lost for the process.
In Diehl et al. (2002) further optimization studies are given, e.g., an investigation
for which product prices recycling becomes unprofitable. They claim that, when one
product price, c1price, was reduced to lower values, starting from the nominal value
c1price = 4.50 and stepwise decreased by 0.25, recycling of the first slop cut becomes
unprofitable for c1price < 2.25, and no recycling of the first slop cut is recommended by
the optimizer. But we are more interested in the question, whether we can improve
the performance of the batch process by a recycling of the waste cuts during the
cuts, not only in the transition stages.

We allow a reflow into any of the five trays or the reboiler at any time, also during
the slop cuts. Scenario B is included in scenario C, as we will call it, as a recycling in
the transition stages is still possible. We will even use scenario B, i.e., R1 = R2 = 1
and û1 = û2 = 0, as initialization of the optimization.
The algorithm proceeds in the usual way. First a relaxed problem is solved, then
the control discretization grid is refined and finally we perform a switching time
optimization. We obtain a solution to the relaxed problem without any recycling
in the transition stages any more, R∗

1 = R∗
2 = 0. Parts of the optimal trajectory

are depicted in figure 7.21. The corresponding objective value is Φ0 = 0.86016
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Figure 7.20: Reflux ratio and still pot holdup for the batch process without waste
cuts, scenario A (top), with waste cuts, scenario B (middle) and with time– and tray–
dependent waste cuts, scenario C (bottom). The parameterization of the control for
the reflux ratio R(·) is chosen to be continuous piecewise linear.
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units. Refining the grid we obtain Φ1 = 0.86024 and Φ2 = 0.86105 with a solution
that is almost integer. We round this solution with strategy SR-SOS1 and perform
a switching time optimization. The optimal solution yields an objective value of
Φ = 0.86312, with a final time of T = 3.63688, and is thus 13.6% more profitable
than the optimal solution of scenario B. The same amount of feed, i.e., all of it, is
recycled. The process is more profitable, because it is faster and needs less energy.
Parts of the optimal trajectory are shown in figures 7.20 (reflux and still pot holdup,
bottom line), 7.22 (some binary control functions and the reflux controls û1 and û2),
7.23 (slop cut reservoir contents) and in figures E.2, E.4 and E.6 (Temperature and
mole fractions on all trays) in the appendix.
As can be seen in figure 7.22, there is neither any reflux during the slop cuts nor
from reservoir S2 during the first resp. of reservoir S1 during the second production
cut. This is clear, as the concentrations of component 2 in the first reservoir, p∗5, and
of the first component in the second reservoir, p∗6, are low,

p∗4 = 0.83955,

p∗5 = 0.16025,

p∗6 = 0.000123,

p∗7 = 0.76551.

The two valves switch once in the considered time interval. The times and chronology
of the events are

Time Event
0.0 Start P1, flux from reservoir S1 to tray 3
0.69091 Start flux from reservoir S1 to tray 4
0.77524 Start S1
1.68985 Start P2, flux from reservoir S2 to tray 2
2.10154 Start flux from reservoir S2 to tray 3
2.56252 Start S2
3.63688 End of the process

It is interesting to investigate, how much is gained by the introduction of the valves.
If we fix

w4 = 1, w9 = 1, wi = 0 for i ∈ {1, 2, 3, 5, 6, 7, 8, 10, 11, 12},

i.e., we direct the slop reservoir S1 flux to tray 3 and the slop reservoir S2 flux to tray
2, we do not need valves any more. An optimization with these variables fixed yields
an overall process time of T = 3.64208 with a corresponding profit of P = 0.85792.
It can be expected that for columns with more trays, the solution will switch more
often and the effect will be more considerable, as for different parameters considering
the objective function. The strength of our approach is to predict exactly the gains
that can be achieved by introducing valves and to calculate if the investment and
maintenance costs of the valves exceed the gains of the process.
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Figure 7.21: Parts of the solution of the relaxed problem C. Only four of the relaxed
binary control functions are shown, all other 8 are identical zero over the whole
time horizon. Note that the binary control functions have no impact, whenever the
corresponding fluxes û1 and û2 are zero.



7.3. BATCH DISTILLATION WITH RECYCLED WASTE CUTS 167

Figure 7.22: Parts of the binary admissible solution of scenario C. The flux from
reservoir S1 goes to tray 3 and 4, with one switch in between(top). The flux from
reservoir S2 is directed to trays 2 and 3, also with one switching (middle). The
bottom line shows the corresponding fluxes.
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Figure 7.23: Content of the slop cut reservoirs for the optimal solution. The content
is reduced by a flux shown in figure 7.22.

Remark 7.3 For our calculations we chose pumps for the reservoirs that have an
upper limit of

û1, û2 ≤ 30.

If we use the same type of pump as for the reflux with an upper limit of 15 mol
per hour, the process runs longer and the profit decreases to 0.849732. From an
optimal control point of view the solution of this problem is structurally different
than the one obtained above, as the flux controls are constraint–seeking instead of
compromise–seeking (compare chapter 2). Within our approach nothing has to be
changed, though.

The run time of the algorithm is within the range of two or three minutes, depending
on the initialization of the variables.

7.4 Summary

Three challenging applications have been presented and solved by the MS MINTOC
algorithm. The first one includes nondifferentiabilities in the model functions and
point resp. path constraints that cause severe changes in the switching structure of
optimal solutions. We know from the theoretic work in chapter 4 that the optimal
solution for the velocity–constrained case that consists of an infinite switching to
stay as close as possible to the limit on the constrained arc, can be approximated
arbitrarily close. In section 7.1 we calculate such solutions explicitely. Furthermore,
by prespecifying a higher tolerance on the energy consumption, our method delivers
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a solution with less switches, making driving more comfortable for driver and pas-
sengers.

The second application treats a highly unstable system. Our method is used to iden-
tify strength and length of phase resetting stimuli. The combination of Bock’s direct
multiple shooting method, a convexification and relaxation and an adaptive refine-
ment of the control grid allows the determination of the optimal stimulus, although
the objective function landscape is highly nonconvex with the optimal solution ”hid-
den” in a very narrow channel. This was demonstrated by an a posteriori analysis
of the objective function landscape by a computationally expensive simulation.

The third application includes transition stages, coupled and decoupled interior
point inequalities and equalities, differential and algebraic variables, free, time–
independent parameters, free stage lengths and continuous as well as binary control
functions. As to our knowledge, for the first time an optimal control problem of this
challenging type is solved to optimality. The process under consideration is more
efficient by more than 13% compared to the best known solution in the literature,
when the proposed time– and tray–dependent recycling of the slop cuts is applied.



Appendix A

Mathematical definitions and
theorems

We state some fundamental definitions and theorems for the convenience of the
reader.

A.1 Definitions

Definition A.1 (Convexity)
A function F : R

n 7→ R
m is convex, if for all x1,x2 ∈ R

n it holds for all α ∈ [0, 1]
that

αF (x1) + (1 − α)F (x2) ≥ F (αx1 + (1 − α)x2). (A.1)

A subset K ⊆ X of a real linear space X is convex, if for all x1,x2 ∈ K and α ∈ [0, 1]
also αx1 + (1 − α)x2 ∈ K.

Definition A.2 (Convex combination)
Let X be some real linear space and K a set in X . Then a convex combination of
pairwise different elements from K is a linear combination of the form

x = α1x1 + α2x2 + · · ·+ αnxn

for some n > 0, where each xi ∈ K, each αi ∈ R, αi ≥ 0 and
∑

i αi = 1, i = 1 . . . n.

Definition A.3 (Convex hull)
Let conv(K) be the set of all convex combinations from K, subset of some real linear
space X . We call conv(K) the convex hull of K.

Remark A.4 The convex hull is sometimes also called convex envelope or convex
closure of K. The convex hull is a convex set, and is the smallest convex set which
contains K. A set K is convex if and only if K = conv(K).

170
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Definition A.5 (Extreme point)
Let X be a real linear space and K a set in X . A point x ∈ K is an extreme point of
K, if whenever

x = αx1 + (1 − α)x2, x1, x2 ∈ K, 0 < α < 1,

then x1 = x2.

A.2 Theorems

Theorem A.6 (Zorn’s lemma)
Let X be a nonempty partially ordered set with the property that every completely
ordered subset has an upper bound in X . Then X contains at least one maximal
element.

Theorem A.7 (Krein–Milman)
Let X be a real linear topological space with the property that for any two distinct
points x1 and x2 of X there is a continuous linear functional x′ with

x′(x1) 6= x′(x2).

Then each nonempty compact set K of X has at least one extreme point.

The proof is based upon Zorn’s lemma and can be found in, e.g., Hermes & Lasalle
(1969) or any standard textbook on functional analysis.

Theorem A.8 (Gronwall inequality)
Let x(·) : [t0, tf ] 7→ R be a continuous function, t0 ≤ t ≤ tf , α, β ∈ R and β > 0. If

x(t) ≤ α + β

∫ t

t0

x(τ) dτ (A.2)

then

x(t) ≤ α eβ(t−t0) (A.3)

for all t ∈ [t0, tf ].

A proof is given, e.g., in Walter (1993).

Theorem A.9 (Aumann 1965)
Let F be a measurable function defined on the interval [t0, tf ] with values F (t)
nonempty compact subsets of a fixed compact set in R

n. We write
∫ tf

t0

F (τ) dτ :=

{ ∫ tf

t0

f(τ) dτ : f measurable, f(τ) ∈ F (τ), τ ∈ [t0, tf ]

}

and conv(F ) for the function with values conv(F (t)), the convex hull of F (t). Then
we have

∫ tf

t0

F (τ) dτ =

∫ tf

t0

conv(F (τ)) dτ

and both are convex, compact subsets of R
n.
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Details of the Fishing problem

B.1 Parameter values

The parameters and initial values used for the fishing problems (1.19) resp. (6.12)
are as follows:

c0 = 0.4, (B.1a)

c1 = 0.2, (B.1b)

x00 = 0.5, (B.1c)

x01 = 0.7, (B.1d)

t0 = 0, (B.1e)

tf = 12. (B.1f)

B.2 First order necessary conditions of optimality

We will consider the continuous optimal control problem obtained by a relaxation
of problem (6.12), see page 119. We will write x, λ and w for x(t), λ(t) and w(t),
respectively. The Hamiltonian, compare page 24, is given by

H = −L(x) + λTf(x, w)

= −(x0 − 1)2 − (x1 − 1)2 (B.2)

+ λ0(x0 − x0x1 − c0x0w) + λ1(−x1 + x0x1 − c1x1w),

as we transform the minimization to a maximization problem (min
∫
L 7→ max

∫
−L).

There is no end–point Lagrangian ψ(x(tf),ν), as no Mayer–term and end–point con-
straints are present. Furthermore we do not have any path constraints c(x,u).
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The maximum principle thus reads as

ẋ(t) = Hλ(x(t), w(t),λ(t)) = f (x(t), w(t)), (B.3a)

λ̇
T
(t) = −Hx(x(t), w(t),λ(t)), (B.3b)

x(t0) = x0, (B.3c)

λT (tf) = 0, (B.3d)

w(t) = arg max
0≤w≤1

H(x(t), w(t),λ(t)), (B.3e)

B.3 Solution via an indirect method

The differential equations for the adjoint variables read as

λ̇0 = −Hx0
= 2(x0 − 1) − λ0(1 − x1 − c0w) − λ1x1 (B.4a)

λ̇1 = −Hx1
= 2(x1 − 1) + λ0x0 − λ1(−1 + x0 − c1w) (B.4b)

with the transversality conditions

λ0(tf) = λ1(tf ) = 0. (B.4c)

We define the switching function, see page 26, as

σ(x, w,λ) = Hw = λT ∂f

∂w
= −c0λ0x0 − c1λ1x1 (B.5)

and obtain the following boundary value problem from the first order necessary
conditions of optimality (B.3)

ẋ0(t) = x0 − x0x1 − c0x0 w (B.6a)

ẋ1(t) = −x1 + x0x1 − c1x1 w (B.6b)

x0(t0) = x00 (B.6c)

x1(t0) = x01 (B.6d)

λ̇0 = 2(x0 − 1) − λ0(1 − x1 − c0w) − λ1x1 (B.6e)

λ̇1 = 2(x1 − 1) + λ0x0 − λ1(−1 + x0 − c1w) (B.6f)

λ0(tf ) = 0 (B.6g)

λ1(tf ) = 0 (B.6h)

w(t) = arg maxwH =







1 for σ(x, w,λ) > 0
0 for σ(x, w,λ) < 0
wsing for σ(x, w,λ) = 0

(B.6i)



174 APPENDIX B. DETAILS OF THE FISHING PROBLEM

We differentiate σ(x, w,λ) = 0 with respect to time as explained in section 2.1.2
to obtain an explicit representation of the singular control wsing(·). The switching
function is given by

σ(x, w,λ) = −c0λ0x0 − c1λ1x1.

Differentiation with respect to t yields

dσ

dt
(x, w,λ) = −

(

c0

(

λ̇0x0 + λ0ẋ0

)

+ c1

(

λ̇1x1 + λ1ẋ1

))

= − (c0((2(x0 − 1) − λ0(1 − x1 − c0u) − λ1x1)x0

+ λ0(x0 − x0x1 − c0x0u))

+ c1((2(x1 − 1) + λ0x0 − λ1(−1 + x0 − c1u))x1

+ λ1(−x1 + x0x1 − c1x1u)))

= −c02(x0 − 1)x0 − c12(x1 − 1)x1 + c0λ1x0x1 − c1λ0x0x1

= −2c0x
2
0 + 2c0x0 + (c0λ1 − c1λ0)x0x1 − 2c1x

2
1 + 2c1x1

This expression still does not depend explicitly upon w (as expected, see remark 2.8),
therefore we differentiate once more and obtain

d2σ

d2t
(x, w,λ) = −4c0ẋ0x0 + 2c0ẋ0 − 4c1ẋ1x1 + 2c1ẋ1

+c0λ̇1x0x1 − c1λ̇0x0x1 + (c0λ1 − c1λ1)(x0ẋ1 + ẋ0x1)

= − 4c0x
2
0 + 4c0x

2
0x1 + 4c20x

2
0w + 2c0x0 − 2c0x0x1 − 2c20x0w

+ 4c1x
2
1 − 4c1x0x

2
1 + 4c21x

2
1w − 2c1x1 + 2c1x0x1 − 2c21x1w

+ c0x0x1 (2(x1 − 1) + λ0x0 + λ1 − λ1x0 + c1λ1w)

− c1x0x1 (2(x0 − 1) − λ1x1 − λ0 + λ0x1 + c0λ0w)

+ c0λ1x0 (−x1 + x0x1 − c1x1w)

+ c0λ1x1 (+x0 − x0x1 − c0x0w)

− c1λ0x0 (−x1 + x0x1 − c1x1w)

− c1λ0x1 (+x0 − x0x1 − c0x0w)

= w
(
4c20x

2
0 − 2c20x0 − 2c21x1 + 4c21x

2
1 − c20λ1x0x1 + c21λ0x0x1

)

− 4c0x
2
0 + 4c1x

2
1 + 2c0x0 − 2c1x1 + (−4c0 + 4c1 + c0λ1 + c1λ0)x0x1

+ (4c0 − 2c1 + c0λ0 − c1λ0)x
2
0x1 + (−4c1 + 2c0 + c1λ1 − c0λ1)x0x

2
1

The second time derivative of the switching function d2σ
d2t

(x, w,λ) = 0 does depend
explicitly upon the control variable w(·), therefore we can determine wsing as

wsing(x,λ) = −
(
− 4c0x

2
0 + 4c1x

2
1 + 2c0x0 − 2c1x1 + (−4c0 + 4c1 + c0λ1 + c1λ0)x0x1

+ (4c0 − 2c1 + c0λ0 − c1λ0)x
2
0x1 + (−4c1 + 2c0 + c1λ1 − c0λ1)x0x

2
1

)

/
(
4c20x

2
0 − 2c20x0 − 2c21x1 + 4c21x

2
1 − c20λ1x0x1 + c21λ0x0x1

)
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wsing(x,λ) does depend explicitly upon the state variables x and on the Lagrange
multipliers λ. In this case it is possible though to eliminate the Lagrange multipliers
by exploiting the invariants σ = dσ

dt
= 0. From

σ(x, w,λ) = −c0λ0x0 − c1λ1x1 = 0

we can deduce

λ0 = −c1λ1x1/c0x0 (B.7)

and insert it into the first time derivative of the switching function

dσ

dt
(x, w,λ) = −2c0x

2
0 + 2c0x0 + (c0λ1 − c1λ0)x0x1 − 2c1x

2
1 + 2c1x1

= −2c0x
2
0 + 2c0x0 + (c0λ1 + c1c1λ1x1/c0x0)x0x1 − 2c1x

2
1 + 2c1x1

= −2c0x
2
0 + 2c0x0 + (c0 + c21x1/c0x0)λ1x0x1 − 2c1x

2
1 + 2c1x1 = 0.

From this expression we can deduce λ1 as a function of x,

λ1 = (−2c0x
2
0 + 2c0x0 − 2c1x

2
1 + 2c1x1)

−1

(c0 + c21x1/c0x0)x0x1

=
2(c0x

2
0 − c0x0 + c1x

2
1 − c1x1)

(c0 + c21x1/c0x0)x0x1

which yields λ0 when inserted in (B.7) as

λ0 = −c1
2(c0x

2
0 − c0x0 + c1x

2
1 − c1x1)

(c0 + c21x1/c0x0)x0x1c0x0
x1

=
−2c1(c0x

2
0 − c0x0 + c1x

2
1 − c1x1)

(c20x0 + c21x1)x0

.

The singular control can now be expressed as a feedback control wsing(x) depending
on x only:

wsing(x) = −
(
− 4c0x

2
0 + 4c1x

2
1 + 2c0x0 − 2c1x1 + (−4c0 + 4c1 + c0λ1 + c1λ0)x0x1

+ (4c0 − 2c1 + c0λ0 − c1λ0)x
2
0x1 + (−4c1 + 2c0 + c1λ1 − c0λ1)x0x

2
1

)

/
(
4c20x

2
0 − 2c20x0 − 2c21x1 + 4c21x

2
1 − c20λ1x0x1 + c21λ0x0x1

)

= ( c30x
3
0 − c31x

3
1 + c30x

2
0x1 − c31x0x

2
1 + 2c0x0x

2
1c

2
1

− 2c1x
2
0x1c

2
0 − 4c20x0c1x

2
1 + 2c20x0c1x1

+ 4c21x1c0x
2
0 − 2c21x1c0x0 − x3

0x1c
3
0

+ x2
0x

2
1c

3
1 + x0x

3
1c

3
1 − 2x2

0x
2
1c

2
1c0 + x3

0x1c1c
2
0

− x0x
3
1c0c

2
1 − x3

0x1c
2
1c0 − x2

0x
2
1c

3
0 + 2x2

0x
2
1c

2
0c1

+ x0x
3
1c

2
0c1 )

/ ( c40x
3
0 + 2c20x

2
0c

2
1x1

− 2c20x0c
2
1x1 + 2c21x

2
1c

2
0x0 + c41x

3
1 − c30x0c1x

2
1

+ c30x0c1x1 − c31x1c0x
2
0 + c31x1c0x0 )
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With an explicit representation of the singular control, either in the form wsing(x,λ)
or in feedback form, the boundary value problem is complete. The trajectory ob-
tained by a multiple shooting solution with 23 intervals of problem (B.6) yields an
objective value of Φ[x, w] = 1.34408. The corresponding trajectories, the switching
function and the control function w(·) are depicted in picture B.1 for an assumed
bang–bang–singular structure.

Remark B.1 This structure is not necessarily optimal. Indeed, by investigating the
relaxed solutions show in figure 6.7 there is also the possibility that a very short
additional bang–bang arc with value 0 occurs between the 1–arc and the singular arc.
Because of its shortness it is not relevant for the objective value up to a precision of
10−6, though.

B.4 Nonconvexity of the switching time approach

In this section we want to have a look at convexity issues in the switching time
approach, in the special case of the fishing problem. We will show how the direct
multiple multiple shooting method is superior to direct single shooting with respect
to convergence to local minima.

Let us consider the problem in switching time formulation as in section 5.2, but this
time for nmos = 3 stages with w0(t) = 0, w1(t) = 1 and w2(t) = 0. The stage lengths
h0 and h1 are varied in [0, 12] with a step length of 0.1. The final stage length h2

is chosen to satisfy constraint (5.4g). Figure B.2 shows the corresponding objective
function landscape.

There are at least two local minima in this formulation, one at

h∗ = (2.61213, 1.72876, 7.65911)T

with objective value Φ∗ = 1.38275 and one at

ĥ = (8.98983, 2.02772, 0.98245)T

with objective value Φ̂ = 4.55123. It depends on the initialization of the optimization
variables which minimum is reached by the SQP method. Here the direct multiple
shooting approach shows one of its advantages compared to direct single shooting. If
the multiple shooting nodes are initialized close to an expected behavior, as shown in
figure B.4, the optimization iteration converges towards h∗ also from initializations
of h for which the direct single shooting approach will converge towards ĥ. This
behavior is depicted in figure B.3. In both figures only one differential state is
shown, the biomass of the predator species looks similar.

The given example indicates strongly not to use the switching time approach without
very accurate initial values for the stage lengths and only in combination with an
all–at–once optimal control method, not with direct single shooting.
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Figure B.1: The corresponding state and costate trajectories, the switching function
and the control function w(·) for the relaxed fishing problem.
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Figure B.2: Objective function value of the fishing problem in switching time formu-
lation, dependent on t̃1 and t̃2, the begin respectively end of the second stage with
w(t) = w2 = 1.

B.5 Convex behavior of the relaxed problem

In this section we will investigate convexity of a relaxed problem formulation of (1.19).
Let us consider the optimization problem resulting from the discretization of the
control space to piecewise constant controls by a direct method of optimization. The
feasible set is the hypercube in R

nτ×nw and thus convex. Concerning the objective
value, we will show again some results obtained by simulation that give an insight
into the issue.
We consider problem (1.19) with

nτ = 3,Ψ = Ψτ = {0.0, 5.5, 8.0}, [t0, tf ] = [0, 12] (B.8)

with a partition of [t0, tf ] with respect to jumps in the control as in figures B.3 and
B.4. Note that the independent optimization variables are now the constant values of
w(·) on [t0, τ2], [τ2, τ3] and [τ3, tf ] and not the time points τi as before. The objective
functions plotted in figure B.5 are convex for all four values of w(·) on the first stage.
A comparison of figure B.5 with figure B.2 shows how disadvantageous the switching
time approach is with respect to convexity.
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Figure B.3: The two dashed lines in each plot show the length of the three stages,
h0, h1, and h2. The first differential state, the biomass of the prey x0(t), is obtained
by integration. The left plot shows the initialization of h = (5.5, 2.5, 4)T with corre-
sponding state trajectory. The right plot shows the variables when convergence has
been achieved to an accuracy of 10−6 in the point ĥ.

Although the objective function is not necessarily convex for all Ψτ in the complete
feasible region, the hypercube [0, 1]nτ×nw , it is convex in a large vicinity of the solu-
tion. We consider another discretization, the one used in section 6.5. We proceed as
follows. The binary control function w(·) of the relaxed problem (1.19) is discretized
by 60 constant control approximations on an equidistant grid, compare section 2.2.3.
This problem is solved to optimality. Figure B.6 shows the objective function in the
vicinity of the optimal solution: for four selected stages the constant control on this
stage is changing its value while the other 59 values are fixed to the optimal value1.
Again, the trajectories indicate the convexity of the objective function at least in the
vicinity of the optimum.

In a third scenario we discretize the control on an equidistant grid with 24 intervals
and initialize the values such that the control function is identical to the one used as
initialization in the switching time optimization in the preceding section, i.e., with
h = (5.5, 2.5, 4)T . This is achieved by setting

qi =

{
1 i = 11, 12, 13, 14, 15
0 else

.

The optimization does not encounter any problems related to local minima as in the
switching time optimization approach, but does end in the global relaxed minimum
simular to those shown in figure 6.7.

1we do not show all sixty graphs, but they are all convex
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Figure B.4: SQP iterations of the fishing problem optimization in switching time
formulation with three stages. The two dashed lines in each plot show the length
of the three stages, h0, h1, and h2. The circles indicate the values of the multiple
shooting nodes sx0

i for the first differential state, the biomass of the prey. The values
x0(t) obtained by piecewise integration are also plotted. The top left plot shows
the initialization of h = (5.5, 2.5, 4)T , identical to the single shooting approach, and
sx0 . sx0 has been entered manually such as to resemble the expected behavior of the
biomass. The top right plot shows the optimization variables after two iterations,
on the bottom left one after six. The bottom right plot shows the variables when
convergence has been achieved to an accuracy of 10−6 in the point h∗.
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Figure B.5: The objective function value dependent on the constant value of w(·) on
[τ2, τ3] and [τ3, tf ]. w(·) on [t0, τ2] is fixed to 0, the optimal value 0.212344, 0.5 and
1 from top left to bottom right.

B.6 Formulation as a time–optimal control prob-

lem

The singular arc in the optimal trajectory is caused by the objective function. Instead
of penalizing deviations from the steady state over a given time horizon, one could
as well want to minimize the time to bring the system into this steady state xT . We
reformulate problem (6.12) in this sense and obtain

min
x,w,T

T (B.9a)

subject to the ODE

ẋ0(t) = x0(t) − x0(t)x1(t) − c0x0(t) w(t), (B.9b)

ẋ1(t) = −x1(t) + x0(t)x1(t) − c1x1(t) w(t), (B.9c)

initial values

x(t0) = x0 = (0.5, 0.7)T , (B.9d)
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Figure B.6: The objective function in the vicinity of the optimal solution of the
relaxed discretized problem (1.19): for four selected stages the control on this stage
is changing its constant value while the other 59 values are fixed.

the terminal condition

x(T ) = xT = (1, 1)T , (B.9e)

and the integer constraints

w(·) ∈ Ω(Ψfree). (B.9f)

Figure B.7 shows the optimal trajectory with one switching point at t̃1 = 2.68714
that brings the system in T ∗ = 4.31521 to the desired state xT . This trajectory
extended with w(t) = 0,x(t) = xT on [T ∗, tf ] is a suboptimal solution of problem
(6.12) with objective value Φ = 1.39895, compare the results of section 6.4.
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Figure B.7: Optimal trajectory for the time–optimal fishing problem.



Appendix C

Parameters of the subway
optimization problem

Tmax = 65 Maximal driving time, [sec]
S = 2112 Driving distance, [ft]
S4 = 700 or 1200 Distance for point constraint, [ft]
S4 = 1200 Distance for path constraint start, [ft]
W = 78000 ∈ [Wempty,Wfull] = [72000, 110000] Weight of the train, [lbs]

Weff = W + 1
10
Wempty Effective weight of the train, [lbs]

γ = 3600/5280 Scaling factor for units, [sec
h
/ ft

mile
]

a = 100 Front surface of the train, [ft2]
nwag = 10 Number of wagons

b = 0.045

c = 0.24 + 0.034(nwag−1)
100nwag

C = 0.367 Constant braking when coasting
g = 32.2 Gravity, [ft/sec2]
e = 1.0 ∈ [0.7, 1] Percentage of working machines
v1 = 0.979474 ∈ [0.71, 1.03] Velocity limits, [mph]
v2 = 6.73211 ∈ [6.05, 6.86]
v3 = 14.2658 ∈ [13.07, 14.49]
v4 = 22.0 Velocity limit point constraint, [mph]
v5 = 24.0 Velocity limit path constraint, [mph]
a1 = 6017.611205 ∈ [5998.6162, 6118.9179] Accelerations, [lbs]
a2 = 12348.34865 ∈ [11440.7968, 17188.6252]
a3 = 11124.63729 ∈ [10280.0514, 15629.0954]

umax = 4.4 Maximal deceleration, [ft/sec2]
p1 = 106.1951102 ∈ [105.880645, 107.872258] Energy consumption
p2 = 180.9758408 ∈ [168.931957, 245.209888]
p3 = 354.136479 ∈ [334.626716, 458.188550]

If intervals are given, the first value corresponds to an empty train, the second one
to the full one. For a value W in between we interpolate linearly.
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The coefficients bi(w(t)) and ci(w(t)) are given by

b0(1) = −0.1983670410E02,
b1(1) = 0.1952738055E03,
b2(1) = 0.2061789974E04,
b3(1) = −0.7684409308E03,
b4(1) = 0.2677869201E03,
b5(1) = −0.3159629687E02,
b0(2) = −0.1577169936E03,
b1(2) = 0.3389010339E04,
b2(2) = 0.6202054610E04,
b3(2) = −0.4608734450E04,
b4(2) = 0.2207757061E04,
b5(2) = −0.3673344160E03,

c0(1) = 0.3629738340E02,
c1(1) = −0.2115281047E03,
c2(1) = 0.7488955419E03,
c3(1) = −0.9511076467E03,
c4(1) = 0.5710015123E03,
c5(1) = −0.1221306465E03,
c0(2) = 0.4120568887E02,
c1(2) = 0.3408049202E03,
c2(2) = −0.1436283271E03,
c3(2) = 0.8108316584E02,
c4(2) = −0.5689703073E01,
c5(2) = −0.2191905731E01.



Appendix D

Parameters of the calcium problem

The parameters p are given by

k1 = 0.09,
k2 = 2.30066,
k3 = 0.64,
K4 = 0.19,
k5 = 4.88,
K6 = 1.18,
k7 = 2.08,
k8 = 32.24,
K9 = 29.09,
k10 = 5.0,

K11 = 2.67,
k12 = 0.7,
k13 = 13.58,
k14 = 153.0,
K15 = 0.16,
k16 = 4.85,
K17 = 0.05,
p1 = 100,
p2 = 5,
T = 22.

The initial value x0 is
x0(0) = 0.03966,
x1(0) = 1.09799,
x2(0) = 0.00142,
x3(0) = 1.65431.

The reference state xs, i.e., the concentrations corresponding to the unstable steady
state surrounded by the limit cycle, have been determined by using the XPPAUT
software, Ermentrout (2002), by path–following of a Hopf–bifurcation through vari-
ation of the parameter k2 as

xs
0 = 6.78677,
xs

1 = 22.65836,
xs

2 = 0.38431,
xs

3 = 0.28977.
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Appendix E

Details of the waste cut problem

The material properties for the batch distillation correspond to the components 1,
3, and 7 from Domenech & Enjalbert (1981); Farhat et al. (1990)) and are given by

Boiling Antoine coefficients
k point(◦C) Ak Bk Ck

1 184.4 7.63846 1976.3 231.0
2 245.0 7.96718 2502.2 247.0
3 272.5 8.65385 3149.1 273.0

The parameters of the objective function value are set as follows. The slop cut
disposal costs are

s1 = s2 = 0.

The product prices are

c1price = c2price = c3price = 4.5.

The energy consumption costs are

cenergy = 1.

If the feedstock purchase costs were taken into consideration, the product prices
should be even higher to retain marginal profitability of the process.
The feed is assumed to contain all three components in equal amounts, i.e., Xk,0|t̃0 =
0.33 for k = 1, 2. The starting mass of feed is set to M |t̃0 = 1.

Figures E.1, E.3 and E.5 show the temperature and mole fraction profiles for the
optimal solution of the batch recycling scenario, figures E.2, E.4 and E.6 the cor-
responding state trajectories of the solution of the mixed–integer optimal control
problem.
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Figure E.1: Temperature profile for scenario B with batch recycling.
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Figure E.2: Temperature profile for scenario C with flexible recycling.
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Figure E.3: Mole fraction profile of component 1 for scenario B with batch recycling.
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Figure E.4: Mole fraction profile of component 1 for scenario C with flexible recycling.



192 APPENDIX E. DETAILS OF THE WASTE CUT PROBLEM

Figure E.5: Mole fraction profile of component 2 for scenario B with batch recycling.
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Figure E.6: Mole fraction profile of component 2 for scenario C with flexible recycling.
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Notation

Throughout the thesis bold letters are used for vectors and matrices.

Mathematical symbols and abbreviations

Here A ∈ R
n×m denotes an arbitrary matrix, x ∈ R

n a vector with subvectors x1,x2

and f (x, . . . ) a function depending on x. The non–bold x ∈ R is a real value and
i ∈ N an integer.
Ai· ith row of matrix A, row vector
A·i ith column of matrix A, vector
AT Transpose of matrix A
A−1 Inverse of matrix A
A−T Transpose of the inverse of matrix A
fi i-th entry of vector f

fx Partial derivative of f with respect to x, fx =
∂f
∂x

id Identity map
N Set of natural numbers
N0 Set of natural numbers, including zero
R Set of real numbers
xi i-th entry of vector x
x0 Start value x0 ∈ R

nx of initial value problem
x = (x1,x2) Meant as one vector where x1 fills the first nx1

entries and x2

the entries nx1+1 to nx1+x2

⌈x⌉ x is rounded up
⌊x⌋ x is rounded down
|x| Euclidean norm of x, |x| = ||x||2
x(·) Function x : [t0, tf ] 7→ R

nx

ẋ(·) Time derivative of x(·), ẋ = dx
dt

: [t0, tf ] 7→ R
nx

Z Set of integer numbers
∆ Small increment or difference
∆j Operator, representing the time differentiation of a function

along the trajectories of the dynamic system, see section 2.1.2
∇ Gradient
∩ Intersection (of two sets)
∪ Union (of two sets)
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198 NOTATION

Roman symbols

a Time dependent vector
aij Coefficients
A1,A2,A3 Time–dependent matrices

b̃ Vector of generic binary variables
B Left hand side matrix of dynamic system, page 11
Bk Index set

{
i | yk

i = 1
}

c Path and control constraints
C0 Part of constraint function that is independent of u
CU Part of constraint function that is multiplied by u
E Mayer term E(x(tf ), z(tf ),p) of the objective functional
Ei Subset of time horizon, Ei ⊆ [t0, tf ]
E2,i, E3,i Subsets of E2 resp. E3, yielding a partition
f Right hand side function of the differential equations, maps

state variables, control functions, parameters and time to R
nx

f̃ Abbreviation for right hand side function with some argu-
ments fixed

f i Short for f (x∗,wi,u∗,p∗)
f impl Fully implicit form of the right hand side function of the dif-

ferential equations
F Generic function, in particular objective function
F FB Fischer–Burmeister function
F 0 Part of right hand side function that is independent of u
FU Part of right hand side function that is multiplied by u
g Right hand side function of the algebraic equations, maps

state variables, control functions, parameters and time to R
nz

G Equality constraint function for finite–dimensional optimiza-
tion problem

G̃ Equality constraints in collocation
h Stage length tf − t0
h Vector of stage lengths t̃i+1 − t̃i in multistage formulation
H Inequality constraint function for finite–dimensional opti-

mization problem
Hk Approximation of or exact Hessian
i Index, usually entry of vector or matrix or an interval
I Unity matrix, dimension given by context
j, j(t) Index
J Optimal cost–to–go function
k, ki As subscript: index of model stage
L Integrand in the Lagrange term of the objective functional
Nk Index set

{
i | yk

i = 0
}

n See dimensions
p Continuous parameters
P k = P (βk) Optimal control problem with additional penalty terms
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q Vector of control parameters
r Integer denoting rank or degree of singularity
req Interior point equality constraints
rieq Interior point inequality constraints
sx

i
Node value for the differential variable x on interval i

sz
i

Node value for the algebraic variable z on interval i
sy, s Vector of all node values
S Switching conditions
t Time
t0, tf Start and end time of optimal control problem
tentry, texit Start and end time of an arc
T (Free) end time
t̄ Specific time, t̄ ∈ [t0, tf ]
t̃ Specific time, t̃ ∈ [t0, tf ]
t̃ Vector of stage transition times, see page 17.
ti Begin of i-th multiple shooting interval, 1 ≤ i ≤ nms.
trk Stage transition function
u Continuous control functions
umin,umax Lower and upper bounds on u
û Piecewise approximation of the controls
v Binary parameters
v̂, ṽ Generic integer variables
w Binary control functions
w̃ Control functions in convexified formulation
w̄ Binary control functions in convexified formulation
wi i–th vertex of the cube [0, 1]nw

Wxsx
i

Wronskian, defined as ∂x
∂sx

i

(t; sx
i
, sz

i
, q,p)

Wxsz
i

Wronskian, defined as ∂x
∂sz

i

(t; sx
i
, sz

i
, q,p)

Wxq Wronskian, defined as ∂x
∂q (t; sx

i
, sz

i
, q,p)

Wxp Wronskian, defined as ∂x
∂p (t; sx

i
, sz

i
, q,p)

Wx Wx = (Wxsx
i

,Wxsz
i

,Wxq ,W
x
p )T

Wz
·

Wronskian, defined as above for z(t)
x Differential state variables x : [t0, tf ] 7→ R

nx. In chapter 3:
continuous variables

x̄ Differential state variables corresponding to control w̄(·)
X Covex, compact set
y State variables y : [t0, tf ] 7→ R

ny consisting of a differential
and an algebraic part, y = (x, z). In chapter 3: continuous
variables

Y Polyhedral set of integer points, e.g., Y = {0, 1}ny

z Algebraic state variables z : [t0, tf ] 7→ R
nz

0 Null matrix, dimension given by context
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Greek symbols

α Step length. In chapter 3: objective function value
αi Real coefficients
β Penalty parameter vector
βinit Penalty initialization
βinc Penalty increment
δ, ε, εc, εr Tolerances
Φ Objective functional, sum of Bolza and Lagrange term
ΦBN Objective function value of solution to problem (BN), original
ΦBL Objective function value of solution to problem (BL), convex-

ified
ΦRN Objective function value of solution to problem (RN), relaxed

original
ΦRL Objective function value of solution to problem (RL), relaxed

convexified
ϕ Control parameter vector
ζ, ζ2, ζ3 Control functions

λ, λ̃ Lagrange multipliers of optimal control or time–independent
optimization problem

µ, µ̃ Lagrange multipliers of inequality constraints
ν Lagrange multipliers of end–point constraints
ψ End–point Lagrangian
Ω(Ψ) Set of binary functions fullfilling conditions on the switching

times
Ω̄(Ψ) Set of relaxed binary functions fullfilling conditions on the

switching times
Ψ Set of time points when a discontinuity in the binary control

function vector w(t) may occur, either Ψ = Ψτ or Ψ = Ψfree

Ψτ Finite set of possible switching times, Ψτ = {τ1, τ2, . . . , τnτ
}

Ψfree Whole time interval under consideration, Ψfree = [t0, tf ]
ΨMIN Minimum distance between two switching times
σ Switching function
σi i–th vertex of the cube [0, 1]nw̃

τ Time
τ Vector of possible switching times τi, 1 ≤ i ≤ nτ

ξ (Continuous) Optimization variable of the (MI)NLP
ω Integer optimization variable of the MINLP
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Gothic and other symbols

A(ξ) Active set at point ξC(T ) Controllable set at time TCBB(T ) Controllable set with bang–bang functions at time TC Controllable setCBB Controllable set with bang–bang functions at
G Control discretization grid
H Hamiltonian
K Subset K ⊆ X
L Lagrangian
R Admissible region
∂R Boundary of the admissible region
int (R) Interior of the admissible region
S Short form to describe a trajectory. See page 95.
T Trajectory (x(·), z(·),u(·),w(·),p,v)
Um Set {u : [t0, tf ] 7→ R

nu ,u(t) measurable}
UBB Set of measurable bang–bang functions
X Real linear space if not specified differently
∗ Variable belonging to an optimal solution

Dimensions

nc Number of path constraints ci(·)
ncontrol Number of control discretization intervals
ncol Number of discretization points in collocation
next Number of grid refinement steps (for extrapolation)
nG Number of equality constraints
nH Number of inequality constraints
np Number of continuous parameters
nu Number of continuous control functions
nv Number of binary parameters
nw Number of binary control functions
nw̃ Number of binary control functions in the convexified problem
nx Number of differential variables
ny Number of state variables, ny = nx + nz

nz Number of algebraic variables
nms Number of multiple shooting intervals
nmos Number of model stages
nreq Number of interior point equalities req

i (·)
nrieq Number of interior point inequalities rieq

i (·)
nξ Number of variables after parameterization and discretization

of the optimal control problem to a NLP
nτ Number of possible switching times
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Applications

Fishing problem

c0, c1 Parameters for the quota of caught fish
w Fishing control
x0 Biomass of prey species
x1 Biomass of predator species

Rocket car

w Acceleration / Deceleration
x0 Covered distance
x1 Velocity

F–8 aircraft

w Tail deflection angle
x0 Angle of attack
x1 Pitch angle
x2 Pitch rate

Subway

w Operation mode: 1 series, 2 parallel, 3 coasting, 4 braking
x0 Position of the train
x1 Velocity of the train
u Braking deceleration, fixed to umax

All parameters of the model are given and explained in appendix C.

Calcium oscillation

p1 Costs of inhibitor u1

p2 Costs of inhibitor u2

u1 Uncompetitive inhibitor of the PMCA ion pump
u2 Inhibitor of PLC activation by the G–protein
w1, w2 0-1 decision, when to inhibit with u1 resp. u2

x0 Concentration of activated G-protein
x1 Concentration of active phospholipase C
x2 Concentration of intracellular calcium
x3 Concentration of intra–ER calcium
ki, Ki Reaction coefficients
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Batch distillation with waste cut recycling

Ak, Bk, Ck Antoine coefficients given in the appendix
c Parameters of the objective function
D Distillate flow
L Liquid flow
Lℓ Liquid flow entering tray ℓ
M Molar reboiler content, M = x0

N Number of trays, here N = 5
ncomp Number of components, here ncomp = 3
P1, P2, P3 Product outputs of the three components or short for produc-

tion cuts 1 and 2
P Overall profit
p2 Recycling ratio (in transition stages) of first slop cut
p3 Recycling ratio (in transition stages) of second slop cut
p4, p5, p6, p7 Concentration of component 1 and 2 in slop cut reservoirs S1

resp. S2
pr0, pr1 Local parameters needed for the calculation of purities
R Reflux ratio
R1 Recycling ratio (in transition stages) of first slop cut
R2 Recycling ratio (in transition stages) of second slop cut
si Parameters of the objective function
S1, S2 Slop cut stages 1 and 2, also slop cut reservoirs (tanks)
S ′

1, S
′
1 Amounts of slop cut material that are not recycled

t̃i Time when a model stage change occurs
T Terminal time of the process
Tℓ Temperature on tray ℓ
u0 Reflux ratio
ui i = 1 . . . N + 1: Flux from reservoir S1 to tray i− 1
ui i = N+2 . . . 2N+2: Flux from reservoir S2 to tray i−(N+2)
û1 Flux from reservoir S1
û2 Flux from reservoir S2
V Vapor flow
wi i = 1 . . . N+1: Is flux from reservoir S1 directed to tray i−1?
wi i = N+2 . . . 2N+2: Is flux from S2 directed to tray i−(N+2)?
x0 Molar reboiler content
x1 Mole fraction X1,0

x2 Mole fraction X2,0

x3 Content of slop cut reservoir S1
x4 Content of slop cut reservoir S2
Xk,i Concentration of component k ∈ {1, 2, 3} on tray i ∈

{0, 1, . . . , 6} with tray 0 ≈ reboiler and tray 6 ≈ condenser
XP1

, XP2
, XP3

Prespecified purity requirements
ρ Total pressure
ρs

k(T ) Partial pressures of the undiluted components
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Abbreviations

BVP Boundary value problem
DAE Differential–algebraic equation
ECP Extended cutting planes
END External numerical differentiation
GBD Generalized Benders decomposition
HJB Hamilton–Jacobi–Bellman
IND Internal numerical differentiation
IVP Initial value problem
KKT Karush–Kuhn–Tucker
LICQ Linear independence constraint qualification
LP Linear program
MIDO Mixed–integer dynamic optimization
MILP Mixed–integer linear program
MINLP Mixed–integer nonlinear program
MIOC Mixed–integer optimal control
MIOCP Mixed–integer optimal control problem
MIQP Mixed–integer quadratic program
MLDO Mixed–logic dynamic optimization
MPEC Mathematical program with equlibrium constraints
MS MINTOC Multiple shooting based mixed–integer optimal control algo-

rithm
MSMIOCP Multistage mixed–integer optimal control problem
MSOCP Multistage optimal control problem
NLP Nonlinear program
OA Outer approximation
OCP Continuous optimal control problem without integer con-

straints
ODE Ordinary differential equation
PDAE Partial differential–algebraic equation
QP Quadratic program
SOS Special ordered set property
SQP Sequential quadratic programming
s.t. subject to
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mit denen gehabt, denen ich am meisten geholfen habe.

Helmut Kohl, 1972

Ich danke allen, die mich bei der Erstellung dieser Arbeit in irgendeiner Art und Wei-
se unterstützt haben, insbesondere aber Jan Albersmeyer, John Barleycorn, Cordula
Becker, Georg Bock, Ulli Brandt-NocheinName, Achim Brasch, Achim Dahlbokum,
Jens Derbinski, der DFG, Moritz Diehl, Rolf und Sabine Gertjejanßen, Benni Gill,
Iwo Hahn, Mark Hörter, Renate Kohlhaus, Stefan Körkel, Olaf Kroon, Peter Kühl,
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