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Abstract

Convexification is a core technique in global polynomial optimization, which is used
to generate convex relaxations of a polynomial optimization problem (POP). These
relaxations in turn allow to compute bounds on the optimal value of a POP.

Currently, there are two main convexification approaches competing in theory and
practice: the approach of nonlinear programming and the approach based on positiv-
ity certificates from real algebra. The former is comparatively cheap from a computa-
tional point of view, but typically does not provide tight relaxations with respect to
bounds for the original problem. The latter is typically computationally expensive,
but provides tight relaxations.

We embed both kinds of approaches into a unified framework of monomial relaxations.
This framework of monomial relaxations is based on groups of exponents, which we
call patterns. In order to build a relaxation, the POP is linearized by replacing
each of its monomials with a monomial variable. Then the monomial variables that
are indexed by the exponents of a pattern are linked by convex constraints. By
identifying the appropriate patterns and their associated constraints, a variety of
established convexification methods can be expressed within this framework. These
include convexification methods based on sum-of-squares polynomials or nonnegative
circuit polynomials as as well as multilinear envelopes. Within our framework we can
freely combine the different patterns and their constraints. The combination of the
different patterns allows to exploit the monomial structure of the polynomial problem.
By selecting appropriate combinations of patterns we can trade off the quality of the
bounds against computational expenses. Thus, it is possible to develop custom-made
convexification strategies that are fitted to the problem structure and the demands
of the user. Examples of different such strategies are given.

Furthermore, we develop a new pattern type called truncated submonoid and deter-
mine the corresponding convex constraints.

Different relaxations that are derived from combinations of patterns are numerically
tested on self-generated benchmark instances. The computational experiments yield
very encouraging results.
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Zusammenfassung

Konvexifizierung ist eine Kerntechnik der globalen polynomiellen Optimierung, um
konvexe Relaxierungen von polynomiellen Optimierungsproblemen (POP) zu erstel-
len. Diese Relaxierungen ermöglichen es wiederum, Schranken für das Minimum eines
POP zu berechnen.

Derzeit gibt es zwei Hauptansätze, die in Theorie und Praxis miteinander konkur-
rieren: den Ansatz der nichtlinearen Optimierung und einen Ansatz, der auf Positi-
vitätszertifikaten aus der reellen Algebra basiert. Ersterer ist aus rechnerischer Sicht
vergleichsweise günstig, bietet jedoch typischerweise schwache Relaxierungen, was die
berechneten Schranken betrifft. Letzterer ist typischerweise rechenintensiv, liefert je-
doch starke Relaxierungen.

Wir betten beide Ansätze in einen einheitlichen Rahmen von monomiellen Relaxierun-
gen ein. Diese monomiellen Relaxierungen basieren auf Mengen von Exponenten, die
wir Patterns nennen. Um eine Relaxierung zu erstellen, wird das POP linearisiert,
indem Monome durch Monomenvariablen ersetzt werden. Dann werden die Mono-
menvariablen, die durch die Exponenten eines Patterns indiziert sind, durch konvexe
Nebenbedingungen miteinander verknüpft. Durch Identifizieren geeigneter Patterns
und der damit verbundenen Nebenbedingungen kann eine Vielzahl etablierter Konve-
xifizierungsmethoden auf diese Weise ausgedrückt werden. Dazu gehören Methoden,
die auf Quadraten von Polynomen oder nichtnegativen Circuit-Polynomen basieren,
sowie multilineare Relaxierungen.

Innerhalb unserer Relaxierung können wir die verschiedenen Patterns und deren Ne-
benbedingungen frei kombinieren. Die Kombination verschiedener Patterns ermöglicht
es, die monomielle Struktur eines POP auszunutzen. Mithilfe geeigneter Kombina-
tionen kann die Qualität der Schranken gegen den Rechenaufwand abwägt werden.
Somit ist es möglich, maßgeschneiderte Konvexifizierungsstrategien zu entwickeln, die
an die Problemstruktur und die Anforderungen des Benutzers angepasst sind. Wir
geben Beispiele verschiedener solcher Strategien.

Darüber hinaus entwickeln wir einen neuen Patterntyp namens Truncated Submonoid
und bestimmen für diesen die entsprechenden konvexen Nebenbedingungen.

Außerdem werden verschiedene, durch Patterns induzierte, Relaxierungen anhand
eigener Benchmark-Instanzen numerisch getestet. Die Computerexperimente liefern
vielversprechende Ergebnisse.
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Chapter 1

Introduction

In this thesis, we provide a template for the computation of lower bounds for
polynomial optimization problems (POPs). The problems that we consider are of
the following general type: Let n ∈ N with n > 0 and r ∈ N. Given a poly-
nomial objective function f :=

∑
α∈Nn fαx

α ∈ R[x] and polynomial constraints
g1, . . . , gr ∈ R[x] in n indeterminates x := (x1, . . . , xn), determine the infimum f
over the set K := {x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0}:

minimize f(x) subject to x ∈ K. (POP)

Here, xα := xα1
1 ·. . .·xαn

n and fα denote the monomial and the coefficient corresponding
to the exponent α, respectively. This problem type includes, among others, linear,
quadratic and 0-1 programming. It comes therefore to no surprise that hard problems
can be encoded within this format. In fact it is known that minimizing a multivariate
polynomial of degree as little as 4 over K = Rn is in general NP-hard [44]. This
prompts the necessity for lower bounding schemes that allow to tackle (POP).

POPs appear in a variety of different areas such as in discrete and combinatorial
optimization, control systems and robotics, statistics and electric power systems en-
gineering, to name a few. For a discussion of specific problems from these areas
through the lens of POPs see for example [1, Sec. 1.1], [38, Sec. 1.1] and [14, Sec.
3.6].

Furthermore, POPs also arise as intermediate problems in global optimization algo-

rithms, which utilize symbolic reformulation [59, 62]. There, factorable functions of

a global optimization problem (GOP) are replaced by polynomial functions. This

way one obtains an intermediate POP, whose optimal value is a lower bound on the

optimal value of the original GOP. Usually, the intermediate POP is further relaxed

in order to actually compute a lower bound. We illustrate this procedure through a

small example.
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CHAPTER 1 INTRODUCTION

Example 1.1.

One possible way1 to construct a relaxation of the problem

minimize sin(x)2ex + sin(x) subject to x ∈ [0, π
2
]

is to replace sin(x) and ex with auxiliary variables y1 and y2, respectively. The corre-

sponding intermediate POP is

minimize y2
1y2 + y1 subject to y1 ∈ [0, 1], y2 ∈ [1, e

π
2 ]. (1.1)

Note that the lower/upper bounds of y1 and y2 are the minimum/maximum of sin(x)

and ex over x ∈ [0, π
2
]. Replacing y2

1 with y3 yields the multilinear problem

minimize y1y3y2 + y1 subject to y1 ∈ [0, 1], y2 ∈ [1, e
π
2 ], y3 ∈ [0, 1].

For the latter problem exist convexification strategies based on multilinear envelopes

[43, 15]. 4

Many lower bounds obtained from the relaxations of such intermediate POPs are
utilized within a spatial branch-and-bound framework to approximate an optimal
solution of the original GOP. The intermediate POPs pose especially intriguing
applications of (POP) as one can tackle problems like (1.1) directly with methods
from polynomial optimization. Thus, they constitute an interface between the ‘global
optimization community’ and the ‘polynomial optimization community’. In fact, they
show how the development of new relaxation methods for POPs may advance an,
until now, almost entirely separate branch of global optimization methods. In turn
polynomial optimization approaches can benefit from the branching schemes that
have been developed and refined in the last two decades. Integrating polynomial
optimization methods within popular global optimization solvers, like BARON, may
also help to promote solution methods that are otherwise tailored to POPs.2

What makes (POP) interesting for optimization from a methodological standpoint,
is that, despite its generality, it still possesses structures that make it accessible to
optimization algorithms. In order to find and exploit these structure we will resort
to looking at (POP) from the perspective of moments and from the perspective of

1It might be that a particular solver handles this example differently.
2In particular BARON is a widely distributed global optimization solver. On the website of BARON

https://minlp.com/about it is stated that ‘[o]ver 600 organizations now license BARON in more
than 50 countries’.
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INTRODUCTION CHAPTER 1

nonnegative polynomials. The moment perspective of (POP) is

minimize
∑
α∈Nn

fαvα subject to (vα)α∈Nn is a moment sequence of a

probability measure on K.

It is known that the objective value of the above coincides with the one of (POP) [38,
Ch. 4.2]. The question whether (vα)α∈Nn is such a moment sequence is commonly
referred to as K-moment problem [37, Ch. 2.7]. The dual perspective of the above
is

maximize λ subject toλ ∈ R and f(x)− λ ≥ 0 for all x ∈ K.

Apparently, this problem also has the same objective value as (POP). Here, the
underlying question is whether f − λ is nonnegative on K.

Both questions have been subject to lively research in the past. There, the relationship
of moments and nonnegative polynomials with sum-of-squares (SOS) polynomials has
been of particular interest. In 1927 Hilbert’s 17th Problem, that is the question if
all on Rn nonnegative polynomials can be represented as a sum of squares of rational
functions, was solved by Artin [5]. After that a variety of nonnegativity certificates
based on SOS polynomials were discovered by Krivine [34], Stengle [64] or Putinar
[51], just to name a few. The fact that positive semidefinite (PSD) matrices can
be used to represent SOS polynomials and the emergence of efficient semidefinite
programming (SDP) solvers has brought these certificates into the focus of the op-
timization community. The certificates combined with PSD representations of SOS
polynomials lead to convex SDP relaxations of (POP) that can be solved by SDP
solvers. The driving forces behind the development of different, mostly hierarchical,
SOS/SDP approaches for the computation of lower bounds, were, among others, Shor
[60], Nesterov [45], Parrilo [48] and Lasserre [35]. Besides SOS/PSD based certificates
there exist certificates based on geometric and linear programming, such as a sum
of nonnegative circuit polynomials (SONC) Positivstellensatz [29] and Handelman’s
hierarchy [27].

In general many important convexification techniques applied to POPs share the fol-
lowing common distinctive features: monomials xα are substituted with monomial
variables vα and the relationships among them are captured, exactly or in a re-
laxed fashion, by systems of convex constraints. In order to describe the relationship
between different monomial variables by constraints, one needs to introduce addi-
tional auxiliary monomial variables. Different approaches exist on how to pick these
auxiliary monomial variables and the respective convex constraints. The ‘global opti-
mization community’ uses monomial variables and constraints such that the resulting

3



CHAPTER 1 INTRODUCTION

relaxations are cheap to solve. The resulting poor lower bounds are compensated by
solving many relaxations within a branch-and-bound framework. The ‘polynomial op-
timization community’ usually aims to solve only one single relaxation, which often
produces a very tight bound. This comes at the price of a large number of monomial
variables and hard constraints. Interestingly, so far there has been little interaction
between the two different schools of thought. We believe that a major reason is the
lack of a mathematical formalism that would allow a uniform description of different
convexification techniques.

One contribution of this thesis is the introduction of the notion of patterns to fill this
gap. Patterns are finite sets P ⊆ Nn of exponent vectors. It is our goal to determine
patterns P such that the monomial variables vα indexed by α ∈ P can be linked by
constraints that satisfy a given demand on the computability. One may express this
goal also in terms of nonnegative polynomials: determine P such that there exists a
relaxation of the cone

P(K)P :=
{
p =

∑
α∈P

pαx
α : p(x) ≥ 0 for all x ∈ K

}
,

that satisfies a given demand on the computability and tightness. While various
kinds of patterns have been implicitly used by the disjoint research communities, the
introduction of the explicit notion of patterns allows to develop a unifying mathe-
matical language that highlights common ideas. Promoting this elementary notion
enables to see similarities of the different research directions and will help to connect
different communities that work independently on the same problems. For example,
the pattern

P = {(1, 0), (0, 1), (1, 1)}
corresponds to the well-known McCormick envelope [43, 15], i.e. the convexification
of the variables x1 and x2 and their product x1x2 over an axis-parallel box K. Other
examples of methods that can be expressed using the notion of patterns are moment
relaxations and their dual the sum-of-squares relaxations [2, 38, 40], scaled-diagonally-
dominant sums of squares (SDSOS) [1], SONC [21, 58], bound-factor products [19] and
their dual the Handelman’s hierarchy [27], multilinear intermediates [11], polyhedral
outer approximations [66] as well as expression trees [62, 59].

Furthermore, we propose the pattern relaxation, that is a flexible template for the
relaxation of POPs. Within this template we can combine different types of patterns
to build convex relaxations of (POP). This allows us to use the ideas of these, until
now, largely disjoint schools of thought together. Our new and more general point
of view might also help to understand numerical issues and the facial structures of
feasible sets in the aforementioned convexification approaches. This, in turn, can
be expected to have a positive impact on the improvement of existing and on the
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INTRODUCTION CHAPTER 1

development of novel approaches to polynomial optimization. Apart from expressing
the already established convexification methods as patterns, we derive various new
convexification techniques from the pattern template. The resulting relaxations can
be solved by a variety of different numerical approaches.

In the interest of analyzing the tightness and computational expenses related to dif-
ferent convexification strategies, we use a self-implemented, customizable prototype
cutting-plane algorithm and, as an alternative, an implementation that employs the
interior point solver MOSEK [3]. While the cutting-plane algorithm is not necessarily
the best practice or a novel approach, the choice is a reasonable standard strat-
egy for sparse convex problems. Furthermore, the warm start capabilities of linear
programming solvers as well as the particular chosen implementation make this al-
gorithm highly customizable and demonstrate how new pattern types can be used
for strengthening already existing relaxations. On the other hand, the usage of the
interior point solver allows to benefit from the state-of-the-art algorithms and barrier
functions implemented in MOSEK.

1.1 Thesis Overview

Parts of this thesis are published in [9] and its general structure follows [9]. Corollaries,
lemmas, propositions and theorems that can be found in the current version of [9] are
marked.

The thesis is organized as follows. The basic notation is given in Section 1.2. In
Chapter 2 we first introduce the notion of the pattern relaxation from the moment
perspective and then deduce a characterization in terms of nonnegative polynomials.
Furthermore, the separation problem for patterns is formulated as an optimization
problem, which is later used in the cutting-plane algorithm. Chapter 3 is dedi-
cated to the interpretation and discussion of established convexification techniques
as monomial patterns. This also includes a generalization of multilinear envelopes
as multilinear patterns and characterizations of the SONC cone and SDSOS cone
derived from their respective patterns. In particular, the there given characteriza-
tion of SONC cone allows to combine it with other pattern types within the pattern
relaxation. In Chapter 4 a new pattern type is introduced, which generalizes the
patterns corresponding to moment relaxations, SOS and SDSOS relaxations. This
pattern type gives rise to a variety of sparse relaxations for unconstrained as well
as constrained problems. Chapter 5 is dedicated to the algorithms used for the
computations. There, a prototype of a hybrid cutting-plane algorithm for pattern
relaxations is presented and an implementation that utilizes a conic programming
solver is discussed. Additionally, a prototype routine for the systematic selection of
patterns is presented on the example of multilinear patterns. Computational results

5



CHAPTER 1 INTRODUCTION

in Chapter 6 highlight the benefits of our novel approach. Finally, the conclusion
and outlook are given in Chapter 7.

1.2 Notation

In this section we set up the notation, terminologies and conventions that are needed
to smoothly read this thesis. These conventions hold unless stated otherwise. This
part is complemented by the back matter starting from page 111.

The number n is a positive integer and the numbers d, r are nonnegative integers. A ⊆
Nn is always a nonempty and finite set whose elements usually are multi-exponents or
multi-indices that are contextually linked to exponents. The set {1, . . . , n} is denoted
by [n] and [n]0 := [n]∪{0}. The cardinality of a set A is denoted by #A. We heavily
rely on indexing using sets like A. For example, the vector space of real vectors which
are indexed by A is

RA := {(vα)α∈A : vα ∈ R for all α ∈ A}.

For a vector v = (vα)α∈A of RA we use boldface and upshape print and for its
components only upshape. While we portray a vector v for convenience as 1×A row
vector, we interpret it in matrix multiplications as A×1 column vector. The `1-norm
and the `∞-norm of v are denoted by ||v||1 and ||v||∞. Note that by ordering A we
can always identify RA with Rk for k = #A. The all-zero vector of RA is denoted
by 0A, the all-one vector by 1A and the standard basis vectors are denoted by eα,A,
i.e.

eα,Aβ :=

{
1 if β = α,

0 else
for all α, β ∈ A.

When it causes no ambiguity, we omit the A and write 0, 1 and eα instead. K ⊆ Rn

is a closed set that contains a full-dimensional (open) ball {x ∈ Rn : ||x − a||1 < ε}
for some ε > 0 and a ∈ Rn. Since all the emerging spaces in this thesis are equipped
with a standard `-norm, we use as topology the standard topology induced by the
respective norms. For the rest of this section let B ⊆ Nn be a nonempty set (possibly
of infinite cardinality) and let v ∈ RA and w ∈ RB be two vectors. The support of
w is

supp(w) := {β ∈ B : wβ 6= 0}.
If A ∩ B 6= ∅, we define the bilinear product of v and w as

〈v,w〉 :=
∑

α∈A∩B

vαwα.

6



INTRODUCTION CHAPTER 1

If B ⊆ A, we denote the coordinate projections onto components indexed by B of the
vector v and a nonempty set S ⊆ RA by

vB := (vα)α∈B and [[S]]B := {vB : v ∈ S}.

If B = {β} contains just a single element, we use vβ or [[v]]β and [[S]]β instead.
Furthermore, cl(S) is the topological closure of S, conv(S) the convex hull of S and
cone(S) the convex conic hull of S. Throughout this thesis, we use ‘cone’ in place
of ‘convex cone’. Frequently used cones are: the nonnegative real numbers R+, the
(strictly) positive real numbers R++ and the cone of positive semidefinite (PSD) A×A
matrices SA

+. The dual of a cone K is denoted by K∗. Let x = (x1, . . . , xn) be a vector
of n indeterminates and α ∈ Nn a multi-exponent. We call

xα := xα1
1 · . . . · xαn

n

a monomial and refer to its evaluation xα at a point x ∈ Rn also as monomial. The
minimum and maximum of xα over a compact set K ⊆ Rn are

xαK := min
x∈K

xα and xαK := max
x∈K

xα,

respectively, xA
K := (xαK)α∈A and xA

K := (xαK)α∈A. As usual, R[x] is the ring of
polynomials

f =
∑
α∈Nn

fαx
α,

where f = (fα)α∈Nn ∈ RNn
is a coefficient vector with finite support, i.e. # supp(f) <

∞. By slight abuse of notation we define the monomial support of a polynomial f
as

supp(f) := supp(f).

We obtain the coefficients of f that are indexed by a nonempty set B ⊆ Nn using

vec(f)B := fB.

A polynomial is usually denoted by a letter in italic print and, when no ambiguity
can arise, we use the same letter in bold face print to denote its coefficient vector,
that is f ∈ RB for an appropriate set B with supp(f) ⊆ B. If we want to emphasize
the underlying vector x of intermediates, we write f(x) instead of f . The degree of
a finite set B is defined as

deg(B) := max{|β1|+ · · ·+ |βn| : β ∈ B}

7



CHAPTER 1 INTRODUCTION

and the degree of a polynomial f ∈ R[x] as deg(f) := deg(supp(f)). By

P(K) := {f ∈ R[x] : f(x) ≥ 0 for all x ∈ K}.

we denote the cone of polynomials that are nonnegative over K. Throughout this
thesis we mostly work in the truncated version of R[x]. That is by A we prescribe
which monomials xα can occur in f with nonzero coefficient fα:

R[x]A :=
{
f ∈ R[x] : supp(f) ⊆ A

}
=
{
f ∈ R[x] : f =

∑
α∈A

fαx
α with f ∈ RA

}
.

By means of the coefficient vectors we can identify R[x]A with RA. Analogously, we
define

P(K)A :=
{
f ∈ P(K) : supp(f) ⊆ A

}
.

The norm of a polynomial f ∈ R[x]A is defined as ||f ||1 := ||fA||1. Note that P(K)A

is a closed and convex cone. The A-truncated moment vector map or simply moment
vector is

m(x)A := (xα)α∈A.

Since it will come in handy later on, we also allow sets Z ⊆ Zn as index sets for m(x)Z.
In order to avoid confusing the i-th power of a polynomial p with a superscript, we
write (p)i. For example (pj)i is the i-th power of the polynomial pj. A polynomial
p ∈ R[x] is called SOS if it is the sum of finitely many squared polynomials, that is
p = (p1)2 + · · · + (pk)2 for polynomials p1, . . . , pk ∈ R[x]. The cone of n-variate SOS
with monomial support in B is

SOS(B) :=
{
p ∈ R[x]B : p is SOS

}
.

Clearly, it always holds SOS(B) ⊆ P(K)B. A (basic closed) semialgebraic set is a
subset of Rn defined by polynomial inequalities{

x ∈ Rn : g1(x) ≥ 0, . . . , gr(x) ≥ 0
}
,

where g1, . . . , gr ∈ R[x] are polynomials. Greek letters, with a few exceptions, are
reserved for multi-exponents or multi-indices that are related to multi-exponents.
Let X ⊆ RA and c : X −→ R be a continuous function. We write the optimization

8



INTRODUCTION CHAPTER 1

problem of minimizing the objective function c over the feasible set X as

minimize c(v)

for v∈ RA

subject to v∈ X.

(OP)

The optimal value cop ∈ R ∪ {−∞,∞} of the minimization problem (OP) is defined
as

cop := inf{c(v) : v ∈ X}.

We say that v ∈ RA is a feasible solution for (OP) if v ∈ X and refer to a feasible point
v? with c(v?) = cop as an optimal solution of (OP). If an optimal solution exists,
we say that the optimal value is attained. The existence of an optimal solution
immediately implies that cop is finite. (OP) is said to be infeasible if X = ∅ and
otherwise feasible. If cop = −∞, (OP) is said to be unbounded and if cop > −∞,
it is called bounded. By replacing ‘minimize’ with ‘maximize’, ‘inf’ with ‘sup’ and
‘cop > −∞’ with ‘cop < ∞’ we acquire the respective definitions for maximization
problems.

9
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Chapter 2

Pattern Relaxation

In the first part of this chapter we develop the theory of patterns and pattern re-
laxations from the perspective of monomial variables. By dualizing the pattern re-
laxation in the second part we obtain a characterization in terms of nonnegative
polynomials. Both views will pave the way to incorporate well established relaxation
techniques into our framework. At last the separation problem for patterns is formu-
lated and we show how new pattern types can be created by shifting already existing
types.

2.1 Monomial Convexification and Monomial Relaxation

We consider the problem of minimizing a polynomial f ∈ R[x]A over the set K:

minimize f(x)

for x ∈ Rn

subject to x ∈ K.

(POP)

Via lifting, we reformulate (POP) as an optimization problem over a manifold in RA

with a linear objective:

minimize 〈 f ,v 〉
for v ∈ RA

subject to v ∈ {m(x)A : x ∈ K}.

(S-POP)

In (S-POP) we have replaced each monomial xα by a variable vα. We therefore

call the components vα of v in (S-POP) monomial variables. For the next step we

introduce the following definition:

11



CHAPTER 2 PATTERN RELAXATION

Definition 2.1 (Truncated Moment Body and Truncated Moment Cone).

The (A-truncated) moment body is defined as

M(K)A := cl conv ({m(x)A : x ∈ K})

and the (A-truncated) moment cone as

C(K)A := cl cone({m(x)A : x ∈ K}). 4

Replacing the feasible set {m(x)A : x ∈ K} of (S-POP) by its convex hull M(K)A

yields the monomial convexification of (POP):

minimize 〈 f ,v 〉
for v ∈ RA

subject to v ∈M(K)A.

(C-POP)

The convexification (C-POP) of (POP) is tight, that is, the optimal values of

(C-POP) and (POP) coincide. Unfortunately for general sets A, the constraint

v ∈ M(K)A is difficult to verify. Thus, it is natural to relax v ∈ M(K)A to a

system of simpler constraints of the same type.

Definition 2.2 (Pattern, Pattern Family and Pattern Relaxation).

We call a finite and nonempty set P ⊆ Nn pattern and a finite and nonempty family

of patterns F pattern family. If the pattern family F satisfies

A ⊆
⋃

P∈F

P, (2.1)

we refer to F as pattern relaxation of A. The corresponding system

vP ∈M(K)P for P ∈ F (2.2)

is called pattern relaxation of M(K)A (with respect to F) and

vP ∈ C(K)P for P ∈ F (2.3)

is called (conic) pattern relaxation of M(K)A (with respect to F). Throughout, we

use AF to denote
⋃

P∈F P. 4

12



PATTERN RELAXATION CHAPTER 2

It is our intention to cover A by patterns P such that the corresponding moment
bodies M(K)P yield more structure that we can exploit algorithmically than the
original moment body M(K)A. Using a pattern family F that satisfies (2.1) we lift
(C-POP), that is

minimize 〈 f ,v 〉
for v∈ RAF

subject to v∈M(K)AF ,

(C-POP’)

and then relax the latter by

minimize 〈 f ,v 〉
for v ∈ RAF

subject to vP ∈M(K)P for all P ∈ F .

(P-RLX’)

The optimal values of (C-POP) and of (C-POP’) coincide.1 Hence, the optimal value
fPRLX′ of (P-RLX’) is a lower bound on the optimal value fpop of (POP). We refer to
(P-RLX’) as pattern relaxation of (POP) as it does not conflict with Definition 2.2.
By relaxing the moment bodies in (P-RLX’) with their respective moment cones we
obtain the conic version of the pattern relaxation:

minimize 〈 f ,v 〉
for v ∈ RAF

subject to vP ∈ C(K)P for all P ∈ F
v0 = 1.

(P-RLX)

Here, we implicitly assume that AF contains 0.2 Since for every feasible solution v
of (P-RLX’) it holds v0 = 1, the optimal value fPRLX of (P-RLX) satisfies fPRLX ≤
fPRLX′ .

The following lemma shows that (P-RLX) and (P-RLX’) agree if 0 ∈ P for all P ∈ F .
Hence, we will make no linguistic differentiation between (P-RLX) and (P-RLX’) and
also refer to (P-RLX) as a pattern relaxation of (POP).

1Recall that the bilinear product in (C-POP’) boils down to 〈f ,v〉 =
∑
α∈A fαvα since A ⊆ AF .

2Since M(K){0} = {1}, we can always add the pattern P = {0} to F if 0 /∈ AF .
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Lemma 2.3.

For a pattern P ⊆ Nn with 0 ∈ P holds C(K)P ∩
{
v ∈ RP : v0 = 1

}
=M(K)P. 4

Proof. Observe that C(K)P = cl cone(M(K)P). Thus,

C(K)P ∩
{
v ∈ RP : v0 = 1

}
=

cl
{
λw ∈ RP : w ∈M(K)P, λ ≥ 0 with λw0 = 1

}
.

(2.4)

From x0 = 1 for all x ∈ K follows w0 = 1 for all w ∈ M(K)P. Hence, λw0 = 1

in (2.4) implies λ = 1. This shows that the right hand side of (2.4) is identical to

M(K)P. �

Lemma 2.3 shows that (P-RLX) is equivalent to

minimize 〈 f ,v 〉
for v ∈ RAF

subject to vP ∈M(K)P for all P ∈ F with 0 ∈ P

vP ∈ C(K)P for all P ∈ F with 0 /∈ P.

Observe that when K is compact, so is M(K)P. If additionally to that there exists
for each α ∈ A a pattern P ∈ F with α,0 ∈ P, then the optimal value of (P-RLX) is
guaranteed to be bounded.

This procedure of developing the pattern relaxation can also be seen as embedding
M(K)A intoM(K)AF for some set AF that contains A and can be represented nicely
as a union of patterns P ∈ F . Geometrically, the passage from (POP) through
(C-POP) and (C-POP’) to (P-RLX’) can be represented by the diagram

m(K)A
convexifying−−−−−−−→M(K)A

embedding−−−−−−→M(K)AF
projecting−−−−−−→M(K)P.

A visualization of this diagram can be found in Figure 2.1. There, the procedure
is also depicted for the set A = {1, 2, 3}, K = [0, 1] and the pattern family F =
{{1, 2}, {1, 3}, {2, 3}}. Note that in this example we do not have an actual embedding,
since AF = A. Furthermore, the example is a fairly simple one and the pattern
relaxation should not be expected to perform as well as Figure 2.1 suggests.

An advantage of the pattern approach is that we can choose patterns P ∈ F such that
the computational costs to solve (P-RLX’) or (P-RLX) and quality of the obtained
lower bounds on the objective value of (POP) are well balanced. In view of this,
we are interested in the choice of patterns P, for which the computational costs

14
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of enforcing the constraints vP ∈ M(K)P or vP ∈ C(K)P meet our requirements.
Since (2.1) is an inclusion and not an equality, we can find such patterns even if A
is ill-structured. This is the reason for introducing auxiliary moment variables vβ,
β ∈ AF\A in (C-POP’), which are not present in (C-POP).

The quality of a pattern relaxation F depends on how the moment variables are

connected by the system of conditions (2.2). We present a simple definition of a

connectivity notion that will later on help to explain and compare different pattern

families.

Definition 2.4 (Directly and indirectly connected).

We say that monomial variables vα and vβ or the exponents α and β are directly

connected by a pattern family F if α, β ∈ P holds for some P ∈ F . Furthermore, vα
and vβ or α and β are (indirectly) connected by F if there exist a sequence of patterns

{Pj}j∈[k] ∈ F such that α ∈ P1, β ∈ Pk and Pj ∩ Pj+1 \ {0} 6= ∅ for all j ∈ [k− 1]. 4

We will see in Chapters 3 and 4 that there exist various pattern types. An open

question is how to best select a pattern family from this multitude of patterns to

construct a pattern relaxation. The next lemma shows that certain patterns dominate

others and therefore allows to avoid including unnecessary combinations of patterns

within a pattern family.

Lemma 2.5.

Let P and P̃ be two patterns with P ⊆ P̃. Then v ∈ C(K)P̃ implies vP ∈ C(K)P. 4

Proof. Since v ∈ C(K)P̃, there exists a sequence {v(k)}k∈N ⊆ C(K)P̃ that satisfies

• for each k there exist λ(k,i) ∈ R+ and x(k,i) ∈ K with i ∈ [r] and r ≤ #P̃ + 1 such

that v(k) =
∑

i∈[r] λ
(k,i) m(x(k,i))P̃

• limk→∞ v(k) = v.

Defining w(k) :=
∑

i∈[r] λ
(k,i) m(x(k,i))P, we see that {w(k)}k∈N ⊆ C(K)P and

lim
k→∞

w(k) = vP ∈ C(K)P.
�
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v1 v2

v3

v1 v2

v1 v2

v3

v1 v2
v1 v2

v1 v2

v3

v1 v2
v1 v2

v1 v2

v3

Figure 2.1: First row left: the curve {m(x)A : x ∈ K} for A = {1, 2, 3} and K = [0, 1].
First row right: the corresponding moment body M(K)A. Second row from
left to right: the projections M(K)P of M(K)A in blue for P ∈ F with F :=
{{1, 2}, {1, 3}, {2, 3}}. Third row from left to right: the liftings RA\P×M(K)P of
M(K)P for P ∈ F . Last row: the pattern relaxation {v : vP ∈M(K)P for P ∈ F}
of M(K)A that is induced by the pattern family F .
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2.2 Dual of (P-RLX)

In this part we derive the dual of the pattern relaxation from (P-RLX). It is well

known that untruncated moment cones and cones of positive polynomials with un-

truncated monomial support are dual to each other, see for example [38, Sec. 1.2].

We briefly prove that this also holds for truncated moment cones.

Lemma 2.6.

The dual cone P(K)∗A of P(K)A is C(K)A. 4

Proof. From the representation of the cone of nonnegative polynomials P(K)A

P(K)A =
{
f ∈ R[x]A : 〈f ,m(x)A〉 ≥ 0 for all x ∈ K

}
(2.5)

and the definition of its dual cone

P(K)∗A =
{
v ∈ RA : 〈f ,v〉 ≥ 0 for all f ∈ P(K)A

}
it follows that {m(x)A ∈ RA : x ∈ K} ⊆ P(K)∗A. Since P(K)∗A is a closed and convex

cone, we also have

C(K)A = cl cone
({

m(x)A : x ∈ K
})
⊆ P(K)∗A. (2.6)

For the reverse inclusion assume that there exists v ∈ P(K)∗A\C(K)A. Then, by

a separation theorem for closed convex cones, like [25, Thm. 4.4.2], there exists

a vector p ∈ RA such that 〈p,v〉 < 0 and 〈p,w〉 ≥ 0 for all w ∈ C(K)A. In particular,

p = 〈p,m(x)A〉 ∈ P(K)A, which is a contradiction to 〈vec(p)A,v〉 = 〈p,v〉 < 0 and

v ∈ P(K)∗A. Hence, we have C(K)A = P(K)∗A. �

The next corollary is a standard fact from convex optimization and is proven for polar

cones in [54, Cor. 16.4.2] .

Corollary 2.7.

Let K1, . . . ,Kr ⊆ Rn be closed, convex and nonempty cones. Then

(∑
i∈[r]

Ki
)∗

=
⋂
i∈[r]

(
Ki
)∗
.

4
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Observe that P(K)P is an intersection of closed half-spaces, i.e.

P(K)P =
⋂
x∈K

{
f ∈ R[x]P : 〈f ,m(x)P〉 ≥ 0

}
,

and therefore closed and convex.

Lemma 2.8.

Let F be a pattern family. Then

(∑
P∈F

P(K)P

)∗
=
⋂

P∈F

C(K)P × RAF\P.
4

Proof. All cones P(K)P are nonempty, as they contain the 0 polynomial. Further-

more, P(K)P is closed and convex for each P ∈ F . Hence, from Corollary 2.7 it

follows (∑
P∈F

P(K)P

)∗
=
⋂

P∈F

P(K)∗P. (2.7)

We interpret P(K)P as a cone that lives in RP. That means we write (2.7) by abuse

of notation as3(∑
P∈F

P(K)P ×
{
0AF\P

})∗
=
⋂

P∈F

(
P(K)P ×

{
0AF\P

})∗
. (2.8)

From Lemma 2.6 it follows that(
P(K)P ×

{
0AF\P

})∗
= C(K)P × RAF\P

and therefore by (2.8) the assertion. �

Lemma 2.9.

Let F be a pattern family. Then ∑
P∈F

P(K)P

is a closed cone. 4

3This representation emphasizes that for a polynomial fP ∈ P(K)P it holds vec(fP)AF\P = 0.
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Proof. The cones P(K)P,P ∈ F are closed, convex and nonempty. Furthermore,∑
P∈F f

P = 0 with fP ∈ P(K)P for all P ∈ F if and only if4 fP = 0 for all P ∈ F .

Thus, from [54, Cor. 9.1.3] follows the assertion. �

From Lemma 2.9 and Lemma 2.8 it immediately follows∑
P∈F

P(K)P =
(∑

P∈F

P(K)P

)∗∗
=
( ⋂

P∈F

C(K)P × RAF\P
)∗
.

(2.9)

We can now dualize (P-RLX) under rather mild assumptions.

Theorem 2.10.

Let F be a pattern family such that A ⊆ AF and 0 ∈ AF . For f ∈ R[x]A the objective

value fPRLX of (P-RLX) and the objective value fDRLX of

maximize λ

for λ ∈ R

subject to f − λ∈ ∑
P∈F
P(K)P

(D-RLX)

coincide. 4

Proof. For the second equality (∗) from below, we use f = vec(f)AF and (2.9) in

order to express the cone
∑

P∈F P(K)P by its dual. The equality (∗∗) follows from

Lemma 2.8. Hence,

fDRLX = sup

{
λ ∈ R : f − λ ∈

∑
P∈F

P(K)P

}
(∗)
= sup

{
λ ∈ R : 〈f − λ · e0,AF ,v〉 ≥ 0 for all v ∈

(∑
P∈F

P(K)P

)∗}
(∗∗)
= sup

{
λ ∈ R : 〈f ,v〉 ≥ λ · v0 for all v ∈

⋂
P∈F

C(K)P × RAF\P
}
. (2.10)

For a pattern P with 0 ∈ P it follows from m(x)0 = 1 for all x ∈ K that w0 > 0 for

4Recall that K contains a full-dimensional ball.
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all wP ∈ C(K)P\{0}. Such a pattern P exists in F because 0 ∈ AF . Hence, w0 > 0

for all

w ∈
{

v ∈ RAF : v ∈
⋂

P∈F

C(K)P × RAF\P
}
\{0}. (2.11)

Let F :=
⋂

P∈F C(K)P × RAF\P. Since K 6= ∅, there exists w ∈ F\{0}. Observe that
1

k+1
w ∈ F for all k ∈ N and limk→∞

1
k+1

w = 0. Thus, the set in (2.11) is dense in F.

It follows from (2.10) that

fDRLX = sup
{
λ ∈ R : 〈f ,v〉 ≥ λ for all v ∈

⋂
P∈F

C(K)P × RAF\P with v0 = 1
}
.

As the objective value of the above is strictly increasing in λ, we can compute fDRLX

by

fDRLX = inf
{
〈f ,v〉 : v ∈

⋂
P∈F

C(K)P × RAF\P and v0 = 1
}

= inf
{
〈f ,v〉 : vP ∈ C(K)P for all P ∈ F and v0 = 1

}
=fPRLX. �

Since fDRLX and the optimal value fPRLX of (P-RLX) coincide, we will also refer to
(D-RLX) as pattern relaxation of (POP).

An alternative way of writing (D-RLX) is

maximize λ

for λ ∈ R,

fP ∈ P(K)P for all P ∈ F
subject to f − λ =

∑
P∈F

fP.

(2.12)

This formulation of (D-RLX) emphasises that the crucial optimization variables are
the scalar λ and the polynomials fP with restricted monomial support supp(fP) ⊆ P.
We use superscript P to stress that a polynomial fP corresponds to the pattern
P.
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Lemma 2.11.

If the objective value fDRLX of (2.12) is finite, it is also attained. 4

Proof. That fDRLX is finite, implies that there exists a sequence {(f (P,i))P∈F , λ
(i)}i∈N

of polynomials f (P,i) ∈ P(K)P for all P ∈ F and scalars λ(i) ∈ R such that∑
P∈F

f (P,i) + λ(i) = f for all i ∈ N and lim
i→∞

λ(i) = fDRLX.

Hence,

lim
i→∞

∑
P∈F

f (P,i) = f − lim
i→∞

λ(i) = f − fDRLX.

∑
P∈F P(K)P is closed according to Corollary 2.7. Thus, f − fDRLX ∈∑P∈F P(K)P.

Assume now that there exists P̃ ∈ F for which the sequence {f (P̃,i)}i∈N is unbounded,

i.e. there exists a subsequence {f (P̃,ij)}j∈N such that limj→∞ ||f (P̃,ij)||1 =∞. Then

p(j) :=
f (P̃,ij)

||f (P̃,ij)||1
∈ P(K)P̃,

q(j) :=

∑
P∈F\{P̃} f

(P,ij)

||f (P̃,ij)||1
∈

∑
P∈F\{P̃}

P(K)P

for all j ∈ N and

lim
j→∞
||p(j) + q(j)||1 = lim

j→∞

||f (P̃,ij) +
∑

P∈F\{P̃} f
(P,ij)||1

||f (P̃,ij)||1

= lim
j→∞

||f − λ(ij)||1
||f (P̃,ij)||1

= 0.

The last equality follows from the fact that {λ(ij)}j∈N is bounded since limj→∞ λ
(ij) =

fDRLX. Thus, without loss of generality we can, after again extracting subsequences

{jk}k∈N, assume that

lim
k→∞

p(jk) = p? ∈ P(K)P̃,

lim
k→∞

q(jk) = −p? ∈
∑

P∈F\{P̃}

P(K)P.
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Hence,

p? ∈ P(K)P̃ ∩
(
−

∑
P∈F\{P̃}

P(K)P

)
⊆ P(K) ∩ −P(K)

(∗)
= {0},

where (∗) follows form the assumption that K contains a full-dimensional ball. This

is a contradiction to ||p?||1 = limk→∞
||f (P̃,jk)||1
||f (P̃,jk)||1

= 1 as the latter implies p? 6= 0. Thus,

{f (P̃,i)}i∈N is bounded. Consequently, we have shown that {(f (P,i))P∈F , λ
(i)}i∈N is also

bounded. After extracting appropriate subsequences we can assume that

lim
i→∞

f (P,i) := fP ∈ P(K)P for all P ∈ F .

with
∑

P∈F
fP + fDRLX = f . �

2.3 Separation Problem

Different algorithmic approaches can be applied to solve (P-RLX’). One way is to
use a cutting-plane algorithm that iteratively generates cuts for the setsM(K)P. We
generate valid inequalities for M(K)P from the maximization problem:

maximize δ − 〈 c,v 〉
for c ∈ RP and δ ∈ R

subject to cα ∈ [−1, 1] for all α ∈ P,

〈 c,m(x)P〉 ≥ δ for all x ∈ K.

(SP)

If v is not inM(K)P, then (SP) has a positive optimal value and the optimal solution

c∗, δ∗ of (SP) yields an inequality 〈c∗,u〉 ≥ δ∗, which is valid for all u ∈ M(K)P

and violated for u = v. As a direct consequence of standard facts from convex

optimization [16, Ch. 8.1.3] we obtain the following.

Proposition 2.12.

[9] Let P be a pattern and v ∈ RP. Then the optimal value of (SP) is

dist
(
M(K)P,v

)
:= min

u∈M(K)P
‖v − u‖1.

4
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The equality 〈c∗,u〉 = δ∗ defines a supporting hyperplane of M(K)P that contains a
point of M(K)P closest to v in the `1-norm.

2.4 Shifting Patterns

The next two propositions are useful to generate new patterns by shifting existing

ones.

Proposition 2.13 ([9]).

Let P ⊆ Nn be a pattern with supp(P) 6= [n] and ξ ∈ Nn a vector with supp(ξ) ⊆
[n]\ supp(P). Furthermore, let [[K]]supp(ξ) be compact. Then5

M(K)ξ+P = cl conv
(

xξKM(K)P ∪ xξKM(K)P

)
. 4

Proof. Observe that xξK and xξK exist, since [[K]]supp(ξ) is compact. The assertion

follows from

M(K)ξ+P = cl conv
({

(xα)α∈ξ+P : x ∈ K
})

= cl conv
({

(xξ+β)β∈P : x ∈ K
})

= cl conv
({

xξ(xβ)β∈P : x ∈ K
})

and the observation that xξ and xβ have no common factor, since supp(ξ)∩supp(β) =

∅ for each β ∈ P. Hence,

conv
({

xξ(xβ)β∈P : x ∈ K
})

= cl conv
( ⋃

y∈K

yξ
{

(xβ)β∈P : x ∈ K
})

= cl conv
({

sM(K)P : xξK ≤ s ≤ xξK

})
= cl conv

(
xξKM(K)P ∪ xξKM(K)P

)
. �

5sM(K)P = {sv : v ∈M(K)P}.
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The dual of Proposition 2.13 is:

Proposition 2.14.

Let P ⊆ Nn be a pattern with supp(P) 6= [n] and ξ ∈ Nn a vector with supp(ξ) ⊆
[n]\ supp(P). Furthermore, let [[K]]supp(ξ) be compact. Then

P(K)ξ+P =
{
xξg : xξK g ∈ P(K)P and xξK g ∈ P(K)P

}
. 4

Proof. The assertion follows from

P(K)ξ+P =
{
f ∈ P(K) : f =

∑
β∈P

fξ+βx
ξ+β
}

=
{
f ∈ P(K) : f = xξ

∑
β∈P

fξ+βx
β
}

=
{
xξg ∈ P(K) : g ∈ R[x]P

}
.

Since supp(ξ) ∩ supp(β) = ∅ is xξg nonnegative on K if and only if xξK g and xξK g

are nonnegative on K. �

The shifting procedure has the following consequence for (SP):

Corollary 2.15.

[9] Let P ⊆ Nn be a pattern with supp(P) 6= [n] and ξ ∈ Nn a vector with supp(ξ) ⊆
[n]\ supp(P). Furthermore, let [[K]]supp(ξ) be compact. The separation problem (SP)

for the moment body M(K)ξ+P and a point v ∈ Rξ+P can be formulated as follows

maximize δ − 〈 c,v 〉

for c ∈ Rξ+P and δ ∈ R

subject to cβ ∈ [−1, 1] for all β ∈ P

xξK
∑
β∈P

cξ+βx
β ≥ δ for all x ∈ K,

xξK
∑
β∈P

cξ+βx
β ≥ δ for all x ∈ K. 4

Proof. The assertion follows from applying Proposition 2.14 to (SP). �
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Chapter 3

Known Convexification Techniques are Monomial Patterns

In this chapter we formulate established convexification techniques from the literature
as patterns. These patterns have in common that their corresponding moment cones
C(K)P or polynomial cones P(K)P admit an exact or approximate description that is
computationally tractable. All pattern types introduced in this chapter can be used –
alone or in combination – to generate computationally tractable pattern relaxations
of (POP). The list of techniques is by no means extensive. Notably, in the context
of moment and SOS relaxations there exists a wide range of related approaches that
exploit intrinsic sparsity and symmetry, see [30, 53, 68, 67]. These techniques are not
in opposition to the pattern relaxation approach and should also be considered in an
implementation of the pattern relaxation.

Let α, β ∈ Nn be two vectors. We define

Nn
β := {γ ∈ Nn : γ ≤ β}

Nn
2d := {γ ∈ Nn : γ1 + · · ·+ γn ≤ 2d}

and denote the Hadamard product of α and β by α ◦ β := (αiβi)i∈[n]. Whether we

have a tractable description of the cones P(K)P and C(K)P depends not only on the

pattern, but also on the set K. If we were to relax (POP) exclusively by patterns,

for which we have a tractable description of P(K)P, the portfolio of pattern types at

our disposal might be too small to find a pattern family that exploits the monomial

structure of A to our satisfaction. As we are interested in lower bounds on the optimal

value of (POP), there exist workarounds for this. The next remark shows how to deal

with such situations.

Remark 3.1.

Let K ⊆ Rn and K̃ ⊆ Rn be closed semialgebraic sets such that K ⊆ K̃ and K is

defined by the polynomials g1, . . . , gr ∈ R[x]:

K =
{
x ∈ Rn : gi(x) ≥ 0 for all i ∈ [r]

}
. (3.1)
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A computationally tractable description of P(K̃)P can be used to obtain a computa-

tionally tractable convex relaxation of P(K)P. This can be done in different ways,

e.g.

P(K̃)P,(C1)

P(K̃)P +
∑
i∈[r]

giP(K̃)P or(C2)

∑
γ∈Nr

β

∏
i∈[r]

(gi)γiP(K̃)P,(C3)

where β ∈ Nn. The cones (C1) to (C3) contain P(K)P. Hence, using (C1), (C2)

or (C3) to replace the respective cone P(K)P in (D-RLX) yields a valid relaxation

of (POP). While the idea of (C1) might seem trivial – clearly a polynomial that is

nonnegative on K̃ is also nonnegative on K – the global solver BARON considerably

relies on it, see [50]. BARON encases compact sets K by boxes K̃, this allows the

solver to rigorously use McCormick envelopes, for more details see Section 3.2 and

Remark 3.6. (C2) and (C3) follow the principle ‘sums and products of nonnegative

polynomials are also nonnegative’. Note that (C2) is similar in spirit to quadratic

modules [40, Ch. 2] and (C3) to Handelman’s Positivstellensatz [40, Thm. 7.1.6] if

gi are linear. Both (C2) and (C3), effectively ‘create’ new patterns, that are

P̃ = P ∪
⋃
i∈[r]

(
supp(gi) + P

)
and P̃ =

⋃
γ∈Nr

β

(∑
i∈[r]

supp((gi)γi) + P
)
, respectively.

Furthermore, the cones (C1),(C2) and (C3) are, usually strictly, contained in P(K)P

or P(K)P̃ Thus, using (C1),(C2) or (C3) instead of P(K)P or P(K)P̃ within the

pattern relaxation, one does not solve (D-RLX), but a relaxation of (D-RLX). 4

Plot Set Up 3.2.

For the illustration of the pattern types we consider different exponent sets for n = 2

in the following,

A1 := {(0, 0), (0, 3), (2, 0), (2, 3)},
A2 := {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)},
A3 := {(0, 4), (2, 5), (2, 8), (6, 2)},
A4 := {(0, 0), (2, 2), (2, 4), (4, 2)},
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A5 := {(0, 2), (3, 5), (6, 8)},
A6 := {(2, 8), (4, 5), (6, 2)},

Aex := {(0, 2), (1, 1), (2, 3), (2, 4), (4, 0), (5, 5)}.

The exponent sets are used in different figures throughout the next chapters. The

patterns and exponents are visualized as follows. The title of a subplot refers to the

set of original exponents, which are depicted by red squares. The auxiliary exponents

are depicted by blue dots. A pattern P corresponds to an undirected smooth curve and

all the colored points and squares that the curve passes through.

Note that not all the features of certain pattern types can be visualized for n = 2. For

example in Section 3.2 it is not possible to visualize the difference between the pattern

induced by McCormick envelopes and their generalization, i.e. multilinear patterns.

The set A4 is the monomial support of the Motzkin polynomial:

motz(x) =x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1, (3.2)

for which it is known that motz(x) ≥ 0 on Rn and that motz(x)− λ is for no λ ∈ R
SOS, see [40, Prop. 1.2.2].

Furthermore, Aex will also be used in the numerical result section. 4

3.1 Singletons

Definition 3.3 (Singleton Pattern).

We call {α} with α ∈ Nn a singleton. 4

Singletons are the smallest patterns within the pattern framework. The moment body
of a singleton {α} for a compact set K is the interval

M(K){α} = [xαK,x
α
K]

and the pattern relaxation ofM(K)A induced by the family of singletons {{α} : α ∈
A} is Box(xA

K,x
A
K). While this seems rather unimpressive, the provided bounds on

the monomial variables vα can be exploited by branch-and-bound solvers [55] and in
Algorithm 5.1 singletons ensure boundedness of (MP).
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3.2 Multilinear Patterns

State-of-the-art solvers, like BARON, that are capable of solving (POP) globally for

compact sets K, exploit multilinear structures in order to build their convex re-

laxations. The next definition formalizes these multilinear structures in terms of

patterns.

Definition 3.4 (Multilinear Pattern).

Let α ∈ Nn and I ⊆ {0, 1}n with I 6= ∅. We call

ML(α, I) := {(α1ω1, . . . , αnωn) ∈ Nn : ω ∈ I}

a multilinear pattern (ML). 4

From this point onwards, whenever we introduce an operator for a pattern type,
such as ML(α, I), we imply that the input parameters satisfy the assumptions of the
respective definition. We note that, depending on the context, the parameters may
be named differently or compound expressions.

0 5

0

5

α1

α2

A1

0 5α1

A2

0 5α1

Aex

Figure 3.1: Visualization of possible multilinear patterns and families as described in
Plot Set Up 3.2. Left: the pattern ML((2, 3), {0, 1}2). Middle: {ML(α, {0, 1}2) :
α ∈ A2\{0}}. Right: {ML(α, {0, 1}2) : α ∈ Aex}.

The multilinear structures that can be found in the literature usually correspond to
rather static choices of I in ML(α, I). Definition 3.4 poses a generalization of the
multilinear structures that one usually encounters, in which the parameter I can be
flexibly chosen. We briefly discuss this at the end of this section.

The notion ‘multilinear’ is coined by the observation that for f ∈ R[x]ML(α,I) is mul-

tilinear in yi = xαi
i , i.e.

∑
ω∈I fα◦ωy

ω ∈ R[y]I is a multilinear polynomial. It is a

well-known fact that the convex envelope of a multilinear function over K = Box(l,u)

is a polytope. In our context this implies the following:
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Proposition 3.5 ([9]).

Let l,u ∈ Rn with l < u and K = Box(l,u). The moment body M(K)ML(α,I) is a

polytope satisfying

M(K)ML(α,I) = conv(m(V)I)

with V := {xα1e1

K ,xα1e1

K } × · · · × {xαnen

K ,xαnen

K }. 4

Proof. Using K̃ := [xα1e1

K ,xα1e1

K ]× · · · × [xαnen

K ,xαnen

K ] we can write

m(K)ML(α,I) = {m(x)ML(α,I) : x ∈ K}
∼= {m((xαie

i

)i∈[n])I : x ∈ K}
= {m(x)I : x ∈ K̃}
= m(K̃)I.

Clearly, x 7→ m(x)I is a multilinear map. So, if x? is in K̃, but not in the vertex set

V of K̃, there exists i ∈ [n] such that the points x?± εei belong to K̃ for a sufficiently

small ε > 0. By multilinearity of m(x)I one has

m(x∗)I =
1

2
m(x? − εei)I +

1

2
m(x? + εei)I.

This shows that the points of m(K̃ \ V)I are not extreme points of m(K̃)I. Conse-

quently, m(K̃)I = m(V)I and thereforeM(K)ML(α,I)
∼= conv(m(V)I). Here ‘∼=’ is used

to emphasise that m(K̃)I ⊆ RI and m(K)ML(α,I) ⊆ RML(α,I) live in differently indexed

spaces. �

A illustration of Proposition 3.5 is given in Figure 3.2. For the rest of this section we
assume that K = Box(l,u) for l,u ∈ Rn with l < u.

Figure 3.1 shows three different applications of multilinear patterns. The left subfig-
ure illustrates how one pattern connects all exponents of an exponent set, here A1,
directly. The corresponding moment body is shown in Figure 3.2 for K = [0, 1]2.
The middle subplot is an example of an exponent set A2, where a sparse application
of multilinear patterns, as suggested in [26, 11], does not connect any of the original
exponents1. While BARON usually handles polynomial problems with sparse monomial
support well, the numerical results in Chapter 6 show that it struggles with problems
that have a monomial support that are chain shaped like A2. The the right subplot is
an example where a sparse application of multilinear patterns, that is the family

{ML(α, {0, 1}2) : α ∈ A},
1Recall that the 0 exponent does not connect monomial variables, see Definition 2.4.
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indirectly connects the original exponents (2, 3) and (2, 4) via the auxiliary variable
(2, 0).

v(2,0) v(0,3)

v(2,3)

M(K)A1/{0}

Figure 3.2: The moment bodyM(K)A1\{0} in green and the surface {m(x)A1\{0} : x ∈
K} for K = [0, 1]2. Note that M([0, 1]2)A1 = {1} ×M([0, 1]2)A1\{0}.

Remark 3.6.

1. From Proposition 3.5 immediately follows that P(K)ML(α,I) for K = Box(l,u)

is an polyhedral cone: Lemma 2.6 asserts that a polynomial f ∈ R[x]ML(α,I) is

nonnegative on K if and only if 〈f ,v〉 ≥ 0 for all v ∈M(K)ML(α,I). Thus,

P(K)ML(α,I) =
{
f ∈ R[x]ML(α,I) :

∑
ω∈I

fα◦ωx̃ω ≥ 0 for all x̃ ∈ V
}
.

2. If K is not an axis-parallel box, but just a compact set, the description given in

Proposition 3.5 may still be used to derive a relaxation ofM
(
K
)

ML(α,I)
. Observe

that K ⊆ Box
(
x
{ei:i∈[n]}
K ,x

{ei:i∈[n]}
K

)
. Thus,

M
(
K
)

ML(α,I)
⊆M

(
Box

(
x
{ei:i∈[n]}
K ,x

{ei:i∈[n]}
K

))
ML(α,I)

.
4

Corollary 3.7 ([9]).

Let l,u ∈ Rn with l < u and K = Box(l,u). The separation problem for the moment

body M(K)ML(α,I) and a point v ∈ RML(α,I) can be formulated as the following linear
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program

maximize δ − 〈 c,v 〉

for c ∈ RML(α,I) and δ ∈ R

subject to cβ ∈ [−1, 1] for all β ∈ ML(α, I),∑
ω∈I

cα◦ωwω ≥ δ for all w ∈ m(V)I,

where V := {xα1e1

K ,xα1e1

K } × · · · × {xαnen

K ,xαnen

K }. 4

Proof. The assertion follows from Proposition 3.5.

The linear problem in Corollary 3.7 involves maximal 2# supp(α) inequalities indexed
by vectors w ∈ m(V)I.

Algorithm 3.1: Recursive McCormick Envelopes

Input: α ∈ Nn with # supp(α) ≥ 2
Output: family of multilinear patterns Fαrec

(0) Set J = {α} and Fαrec = ∅.
(1) While J 6= ∅:

Choose β ∈ J.

Decompose β into β′, β′′ ∈ Nn such that β = β′ + β′′,
supp(β′) 6= ∅, supp(β′′) 6= ∅ and supp(β′) ∩ supp(β′′) = ∅.
Remove β from J and add the multilinear pattern {β, β′, β′′,0} to Fαrec.

If # supp(β′) ≥ 2, add β′ to J.

If # supp(β′′) ≥ 2, add β′′ to J.

Multilinear patterns for multilinear polynomials

Multilinear patterns can be found in different contexts in the literature. In their basic
version they are used to convexify multilinear polynomials. An essential building
block for the convexification of product terms is the McCormick envelope [42], that is
the convexification of bilinear products x1x2 by a tight description of the moment body
M(K)ML((1,1),{0,1}2). McCormick envelopes have been successfully used to build convex
relaxations of multilinear monomials by applying them recursively. Algorithm 3.1
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describes this recursion for a monomial xα. This procedure corresponds to a binary
tree with root α and the moment body of each pattern in Fαrec is tightly described
by a McCormick envelope. In general it is not clear how to favorably decompose an
exponent β ∈ J in Algorithm 3.1. For the smallest nontrivial case # supp(β) = 3 this
has been investigated in [63].

Another way to convexify xα with α ∈ {0, 1}n and # supp(α) ≥ 2 is to introduce
for each factor xαi

i with αi 6= 0 a moment variable vαi
[20]. This corresponds to the

pattern

Pα := ML(α, {1,0} ∪ {ei : i ∈ supp(α)}). (3.3)

Multilinear Patterns for general Exponent Sets

Multilinear patterns have also been applied to polynomials f ∈ R[x]A with general
exponent set A ⊆ Nn and compact K. [11, 26]. We outline the underlying concept of
this: Let

Γ :=
{
αie

i : α ∈ A and i ∈ [n]
}
\
{
0
}

and

Ã :=
{
β ∈ {0, 1}Γ : there exists α ∈ A with

∑
γ∈Γ βγγ = α

}
.

Then using the substitution yαiei = xαie
i

a multilinear intermediate2

f̃ =
∑
β∈Ã

fΓβy
β ∈ R[y]Ã

of f is generated. The multilinear intermediate f̃ has exponents from Ã and the

indeterminates y are indexed by Γ.

Example 3.8.

For Aex = {(0, 2), (1, 1), (2, 3), (2, 4), (4, 0), (5, 5)} the sets Γ and Ã from above are

Γ = {(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (2, 0), (4, 0), (5, 0)}

and

Ã = {(0, 1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0, 1, 0, 0),

(0, 0, 0, 1, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 0, 0, 0, 1)}. 4

2Here we use Γβ :=
∑
γ∈Γ γβγ similar to the matrix-vector product.
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This corresponds to relaxing the usually non-polyhedral M(K)A with the polytope
M(Box(xΓ

K,x
Γ
K))Ã and (POP) by

minimize 〈 f̃ ,v 〉
for v∈ RÃ

subject to v∈M
(

Box
(

xΓ
K,x

Γ
K

))
Ã
.

(3.4)

The problem (3.4) is then further relaxed using Algorithm 3.1 or (3.3). This entire
process can also be expressed using multilinear patterns, see for example subfigure
Aex in Figure 3.1.

For A = {α} with α ∈ Nn the pattern relaxation corresponding to the pattern family
{Pα} is tight, while relaxation corresponding to Fαrec is usually not tight for A = {α}.
It is however not clear which system

vPα ∈M(K)Pα for all α ∈ A with # supp(α) ≥ 2 (3.5)

or

vP ∈M(K)P for all P ∈ Fαrec, α ∈ A with # supp(α) ≥ 2 (3.6)

yields a tighter convex relaxation ofM(K)A for A ⊆ Nn with #A ≥ 2. This is due to
the different choice of auxiliary variables and how the original moment variables are
connected by the different pattern families in (3.5) and (3.6). In our Definition 3.4
of ML(α, I) the parameter I allows to flexibly choose auxiliary variables and thereby
control the connective properties of the of multilinear pattern family. In doing so one
can combine the merits of Pα and Fαrec.

3.3 Expression Trees

Convexification using expression trees is common in general nonlinear optimization

[59, 62] over compact sets K. In this section K is an axis-parallel box.3 This approach

is based on the observation that each algebraic expression is made up of a certain

set of elementary operations, such as powers, linear combinations, or products of ex-

pressions. A decomposition of an algebraic expression into these operations can be

visualized using an algebraic expression tree, like in Figure 3.3. This is a rooted tree

with nodes labeled by terms occurring in the expression. Each term is built up from

3This is not much of a restriction, as for this technic K is usually approximated by a box, see [50].
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its child terms using elementary operations and the underlying convexification is ob-

tained by introducing a variable for each node and providing convex constraints that

link every node and its child nodes. For polynomials, given as a linear combination of

monomials, all the nodes apart from the root node correspond to monomial variables.

A non-root node and its child nodes therefore build a pattern. For example, the term

f ex(x) = f(4,0)x41 + f(1,1)x1x2 + f(2,3)x21x32 + f(2,4)x21x42 + f(5,5)x51x52 + f(0,2)x22
x41 x1x2 x21x

3
2 x21x

4
2 x51x

5
2 x22

x1 x1 x2 x21 x32 x21 x42 x51 x52 x2

x1 x2 x1 x2 x1 x2

Figure 3.3: A possible algebraic expression tree for the polynomial f ex with supp(f ex) ⊆
Aex and the set Aex from Plot Set Up 3.2.

x2
1x3

2 in Figure 3.3 is decomposed into the product of the powers x2
1 and x3

2 of the

variables x1 and x2. For these three terms, one introduces the monomial variables

v(2,3), v(2,0) and v(0,3), respectively. The relationship of these variables is captured by

the pattern P = {(2, 3), (2, 0), (0, 3)} and the corresponding moment bodyM(K)P is

described by the well-known McCormick inequalities. The variable v(0,3) is further

connected to v(0,1) by exponentiation. The corresponding pattern is {(0, 1), (0, 3)}.
All patterns induced by the tree in Figure 3.3 are visualized in Figure 3.4.

Remark 3.9.

There exist other ways to form an expression tree. In Figure 3.3 the product x2
1x3

2 could

also be split into x2
1x2

2 and x2 or x1 and x1x3
2. However, the corresponding patterns

{(2, 3), (2, 2), (0, 1)} and {(2, 3), (1, 0), (1, 3)} and their moment bodies are not tightly

described McCormick envelopes anymore if K is an axis-parallel box. 4

Since expression trees normally correspond to patterns of small size, they lead to
weak, but efficiently computable relaxations, which are often used in divide-and-
conquer approaches like branch-and-bound methods. The computational costs of
such strategies strongly depend on the quality of the generated lower bounds. If
the underlying bounds are too weak, the branch-and-bound based approach is not
computationally feasible.
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0 5

0

5

α1

α2

Aex

Figure 3.4: Visualization of the pattern family F induced by the expression tree
from Figure 3.3 as described in Plot Set Up 3.2. The induced family is F :=
{ML(α, {0, 1}2) : α = (1, 1), (2, 3), (2, 4), (5, 5)} ∪ {{(0, 1), (0, i)} : i ∈ [5]\{1}} ∪
{{(1, 0), (i, 0)} : i ∈ {2, 4, 5}}.

3.4 Bound-Factor Products

Another convexification approach is based on so-called bound-factor products [19].
This approach is also tailored for K = Box(l,u) with l,u ∈ Rn and l < u 4. Since the
polynomials xi − li and ui − xi are nonnegative on K, the products of these polyno-
mials (with repetitions allowed) are also nonnegative on K. So, one can consider the
products

Fα,β(x) :=
∏
i∈[n]

(xi − li)
αi−βi(ui − xi)

βi (3.7)

of |α| polynomials with αi linear factors depending on the variable xi, where α, β ∈ Nn

and α ≥ β. For a generic choice of l and u, the polynomial Fα,β(x) includes all
monomials with exponents in the pattern

BF(α) := {0, . . . , α1} × · · · × {0, . . . , αn}.

By substituting vγ = xγ for all γ ∈ BF(α) we obtain a linearization LFα,β(v) of
Fα,β(x). The system of linear inequalities

LFα,β(v) ≥ 0 for all β ∈ BF(α) (3.8)

is valid for v ∈M(K)BF(α). This approach can also be viewed as hierarchical since one
can increase the order of the bound-factor products in order to tighten the relaxation.

4Though using Remark 3.6 this approach can be applied to situations, where K is compact but not
a box.
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0 5
0

5

α1

α2

Aex

Figure 3.5: Visualization of the bound-factor product pattern BF((5, 5)) applied to Aex

as described in Plot Set Up 3.2.

In the polynomial optimization community the method of bound-factor products is
known as the dual of Handelman’s hierarchy [27]. Within this approach one groups
monomial variables into patterns of a rather large size and connects them with only
linear constraints. For example, to generate a non-trivial relaxation of (POP) using
bound-factor products for the set Aex from Plot Set Up 3.2 one is forced to use at least
one pattern BF(α) with α1 ≥ 5 and α2 ≥ 5, which means that at least 36 monomial
variables have to be introduced, see Figure 3.5. Another issue is that the system of
linear inequalities (3.8) is not a tight description ofM(K)BF(α). To mitigate this, these
kinds of relaxations have also been used within branch-and-bound strategies.

3.5 Moment Relaxations

The most popular convexification techniques in the polynomial optimization com-
munity are the moment relaxation and its dual counterpart, the SOS relaxation
[2, 38, 40]. This approach introduces a large number of monomial variables and links
them all with one large pattern using PSD constraints. The approach is hierarchical
in the sense that one first needs to choose a bound on the degree of the monomi-
als, for which monomial variables are introduced. These hierarchies have in practice
good approximation properties at the expense of large semidefinite programs (SDPs),
see [49] for computational studies. Even the lowest possible hierarchy level of the
moment relaxation for medium-sized problems results in huge SDPs. For example
a generic 6-variate polynomial of degree 12 the SDP already includes a dense PSD
constraint of size 924. However, strategies exist to make the approach more tractable,
e.g., [1, 69, 36] and [2, Ch. 8].
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To derive a so-called moment relaxation of (POP), the following representation of the
moment body M(K)A in terms of probability measures is used [38, Sec. 4.2]:

M(K)A =

{∫
m(x)Aµ(dx) : µ is a probability measure on K

}
.

So a vector v ∈ RA belongs toM(K)A if and only if there exists a probability measure
µ on K such that vα =

∫
xαµ(dx) for all α ∈ A. Hence, (C-POP) can be formulated

as

minimize 〈 f ,v 〉
for v ∈ RNn

subject to v is a moment sequence of a probability measure on K.

In order to obtain a tractable characterization of the feasible set, we use the following

definition and theorem.

Definition 3.10 (Moment Matrix and Localizing Matrix [37, Ch.2.7.1]).

The localizing matrix Mk(g,v) for a polynomial g with coefficients (gα)α and the

moment matrix Mk(v) are defined as

Mk(g,v) :=

(∑
γ∈Nn

gγvγ+α+β

)
α,β∈Nn

k

Mk(v) := Mk(1,v). 4

Theorem 3.11 ([37, Thm. 2.44]).

Let g1, . . . , gr ∈ R[x] be n-variate polynomials such that there exist SOS polynomials

s1, . . . , sr for which {
x ∈ Rn : s0(x) +

∑
i∈[r]

si(x)gi(x) ≥ 0
}

(3.9)

is compact. Furthermore, let

K =
{

x ∈ Rn : gi(x) ≥ 0 for all i ∈ [r]
}
. (3.10)

A sequence {vα}α∈Nn has a finite Borel representing measure with support in K if and
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only if

Mk(v) ∈ SNn
k

+ and

Mk(gi,v) ∈ SNn
k

+ for all i ∈ [r] and for all k. 4

Remark 3.12.

If K = Box(l,u) with l,u ∈ Rn and l < u, the box K can be described by the polynomi-

als gi(x) := (xi − li)(ui − xi) for i ∈ [n], i.e. K = {x ∈ Rn : gi(x) ≥ 0 for all i ∈ [n]}.
Note that the assumptions of Theorem 3.11 hold for these g1, . . . , gn. 4

With Theorem 3.11 we can formulate (C-POP) as

minimize 〈 f ,v 〉
for v ∈ RNn

subject to Mk(v) ∈ SNn
k

+ for all k,

Mk−2(gi,v) ∈ SNn
k−2

+ for all i ∈ [r] and for all k,

v0 = 1.

By truncating the infinite dimensional matrices we obtain a finite-dimensional prob-
lem. For every d ≥ ddeg(A)/2e the optimal value ρd of the semidefinite problem

minimize 〈 f ,v 〉
for v ∈ RNn

2

subject to Md(v) ∈ SNn
d

+ ,

Md−2(gi,v) ∈ SNn
d−2

+ for all i ∈ [r],

v0 = 1

is a lower bound on the optimal value of (POP). This problem has one SDP constraint
of size

(
n+d

d

)
that involves the variables vα with α ∈ Nn

2d and n SDP constraints of size(
n+d−1

d−1

)
that involve the moment variables vα with α ∈ Nn

2d−2. Hence, the moment
relaxation uses the pattern Nn

2d. Note that for general problems it is not possible to
reduce the size of the mentioned SDP constraints [7].

For a small example like Aex from Plot Set Up 3.2 with deg(Aex) = 10 and n = 2
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this adds up to 66 moment variables. Figure 3.6 shows the pattern corresponding
to the lowest hierarchy level that is needed in order to solve (POP) for A = Aex

and K = Box(l,u) with l,u ∈ Rn and l < u. This hierarchy level involves an SDP
constraint with a 21× 21 matrix.

0 10
0

10

α1

α2

Aex

Figure 3.6: Visualization of pattern N2
10 corresponding to the lowest hierarchy level of

the moment relaxation applied to Aex as described in Plot Set Up 3.2.

3.6 Nonnegative Circuit Polynomials

A relatively new Positivstellensatz utilizes so-called sums of nonnegative circuit poly-
nomials (SONCs) [29] to build convex relaxations of (POP). In their standard form
these relaxations are employed for unconstrained problems. We therefore assume in
this section that K = Rn. However, using Remark 3.1 SONCs can also be adapted
to derive lower bounds for constrained optimization problems. SONCs have been
successfully used to find the minimum of polynomials that are not SOS like the
Motzkin polynomial (3.2). The current literature regarding SONC includes: relative
entropy relaxations of SONC cones [17], experimental evaluations using geometric
programming (GP) [58], characterizations of the dual of the SONC cone [31] and
linear approximations [22].

The smallest building block of SONC is the following pattern type.

Definition 3.13 (Circuit).

Let S ⊆ 2Nn be an affinely independent set of cardinality k with 2 ≤ k ≤ n + 1 and let

µβ ∈ RS
++ be a weight vector with

∑
α∈S µ

β
α = 1 such that the corresponding convex

combination of exponents in S satisfies

β :=
∑
α∈S

µβαα ∈ Nn.
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We call

CR(S, µβ) : = S ∪ {β}

a circuit (CR), β the center of the circuit and the elements of R[x]CR(S,µβ) circuit

polynomials.5 Furthermore, let F be a family of circuits. Modifying the notation

established in [29], we refer to a polynomial f that satisfies

f ∈
∑
P∈F

P(Rn)P (3.11)

as a sum of nonnegative circuit polynomials (SONC) and the Minkowski sum of cones

P(Rn)CR(S,µβ) as a SONC cone with respect to F . 4

This slightly extends the original definition of the SONC cone by the family F .
Furthermore, in this definition the SONC cone is closed, whereas this is not the case
for the one given in [29, Def. 1.3], that is{∑

P∈F

fP ∈ R[x]Nn
2d

: F is a family of circuits and fCR(S,µβ) ∈ P(Rn)CR(S,µβ)

satisfies f
CR(S,µβ)
β 6= 0, f

CR(S,µβ)
S > 0 for all CR(S, µβ) ∈ F

}
.

Definition 3.14 (Power Cone).

Let S ⊆ Nn be a nonempty and finite set with cardinality k := #S, β ∈ Nn with β /∈ S

and µ ∈ RS
++ with

∑
α∈S µα = 1. The k + 1 dimensional power cone Pµ corresponding

to µ is defined as

Pµ :=
{

(uS, uβ) ∈ RS
+ × R{β} : |uβ| ≤

∏
α∈S

uµαα

}
.

4

In the following we derive the known characterization of P(Rn)CR(S,µβ) from its dual

C(Rn)CR(S,µβ). We will see that C(Rn)CR(S,µβ) and P(Rn)CR(S,µβ) have a native rep-

resentation by the power cone and its dual. These cones can be exploited compu-

tationally by conic programming solvers. Since the power cone representation does

not involve a nonlinear transformation, like the one given in [29], it allows to freely

combine circuits with all other pattern types. We also give an alternative proof for

[29, Thm. 5.5].

5As always, whenever we write CR(S, µβ) we imply that the parameters S and µβ satisfy the
assumptions of Definition 3.13.
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Figure 3.7: Visualization of two circuits as described in Plot Set Up 3.2. Left: CR(S, µ)
with S = {(0, 4), (2, 8), (6, 2)} and µ = (0.6, 0.3, 0.1). Right: monomial support of
the Motzkin polynomial motz(x) = x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1.

Theorem 3.15 (Dual Power Cone, [18, Thm. 4.3.1.]).

Let S ⊆ Nn a nonempty and finite set, β ∈ Nn with β /∈ S, µ ∈ RS
++ with

∑
α∈S µα = 1

and6

Bµ :=

diag(µ) 0

0 1

 ∈ R(S∪{β})×(S∪{β}).

The dual of the power cone Pµ is

P∗µ = Bµ · Pµ

or equivalently

P∗µ =
{

(wS,wβ) ∈ RS
+ × R{β} : |wβ| ≤

∏
α∈[S]

(
wα

µα

)µα }
.

4

For more information on the power cone the interested reader is referred to [18] and

the MOSEK Modeling Cookbook [4]. In [18] the power cone is thoroughly investigated

and self-concordant barrier functions for the power cone are presented. These barrier

functions make the power cone accessible to conic programming solvers that employ

interior-point methods. The MOSEK Modeling Cookbook provides tips for the usage of

power cones and documents the current state-of-the-art algorithms used for solving

power cone formulations.

6diag(µ) is a S× S diagonal matrix with diagonal µ ∈ RS
++.
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Theorem 3.16.

Let CR(S, µβ) be a circuit. If β ∈ 2Nn then

C(Rn)CR(S,µβ) =
{

v ∈ RS
+ × R{β} : 0 ≤ vβ ≤

∏
α∈S

vµ
β
α
α

}
and if β /∈ 2Nn then

C(Rn)CR(S,µβ) =
{

v ∈ RS
+ × R{β} : |vβ| ≤

∏
α∈S

vµ
β
α
α

}
. 4

Proof. Let

K≥ := cl cone
({

m(x)CR(S,µβ) ∈ RCR(S,µβ) : x ∈ Rn and xβ ≥ 0
})

K≤ := cl cone
({

m(x)CR(S,µβ) ∈ RCR(S,µβ) : x ∈ Rn and xβ ≤ 0
})
.

We claim that for β ∈ Nn

K≥ =
{

v ∈ RS
+ × R{β} : 0 ≤ vβ ≤

∏
α∈S

vµ
β
α
α

}
(3.12)

and that for β /∈ 2Nn

K≤ =
{

v ∈ RS
+ × R{β} : 0 ≥ vβ ≥ −

∏
α∈S

vµ
β
α
α

}
. (3.13)

After proving the claim, the assertion of the theorem follows for β ∈ 2Nn since

C(Rn)CR(S,µβ) = K≥ and for β /∈ 2Nn since C(Rn)CR(S,µβ) = K≤ ∪ K≥. We start by

showing (3.12).

Since S ⊆ 2Nn, m(x)S ≥ 0 holds for all x ∈ Rn and therefore vS ≥ 0 for all v ∈
C(Rn)CR(S,µβ). Hence, writing xβ as

∏
α∈S(xα)µ

β
α yields

K≥ = cl cone
({

m(x)CR(S,µβ) ∈ RCR(S,µβ) : x ∈ Rn and
∏
α∈S

(xα)µ
β
α ≥ 0

})
= cl cone

({
v ∈ RS

+ × R{β} : vS = m(x)S,x ∈ Rn and vβ =
∏
α∈S

vµ
β
α
α

})
(3.14)

= cl cone
({

v ∈ RS
+ × R{β} : vβ =

∏
α∈S

vµ
β
α
α

})
. (3.15)
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To see the latter equality, observe that (3.14) is contained in (3.15). For the other

inclusion it is enough to show that for all vS ∈ RS
+ it holds(

vS,
∏
α∈S

vµ
β
α
α

)
∈ K≥. (3.16)

To this end, for each ω ∈ S we provide sequences
{
λ(k,ω)

}
k∈N\{0} ⊆ R+ and{

x(k,ω)
}

k∈N\{0} ⊆ Rn such that the product of λ(k,ω) and m
(
x(k,ω)

)
S

converges to

the unit vector eω,S ∈ RS, i.e.

lim
k→∞

λ(k,ω) m
(
x(k,ω)

)
S

= eω,S. (3.17)

Since the elements in S are affinely independent, there exists for each ω ∈ S a vector

p ∈ Rn with p 6= 0 and 〈p, ω〉 > 〈p, α〉 for all α ∈ S\{ω}. Using p we define

λ(k,ω) := k−〈p,ω〉 and x(k,ω) := (kpi)i∈[n]. Then

lim
k→∞

λ(k,ω)
(
x(k,ω)

)ω
= lim

k→∞
k−〈p,ω〉

∏
i∈[n]

kpiωi

= lim
k→∞

k〈p,ω〉−〈p,ω〉

= 1

and for α ∈ S\{ω}

lim
k→∞

λ(k,ω)
(
x(k,ω)

)α
= lim

k→∞
k−〈p,ω〉

∏
i∈[n]

kpiαi

= lim
k→∞

k〈p,α〉−〈p,ω〉

= 0,

since 〈p, α〉 − 〈p, ω〉 < 0. This shows (3.17). For each v ∈ RS
+

v(k) :=
∑
α∈S

vαλ
(k,α) m

(
x(k,α)

)
S

converges for k→∞ to v and

lim
k→∞

∏
α∈S

(
v(k)
α

)µβα
=
∏
α∈S

(
lim

k→∞
v(k)
α

)µβα
=
∏
α∈S

vµ
β
α
α .
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Observe that from (3.14) follows that {(v(k),
∏

α∈S(v
(k)
α )µ

β
α)}k∈N\{0} is a sequence in

K≥. Hence, we have shown (3.16) since K≥ is a convex and closed cone and since this

sequence converges to (vS,
∏

α∈S vµ
β
α
α ).

Next, letK be the right hand side of (3.12). From the observation that vS 7→
∏

α∈S vµ
β
α
α

is concave on RS
≥0 follows that K is convex. Note that K is a closed cone. Hence, with

(3.15) follows K≥ ⊆ K. For the reverse inclusion observe that from (3.15) it follows

eα,S∪{β} ∈ K≥ for all α ∈ S. This shows that (vS, 0) ∈ K≥ for every vS ∈ RS
+ since

K≥ is a convex cone. Since (vS,
∏

α∈S vµ
β
α
α ) ∈ K≥ this implies due to the convexity of

K≥ that (vS, vβ) ∈ K≥ for all 0 ≤ vβ ≤
∏

α∈S vµ
β
α
α . This shows K ⊆ K≥ and therefore

the claim (3.12).

Repeating the above steps, this time using the convexity of vS 7→ −
∏

α∈S vµ
β
α
α on RS

+,

we obtain the claim (3.13). �

Theorem 3.16 shows that the native cones to represent C(Rn)CR(S,µβ) are power
cones:

C(Rn)CR(S,µβ) = Pµβ ∩
(
RS × R{β}+

)
for β ∈ 2Nn

C(Rn)CR(S,µβ) = Pµβ for β /∈ 2Nn.
(3.18)

Furthermore, the proof of Theorem 3.16 can be modified to show that for β ∈ Nn

C(Rn
+)CR(S,µβ) =

{
v ∈ RS

+ × R{β} : 0 ≤ vβ ≤
∏
α∈S

vµ
β
α
α

}
. (3.19)

For that simply note that C(Rn
+)CR(S,µβ) = K≥. With the above we can derive the

known characterization of P(Rn)CR(S,µβ) from [29, Thm. 1.1] by simply dualizing

C(Rn)CR(S,µβ).

Corollary 3.17 ([29, Thm. 1.1]).

We define the circuit number Θf for a polynomial f ∈ R[x]CR(S,µβ) as

Θf :=
∏
α∈S

(
fα

µβα

)µβα
.

The cone of nonnegative circuit polynomials with support CR(S, µβ) is for β /∈ 2Nn

P(Rn)CR(S,µβ) =
{
g ∈ R[x] : g =

∑
α∈S

gαx
α + gβx

β,gS ≥ 0 and |gβ| ≤ Θg

}
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and for β ∈ 2Nn

P(Rn)CR(S,µβ) =
{
g ∈ R[x] : g =

∑
α∈S

gαx
α + gβx

β,gS ≥ 0 and gβ ≥ −Θg

}
. 4

Proof. P(Rn)CR(S,µβ) is a closed and convex cone. Thus, the assertion follows from

(3.18) and Theorem 3.15. That is for β /∈ 2Nn

P(Rn)CR(S,µβ) = C(Rn)∗CR(S,µβ)

= P∗µβ

=
{

(gS, gβ) ∈ RS
+ × R{β} : |gβ| ≤ Θg

}
and for β ∈ 2Nn

P(Rn)CR(S,µβ) = C(Rn)∗CR(S,µβ)

=
(
Pµβ ∩

(
RS × R{β}+

))∗
= P∗µβ +

({
0S
}
× R{β}+

)
=
{

(gS, gβ) ∈ RS
+ × R{β} : gβ ∈ −Θg + R+

}
. �

In the following we give an alternative proof of [29, Thm. 5.5]. To this end we use
the following conventions: for a family of circuits F

• Ze := {β ∈ 2Nn : CR(S, µβ) ∈ F} is the set of even centers of F ,

• Zu := {β /∈ 2Nn : CR(S, µβ) ∈ F} is the set of odd centers of F ,

• Z := Ze ∪ Zu is the set of all centers of F .

Corresponding to this we define

• F e := {CR(S, µβ) ∈ F : β ∈ Ze},

• Fu := {CR(S, µβ) ∈ F : β ∈ Zu}.

Hence, F = F e ∪ Fu. As usual, we use f
CR(S,µβ)
α = vec(fCR(S,µβ))α for α ∈ CR(S, µβ)

and f
CR(S,µβ)
α = 0 for α /∈ CR(S, µβ). Let f ∈ R[x]A be a polynomial, F be a family of

circuits with A ⊆ AF and K = Rn. With Corollary 3.17 we formulate the optimization
program (D-RLX) as
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maximize λ

for λ ∈ R,

f
CR(S,µβ)
S ∈ RS

+ for all CR(S, µβ) ∈ F ,
f
CR(S,µβ)
β ∈ R for all CR(S, µβ) ∈ F

subject to
∏
α∈S

(
f
CR(S,µβ)
α

µβα

)µβα
≥ |fCR(S,µβ)

β | for all CR(S, µβ) ∈ Fu,

− ∏
α∈S

(
f
CR(S,µβ)
α

µβα

)µβα
≤ f

CR(S,µβ)
β for all CR(S, µβ) ∈ F e,∑

CR(S,µβ)∈F
f
CR(S,µβ)
α = fα for all α ∈ AF\{0},∑

CR(S,µβ)∈F
f
CR(S,µβ)
0 = f0 − λ.

(D-SONC)

Lemma 3.18.

Let f ∈ R[x]A. If F is a family of circuits that satisfies

A = AF ,(A1)

fS\{0} > 0 for all CR(S, µβ) ∈ F ,(A2)

0 ∈ S for all CR(S, µβ) ∈ F ,(A3)

then the optimal value of (D-SONC) is attained. 4

Proof. For the proof we provide a generic feasible solution
(
fCR(S,µβ)

)
CR(S,µβ)∈F and

λ for (D-SONC). By choosing

fCR(S,µβ)
α =

fα

#{CR(S̃, µβ̃) ∈ F : α ∈ CR(S̃, µβ̃)}

for all α ∈ CR(S, µβ)\{0} and for all CR(S, µβ) ∈ F we ensure that the constraints∑
CR(S,µβ)∈F f

CR(S,µβ)
α = fα for all α ∈ AF\{0} are satisfied. From assumption (A2)

follows for this choice that

f
CR(S,µβ)
S\{0} > 0 for all CR(S, µβ) ∈ F . (3.20)
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Due to assumption (A3) and (3.20) we can make

∏
α∈S

(
f
CR(S,µβ)
α

µβα

)µβα

arbitrarily large by choosing f
CR(S,µβ)
0 large enough. Hence, by choosing an appropriate

f
CR(S,µβ)
0 we can satisfy the inequality constraints of (D-SONC). For the last step, set

λ = f0 −
∑

CR(S,µβ)∈F

f
CR(S,µβ)
0 . (3.21)

This shows that (D-SONC) is feasible. Replacing the objective function with (3.21)

shows that the objective value of (D-SONC) is decreasing in f
CR(S,µβ)
0 . Due to the

constraint f
CR(S,µβ)
S ∈ RS

+ in (D-SONC), we have f
CR(S,µβ)
0 ≥ 0. This implies that the

objective value of (D-SONC) is bounded by f0. With that, Lemma 2.11 yields the

assertion. �

Theorem 3.19 ([29, Thm. 5.5 + Cor. 7.4]).

Let f ∈ R[x]A and F satisfy the assumptions (A1), (A2), (A3) and

fβ ∈ R\{0} for all β ∈ Zu,(A4)

fβ < 0 for all β ∈ Ze,(A5)

for all CR(S, µβ) ∈ F holds β /∈ CR(S̃, µβ̃) for all CR(S̃, µβ̃) ∈ F with

CR(S̃, µβ̃) 6= CR(S, µβ),

(A6)

S = S̃ for all CR(S, µβ),CR(S̃, µβ̃) ∈ F ,(A7)

there exists x̃ ∈ Rn such that fβx̃
β < 0 for all β ∈ Z.(A8)

Furthermore, let K = Rn. Then the optimal values fpop of (POP) and fsonc of

(D-SONC) coincide. 4

The first 3 steps of our proof of Theorem 3.19 are similar to the steps of the proofs

given in [29].

Proof. First we make some observations. Lemma 3.18 asserts that there exists λ ∈ R
such that f−λ ≥ 0 on Rn. Let λ ∈ Rn be an arbitrary scalar such that g := f−λ ≥ 0

on Rn. From (A7) and Definition 3.13 follows that Z ⊆ relint(conv(S)). Thus, g has
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the form

g =
∑
α∈S

gαx
α +

∑
β∈Z

gβx
β, (3.22)

where gα = fα for all α ∈ A\{0} and g0 = f0−λ. Furthermore, since we always assume

that A 6= ∅, F must contain at least one circuit CR(S, µβ). By Definition 3.13 holds

that S ≥ 2 and therefore #Z ≥ 1. Assumption (A6) states that each center β ∈ Z is

contained in exactly one CR(S, µβ) ∈ F . That means

F = {CR(S, µβ) : β ∈ Z}.

The rest of the proof consists of five steps:

1. Proving that we can assume that g has the form

g =
∑
α∈S

gαx
α +

∑
β∈Z

gβx
β with gS > 0 and gZ < 0. (3.23)

2. Proving that g ≥ 0 on Rn if and only if g ≥ 0 on Rn
+.

3. Showing that we can assume that S satisfies

S ⊆ {rei : i ∈ [n] and r ∈ 2N} ∪ {0}, (3.24)

i.e. the exponents in S are located on the coordinate axes.

4. Proving that the optimal value fpop of (POP) is attained.

5. At last we use duality to finish the proof.

1.) Using x̃ from assumption (A8), let sign(x̃) := (sign(x̃i))i∈[n] and let g̃(x) :=

g((sign(x̃i)xi)i∈[n]). Note that for every x ∈ Rn there exists a unique vector x̄ =

(sign(x̃i)xi)i∈[n]) ∈ Rn. Thus, g ≥ 0 on Rn if and only if g̃ ≥ 0 on Rn. Next, the
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assumptions (A2), (A4) and (A5) imply the following7

vec(g̃)α = gα sign(x̃)α = gα > 0 for all α ∈ S\{0},
vec(g̃)β = gβ sign(x̃)β = gβ < 0 for all β ∈ Ze,

vec(g̃)β = gβ sign(x̃)β = gβ < 0 for all β ∈ Zu with gβ < 0 and

vec(g̃)β = gβ sign(x̃)β = −gβ < 0 for all β ∈ Zu with gβ > 0.

Observe that if vec(g̃)0 ≤ 0, then the Newton polytope of g̃ has at least one vertex8

with a negative coefficient. This contradicts g̃ ≥ 0 on Rn. Thus, vec(g̃)Z < 0 and

vec(g̃)S > 0. Hence, we assume from now on that g has the form (3.23).

2.) Let x ∈ Rn. We define |x| := (|x1|, . . . , |xn|) ∈ Rn
+ for a vector x ∈ Rn. Recall that

S ⊆ 2Nn. This implies gα|x|α = gαx
α for each α ∈ S. Furthermore, gβ|x|β ≤ gβx

β for

each β ∈ Z since gβ < 0 due to (3.23). Hence, it holds g(x) ≥ g(|x|). Thus, g ≥ 0 on

Rn if and only if g ≥ 0 on Rn
+.

3.) Next, let C ⊆ Zn be a set of vectors such that (S\{0}) ∪ C forms a basis of Rn.

This is possible since the elements of S are affinely independent and 0 ∈ S by (A3).

Let T be a matrix, whose columns are the exponents in (S\{0}) ∪ C. The matrix

T is invertible by construction. Hence, it follows from Cramer’s rule [61, Thm. 2.9]

that det(T)T−1 ∈ Zn×n is an integer matrix. Let T̄ := 2| det(T)|T−1. Then for each

α ∈ S\{0} there exists i ∈ [n] such that

T̄α = 2| det(T)|ei ∈ 2Nn.

The set S̄ := {T̄α : α ∈ S} satisfies (3.24), its elements are affinely independent and

0 ∈ S̄. Furthermore, Z̄ := {T̄β : β ∈ Z} is a subset of relint(conv(S̄)) because of

T̄β =
∑
α∈S

µβαT̄α

for CR(S, µβ) ∈ F . Let ḡ :=
∑

α∈A gαx
T̄α ≥ 0. We claim that

g ≥ 0 on Rn
++ ⇐⇒ ḡ ≥ 0 on Rn

++. (3.25)

7Recall that gα = fα for α ∈ A\{0}.
8Recall that #Z ≥ 1.

49



CHAPTER 3 KNOWN CONVEXIFICATION TECHNIQUES ARE MONOMIAL PATTERNS

Since Rn
++ is dense in Rn

+, (3.25) is equivalent to

g ≥ 0 on Rn
+ ⇐⇒ ḡ ≥ 0 on Rn

+,

which in turn concludes the third part of the proof. For the claim (3.25) observe that

for all x ∈ Rn
++ there exists w ∈ Rn such that xi = exp(wi) for all i ∈ [n]. Hence,

g ≥ 0 on Rn
++ ⇐⇒ g((exp(wi))i∈[n]) ≥ 0 on Rn.

The matrix T̄ is invertible and so is T̄>. Thus, for every w ∈ Rn there exists a unique

vector u ∈ Rn such that w = T̄>u. It follows from

g((exp(wi))i∈[n]) =
∑
α∈A

gα
∏
i∈[n]

exp(wi)
αi

=
∑
α∈A

gα exp
(∑

i∈[n]

wiαi

)
=
∑
α∈A

gα exp
(∑

i∈[n]

(T̄>u)iαi

)
=
∑
α∈A

gα exp
( ∑

i,j∈[n]

T̄j,iujαi

)
=
∑
α∈A

gα exp
(∑

j∈[n]

(T̄α)juj

)
=
∑
α∈A

gα
∏
j∈[n]

exp(uj)
(T̄α)j

= ḡ((exp(uj))j∈[n])

that

g((exp(wi))i∈[n]) ≥ 0 on Rn ⇐⇒ ḡ((exp(ui))i∈[n]) ≥ 0 on Rn

⇐⇒ ḡ ≥ 0 on Rn
++.

This shows that we can assume that g and S satisfy (3.23) and (3.24) additionally to

(A1) to (A8). Since f = g + λ, we have9

f =
∑
α∈S

fαx
α +

∑
β∈Z

fβx
β with fS\{0} > 0 and fZ < 0. (3.26)

9Recall that fα = gα for all α ∈ A\{0}.
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4.) From (3.26) and (3.24) it follows that f is coercive, see [10, Prop. 2.37] for a

proof. That means that the lower level sets La := {x ∈ Rn : f(x) ≤ a} are bounded

for all a ∈ R. Let x̄ be an arbitrary point in Rn
+ and B ⊆ Rn be a full-dimensional

compact ball that is centered in the origin and contains Lf(x̄). Then

fpop = inf{f(x) : x ∈ Rn
+ ∩ Lf(x̄)}

= inf{f(x) : x ∈ Rn
+ ∩ B}.

The feasible set Rn
+ ∩ B is compact and nonempty. Thus, there exists x? ∈ Rn

+ with

fpop = f(x?), which concludes the fourth part.

5.) Lemma 3.18 ensures that the optimal value fsonc of (D-SONC) is attained. This

in particular implies that there exist λ ∈ R and circuit polynomials fCR(S,µβ) ∈
P(Rn)CR(S,µβ) such that

f − λ =
∑

CR(S,µβ)∈F

fCR(S,µβ) (3.27)

Recall that each β ∈ Z is unique to a circuit in F . Thus, every circuit polyno-

mial fCR(S,µβ) participating in the sum (3.27) must satisfy f
CR(S,µβ)
β < 0 for β ∈ Z.

Replacing g in the second part of this proof by fCR(S,µβ) shows that for the circuit

polynomials in the sum (3.27) it also holds

fCR(S,µβ) ∈ P(Rn)CR(S,µβ) ⇐⇒ fCR(S,µβ) ∈ P(Rn
+)CR(S,µβ).

This implies that the feasible sets of

maximize λ

for λ ∈ R

subject to f − λ∈ ∑
CR(S,µβ)∈F

P(Rn
+)CR(S,µβ)

(3.28)

and of (D-SONC)10 coincide and so do their optimal values.

From Theorem 2.10 it follows that the optimal value fsonc of (3.28) can be computed

10Recall that (D-SONC) is equivalent to (D-RLX) for families of circuit patterns F and K = Rn.
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by its dual program, which has, due to (3.19), the form

minimize 〈 fA,vA 〉

for v ∈ RA
+

subject to vβ ≤
∏
α∈S

vµαα for all CR(S, µβ) ∈ F ,

v0 = 1.

(3.29)

By assumption (3.24) there exists an injective mapping that maps α ∈ S\{0} to

i ∈ [n], which is determined by α = αie
i. To emphasize this correspondence, we

write α(i) instead of α. Furthermore, because fZ < 0, the objective function of

(3.29) is strictly decreasing in vβ for each β ∈ Z. Since each β ∈ Z is unique to a

circuit in F , any feasible solution11 v of (3.29), such that there exists β ∈ Z with

vβ <
∏

α(i)∈S v
µα(i)
α , can be improved by increasing vβ until

vβ =
∏
α(i)∈S

v
µα(i)
α(i) (3.30)

holds. Thus, we replace the inequality constraint in (3.29) by (3.30). Due to xα(i) =

x
α(i)i
i , for any feasible solution v there exists x ∈ Rn

+ that solves

vα(i) = x
α(i)i
i for all α(i) ∈ S\{0}.

Because of the constraint (3.30) the solution x satisfies

vβ =
∏
α(i)∈S

(
vα(i)

)µβ
α(i) =

∏
α(i)∈S

(x
α(i)i
i )µ

β
α(i) = xβ for all β ∈ Z.

Thus, v = m(x)A. It follows that (3.29) coincides with

inf{〈f ,m(x)A〉 : x ∈ Rn
+} = inf{f(x) : x ∈ Rn

+} = fpop,

which shows fsonc = fpop. �

11A feasible solution exists, take for example e0,A.
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Using the optimal solution x? of (POP) from step 4 we can compute an optimal
solution v? of (3.29) by setting

v?α(i) := (x?i )α(i)i for all α(i) ∈ S\{0},
v?β := (x?)β for all β ∈ Z.

3.7 Scaled-Diagonally-Dominant Sums of Squares

Another relatively new approach uses scaled-diagonally-dominant sums of squares

(SDSOS) [1], that is a Positivstellensatz based on SOS polynomials with restricted

monomial support. These supports correspond to the following pattern type:

Definition 3.20 (Binomial Square Pattern).

Let α, β ∈ Nn with α 6= β. We define the binomial square pattern (BS) as

BS(α, β) := {2α, 2β, α + β}.

Furthermore, let F be a family of binomial square patterns. Modifying the in [1]

established notation we refer to a polynomial f that satisfies

f ∈
∑
P∈F

P(Rn)P (3.31)

as scaled-diagonally-dominant sums of squares (SDSOS) and the Minkowski sum of

cones as SDSOS cone with respect to F .12 4

As with the SONC cone this slightly extends the original definition of the SDSOS
cone by the family F . One can see that a binomial square pattern is a special circuit
pattern:

BS(α, β) = CR({2α, 2β}, (1/2, 1/2)). (3.32)

Like SONC, SDSOS are usually employed for unconstrained problems.

In the following we show that our notion of SDSOS in terms of polynomial cones
matches the definition given in [1, Def. 3.2].

12As before, whenever we write BS(S, µβ) we imply that the parameters α and β satisfy the as-
sumptions of Definition 3.20.
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0 8
0

8

α1

α2

A5

0 8α1

A6

Figure 3.8: Visualization of two binomial square patterns as described in Plot Set
Up 3.2. Left: BS((0, 1), (3, 4)) = {(0, 2), (3, 5), (6, 8)}. Right: BS((1, 4), (3, 1)) =
{(2, 8), (4, 5), (6, 2)}.

Lemma 3.21.

Polynomials that are nonnegative on Rn with monomial support in BS(α, β) are

SOS. 4

Proof. We define µ := (1/2, 1/2) ∈ R{2α,2β}. First, let α + β /∈ 2Nn. From (3.32) and

Corollary 3.17 follows that

f ∈ P(Rn)BS(α,β) ⇐⇒ f{2α,2β} ≥ 0 and 4f2αf2β − (fα+β)2 ≥ 0. (3.33)

Comparing the determinants of the principal minors of

F :=

 f2α
fα+β

2

fα+β
2

f2β

 (3.34)

we see that (3.33) is equivalent to F ∈ S{α,β}+ . Hence, f ∈ P(Rn)BS(α,β) if and only if

f = f2αx
2α + fα+βx

α+β + f2βx
2β = m(x)>{α,β}F m(x){α,β}.

The above shows that f ∈ SOS(BS(α, β)), which shows the assertion for α+β /∈ 2Nn.

Next, for α+β ∈ 2Nn it follows from (3.32) and Corollary 3.17 that f ∈ P(Rn)BS(α,β)

f ∈ P(Rn)BS(α,β) ⇐⇒ f{2α,2β} ≥ 0, 4f2αf2β − t2 ≥ 0 and

fα+β = t + u with u ∈ R+.
(3.35)
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Thus, (3.35) is equivalent to

f =
(
f{2α,2β}, t + u

)
with F̄ :=

f2α
t
2

t
2

f2β

 ∈ S{α,β}+ and u ∈ R+. (3.36)

Hence, f ∈ P(Rn)BS(α,β) if and only if f = g + uxα+β, where

g = m(x)>{α,β}F̄ m(x){α,β} ∈ SOS(BS(α, β)) and u ≥ 0. (3.37)

Observe that uxα+β is SOS since α + β ∈ 2Nn. Thus, g can absorb uxα+β into its

squares and (3.37), which shows the assertion for α + β ∈ 2Nn. �

The proof of Lemma 3.21 shows that we can characterize SDSOS cones in the following
way: Let F be a family of binomial square patterns and F e := {BS(α, β) ∈ F :
α + β ∈ 2Nn}. Then f ∈ ∑BS(α,β)∈F P(Rn)BS(α,β) if and only if there exist matrices

F(α, β) ∈ S{α,β}+ for all BS(α, β) ∈ F and uα+β ∈ R+ for all BS(α, β) ∈ F e such
that

f =
∑

BS(α,β)∈F

m(x)>{α,β}F(α, β) m(x){α,β} +
∑

BS(ω,γ)∈Fe

uω+γx
ω+γ. (3.38)

Corollary 3.22 ([1, Thm. 3.6]).

A polynomial f ∈ R[x]Nn
2d

is SDSOS if and only if it can be written as

f =
∑

BS(α,β)∈F

m(x)>Nn
d
M(α, β) m(x)Nn

d
, (3.39)

where F contains all binomial square patterns in Nn
2d, i.e.

F =
{

BS(α, β) : α, β ∈ Nn
d with α 6= β

}
,

and M(α, β) ∈ RNn
d×N

n
d for α, β ∈ Nn

d with α 6= β are PSD matrices with α 6= β at most

the 4 nonzero entries, which are M(α, β)α,α,M(α, β)α,β,M(α, β)β,α and M(α, β)β,β.4

Proof. First observe that all binomial square patterns that can constitute to the

decomposition of f are element of F . Thus, f is a SDSOS if and only if

f ∈
∑

BS(α,β)∈F

P(Rn)BS(α,β).
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Using (3.38) and F e := {BS(α, β) ∈ F : α + β ∈ 2Nn} this is equivalent to the

existence of matrices F(α, β) ∈ S{α,β}+ for all BS(α, β) ∈ F and scalars uω+γ ∈ R+ for

all BS(ω, γ) ∈ F e such that

f =
∑

BS(α,β)∈F

m(x)>{α,β}F(α, β) m(x){α,β} +
∑

BS(ω,γ)∈Fe

uω+γx
ω+γ. (3.40)

We express uω+γ ∈ R+ as

F̃ (ω, γ) :=

0 0

0 uω+γ

 ∈ S{0,(ω+γ)/2}+ .

Because of ω + γ ∈ 2Nn for all BS(ω, γ) ∈ F e, we have (ω+γ)/2 ∈ Nn
d. With that we

can write (3.40) as

f =
∑

BS(α,β)∈F

m(x)>{α,β}F(α, β) m(x){α,β} +

∑
BS(ω,γ)∈Fe

m(x)>{0,(ω+γ)/2}F̃ (ω, γ) m(x){0,(ω+γ)/2}.

Observe that BS(0, (ω+γ)/2) ∈ F . We define new matrices M̃(α, β) for BS(α, β) ∈ F
by

M̃(0, (ω+γ)/2) := F (0, (ω+γ)/2) + F̃ (ω, γ)

for all BS(ω, γ) ∈ F e and otherwise

M̃(α, β) := F(α, β).

These matrices satisfy M̃(α, β) ∈ S{α,β}+ and f =
∑

BS(α,β)∈F m(x)>{α,β}M̃(α, β) m(x){α,β}.

Finally, embedding M̃(α, β) in RNn
d×N

n
d using

M(α, β)η,ξ :=

M̃(α, β)η,ξ if η, ξ ∈ {α, β},
0 else

for all η, ξ ∈ Nn
d

yields the assertion. �
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Corollary 3.22 shows that Definition 3.20 harmonizes with the definition of SDSOS in
[1, Def. 3.3]. It is well known that S{α,β}+ is linear isomorphic to the three dimensional
second-order cone (SOC), see for example [8]. Since there exist efficiently computable
barrier functions for SOC the current implementation of SDSOS successfully uses SOC
to solve (D-RLX) for families F of binomial square patterns [1]. We note that the
authors of [1] also provide a linear programming (LP) approximation of the SDSOS
cone, which is called diagonally-dominant sums of squares (DSOS).
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Chapter 4

Truncated Submonoids

In this chapter we introduce new pattern types. These pattern types will be dervived
from a basic pattern type called truncated submonoid. While the pattern types
discussed up to now were rather static in terms of their size, truncated submonoids
are adaptable with respect to this matter.

As in the previous chapter we illustrate the patterns using different exponents sets.

Plot Set Up 4.1.

Among the exponent sets, that we use for the illustration of the new pattern are the

sets from Plot Set Up 3.2 and

A7 := {(6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (7, 3), (7, 4), (7, 5), (7, 6),

(8, 4), (8, 5), (8, 6), (9, 5), (9, 6), (10, 6)},
A8 := {(3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5)},
A9 := {(0, 3), (2, 3), (5, 3)},
A10 := {(0, 0), (2, 2), (4, 4), (6, 6), (8, 8)},
A11 := {(2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2)},
A12 := {(0, 2), (2, 3), (4, 4), (6, 5), (8, 6)},
A13 := {(2, 2), (2, 3), (2, 4), (5, 2), (5, 3), (6, 2)},
A14 := {(4, 0), (5, 0), (5, 3), (6, 0), (6, 3), (6, 6)},
A15 := {(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 4), (4, 5), (4, 6), (5, 5), (5, 6), (6, 6)}. 4

Definition 4.2 (Truncated Submonoid).

Let B ⊆ Nn be a nonempty finite set, η ∈ 2Nn ∩ B be an exponent and Γ =

(γ1, . . . , γk) ∈ Zn×k with k ∈ [n] be a matrix, whose columns γi ∈ are nonzero vec-

tors with pairwise disjoint supports that satisfy η + γi ∈ B. We denote by Λ+(Γ) the
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submonoid of (Zn,+,0) generated by the columns of Γ, that is

Λ+(Γ) := γ1N + · · ·+ γkN,

and call

TS(η,Γ,B) :=
(
η + Λ+(Γ)

)
∩ B,

the k-variate truncated submonoid (TS). To avoid clumsy notation we overload the

operator of truncated submonoids for η = 0 by TS(Γ,B) := TS(0,Γ,B).1 4

Note that the vectors γ1, . . . , γk are linearly independent. For an illustration of dif-
ferent truncated submonoids see Figure 4.1.

We typically use for the truncation sets like B = η ± Nn
r or B = Nn

r for appropriate
r ∈ N. However, allowing other sets B as well, makes truncated submonoids more
versatile. For example we can express the multilinear pattern ML(α, I) as TS(Γ,B)
by choosing appropriate generators from

{∑
i∈J αie

i : J ⊆ [n] with #J ≥ 1
}

and an
appropriate set B. Furthermore, with Γ = (e1, . . . , en) and B = Nn

2d one arrives at
the extreme case, where TS(Γ,B) = Nn

2d is the pattern of a moment relaxation, see
for example the left subplot of Figure 4.1.

0 10
0

10

α1

α2

N2
10

0 10α1

(2, 2) + N2
8

0 10α1

A7

Figure 4.1: Visualization of possible truncated submonoids as described in Plot Set
Up 3.2. Left: TS(Γ,B) for Γ = (e1, e2),B = N2

10. Middle: TS(η,Γ,B) for η = (2, 2),
Γ = (e1, e2),B = N2

12. Right: TS(η,Γ,B) for η = (6, 6), Γ = (e1,−e2),B = A7.

By slight abuse of notation we will interpret m(x)Γ in the following as (xγi)i∈[k] ∈ Rk.

1From this point onwards, whenever we write TS(η,Γ,B) we imply that the parameters k, η,Γ =
(γ1, . . . , γk) and B satisfy the assumptions of Definition 4.2.
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Proposition 4.3.

Let TS(η,Γ,B) be a k-variate truncated submonoid,

L :=
⋃
i∈[n]

{x ∈ Rn : there exists i ∈ [n] with xi = 0}.

Then

P(K)TS(η,Γ,B) =
{
xη h̃(m(x)Γ) ∈ R[x] : h̃ ∈ P(K̃)P̃

}
,

where K̃ := cl{m(x)Γ : x ∈ K\L} ⊆ Rk and

P̃ :=
{
ω ∈ Nk : η + Γω ∈ TS(η,Γ,B)

}
.

4

Proof. Observe2 that K\L is dense in K. Hence, a polynomial g is nonnegative on

K if and only if g is nonnegative on K\L. Since η ∈ 2Nn, xη > 0 for all x ∈ K\L.

Moreover, xγ
i

is well defined for all x ∈ K\L and i ∈ [k] – even when γi has negative

entries. Thus,

P(K)TS(η,Γ,B) =
{
g ∈ R[x] : g =

∑
ω∈P̃

gη+Γωx
η+Γω ≥ 0 on K\L

}
=
{
xη h ∈ R[x] : h =

∑
ω∈P̃

hΓωx
Γω ≥ 0 on K\L

}
=
{
xη h̃(m(x)Γ) ∈ R[x] : h̃ =

∑
ω∈P̃

h̃ωy
ω ≥ 0 on m(K\L)Γ

}
.

The last inequality follows from substituting yi := xγi for i ∈ [k].3 Due to the way we

have defined K̃, m(K\L)Γ is dense in K̃. It follows

P(K)TS(η,Γ,B) =
{
xη h̃(m(x)Γ) ∈ R[x] : h̃ =

∑
ω∈P̃

h̃ωy
ω ≥ 0 on K̃

}
=
{
xη h̃(m(x)Γ) ∈ R[x] : h̃ ∈ P(K̃)P̃

}
. �

The next corollary is the dual formulation of Proposition 4.3.

2Recall that we assumed that K ⊆ Rn is a closed set that contains a full-dimensional ball.
3Note that h is not necessarily a polynomial since Γ ∈ Zn×k allows for negative components of the

exponents.
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Corollary 4.4.

Let the setting be as in Proposition 4.3. Then C(K)TS(η,Γ,B)
∼= C(K̃)P̃. 4

Proof. We abbreviate G := TS(η,Γ,B). Furthermore, we define a linear map indη,Γ :

RP̃ → RG that takes care of index changes by indη,Γ(ṽ) = v, where

vη+Γω := ṽω for ω ∈ P̃.

Applying Lemma 2.6 (∗) and Proposition 4.3 (?) yields

C(K)G
(∗)
=
{

v ∈ RG : 〈v, vec(h)G〉 ≥ 0 for all h ∈ P(K)G

}
(?)
=
{

v ∈ RG : 〈v, vec(xη h̃(m(x)Γ))G〉 ≥ 0 for all h̃ ∈ P(K̃)P̃

}
=
{

v ∈ RG :
∑
ω∈P̃

vη+Γω vec(h̃)ω ≥ 0 for all h̃ ∈ P(K̃)P̃

}
(∗)
=
{

v ∈ RG : there exists ṽ ∈ C(K̃)P̃ with v = indη,Γ(ṽ)
}
. �

The next proposition describes the well-known relationship between PSD and SOS

cones.

Proposition 4.5 ([37, Ch. 2.1]).

The cone of n-variate SOS polynomials of degree at most 2d is the image of the cone

of semidefinite matrices of size
(

n+d
n

)
under a linear transformation. More precisely,

one has

SOS(Nn
2d) =

{
m(x)>Nn

d
T m(x)Nn

d
: T ∈ SNn

d
+

}
. 4

Propositions 4.3 and 4.5 give rise to the next definition.

Definition 4.6 (Nk
2d-Description).

Let TS(η,Γ,B) be a k-variate truncated submonoid, d, r ≥ 0 be integers, {gi}i∈[r] ⊆
R[y]Nk

2d
be a set of k-variate polynomials and d̃i := bdeg(gi)/2c. Furthermore, let

S({gi}i∈[r],Nk
2d)Γ,η :=

{
xηh(m(x)Γ) ∈ R[x] : h = s0 +

∑
i∈[r]

sigi with

s0 ∈ SOS
(
Nk

2d

)
and si ∈ SOS

(
Nk

2d−2d̃i

)}
.

(SD)
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We call (SD) an approximate Nk
2d-description of P(K)TS(η,Γ,B) if

S({gi}i∈[r],Nk
2d)Γ,η ⊆ P(K)TS(η,Γ,B)

and a Nk
2d-description of P(K)TS(η,Γ,B) if

S({gi}i∈[r],Nk
2d)Γ,η = P(K)TS(η,Γ,B). 4

The set (SD) is related to the notion of quadratic modules and truncated quadratic

modules, compare [38, 46]. In fact, if Γ is an identity matrix and ν = 0, then

S({gi}i∈[r],Nk
2d)Γ,η is a 2d-th truncated quadratic module. Using Proposition 4.5 we

can replace the conic variables s0, . . . , sr via lifting by semidefinite matrix variables

of sizes
(

n+d
d

)
,
(

n+d−d̃1

d−d̃1

)
, . . . ,

(
n+d−d̃r

d−d̃r

)
, respectively. Thus, replacing P(K)TS(η,Γ,B) in

(D-RLX) by S({gi}i∈[r],Nk
2d)Γ,η makes (D-RLX) accessible to SDP solvers.

Corollary 4.7.

Additional to setting of Proposition 4.3, let B = {η + Γω : ω ∈ Nk
2d} ⊆ Nn and

g1, . . . , gr ∈ R[y]Nk
2d

be k-variate polynomials such that

K̃ =
{
y ∈ Rk : gi(y) ≥ 0 for all i ∈ [r]

}
. (4.1)

Then S({gi}i∈[r],Nk
2d)Γ,η is an approximate Nk

2d-description of P(K)TS(η,Γ,B). 4

Proof. From Proposition 4.3 follows with P̃ = Nk
2d that

P(K)TS(η,Γ,B) =
{
xη h̃(m(x)Γ) ∈ R[x] : h̃ ∈ P(K̃)Nk

2d

}
⊇
{
xη h̃(m(x)Γ) ∈ R[x] : h̃ = s0 +

∑
i∈[r]

sigi with

s0 ∈ SOS
(
Nk

2d

)
and si ∈ SOS

(
Nk

2d−2d̃i

)}
= S({gi}i∈[r],Nk

2d)Γ,η,

where d̃i := bdeg(gi)/2c. �

The requirement (4.1) on K̃ is rather strong. However, if there do not exist polyno-
mials gi ∈ R[y]Nk

2d
such that (4.1) holds, one can use a set K̄ with K ⊆ K̄ such that

this is the case. This way one can relax P(K)TS(η,Γ,B) by P(K̄)TS(η,Γ,B), which in turn
can be relaxed by an approximate Nk

2d-description.

With Corollary 4.7 we can relax (D-RLX) by replacing fTS(η,Γ,B) ∈ P(K)TS(η,Γ,B) with
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fTS(η,Γ,B) ∈ S({gi}i∈[r],Nk
2d)Γ,η. The relaxation of (D-RLX) obtained this way is a

SDP. Naturally, the computability of those SDPs depends on the degree4 of the set
P̃ and the number of submonoid generators γ1, . . . , γk. For practical purposes, it is
desirable to choose k to be a relatively small number. Furthermore, by appropriately
choosing the length of the vectors γ1, . . . , γk ∈ B \ {0} in correspondence with the
choice of the set B, we manipulate the degree of P̃. This allows to control the
tractability of the pattern relaxation when used with truncated submonoids.

We would like to stress that in practice it is usually infeasible to use SOS relaxations
for the original problem (POP) due to the size of these relaxations, see [7] for a
theoretical justification. In contrast, we believe that one can use SOS relaxations
together with truncated submonoids in (D-RLX), since we can control the number and
length of the generators and deg(P̃) and therefore the size of the required SOS/PSD
cones.

Throughout the rest of this chapter we combine Proposition 4.3 and well-known

Positivstellensätze to derive new pattern types. The first corollary that we use is a

special case of Putinar’s theorem [51], which we have seen before in Theorem 3.11.

See for example [6] for a short proof.

Corollary 4.8.

Let l,u ∈ Rn with l < u and K = Box(l,u). Furthermore, let p(x) be a polynomial

satisfying p(x) > 0 for all x ∈ K. Then there exists an integer d ∈ N such that

p ∈ SOS(Nn
2d) +

n∑
i=1

(ui − xi)(xi − li) SOS(Nn
2d−2).

4

By applying the shifting procedure to truncated submonoids we generate a new pat-

tern type that is suited for cases where K is an axis-parallel box.

Corollary 4.9.

Let the setting be as in Corollary 4.7, where we specify η = 0, K = Box(l,u) for

l,u ∈ Rn with l < u and gi(y) = (xγiK −yi)(yi−xγiK) ∈ R[y]Nk
2

for i ∈ [k]. Furthermore,

let ξ ∈ Nn be a shift vector such that supp(ξ) ∩ supp(γi) = ∅ for all columns γi of Γ.

Then for every f ∈ P(K)ξ+TS(Γ,B) and ε > 0 there exists d̃ ∈ N such that

f + ε ∈
{
xξg : xξK g ∈ S({gi}i∈[k],Nk

2d̃
)Γ,0 and xξK g ∈ S({gi}i∈[k],Nk

2d̃
)Γ,0

}
. 4

4Recall that the degree of P̃ is defined as deg(P̃) := max{|ω1|+ · · ·+ |ωk| : ω ∈ P̃}.
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Proof. Proposition 2.14 applied to P(K)ξ+TS(η,Γ,B) yields

P(K)ξ+TS(η,Γ,B) =
{
xξg : xξK g ∈ P(K)TS(Γ,B) and xξK g ∈ P(K)TS(Γ,B)

}
.

Hence, there exists g such that

f + ε = xξg (4.2)

as well as xξK g ∈ P(K)TS(Γ,B) and xξK g ∈ P(K)TS(Γ,B). Next, observe that

K̃ := cl{m(x)Γ : x ∈ K\L}
={y ∈ Rk : g1(y) ≥ 0, . . . , gk(y) ≥ 0}.

Thus, Proposition 4.3 states for TS(Γ,B) and K that

P(K)TS(Γ,B) =
{
h̃(m(x)Γ) ∈ R[x] : h̃ ∈ P(K̃)Nk

2d

}
.

Hence, there exist h̃1, h̃2 ∈ P(K̃)Nk
2d

such that h̃1(m(x)Γ) = xξK g and h̃2(m(x)Γ) =

xξK g. Furthermore, from f ∈ P(K)ξ+TS(Γ,B) follows that f + ε > 0 on K and therefore

xξK g > 0 and xξK g > 0 on K. This in turn implies that h̃1, h̃2 > 0 on K̃.

Note that Corollary 4.8 can be expressed in terms of S({gi}i∈[k],Nk
2d̃

)Γ,0: Let h̃ ∈
P(K̃)Nk

2d
with h̃ > 0 on K̃. Then there exists d̃ such that h̃(m(x)Γ) ∈ S({gi}i∈[k],Nk

2d̃
)Γ,0.

Thus, there exist d̃1 and d̃2 such that h̃1(m(x)Γ) ∈ S({gi}i∈[k],Nk
2d̃1

)Γ,0 and h̃2(m(x)Γ) ∈
S({gi}i∈[k],Nk

2d̃2
)Γ,0. With d̃ := max{d̃1, d̃2} follows that xξK g ∈ S({gi}i∈[k],Nk

2d̃
)Γ,0

and xξK g ∈ S({gi}i∈[k],Nk
2d̃

)Γ,0. �

Figure 4.2 shows examples of shifted truncated submonoids.

Proposition 4.10 ([9]).

Let l,u ∈ Rn with l,u and K = Box(l,u). Then the moment body M(K)TS(Γ,B) can

be represented as a k-variate moment body by5

M
(
K
)

TS(Γ,B)
∼=M

(
Box

(
xΓ

K,x
Γ
K

))
P̃
,

with

P̃ = {ω ∈ Nk : Γω ∈ TS(Γ,B)} ⊆ Nk.
4

5Here we use, by slight abuse of notation, xΓ
K := (xγ

i

K )i∈[k] and xΓ
K := (xγ

i

K )i∈[k].
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Proof. The desired representation is obtained by taking the convex hull of the left

and the right hand side of m(K)TS(Γ,B)
∼= m(Box(xΓ

K,x
Γ
K))P̃. Note that the isomorphy

is due to the different indexing of the vector spaces that m(K)TS(Γ,B) ⊆ RTS(Γ,B) and

m(Box(xΓ
K,x

Γ
K))P̃ ⊆ RP̃ live in. �

0 5

0

5

α1

α2

A8

0 5α1

A9

0 5α1

Aex

Figure 4.2: Visualization of possible shifted truncated submonoids as described in Plot
Set Up 3.2. Left: ξ1 + TS(Γ1,B1) for ξ1 = (0, 3)>,Γ1 = e2,B1 = [5]20. Middle:
ξ1 + TS(Γ2,B1) for Γ1 = 2e2. Right: F3 = {TS(e1, [4]20), e2 + TS(e1, [2]20), 2e2 +
TS(e1, [2]20),TS(e2, [2]20), e1 + TS(e2, [2]20), 2e1 + TS(e1, [5]20),TS(1, [5]20)}.

Before we proceed with more specific patterns, we list the other Positivstellensätze

that we will use for the deriving new pattern types.

Theorem 4.11 (Hilbert, [40, Thm. 1.2.6] & [40, Prop. 1.2.1]).

It holds

P(Rn)Nn
d

= SOS(Nn
d)

if and only if one of the following holds

n = 1, d ∈ 2N,(H1)

n ∈ N, d = 2,(H2)

n = 2, d = 4.(H3)

Furthermore, in the case of n = 1, f ∈ P(R)Nd
if and only if f is a sum of at most

two squared polynomials. 4

Corollary 4.12 (Pólya-Szegö [38, Thm. 3.21], Stieltjes [40, Cor. 3.1.3]).

Let d ∈ N. Then

P(R+)[2d]0 = SOS([2d]0) + x · SOS([2d− 2]0).
4

66



TRUNCATED SUBMONOIDS CHAPTER 4

Theorem 4.13 (Fekete [38, Thm. 3.23], Hausdorff [40, Cor. 3.1.5]).

Let d be a nonnegative integer and l, u ∈ R with l < u. Then

P([l, u])[2d]0 = SOS([2d]0) + (x− l)(u− x) · SOS([2d− 2]0).
4

Theorem 4.14 (Švecov [40, Cor. 3.1.6]).

Let d be a nonnegative integer and l, u ∈ R with l < u. Then

P((−∞, l] ∪ [u,∞))[2d]0 = SOS([2d]0) + (l− x)(u− x) · SOS([2d− 2]0).
4

Remark 4.15.

The reference for Theorem 4.14 does not state the degree bounds for the SOS polyno-

mials, but just that

P((−∞, l] ∪ [u,∞))[2d]0 = SOS(N) + (l− x)(u− x) · SOS(N).

However, the extreme rays of the cone P((−∞, l] ∪ [u,∞))[2d]0 are polynomials g

that are nonnegative on (−∞, l] ∪ [u,∞) and have deg(g) many algebraic roots in

(−∞, l]∪ [u,∞). All such polynomials g are contained in SOS([2d]0)∪ (l−x)(u−x) ·
SOS([2d− 2]0), which shows the nontrivial inclusion of Theorem 4.14. 4

4.1 Chains

The next pattern type generalizes binomial square patterns.

Definition 4.16 (Chain).

Let η ∈ 2Nn, γ ∈ Zn with γ 6= 0 and d ∈ N\{0} satisfy η + dγ ≥ 0. We call

CH(η, γ, d) := {η + iγ : i ∈ [d]0}

a chain (CH).6 As with the truncated submonoids, we overload this notation for η = 0

by CH(γ, d) := CH(0, γ, d). 4

Figure 4.3 demonstrates how the parameters d and γ in Definition 4.16 allow to
control the size and orientation of chains.

6As usual, whenever we write CH(η, γ, d) we imply that the parameters η, γ and d satisfy the
assumptions of Definition 4.16.
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0 8
0

8

α1

α2

A10

0 8α1

A11

0 8α1

A12

Figure 4.3: Visualization of possible chains as described in Plot Set Up 3.2. Left:
CH((1, 1), 4). Middle: CH((2, 8), (1,−1), 6). Right: CH((0, 2), (2, 1), 4).

Chains are univariate truncated submonoids since CH(η, γ, d) = TS(η, γ,B) with
B = {η + iγ : i ∈ [d]0}. Furthermore, a binomial square pattern is a special chain
that contains only 3 exponents:

CH(η, γ, 2) = {η, η + γ, η + 2γ}
= BS(η/2, η/2 + γ).

Recall that for a binomial square pattern P and K = Rn it is possible to enforce

fP ∈ P(K)P) by PSD constraints and one 2 × 2 PSD matrix. The next corollaries

show that fCH(α,γ,k) ∈ P(K)CH(α,γ,k) can be enforced by semidefinite constraints of

reasonable sizes, when K = Rn or K = Box(l,u) with l < u. Corollary 4.17 also

yields an alternative way to show Lemma 3.21.

Corollary 4.17.

Let CH(η, γ, 2d) be a chain. P(Rn)CH(η,γ,2d) has a N2d-description. 4

Proof. For γ /∈ 2Nn the assertion follows from Proposition 4.3 and (H1) Theo-

rem 4.11. Then K̃ and P̃ of Proposition 4.3 are K̃ = R and P̃ = [2d]0. Hence,

P(Rn)CH(η,γ,2d) =
{
xηh̃(xγ) ∈ R[x] : h̃ ∈ P(R)[2d]0

}
=
{
xηh̃(xγ) ∈ R[x] : h̃ ∈ SOS([2d]0)

}
.

For γ ∈ 2Nn the assertion follows from Proposition 4.3 and Corollary 4.12. Then

K̃ = R+ and P̃ = [2d]0 and therefore

P(Rn)CH(η,γ,2d) =
{
xηh̃(xγ) ∈ R[x] : h̃ ∈ P(R+)[2d]0

}
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=
{
xηh̃(xγ) ∈ R[x] : h̃ ∈ SOS([2d]0) + y SOS([2d− 2]0)

}
. �

The characteristic feature of chains is that they reduce the multivariate case to the
well-understood univariate case, that is P(Rn)CH(η,γ,2d)

∼= P(R)[2d]0 for γ /∈ 2Nn and
P(Rn)CH(η,γ,2d)

∼= P(R+)[2d]0 for γ ∈ 2Nn.

Corollary 4.17 yields an analogue of SDSOS cones for chains: Recall that a polynomial
f is SDSOS if

f ∈
∑
P∈F

P(Rn)P, (4.3)

where F is a family of binomial square patterns. Due to Lemma 3.21 this can be
enforced by PSD constraints. The N2d-descriptions of P(Rn)CH(η,γ,2d) given in Corol-
lary 4.17 allow to include other chains than binomial square patterns in F while
maintaining that the constraint (4.3) can be enforced by PSD constraints of rea-
sonable sizes. The matrices needed for these PSD constraints are not bigger than
(d + 1) × (d + 1), which is indeed a reasonable dependency on d given that, cur-
rently, PSD solvers can handle dense r × r matrices for r well above 300 on every
machine.

We proceed with the case when K is an axis-parallel box.

Corollary 4.18.

Let CH(η, γ, 2d) be a chain and K = Box(l,u) with l < u and d ≥ 1. P(K)CH(η,γ,2d)

has a N2d-description. 4

Proof. The proof follows from Proposition 4.3 together with either Theorem 4.13,

Corollary 4.12 or Theorem 4.11.

The set P̃ from Proposition 4.3 is [2d]0. In order to determine K̃, let I be the set of

subsets of R containing the sets of five types: [a, b], (−∞, a], [b,∞), (−∞, a]∪ [b,∞)

and (−∞,∞), where a, b ∈ R with a < b. Note that I is closed under multiplication,

that is

I, J ∈ I ⇒ I · J ∈ I.

Furthermore, cl({xγii : xi ∈ [li, ui]\{0}}) ∈ I. Hence, K̃ = cl({xγ : x ∈ K with xi 6=
0 for all i ∈ [n]}) ∈ I. In other words K̃ corresponds to one of the five types of sets

from above.

To conclude the proof, we show that there exist r ∈ N and gi ∈ R[x], i ∈ [r] such that
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P(K)CH(η,γ,2d) = S({gi}i∈[r],Nk
[2d]0

) by expressing f ∈ P(K)CH(η,γ,2d) as

f = xη
(
s0(xγ) +

∑
i∈[r]

si(xγ)gi(xγ)
)

with s0 ∈ SOS ([2d]0) and si ∈ SOS ([2d− 2]0) for all five types of K̃.

If K̃ = [a, b], Theorem 4.13 asserts that f ∈ P(K)CH(η,γ,2d) if and only if there exist

s0 ∈ SOS([2d]0) and s1 ∈ SOS([2d− 2]0) with

f = xη ·
(
s0(xγ) + (xγ − a) · (b− xγ) · s1(xγ)

)
.

If K̃ = [b,∞), then Corollary 4.12 states that

P([b,∞))[2d]0 = SOS([2d]0) + (y − b) · SOS([2d− 2]0).

Hence, f ∈ P(K)CH(η,γ,2d) if and only if there exist SOS polynomials s0 ∈ SOS([2d]0)

and s1 ∈ SOS([2d− 2]0) with

f = xη ·
(
s0(xγ) + (xγ − b) · s1(xγ)

)
Analogously, it follows for K̃ = (−∞, a] that f ∈ P(K)CH(η,γ,2d) if and only if there

exist s0 ∈ SOS([2d]0) and s1 ∈ SOS([2d− 2]0) with

f = xη ·
(
s0(xγ) + (a− xγ) · s1(xγ)

)
.

If K̃ = (−∞,∞), Case (H1) of Theorem 4.11 asserts that f ∈ P(K)CH(η,γ,2d) if and

only if there exists s0 ∈ SOS([2d]0) with

f = xη · s0(xγ).

Finally, if K̃ = (−∞, a] ∪ [b,∞), Theorem 4.14 states that f ∈ P(K)CH(η,γ,2d) if and

only if there exist s0, s1 ∈ SOS([2d]0) and s1 ∈ SOS([2d− 2]0) such that

f = xη ·
(
s0(xγ) + (a− xγ)(b− xγ) · s1(xγ)

)
. �

With Corollary 4.18 we can extend the notion of SDSOS cones to boxes K = Box(l,u),
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that is

f ∈
∑
P∈F

P(K)P (4.4)

where F is a family of chains (or just binomial square patterns). The N2d-descriptions
of P(K)P given in Corollary 4.18 allow to enforce (4.4) by PSD constraints. The
maximal size of the matrices needed for the PSD constraints is (d+1)× (d+1).

Proposition 4.3 has the following consequences for the separation problem (SP) for
chain CH(γ, d).

Remark 4.19 ([9]).

Let l,u ∈ Rn with l < u, K = Box(l,u) and pc(y) :=
∑d

i=0 ciγy
i. Then

maximize δ − 〈 c,v 〉

for c ∈ RCH(γ,d) and δ ∈ R

subject to cβ ∈ [−1, 1] for all β ∈ CH(γ, d),

pc(y) ≥ δ for all y ∈ [xγK,x
γ
K].

(4.5)

Analogously to (C1) in Corollary 4.18 follows from Theorem 4.13 that the constraint

pc(y) − δ ≥ 0 on [xγK,x
γ
K] can be reformulated as a semidefinite constraint if d is

even:

maximize δ − 〈 c,v 〉

for c ∈ RCH(η,γ,d), δ ∈ R

s0 ∈ SOS([d]0) and s1 ∈ SOS([d− 2]0)

subject to cβ ∈ [−1, 1] for all β ∈ CH(γ, d),

pc − δ = s0 + s1g,

(4.6)

where g = (xγK−y)(y − xγK). 4
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4.2 Discretized Chains

Another way to approach the separation problem for chains CH(γ, d) is by approxi-
mating the moment body M(K)CH(γ,d) by a polytope and solving a linear relaxation
of (4.5). Proposition 4.20 shows howM(K)CH(γ,d) can be approximated by polytopes
to arbitrary precision. We will make use of the following notation. With each segment
[a, b] ⊆ R we associate the (d + 1)× (d + 1) matrix

Φ[a,b] :=

((
k

j

)
ak−j(b− a)j

)
k,j∈[d]0

∈ R[d]0×[d]0

and the polytope
∆[a,b] := conv{Φ[a,b](wi) : i ∈ [d]0},

with wi :=
∑i

k=0 ek for i ∈ [d]0. By a covering of an interval [l, u] we understand a
finite family of segments I satisfying [l, u] =

⋃
I∈I I. The fineness of I is defined as

%(I) := max{|b− a| : [a, b] ∈ I}. Furthermore, let ε > 0 and X ⊆ RA be a nonempty
set. We call

Nε(X) :=
{
v ∈ RA : ‖v − z‖1 ≤ ε for some z ∈ X

}
the ε-neighbourhood of X and

diam(X) := max
v,z∈X

‖v − z‖1

the diameter of X.

Proposition 4.20 ([9]).

Let d ∈ N and I be a covering of segment [l, u] ⊆ R. Then

M([l, u])[d]0 ⊆ conv

(⋃
I∈I

∆I

)
. (4.7)

Furthermore, there exists a constant C? > 0 depending only on d and the segment

[l, u] such that, for every ε > 0, the inequality %(I) ≤ C?ε implies

conv

(⋃
I∈I

∆I

)
⊆ Nε(M([l, u])[d]0). (4.8)

4
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0 1
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1

v1

v2

#I = 1

0 1v1

#I = 2

0 1v1

#I = 4

Figure 4.4: The plots show approximations
⋃

I∈I ∆I of M([0, 1])[2] in blue and the
curve m([0, 1])[2] in black. From left to right: the coverings I contain an interval
decomposition of [0, 1] into 1, 2 and 4 equidistant intervals.

Before giving a proof of Proposition 4.20, we establish the following.

Lemma 4.21 ([9]).

Let d ∈ N, let a, b ∈ R and a < b. Then one has

diam(∆[a,b]) ≤ |b− a|d2ηd
a,b,

where

ηa,b := max{|a|+ |b− a|, 1}.
4

Proof. Taking into account that the diameter of a set does not change by taking the

convex hull, we obtain the representation

diam(∆[a,b]) = max{Φ[a,b](wj −wi) : i, j ∈ [d]0, i < j}. (4.9)

Let i, j ∈ [d]0 and i < j and let w := wj −wi. We derive an upper bound on ‖v‖1 for

v = Φ[a,b]w. One has

vk =
k∑

h=0

(
k

h

)
ak−h(b− a)huh (4.10)

for k ∈ [d]0. The vector w belongs to {0, 1}[d]0 and its component w0 is 0. Since

w0 = 0, we obtain that v0 = 0 and that the summand for h = 0 in the sum on the

right hand side of (4.10) is zero. This yields

73



CHAPTER 4 TRUNCATED SUBMONOIDS

‖v‖1 = |v1|+ · · ·+ |vd|

≤
d∑

k=1

k∑
h=1

(
k

h

)
|a|k−h|b− a|h

=
d∑

k=1

(
(|a|+ |b− a|)k − |a|k

)
(∗)
= |b− a|

d∑
k=1

k−1∑
h=0

(|a|+ |b− a|)h|a|k−1−h

≤ |b− a|
d∑

k=1

k−1∑
h=0

ηk−1
a,b

≤ |b− a|d2ηd
a,b,

(4.11)

where the equation (∗) follows from the formula tk−qk = (t−q)
∑k−1

h=0 khtk−1−h for t, q ∈
R. Applying the inequality (4.11) to (4.9) yields the assertion. �

Proof (Proposition 4.20). Consider an arbitrary segment [a, b]. We use the iden-

tity

Φ[a,b] m(y)[d]0 = m((1− y)a + yb)[d]0 , (4.12)

which holds for every y ∈ R and can be derived using the binomial expansion for the

components of the right-hand side of (4.12), that is for k ∈ [d]0

m((1− y)a + yb)k = (a + (b− a)y)k

=
k∑

j=0

(
k

j

)
ak−j(b− a)jyj

= [[Φ[a,b] m(y)[d]0 ]]k.

The polytope conv({w0, . . . ,wd}) is a d-dimensional simplex,7 which can be described

as the set of all v ∈ R[d]0 satisfying 1 = v0 ≥ v1 ≥ . . . ≥ vd ≥ 0. Hence, m(y)[d]0 be-

longs to conv({w0, . . . ,wd}) for every y ∈ [0, 1]. Consequently, Φ[a,b] m(y)[d]0 belongs

7Recall that wi =
∑i

k=0 e
k.
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to conv({Φ[a,b]w0, . . . ,Φ[a,b]wd}) = ∆[a,b]. Taking into account (4.12), we see that

m(y)[d]0 ∈ ∆[a,b]

holds for every y ∈ [a, b]. The latter immediately implies (4.7).

We now derive the second part of the assertion. In view of Lemma 4.21, if [a, b] ∈ I,

then every point of ∆[a,b] has l1-distance at most |b − a|d2ηd
a,b to the point m(y)[d]0 ,

which belongs to M([l, u])[d]0 and to ∆[a,b]. This yields

∆[a,b] ⊆ Nε(M(l, u)[d]0)

for every ε ≥ %(I)d2ηd
a,b. Note that ηa,b ≤ ηl,u. We thus obtain⋃

[a,b]∈I

∆[a,b] ⊆ Nε(M([l, u])[d]0) (4.13)

for every ε ≥ %(I)
C?

with C? = (d2ηd
l,u)−1. Since the right-hand side of the latter

inclusion is a convex set, taking the convex hull of the left-hand side we see that the

inclusion (4.8) holds if ε > 0 satisfies ρ(I) ≥ C?ε. �

Proposition 4.20 allows to solve the separation problem for M(K)CH(γ,[d]0) approxi-
mately using linear programming.

Corollary 4.22 ([9]).

Let K = Box(l,u) with l < u, d ≥ 1 and CH(γ, 2d). Then there exists a constant

C? > 0 that depends only on xγK,x
γ
K and d such that the following holds: If a vector

v ∈ RCH(γ,d) does not belong to M(K)CH(γ,d) and I is a covering of [xγK,x
γ
K] with

%(I) < C? dist(M(K)CH(γ,d),v),

then the optimal value of the linear program

maximize δ − 〈 c,v 〉

for c ∈ RCH(η,γ,d) and δ ∈ R

subject to cβ ∈ [−1, 1] for all β ∈ CH(η, γ, d),
d∑

i=0

cη+iγ[[Φ
Iwj]]i ≥ δ for all I ∈ I and j ∈ [d]0

(4.14)
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is positive. 4

Proof. By Proposition 4.10,

M(K)CH(γ,d) =M([xγK,x
γ
K])[d]0 .

We choose C? > 0 as in Proposition 4.20 for [l, u] = [xγK,x
γ
K] and fix ε := %(I)/C?.

Since

dist(M(K)CH(γ,d),v) > ε,

the vector v does not belong to Nε(M(K)CH(γ,d)). Hence, in view of Proposition 4.20,

v 6∈ conv

(⋃
I∈I

∆I

)
= conv

(
{ΦIwi : I ∈ I, i ∈ [d]0}

)
.

By separation theorems, there exists a vector c ∈ RCH(γ,d) with ‖c‖∞ ≤ 1 and δ ∈ R
such that 〈c,v〉 < δ and 〈c,u〉 ≥ δ for all u ∈ conv

(⋃
I∈I ∆I

)
. Hence, c and δ are

feasible for (4.14) and their corresponding objective value is positive. �

4.3 Shifted Chain Patterns

Definition 4.23 (Shifted Chain Pattern).

Let η ∈ 2Nn, γ ∈ Zn with γ 6= 0 and d ∈ N\{0} satisfy η + dγ ≥ 0. Furthermore, let

ξ ∈ Nn with supp(γ) ∩ supp(ξ) = ∅ and supp(η) ∩ supp(ξ) = ∅. We call

ξ + CH(η, γ, d)

a shifted chain. 4

Using Proposition 2.13 we can represent the moment body M(K)ξ+CH(γ,d) for K =

Box(l,u) as the convex hull of xξKM(K)CH(γ,d) and xξKM(K)CH(γ,d) Figure 4.5 illus-
trates this with a small example.
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v(3,0) v(3,1)

v(3,2)

M(K)(3,0)+CH(e2,2)

Figure 4.5: The moment body M(K)(3,0)+CH(e2,2) is shown for K = [0, 1]2, that is the
convex hull of 0 and M(K)CH(e2,2). The set M(K)CH(e2,2) is highlighted in orange.
Note that (3, 0) + CH(e2, 2)) = {(3, 0), (3, 1), (3, 2)}.

We formulate analogous results for Remark 4.19 and Corollary 4.22 for shifted chains.

Corollary 4.24 ([9]).

Let l,u ∈ Rn with l < u, K = Box(l,u) and g = (xγK−y)(y − xγK). Then problem

(SP) for the pattern ξ + CH(γ, 2d) can be formulated as

maximize δ − 〈 c,v 〉

for c ∈ Rξ+CH(γ,d), δ ∈ R,

s0, s̃0 ∈ SOS(N2d) and s1, s̃1 ∈ SOS(N2d−2)

subject to cβ ∈ [−1, 1] for all β ∈ CH(γ, d),

xξK pc − δ = s0 + s1g,

xξK pc − δ = s̃0 + s̃1g. 4

Corollary 4.25 ([9]).

Let l,u ∈ Rn with l < u and K = Box(l,u) . Then there exists a constant C > 0 that

depends only on xξK,x
γ
K and d such that the following holds: If a vector v ∈ Rξ+CH(γ,d)

does not belong to M(K)ξ+CH(γ,d) and I is a covering of [xξK,x
ξ
K] with

%(I) < C dist(M(K)ξ+CH(γ,d),v),
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then the optimal value of the linear program

maximize δ − 〈 c,v 〉

for c ∈ Rξ+CH(γ,d) and δ ∈ R

subject to cβ ∈ [−1, 1] for all β ∈ ξ + CH(γ, d),∑
i∈[d]0

cξ+iγ[[x
ξ
K ΦIuj]]i, ≥ δ for all I ∈ I and j ∈ [d]0,∑

i∈[d]0

cη+iγ[[x
ξ
K ΦIuj]]i ≥ δ for all I ∈ I and j ∈ [d]0

(4.15)

is positive. 4

Proof. Let C? be the constant from Proposition 4.20 for [a, b] = [xξK xξK] and κ :=

max{|xξK |, |xξK |}. Using Proposition 2.13 we write

M(K)ξ+CH(γ,d) = conv(xξKM(K)CH(γ,d) ∪ xξKM(K)CH(γ,d)).

We claim that

xξK Nε(M(K)CH(γ,d)) ∪ xξK Nε(M(K)CH(γ,d)) ⊆
Nκε(conv(xξKM(K)CH(γ,d) ∪ xξKM(K)CH(γ,d))).

For the proof of the claim let v ∈ xξK Nε(M(K)CH(γ,d)). Then there exists w ∈
M(K)CH(γ,d) with ‖ v

xξK
−w‖1 ≤ ε. Hence, ‖v − xξK w‖1 ≤ |xξK |ε and therefore

v ∈ N|xξK |ε
(xξKM(K)CH(γ,d)).

Analogously, if v ∈ xξK Nε(M(K)CH(γ,d)), then v ∈ N|xξK |ε
(xξKM(K)CH(γ,d)), which

concludes the proof of the claim.

The assertion follows with C = C?

κ
using the same arguments as in the proof of

Corollary 4.22. �
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4.4 Multivariate Quadratic Patterns and Bivariate Quartic Patterns

The next two pattern are further examples that show how to construct new pattern
types from existing Positivstellensätze.

Definition 4.26 (Multivariate Quadratic Patterns).

Let η ∈ 2Nn and Γ = (γ1, . . . , γk) ∈ Zn×k with k ∈ [n] be a matrix, whose columns γi

are nonzero vectors with pairwise disjoint supports that satisfy η+ 2γi ∈ Nn. We call

MQ(η,Γ) :=
{
η + γ1ω1 + · · ·+ γkωk : ω ∈ Nk

2

}
,

a k-variate quartic pattern (MQ) with shift η.8 4

0 10
0

10

α1

α2

(2, 2) + N2
2

0 10α1

A13

0 10α1

A14

Figure 4.6: Visualization of possible quartic patterns as described in Plot Set Up 3.2.
Left: MQ((2, 2), e1, e2). Middle: MQ((2, 2), 3·e1, e2). Right: MQ((6, 0),−e1, 3·e2).

Definition 4.27 (Bivariate Quartic Patterns).

Let η ∈ 2Nn and γ1, γ2 ∈ Zn be nonzero vectors with pairwise disjoint supports that

satisfy η + 4γi ∈ Nn for i ∈ [2]. We call

BQ(η, γ1, γ2) :=
{
η + γ1ω1 + γ2ω2 : ω ∈ N2

4

}
,

a bivariate quartic pattern (BQ) with shift η.8 4

8Whenever we write MQ(η,Γ) or BQ(η, γ1, γ2) we imply that the parameters satisfy the assump-
tions of Definition 4.26 respectively Definition 4.27.
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0 10
0

10

α1

α2

(2, 2) + N2
4

0 10α1

A15

0 10α1

(6, 6)− N2
4

Figure 4.7: Visualization of possible bivariate quartic pattern patterns as described
in Plot Set Up 3.2. Left: BQ((2, 2), e1, e2). Middle: BQ((2, 6), e1,−e2). Right:
BQ((6, 6),−e1,−e2).

Corollary 4.28.

If the generators γi of MQ(η,Γ) with Γ = (γ1, . . . , γk) satisfy γi /∈ 2Zn, then there

exists a Nk
2-representation of P(Rn)MQ(η,Γ).

If the generators BQ(η, γ1, γ2) satisfy γ1, γ2 /∈ 2Zn then there exists a N2
4-representation

of P(Rn)MQ(η,Γ).

Proof. Both cases follow from Proposition 4.3 by determining the respective K̃ and

P̃. The first follows with K̃ = Rk and P̃ = Nk
2 from the case (H2) of Theorem 4.11:

P(Rn)MQ(η,Γ) =
{
xηh̃(m(x)Γ) ∈ R[x] : h̃ ∈ P(Rk)Nk

2

}
=
{
xηh̃(m(x)Γ) ∈ R[x] : h̃ ∈ SOS(Nk

2)
}
.

Analogously, the second follows with K̃ = R2 and P̃ = N2
4 from the case (H3) of

Theorem 4.11:

P(Rn)BQ(η,γ1,γ2) =
{
xηh̃

(
m(x){γ1,γ2}

)
∈ R[x] : h̃ ∈ P(R2)N2

4

}
=
{
xηh̃

(
m(x){γ1,γ2}

)
∈ R[x] : h̃ ∈ SOS(N2

4)
}
. �
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Chapter 5

Algorithms

The first part of this chapter is devoted to the development of the algorithms used for
solving a pattern relaxation of (POP). In last section we present an idea of a graph
based approach for the selection of patterns and discuss it with an example.

In order to solve the pattern relaxations two different approaches were chosen: the
first is a hybrid cutting-plane algorithm for (P-RLX’) and the second uses a conic
programming solver to compute (D-RLX). The hybrid cutting-plane algorithm starts
with a relaxation of (P-RLX’) and refines this relaxation by iteratively including
inequalities that stem from the separation problems of the various pattern types.
Consequently, a convergence proof of the procedure is provided. As the separation
problems in each iteration are independent of each other, solving them can be paral-
lelized. However, this possibility was not explored within the context of this thesis.
Furthermore, if the initial relaxation is chosen to be polyhedral, the subsequent re-
laxations constructed in each iteration are LPs while separation problems may be
SDPs or formulations utilizing power cones. This yields the possibility to warm start
each iteration – something that is usually not feasible for other solution methods.
Both methods have been implemented in Matlab [41] and use as subsolver MOSEK.
The respective programs can be found on the CD located in the back cover of this
thesis.

5.1 Cutting-Plane Algorithm

Definition 5.1 (ε-feasible and ε-optimal).

Consider an optimization problem

min{f(x) : x ∈ K} (5.1)

with the optimal value f?. Let ε > 0. We say that x ∈ Rn is ε-feasible for (5.1) if

x ∈ Nε(K) and ε-optimal for (5.1) if f? − ε ≤ f(x) ≤ f? + ε. 4

In Algorithm 5.1 we formulate a hybrid cutting-plane algorithm for solving (P-RLX’),
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when K = Box(l,u) with l,u ∈ Rn, l < u. The underlying idea is to divide F into
statically used patterns F ′ and dynamically used patterns F ′′ . The basic constraints
vP ∈ M(K)P,P ∈ F ′ are always considered in the master problem (MP), while cuts
are generated by solving the slave (or separation) problems (SP) for more involved
patterns P ∈ F ′′ . This way F ′ and F ′′ allow to control the size and type of the
master problem.

In particular, choosing F ′ to contain only multilinear patterns makes (MP) a linear
program, while the slave problems may be SDPs. This allows to solve (MP) with
the dual simplex algorithm, warmstarting after the inclusion of linear cuts generated
from P ∈ F ′′ . Similarly, in a branch-and-bound framework cuts corresponding to
patterns P ∈ F ′′ could be used to augment the pattern relaxation (MP) until the
bounds are tight enough for further branching.

Algorithm 5.1: Hybrid Cutting-Plane Algorithm

Input: • finite family of patterns F = F ′ ∪ F ′′ , where F ′ contains statically
and F ′′ contains dynamically used patterns • coefficient vector f ∈ RAF •
tolerance ε > 0 • K = Box(l,u) with l,u ∈ Rn, l < u

Output: O(ε)-optimal and O(ε)-feasible solution f?(ε) of (P-RLX’).

(0) Set i = 0.
(1) Solve the following problem

maximize 〈 f ,v 〉
for v ∈ RAF

subject to vP ∈M(K)P for all P ∈ F ′ ,
vα ∈ [xαK,x

α
K] for allα ∈ AF ,

v satisfies Ineqk for all k ∈ [i]

(MP)

and save the minimizer as v(i+1). Set i← i + 1. Initialize Ineqi = ∅.
(2) Initialize Ineqi = ∅. For each pattern P ∈ F ′′ determine the corresponding

distance δ := dist(M(K)P,v
(i)
P ) by solving the respective separation problem

(SP). If δ > ε, add 〈cP,vP〉 ≥ δ to the set of inequalities Ineqi.
(3) If the set Ineqi is empty, return f?(ε) := v(i), else go to step (1).

We are now proving finite termination and a bound on the result of Algorithm 5.1.
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Theorem 5.2 ([9]).

For every given ε > 0, Algorithm 5.1 terminates after a finite number of iterations.

The output satisfies

v?P ∈M(K)P for all P ∈ F ′

v?P(ε) ∈ Nε(M(K))P for all P ∈ F ′′ . 4

Proof. Assume that Algorithm 5.1 does not terminate after a finite number of iter-

ations. Then it produces an infinite sequence {v(i)}i∈N such that for all i there exists

a P(i) ∈ F ′′ with

vP(i) /∈ Nε(M(K)P(i)).

Hence, there exists a pattern P and an infinite sequence {ik}k∈N satisfying P = P(ik)

for all k. Let F(i) be the feasible set of (MP) in the i-th iteration. Observe that

by construction F(i+1) ⊆ F(i) holds and therefore v(ik) ∈ F(0) for all k ∈ N. Since

F(0) is compact there exists a converging subsequence {ṽ(i)}i∈N of {v(ik)}k∈N. Let

ṽ = lim
i→∞

ṽ(i). By the choice of the sequence we have

dist(M(K)P, ṽ
(i)
P ) > ε.

for all i ∈ N. Hence, for i large enough, ‖ṽ(i)
P − ṽP‖1 < dist(M(K)P, ṽ

(i)
P ) holds.

Application of Proposition 2.12 to the minimizers c(i), δ(i) of (SP) for v = ṽ
(i)
P and

the Hölder inequality yield

〈c(i), ṽP〉 = 〈c(i), ṽP − ṽ
(i)
P 〉+ 〈c(i), ṽ

(i)
P 〉

= 〈c(i), ṽP − ṽ
(i)
P 〉+ δ(i) − dist(M(K)P, ṽ

(i)
P )

< dist(M(K)P, ṽ
(i)
P ) + δ(i) − dist(M(K)P, ṽ

(i)
P ) = δ(i).

This is a contradiction since ṽ ∈ F(i) for all i. �

The following theorem shows that f?(ε) := 〈f ,v?(ε)〉 converges to the optimal value

f? of (P-RLX’), as ε→ 0, and that the convergence rate depends linearly on ε.

Theorem 5.3.

There exists a constant C(K,AF) depending on K and AF such that for every ε > 0 the

distance between the feasible set of (P-RLX’) and the output v?(ε) of Algorithm 5.1
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is at most C(K,AF)ε. Furthermore, the optimal value f? of (P-RLX’) satisfies

〈f ,v?(ε)〉 ≤ f? ≤ ‖f‖∞C(K,AF)ε+ 〈f ,v?(ε)〉.
4

For the proof we use the following lemma, which is an adaptation of [56, Lem. 1.8.9].

Lemma 5.4 ([9]).

Let X,X1, . . . ,Xr be nonempty compact convex subsets of RA such that the intersection

Y := X1 ∩ . . . ∩ Xr contains an l1-ball of radius ρ > 0 as a subset and the inclusion

Xi ⊆ X holds for every i ∈ [r]. Let ε > 0 and let x be a point of X satisfying

dist(Xi,x) ≤ ε for every i ∈ [r]. Then

dist(Y,x) ≤ ε

ρ
diam(X).

4

Proof. Since the assertion is invariant under translation, we assume that the l1-ball

of radius ρ contained in Y is centered at the origin, that is, B := {x ∈ RA : ‖x‖1 ≤
ρ} ⊆ Y. For each i ∈ [r], choose a point xi ∈ Xi with ‖x − xi‖1 ≤ ε. We claim that

the point y := ρ
ρ+ε

x belongs to Y. For every i ∈ [r], we fix pi ∈ RA defined by the

equality

y =
ρ

ρ+ ε
x =

ε

ρ+ ε
pi +

ρ

ρ+ ε
xi.

By construction, y is a convex combination of pi and xi. Thus, for verifying the

claim, it suffices to show that pi ∈ B for every i ∈ [r]. Indeed, if pi ∈ B, then since B

is a subset of Xi and pi belongs to Xi, we obtain that y ∈ Xi for every i ∈ [r], which

verifies the claim. The point pi can be defined explicitly as

pi =
ρ

ε
(x− xi).

Since ‖x−xi‖ ≤ ε, we immediately get pi ∈ B. The proof is concluded by estimating

the distance between x and y

dist(Y,x) ≤ ‖y − x‖1

=
ε

ρ+ ε
‖x‖1 .

Here, ε
ρ+ε
≤ ε

ρ
, while ‖x‖1 is the l1-distance between 0 and x both belonging to X,
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which implies ‖x‖1 ≤ diam(X). Thus, we arrive at the desired estimate of dist(Y,x).�

Proof (of Theorem 5.3). If some pattern P ∈ F contains 0, then 0 ∈ AF and

the constraint vα ∈ [xαK,x
α
K] with α = 0 occurring in Ineq0 can be formulated as

the equality v0 = 1. This shows that all solutions generated during the iteration

satisfy the constraint v0 = 1. Using this observation and Theorem 5.2, which yields

v?P(ε) ∈ Nε(M(K)P), we obtain v?P\{0}(ε) ∈ Nε(M(K)P\{0}). We can therefore remove

0 from all patterns and assume that 0 6∈ P holds for every P ∈ F . The feasible set of

(P-RLX’) is the intersection of

FP := {v ∈ RAF : vP ∈M(K)P} ∩ Box(xAF
K ,xAF

K )

for all P ∈ F . We show that M(K)AF is full-dimensional by assuming the contrary.

Then M(K)AF is contained in a linear subspace {v ∈ RAF : 〈c,v〉 = 0} given by

c ∈ RAF with c 6= 0. Hence, 〈c,m(x)AF 〉 is a polynomial in x vanishing on a n-

dimensional set K. This implies c = 0, which is a contradiction. Hence, M(K)AF is

full-dimensional and therefore contains a ball with radius R(K,AF) depending only

on K and AF . The feasible set
⋂

P∈F FP of (P-RLX’) containsM(K)AF and therefore

the aforementioned ball. The diameter D(K,AF) of Box(xAF
K ,xAF

K ) depends only on

K and AF . From v?(ε) ∈ ⋂P∈F ′ F
P∩⋂P∈F ′′ Nε(F

P)∩Box(xAF
K ,xAF

K ) and Lemma 5.4

it follows that

dist(
⋂

P∈F

(FP ∩ Box(xAF
K ,xAF

K )),v?(ε)) ≤ D(K,AF)

R(K,AF)︸ ︷︷ ︸
:=C(K,AF )

ε.

At last, let v ∈ ⋂P∈F FP satisfy ‖v − v?(ε)‖1 ≤ C(K,AF)ε. The upper bound on f?

in terms of v?(ε) follows from

f? ≤ 〈f ,v〉
= 〈f ,v − v?(ε)〉+ 〈f ,v?(ε)〉
≤ ‖f‖∞‖v? − v?(ε)‖1 + 〈f ,v?(ε)〉
= ‖f‖∞C(K,AF)ε+ 〈f ,v?(ε)〉. �

If the separation problem for some patterns P is too hard, it might be useful to replace
the corresponding moment bodies M(K)P by convex and compact approximations
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MP
ε′ , ε

′ > 0, that satisfy

M(K)P ⊆ MP
ε′ ⊆ Nε′(M(K)P).

Since the linear constraints xαK ≤ vα ≤ xαK with α ∈ P are valid for M(K)P, one can
always add these constraints to the underlying approximate description of M(K)P.
We can therefore assume that MP

ε′ is a subset of Box(xP
K,x

P
K). Replacing the separation

problems in step (2) of Algorithm 5.1 by the separation problems for MP
ε′ yields an

algorithm that solves

minimize 〈 f ,v 〉
for v ∈ RAF

subject to vP ∈ MP
ε′ for all P ∈ F .

(P’-RLX)

This algorithm terminates after finitely many iterations. To see this, it suffices to
observe that Theorem 5.2 holds for MP

ε′ in place of M(K)P, since the proof of Theo-
rem 5.2 only relies on the convexity and compactness ofM(K)P. Similarly, the proof
of Theorem 5.3 can be used without any changes to show that the optimal value fε

′

of (P’-RLX) and the output vε
′
(ε) of the algorithm satisfy

〈f ,vε′(ε)〉 ≤ fε
′ ≤ ‖f‖∞C(K,AF)ε+ 〈f ,vε′(ε)〉. (5.2)

Since every feasible point of (P’-RLX) is C(K,AF)ε-feasible for (P-RLX’), we have

f? ≤ ‖f‖∞C(K,AF)ε′ + fε
′
. (5.3)

Combining (5.2) and (5.3) using the triangle inequality yields

〈f ,vε′(ε)〉 ≤ f? ≤ ‖f‖∞C(K,AF)(ε+ ε′) + 〈f ,vε′(ε)〉.

This line of thought justifies replacing separation problems for chains and shifted
chains in step (2) of Algorithm 5.1 by their linear relaxation obtained by applying
Proposition 4.20 to the respective separation problem, i.e. (4.14) and (4.15).
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5.2 Pattern Relaxation and Conic Programming

We establish what we consider to be a cone program (CP) in standard form:

Definition 5.5 (Conic Standard Form).

Let K1, . . . ,Kr be closed and convex cones, J a finite index set, b ∈ RJ and obj :

K1× · · · ×Kr → R, con : K1× · · · ×Kr → RJ linear functions. We say that the cone

program

maximize obj(x)

for x ∈ K1 × · · · × Kr

subject to con(x) = b.

(CP)

is in standard form and refer to the cones Ki that a specific conic programming (CP)

solver can handle as its basic cones. 4

What a basic cone is depends on the chosen solver. For example among the basic
cones that MOSEK can handle are: R, R+, second-order cone, positive semidefinite
cones, power cones and their duals. State-of-the-art CP solvers allow to combine
different types of basic cones within (CP). These solvers usually employ an interior-
point method. For a detailed description of the interior-point method for SDPs see
for example [25, Ch. 6]. However, there exists other approaches to solve SDPs such
as spectral bundle methods [28].

Next, recall that (D-RLX) was

maximize λ

for λ ∈ R,

fP ∈ P(K)P for all P ∈ F
subject to f − λ =

∑
P∈F

fP.

(D-RLX)

In order to transform (D-RLX) into standard form only relying on MOSEK’s basic
cones, we can use the established representations of P(K)P for the different patterns
P:

• For k-variate truncated submonoids we use (approximate) Nk
2d-representations

of the cones P(K)TS(η,Γ,B) presented throughout Chapter 4 together with Propo-
sition 4.5. Note that, if approximate representations are used, a relaxation of
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(D-RLX) is solved and not (D-RLX).

• For a multilinear pattern P, when K is an axis-parallel box, we use Remark 3.6
in order to express P(K)P using LP constraints.

• For circuits we use Corollary 3.17 and the dual power cone, when K = Rn. If
K is a constrained set {x ∈ Rn : gi(x) ≥ 0 for i ∈ [r]}, where g1, . . . , gm ∈ R[x]
are polynomials, we employ the approximation (C3) of Remark 3.1 to use a
circuit P for constraint problems. Note that by doing so, we in fact create a
new pattern P̃ = P ∪⋃i∈[r]

(
supp(gi) + P

)
and approximate P(K)P̃.

5.3 Graph Based Pattern Selection

In order for a pattern family F to induce a pattern relaxation of (POP) it is neces-
sary that A ⊆ AF . This minimal requirement allows for a wide variety of different
pattern families. Throughout Chapters 3 and 4 we have already encountered different
families:

• the families depicted in the figures that were used to illustrate the pattern types

• {Pα : α ∈ A} and {P : P ∈ Fα for α ∈ A} corresponding to pattern relaxations
(3.5) and (3.6)

• the expression tree approach, discussed in Section 3.3, induces a pattern family

• the pattern family in Corollary 3.22 contains all binomial square patterns in
Nn

2d for the relaxation of P(Rn)Nn
2d

.

Furthermore, in [58] and [39] heuristic methods are used to generate families of circuit
patterns and in [47] an iterative method is proposed that augments a given family of
circuits after solving both (P-RLX) and (D-RLX). These pattern selection strategies
do not actively exploit the monomial structure encoded in A. Furthermore, none of
these families take into account that each pattern P comes with different computa-
tional costs for enforcing the constraint fP ∈ P(K)P in (D-RLX). Motivated by this
we present a pattern selection routine that takes both into account: the structure of
A and the cost per pattern P.

This leads to the overdue question: What do we mean by computational cost? The
answer to this is user dependent as this might be time complexity or memory com-
plexity. However one chooses, we assume that we can assign to each pattern P
computational cost co(P) ≥ 0 such that the computational cost of solving (D-RLX)
is proportional to

∑
P∈F co(P). This assumption is reasonable as the constraints

fP ∈ P(K)P of (D-RLX) can be enforced independently for each P ∈ F such that
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(D-RLX) has a block structure. This structure in turn can be explored by conic
programming solvers.

As there exists a potentially infinite number of patterns P ⊆ Nn to choose from, we
first limit this choice by using a pattern family A. This family A shall contain all
patterns that we deem to be useful for a pattern relaxation of A. It is our goal to
select a pattern family F ⊆ A that has the following features:

A ⊆ AF ,(F1)

the original exponents in A are connected among each other (directly(F2)

or indirectly) and

the computational cost
∑

P∈F co(P) corresponding to F are minimal(F3)

among all families that satisfy (F1) and (F2).

Next we borrow some notation from combinatorial optimization, see for example [33]:
A graph G is a tuple G = (No (G) ,Ed (G)), where No (G) is a finite and nonempty
set and Ed (G) is finite subset of {{w, u} ⊆ No (G) : w 6= u}. We call the elements
of No (D) nodes and the elements of Ed (D) edges. A subgraph of G is a graph
S = (No (S) ,Ed (S)) with No (S) ⊆ No (G) and Ed (S) ⊆ Ed (G). We write S ⊆ G to
indicate that S is subgraph of G. Let a1, ak+1 ∈ No(G) with a1 6= ak+1. A a1-ak+1-path
in G is a subgraph

H = ({a1, . . . , ak+1} , {{a1, a2}, . . . , {ak, ak+1}}) ⊆ G

with ai 6= aj for all i 6= j. The length of H is the cardinality of Ed(H), i.e. # Ed(H) = k.
By abuse of notation we refer to Ed(H) as a1-ak-path, since we can always retrieve
No(H) from Ed(H). We assign weights to the nodes using a function we : No(G)→ R.
For N ⊆ No(G) and S ⊆ G we write we(N) :=

∑
a∈N we(a) and we(S) := we(No(S)).

We can now define a node-weighted graph G (A) for the pattern selection routine.
The nodes and edges of this graph are

No(G (A)) :=A ∪ A
Ed(G (A)) :=

{{
α,P} : α ∈ A,P ∈ A with α ∈ P

}
∪{

{P, P̃} ⊆ A : P̃ 6= P and P̃ ∩ P\{0} 6= ∅
}

and we define the weight of an node a ∈ No (G (A)) by

we(a) :=

{
co(a), if a ∈ A,
0, else.
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Let α, β ∈ A with α 6= β and

H =
{{
α,P1

}
,
{

P1,P2,
}
, . . . ,

{
Pk−1,Pk

}
,
{

Pk, β
}}
.

be α-β-path in G(A). The path H induces a pattern family {Pi}i∈[k] that connects
α ∈ P1 and β ∈ Pk. Thus, an optimal solution Sopt of

min {we (S) : S ⊆ G (A) and there exists α-β-path in S for allα, β ∈ A} (5.4)

induces a pattern family F = No(Sopt)\A with costs

we
(
Sopt

)
=
∑
i∈[k]

co(Pi).

This family has, due to the construction of the graph G(A), the features (F1), (F2)
and (F3). The problem (5.4) is known as node-weighted Steiner tree problem [33,
Ch. 20]. This well investigated problem [52] has been implemented in the appli-
cation SCIP-Jack [23] of SCIP [24], which we used for our implementation. Before
we address in Example 5.6 the question how to choose A and the cost function for
multilinear patterns, we note that this is merely one possible construction of such
a graph. A natural extension could be assigning capacities to the edges {P, P̃} in
G(A) that reflect the cardinality of P̃ ∩ P\{0}. Another, different, approach is to
use a hypergraph with nodes in Nn that correspond to exponents and edges P ⊆ Nn

correspond to patterns.

Example 5.6.

For a given set of exponents A ⊆ Nn we define A using I := {1, e1, . . . , en,0} and

Ā := {α ∈ Nn : for all i ∈ [n] there exists β ∈ A with αi = βi}

A := {ML(α, I) : α ∈ Ā and ML(α, I) ≥ 3}. The auxiliary set Ā contains A

and yields ‘orthogonal structures’ that are well suited for exploitation with multilin-

ear patterns from A. The idea is that if A is not ill-structured and sparse then

the cardinality of A will be moderate. In turn, this keeps the number of nodes and

edges of G(A) relatively low compared to a choice a of A such as A = {ML(α, I) :

αi ≤ maxβ∈A βi for all i ∈ [n]} – which is desirable as the Steiner tree prob-

lem is NP-hard [52]. The next figure illustrates these orthogonal structures on

A = {(2, 3), (2, 4), (5, 5)}.
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0 5

0

5

α1

α2

Ā

Figure 5.1: As usual, we depict the original exponents in A = {(2, 3), (2, 4), (5, 5)} by
red squares and the auxiliary exponents in Ā\A by blue dots.

For simplicity, we use co(P) := #P as a proxy for the computational cost of a mul-

tilinear pattern P. Applying this procedure to the exponent sets Aex and A2 of the

previous chapters yields the graphs and minimal node-weighted Steiner trees depicted

in Figure 5.2. The graphs are already fairly large. In order to further reduce their

sizes an option is to exploit the symmetries that they admit. However, as the pattern

families corresponding to the Steiner trees, shown in Figure 5.3, already have the

desired properties, we leave it at this. In particular, the right subplot of Figure 5.3

shows a pattern family for which all exponents in A2 are indirectly connected – an

improvement to the family shown in Figure 3.1. 4
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Aex A2

Figure 5.2: Two Graphs G (A) are shown for A constructed from Aex and A2 as de-
scribed in Example 5.6. The red squares corresponds to the nodes Aex and colored
dots to nodes A. The green dots and edges together with the red squares depict a
minimal node-weighted Steiner tree as computed by SCIP-Jack.

0 5

0

5

α1

α2

Aex

0 5α1

A2

Figure 5.3: Visualization of the multilinear families that correspond to minimal node-
weighted Steiner trees shown in Figure 5.2. The format is as described in Plot Set
Up 3.2.
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Chapter 6

Numerical evaluation

Finding an unbiased and objective setting to compare the advantages and disad-
vantages of convex relaxations for POPs is not trivial, as models, their purpose, and
methods are usually closely linked to one another. We decided to use two different im-
plementations of the pattern relaxation, namely MONORELS and DUAL-MONORELS. The
first implementation, MONORELS, is a prototype of Algorithm 5.1 that relies purely on
linear programming to compute solutions of (P-RLX’) for different pattern families.
The second implementation, DUAL-MONORELS, translates (D-RLX) into conic standard
form and then computes its optimal value using MOSEK. DUAL-MONORELS allows to com-
bine multilinear patterns, all variants of truncated submonoids (including chains and
binomial square patterns) and circuits. The solutions are used to approximate the
size of the relaxations. As measure for the size, the width of the relaxations in differ-
ent directions is used. We use the width of the relaxations in different directions as a
measure for the size. Different pattern relaxations are compared on a new benchmark
library of random POP instances among another and to results from different solvers.
This demonstrates how different pattern families influence the quality of the pattern
relaxations. As reference we use the widths computed by BARON, the arguably lead-
ing solver for nonconvex optimization, and the widths computed by TSSOS, a sparsity
exploiting SDP based approach.

We start by describing implementation and comparison details, before numerical re-
sults for different classes of instances are discussed.

6.1 Implementation Details

Four different solvers are run for the numerical evaluation on a compute server with
4 Intel(R) Xeon(R) Gold 6138 CPUs with 20 cores of 2 threads and 1 TB RAM
each under Ubuntu 18.04.4. Each solver-instance pair was assigned to one such job,
i.e. the solvers themselves did not use the parallel structure. In order to distribute
the solver-instance pairs to the 80 cores we used [65]. The following versions were
used Matlab 9.6.0.1174912 (R2019a) Update 5 [41], MOSEK 9.2.32 [3], JULIA 1.5.2
[13], TSSOS version 1.00 [67] and BARON 1.8.9 [66]. All reported run times are real
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times. The codes of MONORELS and DUAL-MONORELS are implemented and run in
Matlab. MONORELS consists of roughly 3000 lines for the main algorithm, relaxations
of different patterns, utilities, and unit tests. As a subsolver for the linear programs
the dual simplex algorithm of MOSEK’s linprog was used (without warmstarting)
for the master and the separation problems for chains and shifted chains arising from
Proposition 4.20 with ε = 10−4. For the covering I we chose an interval decomposition
of 9 equidistant intervals. The cutting-plane algorithm of MONORELS was timed with
MATLAB’s tic and toc commands. The code of DUAL-MONORELS consists of roughly
3500 lines of code and uses MOSEK to solve the cone programs. The reported time
is the termination time obtained from MOSEK. BARON [66] was called from Matlab

with default settings. BARON currently only returns the CPU time, when its Matlab

interface is used. Hence, we time a BARON call with MATLAB’s tic and toc commands1.
TSSOS is a JULIA package that allows to exploit correlative sparsity and term sparsity
simultaneously. We called the first level of the hierarchy by running the command
cs tssos first with settings order = ddeg(f)

2
e and TS="MD". With these settings

the computation time of TSSOS is typically the fastest, but may yield looser bounds
than other settings. TSSOS does not report the time of the solution process. Thus,
we first piped the output from the SDP solver MOSEK, that TSSOS uses, to a text file.
After that we read the termination time of MOSEK from the text file. Since only two
decimal places are obtained this way, the time we report is only a proxy of the time
of TSSOS’s actual MOSEK call. The code for of MONORELS and DUAL-MONORELS as well
as the code used for calling BARON and TSSOS is on the CD that is included in the
back cover.

6.2 Setup of Numerical Comparisons

As an indicator for the tightness of relaxations we approximate the size of feasible
sets by their width. For a given finite and nonempty set A ⊆ Nn and a vector f ∈ RA

we define the width function ωM(K)A(f) of M(K)A in direction f as

ωM(K)A(f) = max
x∈K

f(x)−min
x∈K

f(x). (6.1)

Replacing K by a relaxation based on a pattern family F one obtains an upper bound
on the value of ωM(K)A(f), denoted by ω(F ,M(K)A, f). The evaluation requires
solving two instances of (P-RLX’) for every pattern of interest, using the objective
functions 〈−f ,v〉 and 〈f ,v〉, respectively. To normalize the values ωM(K)A(f) and
ω(F ,M(K)A, f) to the range [0, 1], we divide by the width function obtained for the

1This method was suggested with the support of BARON.
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(trivial) relaxation using the singletons-only pattern F sgl
A = {{α} : α ∈ A}, i.e.,

ν(P ,A, f) :=
ω(P ,M(K)A, f)

ω(Psgl
A ,M(K)A, f)

and νA(f) :=
ωM(K)A(f)

ω(Psgl
A ,M(K)A, f)

. (6.2)

Tables 6.1 and 6.2 list the methods and patterns that were used for the numerical
results. Method (B) gives an approximation of the reference solution, albeit at a high
computational cost. (R) can be seen as the current state-of-the-art for a relaxation
within a divide-and-conquer approach. (CS) is, to our knowledge, the current state-
of-the-art of sparsity exploiting SDP approaches. Our approach allows to compare
the new relaxation strategies (M), (C), (MC), (H) and (T) with respect to the width
function.

6.3 Test Instances

Our set of test instances consists of 13 nonempty and finite exponent sets A ⊆ Nn

which were classified into four types: specially structured adversary sets, dense sets,
sparse sets, and the example Aex from above. They are explained in the next sub-
section. For each exponent set we chose K = [0, 1]n and 20 (uniformly distributed)
random coefficient vectors f1, . . . , f20 ∈ [−1, 1]A. The instances were a priori filtered
to avoid trivial problems. If BARON did terminate either the minimization or the max-
imization task in (6.1) within the CPU time limit of 1000 seconds2, the instance was
replaced. Therefore the corresponding mean times for (B) are always at least 1000
seconds.

The motivation was not to show that our new relaxations are always better than
the ones within BARON or TSSOS, but that there are difficult instances for which an
improvement is possible.

6.4 Numerical Results

In this subsection we describe the different exponent sets and show numerical results

for the different methods from Tables 6.1 and 6.2.

Box Plot Set Up 6.1.

Figures 6.1 to 6.5 and 6.7 show box plots of our numerical findings. The box plots

visualize the distributions (20 random vectors f i) of the normalized width functions

(6.2) for various methods from Tables 6.1 and 6.2 computed with BARON, MONORELS

2To avoid confusion: BARON reports the CPU time but not the real time.

95



CHAPTER 6 NUMERICAL EVALUATION

DUAL-MONORELS and TSSOS. The title of a subplot corresponds to the exponent set

A. Below the method (see Tables 6.1 and 6.2) the rounded mean time in seconds is

shown for the respective method. The box plots for (6.2) computed by MONORELS and

DUAL-MONORELS are indistinguishable to the human eye. Thus, we only show the box

plots for the widths and computed by DUAL-MONORELS when the methods (C), (S),

(M), (MC), (H) and (T) are used. The time right below these methods is the one

reported by DUAL-MONORELS. Additionally, if computed, the mean time for the bounds

computed by MONORELS can be found beneath the respective time from DUAL-MONORELS.

The box borders are the 1/4 and the 3/4-quantiles. The lower whisker is the smallest

data value which is larger than the lower quartile −1.5 times the interquartile range

and the upper whisker accordingly. 4

Label Description

(B) Reference solution: To approximate ωM(K)A(f) we use the best upper
bound for maxx∈K f(x) and the best lower bound for minx∈K f(x) that
BARON returns within a CPU time limit of 1000 seconds each.

(R) Root node relaxation of the BARON solver.

(CS) Reference solution obtained from the sparsity exploiting solver TSSOS.

(SOS) Self-implemented SOS relaxation of the lowest hierarchy level that does
not exploit sparsity (see Section 2.1).

(M) Relaxation based on the multilinear pattern Fm
A , which consists of the

inclusion-maximal elements of {ML(α, {0, 1}n) : α ∈ A\{0}}.
(S) Relaxation based on a family of shifted chains F s

A, which consists of the
inclusion-maximal elements of

{ξ + CH(ei, d) : d ∈ 2N\{0}, ξ ∈ Nn, i ∈ [n]},

that satisfy #(ξ + CH(γ, d)) ∩ A ≥ 2 and

#(ξ + CH(γ, d)) ∩ A > #(ξ + CH(γ, d− 1)) ∩ A.

The latter conditions ensure that each shifted chain contains at least two
exponents from A and that we cannot include more exponents from A if
we choose a bigger d.

Table 6.1: Methods and relaxations to be compared in Figures 6.1 to 6.5 and 6.7.

96



NUMERICAL EVALUATION CHAPTER 6

Label Description

(C) Relaxation based on a family of chains F c
A, which consists of the inclusion-

maximal elements of

{CH(γ, d) : d ∈ 2N\{0}, γ ∈ Nn},

that satisfy # CH(γ, d) ∩ A ≥ 2 and

# CH(γ, d) ∩ A > # CH(γ, d− 1) ∩ A.

(MC) Relaxation based on a family of multilinear patterns, chains and shifted
chains,

Fmc
A := Fm

A ∪ F c
A1
∪ F s

A2

where A1 := AFm
A

, A2 := AFm
A ∪F

c
A1

.

(H) Let d(A) := max({αi : α ∈ A, i ∈ [n]}) and Γ := {1, e1, . . . , en}. A
relaxation based on the family

Fh
A := {CH(γ, d(A)) : γ ∈ Γ} ∪ Fm

{CH(γ,d(A)):γ∈Γ} ∪ Fm
A ,

which uses n + 1 chains that are linked by d(A) multilinear patterns to
strengthen Fm

A .

(T) Let d1 := 2 · ddeg(A)/2e, d2 := 2 · ddeg(A)/4e and Γ := (2e1, . . . , 2en). A
relaxation based on the family F t

A, which consists of the inclusion-maximal
elements of

{TS((ei)i∈supp(α), d1) : α ∈ A\TS(Γ, d2)} ∪ {TS(Γ, d2)}.

Here, (ei)i∈supp(α) is a matrix with columns ei, i ∈ supp(α). The family F t
A

uses k-variate truncated submonoids with k ≤ d1 to cover the exponents
in A and connects these chains using one n-variate truncated submonoid.

Table 6.2: Methods and relaxations to be compared in Figures 6.1 to 6.5 and 6.7.
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Adversary Exponent Sets

If a pattern family yields only poor connective properties for an exponent set, we
consider this set to be an adversary exponent set for this family. In plot A2 from
Figure 3.1, for example, we see that the sparse family Fm

CH(1,5) of multilinear pat-
terns connects none of the original exponents. Hence, chain shaped exponent sets are
natural adversaries for relaxations that only use multilinear patterns. As a result, Fig-
ure 6.1 shows that the bounds using Fm

CH(γ,d) (M) coincide with the bounds obtained

by the weakest pattern family F sgl
CH(γ,d). On the other hand, it is not surprising that

the bounds obtained by using one chain (C) match the reference solution (B). Further-
more, the sparsity exploiting solver TSSOS fails to terminate for any of the 20 instances
with exponent set CH(14, 10). We suspect the reason for this is that CH(14, 10) does
not yield any term or chordal sparsity structures that can be exploited. Thus, TSSOS
solves a regular moment relaxation for n = 4 and deg(CH(14, 10)) = 40. This involves
computing a SDP that includes a

(
24
4

)
×
(

24
4

)
PSD matrix. Note that

(
24
4

)
= 10626.
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1.337
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Figure 6.1: Visualization of the distributions of the normalized width functions (6.2)
for various methods from Tables 6.1 and 6.2 as described in Box Plot Set Up 6.1 and
for adversary exponent sets.

Another adversary exponent set for multilinear patterns is C(n, d) := CH(1, d) ∪
CH(e1, d) ∪ · · · ∪ CH(en, d). It can be covered sparsely by d multilinear patterns
using the family Fm

C(n,d). Each pattern of Fm
C(n,d) connects n + 1 original exponents,

but establishes no connection between monomials from different patterns. That is
because two patterns P,P′ ∈ Fm

C(n,d) with P 6= P′ satisfy P ∩ P′ = {0}. The poor
connective properties of Fm

C(n,d) explain their poor performance, see (M) in Figure 6.2.
By additionally using n + 1 chains to connect the d multilinear patterns, the family
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Fh
C(n,d) exploits the structure of C(n, d). As a consequence, the bounds computed

with (H) and (B) are indistinguishable in Figure 6.2. Again, TSSOS fails to terminate
for any of the instances with exponent set C(4, 10) – most likely, since the problem
emits no term or chordal sparsity structures.
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Figure 6.2: Visualization of the distributions of the normalized width functions (6.2)
for various methods from Tables 6.1 and 6.2 as described in Box Plot Set Up 6.1 and
for adversary exponent sets.
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Figure 6.3: Visualization of the distributions of the normalized width functions (6.2)
for various methods from Tables 6.1 and 6.2 as described in Box Plot Set Up 6.1 and
for dense exponent sets.
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Dense Exponent Sets

We consider dense exponent sets A = Nn
d for n ∈ {2, 4} and d = 10. The pattern

families shown in Figure 6.3 perform reasonably well, probably due to their connec-
tivity properties. Furthermore, we see that the multilinear patterns (M) perform for
n = 4 drastically better than (R). This might be because the multilinear patterns
ML(α, {0, 1}n) used in Fm

N4
10

are bigger than the ones BARON uses, leading to more

connections between monomial variables.

Sparse Exponent Sets

We use randomly generated sparse exponent sets A = S(n, d) to test pattern families
that do not assume any structure of A. S(n, d) is generated by randomly picking⌈(

n+d
d

)⌉
exponents via Matlab’s randperm from Nn

d.
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Figure 6.4: Visualization of the distributions of the normalized width functions (6.2)
for various methods from Tables 6.1 and 6.2 as described in Box Plot Set Up 6.1 and
for sparse exponent sets of degree 10.

Figure 6.4 column (M) shows that Fm
S(n,d) does not perform particularly well. Column

(H) shows that additionally enforcing indirect connections between moment variables
via n + 1 chains and d multilinear patterns in Fh

S(n,d) results in tighter bounds.

Figure 6.5 the distribution of the width for sparse instances with a high number of
variables n = 25, 30, 35, 40 and low degree d = 4. These instances are infeasible for
relaxations that do not exploit sparsity of S(n, d) if n ≥ 35. Thus, it was impossible
to compute the width with (SOS) if n ≥ 35. Interestingly, the bounds computed
by TSSOS are worse than the ones ones computed with the pattern family F sgl

S(n,4). It
might be that using different settings for TSSOS yields better bounds. However, this
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Figure 6.5: Visualization of the distributions of the normalized width functions (6.2)
for various methods from Tables 6.1 and 6.2 as described in Box Plot Set Up 6.1
and for sparse exponent sets with degree 4. The correct average time (rounded to
integers) for (SOS) and S(35, 4) is 20246s, which rounds to more than 5.5h.

would also result in higher computation times. The pattern strategy (T) yields for
all tested n nontrivial bounds. Note that for n = 25, 30, 35 these bounds seem to
be reasonably tight, when compared to (SOS), but for a fraction of the computation
time of (SOS). For n = 40 (T) outperforms all other tested relaxation methods, that
terminated,3 in terms of the quality of the bounds and is only bested by the root node
relaxation (R) of BARON in terms of time. We want to point out that we were able
to compute nontrivial bounds for instances with exponent sets S(80, 4). For these
exponent sets the computation of the width in one direction usually takes between
6-7 minutes. The reason for the good performance in terms of computation time of
(T) can be traced back to the relatively small size of the biggest involved r× r PSD
matrices in the relaxation of (D-RLX). That is for F t

S(n,2d) = {TS({ei}i∈supp(α), 2d) :

3To be more precise: that terminated for all 20 coefficient vectors within one week.
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α ∈ S(n, 2d)\TS(Γ, 2d)} ∪ {TS(Γ, d)}

r ≤ max
{(d + min{n, 2d}

min{n, 2d}

)
,

(⌈
d
2

⌉
+ n

n

)}
.

This boils for 2d = 4 and n ≥ 4 down to r ≤ max
{(

2+4
4

)
,
(

1+n
n

)}
.

Custom Strategies

A customized pattern family P for a given exponent set A allows to trade off com-
putational cost versus tightness of the relaxation. Figure 6.6 shows three example
pattern families customized for Aex from Plot Set Up 3.2.

0 5

0

5

α1

α2

Aex

0 5α1

Aex

0 5α1

Aex

Figure 6.6: Visualization of custom pattern families for Aex as described in Plot Set
Up 3.2. Left: F1 with multilinear patterns ML(α, {0, 1}2), α ∈ {(1, 1), (5, 5)},
the chains CH(α, 5), α ∈ {e1, e2,12} and the shifted chains (0, 5) + CH(e1, 5)
and (2, 0) + CH(e2, 5). Middle: F2 with multilinear patterns ML(α, {0, 1}2),
α ∈ {(1, 1), (2, 3), (2, 4), (5, 5)}, chains CH(α, 5), α ∈ {e1, e2}. Right: F3

with multilinear patterns ML(α, {0, 1}2), α ∈ {(1, 1), (2, 3), (2, 4), (5, 5)}, chains
CH(α, 5), α ∈ {e1, e2,12} and shifted chains (0, 5) + CH(e1, 5), (2, 0) + CH(e2, 5)
and (0, 4) + CH((2, 0), 2).

While the bounds obtained from F2, see P2 in Figure 6.7, are far from optimal, they
are an improvement compared to Fm

Aex
in column (M). The more involved pattern

families F1 and F3 result in similar bounds as (B) and (CS).
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Figure 6.7: Visualization of the distributions of the normalized width functions (6.2)
for various methods from Tables 6.1 and 6.2 as described in Box Plot Set Up 6.1
The custom pattern families F1,F2,F3 for Aex labeled as P1,P2,P3 are defined in
Figure 6.6.
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Chapter 7

Conclusion

We have presented a customizable framework for the relaxation of polynomial opti-
mization problems that is based on monomial patterns. This novel framework allows
to integrate approaches that are from different communities or to develop new ap-
proaches. In fact, we have shown that various methods using linearizations by mul-
tilinear terms or bound-factor products as well as relaxations based on SOS, SDSOS
and SONC polynomials all come with their particular types of patterns. The advan-
tage of our approach is that, by using patterns, we gain flexibility in terms of the size
of the relaxation. By exploiting the combinatorial structure of the set A of monomial
exponents we are able to neglect dependencies between certain monomials. This in
turn allows to avoid hard problem formulations and instead focus on well-behaved
and easy-to-describe dependencies between certain other monomials. The key idea is
to replace the cone P(K)A by ∑

P∈F

P(K)P, (7.1)

where F is a family of patterns. By carefully choosing F we can produce tractable
and sufficiently tight relaxations of (POP). While not explicitly expressed this way,
SDSOS or SONC relaxations of (POP) successfully use this concept. Rigorously
exploiting this idea we introduce truncated submonoids – a novel pattern type.
Truncated submonoids TS(η,Γ,B) allow to control the cost of enforcing the con-
straint

fTS(η,Γ,B) ∈ P(K)TS(η,Γ,B) (7.2)

by choosing the parameters Γ and B appropriately. From truncated submonoids we
derive a variety of other pattern types such as chains. Chains pose a generalization
of binomial square patterns, which is the underlying pattern of SDSOS relaxations.
Recall that a binomial square pattern P links 3 monomial variables and that, when
K = Rn, the constraint fP ∈ P(K)P can be enforced by PSD constraints involving one
2×2 matrix. Our generalization preserves the desirable properties of binomial square
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patterns: a chain CH(η, γ, 2d) allows to link 2d + 1 monomial variables by

fCH(η,γ,2d) ∈ P(K)CH(η,γ,2d). (7.3)

If K = Rn, (7.3) can be enforced using one PSD matrix of size d + 1× d + 1. Thus,
they induce constraints of manageable size, but also allow to link more monomial
variables. Furthermore, if K is an axis-parallel box, (7.3) can be enforced by at most
two PSD matrices of size at most d+1×d+1. Hence, effectively creating an analogue
of SDSOS cones for axis-parallel boxes K.

However, it is the author’s opinion that an exact description of the cone in constraint
(7.2) is not necessary. In fact, SOS, SDSOS and SONC relaxations or multilin-
ear envelopes usually yield only inner approximations of P(K)A. It therefore seems
arbitrary to demand an exact description of P(K)P in (7.1). Dropping this demand
allows to combine truncated submonoids with a variety of Positivstellensätze to create
tractable relaxations of P(K)P and consequently of (POP). This allows to use the
different established SOS/SDP-based approaches which in practise become quickly
infeasible due to the involved computational cost of solving large SDPs.

Another merit of the pattern relaxation is that different pattern types can be used to
compose a tractable relaxation of (POP). In fact, all discussed patterns in this thesis
can be combined. This includes combinations of SONC and SOS, due to the chosen
power cone representations of circuit polynomials. By combining different pattern
types, we can avoid ill-behaved problem formulations.

Furthermore, once clearly articulated, certain basic and useful facts become very
apparent within the pattern relaxation. By introducing the notions of ‘directly con-
nected’ and ‘indirectly connected’ moment variables, we can express the problem of
finding a well balanced pattern family F as finding a minimal node-weighted Steiner
tree within a certain graph. In Example 5.6 the graph approach is applied in order
to find a family of multilinear patterns.

The computational studies clearly provide numerical evidence that it is worth to think
about an appropriate choice of pattern types and their combination. The different
families show how their compositions influence the quality of the lower bounds. While
we are able to generate reasonably tight lower bounds from pattern relaxations when
suitable pattern families are used, the opposite holds true for ill-fitted pattern families.
We want to point out that the way we choose particular pattern families F and handle
these patterns computationally in the numerical evaluation is merely one of the many
possible options.

In particular, the cutting-plane algorithm 5.1 allows to combine the different ap-
proaches in numerous ways. The cuts generated by (SP) can be integrated directly
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into branch-and-bound that use monomial variables such as BARON [66], SCIP [24],
COUENNE [12] or LINDOGlobal [57]. Thus, by choosing an appropriate set of genera-
tors of a truncated submonoid, (SP) can be used as an interface for SOS methods in
branch-and-bound algorithms.

7.1 Outlook

There are different ways to improve the pattern relaxation. While this thesis shows
that there already exists a rather large toolbox of patterns, expanding it will almost
certainly stimulate the creation of new relaxations.

Another pressing issue is how to determine an appropriate pattern family F for a
given problem. This could be achieved in the following ways:

• The development of graph based approaches as in Example 5.6 to generate
customized families for each problem.

• The development of iterative procedures, that allow to augment a given a pat-
tern family after the optimal solution of the corresponding pattern relaxation
is computed.

• Identifying combinations of patterns that complement each other. An exam-
ple of this is the combination of chains and multilinear patterns in Fh

A, see
Section 6.2.

In order to solve challenging polynomial problems at the frontier of what is currently
possible, it seems to be necessary to merge the approaches of different communities.
A promising prospect for this is the combination of branch-and-bound methods with
sophisticated relaxations methods from the polynomial optimization community. The
relaxations that are usually solved within branch-and-bound methods in order to
compute lower bounds, come along with relatively low computational cost. This
allows to compute many bounds, which helps to mitigate the effects of their (usually)
low quality. However, if the quality of these bounds is too low, the branch-and-
bound approach is not feasible anymore. Here, pattern relaxations can be used to
fit the tightness and the computational cost of the lower bounds to the demands of
branch-and-bound algorithms. Figure 7.1 presents how a spatial branch-and-bound
algorithm can be enhanced using the pattern relaxation (D-RLX) to compute lower
bounds. Additionally, the augmentation step (Augment relaxation by adding patterns
to F) in Figure 7.1 yields the option to strengthen the relaxation if a lower bound is
not sufficiently tight for further branching. However, at this point it is not clear how
to determine whether the bounds are sufficiently tight nor which pattern should be
added to F in order to generate tighter bounds.
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Initialize node list
L = {K} and upper

bound f = f(x)
for some x ∈ K.

Input:
A, f ∈ R[x]A and

K ⊆ Rn

L = ∅?
Return minimum

fS among all
saved branch

solutions.

Select node S ∈ L.

Determine l,u with
S ⊆ K̃ := Box(l,u).

Select a pattern
family F .

Compute lower
bound fS by solving
(D-RLX) for F , K̃.

f < fS?

Prune by optimal-
ity: remove nodes S̃
with S̃ ⊆ S from L.

Update upper
bound with

f
S

= f(x) for
some x ∈ S and
f ← min{f, fS}.

f
S
< fS + ε?

Save branch
solution fS := f

S
.

Bounds suffi-
ciently tight?

Augment relax-
ation by adding
patterns to F

Branching: Divide
K̃ into nonempty

K,K with K̃ = K∪K

Update L by
removing K̃ from L
and adding K,K.

no

no

no

yes

no

yes

yes

yes

Figure 7.1: Flowchart (adapted from [32, Fig. 2]) of a prototype branch-and-bound
procedure enhanced by the pattern relaxation approach for solving (POP) with ob-
jective function f ∈ R[x]A and a compact feasible set K. The boxes that are striped
showcase open problems. In particular how to decide whether the bounds are suffi-
ciently tight for further branching and how to select new patterns to augment F are
open questions.
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Nomenclature and Notation

For the following list of symbols complements the notation introduced in Section 1.2.
Let n be a positive and d a nonnegative integer. Furthermore, let A ⊆ Nn be nonempty
and finite set, F be a pattern family, K ⊆ Rn be a closed set that contains a full-
dimensional ball {x ∈ Rn : ||x − a||1 < ε} for some ε > 0 and a ∈ Rn, X ⊆ RA be a
nonempty and compact set, f be a polynomial and w ∈ RA be a vector.

List of Symbols

4 end of a definition, lemma, or theorem

� end of a proof

N set of natural numbers including zero

Nn
d := {α ∈ Nn : α1 + · · ·+ αn ≤ d}

Nn
β := {α ∈ Nn : αi ≤ βi for all i ∈ [n]} for β ∈ Nn

Pµ power cone, page 40

R set of real numbers

R+ := {v ∈ R : v ≥ 0}
R++ := {v ∈ R : v > 0}
RA := {(vα)α∈A : vα ∈ R for all α ∈ A} ∼= R#A

R[x] := {∑α∈Nn fαx
α : f ∈ RNn

with # supp(f) <∞}
R[x]A := {∑α∈A fαx

α : f ∈ RA}
SA

+ := {M ∈ RA×A : M is symmetric and positive semidefinite }
Z set of integers

C(K)A cl cone({m(x)A : x ∈ K}) is the A-truncated moment cone

M(K)A cl conv({m(x)A : x ∈ K}) is the A-truncated moment body

P(K) := {f ∈ R[x] : f ≥ 0 on K}
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P(K)A := {f ∈ P(K) : supp(f) ⊆ A}
[n] := {1, 2, . . . , n}
[n]m :=×i∈[m]

[n] for m ∈ N\{0}
[n]0 := {0, 1, 2, . . . , n}
[n]m0 :=×i∈[m]

[n]0 for m ∈ N\{0}
{aβ}β∈B := {aβ : β ∈ B} for B ⊆ Nn

# cardinality

◦ Hadamard product, page 25

∪̇ disjoint union

∼= isomorph

≤,≥ interpreted componentwise for vectors

<,> interpreted componentwise for vectors

| · | absolute value

‖ · ‖1 `1-norm

‖f‖1 := || vec(f)supp(f)||1
‖ · ‖∞ `∞-norm

∅ empty set

%(I) fineness of I

Φ[a,b] page 72

[[X]]B := {vB : v ∈ X} for nonempty B ⊆ A

{0, 1}A :=×
α∈A

{0, 1}

[a, b]A :=×
α∈A

[a, b] for a, b ∈ R

eα,A or eα standard basis vectors of RA for α ∈ A

1A or 1 all ones vector in RA

0A or 0 all zeros vector in RA

vB := (vα)α∈B for B ⊆ A,v ∈ RA

AF :=
⋃

P∈F P
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Box(l,u) := [l1, u1]× · · · × [ln, un] for l,u ∈ Rn with l ≤ u

cl closure

cone conic hull

conv convex hull

co(P) computational cost of a pattern P, page 88

deg(α) := α1 + · · ·+ αn is the degree of α ∈ Nn

deg(A) := max{deg(β) : β ∈ A} is the degree of A

deg(f) := deg(supp(f)) degree of f ∈ R[x]

det(T) determinate of a matrix T ∈ Rn×n

diag(w) A× A diagonal matrix with diagonal w

diam(X) := max
u,z∈X

‖u− z‖1

dist(X,w) := min
u∈X
‖w − u‖1

Ed (G) edges of the graph G, page 89

G(A) graph induces by the pattern family A, page 89

m(x)A := (xα)α∈A is the A-truncated moment vector map

Nε(X) := {u ∈ RA : ‖u− z‖1 ≤ ε for some z ∈ X} for ε > 0

No (G) nodes of the graph G, page 89

relint relative interior

SOS(A) := {p ∈ R[x]A : p is SOS}
supp(w) := {α ∈ A : wα 6= 0} support of w

supp(X) :=
⋃

v∈X supp(v) support of X

supp(f) := supp(vec(f)Nn) monomial support of f

vec(f)A := fA coefficients of f =
∑

α∈Nn fαx
α indexed by A

vec(f)α := vec(f){α}

we(a) weight of node a ∈ G(A), page 89

width(X, c) := max{〈c,u〉 : u ∈ X} −min{〈c,u〉 : u ∈ X} for c ∈ RA

xα := xα1
1 · . . . · xαn

n for an indeterminate x = (x1, . . . , xn)
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xα := xα1
1 · . . . · xαn

n for x ∈ Rn

xαK := maxx∈K xα

xA
K := (xαK)α∈A

xαK := minx∈K xα

xA
K := (xαK)α∈A
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discretized chain, 72

expression tree, 33

feasible
point, 9
set, 9

fineness, 72

Hadamard product, 25

localizing matrix, 37

moment

matrix, 37
relaxation, 36
vector, 8

monomial
convexification, 12
variable, 11

multilinear pattern, 28

objective
function, 9

optimal
value, 9

optimization problem
bounded, 9
feasible, 9
infeasible, 9
unbounded, 9

pattern, 12
family, 12
relaxation, 12

semialgebraic set, 8
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[25] B. Gärtner and J. Matoušek. Approximation algorithms and semidefinite pro-
gramming. Springer, Heidelberg, 2012. ISBN 978-3-642-22014-2; 978-3-642-
22015-9. doi: 10.1007/978-3-642-22015-9. URL https://doi.org/10.1007/

978-3-642-22015-9.

[26] F. Glover and E. Woolsey. Converting the 0-1 polynomial programming problem
to a 0-1 linear program. Operations research, 22(1):180–182, 1974.

[27] D. Handelman. Representing polynomials by positive linear functions on compact
convex polyhedra. Pacific J. Math., 132(1):35–62, 1988. ISSN 0030-8730. URL
http://projecteuclid.org/euclid.pjm/1102689794.

[28] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite program-
ming. SIAM J. Optim., 10(3):673–696, 2000. ISSN 1052-6234. doi: 10.1137/
S1052623497328987. URL https://doi.org/10.1137/S1052623497328987.

[29] S. Iliman and T. de Wolff. Amoebas, nonnegative polynomials and sums of
squares supported on circuits. Res. Math. Sci., 3:Paper No. 9, 35, 2016. ISSN
2522-0144. doi: 10.1186/s40687-016-0052-2. URL https://doi.org/10.1186/

s40687-016-0052-2.

125

https://doi.org/10.1137/16M1086303
https://doi.org/10.1137/16M1086303
https://doi.org/10.1007/s12532-016-0114-x
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023
https://doi.org/10.1007/978-3-642-22015-9
https://doi.org/10.1007/978-3-642-22015-9
http://projecteuclid.org/euclid.pjm/1102689794
https://doi.org/10.1137/S1052623497328987
https://doi.org/10.1186/s40687-016-0052-2
https://doi.org/10.1186/s40687-016-0052-2


Bibliography

[30] C. Josz and D. K. Molzahn. Lasserre hierarchy for large scale polynomial opti-
mization in real and complex variables. SIAM J. Optim., 28(2):1017–1048, 2018.
ISSN 1052-6234. doi: 10.1137/15M1034386. URL https://doi.org/10.1137/

15M1034386.

[31] L. Katthän, H. Naumann, and T. Theobald. A unified framework of sage and
sonc polynomials and its duality theory. arXiv preprint arXiv:1903.08966, 2019.

[32] K. Kianfar. Branch-and-bound algorithms. Wiley Encyclopedia of Operations
Research and Management Science, 2010.

[33] B. Korte and J. Vygen. Combinatorial optimization, volume 21 of Algorithms
and Combinatorics. Springer, Berlin, 2018. ISBN 978-3-662-56038-9; 978-3-662-
56039-6. doi: 10.1007/978-3-662-56039-6. URL https://doi.org/10.1007/

978-3-662-56039-6. Theory and algorithms, Sixth edition of [ MR1764207].
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