
Inaugural-Dissertation

zur Erlangung der Doktorwürde
der

Naturwissenschaftlich-Mathematischen Gesamtfakultät
der

Ruprecht-Karls-Universität
Heidelberg

vorgelegt von

Dipl.-Math. Lilian Kramer
aus Saarbrücken

Tag der mündlichen Prüfung: 6. Dezember 2013

Modeling Price Formation in a
Multi-Commodity Market -

A Graph-Theoretical Decomposition
Approach to Complexity Reduction

Advisors:
Prof. Dr. Dr. h.c. mult. Willi Jäger

Prof. Dr. Sebastian Sager

Abstract

This thesis presents an optimization model to simulate the global price formation of
multiple commodities over multiple time periods. The model considers the connection
of commodities through their production processes. The supply side maximizes its total
profit taking account of the price-demand relationships of all products. The variables
of this model are production quantities, transport quantities, storage quantities, and
commodity prices. We apply the model to a part of the petrochemical market.
A large multi-commodity model requires many parameters. Moreover, the interpreta-
tion of the simulation results can become difficult. Therefore, this thesis focuses on the
model and complexity reduction with respect to optimization models.
We propose a graph-theoretical approach to reveal the structure of large block-separable
problems and to compare different decompositions into subproblems. The connections
between primal and dual variables of a constrained optimization problem are represented
on a hypergraph, which can be analyzed and beneficially partitioned using appropriate
graph-theoretical methods. We show how different partitions of the hypergraph consti-
tute different decompositions of the optimization problem. Furthermore, we address the
approximation of subproblems.
The decomposition approach is adapted to the commodity market model. We formulate
the subproblems for chosen sets of products and processes and present an algorithm for
the automated identification of model components that are suited for an aggregation.
The aggregation of components of the market model in terms of approximating sub-
problems is discussed from different points of view. Furthermore, we conduct sensitivity
analyses within the overall problem and within subproblems. The numerical results of
the application to a petrochemical market model reveal different possibilities of model
reduction.

Zusammenfassung

Diese Arbeit stellt ein Optimierungsmodell zur Simulation der globalen Preisbildung
mehrerer rohstoffähnlicher Waren über mehrere Zeitperioden vor. In diesem Modell
wird der Zusammenhang der Waren aufgrund ihrer Herstellungsprozesse miteinbezogen.
Die Angebotsseite maximiert ihren Gesamtgewinn unter Berücksichtigung der Preis-
Nachfrage-Zusammenhänge aller Waren. Die Variablen dieses Modells sind Produkti-
onsmengen, Transportmengen, Lagermengen und Warenpreise. Das Modell wird auf
einen Teil des Petrochemiemarktes angewandt.
Für ein großes Modell mit mehreren Waren sind viele Parameter erforderlich. Außer-
dem kann die Interpretation der Simulationsergebnisse kompliziert werden. Daher liegt
der Schwerpunkt dieser Arbeit auf der Modell- und Komplexitätsreduktion in Bezug auf
Optimierungsmodelle.
Ein graphentheoretischer Ansatz wird vorgeschlagen, um die Struktur eines großen block-
separablen Problems offenzulegen und um unterschiedliche Dekompositionen in Teilpro-
bleme zu vergleichen. Die Verbindungen zwischen primalen und dualen Variablen eines
restringierten Optimierungsproblems werden durch einen Hypergraphen dargestellt, der
mit geeigneten graphentheoretischen Methoden analysiert und vorteilhaft zerlegt wer-
den kann. Es wird gezeigt, inwiefern unterschiedliche Zerlegungen des Hypergraphen
unterschiedliche Dekompositionen des Optimierungsproblems darstellen. Zudem wird
die Approximation von Teilproblemen diskutiert.
Der Dekompositionsansatz wird auf das Marktmodell für rohstoffähnliche Waren ange-
wandt. Für ausgewählte Produkt- und Prozessmengen werden Teilprobleme formuliert.
Des Weiteren wird ein Algorithmus zur automatischen Identifikation von Modellkompo-
nenten, die sich zur Aggregation eignen, vorgeschlagen. Die Aggregation von Marktmo-
dellkomponenten im Sinne der Approximation von Teilproblemen wird unter verschiede-
nen Gesichtspunkten erörtert. Außerdem werden Sensitivitätsanalysen im Gesamtpro-
blem und in Teilproblemen durchgeführt. Aus den numerischen Ergebnissen der An-
wendung auf ein Petrochemiemarktmodell lassen sich verschiedene Möglichkeiten der
Modellreduzierung ableiten.

Danksagung

An dieser Stelle möchte ich die Gelegenheit nutzen, denjenigen zu danken, die auf ganz
unterschiedliche Weise zum Gelingen dieser Arbeit beigetragen haben.

Mein besonderer Dank gilt Prof. Dr. Dr. h.c. mult. Willi Jäger für die Möglichkeit, diese
Dissertation unter seiner Betreuung in der Arbeitsgruppe Applied Analysis der Fakultät
für Mathematik und Informatik der Ruprecht-Karls-Universität Heidelberg anzuferti-
gen, und mich somit auch im Anschluss an meine Diplomarbeit wissenschaftlich mit der
Modellierung von Rohstoffmärkten zu befassen. Sein Vertrauen, seine Erfahrung und
seine Zuversicht haben mich insbesondere in schwierigen Phasen motiviert und seine
Denkanstöße und Ratschläge waren mir immer hilfreich.

Ebenso möchte ich mich besonders bei Prof. Dr. Sebastian Sager von der Otto-von-
Guericke-Universität Magdeburg für die Betreuung dieser Dissertation und die Vermitt-
lung seines Wissens und seiner Erfahrung im Bereich der Optimierung bedanken. Seine
Unterstützung und Motivation haben zum Gelingen dieser Arbeit beigetragen. Seine
Anregungen bei Projekt- und Mentorengruppentreffen während der gemeinsamen Zeit
an der Universität Heidelberg haben mir geholfen, die Forschungsrichtung meiner Dok-
torarbeit festzulegen.

Dem Interdisziplinären Zentrum für wissenschaftliches Rechnen (IWR) und seiner Gra-
duiertenschule HGS MathComp danke ich für die finanzielle Unterstützung und die
Gelegenheit, unter besonders guten Rahmenbedingungen forschen zu dürfen.

Bei Sabrina Kellner und Holger Diedam möchte ich mich herzlich für die gute Zusam-
menarbeit bei der Entwicklung des Rohstoffmarktmodells in der Anfangsphase unserer
Doktorarbeiten bedanken. Der stetige Austausch mit Sabrina und die gegenseitige Mo-
tivation haben die Freude an der Arbeit bis heute aufrechterhalten. Holgers Hilfsbereit-
schaft hat mir das Einarbeiten in C++ und AMPL sehr erleichtert.

Bei Dr. Simon Jäger möchte ich mich besonders für den Austausch von Erfahrungen im
Bereich der Modellierung von Rohstoffmärkten und seine Anregungen bei der Modell-
wahl bedanken.

Sabrina Kellner, Christian Kramer und Michael Jung danke ich speziell für das Kor-
rekturlesen unterschiedlicher Teile dieser Arbeit und die wertvollen Anmerkungen und
Ratschläge.

Ina Scheid und Gabriela Schocke danke ich herzlich für die Hilfe bei organisatorischen
Angelegenheiten, und dafür, bei Bedarf immer eine Möglichkeit für ein Treffen mit Herrn
Jäger gefunden zu haben.

Der Arbeitsgruppe Applied Analysis möchte ich für die tolle Gruppenatmosphäre, die
gemeinsamen Grillabende, Gruppenfrühstücke und Feiern danken. Sabrina Kellner,
Dr. Stephan Ludwig, Cristian Croitoru und Dr. Anamaria Bodea gilt mein Dank beson-
ders für den Erfahrungsaustausch bei der Modellierung von Markt- und Preisdynamiken
und viele schöne und lustige Diskussionen. Außerdem möchte ich Dr. Franziska Matthäus
und ihrer Forschungsgruppe Complex Biological Systems für die Hilfsbereitschaft und
Initiierung verschiedenster Gruppenaktivitäten danken.

Den Arbeitsgruppen Simulation and Optimization und Mathematical Algorithmic Opti-
mization danke ich außer für den fachlichen Austausch und die Hilfsbereitschaft speziell
für die Einladungen zu den beiden Gruppenausflügen und Grillabenden, die viel Spaß
gemacht haben.

Ein spezielles Dankeschön an Sabrina, Anne, Raphael, Tobi, Agnes, Stephan, Martin und
Georg für die abwechslungsreichen, unterhaltsamen und anregenden Gespräche in den
gemeinsamen Mittagspausen, die einen angenehmen Ausgleich zur Arbeit dargestellt
haben, und vor allem in besonders arbeitsintensiven Zeiten zu meinem Wohlbefinden
beigetragen haben.

Ganz besonders möchte ich meinen Eltern, Christine und Lukas, meinen Großeltern,
Ischu und Erwin, sowie meinen beiden Brüdern, Christian und Lorenz, dafür danken,
dass sie immer für mich da sind und ich mich uneingeschränkt auf sie verlassen kann.
Während meines Studiums und meiner Promotion haben sie mich stets motiviert und
in jeglicher Hinsicht unterstützt.

Meiner Familie und meinen Freunden, an dieser Stelle ganz speziell den nicht (mehr)
Heidelbergern, danke ich besonders herzlich für die vielen schönen gemeinsamen Erleb-
nisse, Diskussionen, Ausflüge und Reisen, durch die ich in meiner Freizeit wunderbar
entspannen und Energie sammeln konnte.

Contents

1 Introduction 1

2 Modeling and Simulation of Price Formation in a Multi-Commodity Supply-
Demand Trade Network 9
2.1 Definitions . 11
2.2 The Optimization Problem for a Single Time Period 15
2.3 Optimizing over Multiple Time Periods 18
2.4 Setting up Consistent Network Models for Price Simulations 19
2.5 Example: Simulation of Petrochemical Product Prices 24

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods 29
3.1 Optimization Theory for Differentiable Problems 29
3.2 Parametric Optimization Problems . 34
3.3 Duality . 41
3.4 Nonsmooth Convex Optimization . 44
3.5 Decomposition Methods . 49
3.6 Interior Point Methods . 56
3.7 Least Squares Methods for Parameter Estimation 60

4 Graph Theory: Selected Concepts and Algorithms 63
4.1 Basic Definitions . 63
4.2 Basic Graph Algorithms . 66
4.3 Centrality Measures . 66
4.4 Connectivity . 68
4.5 Graph Partitioning . 71
4.6 Measuring Graph Fragmentation . 82

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear
Programs 85
5.1 Representing the Structures of Block-separable Programs on Graphs . . . 87
5.2 Determining Advantageous Decompositions 93
5.3 Approximating Subproblems . 101

6 Decomposing a Multi-Commodity Supply-Demand Network 107
6.1 The Model . 109
6.2 The Approach . 112

i

Contents

6.3 Numerical Results 1 . 120
6.4 Automated Identification of Network Components Suited for Aggregation 129
6.5 Approximating the Optimal Value Function of a Subproblem 143
6.6 Various Aspects of a Sensitivity Analysis 154
6.7 Numerical Results 2 . 167

7 Conclusions and Outlook 183

List of Figures vii

List of Tables ix

Notation xi

Bibliography xiii

ii

1 Introduction

Motivation

A commodity is, by its original definition, a physical good of uniform quality. This
means, commodities of the same type are readily interchangeable. The availability and
the prices of commodities have a major impact on the global economic development.
Standard examples of commodities include agricultural products, energy, and metals.
A generalized definition of commodities also comprises services. In this sense, for in-
stance, airline tickets for a certain flight route at a certain date can be regarded as a
commodity. This work focuses on the price formation of commodities in the original
sense. In general, commodity prices are determined by supply and demand, i.e., they
are equilibrium prices. The supply is defined by production and inventory. The demand
is usually price-dependent and influenced by economical factors. In contrast to financial
products, commodities are physically traded. Therefore, transport costs have an im-
pact on global commodity trade. Moreover, holding a commodity causes storage costs.
Considering historical data, prices of commodities show a common development, which
indicates that they do not form independently.
To promote scientific computing in new application areas, the Interdisciplinary Cen-
ter for Scientific Computing (IWR) supports several Pioneering Projects. One of the
research topics concerns the modeling and simulation of price dynamics in commod-
ity markets. In this context, this thesis contributes to a partial project, which aims
at developing a multi-commodity market model that is able to explain and simulate
price formation. We focus on markets in which products are connected by operational
processing functions. The regionally distinct prices are subject to the global interplay
between producers and consumers. The resulting model is supposed to provide a ratio-
nal approach to operational planning and risk management by facilitating the analysis
and prognosis of prices, various scenario simulations, sensitivity analysis, and, thus, the
identification of the essential market and price drivers.
There are several fields of research dealing with commodity markets. Our approach to
market and price modeling differs in several major aspects from the established scientific
approaches. Usually, stochastic models are applied for risk management in commodity
markets and the pricing of commodity derivatives [Gem05, Pil07, BK04]. These models
were originally designed for stock prices and interest rates and are currently extended for
modeling the development of commodity prices. They include few assets and do not take
into account the system aspect of the price formation. This means, these models disre-
gard the technologies that connect different commodities in a deterministic way. In con-
trast, we aim to explicitly model the interplay between supply and demand. The research

1

1 Introduction

areas production optimization [Hac08, Ras11], supply chain management [SK07, VW03],
and chemical engineering [KC08, AQE09, Hüb07] resemble our modeling approach, since
they use optimization models for process planning. Consequently, the modeling of pro-
duction technologies is substantial. Typically, the variables of the respective models are
production and transport quantities, while product prices enter as parameters. Only a
few publications deal with the simultaneous modeling and optimization of pricing and
production or assortment planning [Cha05, LB08, Kan08, KGvB+09, TBS12]. Never-
theless, supply optimization approaches including pricing are of great importance for
many industries.
One difficulty of a comprehensive market model is the need for a large amount of data
and information. Since detailed data is often hardly available, data procurement can
become expensive and time-consuming. In order to solve this problem, we will proceed
as follows. We start with an extensive model and try to reduce it to its major compo-
nents. This means, our model basically includes all potentially necessary information
in terms of parameters. Analyzing this comprehensive model, we aim to differentiate
between influential parameters and parameters that have less effect. In order to do this,
appropriate methods for model reduction and complexity reduction are required.
Since we propose to model a multi-commodity market by a constrained nonlinear opti-
mization problem that shows a certain network structure, there are two major mathemat-
ical fields of research connected to our work. These are graph theory and optimization
theory. We shortly discuss some of their research directions with regard to our main
objective of reducing the complexity of the market model. The scientific field of network
optimization [BMMN95, EM92] seems close to our work. However, there is no formu-
lation of our optimization problem in a standard form of a network problem, such as
the shortest path problem, the max flow problem, the minimum cost flow problem, or
the routing problem. Even multi-commodity flow problems, which are discussed, e.g.,
in [Ber98, OMV00, Min01], differ considerably from our model. The discrepancy lies
mainly in the fact that, in our model, the quantities of different products are required
to flow to a node (plant) in a certain ratio that is determined by the production process
of the plant. Furthermore, in our model, commodities are transformed while flowing
through the network. Concepts and methods of network analysis and graph theory,
cf. [Kol09, BE05, New10, EK10], focus on the analysis of network structures and on re-
vealing of patterns of relations. Since it is not possible to regard our model in a network
form without losing information, methods of these fields are not readily applicable for
our purpose, as they could lead to wrong conclusions. However, it will turn out that,
after certain reformulations, tools from graph theory can be used to detect weakly con-
nected parts of the optimization model. These are often well-suited for aggregation.
In the field of numerical optimization, reduction methods arise for solving problems with
(linear) equality constraints. According to our knowledge, there are no explicit reduc-
tion methods for nonlinear optimization problems with inequality constraints. However,
decomposition methods are used for the numerical solution of large-scale problems that
show a certain structure [Las70, Geo72, CCMGB06, PC06, CLCD07]. They separate

2

the optimization of several subproblems that are linked by a master problem. Therefore,
we will refer to the variables of the master problem as links. In general, the choice of
links and the corresponding subproblems is not predefined. [PC06, CLCD07] initialize
a discussion about the possible impact of architectural decisions in the context of de-
composition methods. In this work, we will propose an approach to reveal and compare
different decompositions of a problem by considering graph-theoretical aspects. In this
sense, our approach is supposed to be rather a tool for a global model analyses than an
optimization method.

Aims of this Thesis

The major goals of this thesis can be summarized as follows:

• We aim to develop a detailed optimization model for a multi-commodity market
that makes the analysis of price formation, sensitivity analyses, and also various
scenario simulations possible. We test this model on real data of the petrochemical
market. The products of this market are connected by chemical reaction chains,
which form the basis of the production technologies within the chosen market. As
far as available, we will use real historical data as model parameters. If real data
is missing, we substitute it by reasonable estimates.

• The main objective of this thesis is the complexity and model reduction within
the proposed multi-commodity market model. Model reduction is not merely ben-
eficial to ease and speed up the numerical solution of the optimization problem,
but rather needed for applications since obtaining detailed data about all mar-
ket components is often expensive, time-consuming, or impossible. Furthermore,
the answer to a certain question usually does not depend on detailed information
about all market components. Therefore, we aim for developing a method that fa-
cilitates the differentiation between parameters that strongly influence the results
of a simulation with respect to a certain question and parameters that have little
to no effect. Furthermore, we aim for revealing the overall problem structure and
for detecting and aggregating model components that are weakly connected to the
remaining part of the model.

• As far as we know, there is no suitable mathematical method for analyzing the
structure of constrained nonlinear optimization problems. Therefore, we aim to
develop a general approach to expose the structure of an optimization problem and
to approximate suitable components of a problem. For this purpose, we intend to
represent the connections between all variables in a plain way.

3

1 Introduction

Main Contributions and Results

A multi-commodity supply-demand trade model for simulating price forma-
tion:
In cooperation with Holger Diedam, Willi Jäger, Sabrina Kellner, and Sebastian Sager,
who are also involved in the IWR’s Pioneering Project about modeling and simulation of
price dynamics in commodity markets, we develop a multi-commodity supply-demand
trade model. Since simulated prices and sales of three major regions, by tendency,
conform with historical market data over eight annual periods, our modeling approach
appears to be reasonable. This thesis provides an algorithm for setting up a consistent
model to simulate prices of selected products.

A graph-theoretical decomposition approach to the analysis of large con-
strained optimization problems with a block-separable structure:
We propose a new approach to the analysis of optimization problems with a block-
separable structure by means of complexity reduction. This approach is based on the
representation of the connections between primal and dual variables on a hypergraph.
We show that each vertex-separator of the hypergraph corresponds to the set of links of
a primal decomposition of the optimization problem. Furthermore, each net-separator
of the hypergraph implies the set of links of a favorable dual decomposition. This means
that the proper transfer of possible graph partitions to the original optimization problem
leads to different decompositions. Our approach can be used to explore and compare
decompositions of the overall problem into different sets of subproblems and to identify
particularly balanced decompositions.
Since the subproblems are parametric optimization problems in the links, those with
only a few links can be approximated in terms of approximating their optimal value
functions. For this purpose, a subproblem must be solved for a representative set of
values of its links. The corresponding optimization results of the subproblem lead si-
multaneously to an extended overview of the possible submodel’s solutions and their
sensitivities. This overview does not require any parameter outside the submodel to be
fixed. In this sense, our approach allows a global sensitivity analysis within the sub-
problems. Subproblem aggregations can be used to approximate solutions of the overall
problem for varying parameters outside the submodel. Furthermore, the decomposition
considerably facilitates the interpretation of the overall optimization results.

A tailored decomposition approach to reduce the complexity of a multi-
commodity model:
We present a tailored version of the general decomposition approach, which can be per-
sued to identify nearly independent subsystems of a multi-commodity market model for
one region and one time period and to appropriately aggregate these components. In
this regard, we develop an algorithm for the automated identification of linking prod-
ucts and corresponding subsystems that are suited for an aggregation. The algorithm,
firstly, converts the network of processes and products to a smaller, undirected graph,

4

secondly, partitions this graph based on methods of graph theory and, finally, transfers
the decomposition of the simplified graph back to the optimization model.
Each detected subsystem can be optimized independently from the remaining part of
the system given fixed input/output quantities of certain linking products. Solving a
subproblem for varying input/output quantities allows us to approximate an aggregated
input/output-profit/cost relationship for the whole subsystem. We show that the rel-
evant domain of an input/output-profit/cost function can, in some cases, be restricted
by taking into account the economic interpretation of certain dual variables as shadow
prices. These dual variables are the Lagrange multipliers that correspond to the in-
put/output constraints of a subproblem.

Various aspects of a sensitivity analysis within a decomposed market model:
The variation of the input/output quantities within the relevant domain represents the
remaining system’s accumulated possible impact on a subsystem. Therefore, the solu-
tion of a subproblem for varying input/output quantities yields a detailed overview of
its sensitivities. Given a set of subsystem parameters and optimal subsystem solutions
for varying input/output quantities, we determine a set of perturbations of external
prices that do not cause any change in the primal optimal solution of a subsystem as
long as all other subsystem parameters are fixed. In a similar way, one can deduce
such ranges for capacity limits. The consideration of sensitivities within the subsystem
with respect to the input/output quantities and with respect to subsystem parameters
shows to which extent submodel solutions are influenced by submodel parameters and
how far they depend on input/output quantities. Furthermore, the effect of subsystem
parameters on the optimal solution of the remaining part of the system can be analyzed
by means of the optimal value sensitivities within the subproblem, since subproblem
parameters influence the remaining system solely through the input/output-profit/cost
relationship. Summarizing, our approach enables the identification of those submodel
parameters that have little influence on certain model components, which facilitates the
data procurement regarding external prices and process capacities.

The application to a real multi-commodity market:
Applying our approach to a model for a part of the petrochemical market, which in-
cludes four major subsystems, we come to approximated solutions of the original prob-
lem, which are promising. Sensitivity analysis shows that certain external prices can
vary in a broad range without influencing the overall result. Others have high impact
on the optimal solutions. Furthermore, we obtain the linear separability of two submod-
els’ input/output-profit/cost functions. Further analysis of the respective subproblems
reveals that certain model variables can be fixed as long as submodel parameters do not
vary. Regarding the graphical representation of the overall optimization problem, this
fixing of variables leads to a subgraph of the original graph. This subgraph can again
be partitioned and discloses a new favorable decomposition of the overall optimization
problem into subproblems.

5

1 Introduction

Thesis Overview

In chapter 2, we present a new supply-demand trade model for the simulation of price
formation in a multi-commodity market. In view of the complexity of a large commodity
network, we propose a deterministic optimization model. The whole market is regarded
as a monopoly, in which producers set prices by maximizing their cumulative profit
given the price-demand relationship for all products. We discuss the determination of
appropriate sets of products and processes to simulate the prices of selected products
and propose an algorithm for setting up consistent models. Finally, we apply our model
to a small part of the petrochemical market and propose three different approaches to
simulate the price formation over multiple time periods. They differ in the choice of the
parameters that model the dependence of a commodity’s present demand function on
its previous prices and quantities of sales.

Chapter 3 gives a short introduction to the theory of constrained nonlinear optimiza-
tion. It summarizes main sensitivity and stability results concerning parametric opti-
mization problems. Furthermore, we introduce duality theory and several results about
nonsmooth convex optimization, which are fundamental to decomposition methods for
optimizing large-scale systems. Finally, we present an interior point method as stan-
dard numerical algorithm for solving constrained nonlinear problems and introduce least
squares methods for parameter estimation.

Chapter 4 presents important concepts of graph theory with a special focus on providing
a basis for (hyper-)graph partitioning. Moreover, we provide relevant definitions and
results about graph connectivity as well as different centrality measures and measures
for graph fragmentation.

In chapter 5, we present a new approach to the analysis and reduction of large con-
strained optimization problems that have a block-separable structure. This approach is
closely related to the decomposition methods for the numerical solution of such problems.
We show how the overall structure of a problem with coupling constraints can be ex-
posed on a bipartite graph or a hypergraph that captures the connectivity of primal and
dual variables. These graphs can be analyzed and beneficially partitioned using suitable
graph theoretical methods. We discuss the disclosure of advantageous decompositions
on two examples. Furthermore, we present general results concerning the relationship
between the possible decompositions of a block-separable optimization problem and the
possible partitions of the hypergraph that represents the connectivity of the problem’s
variables. Finally, we discuss the approximation of subproblems.

In chapter 6, we adapt the decomposition approach of chapter 5 to a specific case of
the multi-commodity market model of chapter 2 and formulate resulting subproblems.
We present first numerical results of aggregations within a small consistent production
system, which is a part of the petrochemical market. Regarding larger models, we dis-
cuss possibilities to automatically identify subsystems that are suited for aggregation

6

and present a resulting decomposition of an extended real market model. Furthermore,
this chapter addresses the approximation of a subproblem, which includes determining
a suitable domain on which the subproblem’s optimal value function is approximated,
generating subsystem data, and choosing a parametric model. We discuss and compare
sensitivity analysis within the overall model and within subsystems. We show how sen-
sitivity analysis can justify model simplifications and how it supports the task of data
procurement. Finally, we present the numerical results of applying our approach to an
extended petrochemical production system.

In chapter 7, we summarize the conclusions of this thesis and give an outlook on further
directions of research to be taken in this field.

7

1 Introduction

8

2 Modeling and Simulation of Price Formation in a
Multi-Commodity Supply-Demand Trade Network

In this chapter, we present an optimization model to explain and simulate price formation
in a multi-commodity market, at which products are directly connected by operational
processing functions and the regionally distinct prices are the result of the transregional
interplay between producers and consumers.1 With this model, we intend to provide
a rational approach to operational planning and risk management that supports the
analysis and prognosis of prices, various scenarios and sensitivity analysis, as well as the
identification of the essential market and price drivers. This new approach to market
and price modeling differs in several aspects from the existing scientific fields of research
that are related to commodity markets. We introduce these fields in the following.
For risk management, portfolio optimization, and derivative pricing in commodity mar-
kets, usually stochastic models are applied [Lud13, Bod12, Ruj08, Gem05, Pil07, BK04].
These models were originally developed to model stock prices and interest rates, and are
currently extended to commodity prices. According to their purpose, they include few
assets and do not take the system aspect of price formation into account. Technologies
that connect different commodities in a deterministic way are neglected. However, the
latter seems crucial for a comprehensive understanding of the price formation. There-
fore, in contrast to the pure modeling of price data, we will explicitly model the interplay
between supply and demand.
In the field of revenue management and dynamic pricing, expected revenues are max-
imized by dynamically choosing prices over a time period given a predefined maxi-
mal sales volume for this period and stochastically varying demand, cf. for example,
[GvR97, BC03]. Single companies of monopolistic and oligopolistic markets apply the
corresponding scientific models and methods aiming for a price discrimination that cap-
tures the market’s consumer surplus. This topic is of special interest for sectors with
high fixed costs of capacities and low variable costs, such as the airline industry or the
hotel industry.
In contrast to these research fields, optimization models are used for process planning in
the operations research areas like production optimization [Hac08, Ras11], supply chain
management [SK07, VW03], and chemical engineering [KC08, AQE09, Hüb07]. In this
respect, modeling of technologies is obviously essential. However, the variables of these

1This model has been developed in the context of IWR’s Pioneering Project about modeling and
simulation of price dynamics in commodity markets, which is also mentioned in the introduction of
this thesis. Therefore, the model that we present in sections 2.1 to 2.3 similarly appears in Sabrina
Kellner’s PhD thesis, “Modeling and Analysis of Demand for Commodities and a Case Study of the
Petrochemical Market”, [Kel13].

9

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

models are commonly only production-related quantities, while product prices are mostly
included as parameters. Prices are not supposed to be variable, since, usually, the models
optimize the strategic actions of smaller market participants without influence on prices.
Furthermore, demand is mostly considered price-inelastic, i.e., as a constant quantity.
The results are linear programs (sometimes with mixed integer decisions), whereas our
model yields a nonlinear optimization problem with more types of variables (produc-
tion quantities, product prices, interregional transport) and more complex constraints
between them. Because of its particular importance for several industries, the topic of
integrating pricing decisions and production planning has begun to attract attention in
the scientific operations research community in the last few years. However, so far, only
a small number of works addresses supply optimization approaches that include pricing
[Cha05, LB08, Kan08, KGvB+09, TBS12].2

The following new optimization model for price formation applies to a market that is
characterized on the supply side by a multiplicity of processes transforming some resource
products into outputs. The predominant variable costs of the production are those of
the resources, so that we only consider those in the following. The ratio between inputs
and outputs of a process is uniquely described by factors for inputs and outputs, where
input factors are negative, output factors are positive and the factor of the major output
product of a process is set to one. The processes are operated at different plants that are
located in certain regions. The production of a plant in a certain time period is limited
by its capacity. Running a plant will cause some fixed costs in the corresponding time
period.
We assume that the market’s demand side is given by consumers whose buying behavior
regarding a product (in a certain region, during a certain time period) is representable
by a functional relation between the ordered quantity and product prices.
Taking into account the supply and the demand side, we categorize the products in
three groups: products with external demand, intermediates without external demand
and external products. The first class consists of all products with “external demand”; by
external demand, we refer to the demand from industrial sectors outside the observed
market. We model this demand as consumer’s demand. Intermediates are products
that are produced as well as processed. We assume them to appear only in the market
under observation. The part of them without external demand, forms our second class
of products. The third class of external products consists of all remaining products.
They appear only as resources or outputs of the processes. Under the assumption that
their prices form outside the observed market and that buying or selling them does not
influence their prices, we integrate their prices in our model as parameters.
Furthermore, we assume that transport within a region does not cause any costs, whereas
interregional transportation costs are proportional to transport quantities. When con-

2A special case is the electricity market. Fundamental market models for this particular commodity
usually include an explicit modeling of demand and of price drivers as natural gas prices, coal prices,
and the weather, cf. [BGS07, EW03, Kra09].

10

2.1 Definitions

sidering multiple time periods, we have to take storage into account. This means that we
include storage capacities and storage costs as parameters in our model. Transportation
and storage are only considered for products that are produced in the observed market,
i.e., not for external products, since we assume the markets of external products to be
arbitrage free3. Within one time period, we leave the chronological order of production
processes out of consideration.4
Under these assumptions, in this work, we consider the overall optimization of the total
supply side given commonly known price-demand relationships for all products. The
price-demand relationship of a certain product is built by the aggregation of all con-
sumers’ price-dependent demand for it. In the sense of microeconomics, we deal with
the problem of profit maximization in a monopoly [PR10, Var10]. The variables of
this optimization problem are production quantities, prices of products with external
demand, as well as transportation quantities. When optimizing over multiple time peri-
ods, storage quantities appear as further variables. Finally, our price simulations for the
products with external demand are given by the optimal solutions of the optimization
problem.
Note that our model does not include long-term contracts between suppliers and cus-
tomers, which exist in reality. However, such contracts can be integrated into our mod-
eling by additional parameters and constraints.5 Furthermore, the multiple time period
model does not consider the possibility to destroy surplus production if storage capaci-
ties are exhausted or if storage is not economic.
In section 2.1, we define all sets, parameters, variables, and the demand function, which
are needed for formulating the optimization problem. Then, in section 2.2, for a clearer
representation, we present the objective function and constraints in the reduced case of
optimizing one single time period. Section 2.3 addresses the generalized case of optimiz-
ing over a time interval subdivided in multiple time periods. Section 2.4 discusses the
construction of consistent network models. In section 2.5, we present simulation results
for a selected part of the petrochemical market.

2.1 Definitions

Sets

P products (P = Pex
⋃̇
Pout

⋃̇
Pmid)

3A market is called arbitrage free if prices permit taking a risk-free advantage of price differences.
4By this simplification, in some special cases, production can become possible without any resources.
For instance, this can occur in a consistent model, cf. definition 2.4.1, that is a closed circuit of
products with external demand and intermediates, i.e., a consistent production system that does
not include external products. However, in real applications, such a closed circuit should not exist,
since, some time after an external initialization it is either not able to produce anything or it can
endlessly produce output without any resources.

5An example for integrating contracts into the price-demand relationship can be found in [Kel13].

11

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

Pex external products (prices are given from outside the network)
Pout products with external demand
Pmid intermediates without external demand
R regions
I plants
S processes
C consumers
T time periods

Parameters

a) Plant and process related parameters:

a
plant_reg
i,r ∈ {0, 1} is equal to one if plant i is located in region r
acapi,s,t ≥ 0 capacity of process s at plant i in period t

a
fixed_costs
i,s,t ≥ 0 fixed costs of process s at plant i in period t
afs,p,t factor of product p in process s during period t,

afs,p,t < 0 if p is an input of s, afs,p,t > 0 if p is an output of s

b) External prices:
aπpex,r,t ≥ 0 price of product pex in region r in time period t

c) Demand related parameters:

a
con_last
c,pout,r,t ≥ 0 consumer c’s consumption of product pout in region r in period

t− 1

a
π_last
pout,r,t ≥ 0 price of product pout in region r in period t− 1

a
con_max
c,pout,r,t > a

con_last
c,pout,r,t maximum consumption of product pout that we assume for con-

sumer c in region r in period t

a
π_max
c,pout,r,t > a

π_last
pout,r,t assumed maximum price (paid by consumer c) for product pout

in region r in period t
aGDPr,t change in the gross domestic product of region r from t− 1 to t

(cf. (2.5))
aIndPror,t change in a certain industrial production index of region r from

t− 1 to t (cf. (2.5))

d) Transport and storage related parameters:
atrr1,r2,t ≥ 0 transport costs to deliver one unit from region r1 to r2 in period t

a
c_stor
p,r,t ≥ 0 costs of storing one unit of product p ∈ Pout

⋃̇
Pmid in region r

from period t to period t+ 1

a
stor_cap
p,r,t ≥ 0 storage capacity for product p ∈ Pout

⋃̇
Pmid in region r from

period t to t+ 1

12

2.1 Definitions

Variables
xqi,s,t ≥ 0 production quantity of process s at plant i in period t
xπpout,r,t ≥ 0 price of product pout in region r in period t

xtrp,r1,r2,t ≥ 0 transport quantity of product p ∈ Pout
⋃̇
Pmid from r1 to r2 in period t

xstorp,r,t ≥ 0 quantity of product p ∈ Pout
⋃̇
Pmid stored in region r from t to t+ 1

xπpmid,r,t ≥ 0 price of product pmid in region r at time t

Remark 2.1.1. The prices xπpmid,r,t for the intermediate products that are not sold to
consumers cannot be uniquely determined by our model. They depend on the division
of the overall profit over the supply side. However, by the assumption that each single
process is profitable, we get price ranges in which these prices lie. The profitability of
each process is guaranteed by the constraints (2.14). Furthermore, Lagrange multipliers
corresponding to the production-transport constraints of intermediates, (2.11), indicate
the equilibrium value of these products from the supply side’s point of view.6

Demand Function

Assuming economical behavior of the consumers and keeping in mind the applicability
of the demand functions φ : R+

0 → R+
0 , x 7→ φ(x) in the context of our optimization

model, we choose a class of functions that fulfill the following properties:7

• φ is bounded,
• φ has a zero,
• φ is strictly decreasing outside of the domain where it equals zero,
• φ is twice continuously differentiable outside of the domain where it equals zero.
Taking these properties into account, we model the basic demand function by

φbasicc,pout,r,t(x
π
pout,r,t) = max

[
a1
c,pout,r,t · tanh

(a2
c,pout,r,t − x

π
pout,r,t

a3
c,pout,r,t

)
, 0
]

(2.1)

where a1
c,pout,r,t, a

2
c,pout,r,t, a

3
c,pout,r,t > 0 are given by

a1
c,pout,r,t = a

con_max
c,pout,r,t , a2

c,pout,r,t = a
π_max
c,pout,r,t and

a3
c,pout,r,t =

(
a
π_max
c,pout,r,t − a

π_last
pout,r,t

)/
artanh

(acon_last
c,pout,r,t

a
con_max
c,pout,r,t

)
.

(2.2)

6This is due to the economic interpretability of Lagrange multipliers as shadow prices. An additionally
available unit of an intermediate in a certain region would increase the optimal objective value, i.e.,
the supply side’s profit, approximately by the value of the respective constraint’s Lagrange multiplier.

7Contrary to this assumed consumer behavior, there is the special case of conspicuous consumption
goods, which are bought to publicly display economical power, e.g., a luxury car. The demand for
these products is usually not monotonically decreasing in price, cf. [HFH+11]. However, commodities
obviously do not fall in this category of products.

13

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

Figure 2.1: Shape of the demand function φc,pout,r,t

The shape of such a demand function is sketched in figure 2.1 by the solid line. Given its
basic form by (2.1) and maximal values for consumption (acon_max

c,pout,r,t) and price (aπ_max
c,pout,r,t),

the third parameter a3
c,pout,r,t of the demand function is chosen such that the point

(aπ_last
pout,r,t, a

con_last
c,pout,r,t), i.e., previous year’s price-demand relationship observed at the market,

lies on the curve.

Remark 2.1.2. Note that we have φc,pout,r,t(0) < a
con_max
c,pout,r,t because acon_max

c,pout,r,t is the lim-
iting value of the scaled hyperbolic tangent.

Motivated by the historical data, we extend the demand function by a dependency on
economic factors, namely the gross domestic product (GDP) and an industrial produc-
tion index of each region:

φc,pout,r,t(x
π
pout,r,t) = max

[
a1
c,pout,r,t·tanh

(a2
c,pout,r,t + wc,pout,r(a

GDP
r,t , aIndPror,t)− xπpout,r,t

a3
c,pout,r,t

)
, 0
]
,

(2.3)
where

wc,pout,r(a
GDP
r,t , aIndPror,t) = αc,pout,r · aGDPr,t + βc,pout,r · aIndPror,t (2.4)

with αc,pout,r and βc,pout,r estimated by a least squares method (cf. section 3.7) and

aGDPr,t = GDPr,t −GDPr,t−1, aIndPror,t = IndPror,t − IndPror,t−1. (2.5)

This means that we estimate regression parameters αc,pout,r and βc,pout,r corresponding
to the influence of changes in GDP and the production index on the consumer’s willing-
ness to pay. For instance, if αc,pout,r > 0 and βc,pout,r > 0, an increase in the GDP and
the production index leads to a right shift of the demand curve. Such a right shift is
illustrated in figure 2.1 by the dashed line.

14

2.2 The Optimization Problem for a Single Time Period

[Kel13] provides an elaborate study of demand modeling. It proposes an extended de-
mand model, which includes (2.3) as special case, and discusses methods for parameter
identification.

Remark 2.1.3. Besides the above mentioned basic properties, the demand functions
(2.1) and (2.3) have the following desirable property, which confirms the modeling by
means of the hyperbolic tangent function:
We define for each consumer c ∈ C a constant kc as the quotient of his maximum
consumption and his previous year consumption, i.e., we have acon_max

c,pout,r,t = kc · acon_last
c,pout,r,t.

Then, the aggregated demand of multiple consumers c1, ..., cn with the same demand
behavior equals the demand of one consumer c∗ with the previous year consumption
a
con_last
c∗,pout,r,t =

∑n
i=1 a

con_last
ci,pout,r,t and the same demand behavior. We mean with “same demand

behavior” that

a
π_max
ci,pout,r,t = a

π_max
c∗,pout,r,t, wci,pout,r(a

GDP
r,t , aIndPror,t) = wc∗,pout,r(a

GDP
r,t , aIndPror,t) ∀ i = 1, ..., n,

(2.6)
and that a constant k > 1 exists with

a
con_max
ci,pout,r,t = k · acon_last

ci,pout,r,t ∀ i and a
con_max
c∗,pout,r,t = k · acon_last

c∗,pout,r,t, (2.7)

i.e., kc = k ∀ c ∈ C. We prove this by the following calculation:

n∑
i=1

φci,pout,r,t(x
π
pout,r,t)

=
n∑
i=1

max
[
a
con_max
ci,pout,r,t · tanh

(aπ_max
ci,pout,r,t + wci,pout,r(a

GDP
r,t , aIndPror,t)− xπpout,r,t(

a
π_max
ci,pout,r,t − a

π_last
pout,r,t

)/
artanh

(
a
con_last
ci,pout,r,t

a
con_max
ci,pout,r,t

))
, 0
]

=
n∑
i=1

a
con_max
ci,pout,r,t ·max

[
tanh

(aπ_max
c∗,pout,r,t + wc∗,pout,r(a

GDP
r,t , aIndPror,t)− xπpout,r,t(

a
π_max
c∗,pout,r,t − a

π_last
pout,r,t

)/
artanh(1/k)

)
, 0
]

= a
con_max
c∗,pout,r,t ·max

[
tanh

(aπ_max
c∗,pout,r,t + wc∗,pout,r(a

GDP
r,t , aIndPror,t)− xπpout,r,t(

a
π_max
c∗,pout,r,t − a

π_last
pout,r,t

)/
artanh(1/k)

)
, 0
]

= φc∗,pout,r,t(x
π
pout,r,t)

(2.8)

2.2 The Optimization Problem for a Single Time Period

Let us consider a single time period t. With the above definitions, we are able to for-
mulate the problem of optimizing the total profit of the supply side given the demand
functions of the consumers. This profit is composed of the total revenue of the system
minus the costs. The total revenue, in turn, consists of the revenues from selling the

15

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

products pout ∈ Pout at prices xπpout,r,t and from selling some of the products pex ∈ Pex at
fixed prices aπpex,r,t. Sales quantities are related to production quantities xqi,s,t and trans-
port quantities xtrp,r1,r2,t through the constraints (2.12). Lower bounds to prices xπpout,r,t of
products with external demand are indirectly given by total production capacities, since,
in an optimum of our monopolistic problem, the aggregated price-dependent demand,∑

c∈C φc,pout,r,t(x
π
pout,r,t), is satisfied for all products pout ∈ Pout and all regions r ∈ R.

This is because a monopolist is able to perfectly adjust production and sales quantities:
given his favorite sales quantities, he chooses the highest possible prices that induce the
respective necessary demand. These facts motivate our modeling of the dependence be-
tween prices, sales, production, and transport quantities in (2.9) and (2.12).8 The costs
of the system are made up of variable costs from buying feedstock at fixed prices aπpex,r,t,
of transportation costs, and of fixed costs for running plants. In the case of optimizing
only one single time period, there is no incentive to storage.
In addition to the mentioned constraints (2.12), there are further side conditions on the
choice of the production, price, and transport variables. We will list them after formu-
lating the objective function.9

Objective function (for time period t)

max
xq
i,s,t, x

π
pout,r,t

xtr
pout,r1,r2,t

, xtr
pmid,r1,r2,t

∑
pout∈Pout
r∈R

xπpout,r,t ·
(∑
c∈C

φc,pout,r,t(x
π
pout,r,t)

)
+

∑
pex∈Pex

i∈I, s∈S, r∈R

xqi,s,t · afs,pex,t · a
plant_reg
i,r · aπpex,r,t

−
∑

p∈Pmid
S
Pout

r1∈R, r2∈R

xtrp,r1,r2,t · a
tr
r1,r2,t

−
∑

i∈I,s∈S

a
fixed_costs
i,s,t · 1{0<xq

i,s,t}

(2.9)

Constraints (for time period t)

• Capacity Constraints:

∀ i ∈ I,∀ s ∈ S

xqi,s,t ≤ acapi,s,t (2.10)

Production is bounded by plant capacities.
8[LB08]’s integrated production planning and pricing model includes a stochastic demand component.
Therefore, the producer cannot perfectly adjust his production to the demand that corresponds to a
chosen price. In this context, the difference between demand and sales is referred to as lost demand
if the demand at the chosen price is greater than sales.

9Regarding definition 3.1, we should consider an objective function defined on an open domain. Since
price variables xπpout,r,t are constrained to be non-negative, we could define the demand functions
φc,pout,r,t on R instead of R+

0 without any influence on optimal solutions.

16

2.2 The Optimization Problem for a Single Time Period

• Production-transport constraints:

∀ pmid ∈ Pmid,∀ r1 ∈ R∑
r2∈R

(
xtrpmid,r1,r2,t − x

tr
pmid,r2,r1,t

)
≤

∑
i∈I,s∈S

xqi,s,t · afs,pmid,t · a
plant_reg
i,r1

(2.11)

Net production of an intermediate in a region must exceed this intermediate’s net
export of the region.

• Sales-production-transport constraints:

∀ pout ∈ Pout,∀ r1 ∈ R∑
c∈C

φc,pout,r1,t(x
π
pout,r1,t

)+
∑
r2∈R

(
xtrpout,r1,r2,t−x

tr
pout,r2,r1,t

)
≤

∑
i∈I,s∈S

xqi,s,t·afs,pout,t·a
plant_reg
i,r1

(2.12)
Net production of a product with external demand in a region must exceed the
sum of sales in the region plus the net export of the product.

• No-arbitrage constraints:

∀ p ∈ Pmid
⋃
Pout,∀ r1 6= r2 ∈ R

xπp,r1,t ≤ xπp,r2,t + atrr2,r1,t (2.13)

To avoid arbitrage, inter-regional price differences must not exceed transport costs.

• Constraints for prices of intermediates:

∀ s ∈ S,∀ r ∈ R

0 ≤
∑
i∈I

xqi,s,t · a
plant_reg
i,r ·

(∑
p∈Pmid

S
Pout

afs,p,t · xπp,r,t +
∑

pex∈Pex

afs,pex,t · a
π
pex,r,t

)
(2.14)

Each running process is required to operate profitably.

Remark 2.2.1. This constrained nonlinear optimization problem is in general neither
differentiable nor convex. Its non-differentiability is caused by the fixed costs for running
plants and by the non-differentiability of the aggregated demand due to the maximum
function in each consumer’s demand: If there are at least two consumers c1, c2 with
different maximal price values aπ_max

ci,pout,r,t +wci,pout,r(a
GDP
r,t , aIndPror,t), i = 1, 2, for a product

pout, the aggregated demand function has a non-differentiable point in the relevant do-
main where the aggregated demand does not equal zero. This problem can possibly be
avoided by bounding the prices by

xπpout,r,t ≤ min
ci∈C

[a
π_max
ci,pout,r,t + wci,pout,r(a

GDP
r,t , aIndPror,t)] ∀ pout ∈ Pout. (2.15)

17

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

However, in general, these bounds can get active and the solution of the original problem
would be distorted.
The non-convexity is also caused by the aggregated demand functions that appear in
the sales-production-transport constraints (2.12), and that include in each summand
the maximum function. In section 6.1, we will show differentiability and convexity for a
special case of the optimization problem.

2.3 Optimizing over Multiple Time Periods

In this model setting, we optimize the overall profit of multiple time periods t1, ..., tn
simultaneously. In this context, the parameters aπ_last

pout,r,tj and a
con_last
c,pout,r,tj (and, most appro-

priately, also aπ_max
c,pout,r,tj and acon_max

c,pout,r,tj) are determined by the previous period’s variables
xπpout,r,tj−1

:
∀ tj ≥ t2, we define

a
π_last
pout,r,tj := xπpout,r,tj−1

a
con_last
c,pout,r,tj := φc,pout,r,tj−1

(xπpout,r,tj−1
)

(2.16)

That means, suppliers’ price decisions of today affect the demand function of tomorrow,
and therefore also suppliers’ objective function of tomorrow.
Furthermore, in the multi-period context, suppliers are allowed to carry over produced
products to subsequent time periods. This causes the extension of the profit function by
storage costs. In addition, some constraints change by storage quantities as described
below.

Objective function

max
xq
i,s,t1

,...,xq
i,s,tn

,

xπpout,r,t1
,...,xπpout,r,tn ,

xtr
pout,r1,r2,t1

,...,xtr
pout,r1,r2,tn

,

xtr
pmid,r1,r2,t1

,...,xtr
pmid,r1,r2,tn

tn∑
t=t1

(∑
pout∈Pout
r∈R

xπpout,r,t ·
(∑
c∈C

φc,pout,r,t(x
π
pout,r,t)

)

+
∑

pex∈Pex
i∈I,s∈S,r∈R

xqi,s,t · afs,pex,t · a
plant_reg
i,r · aπpex,r,t

−
∑

p∈Pmid
S
Pout

r1∈R, r2∈R

xtrp,r1,r2,t · a
tr
r1,r2,t

−
∑

i∈I,s∈S

a
fixed_costs
i,s,t · 1{0<xq

i,s,t}

−
∑

p∈Pmid
S
Pout

r∈R

xstorp,r,t · a
c_stor
p,r,t

)
(2.17)

18

2.4 Setting up Consistent Network Models for Price Simulations

Constraints

• Recursive definition of the storage variables: production-transport-storage con-
straints:

∀ pmid ∈ Pmid,∀ r1 ∈ R, ∀ tj ∈ T (where xstorpmid,r,t0
:= 0)

xstorpmid,r1,tj
= xstorpmid,r1,tj−1

+
∑

i∈I,s∈S

xqi,s,tja
f
s,pmid,tj

a
plant_reg
i,r1

−
∑
r2∈R

(
xtrpmid,r1,r2,tj−x

tr
pmid,r2,r1,tj

)
(2.18)

Given the storage level of the previous period, new storage quantities of interme-
diates are directly determined by production and transportation variables.

• Recursive definition of the storage variables: sales-production-transport-storage
constraints:

∀ pout ∈ Pout,∀ r1 ∈ R, ∀ tj ∈ T (where xstorpout,r,t0
:= 0)

xstorpout,r1,tj
= xstorpout,r1,tj−1

+
∑

i∈I,s∈S

xqi,s,tj · a
f
s,pout,tj

· aplant_reg
i,r1

−
∑
c∈C

φc,pout,r1,tj(x
π
pout,r1,tj

)−
∑
r2∈R

(
xtrpout,r1,r2,tj − x

tr
pout,r2,r1,tj

) (2.19)

Given the storage level of the previous period, new storage quantities of products
with external demand are directly determined by production, price, and transport
variables.

• Storage capacity constraints:

∀ p ∈ Pmid
⋃
Pout,∀ r ∈ R,∀ t ∈ T

(0 ≤) xstorp,r,t ≤ a
stor_cap
p,r,t (2.20)

Storage is bounded by product dependent storage capacities.

• Furthermore, ∀ t ∈ T , the constraints (2.10), (2.13), and (2.14) must be fulfilled.

Note that in case of multiple time periods, (2.11) and (2.12) are replaced by xstorp,r,t ≥
0 ∀ p ∈ Pmid

⋃
Pout, r ∈ R, t ∈ T together with the recursive definition of storage

variables in (2.18) and (2.19).

2.4 Setting up Consistent Network Models for Price Simulations

In this section, we discuss the question of how to set up a reasonable network model
for one time period t starting with at least one product with external demand for which
we intend to simulate price formation. Since our modeling approach is based on the

19

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

optimization of production and pricing decisions, it is essential that the model includes
all production and processing facilities of certain relevant products. More precisely, to
ensure proper simulations of prices and overall profit, the following requirements must
be fulfilled:

a) For products with external demand (i.e., those for which we would like to simulate
prices), all production facilities and, if available, all processing facilities have to
be taken into account to allow for correct simulation of production quantities and
costs.

b) Similarly, for intermediates without external demand, all production facilities and
all processing facilities have to be taken into account to allow for correct simulation
of production quantities and costs of following products with external demand.

Definition 2.4.1. We call a network optimization model for simulating price formation
consistent if requirements a) and b) are satisfied.

Remark 2.4.2. Usually, a consistent network optimization model includes external
products as resources. The special case of a consistent model without any external
product is a closed production circuit of products with external demand and interme-
diates. In reality, such circuits should not exist, since, some time after an external
initialization, they are either not able to produce anything or they are able to endlessly
produce output without using any resources.

Let be given the global set of products P0, which are connected by processes of the
set S0, where some products, P0

out ⊂ P0, are in demand of consumers and some other
products, P0

ex ⊆ P0 \P0
out, are natural resources. The products P0

mid := P0 \ (P0
out∪P0

ex)
are produced and processed.10 These global sets constitute an inherently consistent
model. To build up a smaller consistent model starting with some preselected products
Pinit ⊂ P0 of which at least one has external demand, i.e., Pinit ∩ P0

out 6= ∅, we pass
through the following steps:

1. Identify all processes in which the preselected products are involved.

2. Check which new products appear within these processes and whether they have
external demand or not.

3. If new products have external demand and are outputs of any processes in present
consideration, continue with the first step regarding these products.

4. Similarly, for any intermediate of the network (i.e., a product that is produced as
well as further processed), continue with the first step.

10A product without consumer demand that is not processed is a waste product and, mostly, does not
need to be considered. In case of disposal costs, we can treat the product like an external product.

20

2.4 Setting up Consistent Network Models for Price Simulations

5. Alternatively to steps 3 and 4, products with external demand or intermediates
could also be regarded as external products, i.e., they could be modeled with fixed,
quantity-independent prices.

6. Stop if requirements a) and b) are satisfied (possibly enforced by step 5).

Algorithm 2.4.1: Setting up a Minimal Consistent Model
Input: Global set of products P0 of which some have external demand, P0

out ⊂ P0;
global set of processes S0; nonempty set of initial products Pinit ⊂ P0,
Pinit ∩ P0

out 6= ∅.
Output: Disjoint product sets Pex, Pout, Pmid ⊂ P0, where Pout 6= ∅, Pout ⊆ P0

out,
Pmid ⊆ P0

mid, and process set S ⊆ S0,S 6= ∅, such that Pex, Pout, Pmid,
and S build a consistent model.

Pex = Pout = Pmid = Pi = Po = S = ∅
for p ∈ Pinit do

for s ∈ S0 do
if af

s,p,t 6= 0 then
S := S ∪ s
if af

s,p,t < 0 then
Pi := Pi ∪ p

else
Po := Po ∪ p

for p′ ∈ P0 \ Pinit do
if af

s,p′,t 6= 0 then
Pex := Pex ∪ p′

if p ∈ P0
out ∩ Po then

Pout := Pout ∪ p
else if p ∈ Pi ∩ Po then
Pmid := Pmid ∪ p

else
Pex := Pex ∪ p

Algorithm 2.4.1 leads to a minimal model for a predefined set Pinit of initial products,
which fulfills the above-mentioned criteria for consistency. Thereby the aim is to enable
price simulations for all predefined products that have external demand, i.e., for products
of the set Pinit ∩ P0

out. Minimality is reached by applying step 5 to all appearing inter-
mediates and products with external demand that are not elements of the predefined
product set. Optionally, one could furthermore check if any of the external products is
an intermediate with respect to S and if there is no process in S0 \ S that includes it.
Such products can be moved from the set Pex to Pmid without adding further processes.

21

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

This would have the advantage that we would not need any price parameter aπpex,r,t for
them.

Remark 2.4.3. Note that we do not need to know the global sets P0 and S0 to set up
a consistent model. We must only know all processes related to products that we aim
to include in our model as products with external demand or intermediates.

Next, we show how algorithm 2.4.1 can be used in an application to expand a given
consistent network model. In order to do this, taking the above requirements a) and b)
into account, one should pass through the following steps:

1. Choose one or more external products of the consistent network.

2. Identify all processes in which these products are involved.

3. Check if new products appear within these new processes and, if so, check whether
they have external demand or not.

4. If new products have external demand and are outputs of some processes in present
consideration, continue with step 2 regarding these products.

5. For any intermediate of the new network, continue with step 2.

6. Alternatively to steps 4 and 5, products with external demand or intermediates
can also be regarded as external products, i.e., they can be modeled with fixed,
quantity-independent prices.

7. Stop if requirements a) and b) are satisfied (possibly enforced by step 6) and if the
network has the requested size.

Algorithm 2.4.2: Extending a Consistent Production Network
Input: Global set of products P0 of which some have external demand, P0

out ⊂ P0,
and global set of processes S0, disjoint product sets Porig

ex , Porig
out , P

orig
mid ⊂ P0,

where Porig
ex 6= ∅, P

orig
out 6= ∅, and P

orig
out ⊆ P0

out, as well as set of processes
Sorig ⊂ S0,Sorig 6= ∅, such that Porig

ex , Porig
out , P

orig
mid, and Sorig build a

consistent model, nonempty set of products Pextend ⊆ Porig
ex forming the

basis for the model extension.
Output: Disjoint product sets Pnew

ex , Pnew
out , Pnew

mid ⊂ P0 and set of processes
Snew ⊆ S0 that build a consistent model where Sold ⊆ Snew.

Apply algorithm 2.4.1 to the set Pinit := Pextend ∪ Porig
out ∪ P

orig
mid.

⇒ Disjoint sets Pex,Pout, Pmid and S that build a consistent model.
Pnew
ex := (Pex ∪ Porig

ex) \ (Pout ∪ Pmid), Pnew
out := Pout, Pnew

mid := Pmid, and
Snew := S ∪ Sorig

22

2.4 Setting up Consistent Network Models for Price Simulations

Algorithm 2.4.2 creates a consistent network extension given some predefined products
Pextend of the original network, which are preferably elements of the set P0

out ∩ Porig
ex .

Similar to algorithm 2.4.1, it leads to a “minimal” extension of the given network in terms
of applying step 6 to all intermediates and products with external demand of the new
network that are not elements of the predefined product set. To achieve an appropriate
model size, algorithm 2.4.2 can be repeated several times with new start products from
the recently created network, in particular while choosing Pextend,i+1 ⊆ Pnew

ex,i \ Pnew
ex,i−1.

Remark 2.4.4. We usually have Sorig\S = ∅. Otherwise, the processes of the set Sorig\S
include only external products p ∈ Porig

ex . They are solely added to the new model in
the last step of the algorithm to make sure that Sorig ⊆ Snew holds. Such processes are,
dependent on external product prices, either profitable or not, and independent of the
other model variables. Therefore, we get xq∗s = 0 or xq∗s = acaps ∀ s ∈ Sorig \ S. This
means that the inclusion of these processes to the model only influences the total profit
but not the optimal choice of the other variables.

An example for a network extension will be given in the last part of section 6.3.

Remark 2.4.5. (Using presolve methods for an initial model analysis) To check
whether the modeled market is reasonable, especially in the sense that all production
capacities acapi,s,t could be exploited, we propose to make use of presolve methods. They
modify a given optimization model by proper transformations and simplifications aiming
for a reduced problem size without changing the feasible set of the problem. Before the
problem is sent to a solver, for instance arithmetical tests on bounds, equality constraints,
and inequality constraints are run to eliminate redundant constraints, to identify infea-
sible problems, and to tighten variable bounds. In special cases, some variables can
even be fixed before the optimization algorithm starts, which gives a remarkable a priori
insight into a model setting. [Kal02] includes a short introduction to preprocessing in
the context of proper modeling of practical optimization problems. Several techniques
for automatic model reformulation and presolve methods are surveyed, e.g., in [AA95].
We formulate our market optimization model in the modeling language AMPL [FGK03]
to communicate it to an appropriate solver for constrained nonlinear optimization prob-
lems, as SNOPT [Sno08] or IPOPT [Ipo, Wäc02, WB06], and to examine its solutions.
AMPL’s presolve phase runs automatically when a solve command is called up. To
track its effects, the option show_stats should be changed from its default value 0 to
1. During the presolve phase, AMPL saves two sets of lower and upper bounds on the
variables. The bounds that derive from tightening implied by eliminated constraints can
be examined using the suffixes .lb1 and .ub1. The suffixes .lb2 and .ub2 give the
bound values deduced from constraints that presolve could not eliminate. In our appli-
cation, the latter are of special interest in view of the usability of available production
capacities. Many of AMPL’s presolve transformations are based on ideas first presented
in [BMW75].

23

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

Figure 2.2: Products and processes of a small petrochemical production system

2.5 Example: Simulation of Petrochemical Product Prices

In this section, we present a consistent network model for price simulation. We choose
a small part of the petrochemical market. The corresponding network of products con-
nected by processes is shown in figure 2.211. We set for each process an arrow from
each input to each output product. The arrows are labeled by the reference numbers of
the processes. Processes that agree in input and output products, but not necessarily
in the related factors, label the same arrows. Products with external demand are gray
colored. The remaining products are external. This means, we have Pmid = ∅ in this
example. This model is built by the algorithm 2.4.1 of the previous section, initiated by
the products 54, 55, 84, 102, and 179.
Lacking detailed data about some model components, we simplify the models of sec-
tions 2.2 and 2.3 by the following points:

• We assume that all consumers have the same demand behavior. By remark 2.1.3,
this means that we must consider only one consumer. Therefore, we omit the
consumer index c.

• Fixed costs for running the plants are neglected so that we do not need to consider
plants, but we can attribute the aggregated capacities of plants that run a certain
process to this process, i.e., we define ∀ s ∈ S : acaps,t :=

∑
i∈I a

cap
i,s,t and respective

decision variables xqs,t.

• There is no storage possibility between time periods.

11The network plots in this thesis are created by the open source software Graphviz that provides various
common types of graph layouts, and can be used via a C library interface, cf. [Gan11, JM04].

24

2.5 Example: Simulation of Petrochemical Product Prices

Under the above assumptions, we simulate prices of the five gray highlighted products
54, 55, 84, 102, and 179 for three major regions over the years 2002 to 2009. Exemplary
model parameters for one region in one year can be found in section 6.3, tables 6.1 to 6.4.
We compare three kinds of simulations that differ mainly in the modeling of changes
in the demand-price relationship over the years. The first two kinds of simulations
base upon the model for optimizing a single time period, the third is a simultaneous
optimization over all periods:

a) Independent simulations: We solve problem (2.9) for each year ti. Thereby, for
the modeling of (2.3) we set in (2.2) as aπ_last

pout,r,ti and a
con_last
pout,r,ti the historical data of

year ti−1.

b) Dependent sequential simulations: We solve problem (2.9) for each year ti,
where we set in (2.2) as aπ_last

pout,r,ti and a
con_last
pout,r,ti the simulation results of year ti−1.

c) Simultaneous simulations: We solve problem (2.17), where aπ_last
pout,r,ti and a

con_last
pout,r,ti

are defined by (2.16).

Remark 2.5.1. By the first two assumptions of this section and by adding the con-
straints

xπpout,r,t ≤ a
π_max
pout,r,t + wpout,r(a

GDP
r,t , aIndPror,t) ∀ pout ∈ Pout, r ∈ R, t ∈ T , (2.21)

the optimization problems related to independent simulations and to dependent sequen-
tial simulations turn from non-differentiable, non-convex NLPs to differentiable, convex
NLPs, see also remark 2.2.1. This is because they consist of several independent prob-
lems, each in one time period. We will discuss the properties of the optimization problem
for one time period in some more detail in section 6.1.

For all three kinds of simulations, we choose

a
π_max
pout,r,tj := 1.4 · aπ_last

pout,r,tj and a
con_max
pout,r,tj := 1.5 · acon_last

pout,r,tj . (2.22)

In case of simultaneous optimizations, we set the following further constraints to avoid
unrealistic solutions:

∀ pout ∈ Pout,∀ r ∈ R, ∀ t ∈ T

0.5 · xsalespout,r,t−1 ≤ xsalespout,r,t ≤ 1.5 · xsalespout,r,t−1. (2.23)

In the optimal solution of our example, these constraints are inactive for most products,
regions, and time periods.
Figures 2.3 and 2.4 show price and sales results of independent, dependent sequential,
and simultaneous market simulations. For comparison purposes, each figure includes
also the corresponding historical data of the products 54 and 84, respectively. Note that

25

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

500

1000

1500

2000

2500

year

pr
ic

e

Independent Simulations − Prices of Product 54

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

1000

2000

3000

4000

5000

year

sa
le

s

Independent Simulations − Sales of Product 54

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

500

1000

1500

2000

2500

3000

year

pr
ic

e

Dependent Sequential Simulations − Prices of Product 54

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

1000

2000

3000

4000

5000

year

sa
le

s

Dependent Sequential Simulations − Sales of Product 54

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

500

1000

1500

2000

2500

3000

year

pr
ic

e

Simultaneous Simulations − Prices of Product 54

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

1000

2000

3000

4000

5000

year

sa
le

s

Simultaneous Simulations − Sales of Product 54

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

Figure 2.3: Price and sales of product 54 resulting from three different kinds of market
simulations

the independent and dependent sequential simulations are composed of the solutions of
eight market optimizations, one for each year. The simultaneous simulations are part of
the solution of one much larger optimization problem.
In general, the results are quite satisfactory and confirm our modeling approach. It
seems that the choice of a deterministic optimization model together with the selection
of model parameters is appropriate for reproducing price formation. Prices of external

26

2.5 Example: Simulation of Petrochemical Product Prices

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

500

1000

1500

2000

year

pr
ic

e

Independent Simulations − Prices of Product 84

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

500

1000

1500

2000

2500

year

sa
le

s

Independent Simulations − Sales of Product 84

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

500

1000

1500

2000

2500

3000

year

pr
ic

e

Dependent Sequential Simulations − Prices of Product 84

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

500

1000

1500

2000

2500

year

sa
le

s

Dependent Sequential Simulations − Sales of Product 84

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

500

1000

1500

2000

2500

3000

year

pr
ic

e

Simultaneous Simulations − Prices of Product 84

2001 2002 2003 2004 2005 2006 2007 2008 2009
0

500

1000

1500

2000

year

sa
le

s

Simultaneous Simulations − Sales of Product 84

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

sim region 1

sim region 2

sim region 3

hist. region 1

hist. region 2

hist. region 3

Figure 2.4: Price and sales of product 84 resulting from three different kinds of market
simulations

products, production and processing facilities, and demand related parameters qualify as
main model parameters. Especially the price simulations of the years from 2002 to 2005
represent prices of both products well. However, in the following years simulated prices
are too high, and the decrease of prices in 2009 is adequately simulated only in the first
case of independent simulations. Dependent sequential and simultaneous simulations
show an accumulating too high price increase, particularly for product 84. Regarding

27

2 Modeling and Simulation of Price Formation in a Multi-Commodity Network

product 54, sales simulations are very good, except for the dependent sequential ones for
region 3. Sales simulations of product 84 are less satisfactory: several simulated sales
series display considerably more variation than historical data.
Summarizing, the simulation results give reason to further apply and analyze our model.
We expect that enhancing our modeling by a better demand model and further data to
estimate demand parameters will improve the simulation results. In the present applica-
tion, we just set reasonable values for some demand parameters, cf. (2.22). Furthermore,
the weighting parameters αpout,r and βpout,r concerning the economic factors, cf. (2.4), are
estimated by an ordinary least squares method. A generalized least squares method to
identify demand parameters could improve the simulation results. An extensive discus-
sion of demand modeling approaches and the related parameter identification methods
is given by [Kel13]. A further reason for the deviations of the simulations from the
historical time series could be the incomplete supply-side data.

28

3 Constrained Nonlinear Optimization: A Choice of
Theory and Methods

This chapter outlines important theoretical results on optimization theory, in particular
on parametric optimization (section 3.2), duality (section 3.3), and nonsmooth opti-
mization (section 3.4). We mainly restrict ourselves to those results that we will need
for introducing a new model reduction approach in chapter 5 and for its application in
chapter 6. Since our approach is strongly related to the decomposition methods for solv-
ing constrained programs with a block-separable structure, we review primal and dual
decomposition in section 3.5. Furthermore, in section 3.6, we present a successful inte-
rior point method, which serves in this thesis as standard approach to solve constrained
nonlinear optimization problems as that of chapter 6.1. Section 3.7 shortly introduces
the method of least squares for parameter estimation.

3.1 Optimization Theory for Differentiable Problems

This section gives an overview on major results about differentiable constrained nonlin-
ear optimization. Detailed introductions as well as further references can be found, e.g.,
in [Fle87, Alt02, Lue08].

A general finite-dimensional optimization problem in Rn is given by the following defi-
nition:

Definition 3.1.1. Let D ⊆ Rn be open, f : D → R and F ⊆ D. An optimization
problem is the problem of minimizing the function f over F , i.e.,

min
x∈F

f(x). (3.1)

The function f is called objective function, F is the feasible set and each x ∈ F is
called a feasible point.
If F = D, the problem is unconstrained. Is F defined by certain constraints, the
problem is called a constrained optimization problem.

The above optimization problem is specified by the following definitions:

Definition 3.1.2. a) x∗ ∈ F is a local minimum of f over F if there exists r > 0
with

f(x) ≥ f(x∗) ∀ x ∈ F ∩B(x∗, r). (3.2)

29

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

b) x∗ ∈ F is a strict local minimum of f over F if there exists r > 0 with

f(x) > f(x∗) ∀ x ∈ F ∩B(x∗, r),x 6= x∗. (3.3)

c) x∗ ∈ F is a global minimum of f over F if

f(x) ≥ f(x∗) ∀ x ∈ F . (3.4)

d) x∗ ∈ F is a strict global minimum of f over F if

f(x) > f(x∗) ∀ x ∈ F ,x 6= x∗. (3.5)

e) x∗ ∈ F is an isolated local minimum of f over F if there exists r > 0 such that
F ∩B(x∗, r) includes no other local minimum x̄ 6= x∗.

f) If x∗ ∈ F is a solution of (3.1), we call f(x∗) optimal value.

Remark 3.1.3. Each isolated local minimum is a strict local minimum.

Remark 3.1.4. The problem of maximizing f over F is equivalent to the problem of
minimizing (−f) over F , which defines (strict/isolated) local/global maxima of f over
F .

The number of (strict) local/global solutions of an optimization problem depends on
the form of f and F . A special class of nonlinear problems with certain convenient
properties is that of convex problems.

Definition 3.1.5. The minimization problem (3.1) is called convex if F is a convex
set and if the objective function f : D → R is convex over F .

Theorem 3.1.6. Let D ⊆ Rn, F ⊆ D nonempty and convex and f : D → R convex
over F . Then, every local minimum of f over F is global, and the set of minima of
(3.1)

S = { x ∈ F | f(x) ≤ f(y) ∀ y ∈ F } (3.6)

is convex.
If f is even strictly convex over F and there exists a solution x∗ of (3.1) then x∗ is
unique and a strict global minimum of f over F .

Proof Proofs can be found, e.g., in [Fle87, Alt02].

From now on, we focus on constrained problems where F is of the form

F = { x ∈ Rn | gi(x) ≤ 0 (i ∈ I = {1, ...,m}), hj(x) = 0 (j ∈ J = {1, ..., p}) } (3.7)

with gi : D → R (i ∈ I), hj : D → R (j ∈ J) and p ≤ n.

30

3.1 Optimization Theory for Differentiable Problems

Example 3.1.7. Problem (3.1) is convex if and only if f is convex and if F can be
written as (3.7) with gi convex for i ∈ I and hj := (aj)

Tx − bj (aj ∈ Rn, bj ∈ R) for
j ∈ J . In the following, we refer to the matrix of rows (aj)

T as A so that we can express
the equality constraints of convex problems by h(x) = Ax− b = 0.

To formulate necessary and sufficient conditions that a point x∗ ∈ F is a local solution
of (3.1), further definitions are needed:

Definition 3.1.8. An inequality constraint gi is active in x̄ ∈ F if gi(x̄) = 0 and
inactive otherwise. For x̄ ∈ F , the set

I(x̄) := { i ∈ I | gi(x̄) = 0 } (3.8)

is called the active set.

Definition 3.1.9. A point x∗ ∈ F is regular if the gradient vectors∇gi(x∗),∇hj(x∗), i ∈
I(x∗), j ∈ J are linearly independent. In this case, one also says that the Linear In-
dependence Constraint Qualification (LICQ) holds.

a. First Order Optimality Conditions

A first order necessary condition for solutions of (3.1) is given by

Theorem 3.1.10 (Karush-Kuhn-Tucker (KKT) Conditions). Let x∗ be a local
minimizer of (3.1), x∗ regular. Then there exist unique Lagrange multipliers λ ∈
Rm,λ ≥ 0,µ ∈ Rp such that the Lagrangian function

L(x,λ,µ) := f(x) + λTg(x) + µTh(x) (3.9)

satisfies

∇xL(x∗,λ,µ) = ∇f(x∗) +
m∑
i=1

λi∇gi(x∗) +

p∑
j=1

µj∇hj(x∗) = 0 (3.10)

and complementarity

λTg(x∗) =
m∑
i=1

λigi(x
∗) = 0 (3.11)

holds. A point (x∗,λ,µ) ∈ F ×Rm×Rp that satisfies λ ≥ 0, (3.10), and (3.11) is called
a KKT-point.

Proof Proofs are given in any book that covers constrained nonlinear optimization, e.g.,
in [Fle87, Lue08].

31

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

Equation (3.11) is equivalent to

gi(x
∗) < 0 ⇒ λi = 0

resp. λi > 0 ⇒ gi(x
∗) = 0.

(3.12)

This shows that the uniqueness of the Lagrange multipliers related to the inactive con-
straints is directly given by complementarity. The uniqueness of the remaining multipli-
ers is then given by the LICQ and (3.10). Under weaker constraint qualifications than
LICQ as the Abadie-CQ and the Mangasarian-Fromovitz-CQ, Langrange multipliers ex-
ist but they are not necessary unique.
For cases where also the reverse directions of (3.12) hold, one defines:

Definition 3.1.11. A KKT-point (x∗,λ,µ) fulfills strict complementarity if ∀ i ∈ I

gi(x
∗) = 0 ⇒ λi > 0

resp. λi = 0 ⇒ gi(x
∗) < 0.

(3.13)

An active constraint gi that satisfies the first condition of (3.13) is called strictly active
in x∗. The set of strictly active constraints in x∗ is defined as

I+(x∗) := { i ∈ I(x∗) | λi > 0 }. (3.14)

For convex optimization problems that meet Slater’s condition, the KKT conditions are
not only necessary but also sufficient for a global optimum:

Definition 3.1.12. A minimization problem (3.1) with feasible set (3.7) fulfills Slater’s
condition if there exists a feasible point x ∈ F for which none of the inequality con-
straints is active:

∃ x ∈ Rn : gi(x) < 0 (i ∈ I = {1, ...,m}), hj(x) = 0 (j ∈ J = {1, ..., p}). (3.15)

Theorem 3.1.13 (KKT Conditions for Convex Problems). Let a convex mini-
mization problem (3.1) fulfill Slater’s condition. Then the following statements about a
feasible point x∗ ∈ F are equivalent

a) x∗ is a global minimum of (3.1),

b) ∃ λ ≥ 0,µ such that (x∗,λ,µ) is a KKT-point of (3.1).

Proof As mentioned in example 3.1.7, a convex problem can be written by a convex
objective function f , convex inequality constraint functions gi, and affine equality con-
straint functions hj.
“a) ⇒ b)” follows from strong duality, i.e., zero duality gap, for convex problems that

32

3.1 Optimization Theory for Differentiable Problems

fulfill Slater’s condition, cf. theorem 3.3.4: Let (λ∗,µ∗) solve the Lagrange dual prob-
lem (3.40) associated with problem (3.1). Since x∗ minimizes L(x,λ∗,µ∗), the gradient
∇xL(x,λ∗,µ∗) must vanish in x∗:

∇xL(x∗,λ∗,µ∗) = ∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) +

p∑
j=1

µ∗jaj = 0. (3.16)

Complementarity, i.e., λTg(x∗) = 0, results from the zero duality gap (f(x∗) = d(λ∗,µ∗) =
L(x∗,λ∗,µ∗) = f(x∗) + λ∗Tg(x∗) + µ∗T(Ax∗ − b)).
“b)⇒ a)”: For a feasible point x ∈ F , we have under convexity and the KKT conditions:

f(x) ≥ f(x∗) +∇f(x∗)T(x− x∗)

= f(x∗)−
m∑
i=1

λi∇gi(x∗)T(x− x∗)−
p∑
j=1

µja
T
j (x− x∗)

= f(x∗)−
∑

i∈I(x∗)

λi∇gi(x∗)T(x− x∗)

≥ f(x∗)−
∑

i∈I(x∗)

λi(gi(x)− gi(x∗))

≥ f(x∗).

(3.17)

b. Second Order Optimality Conditions

With the above definitions it is now possible to state second order necessary and sufficient
conditions for a locally optimal point of problem (3.1):

Theorem 3.1.14 (Second Order Necessary Condition). Let x∗ be a local minimizer
of (3.1), x∗ regular. Then the Hessian ∇2

xxL(x∗,λ,µ) of the Lagrangian is positive
semidefinite on the tangent space of the equality and active inequality constraints, i.e.,

pT∇2
xxL(x∗,λ,µ)p ≥ 0 ∀ p ∈ T (x∗), (3.18)

where T (x∗) = { p ∈ Rn | ∇gi(x∗)Tp = 0,∇hj(x∗)Tp = 0, i ∈ I(x∗), j ∈ J }.

Proof A proof can be found, e.g., in [Lue08].

To obtain a sufficient condition for a local minimizer, in case that there are inequality
constraints that are not strictly active, ∇2

xxL must be positive definite on a subspace
that is larger than the tangent space T (x∗):

Theorem 3.1.15 (Strong Second Order Sufficient Condition). Let (x∗,λ,µ) be a
KKT-point for problem (3.1). Let the Hessian ∇2

xxL(x∗,λ,µ) of the Lagrangian be posi-
tive definite on the tangent space of the equality and strictly active inequality constraints,
i.e.,

pT∇2
xxL(x∗,λ,µ)p > 0 ∀ p ∈ T+(x∗) \ {0}, (3.19)

33

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

where T+(x∗) = { p ∈ Rn | ∇gi(x∗)Tp = 0,∇hj(x∗)Tp = 0, i ∈ I+(x∗), j ∈ J }.
Then x∗ is a strict local minimizer for problem (3.1).

Proof A proof can be found, e.g., in [Lue08].

3.2 Parametric Optimization Problems

This section gives a short summary of important sensitivity and stability results for
constrained nonlinear optimization problems. Main interests are, e.g., in continuity and
differentiability of optimal value functions as well as of local optimal solutions. An
introduction to sensitivity and stability analysis for nonlinear programming is given in
[Fia83]. [FI90] gives a brief overview. Detailed representations and advanced results can
be found in [BS00] and [GG97], respectively.

We extend the constrained nonlinear problem (3.1) by a parameter θ ∈ Rl:

min
x∈F(θ)

f(x,θ) (3.20a)

with

F(θ) = { x ∈ Rn | gi(x,θ) ≤ 0 (i ∈ I), hj(x,θ) = 0 (j ∈ J) } (3.20b)

where f : Rn × Rl → R, gi : Rn × Rl → R (i ∈ I) and hj : Rn × Rl → R (j ∈ J).

Definition 3.2.1. The optimal value function f ∗ of a parametric optimization prob-
lem (3.20) is defined as

f ∗(θ) :=

 inf
x∈F(θ)

f(x,θ) if F(θ) 6= ∅,

+∞ if F(θ) = ∅.
(3.21)

The corresponding optimal solution map S is given by

S(θ) = { x ∈ F(θ) | f(x,θ) = f ∗(θ) }, (3.22)

i.e., it is a point-to-set mapping from Rl to F .

To state the basic result on continuity of the optimal-value function, we define continuity
for a point-to-set map according to Berge [Ber63]:

Definition 3.2.2. Let (X, dX) and (Θ, dΘ) be metric spaces. A point-to-set mapping
Γ : Θ→ 2X (where 2X is the power set of X) is called

a) upper semicontinuous at a point θ0 if for each open set Ω ⊆ X containing Γθ0

there exists a number δ = δ(Ω) > 0 such that Γθ ⊆ Ω ∀ θ ∈ Uδ(θ0);

34

3.2 Parametric Optimization Problems

b) lower semicontinuous at a point θ0 if for each open set Ω ⊆ X satisfying Ω ∩
Γθ0 6= ∅ there exists a number δ = δ(Ω) > 0 such that Γθ ∩ Ω 6= ∅ ∀ θ ∈ Uδ(θ0);

c) continuous at a point θ0 if it is upper semicontinuous and lower semicontinuous
at θ0.

Remark 3.2.3. This definition of continuity for a point-to-set map differs from the one
for a real-valued function. However, we use the same term in the following since it will
be clear which definition holds.

Theorem 3.2.4. For problem (3.20), one has

a) if F is lower semicontinuous at θ̄, and f is upper semicontinuous on F(θ̄)×{θ̄},
then f ∗ is upper semicontinuous at θ̄;

b) if F is upper semicontinuous at θ̄, F(θ̄) compact, and f is lower semicontinuous
on F(θ̄)× {θ̄}, then f ∗ is lower semicontinuous at θ̄.

Proof A proof can be found, e.g., in [BGK+82].

This result can be furthermore specified for the right-hand-side constraint map

F(θ) = { x ∈ Rn | gi(x) ≤ θi (i = 1, ..., l) } (3.23)

where g : Rn → Rl and θ ∈ Rl.

Theorem 3.2.5. Let F be given by (3.23), where g is continuous, and let F(θ̄) be
compact. Then

a) F is upper semicontinuous at θ̄ if and only if there exists a vector θ̃ > θ̄ such that
F(θ̃) is compact;

b) if the ’strict interior’ F0(θ̄) = { x ∈ Rn | gi(x) < θ̄i (i = 1, ..., l) } is nonempty,
then F is lower semicontinuous at θ̄ if and only if F0(θ̄) = F(θ̄), where F0(θ̄) is
the closure of F0(θ̄).

Proof These results are proved by [EG70].

We will now state conditions for the convexity (concavity) of f ∗. For this purpose,
Θ ⊆ Rl is assumed to be a nonempty and convex set.

Definition 3.2.6. A point-to-set map F : Θ → 2Rn is convex (concave) on Θ if
∀ θ1,θ2 ∈ Θ and ∀ c ∈ (0, 1)

cF(θ1) + (1− c)F(θ2) ⊆ (⊇) F(cθ1 + (1− c)θ2). (3.24)

If the inclusion ⊆ holds ∀ θ1,θ2 ∈ Θ,θ1 6= θ2 and ∀ c ∈ (0, 1), F is called essentially
convex on Θ.

35

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

Theorem 3.2.7. For problem (3.20), let f be jointly convex1 on {(x,θ)|x ∈ F(θ),θ ∈
Θ} and let F be essentially convex on Θ, where Θ is convex. Then f ∗ is convex on Θ.

Proof A proof is given by [FK86].

Theorem 3.2.8. Let F(θ) be defined by (3.20b) with gi (i ∈ I) jointly quasiconvex on
Rn ×Θ and hj (j ∈ J) jointly affine on Rn ×Θ. Then F is convex on Θ.

Proof By quasiconvexity of gi (i ∈ I) and affinity of hj (j ∈ J), the graph G of F
defined by G(F) = {(x,θ) ∈ Rn × Θ|x ∈ F(θ)} is a convex set. This implies the
convexity of F on Θ.

Theorem 3.2.9. For problem (3.20), let f be jointly concave on Rn × Θ and let F be
concave on Θ, where Θ is convex. Then f ∗ is concave on Θ.

Proof A proof is given by [FK86].

The following theorem states conditions under which the optimal value function is locally
differentiable.

Theorem 3.2.10. For problem (3.20) let f, g, and h be two times continuously differ-
entiable on Rn × Rl. Suppose that for θ = 0 we have a KKT-point x(0) that satisfies
strict complementarity and, together with the Lagrange multipliers λ(0) ≥ 0,µ(0), cor-
responding to inequality and equality constraints, the second-order sufficiency conditions
for a strict local minimum.
Then

a) x(0) is an isolated local minimum of problem (3.20) for θ = 0 with unique Lagrange
multipliers λ(0),µ(0);

b) ∃ r > 0 and a once continuously differentiable vector function z : B(0, r) →
Rn+m+p,θ 7→ z(θ) = [x(θ),λ(θ),µ(θ)]T such that ∀ θ ∈ B(0, r), x(θ) is an
isolated local minimum of the corresponding problem (3.20) with associated unique
Lagrange multipliers λ(θ),µ(θ);

c) the LICQ and strict complementarity hold at [x(θ),λ(θ),µ(θ)];

d) moreover, the optimal value function f ∗(θ) is twice continuously differentiable on
B(0, r).

Proof The proof is based on the implicit function theorem and can be found, e.g., in
[Fia83].

1A function f : Rn ×Θ→ R is called jointly convex if ∀ x1,x2 ∈ Rn,θ1,θ2 ∈ Θ and ∀ c ∈ [0, 1], we
have cf(x1,θ1) + (1− c)f(x2,θ2) ≥ f(cx1 + (1− c)x2, cθ1 + (1− c)θ2).

36

3.2 Parametric Optimization Problems

In the context of parametric optimization, the Lagrangian function L is defined as

L(x,λ,µ,θ) := f(x,θ) + λTg(x,θ) + µTh(x,θ). (3.25)

The last item of theorem 3.2.10 can be furthermore specified by

Theorem 3.2.11. Defining the optimal value Lagrangian L∗(θ) by

L∗(θ) := L[x(θ),λ(θ),µ(θ),θ], (3.26)

we have, under the assumptions of theorem 3.2.10, in a neighborhood B(0, r) of θ = 0

a) f ∗(θ) = L∗(θ);

b) ∇θf ∗(θ) = ∇θL = ∇θf +
m∑
i=1

λi(θ)∇θgi +
p∑
j=1

µj(θ)∇θhj

= ∇θf + λ(θ)T∇θg + µ(θ)T∇θh;

c) ∇2
θθf

∗(θ) = ∇θ
[
∇θL[x(θ),λ(θ),µ(θ),θ]T

]
= ∇2

xθL∇θx(θ) +
m∑
i=1

∇θgT
i ∇θλi(θ) +

p∑
j=1

∇θhT
j ∇θµj(θ) +∇2

θθL.

d) Furthermore, ∇θx(θ)
∇θλ(θ)
∇θµ(θ)

 = −M−1N , (3.27)

where

M ≡



∇2
xxL ∇xg1 · · · ∇xgm ∇xh1 · · · ∇xhp

λ1(θ)∇xgT
1 g1 0

... . . . 0
λm(θ)∇xgT

m 0 gm
∇xhT

1
... 0 0

∇xhT
p


, (3.28)

i.e., the Jacobian of the KKT conditions (3.10), (3.11) and feasibility (3.7) with
respect to [x,λ,µ]T, and

N ≡
(
∇2
θxL, λ1(θ)∇θg1, ..., λm(θ)∇θgm,∇θh1, ...,∇θhp

)T
, (3.29)

i.e., the Jacobian of the KKT conditions and feasibility with respect to θ.

Thereby all quantities are evaluated at [x(θ),λ(θ),µ(θ),θ].2

2For example, ∇θf means ∇θf(x(θ),θ), where x(θ) is a local optimal solution of the parametric
problem for fixed θ.

37

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

Proof A proof can be found in [Fia83].

For a problem with unperturbed objective value function and right-hand-side perturba-
tions of the constraints, one gets from theorem 3.2.11 the following well-known result
that establishes the interpretation of the Lagrange multipliers as shadow prices for per-
turbations of the active constraints.

Corollary 3.2.12. For the problem min
x∈F(θ)

f(x) with

F(θ) = { x ∈ Rn | gi(x) ≤ θi (i ∈ I = {1, ...,m}), hj(x) = θm+j (j ∈ J = {1, ..., p}) },
(3.30)

where f, g, and h are twice continuously differentiable, let the assumptions of theo-
rem 3.2.10 be satisfied. Then, in a neighborhood B(0, r) of θ = 0,

a) ∇θf ∗(θ) =

(
−λ(θ)
−µ(θ)

)
and

b) ∇2
θθf

∗(θ) =

(
−∇θλ(θ)
−∇θµ(θ)

)
.

[CCC+06] generalizes the sensitivity results of theorem 3.2.11, and proposes a perturba-
tion approach to sensitivity analysis. This method does not require strict complementar-
ity, and it does neither assume active inequality constraints to remain active, nor partial
derivatives to exist. To sketch this method, we consider problem (3.20). Let x(θ) be a
local solution of this parametric problem and regular, λ(θ),µ(θ) be the corresponding
Lagrange multipliers, and f ∗(θ) be the optimal value of the objective function f(x,θ).
Consider perturbations of θ,x,λ,µ, and f ∗ in such a way that the KKT conditions
still hold. Consequently, differentiating the KKT conditions yields the following sys-
tem of equalities and inequalities describing the set of feasible perturbations, where all
quantities are evaluated at [x(θ),λ(θ),µ(θ),θ], as in theorem 3.2.11:

∇xfT dx+∇θfT dθ − df ∗ = 0, (3.31a)(
∇2
xxf +

m∑
i=1

λi(θ)∇2
xxgi +

p∑
j=1

µj(θ)∇2
xxhj

)
dx

+
(
∇2
xθf +

m∑
i=1

λi(θ)∇2
xθgi +

p∑
j=1

µj(θ)∇2
xθhj

)
dθ +∇xg dλ+∇xh dµ = 0,

(3.31b)

∇xhT dx+∇θhT dθ = 0, (3.31c)
∇xgT

i dx+∇θgT
i dθ = 0, if λi(θ) 6= 0, i ∈ I(x(θ)), (3.31d)

∇xgT
i dx+∇θgT

i dθ ≤ 0, if λi(θ) = 0, i ∈ I(x(θ)), (3.31e)
−dλi ≤ 0, if λi(θ) = 0, i ∈ I(x(θ)), (3.31f)

dλi[∇xgT
i dx+∇θgT

i dθ] = 0, if λi(θ) = 0, i ∈ I(x(θ)). (3.31g)

38

3.2 Parametric Optimization Problems

Equations (3.31d)-(3.31g) specify the conditions that directly result from differentiating
the inequality constraints, complementarity, and the nonnegativity of λ’s components,
this means in case of inequality constraints and complementarity from

∇xgT
i dx+∇θgT

i dθ ≤ 0, if i ∈ I(x(θ)), (3.32a)
(λi(θ) + dλi)(gi + dgi) = λi(θ)dgi + dλi(gi + dgi) = 0, if i ∈ I(x(θ)). (3.32b)

Since gi(x(θ),θ) = 0 ∀ i ∈ I(x(θ)), (3.32b) results in (3.31d) for λi(θ) 6= 0, and in
(3.31g) for λi(θ) = 0. In case λi(θ) 6= 0, (3.31d) implies (3.32a), i.e. (3.32a) must be
written only for λi(θ) = 0, which is done by (3.31e).
Note that equation (3.31g) is a second-order constraint. It forces that one of the in-
equality constraints (3.31e) and (3.31f) is active ∀ i ∈ I(x(θ)).
In matrix form, system (3.31a)-(3.31f) can be written as

P


dx
dθ
dµ
dλ
df ∗

 :=


∇xfT ∇θfT 0 0 −1

∇2
xxL ∇2

xθL ∇xh GT
x 0

∇xhT ∇θhT 0 0 0
G1
x G1

θ 0 0 0




dx
dθ
dµ
dλ
df ∗

 = 0, (3.33a)

Q


dx
dθ
dµ
dλ
df ∗

 :=

(
G0
x G0

θ 0 0 0
0 0 0 −I0

|I(x(θ))| 0

)
dx
dθ
dµ
dλ
df ∗

 ≤ 0, (3.33b)

where the vector dλ is of size |I(x(θ))| and G1
x, G

1
θ, G

0
x, and G0

θ refer to certain
submatrices of

Gx = ∇xg(x(θ),θ)T and Gθ = ∇θg(x(θ),θ)T, (3.34)

respectively. Namely, G1
x and G1

θ denote the submatrices of Gx and Gθ, respectively,
that are associated with the non-zero multipliers λi of active inequality constraints.
Accordingly, G0

x and G0
θ denote the submatrices of Gx and Gθ, respectively, associated

with the zero multipliers λi of active inequality constraints. I0
|I(x(θ))| is the |I(x(θ))| ×

|I(x(θ))| unit matrix after removing all rows i ∈ I(x(θ)) corresponding to non-zero
multipliers λi 6= 0.3
To take into account the second order condition (3.31g), system (3.33) must be modified
in the following way: for each active inequality constraint i ∈ I(x(θ)), from (3.33b)
either the row associated with the term G0 or the row associated with −I0

|I(x(θ))| is
extracted and added to (3.33a). By this, one decides if an active inequality constraint i

3We do not need to consider inactive constraints gi, i ∈ I \ I(x(θ)), because their Lagrange multipliers
are zero, and after a small perturbation they are still inactive and have zero multipliers.

39

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

with zero Lagrange multiplier λi must remain active after the perturbation or is allowed
to become inactive. This means, in total, there are 2m0 possible systems, where m0 :=
|{i ∈ I(x(θ)) | λi = 0}|.
System (3.31), or, equivalently, the set of all possible modifications of system (3.33),
defines the set of all feasible perturbations (dx, dθ, dµ, dλ, df ∗)T for moving from a
KKT solution represented by x(θ),µ(θ),λ(θ), f ∗(θ) to another KKT solution.
Let us discuss these results with regard to sensitivities, i.e., with regard to directional
and partial derivatives. System (3.33) can be written as

U


dx
dµ
dλ
df ∗

 = S dθ, V


dx
dµ
dλ
df ∗

 ≤ T dθ, (3.35a)

with

U :=


∇xfT 0 0 −1

∇2
xxL ∇xh GT

x 0

∇xhT 0 0 0
G1
x 0 0 0

 , S := −


∇θfT

∇2
xθL
∇θhT

G1
θ

 , (3.35b)

V :=

(
G0
x 0 0 0

0 0 −I0
|I(x(θ))| 0

)
, T := −

(
G0
θ

0

)
. (3.35c)

Considering condition (3.31g), several possible systems (3.35) may exist, as described
above regarding system (3.33).
Each optimal solution of a parametric problem in θ, represented by x(θ),µ(θ),λ(θ),
f ∗(θ), falls into one of the following three categories:

Regular point: The gradient vectors of the active constraints are linearly independent.
One can distinguish between

• Nondegenerate regular point: All Lagrange multipliers λi, i ∈ I(x(θ)), of active
inequality constraints are different from zero. Regarding system (3.35), there is no
matrix V and the matrix U is invertible.

• Degenerate regular point: First case: All Lagrange multipliers λi, i ∈ I(x(θ)),
of active inequality constraints are different from zero. Regarding system (3.35),
there is no matrix V and the matrix U is not invertible. Second case: Some
Lagrange multipliers λi, i ∈ I(x(θ)), of active inequality constraints are equal to
zero. The matrix U is not invertible because it is not a square matrix.

Nonregular point: The gradient vectors of the active constraints are linearly dependent.
The matrix U of system (3.35) is never invertible. The Lagrange multipliers are not
unique but rather there exist infinite possible combinations of Lagrange multipliers.
However, for given values of Lagrange multipliers, sensitivities can be analyzed using

40

3.3 Duality

system (3.35) as described below.

In case of a nondegenerate regular point, i.e., if U is invertible, all partial derivatives
can be obtained at once by computing

∂x/∂θ
∂µ/∂θ
∂λ/∂θ
∂f ∗/∂θ

 = U−1S. (3.36)

Otherwise, if U is not invertible, one can check if directional derivatives4 exist by replac-
ing dθ by the corresponding unit vectors and solving the 2m0 possible combinations of
system (3.35a) that we described above. If for a certain direction a solution exists for at
least one combination and if it is unique, then the corresponding directional derivative
exists. Partial derivatives with respect to a component θj, j ∈ {1, ..., l}, exist in this case
if directional derivatives for dθj and −dθj exist and coincide by absolute value but not
in sign. More explicitly, for this purpose, one solves the combinations of system (3.35a)
for the perturbation vectors(∂x1

∂θ+
j

, ...,
∂xn
∂θ+

j

, 0, ..., 0, 1, 0, ..., 0,
∂λ1

∂θ+
j

, ...,
∂λ|I(x(θ))|

∂θ+
j

,
∂µ1

∂θ+
j

, ...,
∂µp
∂θ+

j

,
∂f ∗

∂θ+
j

)T

(3.37a)

and(∂x1

∂θ−j
, ...,

∂xn
∂θ−j

, 0, ..., 0,−1, 0, ..., 0,
∂λ1

∂θ−j
, ...,

∂λ|I(x(θ))|

∂θ−j
,
∂µ1

∂θ−j
, ...,

∂µp
∂θ−j

,
∂f ∗

∂θ−j

)T

. (3.37b)

The nondegenerate regular case is the most common one. However, if a variation of
the parameter θ is considered, the regular degenerate and the nonregular case occur as
important transition situations, for instance at active set changes. Illustrative examples
for all cases can be found in [CCC+06, CCMGB06].

3.3 Duality

Duality theory provides a symmetry between a constrained optimization problem and
its so-called dual problem. This symmetry turns out to be perfect for convex problems
fulfilling Slater’s condition. The variables of the dual problem are in this case the
Lagrange multipliers of the primal problem given by the Karush-Kuhn-Tucker conditions
of theorem 3.1.10. They often allow intuitive interpretations as prices for constrained
resources as we will see later on regarding our supply-demand optimization model. The
benefit of duality becomes apparent if the dual problem is easier to solve than the original
problem, which is mostly the case for separable problems as we will show in section 3.5

4See definition 3.4.1.

41

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

about decomposition methods. Introductions to Lagrangian duality can be found, e.g.,
in [BV04, Lue08]. In this section, we summarize the most important results to which
we will refer in the remaining part of this thesis.

Consider again the optimization problem in standard form with variable x ∈ Rn:

min
x

f(x)

such that gi(x) ≤ 0, i ∈ I = {1, ...,m},
hj(x) = 0, j ∈ J = {1, ..., p}.

(3.38)

Let its domain D ⊆ Rn be open and nonempty, f : D → R, gi : D → R (i ∈ I),
hj : D → R (j ∈ J), and p ≤ n.

Definition 3.3.1. The Lagrange dual function d : Rm × Rp → R is defined as the
minimum value of the Lagrangian over x: for λ ∈ Rm,µ ∈ Rp

d(λ,µ) := inf
x∈D
L(x,λ,µ) = inf

x∈D

(
f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

µihi(x)
)
. (3.39)

In this regard, the Lagrange multipliers λ and µ are also called dual variables.

d is concave, even if problem (3.38) is not convex, because it is the pointwise infimum
of affine functions in (λ,µ).

Definition 3.3.2. The Lagrange dual problem associated with problem (3.38) is de-
fined as

max
λ,µ

d(λ,µ) such that λi ≥ 0 i = 1, ...,m. (3.40)

By the definition of the Lagrange dual problem, its optimal value is the best lower bound
on the primal optimal value that can be obtained from the Lagrange dual function:

Theorem 3.3.3 (Weak Duality). The optimal value q∗ of the Lagrange dual prob-
lem (3.40) is a lower bound on the optimal value p∗ of the primal problem (3.38):

q∗ ≤ p∗. (3.41)

The difference p∗ − q∗ is called the optimal duality gap.

Proof For every (λ,µ) with λi ≥ 0, i ∈ I, we have

d(λ,µ) = inf
x∈D

(
f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

µihi(x)
)

≤ inf
x∈D,g(x)≤0,h(x)=0

(
f(x) +

m∑
i=1

λigi(x) +

p∑
i=1

µihi(x)
)

≤ inf
x∈D,g(x)≤0,h(x)=0

f(x) = p∗.

(3.42)

42

3.3 Duality

Since this weak duality result is not based on any convexity assumption, it is of great
use for nonconvex optimization problems whose dual problems can be solved efficiently.
The following theorem states sufficient conditions on the primal problem for a zero
duality gap.

Theorem 3.3.4 (Strong Duality). If problem (3.38) is convex, and if Slater’s condi-
tion, given by 3.1.12, is satisfied, the optimal value q∗ of the dual problem (3.40) equals
the optimal value p∗ of the primal problem (3.38): q∗ = p∗.

Proof A proof of this theorem including a geometric interpretation can be found in
[BV04]. We shortly condense it:
Convexity of the primal problem means h(x) = Ax− b, see example 3.1.7. For simpli-
fication assume that rank(A) = p. The sets A and B defined by

A := {(u,v, t) | ∃x ∈ D, gi(x) ≤ ui, i ∈ I,aT
j x− bj = vj, j ∈ J, f(x) ≤ t}, (3.43)

B := {(0,0, s) ∈ Rm × Rp × R | s < p∗} (3.44)

are convex and do not intersect. According to the so-called separating hyperplane the-
orem, there exists (λ̃, µ̃, ν) 6= 0 and α such that

(u,v, t) ∈ A ⇒ λ̃
T
u+ µ̃Tv + νt ≥ α, and (3.45)

(u,v, t) ∈ B ⇒ λ̃
T
u+ µ̃Tv + νt ≤ α. (3.46)

(3.45) implies λ̃ ≥ 0 and ν ≥ 0. (3.46) means νt ≤ α ∀ t < p∗, and hence, νp∗ ≤ α.
Summarizing this, for all x ∈ D we have

m∑
i=1

λ̃igi(x) + µ̃T(Ax− b) + νf(x) ≥ α ≥ νp∗. (3.47)

In the case ν > 0, we can divide (3.47) by ν and obtain for all x ∈ D

L(x, λ̃/ν, µ̃/ν) ≥ p∗. (3.48)

Minimizing this expression over x and defining λ := λ̃/ν and µ := µ̃/ν, we get d(λ,µ) ≥
p∗. Together with the weak duality of theorem 3.3.3, i.e., d(λ,µ) ≤ p∗, this leads to
d(λ,µ) = p∗, which shows that the dual optimum is attained, and that strong duality
holds in the case ν > 0.
The case ν = 0 leads to a contradiction to the assumption rank(A) = p.

Remark 3.3.5. (Refinement of Slater’s condition) If some inequality constraints
gi, i ∈ IA ⊆ I, are affine, strong duality holds already under the weaker condition that
there exists a feasible point x for which none of the non-affine inequality constraints is
active:

∃ x ∈ Rn : gi(x) < 0 (i ∈ I \ IA), gi(x) ≤ 0 (i ∈ IA), hj(x) = 0 (j ∈ J), (3.49)

cf. [BV04].

43

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

Numerical methods that find solutions of the primal problem (3.38) by solving the
dual (3.40) are called dual methods. They are advantageous if the dual is easier to solve
than the primal and if the dual function d(λ,µ) is not identically −∞. This approach
is also referred to as Lagrangian relaxation. [Lem01] treats this topic providing several
applications and numerical algorithms. Primal-dual methods approximate primal-dual
solutions (x∗,λ∗,µ∗) of both problems at the same time, which proves particularly ben-
eficial in conjunction with barrier methods. The result are so-called primal-dual interior
point methods, cf. section 3.6.
One difficulty in solving dual problems is that in many types of problems, the dual
function is not differentiable. In this case, theory and methods of nonsmooth convex
optimization are needed.

3.4 Nonsmooth Convex Optimization

This section is a brief review of the necessary basic theory for solving non-differentiable
convex problems. A famous classical book in this domain of convex analysis and sub-
differential calculus is [Roc70]. Further remarkable references including comprehensible
introductions are [Cla83, HUL93, Ber03]. The textbook [BV04] does not particularly
address nonsmooth optimization, however it contains many important results on con-
vex optimization in general. We introduce nonsmooth optimization theory because one
of its important applications is in decomposition methods. Decomposition is used to
solve large-scale optimization problems, and is notably connected to our model reduc-
tion approach. Within our model reduction method, non-differentiability appears in the
optimal value functions of the parametric subproblems.

Definition 3.4.1. s ∈ Rn is a subgradient of f : Rn → R at x if

f(y) ≥ f(x) + sT(y − x) ∀ y ∈ Rn. (3.50)

The closed, convex set of all subgradients of f at x is called the subdifferential of f at
x. It is denoted by ∂f(x).
Defining the directional derivative of f at x in a direction d ∈ Rn by

f ′(x,d) := lim
t↘0

f(x+ td)− f(x)

t
, (3.51)

the subdifferential can be equivalently defined in terms of the directional derivative:

∂f(x) := {s ∈ Rn| sTd ≤ f ′(x,d) ∀ d ∈ Rn}. (3.52)

The subdifferential is a generalization of the gradient to the set of convex functions:

44

3.4 Nonsmooth Convex Optimization

Theorem 3.4.2. For convex f : Rn → R, we have

a) ∂f(x) is nonempty ∀ x ∈ relint(domf),

b) if f is differentiable at x then ∂f(x) = {∇f(x)},

c) if ∂f(x) = {s} then f is differentiable at x with ∇f(x) = s.

Proof Proofs of these statements can be found, e.g., in [Roc70].

The following theorem summarizes the basic properties of a subdifferential.

Theorem 3.4.3. a) For f1, f2 : Rn → R and t1, t2 ∈ R+, we have

∂(t1f1 + t2f2)(x) = t1∂f1(x) + t2∂f2(x). (3.53)

b) Let A ∈ Rm × Rn, b ∈ Rm, f : Rm → R finite and convex, and let g(x) :=
f(Ax+ b). Then

∂g(x) = AT∂f(Ax+ b). (3.54)

c) Let fj : Rn → R ∀ j ∈ J where J is a compact set in some metric space. Assume
that f(x) := supj∈J fj(x) <∞ ∀ x ∈ Rn, and assume that the functions j 7→ fj(x)
are upper semi-continuous on J ∀ x ∈ Rn. Then

∂f(x) = co(
⋃
{∂fj(x) | fj(x) = f(x)}), (3.55)

i.e., the convex hull of the union of subdifferentials of “active” functions at x.

Proof These properties are proved, e.g., in [HUL93].

Knowing these basic definitions and results concerning subgradients and subdifferentials,
we can start to formulate the fundamental results with regard to nonsmooth convex
optimization:

Theorem 3.4.4. For a convex function f : Rn → R, the following statements are
equivalent:

a) x∗ is a global minimum of f over Rn,

b) 0 ∈ ∂f(x∗),

c) f ′(x∗,d) ≥ 0 ∀ d ∈ Rn.

Proof The equivalences a)⇔ b) and b)⇔ c) directly result from definition 3.4.1.

Regarding constrained convex optimization problems, one obtains a generalization of
the KKT conditions of theorem 3.1.13:

45

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

Theorem 3.4.5 (Generalization of KKT Conditions for Non-Differentiable
Convex Problems). Assume that the convex minimization problem

min
x

f(x)

such that gi(x) ≤ 0, i ∈ I = {1, ...,m},
aT
j x− bj = 0, j ∈ J = {1, ..., p},

(3.56)

from example 3.1.7 fulfills the weak5 Slater condition. Then the following statements
about a feasible point x∗ are equivalent

a) x∗ is a global minimum,

b) ∃ λ ∈ Rm,λ ≥ 0,µ ∈ Rp such that

0 ∈ ∂f(x∗) +
m∑
i=1

λi∂gi(x
∗) +

p∑
j=1

µja
T
j x
∗ and (3.57)

λTg(x∗) =
m∑
i=1

λigi(x
∗) = 0. (3.58)

Proof A proof can be found, e.g., in [Roc70, HUL93].

Furthermore, one derives a generalization of corollary 3.2.12 a):

Theorem 3.4.6. Let f ∗(k, l) be the optimal value function of the parametric convex
problem

min
x

f(x)

such that gi(x) ≤ ki, i ∈ I = {1, ...,m},
aT
j x = lj, j ∈ J = {1, ..., p}.

(3.59)

Suppose that Slater’s condition holds for a fixed parameter (k̄, l̄). Then we have for the
Lagrange multipliers (λ∗,µ∗) (which are the optimal dual variables) corresponding to an
optimum x∗(k̄, l̄)

f ∗(k, l) ≥ f ∗(k̄, l̄)−
m∑
i=1

λ∗i (ki − k̄i)−
p∑
j=1

µ∗j(lj − l̄j) ∀ k ∈ Rm, l ∈ Rp, (3.60)

i.e., −(λ∗,µ∗) is a subgradient of f ∗ at (k̄, l̄): −(λ∗,µ∗) ∈ ∂f ∗(k̄, l̄).
5Here, the condition of definition 3.1.12 is weakened by requiring a feasible point at which only all the
non-affine inequality constraints are strictly satisfied, cf. also remark 3.3.5.

46

3.4 Nonsmooth Convex Optimization

Proof The dual problem of (3.59) can be written as

max
λ,µ

d(λ,µ)−
m∑
i=1

λiki −
p∑
j=1

µjlj

such that λi ≥ 0, i ∈ I,
(3.61)

where

d(λ,µ) = inf
x

(
f(x) +

m∑
i=1

λigi(x) +

p∑
j=1

µja
T
j x
)
. (3.62)

By theorem 3.3.4, Slater’s condition for the parameter (k̄, l̄) implies strong duality for
problems (3.59) and (3.61) when (k, l) = (k̄, l̄). Let (λ∗,µ∗) be an optimal solution of
the dual (3.61) for (k̄, l̄).
Furthermore, let x be any feasible point of problem (3.59) for an arbitrary parameter
(k, l) ∈ Rm+p, i.e., gi(x) ≤ ki, i ∈ I, and aT

j x = lj, j ∈ J . Then, by strong duality, we
have

f ∗(k̄, l̄) = d(λ∗,µ∗)−
m∑
i=1

λ∗i k̄i −
p∑
j=1

µ∗j l̄j

≤ f(x) +
m∑
i=1

λ∗i gi(x) +

p∑
j=1

µ∗ja
T
j x−

m∑
i=1

λ∗i k̄i −
p∑
j=1

µ∗j l̄j

≤ f(x) +
m∑
i=1

λ∗i ki +

p∑
j=1

µ∗j lj −
m∑
i=1

λ∗i k̄i −
p∑
j=1

µ∗j l̄j

= f(x) +
m∑
i=1

λ∗i (ki − k̄i) +

p∑
j=1

µ∗j(lj − l̄j).

(3.63)

Since this inequality holds for any feasible point x for the parametric problem in (k, l),
it follows that

f ∗(k̄, l̄) ≤ f ∗(k, l) +
m∑
i=1

λ∗i (ki − k̄i) +

p∑
j=1

µ∗j(lj − l̄j), (3.64)

which is (3.60). This proof generalizes the perturbation inequality deduced in [BV04].

Note that the dual variables of a parametric problem as (3.59) do not in general imply a
descent direction of the optimal value function as we point out in the following remark.

Remark 3.4.7. d ∈ Rn is a descent direction for a function f : Rn → R at x if
f ′(x,d) < 0. For differentiable f , −∇f(x) is always a descent direction if it is non-zero.
However, for non-differentiable convex f , −d, with d ∈ ∂f(x), need not be a descent
direction.

47

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

The following theorem is another useful result, which we will need in the context of dual
decomposition.

Theorem 3.4.8. Consider again a convex problem

min
x

f(x) such that g(x) ≤ 0, h(x) = 0. (3.65)

Suppose that x(λ̄, µ̄) minimizes the Lagrangian L(x, λ̄, µ̄) for fixed (λ̄, µ̄) ∈ Rm+p.
Then −g(x(λ̄, µ̄)) − h(x(λ̄, µ̄)) is a subgradient of the negative of the Lagrange dual
function, −d, at (λ̄, µ̄), i.e., −g(x(λ̄, µ̄))− h(x(λ̄, µ̄)) ∈ ∂

(
− d
)
(λ̄, µ̄).

Proof For all (λ,µ) ∈ Rm+p, we have

d(λ,µ) = inf
x
L(x,λ,µ) = inf

x

(
f(x) + λTg(x) + µTh(x)

)
≤ f(x(λ̄, µ̄)) + λTg(x(λ̄, µ̄)) + µTh(x(λ̄, µ̄))

= f(x(λ̄, µ̄)) + λ̄
T
g(x(λ̄, µ̄)) + (λ− λ̄)Tg(x(λ̄, µ̄))

+ µ̄Th(x(λ̄, µ̄)) + (µ− µ̄)Th(x(λ̄, µ̄))

= d(λ̄, µ̄) + (λ− λ̄)Tg(x(λ̄, µ̄)) + (µ− µ̄)Th(x(λ̄, µ̄)).

(3.66)

Multiplying this inequality by “-1”, we get that−g(x(λ̄, µ̄))−h(x(λ̄, µ̄)) ∈ ∂
(
−d
)
(λ̄, µ̄).

Although subgradients do not necessarily imply descent directions, they are commonly
used to solve non-differentiable convex optimization problems:

Definition 3.4.9. A subgradient method is a basic algorithm to approximate a min-
imum x∗ of a non-differentiable convex function f : Rn → R by choosing

x(k+1) = x(k) − αkd(k), (3.67)

where x(k) ∈ Rn is the k-th iterate, d(k) ∈ Rn is any subgradient of f at x(k), and
αk ∈ R+ is the k-th step size. Since this is not a descent method, one keeps track of the
best point so far, i.e.,

f
(k)
best = min

i=1,...,k
f(x(i)). (3.68)

Classically, step sizes of subgradient methods are fixed before the method is started, i.e.,
they do not depend on the iterates. This is an essential difference to standard descent
methods, where the step size is determined at each iteration by current information.
[Ber99, Ber03] introduce subgradient methods in the context of Lagrangian relaxation
as the probably most important application of nonsmooth optimization. Since clas-
sical subgradient methods converge quite slowly in many examples, several advanced
extensions have been proposed. For instance, [NB01] discusses incremental subgradi-
ent methods. These methods aim for quickly minimizing a convex function that is

48

3.5 Decomposition Methods

the sum of a large number of component functions, which makes them appropriate for
large-scale separable problems. The publication includes convergence results for differ-
ent non-dynamic and dynamic step size rules. More recent research results related to
subgradient methods are given by [KLL07, NO08]. A supplementary and periodically
updated chapter 6 of [Ber09] about convex optimization algorithms is provided on the
publisher’s website. In addition to several advanced subgradient methods, it contains
related cutting plane methods and bundle methods, which are also very popular to solve
general convex problems.
Cutting plane methods for solving convex problems trace back to the early work [Kel60].
Their basic idea is to construct a piecewise-affine model for the objective f by

f̂k(x) := max
i=1,...,k

(
f(x(i)) + d(i) T(x− x(i))

)
, (3.69)

where x(i) ∈ Rn is the i-th iterate and d(i) ∈ Rn is any subgradient of f at x(i).
Minimizing this model f̂k on a predetermined convex compact set, gives a new iterate
x(k+1). It is easy to see that

f̂k ≤ f̂k+1 and f̂k ≤ f ∀ k, (3.70)

which is, associated with the objective’s convexity, essential to prove this methods’
convergence.
Bundle methods improve the classical cutting plane method in view of stability. They
keep memory of a bundle of past information, namely {f(x(i)),x(i),d(i), i = 1, ..., k} and
an additional value y(k), the point with smallest objective value so far, called the center.
Using this information for the minimization, the polyhedral approximation f̂k of the
objective f is adjusted by a penalizing term that avoids the new iterate x(k+1) moving
drastically away from the current center.
A discussion of descent methods for nonsmooth problems can be found in [HUL93]. It
exhibits that the concept of steepest descent mostly does not lead to practically useful
algorithms in the non-differentiable case.

3.5 Decomposition Methods

Decomposition methods are used for the numerical solution of programs that show a
certain advantageous structure. They partition the original optimization problem into
a sequence of N reduced-dimensional (or easier) local subproblems that are linked by a
master problem. During an iteration, each subproblem as well as the master problem
are solved once. The master problem determines adjusted values of certain variables,
which are fixed when solving the local problems, where the latter can be done either
sequentially or in parallel. The master problem is convex if the original problem is.
However, it is not necessarily differentiable, even if it results from a differentiable origi-
nal problem. For this reason, decomposition methods require techniques for optimizing

49

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

Original
Problem

Decomposition

Master Problem/
Coordination

Subproblem 1 Subproblem N ● ● ●

Prices/
Resources

Response

Figure 3.1: Decomposition of an optimization problem

nonsmooth problems. The overall procedure is schematically illustrated in figure 3.1.
The alternate solving of subproblems and the master problem repeats until sufficient
optimality criteria are approximately fulfilled. Decomposition methods are mainly used
to solve optimization problems on large-scale systems. An early and influential book
on optimization theory for such problems is [Las70], of which several chapters are fun-
damental and still usable today. For example, it discusses the historically important
Dantzig-Wolfe decomposition [DW60] and Benders decomposition [Ben62], as well as
the results of [Eve63] about optimal resource allocation. [Ber99, BGLS06, Lue08] in-
clude shorter introductions to several decomposition methods and important references.
The textbook [CCMGB06] presents a practical approach to decomposition techniques
and comprises many illustrative examples. [PC06] surveys alternative decompositions
for utility maximization in large networks. [BXMM07] illustrates decomposition of prob-
lems with coupling constraints and coupling variables by numerical examples.
The two basic decomposition schemes are primal decomposition and dual decomposition.
The master problem of primal decomposition is an optimization problem in some (pos-
sibly newly introduced) variables of the primal problem, the master problem of dual
decomposition is in dual variables since it results from Lagrangian relaxation. All other
decomposition methods base on one or both of these basic concepts. For example, the
known Benders decomposition is used to solve special kinds of problems with compli-
cating variables by a primal decomposition. More specifically, it is applied if variables
can be partitioned into “easy” and “hard” ones, as is often the case for mixed integer
or stochastic programs. [Geo72] enhances the original method [Ben62] to the so-called
generalized Benders decomposition, which established one of the standard methods for
solving MINLPs.
The following subsections discuss primal and dual decomposition for the most suitable
and common problem structures.

a. Decoupling Complicating Constraints

Many practical optimization applications, as [KMT98, CMLW01, BLRS01], show a com-
mon block-separable structure, where the components of the variable vector x ∈ Rn are

50

3.5 Decomposition Methods

partitioned into N groups, i.e. x = (x1, ...,xN), with possibly different numbers of
components n1, ..., nN :

Definition 3.5.1. An optimization problem is called block-separable if it has the form

min
x1,...,xN

N∑
i=1

fi(xi) such that g(x) =
N∑
i=1

gi(xi) ≤ 0, h(x) =
N∑
i=1

hi(xi) = 0,

(3.71)
where fi : Rni → R, gi : Rni → Rm, hi : Rni → Rp, ∀ i = 1, ..., N .6
This means that the Hessians of the 1 +m+ p functions

f : Rn → R, f(x) =
N∑
i=1

fi(xi), (3.72)

gj : Rn → R, gj(x) =
N∑
i=1

gi,j(xi), j = 1, ...,m, and (3.73)

hj : Rn → R, hj(x) =
N∑
i=1

hi,j(xi), j = 1, ..., p, (3.74)

where n =
∑N

i=1 ni, have a common block-diagonal structure.
If n1 = ... = nN = 1, i.e., each group consists of one variable, the problem is called
separable.

The m + p constraints within this problem formulation are called coupling (or compli-
cating) constraints because they prohibit to solve the overall problem by solving the
subproblems of each variable xi, i = 1, ..., N, completely independently. However, de-
spite these coupling constraints, it is possible to take much advantage of such a block-
separable structure.
In the following, we present the basic schemes of dual and primal decomposition for
block-separable problems with convex fi, convex gi, and linear hi ∀ i = 1, ..., N , i.e.,
we deal with convex minimization problems. If a convex problem fulfills in addition
Slater’s condition, by theorem 3.3.4, its optimal value is equal to the optimal value of
its Lagrange dual problem. Otherwise, the optimal value of the dual problem is a lower
bound on the optimal value of the primal problem, cf. theorem 3.3.3.

Dual decomposition methods take advantage of the fact that block-separable problems
are ideally suited to dual methods because the Lagrangian dual function of a block-
separable problem decomposes into N separate subproblems of smaller dimension than

6There can be further local constraints, i.e., it can be required that xi ∈ Fi ⊂ Rni . In this section, we
do not consider this case for ease of notation.

51

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

the original problem:

d(λ,µ) = inf
x1,...,xN

N∑
i=1

fi(xi) + λT
N∑
i=1

gi(xi) + µT

N∑
i=1

hi(xi)

=
N∑
i=1

inf
xi
fi(xi) + λTgi(xi) + µThi(xi) :=

N∑
i=1

di(λ,µ).

(3.75)

The master program of the dual decomposition, given by

max
λ≥0,µ

d(λ,µ) = max
λ≥0,µ

N∑
i=1

di(λ,µ), (3.76)

chooses dual variables (λ,µ) ∈ Rm+p (“prices”)7, and sends them to the subproblems,
which are given ∀ i = 1, ..., N by

inf
xi
fi(xi) + λTgi(xi) + µThi(xi). (3.77)

The subproblems respond with their (approximated) optimal values di(λ,µ) and op-
timal solutions xi(λ,µ), i = 1, ..., N , of these parametric problems in (λ,µ). This
enables the master program to evaluate d(λ,µ) =

∑N
i=1 di(λ,µ) and a subgradient (cf.,

theorem 3.4.8):

−
N∑
i=1

(gi(xi(λ,µ)) + hi(xi(λ,µ))) ∈ ∂
(
− d
)
(λ,µ). (3.78)

Making use of this subgradient, adjusted values (λ,µ) can be determined by calculating
one iterate of a nonsmooth optimization method (e.g., a subgradient method or cutting
plane method) for solving the master problem (3.76) by minimizing −d(λ,µ) under the
condition λ ≥ 0.
When the master problem is solved by a cutting plane method, this dual method turns
out to be strongly related to the Dantzig-Wolfe decomposition for large-scale linear
programs with a block angular structure.

To perform primal decomposition of problem (3.71), for each subproblem i, a variable
(ti,ui) ∈ Rm+p is introduced that represents the amount of the resources allocated to
this subproblem i. By this, the original problem (3.71) can be reformulated as

min
x1,...,xN ,
t1,...,tN ,
u1,...,uN

N∑
i=1

fi(xi) such that gi(xi) ≤ ti, hi(xi) = ui ∀ i = 1, ..., N,

N∑
i=1

ti ≤ 0,
N∑
i=1

ui = 0.

(3.79)

7Due to the economical interpretation of dual variables as shadow prices, dual decomposition is also
known as price decomposition in the context of coupling constraints.

52

3.5 Decomposition Methods

The master program declares fixed resource allocations (ti,ui) ∈ Rm+p for which the
subproblems are solved.8 The corresponding optimal values of the subsystems are

φi(ti,ui) := min
xi

fi(xi) such that gi(xi) ≤ ti, hi(xi) = ui ∀ i = 1, ..., N,

(3.80)
and the original problem is equivalent to the master problem

min
t1,...,tN ,
u1,...,uN

N∑
i=1

φi(ti,ui) such that
N∑
i=1

ti ≤ 0,
N∑
i=1

ui = 0, (3.81)

where (ti,ui) ∈ {(ti,ui) ∈ Rm+p | ∃xi : gi(xi) ≤ ti,hi(xi) = ui} ∀ i = 1, ..., N , i.e.,
(ti,ui) must be chosen such that each subproblem has at least one feasible solution.
Note that, even if the subproblems are differentiable, the optimal value functions φi
need not be differentiable and thus, in general, the master problem is not differentiable.
Under appropriate conditions on the original problem, however, the master problem is
convex.
Let λi ∈ Rm,µi ∈ Rp be the optimal dual variables associated with the subproblem
constraints in (3.80). Then, by theorem 3.4.6, −(λi,µi) is a subgradient of φi at (ti,ui),
and, therefore, −(λ1, ...,λN ,µ1, ...,µN)T ∈ ∂φ(t1, ..., tN ,u1, ...,uN), where

φ(t1, ..., tN ,u1, ...,uN) :=
N∑
i=1

φi(ti,ui). (3.82)

The master program now determines for all subproblems i = 1, ..., N new, adjusted
values (ti,ui) by using this subgradient for computing one iterate of a nonsmooth opti-
mization method with the objective to solve (3.81).

b. Decoupling Complicating Variables

In addition to the problem class of definition 3.5.1, there is another class of problems
that are eminently suitable for decomposition. Namely, they are of the form

min
x1,...,xN ,y

N∑
i=1

fi(xi,y) such that xi ∈ Fi ∀ i = 1, ..., N, y ∈ Fy, (3.83)

where fi : Rni+ny → R, and the feasible sets Fi, i = 1, ..., N, and Fy depend only on the
corresponding variables xi,y. We consider again convex problems, i.e., Fi and Fy are
convex sets and fi is convex over Fi × Fy ∀ i = 1, ..., N . Most appropriately, x1, ...,xN
have relatively high dimension and y has a relatively small one. For obvious reason,

8For this reason, primal decomposition is also known as resource decomposition in the context of
coupling constraints.

53

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

the variable y is called coupling (or complicating) variable. As in the previous section,
primal or dual decomposition can be applied.

Primal decomposition is performed by fixing y and defining each subproblem i by

min
xi

fi(xi,y) such that xi ∈ Fi (3.84)

with optimal value function φi(y). The original problem is then equivalent to the fol-
lowing master problem in variable y

min
y

N∑
i=1

φi(y) such that y ∈ Fy. (3.85)

Note that the functions φi(y) need not be differentiable. But at least, if the original
problem is convex, so is the master problem. A subgradient of the master’s objective
φ(y) :=

∑N
i=1 φi(y) is given by

∑N
i=1 s

y
i ∈ ∂φ(y) with (sxi , s

y
i) ∈ ∂fi

(
xi(y),y

)
, where

xi(y) solves the subproblem i for fixed y.9

For a dual decomposition, problem (3.83) is reformulated with newly introduced variables
yi and consistency constraints:

min
x1,...,xN ,y1,...,yN

N∑
i=1

fi(xi,yi) such that xi ∈ Fi, yi ∈ Fy ∀ i = 1, ..., N,

yi = yN ∀ i = 1, ..., N − 1.

(3.86)

The Lagrange function

L(x1, ...,xN ,y1, ...,yN ,µ1, ...,µN−1) =
N∑
i=1

fi(xi,yi) +
N−1∑
i=1

µT
i (yi − yN) (3.87)

of this problem can be minimized over each (xi,yi) ∈ Fi × Fy separately. Hence, the
dual function is given by

d(µ1, ...,µN−1) =
N−1∑
i=1

di(µi) + dN(µ1, ...,µN−1), (3.88)

where

di(µi) = inf
xi,yi

(
fi(xi,yi) + µT

i yi
)
∀ i = 1, ..., N − 1, and

dN(µ1, ...,µN−1) = inf
xN ,yN

(
fN(xN ,yN)−

N−1∑
i=1

µT
i yN

)
.

(3.89)

9In general, sxi 6= 0 since each subproblem i can be constrained in xi by its definition in (3.84).

54

3.5 Decomposition Methods

These minimization problems define the independently solvable subproblems of the de-
composition, while the master problem, which adjusts the values µ1, ...,µN−1, is in this
case the dual problem

max
µ1,...,µN−1

d(µ1, ...,µN−1) = max
µ1,...,µN−1

N−1∑
i=1

di(µi) + dN(µ1, ...,µN−1). (3.90)

Let (x∗i ,y
∗
i), i = 1, ..., N, be subproblems’ solutions for fixed (µ1, ...,µN−1). Then, as in

the proof of theorem 3.4.8, it can be easily seen that ∀ i = 1, ..., N−1 : −y∗i ∈ ∂
(
−di
)
(µi)

and (y∗N , ...,y
∗
N) ∈ ∂

(
− dN

)
(µ1, ...,µN−1). A subgradient to compute an iteration

towards solving the master problem is, therefore, given by (y∗N − y∗1, ...,y∗N − y∗N−1) ∈
∂
(
− d
)
(µ1, ...,µN−1).

c. Remarks and Further Decomposition Structures

Primal and dual decomposition of problems with coupling constraints and coupling vari-
ables mainly differ in the computation of the subgradients that are relevant to solve
the master problem. Indeed, we can transform these problems into each other. Con-
sider, e.g., the reformulation of problem (3.83) that includes coupling variables to prob-
lem (3.86) with newly introduced variables. It leads to a block-separable problem with
coupling constraints, as defined in (3.71).
This observation can be generalized to the fact that different representations of a certain
optimization problem with a (block-)separable structure lead to different decomposition
approaches, cf. also [PC06, CLCD07]. As a consequence, the question arises how to de-
cide for a certain decomposition approach. To our knowledge and by [CLCD07], there is
hardly any research in this direction, although this topic is of obvious interest, for exam-
ple due to the influence on convergence speed and on memory requirements. [CLCD07]
initialized an analysis by comparing alternative decompositions by two metrics: the

Original
Problem

Decomposition

Master Problem/
Coordination

Secondary Master
Problem

Subproblem

 ● ● ●

Prices/
Resources

Response

Subproblem 1 Subproblem N

Prices/
Resources

Response

Figure 3.2: Multilevel decomposition

55

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

tradeoff between local computation and global communication through message pass-
ing, and the speed of convergence. However, a systematical exploration and comparison
of alternative decompositions remains an open issue. In chapter 5, we discuss in what
way concepts and methods from graph theory, as network connectivity and network par-
titioning, can help to decide for a favorable decomposition.
Advanced decomposition schemes are obtained by applying primal and dual decomposi-
tions recursively [PC06]. The result is a multilevel decomposition with smaller subprob-
lems from level to level, which is schematically represented by figure 3.2 for the case of
two levels.
Since subgradient methods for nonsmooth optimization are relatively slow, several ad-
vanced numerical decomposition methods have been proposed to solve large-scale separa-
ble convex problems. For example, [NS08, TDSD13, TDNSD13] combine dual decompo-
sition with smoothing [Nes05b] (and excessive gap [Nes05a]), which achieves remarkable
computational results.

3.6 Interior Point Methods

Interior point methods build one of the two most successful classes of methods for solving
large inequality constrained optimization problems. The so-called active set methods of
the other important class solve the problem in each iteration for a newly determined set
of inequality constraints that are fixed to equality.10 For problems that are constrained
by a large number of inequalities, the update of this active set may become the bottle-
neck because of combinatorial complexity. In contrast, interior point methods compute
in each iteration an equality-constrained optimum of a composite function that com-
prises the original objective function as well as the presence of inequality constraints.
By this, they reach an optimal solution over a nonlinear path that starts at a strictly
feasible point. This path is called the central path.
Numerical methods for large-scale differentiable optimization problems are reviewed in
[GOT05]. The survey article [FGW02] summarizes the historical development of inte-
rior point methods, comprising classical barrier methods, and details major results, as
convergence properties and properties of the central path. [BV04, NW06] include theo-
retical introductions as well as important references on interior point methods. One of
the most essential historical references concerning barrier functions and interior point
methods is [FM90], which includes the mathematical theory that was developed by Fi-
acco and McCormick during the 1960s.
This section outlines the primal-dual interior point algorithm with a filter line-search

10More specifically, in the context of SQP (sequential quadratic programming), one distinguishes be-
tween two kinds of active set methods: The first class updates the set of active inequality constraints
in an outer loop, and solves equality constrained QPs in inner loop. In the methods of the more
popular second class, the QP redetermines the active set at each SQP iteration, where the active
set of the QP can be shown to converge to the active set of the original nonlinear program.

56

3.6 Interior Point Methods

method that is implemented by the interior point solver IPOPT (Interior Point OP-
Timizer) for large-scale nonlinear programs. [Ipo] is the documentation of this solver.
Mathematical details and numerical studies of the algorithm can be found in [Wäc02,
WB06]. [WB05] analyzes its global convergence.
Consider a nonlinear optimization problem of the form

min
x∈Rn

f(x) such that h(x) = 0, 0 ≤ x, (3.91)

where f : Rn → R, h : Rn → Rp, with p ≤ n, twice continuously differentiable.
Inequality constraints can be included in this formulation by introducing bounded slack
variables (e.g. for g(x) ≤ 0 write g(x)− xs = 0 with 0 ≤ −xs).
As an interior point method, IPOPT solves a sequence of barrier problems

min
x∈Rn

ϕk(x) := f(x)− k
n∑
i=1

ln(xi) such that h(x) = 0, (3.92)

for a decreasing sequence of barrier parameters k converging to 0. Since, for fixed k > 0,
ϕk(x)→∞ if and only if at least one of the variables xi approaches its bound zero, any
solution of problem (3.92) is a strictly feasible point of problem (3.91). Under LICQ and
strong second order optimality conditions, the optimal solutions x∗(k) of (3.92) converge
to an optimal solution of the original problem (3.91) as k → 0:

Theorem 3.6.1. Let x∗ be a local minimizer of problem (3.91), where f : Rn → R,
h : Rn → Rp, are at least twice continuously differentiable, and where the corre-
sponding feasible region has a strict interior. Let x∗ be regular, and let the related
KKT-point (x∗,λ∗,µ∗) fulfill strict complementarity (where λ∗ are the bound multipli-
ers, µ∗ the equality constraint multipliers). Assume furthermore that for the Lagrangian
L(x,λ,µ) = f(x)−xTλ+h(x)Tµ, there exists ω > 0 such that qT∇2

xxL(x∗,λ∗,µ∗)q ≥
ω||q||2 for all q ∈ Rn \{0} in the null space of equality and active inequality constraints,
i.e. (x∗,λ∗,µ∗) fulfills the strong second order sufficient condition.
Then, we have for the solutions of a sequence of problems (3.92) with decreasing kl → 0:

a) there exists a subsequence x(kl) of minimizers of (3.92) converging to x∗,

b) for any such convergent subsequence x(kl), the corresponding sequences of barrier
multipliers λ(kl) = klX

−1e and µ(kl) are bounded and converge to the multipliers
λ∗ and µ∗, respectively,

c) a unique, continuously differentiable vector function x(k) of minimizers of prob-
lem (3.92) exists for k > 0 in a neighborhood of k = 0, with limk→0+ x(k) = x∗,
and ||x(kl)− x∗|| = O(kl),

where X := diag(x) and e := (1 · · · 1)T.

57

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

Proof See [FM90, FGW02, Bie10].

Therefore, a possible solution of (3.91) can be approximated by solving the barrier prob-
lem (3.92) repeatedly for decreasing k, until a point is found that satisfies the first order
optimality conditions up to user tolerance. Such a method splits into inner iterations
and outer iterations. The inner iterations solve problem (3.92) for a fixed value of k
(where the required accuracy increases for decreasing k), the outer iterations test for
convergence and adjust k [FGW02].
Defining Λ := diag(λ), the first order optimality conditions for the original prob-
lem (3.91) and the barrier problem (3.92) can be both expressed by only one equation
system

∇f(x) +∇h(x)µ− λ = 0 (3.93a)
h(x) = 0 (3.93b)

XΛe− ke = 0 (3.93c)
x,λ ≥ 0. (3.93d)

For k = 0, (3.93) are the KKT conditions of problem (3.91), where λ ∈ Rn and µ ∈ Rp

are the Lagrange multipliers corresponding to bounds and equality constraints. For
k > 0, the KKT conditions of problem (3.92) are obtained by rewriting (3.93c) by
λ = kX−1e and plugging this in (3.93a). In addition, sequentially solving (3.93) for
decreasing values of k → 0 can be regarded as a homotopy method applied to the
primal-dual equations of (3.91) with complementarity conditions relaxed by a homotopy
parameter k.
To solve (3.93) for fixed µ, Newton’s method can be applied. At a given Newton iterate
(x(i),λ(i),µ(i)), with x(i),λ(i) ≥ 0, search directions (d(i)

x ,d
(i)
λ ,d

(i)
µ) can be computed by

linearizing (3.93): W (i) ∇h(x(i)) −I
∇h(x(i))T 0 0

Λ(i) 0 X(i)

d(i)
x

d(i)
µ

d
(i)
λ

 = −

∇f(x(i)) +∇h(x(i))µ(i) − λ(i)

h(x(i))

X(i)Λ(i)e− ke

 ,

(3.94)
whereW (i) is the Hessian of the Lagrange function L(x,λ,µ) = f(x)−xTλ+h(x)Tµ
of the original problem (3.91), i.e.,

W (i) := ∇2
xxL(x(i),λ(i),µ(i)) = ∇2f(x(i)) +

p∑
j=1

µ
(i)
j ∇2hj(x

(i)). (3.95)

Instead of solving the nonlinear system (3.94) directly, the IPOPT algorithm computes
solutions by solving the smaller, symmetric system(

W (i) +X(i)−1
Λ(i) + δI ∇h(x(i))

∇h(x(i))T 0

)(
d(i)
x

d(i)
µ

)
= −

(
∇ϕk(x(i)) +∇h(x(i))µ(i)

h(x(i))

)
,

(3.96)

58

3.6 Interior Point Methods

and then computing the direction d(i)
λ by

d
(i)
λ = kX(i)−1

e− λ(i) −X(i)−1
Λ(i)d(i)

x . (3.97)

The Hessian regularization parameter δ ≥ 0 is introduced to ensure a certain descent
property of the direction d(i)

x . The algorithm adjusts δ such that the upper left block of
the matrix in (3.96), projected onto the null space of the constraint Jacobian ∇h(x(i)),
is positive definite.
To compute next iterates

x(i+1) := x(i) + αid
(i)
x , (3.98a)

µ(i+1) := µ(i) + αid
(i)
µ , (3.98b)

λ(i+1) := λ(i) + αλi d
(i)
λ , (3.98c)

step sizes αi, αλi ∈ (0, 1] are determined by first computing

αmax
i := max{ α ∈ (0, 1] | x(i) + αd(i)

x ≥ (1− τ)x(i) }, (3.99a)

αλi := max{ α ∈ (0, 1] | λ(i) + αd
(i)
λ ≥ (1− τ)λ(i) }, (3.99b)

with τ = min{0.99, k}, which ensures x(i+1),λ(i+1) > 0. To attain global convergence,
αi ∈ (0, αmax

i] is then specified by a backtracking line-search method: A decreasing se-
quence of trial step sizes αi,l = 2−lαmax

i , with l = 0, 1, 2, ..., is explored, until a step size
αi,l is found that leads to sufficient progress toward a solution of (3.92) compared to the
current iterate. More precisely, a trial point x(i+1)(αi,l) is accepted if it either improves
feasibility, i.e., sufficiently decreases ||h(x)||, or if it sufficiently decreases the objective
function ϕk(x). This idea traces back to [FL02]. To avoid cycles, the new iterate must
also show an improvement compared to some previous iterates, which build the “filter”.
Global convergence of the filter method that is implemented in IPOPT is proved under
mild assumptions in [WB05].
In the case that it is not possible to find a step size αi,l that implies an acceptable
point x(i+1)(αi,l), the IPOPT algorithm switches to the so-called feasibility restoration
phase. During this phase, the objective function is ignored, and the algorithm focuses
on minimizing the constraint violation ||h(x)||, while diverging as few as possible from
the point at which the restoration phase was started.
Furthermore, the IPOPT solver includes second-order corrections in order to improve a
proposed step d̃

(i)

x = αi,0d
(i)
x if a trial point x(i+1) = x(i) + d̃

(i)

x has been rejected. To
reduce infeasibility, the algorithm applies an additional Newton step for the constraints
at the point x(i) + d̃

(i)

x , using the Jacobian ∇h(x(i)).
Once, the barrier problem (3.92) is solved for a fixed value of k, k is decreased. Global
convergence of the overall method results from global convergence of the filter method
for each barrier problem. If k is updated appropriately, primal-dual interior point

59

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

methods can achieve superlinear local convergence under certain standard assumptions
[BLN98, GOST01]. The approach implemented in IPOPT follows strategy 2 of [BLN98].
Another widely used solver for large nonlinear optimization problems is KNITRO, which
proved robust and efficient in many applications. Its interior point algorithms are de-
scribed in [BHN99], the theoretical background is given in [BGN00].
Polynomial-time complexity of interior point methods was derived for very general classes
of convex optimization problems by [NN94], using the theory of self-concordance. Recent
references on this topic are [NT08, BTN].

3.7 Least Squares Methods for Parameter Estimation

The method of least squares is mostly used for parameter estimation in regression anal-
ysis. A wide overview of regression models can be found, e.g., in [Fox08]. In the simplest
case, the linear regression, we have the following model:
Dependent variables y1, ..., yn ∈ R (regressands) and independent variables x1, ...,xp ∈
Rn (regressors) are connected by

y = Xβ + ε, (3.100)

where y = (y1, ..., yn)T ∈ Rn, X = (x1, ...,xp) ∈ Rn×p, β = (β1, ..., βp)
T ∈ Rp and

ε = (ε1, ..., εn)T ∈ Rn with E(ε) = 0.

The classical linear model assumes that

Cov(ε) = σ2In, i.e., Var(εi) = σ2, Cov(εi, εj) = 0, for i 6= j. (3.101)

The general linear model only assumes

Cov(ε) = σ2Σ, (3.102)

where Σ is positive-semidefinite and symmetric. Furthermore, in both cases the variable
X is assumed to be deterministic. It is also called design matrix. The random variable
ε is not observable. β and σ2 are unknown model parameters. Σ is sometimes supposed
to be known, but could also include unknown parameters. Often, we only have some
information about the structure of Σ.

Usually, we search for estimators of β and σ2. In the classical linear model, β is esti-
mated by the method of least squares. Thereby, the estimator β̂ of β is determined by
minimizing the quadratic error:

‖y −Xβ‖2 = (y −Xβ)T(y −Xβ) = εTε =
n∑
i=1

ε2i → min
β
. (3.103)

The solution of this problem is the least squares estimator

β̂ = (XTX)−1XTy. (3.104)

60

3.7 Least Squares Methods for Parameter Estimation

The difference y − ŷ between observed values y = (y1, ..., yn)T and estimated values
ŷ = Xβ̂ (also named fit) is called residual.
Defining the residual sum of squares (RSS) by

RSS := (y − ŷ)T(y − ŷ), (3.105)

σ2 is estimated by

σ̂2 =
RSS

n− rank(X)
. (3.106)

Properties of the estimators β̂ and σ̂2 are summarized in the following theorem:

Theorem 3.7.1 (Gauß-Markov-Theorem). In the classical linear model, we have:
1) The least squares estimator β̂ is unbiased, i.e., E(β̂) = β.
2) Cov(β̂) = σ2(XTX)−1.
3) β̂ is the best linear unbiased estimator (BLUE), i.e., β̂ has minimal variance of

all linear unbiased estimators of the form β̃ = Ay with E(β̃) = β:
Var(β̂i) ≤ Var(β̃i), for i = 1, ..., p.

4) σ̂2 is unbiased, i.e., E(σ̂2) = σ2.

Proof A proof can be found, e.g., in [FHT96].

A more general nonlinear regression model for a one-dimensional dependent variable
y ∈ R and an independent variable x ∈ Rp is given by

y = f(x,θ) + ε, E(ε) = 0, (3.107)

where θ is an unknown parameter of an open subset Θ of an m-dimensional real space.
The function f is supposed to be at least once continuously differentiable in θ.
Given n observations y1, ..., yn for deterministic x1, ...,xn, we have

yi = f(xi,θ) + εi, for i = 1, ..., n. (3.108)

A least squares estimator for the parameter θ is then given by a solution of the opti-
mization problem

min
θ

n∑
i=1

(yi − f(xi,θ))2. (3.109)

Under the further assumption that Cov(ε) = σ2I, we obtain analogously to (3.106) as
estimator for σ2

σ̂2 =

n∑
i=1

(yi − f(xi, θ̂))2

n−m
. (3.110)

The least squares estimator as solution of (3.109) is in general computed numerically, see
also [BKS07]. To prove the usual asymptotic properties of the least squares estimator
in the nonlinear regression setting, we have to suppose several sophisticated conditions.
They are, e.g., informally discussed in [FHT96].

61

3 Constrained Nonlinear Optimization: A Choice of Theory and Methods

62

4 Graph Theory: Selected Concepts and Algorithms

This chapter gives a basic overview of important definitions and concepts of graph the-
ory. Our special focus is on providing a basis for (hyper-)graph partitioning, since, in
the following chapters, it will be applied in order to reveal the structure of separable
optimization problems with coupling constraints. Further methods and algorithms for
the analysis of network data can be found in [Kol09, BE05, New10]. These textbooks
also include many illustrating graph visualizations. [BMMN95, Ber98] give surveys of
network models and network optimization problems.
Sections 4.1 and 4.2 include basic definitions and algorithms. Section 4.3 introduces the
most important centrality measures. In section 4.4, we discuss different notions of con-
nectivity and respective algorithms for computing connectivity. Section 4.5 overviews
concepts and methods for graph partitioning. It includes a special subsection that covers
hypergraph partitioning. Finally, section 4.6 presents some measures for graph fragmen-
tation.

4.1 Basic Definitions

Definition 4.1.1. A graph G = (V,E) is a mathematical structure that consists of a
set V of vertices (also called nodes) and a set E of edges, where an edge e ∈ E is an
unordered pair {u, v} of distinct vertices u, v ∈ V . The two vertices defining an edge are
said to be adjacent to each other, and are also called neighbors.
A graph is called directed graph or digraph if its edges have an ordering to their
vertices, i.e., if (u, v) is distinct from (v, u). Such edges are called directed edges or
arcs.
The format of a graph can be enriched by a weight function w : E → R that adds to
each edge e ∈ E a weight w(e).
A graph G1 = (V1, E1) is a subgraph of another graph G2 = (V2, E2) if V1 ⊆ V2 and
E1 ⊆ E2.
Let V ′ ⊆ V , then the subgraph of G induced by V ′ is given by G′ = (V ′, E ′) where
E ′ = {e ∈ E | e = {vi, vj} with vi, vj ∈ V ′}.
For a subset V ′ ⊂ V , G− V ′ denotes the subgraph of G induced by V \ V ′.
If the edge set E contains the same edge several times, which is called multiedges, we
call G a multigraph. Otherwise, if each of its edges is contained in E only once, we
call G simple.

Extending the notion of edge weights to all pairs of vertices, we can represent the edge

63

4 Graph Theory: Selected Concepts and Algorithms

set E of an unweighted graph through a set {w(e)|e ∈ V × V } of weights by defining

w(e) :=

{
1 if e ∈ E
0 if e /∈ E

. (4.1)

Similarly, we define the following matrix that captures the connectivity of a graph:

Definition 4.1.2. The adjacency matrix of a simple directed graph G = (V,E) is
defined as the NV ×NV matrix A with entries

Ai,j =

{
1 if (i, j) ∈ E
0 otherwise

, (4.2)

where NV := |V | and the integers 1, ..., NV denote the elements of V . The adjacency
matrix of an undirected graph is symmetric and has Ai,j = 1 if vi and vj are neighbors.
If G is weighted, the non-zero entries are w(vi, vj) rather than 1.

Definition 4.1.3. The degree dv of a vertex v is the number of edges containing v.
For a vertex v of a directed graph, the in-degree din

v and the out-degree dout
v count the

number of edges pointing in towards and out from a vertex, respectively.
The maximum and minimum degree of an undirected graph G = (V,E) are given by
∆(G) := maxv∈V dv and δ(G) := minv∈V dv, respectively.

Definition 4.1.4. On a graph G, a walk from v0 to vn is an alternating sequence
{v0, e1, v1, e2, ..., vn−1, en, vn}, where ei = {vi−1, vi} if G is undirected, and ei = (vi−1, vi)
if G is directed. A walk without repeated edges is called a trail, and a trail without
repeated vertices is a path. The length of a walk/trail/path is defined as the number
of the edges it passes (or the sum of its edge weights, in case of a weighted graph).

Definition 4.1.5. The distance dist(v, u) of any two vertices v and u of a graph G =
(V,E) is the length of the shortest path(s) between them. It is set to infinity if no path
between the two vertices exists.

Definition 4.1.6. A graph G = (V,E) is called connected if it is possible to establish
a path between every two vertices u, v ∈ V . A component of a graph G is a connected
subgraph Gc of G for which the addition of any vertex v ∈ V \ Vc would destroy Gc’s
connectivity.

Definition 4.1.7. An undirected graph is called complete if every pair of vertices is
connected by an edge. A clique is a complete subgraph of an undirected graph.

The following definition generalizes the definition of a graph by allowing edges to con-
nect more than two nodes, which enables to store more detailed information about the
connectivity structure of nodes.

64

4.1 Basic Definitions

Definition 4.1.8. A hypergraph H = (V,N) is a mathematical structure that consists
of a set V of vertices (nodes) and a set N of nonempty subsets of V called hyperedges
or nets.
The nodes connected by a net ni ∈ N are called Pins of ni and are denoted as Pins(ni).
For N ′ ⊆ N , we define Pins(N ′) :=

⋃
n′∈N ′ Pins(n′).

The induced graph Gind = (V,E) of a hypergraph is obtained by connecting each two
vertices vi, vj ∈ V that are contained in the same hyperedge.
The net intersection graph (NIG) GNIG = (VNIG, ENIG) of a hypergraph H repre-
sents each net ni ∈ N as a vertex vi ∈ VNIG, and includes an edge eij = {vi, vj} ∈ ENIG
if and only if the corresponding nets ni, nj ∈ N share at least one vertex of H, i.e., if
Pins(ni)∩Pins(nj) 6= ∅. This means that each subset of nets that share a vertex of H is
a clique in GNIG.1

Hypergraphs are usually used to represent the connection of vertices by common mem-
bership of groups of some kind. Such membership of groups can equally be described
by a bipartite graph, which is a graph with two kinds of vertices, one representing the
original vertices and the other representing the groups to which they belong. Each edge
connects a vertex of the first set with a vertex of the second set:

Definition 4.1.9. A bipartite graph is a graph G = (V,E) whose vertex set V may
be partitioned into two disjoint sets, V = V1

⋃̇
V2, such that each edge in E has one

endpoint in V1 and the other in V2.
A bipartite graph implies two induced graphs G1 and G2: G1 = (V1, E1) is obtained by
defining an edge e1 = {vi, vj} between two vertices vi, vj ∈ V1 if and only if vi and vj have
edges in E to at least one common vertex in V2. G2 = (V2, E2) is defined analogously.

Remark 4.1.10. Let a hypergraph H = (V,N) be represented by a bipartite graph
G = (V1

⋃̇
V2, E) where V1 = V , V2 represents the net set N , and two nodes v1 ∈ V1 and

v2 ∈ V2 are connected if the net of H corresponding to v2 contains the vertex v1. Then
the induced graphs of G are given by the induced graph and the NIG of H: G1 = Gind

and G2 = GNIG.

In general, an induced graph contains less information than the original bipartite graph
or hypergraph. Nevertheless, such a reduced graph representation is the most common
way to analyze these sophisticated network structures, due to high computational costs
of algorithms for hypergraphs or bipartite graphs.
There are some few kinds of networks that are most suitably represented by a directed
hypergraph or a directed bipartite graph. However, the edges’ directions in an original
graph cannot be represented in its induced graph.

1Visualizations of a hypergraph’s NIG can be found in [KPcA12].

65

4 Graph Theory: Selected Concepts and Algorithms

4.2 Basic Graph Algorithms

Given a graph G, e.g., in a simple case in form of its adjacency matrix, efficient algo-
rithms are desired to analyze its structure and to answer certain questions about its
properties. Thereby, a basic issue is how to move from a given source vertex through
a whole graph within the meaning of visiting all of its vertices. This can be done, e.g.,
by two common algorithms, Breadth-First Search (BFS) and Depth-First Search (DFS),
which are the basis of more sophisticated algorithms developed to solve specific problems
in graph theory. In this work, this concerns mainly the detection of (bi-, tri-)connected
components as well as the calculation of centralities for which we need, e.g., the com-
putation of shortest paths distances between two vertices. BFS and DFS differ in the
order in which the vertices are discovered. Which algorithm is more useful to perform
a specific task depends on its context. BFS, DFS, Dijkstra’s shortest path algorithm,
as well as many other useful algorithms are provided by the Boost Graph Library for
C++, cf. [SLL02].
Breadth-First Search (BFS) visits the vertices according to their distance to the source
vertex. Closer vertices are discovered prior to more distant vertices, i.e., BFS starts
by visiting all neighbors of the source. In contrast, Depth-First Search (DFS) visits,
beginning at the source vertex, an undiscovered neighbor until it reaches a vertex that
has no undiscovered adjacent vertex. If it reaches such a vertex, the algorithm goes back
to the previous vertex and checks it for neighbors that are not yet visited. Both of these
algorithms run in O(NV + NE) time, where NV := |V | is the number of vertices in G
and NE := |E| is G’s number of edges. Dijkstra’s single source shortest path algorithm
for computing the shortest-path distances between one specific source vertex and all
other vertices of a graph runs, under certain conditions on its implementation, in time
O(NE + NV logNV) [Dij59, FT87]. The lengths of the shortest paths between all pairs
of vertices in a graph can be calculated by the Floyd-Warshall algorithm that achieves
an O(NV

3) running time [Flo62].

4.3 Centrality Measures

A vertex centrality is a function c : V → R. The higher the value, which the function
assigns to a vertex, the more ’important’ the vertex is for the network in terms of the
corresponding definition of centrality. In the following, we present four well-established
centrality measures. For this, let G = (V,E) be an undirected connected graph:

Definition 4.3.1. The degree centrality of a vertex v ∈ V is defined as

cD(v) := dv. (4.3)

There are several different definitions of closeness centrality. The following classic one
that is useful for connected graphs was introduced by [Sab66].

66

4.3 Centrality Measures

Definition 4.3.2. The closeness centrality of a vertex v ∈ V is defined as

cC(v) :=
1∑

u∈V dist(v, u)
. (4.4)

[Bon72] introduced a measure based on the spectral decomposition of the adjacency
matrix A of G:

Definition 4.3.3. The eigenvector centrality of the vertices v ∈ V is defined by the
following system of equations

cE(v) =
1

λ

∑
{v,u}∈E

cE(u), (4.5)

where λ is the largest eigenvalue of A.

This means, the vector cE = (cE(v1), ..., cE(vNV))T is the eigenvector corresponding to
the eigenvalue λ, fulfilling AcE = λcE, where A is the adjacency matrix of G.2

The concept of betweenness centrality was introduced by [Fre77].

Definition 4.3.4. The (absolute) betweenness centrality of a vertex v ∈ V is defined
as

cB(v) :=
∑

s 6=t6=v∈V

σ(s, t|v)

σ(s, t)
, (4.6)

where σ(s, t|v) is the total number of shortest paths between vertices s and t that pass
through v, and σ(s, t) :=

∑
v σ(s, t|v).

That means, if all shortest paths of a graph are unique, cB(v) just counts the number
of shortest paths going through v. The absolute betweenness centrality cB(v) is scaled
to the relative betweenness centrality c′B(v) by the factor 2

N2
V −3NV +2

, where NV is the

total number of vertices in the graph. N2
V −3NV +2

2
is the upper limit of cB(v) for all v. A

natural measure for the dominance of the most central point v∗ of a graph is given by

Definition 4.3.5. The central point dominance of a graph is defined as

c′B :=

∑
v∈V c

′
B(v∗)− c′B(v)

NV − 1
, (4.7)

where c′B(v) is the relative betweenness centrality of a vertex v, and v∗ is the most central
point of the graph.

2One variant of the eigenvector centrality is PageRank, which is used by the search engine Google to
analyze Web page linking.

67

4 Graph Theory: Selected Concepts and Algorithms

The central point dominance is zero for all graphs for which the betweenness centralities
of all points are equal. Its value is 1 only for a wheel or a star.
The betweenness centrality of individual vertices was naturally extended to betweenness
centrality of groups by [EB99]:

Definition 4.3.6. The group betweenness centrality of a set of vertices V ′ ⊆ V is
defined as

cGB(V ′) :=
∑

s 6=t∈V \V ′

σ(s, t|V ′)
σ(s, t)

, (4.8)

where σ(s, t|V ′) is the number of shortest paths between s and t that traverse at least one
vertex of the set V ′.

[PED07] proposes a fast algorithm for successive computation of group betweenness
centrality to find the most prominent group of vertices in a graph.

4.4 Connectivity

A survey of results and algorithms concerning graph connectivity is given by chapter 7 of
[BE05]. We summarize the most important results with regard to this thesis. Therefore,
we consider an undirected graph G = (V,E) in this section.

Definition 4.4.1. G is called k-vertex-connected if |V | > k and G− V ′ is connected
for every V ′ ⊂ V with |V ′| < k. The vertex-connectivity κ(G) is the largest k ∈ N0

such that G is k-vertex-connected.
G is k-edge-connected if |V | ≥ 2 and G′ = (V,E \ E ′) is connected for every E ′ ⊆ E
with |E ′| < k. The edge-connectivity λ(G) is the largest k ∈ N0 such that G is k-edge-
connected.
The local vertex-connectivity κG(s, t) of two non-adjacent vertices s, t ∈ V is defined
as the minimum number of vertices in V \ {s, t} that must be removed to destroy all
paths between s and t. For adjacent vertices s, t, κG(s, t) is set to NV − 1. Similarly,
the local edge-connectivity λG(s, t) of s, t ∈ V is the minimum number of edges of G
that must be removed to destroy all paths between s and t.

Definition 4.4.2. A subset V ′ ⊂ V with |V ′| = n (E ′ ⊆ E with |E ′| = n) of a connected
graph G is called an (n-)vertex-cut (edge-cut), or an (n-)vertex-separator (edge-
separator), if its removal from G disconnects G.
Let s, t ∈ V and V ′ ⊆ V \{s, t}. Then V ′ is called an s-t-vertex-separator or (-cut) if
s and t are in the same connected component of G, but in different connected components
of G− V ′. An s-t-edge-separator (-cut) is defined analogously.

Theorem 4.4.3. For all non-trivial graphs G it holds that κ(G) ≤ λ(G) ≤ δ(G).

68

4.4 Connectivity

Proof See, e.g., [BE05].

The following theorem is one of the most fundamental statements in graph theory. It
results from Karl Menger’s early work on general curve theory [Men27].

Theorem 4.4.4 (Menger’s Theorem). Let s, t ∈ V be two non-adjacent vertices of
G. Then the maximum number of vertex-disjoint paths between s and t is equal to the
minimum cardinality of an s-t-vertex-separator.

A similar result holds for edge-cuts. It is often called the edge version of Menger’s
Theorem although it was first explicitly stated several years later, cf. e.g. [FF56]:

Theorem 4.4.5. For s, t ∈ V , the maximum number of edge-disjoint paths between s
and t is equal to the minimum cardinality of an s-t-edge-separator.

A global version of Menger’s Theorem is given by

Theorem 4.4.6. A non-trivial graph G is k-vertex-connected (k-edge-connected) if and
only if all pairs of distinct vertices can be connected by k vertex-disjoint (edge-disjoint)
paths.

Proof The vertex version is proved in [Whi32]. The edge version follows directly from
theorem 4.4.5.

Since many algorithms for the computation of vertex- and edge-connectivity work by
solving max-flow-problems to compute local connectivities, the following definition is
necessary to understand them:

Definition 4.4.7. A flow network is a directed graph G = (V,E) with a function
u : E → R+

0 , which assigns non-negative capacities to the edges, and two distinct vertices
s, t ∈ V constituting the source and sink, respectively.
An s-t-flow is a function f : E → R+

0 satisfying capacity and balance constraints

0 ≤ f(e) ≤ u(e) ∀ e ∈ E and (4.9a)∑
e∈Γ−(v)

f(e) =
∑

e∈Γ+(v)

f(e) ∀ v ∈ V \ {s, t}, (4.9b)

where Γ+(v) is the set of edges with origin v, and Γ−(v) is the set of edges with destination
v. The value of a flow f is defined as∑

e∈Γ+(s)

f(e)−
∑

e∈Γ−(s)

f(e). (4.10)

It represents the amount of flow passing from the source to the sink. The problem of
computing a flow of maximum value is called the max-flow problem.

69

4 Graph Theory: Selected Concepts and Algorithms

Many polynomial-time algorithms have been developed for solving the max-flow prob-
lem. For example, [GT88] provides an algorithm that solves this problem on a graph
G = (V,E) in O(NVNE log(N2

V /NE)) time, where NV = |V | and NE = |E|. A list of
alternative algorithms can be found in [BE05]. The Boost Graph Library (BGL) [SLL02]
includes a selection of them with different requirements on the input graph.
The following classical result concerning network flows traces back to [FF56]. It is closely
related to theorem 4.4.5 and the reason why vertex- and edge-connectivity of a graph
are most often computed by solving a sequence of max-flow problems.

Theorem 4.4.8 (Max-Flow Min-Cut Theorem). The value of a maximum s-t-flow
is equal to the capacity3 of a minimum s-t-edge-cut.

[GH61] shows that NV − 1 calls to a max-flow algorithm suffice to compute a maximum
flow (and minimum edge-cut) between all pairs of vertices. A classical detailed reference
on network flows is [AMO93].

Algorithms for vertex- and edge-connectivity

Algorithms for vertex- and edge-connectivity usually exploit that

κ(G) = min
s 6=t∈V

κG(s, t) and λ(G) = min
s 6=t∈V

λG(s, t). (4.11)

A popular simple algorithm that computes a minimum edge-cut corresponding to λ(G)
was developed by [SW97]. It is implemented in the Boost Graph Library (BGL) [SLL02].
In contrast to most other connectivity algorithms, it is not based on the computation
of maximum flows. [BE05] includes an overview of several max-flow based methods
and their time complexities, where algorithms that check k-vertex/edge-connectivity of
a graph G for k ∈ N are distinguished from algorithms that compute the vertex/edge-
connectivity κ(G) and λ(G), respectively. For undirected graphs, these problems are
usually solved by constructing suitable directed graphs on which the local connectivity
between distinct vertices s and t is computed by solving the related max-flow prob-
lem. For example, [Eve79] proves that the local vertex-connectivity κG(s, t) for vertices
s, t ∈ V of an undirected graph G = (V,E) can be computed by defining the follow-
ing directed graph G̃ = (Ṽ , Ẽ) with |Ṽ | = 2NV and |Ẽ| = 2NE + NV : Each vertex
v ∈ V is replaced by two vertices v′, v′′ ∈ Ṽ which are connected by a directed edge
ev = (v′, v′′) ∈ Ẽ. Furthermore, every edge e = {v, u} ∈ E is replaced by two edges
e′ = (v′′, u′), e′′ = (u′′, v′) ∈ Ẽ. The maximum flow from source s′′ to the target t′ in G̃
with unit capacities for all edges is then equal to the local vertex-connectivity κG(s, t).
Usually, the output of connectivity algorithms does not include the related vertex- and
edge-separators. However, some max-flow algorithms can be easily extended to addi-
tionally find particular edges that constitute a minimum edge-separator. Chapter 10 of

3The capacity of an s-t-edge-cut is defined as the sum of capacities of the edges with origin in the
component including the vertex s and destination in the component including t.

70

4.5 Graph Partitioning

[New10], for instance, gives an explanation about how this can be done in case of the
augmenting path algorithm [FF56].

Graphs that do not include any 1-vertex-cut (also called cut-vertex) or even any 2-vertex-
cut (also called separation pair) are said to be biconnected or triconnected, respectively:

Definition 4.4.9. A connected graph G = (V,E) is called biconnected if each subgraph
induced by a vertex set V \ {vi}, vi ∈ V , is connected.

Definition 4.4.10. A biconnected graph G = (V,E) is called triconnected if each
subgraph induced by a vertex set V \ {vi, vj}, vi, vj ∈ V , is connected.

Algorithms for biconnected and triconnected components

The following algorithms are based on DFS. To compute biconnected components of a
graph, [Tar72] proposes a linear time algorithm, which is implemented, e.g., in the Boost
Graph Library (BGL) [SLL02]. Triconnected components result from the representation
of a biconnected graph by a so-called SPQR-tree. An algorithm that constructs the
SPQR-tree of a graph in linear time was originally proposed by [HT73]. However, it
included faulty parts that were later on revealed and corrected by [GM01]. There is
not any SPQR-tree algorithm implemented in the BGL until now, but in the Open
Graph Drawing Framework (OGDF), which is a self-contained C++ class library for the
automatic layout of graphs [CGJ+13]4.

[Oel87] proposes another concept that is interesting in the context of dividing a graph
into more than two components:

Definition 4.4.11. For an integer l ≥ 2, the l-connectivity of a graph G = (V,E) is
the minimum number of vertices whose removal from G produces a disconnected graph
with at least l components or a graph with fewer than l vertices. For n ≥ 0, G is called
(n, l)-connected if its l-connectivity is at least n.

4.5 Graph Partitioning

In this section, we focus on the partitioning of undirected graphs. However, many
concepts similarly exist for directed graphs. Basically, one distinguishes between two
kinds of partitioning, namely graph partitioning by edge-separators (GPES), also called
edge-cut partitioning, and graph partitioning by vertex-separators (GPVS), also called
vertex-cut partitioning, cf. [KC12, KPcA12]. GPES is more often used, and leads to a
partition of a graph G = (V,E) in the original sense:

Definition 4.5.1. A (k-way) partition of a graph G = (V,E) is a decomposition
Π = {V1, ..., Vk} of its set of vertices V into k disjoint, nonempty subsets Vi such that⋃k
i=1 Vi = V .

4The OGDF can be obtained from the website: http://www.ogdf.net

71

4 Graph Theory: Selected Concepts and Algorithms

The classical GPES problem consists in detecting a partition Π = {V1, ..., Vk} of a graph
G’s set of vertices in such a manner that the sets E(Vi, Vj) of edges connecting elements
of Vi to those of Vj are relatively small in size compared to the sets E(Vi, Vi) connecting
vertices within the Vi. In other words, one aims for an edge-separator of small size
whose removal decomposes the graph into components of high connectivity. We denote
the partition that an edge-separator Es induces by ΠEs(G).
In contrast, the partition induced by a vertex-separator Vs consists of the components
V1, ..., Vk of G− Vs plus the vertex-cut itself, i.e., ΠVs(G) = {V1, ..., Vk;Vs}.

Definition 4.5.2. We call a separator that induces a k-way partition narrow if no
subset of it induces a k-way partition, and wide otherwise.

Furthermore, we define the connectivity of an element of a vertex-separator by

Definition 4.5.3. The number of parts Vi, i ∈ {1, ..., k}, that a vertex vs ∈ Vs connects
is called the connectivity of vs. We denote it by λ(vs).

Lemma 4.5.4. A vertex-cut Vs inducing a vertex partition ΠVs(G) = {V1, ..., Vk;Vs} is
narrow if and only if every vertex vs ∈ Vs connects at least two parts, i.e., λ(vs) ≥ 2.

Proof a) Let us assume that there is a vertex vs ∈ Vs with λ(vs) < 2. If λ(vs) = 1, we
can place vs to the part Vi, i ∈ {1, ..., k} that vs connects. Otherwise, if λ(vs) = 0, we
can place it to any part Vi, i ∈ {1, ..., k}, and Vs \ {vs} is a valid separator. Thus Vs is
not narrow.
b) Let us assume that Vs is not narrow. Then there exists a valid separator V ′s ⊂ Vs.
Assume that λ(v′s) ≥ 2 for any v′s ∈ Vs \ V ′s . Then there are two parts Vi, Vj, i 6= j ∈
{1, ..., k} that are connected by v′s, which contradicts the validity of the separator V ′s .

Obviously, we are interested in partitions that are induced by narrow separators. The
request for a small separator can be further specified using one of the following cut-size
definitions:

Definition 4.5.5. Basically, the cut-size of a partition ΠEs(G) or ΠVs(G) is defined
as the size |Es| of the edge-separator or the size |Vs| of the vertex-separator, respectively.
If edges or nodes of a graph are accompanied by specific costs (e.g. weights) c(e) ≥ 0 or
c(v) ≥ 0, the cut-sizes are given as

∑
es∈Es c(es) and

∑
vs∈Vs c(vs), respectively.

Taking further account of the connectivity of all vs ∈ Vs, the cut-size of a partition
ΠVs(G) = {V1, ..., Vk;Vs} can alternatively be defined as

∑
vs∈Vs c(vs)(λ(vs)− 1), cf. also

definition 4.5.15.

Besides the request for a small cut-size, further requirements on GPES and GPVS can be
a predetermined number of components into which the graph must at least decompose, or
that the set of components {G(V1, E1), ..., G(Vk, Ek)} satisfies some prespecified criterion,
where Ei = {e ∈ E | e = {vl, vm} with vl, vm ∈ Vi}, i = 1, ..., k. For instance, such a
quality criterion quantifies the balance of a partition or graph fragmentation, see below.

72

4.5 Graph Partitioning

These quality criteria are introduced to control size and structure of the components,
and to preclude separators that cut off only small parts of the graph. Which special
requirements a partition should fulfill, and which criterion should be used to compare
different partitions of a graph strongly depends on the respective application.

a. Quality Criteria for Graph Partitions

This section presents the two quality measures modularity and expansion. Both concern
balance of a partition and were originally introduced for GPES. [KC12] adapts them to
GPVS. Furthermore, there are measures for graph fragmentation introduced by [Bor06]
to detect vertex-separators that induce partitions with low intra-component connectivity,
cf. section 4.6.

Definition 4.5.6. The modularity of a partition ΠEs(G) = {V1, ..., Vk} induced by an
edge-cut Es is defined as

mES(ΠEs) =
k∑
i=1

(
|E(Vi, Vi)|
|E|

−
(∑

j 6=i

|E(Vi, Vj)|
|E|

)2
)
, (4.12)

where E(Vi, Vj), i 6= j ∈ {1, ..., k}, is the set of edges connecting elements of Vi to those
of Vj and E(Vi, Vi), i ∈ {1, ..., k}, is the set of edges connecting vertices within Vi.

This definition traces back to [GN04]. The modularity measures the fraction of the
edges that connect vertices of the same component minus the expected value of the
same quantity in a graph with the same vertex partition but random connections be-
tween the vertices. If the number of intra-component edges is no better than random,
we will get mES(ΠEs) ≤ 0. The maximal value of mES(ΠEs) is 1, which is reached if
Es = ∅. The problem of maximizing modularity over all possible partitions of a network
has been shown to be NP-complete [BDG+08]. A fast heuristic algorithm for maxi-
mizing modularity by spectral analysis of the so-called modularity matrix is given by
[New06]. Alternative methods are, for example, simulated annealing [DDGDA05] and
greedy algorithms [New04].
[KC12] proposes two possible adaptions of the modularity measure to partitions induced
by vertex-separators.5 These two definitions arise since either the number of vertices
or the number of edges within a component can be counted for the first term of the
formula:

5Note that [KC12] defines the connected components of a vertex-cut based partition in an augmented
way: in distinction from our definition, a component i additionally includes the edges in Es incident
to the vertices Vi and also the vertices in Vs adjacent to Vi. As a result, the components are
overlapping. To keep consistency, we will handle this discrepancy by defining additional sets of the
controversially treated elements in definitions 4.5.7 and 4.5.10.

73

4 Graph Theory: Selected Concepts and Algorithms

Definition 4.5.7. The modularity of a partition ΠVs(G) = {V1, ..., Vk;Vs} induced by
a vertex-cut Vs can be measured by

m1V S(ΠVs) =
k∑
i=1

(
|Vi|+ |Vs,i|
|V |

−
(∑

j 6=i

|Vs,ij|
|V |

)2
)
, (4.13)

or

m2V S(ΠVs) =
k∑
i=1

(
|E(Vi)|
|E|

−
(∑

j 6=i

|Vs,ij|
|V |

)2
)
, (4.14)

where Vs,i is the set of vertices vs ∈ Vs adjacent to Vi, Vs,ij := Vs,i ∩ Vs,j is the set of
vertices vs ∈ Vs that connect the sets Vi and Vj, and E(Vi) := {e ∈ E | e ∩ Vi 6= ∅}.
[KC12] presents a vertex-cut based partitioning algorithm on the basis of structural
balance vertices, called SBV-cut. It performs well, both in terms of the modularity
measures and in terms of expansion, see definition 4.5.10.
Expansion was originally defined by [KVV04] for bipartitions induced by edge-cuts, and
accordingly for graphs. The expansion of a bipartition measures its relative cut-size:

Definition 4.5.8. The expansion of a bipartition ΠEbs
(G) = {V1, V2} induced by an

edge-cut Eb
s is defined as

ebES(ΠEbs
) =

|Eb
s|

min{|V1|, |V2|}
=
|E(V1, V2)|

min{|V1|, |V2|}
. (4.15)

The expansion of a graph G is the minimum expansion over all edge-cuts of the graph.
We denote it by egraph(G).

A general partition ΠEs(G) = {V1, ..., Vk} is preferable if the expansion of its compo-
nents Vi, i = 1, ..., k, is high, because this indicates a high intra-component connectivity
[KVV04, FTT04].
Otherwise, a partition can be considered to be good if either the average expansion or
the maximum expansion, defined by

1/k
∑

1≤i≤k

ebES(Vi, V \ Vi) and max
1≤i≤k

ebES(Vi, V \ Vi), (4.16)

is low, because this indicates relatively low cut-sizes [KC12].
Enhancing the definition of expansion, the conductance of a graph gives greater impor-
tance to vertices with higher degree [KVV04]:

Definition 4.5.9. The conductance of a bipartition ΠEbs
(G) = {V1, V2} induced by

an edge-cut Eb
s is defined as

cbES(ΠEbs
) =

|Eb
s|

min{
∑

v1∈V1
dv1 ,

∑
v2∈V2

dv2}
=

|E(V1, V2)|
min{

∑
v1∈V1

dv1 ,
∑

v2∈V2
dv2}

. (4.17)

The conductance of a graph G is the minimum conductance over all edge-cuts of the
graph. We denote it by cgraph(G).

74

4.5 Graph Partitioning

As in case of expansion, a partition ΠEs(G) = {V1, ..., Vk} is preferable if the conductance
of its components Vi, i = 1, ..., k, is high. However, both, expansion and conductance, are
insufficient by themselves as quality criteria because they take neither inter-component
connectivity nor the relative size of components into account. To overcome this draw-
back, [KVV04, FTT04] propose different partitioning methods that combine the above
criteria with the cut-size criterion capturing inter-component connectivity.
The following two adaptions of the expansion measure to partitions induced by vertex-
separators are proposed by [KC12].

Definition 4.5.10. The expansion of a bipartition ΠV bs
(G) = {V1, V2;V b

s } induced by
a vertex-cut V b

s can be measured by

e1V S(ΠV bs
) =

|V b
s |

min{|V1|+ |V b
s,1|, |V2|+ |V b

s,2|}
, or e2V S(ΠVs) =

|V b
s |

min{|E(V1)|, |E(V2)|}
,

(4.18)
where E(Vi) = {e ∈ E | e ∩ Vi 6= ∅}.

Note that for a narrow vertex-separator, we have |V b
s | = |V b

s,1| = |V b
s,2| by lemma 4.5.4.

b. Typical Problem Formulations

There are many different formulations of partitioning problems of which we present the
most common ones in a general form. We consider, as usual, a connected undirected
graph G = (V,E) with NV := |N | and NE := |E|. Since bipartitioning, also called bisec-
tion, is the basis for many general partitioning algorithms, we start with the respective
formulations of edge-cut based bipartitioning and vertex-cut based bipartitioning.

Basic edge-cut based bipartitioning [BJ92]: Let β(NV) ≤ NV be a positive integer. The
balanced edge-separator problem is to find an edge-separator Es of G inducing a bipar-
tition ΠEs = {V1, V2} such that
i) there is no edge between V1 and V2,
ii) max{|V1|, |V2|} ≤ β(NV), and
iii) |Es| is minimized subject to i) and ii).

Basic vertex-cut based bipartitioning [BJ92, dSB05, BM11]: Let β(NV) be a positive
integer. The balanced vertex-separator problem is to find a vertex-separator Vs of G
inducing a bipartition ΠVs = {V1, V2;Vs} such that
i) there is no edge between V1 and V2,
ii) max{|V1|, |V2|} ≤ β(NV), and
iii) |Vs| is minimized subject to i) and ii).

Both of these problems are NP-hard [BJ92]. Instead of |Es| and |Vs|, in iii) one could
also use another cut-size definition, cf. definition 4.5.5, and [KL70, dSB05]. A further
kind of bipartitioning is to approximate a solution of the following problem, where a
balance criterion is integrated in the objective function:

75

4 Graph Theory: Selected Concepts and Algorithms

Minimum ratio vertex-cuts [FHL08]: Let G be a graph with positive vertex weights w(v),
∀ v ∈ V . The minimum ratio cut bipartitioning problem is to find a vertex-separator Vs
of G inducing a partition ΠVs = {V1, V2;Vs} such that
i) there is no edge between V1 and V2, and
ii) the sparsity of the separator6, defined by∑

vs∈Vs w(vs)

mini∈{1,2}{
∑

vi∈Vi w(vi)}+
∑

vs∈Vs w(vs)
, (4.19)

is minimized subject to i).

The following problem formulations of GPES and GPVS generalize the first two defini-
tions above:

Edge-cut based k-way partitioning [KL70, KPcA12]: Let k ≤ NV be a positive integer.
The GPES problem is to find an edge-separator Es of G inducing a k-way partition
ΠEs = {V1, ..., Vk} such that
i) there is no edge between Vi and Vj ∀ i 6= j ∈ {1, ..., k},
ii) ΠEs fulfills a certain balance criterion, and
iii) the cut-size of ΠEs is minimized subject to i) and ii).

Vertex-cut based k-way partitioning [KPcA12]: Let k ≤ NV be a positive integer.
The GPVS problem is to find a vertex-separator Vs of G inducing a k-way partition
ΠVs = {V1, ..., Vk;Vs} such that
i) there is no edge between Vi and Vj ∀ i 6= j ∈ {1, ..., k},
ii) ΠVs fulfills a certain balance criterion, and
iii) the cut-size of ΠVs is minimized subject to i) and ii).

Possible balance criteria in ii) are:

• Balanced component weights [KPcA12]: Let G be a graph with positive vertex
weights w(v), ∀ v ∈ V , and let be given a maximum allowable imbalance ratio
ε > 0. A partition ΠEs , or ΠVs , is constrained to fulfill

max
1≤i≤k

{∑
vi∈Vi

w(vi)

}
≤ (1 + ε)

∑k
i=1

∑
vi∈Vi w(vi)

k
. (4.20)

• Lower bounded expansion of components [KVV04]: Given a minimum allowable
expansion α > 0, a partition ΠEs , or ΠVs , is constrained to fulfill

min
1≤i≤k

egraph(G(Vi, Ei)) ≥ α. (4.21)

6Note the similarity of this definition to the expansion e1V S in definition 4.5.10.

76

4.5 Graph Partitioning

• Lower bounded conductance of components [KVV04]: Given a minimum allowable
expansion α > 0, a partition ΠEs , or ΠVs , is constrained to fulfill

min
1≤i≤k

cgraph(G(Vi, Ei)) ≥ α. (4.22)

Partitions of maximum modularity [New04, DDGDA05, BDG+08, New06]: The problem
is to maximize modularity over all possible partitions of a graph G by an edge-separator:

max
Es⊆E

mES(ΠEs). (4.23)

Graph fragmentation by removing m “key players” [Bor06], cf. section 4.6: Let m < NV

be a positive integer. The key player problem is to find a set Vs ⊂ V with |Vs| = m whose
removal from G results in a graph that maximizes some graph fragmentation measure
F :

max
Vs⊂V

F (G− Vs). (4.24)

c. Graph Partitioning by Edge-Separator (GPES)

Many graph partitioning methods based on the detection of small edge-cuts have been
developed in the last decades. [Kol09, New10, BE05] sketch several of them. Most of
the common methods fall into one of the following basic groups.

Hierarchical partitioning
Hierarchical partitioning is mostly based on the definition of (dis)similarity measures
between sets of vertices. It results in an entire hierarchy of nested partitions between
the trivial partitions {{v1}, {v2}, ..., {vNV }} and V . Two opposed concepts can be dis-
tinguished:
Agglomerative algorithms start with the trivial partition {{v1}, {v2}, ..., {vNV }} and ac-
complish coarsening through successive merging of partitions. For example, [New04]
proposes a well performing method based on a greedy algorithm to maximize modular-
ity. Its worst-case running time is O((NE +NV)NV), or O(N2

V) on a sparse graph.
On the contrary, divisive algorithms start with the trivial partition V and proceed by suc-
cessive refinement of partitions through splitting. There are many examples of divisive
methods: Recursive bipartitioning can be performed, e.g., using the famous Kernighan-
Lin algorithm [KL70] for approximations of minimum edge-cuts. It is a simple but rather
slow heuristic algorithm for graph bisection. Integrating some improvements, this algo-
rithm has an overall running time of O(N3

V). Faster bisection can be achieved, for in-
stance, by applying spectral partitioning with a running time of O(

√
NVNE), cf. [PSL90],

or by the O(
√

log(NV))-approximation algorithm for a sparsest cut of [ARV04] and their
related approximation of a balanced edge-separator. Two newer common approaches are
a method based on minimum cut and expansion criteria introduced by [FTT04], as well

77

4 Graph Theory: Selected Concepts and Algorithms

as an algorithm proposed by Girvan and Newman [GN02, GN04]: It iteratively removes
edges of a graph based on their betweenness centrality, which is defined similar to the
betweenness centrality of vertices in definition 4.3.4, and runs in O(N2

ENV) worst case
time, and in O(N3

V) time on sparse graphs.

Spectral partitioning
The following methods for graph partitioning exploit that the connectivity of a graph
is associated with the eigendecomposition of matrices as its adjacency matrix A or its
Laplacian L, defined below, cf. for example [KVV04, vL07, MC09].
The first approach is to conduct a spectral analysis of the adjacency matrix A of a graph
that results in NV pairs (λi,xi) ∈ R × RNV of eigenvalues and eigenvectors, for which
Axi = λixi, and which are ordered by their eigenvalues λ1 ≤ ... ≤ λNV . Then, starting
with eigenvectors xi corresponding to large (absolute) eigenvalues λi, certain vertices
vj ∈ V , and their immediate neighbors, are declared to build a cluster Vi if they have
in common particularly large positive or negative entries xij in xi. Some fundamental
properties of the graph spectrum λ1, ..., λNV are pointed out in [BE05]. Results and a
discussion of this approach can be found in [GMZ03].
The much more popular approach is to perform iterative bisection of a graph accord-
ing to spectral properties of the graph Laplacian L defined by L := D − A, where
D = diag[(dv1 ,, dvNV)] is the diagonal matrix of vertex degrees. If G is a simple
undirected graph, the entries lij of L are given by

lij =


−1 if {vi, vj} ∈ E,
dvi if i = j,

0 otherwise.
(4.25)

One can easily show that G consists of k connected components if and only if the k small-
est eigenvalues of L are zero, λ1(L) = ... = λk(L) = 0, and λk+1(L) > 0, cf. e.g. [BE05].
The smallest eigenvalue λ1(L) is identically equal to zero with corresponding eigenvector
x1(L) = (1, ..., 1)T. A graph G of ’nearly’ two components, i.e., suitable for bisection,
can be assumed to have λ2(L) close to zero. A common and successful approach to graph
bisection is to partition vertices according to the sign of their entries in the corresponding
eigenvector x2(L) by defining

V1 := {vi ∈ V | x2i(L) ≥ 0} and V2 := {vi ∈ V | x2i(L) < 0}. (4.26)

This method traces back to Fiedler [Fie73], and is further studied and advanced by
[PSL90, NJW02, CSB+11].
An alternative approach is to study the spectrum of the normalized Laplacian D−1L.
A recent tutorial about spectral partitioning including a review of algorithms and many
references is given by [vL07]. The time complexity of spectral partitioning is mainly
due to the calculation of eigenvalues and their corresponding eigenvectors. Some of the
largest or smallest eigenvalues of a large, sparse, and symmetric matrix can be efficiently

78

4.5 Graph Partitioning

calculated by variants of the iterative Lanczos algorithm [GvL96]. Its convergence speed
depends on the size of the spectral gap of the matrix. In the case of spectral bisection,
for example, its time complexity is O(NE/(λ3 − λ2)).

d. Graph Partitioning by Vertex-Separator (GPVS)

GPVS is much less common and studied than GPES, although these problems are closely
related. Therefore, an indirect approach to GPVS is to compute an edge-separator and
to translate it to a vertex-separator: A narrow vertex-separator can be found by solving
a minimum vertex cover problem on the bipartite graph induced by the edge-cut and
adjacent vertices [PSL90]. If this method is successful and efficient, depends on the
structure of the graph. Important aspects in which edge- and vertex-separators differ
are discussed in [FHL08, KC12].
Direct methods to detect favored vertex-separators are proposed by [dSB05, FHL08,
BM11, KC12]. [dSB05] provides a mixed integer programming formulation of the vertex-
cut based bipartitioning problem, and proposes different version of a branch-and-cut
algorithm to approximate solutions. The same problem is studied by [BM11] from a
polyhedral point of view, which enables to solve all the instances generated by [dSB05]
to optimality in small time without using any sophisticated MIP algorithm. Adapt-
ing [ARV04]’s techniques developed in the context of edge-separators, [FHL08] obtains
an O(

√
log(NV)) approximation for minimum ratio vertex-cuts, and exhibits a pseudo-

approximation for finding balanced vertex-separators in general graphs with running
time of the same order. This improved the previous best approximation ratio for vertex-
separators of O(log(NV)) based on [LR99]. [KC12] presents a vertex-cut based parti-
tioning algorithm based on structural balance vertices, called SBV-cut, which performs
well, both in terms of the modularity measures and in terms of expansion.
Section 4.6 presents the problem of graph fragmentation by removing key players [Bor06],
which is in a sense related to GPVS.

e. Hypergraph Partitioning

Algorithms on hypergraphs are in general much more expensive in terms of computa-
tional complexity then algorithms on graphs. Therefore, research on hypergraphs often
attempts to answer certain questions by solving problems on suitably related graphs.
[KPcA12] presents an effective method that solves the problem of hypergraph partition-
ing by finding vertex-separators on an undirected graph, namely by solving the GPVS
problem on the net intersection graph (NIG) of a hypergraph. A vertex-separator on
this graph defines a net-separator for the hypergraph. Since this method exactly ad-
dresses our problem of determining advantageous decompositions of a block-separable
optimization problem with coupling constraints of section 5.2, this section is mainly a
sketch of [KPcA12]. For an illustrating visualization of the method, we refer to this
publication.

79

4 Graph Theory: Selected Concepts and Algorithms

Furthermore, at the end of this section, we give a definition of a vertex-separator on
a hypergraph. To our knowledge, there are no publications about hypergraph parti-
tioning by vertex-separators, but we show that such vertex-separators are identical to
vertex-separators on the induced graph of a hypergraph by our definition.

Definition 4.5.11. A net subset Ns ⊆ N of a hypergraph H = (U,N) is called a k-way
net-separator, or a k-way net-cut, if its removal disconnects the hypergraph into at
least k connected components. The induced k-way partition of the vertices is denoted by
ΠNs(H) = {U1, ..., Uk}. Simultaneously, the net-separator Ns induces a partition of the
net set Π̃Ns(H) = {N1, ..., Nk;Ns}, where Ni denotes the set of internal nets of a vertex
set Ui, i = 1, ..., k.

Theorem 4.5.12. A vertex partition ΠVs(GNIG) = {V1, ..., Vk;Vs} of the net intersection
graph GNIG of a hypergraph H = (V,N) by a narrow vertex-separator Vs ⊂ VNIG induces
a net partition Π̃Ns(H) = {N1 ≡ V1, ..., Nk ≡ Vk;Ns ≡ Vs} of H by a net-separator Ns,
which fulfills that Pins(Ni) ∩ Pins(Nj) = ∅ ∀ i 6= j ∈ {1, ..., k}.

Proof By definition of a vertex-separator Vs ⊂ VNIG it does not exist any edge between
any two vertices vi ∈ Vi and vj ∈ Vj for i 6= j ∈ {1, ..., k}, which implies that Pins(Ni)∩
Pins(Nj) = ∅ ∀ i 6= j ∈ {1, ..., k}: If we had Pins(ni)∩Pins(nj) 6= ∅ for two nets ni ∈ Ni

and nj ∈ Nj, then there would be an edge eij between vertices vi ∈ Vi and vj ∈ Vj which
would contradict that Vs ⊂ VNIG is a vertex-separator of GNIG.

However, this net partition Π̃Ns(H) induces only a partial vertex partition:

Corollary 4.5.13. A net partition of H induced by a net-separator Ns

Π̃Ns(H) = {N1 ≡ V1, ..., Nk ≡ Vk;Ns ≡ Vs} (4.27)

induces a k-way partial node partition of H

Πpartial
Ns

(H) = {Upartial
1 = Pins(N1), ..., Upartial

k = Pins(Nk)}. (4.28)

The remaining nodes are those which are only connected by nets of the separator Ns.
In the following, they are called free nodes, and UF denotes their assemblage in the set

UF = U \
k⋃
i=1

Upartial
i = {ui ∈ U | ui ∈ n, n ∈ N ⇒ n ∈ Ns}.

A complete node partition can be constructed by assigning each of the free nodes to a
set Upartial

i , i ∈ {1, ..., k}:

ΠNs(H) = {U1 ⊇ Upartial
1 , ..., Uk ⊇ Upartial

k }. (4.29)

Let λ(ns) denote the connectivity of a net ns ∈ Ns, which is defined as the number of
parts Ui, i ∈ {1, ..., k}, of ΠNs(H) that are connected by ns.

80

4.5 Graph Partitioning

Theorem 4.5.14. Let Vs be a narrow vertex-separator that induces a vertex partition
ΠVs(GNIG). Then any node partition ΠNs(H) = {U1, ..., Uk} constructed according to
(4.29) induces the net partition Π̃Ns(H) given by (4.27) where the connectivity of each
cut-net ns ∈ Ns is greater than or equal to the connectivity of the corresponding vertex
vs ∈ Vs: λ(ns) ≥ λ(vs).

Proof See [KPcA12].

Note that λ(ns) may be greater than λ(vs) only due to the assignment of the free nodes.
Defining the following cut-size metrics, theorem 4.5.14 entails corollary 4.5.16.

Definition 4.5.15. Let c(n) ≥ 0 be some predetermined cost of a net n ∈ N . Then, the
cut-size of a node partition ΠNs(H) = {U1, ..., Uk} induced by a net-separator Ns (and
a certain assignment of free nodes) can be defined, for example, by
a) the cut-net metric

cut-sizea(ΠNs) =
∑
ns∈Ns

c(ns) or (4.30)

b) the connectivity metric

cut-sizeb(ΠNs) =
∑
ns∈Ns

c(ns)(λ(ns)− 1). (4.31)

One can observe that the free node assignment has no influence on the cut-net metric,
however, it affects the connectivity metric. Defining analogously to definition 4.5.15 the
cut-size of a vertex partition ΠVs(GNIG) = {V1, ..., Vk;Vs}, we get

Corollary 4.5.16. The cut-size of a vertex partition ΠVs(GNIG) is equal to the cut-size
of any induced node partition ΠNs(H) according to the cut-net metric: cut-sizea(ΠVs) =
cut-sizea(ΠNs). According to the connectivity metric, the cut-size of the vertex partition
ΠVs(GNIG) only approximates the cut-size of a node partition ΠNs(H): cut-sizeb(ΠVs) ≤
cut-sizeb(ΠNs).

However, it is easy to see that in the case of bipartitioning by a narrow separator,
equality of cut-sizes holds no matter which metric is used, since ∀ vs ≡ ns ∈ Vs ≡ Ns :
λ(vs) = λ(ns) = 2:

Corollary 4.5.17. The cut-size of a vertex bipartition ΠVs(GNIG) = {V1, V2;Vs} by a
narrow separator Vs is equal to the cut-size of any induced node partition ΠNs(H) =
{U1, U2} according to both cut-net metrics:
cut-sizea(ΠVs) = cut-sizea(ΠNs) = cut-sizeb(ΠVs) = cut-sizeb(ΠNs).

81

4 Graph Theory: Selected Concepts and Algorithms

This result forms the basis for hypergraph partitioning by recursive bipartitioning of the
NIG according to the connectivity and the cut-net metrics as proposed by [KPcA12].

Finally, we define vertex-separators of a hypergraph H. By this definition, they are
identical to vertex-separators on the induced graph Gind of the hypergraph.

Definition 4.5.18. A subset Us ⊂ U of a hypergraph H = (U,N) is called a k-way
vertex-separator, or a k-way vertex-cut, if its removal disconnects the hypergraph
into at least k connected components, where the net set of the hypergraph H−Us is defined
as NUs := {n \ Us | n ∈ N, |n \ Us| ≥ 2}, i.e., NUs basically contains all nets of N that
connect at least two vertices of U \Us, but each such net without the potentially included
elements of Us. The induced k-way partition of the vertices is denoted by ΠUs(H) =
{U1, ..., Uk;Us}.

Theorem 4.5.19. A subset Us ⊂ U is a k-way vertex-separator of a hypergraph H =
(U,N) if and only if Us is a k-way vertex-separator of H’s induced graph Gind = (U,E).

Proof a) Let Us be a vertex-separator of H inducing a partition {U1, ..., Uk;Us}, i.e.,
@ n ∈ NUs : n∩Ui 6= ∅, n∩Uj 6= ∅ for i 6= j ∈ {1, ..., k}. Assuming that Gind−Us does not
decompose into k components with nodes U1, ..., Uk, there exists an edge e = {ui, uj} ∈
E, ui ∈ Ui, uj ∈ Uj, for i 6= j ∈ {1, ..., k}. But this means that H, and, therefore, H−Us,
must include a net n with n ∩ Ui 6= ∅ and n ∩ Uj 6= ∅, which contradicts that Us is a
k-way vertex-separator of H.
b) Let Us be a vertex-separator of Gind inducing a partition {U1, ..., Uk;Us}, i.e., @ e =
{ui, uj} ∈ E, ui ∈ Ui, uj ∈ Uj, for i 6= j ∈ {1, ..., k}. Assuming that H − Us does
not decompose into k components with nodes U1, ..., Uk, there exists a net n ∈ NUs :
n ∩ Ui 6= ∅, n ∩ Uj 6= ∅ for i 6= j ∈ {1, ..., k}. However, this means that Gind, and,
therefore, Gind−Us, includes an edge e = {ui, uj}, which contradicts that Us is a k-way
vertex-separator of Gind.

4.6 Measuring Graph Fragmentation

This section gives an overview of possibilities to measure the fragmentation of a network.
Such measures are basic for the task of disrupting or fragmenting a network by removing
its key nodes. The fragmentation problem is quite similar to graph partitioning by
vertex-separators, however, it differs in terms of the related quality measures. In fact,
one aims to identify a small set of vertices whose removal decomposes the graph into as
many as possible components of low intra-component connectivity. This is in contrast to
GPVS, which aims for high intra-component connectivity. [Bor06] defines the problem
of identifying the m key players as follows:
Given a network represented by an undirected graph G = (V,E), find a set Vs ⊂ V of
m nodes such that removing this set would result in a residual network with the least
possible cohesion, which means with the highest possible fragmentation.

82

4.6 Measuring Graph Fragmentation

The solution of this problem obviously depends on the underlying measure. [Bor06]
proposes the following fragmentation measures for a graph G = (V,E) consisting of k
components (Vi, Ei), i = 1, ..., k. Besides number and size of components, the last of
these measures, FD, captures also intra-component connectivity.

• F comp counts the number k of network components, normalized by dividing by the
number of nodes

F comp =
k

|V |
. (4.32)

• F counts the number of pairs of nodes vi 6= vj ∈ V that are disconnected from each
other. With rij = 1 if vi can reach vj and rij = 0 otherwise, F is defined by

F = 1−
2
∑

j<i≤|V | rij

|V |(|V | − 1)
. (4.33)

This expression is relatively expensive to compute, but it can be rewritten in terms
of size |Vi| of each component

F = 1−
∑

1≤i≤k |Vi|(|Vi| − 1)

|V |(|V | − 1)
. (4.34)

Remark 4.6.1. Note that the quantity
∑

j<i≤|V | rij =
∑

1≤i≤k
|Vi|(|Vi|−1)

2
is known

as total pairwise connectivity of a graph. The minimization of this quantity under
certain side conditions is the objective of problems as detecting critical nodes of
a sparse network or assessing network vulnerability. The resulting optimization
problems are NP-complete but can be solved approximately by efficient heuristics
[ACEP09, DXT+10].

• F is similar to the diversity measure H, the heterogeneity (also known as con-
centration ratio or Hirschman-Herfindahl index), which is in this context defined
by

H = 1−
∑

1≤i≤k

(|Vi|
|V |

)2

. (4.35)

H can maximally achieve the value 1− (1/|V |) (if all nodes are isolated). Normal-
izing H, we obtain the measure F :

H∗ =
1−

∑
1≤i≤k(

|Vi|
|V |)

2

1− |V |−1
=
|V | −

∑
1≤i≤k

|Vi|2
|V |

|V | − 1
= 1−

−|V |+
∑

1≤i≤k |Vi|2

|V |(|V | − 1)

= 1−
∑

1≤i≤k |Vi|(|Vi| − 1)

|V |(|V | − 1)
= F

(4.36)

83

4 Graph Theory: Selected Concepts and Algorithms

• The information entropy E is in the context of network fragmentation defined as

E = −
∑

1≤i≤k

|Vi|
|V |

ln
(|Vi|
|V |

)
. (4.37)

Normalizing E yields

E∗ =

∑
1≤i≤k

|Vi|
|V | ln(|Vi||V |)

ln(1
|V |)

. (4.38)

• A fragmentation measure that captures not only the number and size of components
in which a graph breaks down but also the relative cohesion of each component is

FD = 1−
2
∑

1≤j<i≤|V |
1

dist(vi,vj)

|V |(|V | − 1)
. (4.39)

FD is equal to F if each component is complete, i.e., if there is an edge between
each two vertices of a component.

[Bor06] handles the above defined key player problem via combinatorial optimization
by a greedy algorithm. Alternative algorithms to solve the combinatorial problem are
tabu-search, the Kernighan-Lin algorithm, and simulated annealing. A different heuris-
tic approach would be to choose m vertices that maximize some centrality measure,
cf. section 4.3, and to seek modifications of this set that address some of its weak points.
The most appropriate centrality measure for this approach would obviously be the be-
tweenness centrality.

84

5 A Graph-Theoretical Approach to Decomposing
Constrained Nonlinear Programs

Large-scale optimization problems arise in many application areas, especially in oper-
ations research. Examples are, among many others, optimal distribution of natural
gas [RMWSB02, MHH+04, BSH11], optimization of water distribution systems [BGS09,
ZSZ13, ZSZD13], utility maximization in communication networks [PC06, CLCD07],
optimal flow in multi-commodity networks [OMV00, Min01, GK07], as well as diverse
problems in chemical engineering [FW08, ZLB08, Bie10]. Some of these problems are
solved by applying reduction methods that also ease problem analysis and the interpre-
tation of optimal solutions. However, most reduction methods are problem-specific and
cannot readily be applied to more general nonlinear programs.
Moreover, there are decomposition methods, which are used for the numerical solution of
large-scale programs with a general block-separable structure, cf. section 3.5. They are
quite popular because a large number of optimization problems shows a natural block-
separable structure that results from the components of the underlying model. For
example, exploiting this structure proved to yield efficient algorithms used for solving
large-scale nonlinear programs resulting from optimal control problems [BP84, LBBS03]
and from large-scale parameter estimation problems [BKS07, ZLB08]. If a MINLP is
not block-separable, or if it has some large blocks that should be subdivided, splitting-
schemes often succeed in transforming it into a suitable block-separable MINLP by
introducing proper additional variables and constraints [Now05]. A further benefit of
decomposition methods lies in their intuitively accessible way of proceeding: Primal
and dual decomposition of problems with coupling constraints can illustratively be in-
terpreted as resource and price decomposition, respectively. However, decomposition
methods work on a predetermined problem structure, which is not necessarily useful
for model analysis and possibly does not even lead to efficient numerical optimization.
[Now05] traces this inefficiency back to the size of blocks, and suggests balancing the size
and number of subproblems, instead of solving either one large problem or many small
ones. His suggestion is due to the fact that, to obtain quickly solvable subproblems, each
of which includes only few variables, Lagrangian relaxation must be applied to many
constraints, which leads, in case of nonconvex optimization, to a larger duality gap. Both
goals, fast computation and good approximation, should be counter-balanced. Balanced
size and number of subproblems are also favorable to problem analyses. In addition, the
number of variables connecting submodels should be as small as possible. As mentioned
at the end of section 3.5, [CLCD07] emphasizes the fact that different representations of
one optimization problem, with a (block-)separable structure, lead to different decom-

85

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

position schemes, which are difficult to compare and rate before numerical optimization
is accomplished. Furthermore, a systematical exploration of possible decompositions is
an open issue.
In this chapter, we present a new approach to expose the overall structure of constrained
optimization problems and to explore and compare different decompositions. We delin-
eate a graph that captures the connectivity of primal and dual model variables. This
graph can be analyzed and beneficially partitioned using appropriate graph-theoretical
methods. Resulting graph decompositions are transferred to the original problem, lead-
ing to different decompositions of the optimization problem. The idea of visualizing the
structure of an optimization problem with complicating variables or constraints on a
graph is in a similar way suggested by [BXMM07]. However, the authors do not propose
to apply graph-theoretical methods to analyze the problem and reveal advantageous de-
compositions.
Note that the objective of our approach does not merely lie in an efficient numerical
solution of a problem but rather in a convenient problem formulation that eases analysis
and allows tailored model reduction. More specifically, we aim for

• determining weakly connected model components with only few variables describ-
ing the connection between subproblems and the master problem,

• balancing the size and number of subproblems,

• approximating the optimal value functions of subproblems within the relevant
domains.

The resulting decomposition of the overall problem into subproblems with fewer variables
and constraints facilitates

• the solution of subproblems independently and in parallel,

• (nearly) independent sensitivity analyses within subproblems,

• global analyses of subproblems, instead of only local analyses of the overall prob-
lem, in order to classify parameters into more and less important ones, which
reduces the effort of data procurement in a problem with a high number of param-
eters,

• a reduced model formulation: assuming fixed parameters of certain submodels,
submodel approximations can be used to solve the overall problem in order to
reduce computation times.

Section 5.1 shows how the connectivity of variables in a constrained optimization problem
that has a block-separable structure can be represented on a graph. In section 5.2, we
propose a method for revealing possible decompositions of a block-separable program
and for determining particularly favorable ones using graph theory. This approach is

86

5.1 Representing the Structures of Block-separable Programs on Graphs

based on the fact that vertex-cuts of a certain hypergraph correspond to different primal
decompositions and that net-cuts of this hypergraph imply different dual decompositions.
The subproblems of a decomposition are parametric problems in the links to the master
problem. In section 5.3, we discuss the approximation of their optimal value functions,
which capture the dependence of a subproblem’s optimal objective value on the links.

5.1 Representing the Structures of Block-separable Programs on
Graphs

In section 3.5, problem formulation (3.86) reveals that a problem with coupling variables
can be transformed into one with coupling constraints. Therefore, we consider in the
following only the block-separable optimization problems with the coupling constraints
of definition 3.5.1:

min
x1,...,xN

N∑
i=1

fi(xi) such that
N∑
i=1

gi(xi) ≤ 0,
N∑
i=1

hi(xi) = 0, (5.1)

and xi ∈ Fi ⊆ Rni , where fi : Rni → R, gi : Rni → Rm, hi : Rni → Rp, ∀ i = 1, ..., N .
Here, Fi represents the local feasible set of variable xi, ∀ i = 1, ..., N .

The Lagrangian dual function of (5.1) decomposes into N separate subproblems, each
of which is in one variable xi:

d(λ,µ) = inf
x1,...,xN

N∑
i=1

fi(xi) + λTgi(xi) + µThi(xi) =
N∑
i=1

di(λ,µ). (5.2)

Assumption 5.1.1. We suppose in the following that trivial or redundant constraints
are removed from the problem. In a numerical application, this can be accomplished by
using presolve methods, cf. remark 2.4.5. Furthermore, we assume that the feasible set
of problem (5.1) is nonempty.

The problem formulation (5.1) represents the general case that each of the m + p con-
straints affects each subproblem i of variable xi, i ∈ {1, ..., N}. However, in many appli-
cations, most coupling constraints gj(x) =

∑N
i=1 gi,j(xi), j ∈ {1, ...,m}, and hj−m(x) =∑N

i=1 hi,j−m(xi), j ∈ {m + 1, ...,m + p}, affect only few subproblems, say the subset
Ij ⊂ {1, ..., N}, respectively.1 This means, actually, there do not exist functions gi,j(xi)
(or hi,j(xi)) for i ∈ {1, ..., N} \ Ij or, if existing, they are constant. In the following
general context of problem (5.1), we refer to this situation by writing gi,j(xi) ≡ 0 (or
hi,j(xi) ≡ 0) ∀ i ∈ {1, ..., N} \ Ij.2 In other words, we consider in the following the

1In the following, we use the index set {1, ...,m + p} to refer to the union of inequality and equality
coupling constraints and to related dual variables.

2In general, one ought to write gi,j(xi) ≡ k for some constant k ∈ R if i ∈ {1, ..., N} \ Ij , instead
of gi,j(xi) ≡ 0 . However, for simplicity, we assume constant terms to be added to a non-constant
function gi,j(xi), i ∈ Ij .

87

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

situation that for most i ∈ {1, ..., N} many components gi,j and hi,j of gi and of hi,
respectively, are identically zero. Thus, regarding (5.2), only few subproblems depend
on a certain component of the dual variable (λ,µ) ∈ Rm+p.3

Under the assumption of a loosely coupled system, and if m+ p (= number of coupling
constraints = number of dual variables) or N (= number of subproblems) are relatively
large numbers, e.g., if these numbers are close to n (=

∑N
i=1 ni = number of primal vari-

ables), we propose to properly aggregate subsets of subproblems that are more strongly
coupled among each other than with the remaining subproblems. To detect such sub-
sets of subproblems, we propose to represent the structure of the overall optimization
problem (5.1) by means of certain graphs, and to apply methods for graph partitioning.
The aggregation of subproblems can turn coupling constraints of the original problem
into local constraints of the newly defined subproblem, which in turn reduces the di-
mension of the dual function d(λ,µ)’s domain. The result is a partial dual function
d̃(λ̃, µ̃) =

∑ eN
i=1 d̃i(λ̃, µ̃) with m̃ ≤ m, p̃ ≤ p, and with fewer (Ñ < N) but slightly larger

subproblems.4
Very suited representations of the overall problem can be obtained by passing through
the following steps:

1. Build a bipartite graph with first vertex set Vs of subproblems, |Vs| = N , and
second vertex set Vd of dual variable components, |Vd| = m + p. Two vertices
vi ∈ Vs and vj ∈ Vd are connected if the corresponding subproblem i depends on
the j-th component of the dual variable (λ,µ). For example, in case of j ≤ m, vi
and vj are connected if gi,j(xi) 6≡ 0.
Subproblem dimensions ni, i = 1, ..., N, can be assigned to the nodes vi ∈ Vs as
weights w(vi) := ni ∀ i ∈ {1, ..., N}. The weight of each v ∈ Vd is set to one.

2. Merge those nodes of each vertex set Vs and Vd that are connected to exactly
the same nodes of the other set. We call the resulting reduced bipartite graph
Gb, and its vertex sets V red

s and V red
d , where |V red

s | ≤ N and |V red
d | ≤ m + p.

This step illustrates a basic structuring of the optimization problem. As we will
show in example 5.1.2, the described merging of nodes vs ∈ Vs leads to multilevel
decompositions.
The weight of a vertex v in Gb is defined as the added weights of those vertices in
Vs or in Vd that are represented by v.

3More specifically, let us consider a subproblem i given by

min
xi

fi(xi) +λTgi(xi) +µThi(xi) = min
xi

fi(xi) +
m∑
j=1

λjgi,j(xi) +
m+p∑
j=m+1

µj−mhi,j−m(xi) = di(λ,µ).

Since gi,j(xi) ≡ 0 for i ∈ {1, ..., N} \ Ij , the function di’s domain is actually of dimension
|{j ∈ {1, ...,m+ p}|i ∈ Ij}| < m+ p if Ij ⊂ {1, ..., N}.

4Note that the components of (λ̃, µ̃) are identically equal to some components of (λ,µ), i.e., they have
similar meaning and value in an optimal solution of the overall problem.

88

5.1 Representing the Structures of Block-separable Programs on Graphs

3. In most cases, the bipartite graph Gb can equally be represented by a hypergraph
H = (V red

s , Nd) with node set V red
s of subproblems and net set Nd ≡ V red

d of
coupling constraints, which illustrates the structure of the optimization problem
very well.5 However, since merging nodes can turn coupling constraints to local
constraints, it can happen that a node vd ∈ V red

d is only connected to one node
in V red

s . Such a node vd will not be represented in H. In this case, we have
|Nd| < |V red

d |.

4. Build the net intersection graph GNIG and the induced graph Gind of H. They
are subgraphs of the projections of Gb onto one of its two vertex sets, which are
obtained by defining an edge between each two elements of one vertex set that are
connected to the same node of the other vertex set in the bipartite graph. The
projections onto the vertex sets are also referred to as induced graphs, cf. defi-
nition 4.1.9. We name them Gs and Gd, respectively. We have GNIG ⊆ Gd and
Gind = Gs.
The graph Gs of subproblems includes an edge between each two subproblems
that are directly coupled by a constraint. The graph Gd of dual variable com-
ponents includes an edge between each two components that appear in the same
subproblem.

5. Search for a vertex-separator (subset of nodes, cf. definition 4.4.2) that beneficially
decomposes GNIG or Gind. All vertex-separators of these graphs imply partitions
of the hypergraph H induced by net- and vertex-separators, respectively, cf. sec-
tion 4.5.

The following examples illustrate steps 1 to 4. Section 5.2 elaborates step 5.

Example 5.1.2 (Constructing the bipartite graph Gb and the hypergraph H,
as well as their induced graphs Gs, Gd, GNIG, and Gind, ex. a)). Let us consider
a small problem (N = 4) with six coupling constraints and without local constraints,
i.e., Fi = Rni ,∀ i = 1, ..., 4:

min
x1,...,x4

4∑
i=1

fi(xi) such that
4∑
i=1

gi(xi) ≤ 0,
4∑
i=1

hi(xi) = 0, (5.3)

where n1 = n3 = n4 = 1, n2 = 2, and fi : Rni → R, gi : Rni → R4, hi : Rni → R2,
∀ i = 1, ..., 4. Let the structure of gi and hi, i = 1, ..., 4, be given by

g1(x1) =


g1,1(x1)
g1,2(x1)

0
0

, g2(x2) =


g2,1(x2)
g2,2(x2)

0
0

, g3(x3) =


0
0

g3,3(x3)
g3,4(x3)

, g4(x4) =


0
0

g4,3(x4)
g4,4(x4)

,
5Here, we introduce two graphical representations of a constrained optimization problem. This is
because, as we will discuss later on, it is useful to consider, besides the hypergraph H, also the
bipartite graph Gb, in view of exploring the most useful decompositions, cf. remark 5.2.10.

89

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

Figure 5.1: Structure of the optimization problem (ex. 5.1.2)

h1(x1) =

(
0
0

)
,h2(x2) =

(
h2,1(x2)

0

)
,h3(x3) =

(
h3,1(x3)
h3,2(x3)

)
,h4(x4) =

(
h4,1(x4)
h4,2(x4)

)
,

(5.4)
where we assume that the functions gi,j(xi) and hi,j(xi) are not identically zero.6
The Lagrangian dual function of this problem reads

d(λ1, λ2, λ3, λ4, µ1, µ2) = inf
x1

f1(x1) + λ1g1,1(x1) + λ2g1,2(x1)

+ inf
x2

f2(x2) + λ1g2,1(x2) + λ2g2,2(x2) + µ1h2,1(x2)

+ inf
x3

f3(x3) + λ3g3,3(x3) + λ4g3,4(x3) + µ1h3,1(x3) + µ2h3,2(x3)

+ inf
x4

f4(x4) + λ3g4,3(x4) + λ4g4,4(x4) + µ1h4,1(x4) + µ2h4,2(x4)

= d1(λ1, λ2) + d2(λ1, λ2, µ1) + d3(λ3, λ4, µ1, µ2) + d4(λ3, λ4, µ1, µ2),

(5.5)

where di, i = 1, ..., 4, are the optimal value functions of the relaxed subproblems, which
are parametric in the related components of the dual variable (λ,µ).
The left hand-side of figure 5.1 shows a bipartite graph corresponding to the structure
of this optimization problem with one node for each subproblem and one for each dual
variable, i.e., before merging nodes with identical connections. On the right, you see
the projections onto the vertex sets of subsystems and dual variables, respectively. Each
vertex of these graphs has weight 1, except for x_2 which has w(x_2) = 2.
Figure 5.2 shows the bipartite graph and the induced graphs after merging nodes that
have exactly the same connections within the bipartite graph of figure 5.1. The resulting

6We do not assume problem (5.3) to be convex, and do not impose any further conditions on the
problem defining functions, because, at the moment, we are only interested in problem structure.

90

5.1 Representing the Structures of Block-separable Programs on Graphs

Figure 5.2: Structure of the optimization problem represented by the bipartite graph Gb,
the hypergraph H, and their induced graphs after merging nodes (ex. 5.1.2)

graphs are called Gb, Gs, and Gd.7 We have

V red
s = {x_1, x_2, [x_3,x_4]} and
V red
d = {[λ_1, λ_2], µ_1, [λ_3, λ_4, µ_2]} ⊃ {[λ_1, λ_2], µ_1} = Nd.

(5.6)

The weights of the nodes are as follows:
w(x_1) = 1, w(x_2) = 2, w([x_3,x_4]) = 2, w([λ_1, λ_2]) = 2, w(µ_1) = 1,
w([λ_3, λ_4, µ_2]) = 3.
In this small example, the hypergraph H = (V red

s , Nd), with node set V red
s of subprob-

lems and net set Nd of coupling constraints, is just a simple graph and identically equal
to the graph Gs and also to the induced graph Gind of H, since, in Gb, each vertex of
V red
d connects at most two vertices of V red

s . As mentioned above, the net intersection
graph GNIG of H is identically equal to Gd or a subgraph of Gd. In this example, it is
the subgraph of Gd, given by the nodes [λ_1, λ_2] and µ_1 and their connecting edge
{[λ_1, λ_2], µ_1}. The constraints corresponding to the dual variables λ3, λ4, and µ2

turn to local constraints of the aggregated subproblem in variables x3 and x4.
Merging some nodes vs ∈ Vs, here x_3 and x_4 into [x_3,x_4], illustrates the first
structuring of the optimization problem that leads to a coarser decomposition. The
corresponding partial dual function of the overall problem is given by

dpartbasic(λ1, λ2, µ1) = d1(λ1, λ2) + d2(λ1, λ2, µ1) + d3,4(µ1), (5.7)

where
d3,4(µ1) = inf

x3,x4

g3(x3,x4)≤0
g4(x3,x4)≤0
h2(x3,x4)=0

f3(x3) + f4(x4) + µ1(h3,1(x3) + h4,1(x4)). (5.8)

Of course, problem (5.8) could again be solved by a decomposition method, which would
result in a multilevel decomposition as illustrated in figure 3.2.

7For example, [x_3,x_4] denotes the new node obtained by merging the two similarly connected nodes
x_3 and x_4.

91

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

Figure 5.3: Structure of the optimization problem represented by the bipartite graph Gb,
the hypergraph H, and their induced graphs after merging nodes (ex. 5.1.3)

The above graphs contain all information that is relevant to reveal different decompo-
sitions of problem (5.3) with constraints (5.4), as we will show in the following section.

Before we discuss possible decompositions, we present a second example with the same
number of subproblems and constraints but with a quite different structure:

Example 5.1.3 (Constructing the bipartite graph Gb and the hypergraph H,
as well as their induced graphs Gs, Gd, GNIG, and Gind, ex. b)). Consider again
problem (5.3), but with differently structured functions gi and hi, i = 1, ..., 4:

g1(x1) =


g1,1(x1)
g1,2(x1)
g1,3(x1)

0

, g2(x2) =


g2,1(x2)
g2,2(x2)

0
0

, g3(x3) =


0

g3,2(x3)
0

g3,4(x3)

, g4(x4) =


0
0

g4,3(x4)
g4,4(x4)

,

h1(x1) =

(
0
0

)
,h2(x2) =

(
h2,1(x2)

0

)
,h3(x3) =

(
h3,1(x3)
h3,2(x3)

)
,h4(x4) =

(
0

h4,2(x4)

)
,

(5.9)
where the functions gi,j(xi) and hi,j(xi) are not identically zero.
The Lagrangian dual function of this problem has the form

d(λ1, λ2, λ3, λ4, µ1, µ2) = d1(λ1, λ2, λ3)+d2(λ1, λ2, µ1)+d3(λ2, λ4, µ1, µ2)+d4(λ3, λ4, µ2).
(5.10)

Figure 5.3 shows the connectivity structure of the variables by the corresponding bipar-
tite graph Gb and the induced graphs Gs and Gd, where the latter are identically equal
to the induced graph Gind and the net intersection graph GNIG of the hypergraph H. H

92

5.2 Determining Advantageous Decompositions

contains one net, which is not a simple edge, between the nodes x_1, x_2, and x_3. It
corresponds to the second inequality constraint g2(x) = g1,2(x1)+g2,2(x2)+g3,2(x3) ≤ 0.
All nodes of the graphs have weight 1, except for the two nodes x_2 and [λ_4,µ_2],
which have weight 2.

5.2 Determining Advantageous Decompositions

As described in section 3.5, the decomposition of optimization problems is realized by
fixing appropriate primal or dual variables. We call these variables links. The sub-
problems, into which the original problem decomposes by fixing the links, can be solved
independently. To solve the overall problem, the master problem, which is usually a
nonsmooth problem in the links, adjusts the values of the links for which the subprob-
lems are solved. If the links are primal variables, the method is referred to as primal
decomposition, if they are dual variables, the method is called dual decomposition. If
the overall problem is convex and fulfills Slater’s condition, then, by theorem 3.3.4, its
optimal value equals the optimal value of its dual problem. Otherwise, the optimal
value of the dual problem is a lower bound on the optimal value of the primal problem,
cf. theorem 3.3.3.
Conventionally, problem (5.1) is partitioned by dual decomposition into N subproblems
connected by a master problem of m+ p links. This is the most granular decomposition
of the problem in this general formulation. Further dual decompositions can be defined
by aggregating some subproblems, or in other words, by different partitions of the N -
element set of subproblems.8 In case graph Gb, which represents the connection between
primal and dual variables, is sparse, aggregating subproblems can reduce the number of
links. This reduction occurs if global coupling constraints change into local ones.
The subproblems can be regarded as parametric problems in the links. If the optimal
value functions of the subproblems were known, the original problem could be solved
just by solving the master problem. Considering the approximation of optimal value
functions of one or several subproblems, it would be preferable to determine subprob-
lems of an appropriate size, which depend on as few links as possible. Furthermore,
decompositions that result in subproblems of low intra-component connectivity would
be preferable, since it eases their solution. If subproblems are supposed to be solved
in parallel, a balanced size of components and a balanced intra-component connectivity
is desirable. To analyze different decompositions of a block-separable problem (5.1),
we use the graphical representation of connections between primal and dual variables,
which we introduced in the previous section. We reveal that vertex-cuts of the hyper-
graph H correspond to different primal decompositions and that net-cuts of H imply
different dual decompositions. The elements of a cut represent the links of a decompo-

8The total number of partitions of an n-element set is the Bell number Bn. Bell numbers satisfy the
recursion Bn+1 =

∑n
k=0

(
n
k

)
Bk. The first Bell numbers are B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 =

52, B6 = 203, B7 = 877, B8 = 4140.

93

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

sition, which are the variables of the master problem and which are fixed for solving the
subproblems. Nets within the resulting components of the hypergraph represent those
coupling constraints of the overall problem that change to local subproblem constraints
of the related decomposition.
Before formalizing these results and the systematical exploration of decompositions of a
certain problem, we continue with examples 5.1.2 and 5.1.3.

Example 5.2.1 (Continuation of example 5.1.2: different decompositions). De-
composition by fixing primal variables and decomposition by fixing dual variables are
both possible. We discuss dual decomposition first because it is more convenient for cou-
pling constraints. The dual function (5.5) represents the most granular decomposition
of problem (5.3) with constraints (5.4). It has four subproblems coupled by six links.
A coarser decomposition is obtained by aggregating subproblems x_3 and x_4. The
related partial dual function (5.7) exhibits three subproblems coupled by three links of
which two, λ1 and λ2, couple the same subproblems, namely those in x1 and x2.
After merging nodes as described above and starting from the resulting coarser de-
composition, all possible dual decompositions are obtained by different net-cuts of the
hypergraph H shown in figure 5.2. The mentioned decomposition with three links, λ1,
λ2, and µ1, which is related to the partial dual function (5.7), corresponds to the largest
net-cut consisting of two nets, one with weight 1 and one with weight 2. There are two
different decompositions, the first has links λ1 and λ2, the second has link µ1.
The decomposition with links λ1 and λ2 corresponds to an aggregation of the subprob-
lems in variables x2, x3, and x4. In addition to the three local constraints in x3 and x4,
the first equality constraint changes into a local constraint of the subproblem in x2, x3,
and x4 so that µ1 vanishes from the master problem.
The decomposition with sole link µ1 corresponds to an aggregation of the subproblems
in variables x1 and x2. It turns the first two coupling constraints into local constraints
of the subproblem in x1 and x2 so that λ1 and λ2 vanish from the master problem.
Summarizing, there are the following convenient dual decompositions, represented by
the corresponding Lagrangian (partial) dual functions:

d(λ1, λ2, λ3, λ4, µ1, µ2) = d1(λ1, λ2) + d2(λ1, λ2, µ1) + d3(λ3, λ4, µ1, µ2) + d4(λ3, λ4, µ1, µ2),

dpartbasic(λ1, λ2, µ1) = d1(λ1, λ2) + d2(λ1, λ2, µ1) + d3,4(µ1),

dpartA (λ1, λ2) = d1(λ1, λ2) + d2,3,4(λ1, λ2),

dpartB (µ1) = d1,2(µ1) + d3,4(µ1),

(5.11)

where

d1,2(µ1) = inf
x1,x2

g1(x1,x2)≤0
g2(x1,x2)≤0

f1(x1) + f2(x2) + µ1h2,1(x2), (5.12a)

94

5.2 Determining Advantageous Decompositions

d3,4(µ1) = inf
x3,x4

g3(x3,x4)≤0
g4(x3,x4)≤0
h2(x3,x4)=0

f3(x3) + f4(x4) + µ1(h3,1(x3) + h4,1(x4)), (5.12b)

d2,3,4(λ1, λ2) = inf
x2,x3,x4

g3(x3,x4)≤0
g4(x3,x4)≤0

h1(x2,x3,x4)=0
h2(x3,x4)=0

f2(x2) + f3(x3) + f4(x4) + λ1g2,1(x2) + λ2g2,2(x2).

(5.12c)

The master problem of a certain decomposition consists in maximizing the respective
dual function in (5.11) under the condition that λi ≥ 0 ∀ i.
Besides the three subproblem aggregations of (5.12), and the trivial one of aggregating
all subproblems, there is no other possibility to reduce the number of links by aggregating
subproblems, cf. also theorem 5.2.3. As mentioned above, the aggregated problems of
(5.12) can in turn be solved by a decomposition method which results in multilevel
decompositions.
Note that the constraint h1(x) = h2,1(x2)+h3,1(x3)+h4,1(x4) ≤ 0 is the only constraint
whose sole relaxation decomposes the optimization problem. This can also be seen in
the hypergraph H in figure 5.2: The net between x_2 and [x_3,x_4], which corresponds
to µ_1, is the only net-cut of H with lowest possible weight 1. This cut induces also
a balanced partition with vertex weights of components given by w({x_1, x_2}) = 3
and w([x_3,x_4]) = 2, and net weights of components given by w([λ_1, λ_2]) = 2 and
w([λ_3, λ_4, µ_2]) = 3.
Let us now consider primal decomposition. x2 is the only primal variable whose fixing
decomposes the optimization problem. Namely, by fixing x2 = t in the subproblems, we
can formulate problem (5.3) with constraints (5.4) by

min
t
f2(t) +

(
inf
x1

g1(x1,t)≤0
g2(x1,t)≤0

f1(x1) + inf
x3,x4

g3(x3,x4)≤0
g4(x3,x4)≤0
h1(t,x3,x4)=0
h2(x3,x4)=0

f3(x3) + f4(x4)
)

= min
t
f2(t) + φ1(t) + φ3,4(t),

(5.13)
where φ1(t) and φ3,4(t) are the optimal value functions of the related subproblems.
Fixing further primal variables does not result in any further decomposition of prob-
lem (5.13). However, the second subproblem, in variables x3 and x4, could be solved by
dual decomposition, which would result in a multilevel decomposition.

Example 5.2.2 (Continuation of example 5.1.3: different decompositions). Let
us again start with dual decomposition. All possible dual decompositions are obtained
by different net-cuts of the hypergraph H shown in figure 5.3. The dual function (5.10),

d(λ1, λ2, λ3, λ4, µ1, µ2) = d1(λ1, λ2, λ3) +d2(λ1, λ2, µ1) +d3(λ2, λ4, µ1, µ2) +d4(λ3, λ4, µ2),
(5.14)

95

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

represents the most granular decomposition of problem (5.3) with constraints (5.9). It
has four subproblems coupled by six links and corresponds to the largest net-cut of H,
which consists of five nets, four of which have weight 1 and one has weight 2. There are
ten further convenient dual decompositions, which can be represented by the following
partial dual functions:

dpartA (λ2, λ3, λ4, µ1, µ2) = d1,2(λ2, λ3, µ1) + d3(λ2, λ4, µ1, µ2) + d4(λ3, λ4, µ2),

dpartB (λ1, λ2, λ4, µ1, µ2) = d1,4(λ1, λ2, λ4, µ2) + d2(λ1, λ2, µ1) + d3(λ2, λ4, µ1, µ2),

dpartC (λ1, λ2, λ3, λ4, µ2) = d1(λ1, λ2, λ3) + d2,3(λ1, λ2, λ4, µ2) + d4(λ3, λ4, µ2),

dpartD (λ1, λ2, λ3, µ1) = d1(λ1, λ2, λ3) + d2(λ1, λ2, µ1) + d3,4(λ2, λ3, µ1),

(5.15)

dpartE (λ2, λ3, µ1) = d1,2(λ2, λ3, µ1) + d3,4(λ2, λ3, µ1),

dpartF (λ1, λ2, λ4, µ2) = d1,4(λ1, λ2, λ4, µ2) + d2,3(λ1, λ2, λ4, µ2),
(5.16)

dpartG (λ3, λ4, µ2) = d1,2,3(λ3, λ4, µ2) + d4(λ3, λ4, µ2),

dpartH (λ2, λ4, µ1, µ2) = d1,2,4(λ2, λ4, µ1, µ2) + d3(λ2, λ4, µ1, µ2),

dpartI (λ1, λ2, µ1) = d1,3,4(λ1, λ2, µ1) + d2(λ1, λ2, µ1),

dpartJ (λ1, λ2, λ3) = d1(λ1, λ2, λ3) + d2,3,4(λ1, λ2, λ3),

(5.17)

where each optimal value function di of an aggregated subproblem i is defined analo-
gously to those of example 5.2.1.
The decompositions in (5.15) and (5.17) are obtained by net-cuts of H that separate
single nodes/subproblems. These net-cuts are not obtained by vertex-cuts of H’s net
intersection graph GNIG shown in figure 5.3. In contrast, each subproblem of the two
decompositions in (5.16) arose from an aggregation of two single subproblems in x1, x2,
x3, or x4, and includes at least one former global constraint that changed into a local
one. These two decompositions are more balanced than those of (5.15) and (5.17), and
they are induced by the two non-trivial vertex-cuts of GNIG, given by {λ_2, λ_3, µ_1}
and {λ_1, λ_2, [λ_4, µ_2]}.
Next, we consider the primal decompositions. The only subsets of primal variables whose
fixing decomposes the optimization problem is {x1,x3}. By fixing x1 = t and x3 = u
in the subproblems, we can formulate problem (5.3) with constraints (5.9) by

min
t,u

f1(t) + f3(u) +
(

inf
x2

g1(t,x2)≤0
g2(t,x2,u)≤0
h1(x2,u)=0

f2(x2) + inf
x4

g3(t,x4)≤0
g4(u,x4)≤0
h2(u,x4)=0

f4(x4)
)

= min
t,u

f1(t) + f3(u) + φ2(t, u) + φ4(t, u),

(5.18)

where φ2(t, u) and φ4(t, u) are the optimal value functions of the related subproblems.
Fixing different primal variables does not result in any further decomposition of prob-
lem (5.18).

96

5.2 Determining Advantageous Decompositions

In addition to primal and dual decomposition, additional decomposition schemes can
be obtained by simultaneously fixing suitable primal and dual variables. In the treated
problem, for example, fixing λ3 = t and x3 = u decomposes problem (5.3) with con-
straints (5.9) in the following way:

max
t≥0

inf
u
f3(u) +

(
inf
x1,x2

g1(x1,x2)≤0
g2(x1,x2,u)≤0
h1(x2,u)=0

f1(x1) + f2(x2) + tg1,3(x1) + inf
x4

g4(u,x4)≤0
h2(u,x4)=0

f4(x4) + tg4,3(x4)
)

= max
t≥0

inf
u
f3(u) + φg31,2(t, u) + φg34 (t, u),

(5.19)

where φg31,2 and φg34 are the optimal value functions of the related partially relaxed sub-
problems. Such “mixed primal-dual decompositions” are obtained by vertex-cuts of the
bipartite graph Gb that include elements of both vertex sets, V red

s and V red
d , as will be

briefly explained in remark 5.2.10.

Regarding decompositions of a block-separable optimization problem, as stated in (5.1),
and partitions of the related hypergraph H, defined in section 5.1, we obtain several
general results.

Theorem 5.2.3. If the aggregation of two subproblems i1 and i2 of problem (5.1) changes
a coupling constraint to a local constraint, i1 and i2 are represented in H by the same
merged vertex, or the vertices corresponding to i1 and i2 are neighbors in the hypergraph
H and in its induced graph Gind.

Proof To change a coupling constraint gj(x) =
∑N

i=1 gi,j(xi) ≤ 0 (or analogously
hj(x) = 0) to a local constraint, both problems must be affected by this constraint,
i.e., gi1j 6≡ 0 and gi2j 6≡ 0. Either both subproblems are affected by exactly the same
constraints, i.e., they are represented in Gb, and, therefore, in H, by the same vertex, or
both subproblems are connected in Gb by the dual variable λj related to the constraint
gj(x) ≤ 0, which implies that they are neighbors in H. Furthermore, neighbors in H
are also neighbors in Gind.

Similar to definition 4.5.2 of a narrow separator, we introduce the following definitions:

Definition 5.2.4. Consider a set I ⊂ {1, ..., N} of subproblems for which the fixing
of the related variables xi, i ∈ I, decomposes the overall optimization problem into k ≤
N − |I| independently solvable parts. We call this set I narrow if there is no subset
I ′ ⊂ I for which the fixing of variables xi, i ∈ I ′, decomposes the overall optimization
problem into k independently solvable parts.

Definition 5.2.5. Consider a set J ⊆ {1, ...,m + p} of coupling constraints whose re-
laxation decomposes the overall optimization problem into k ≤ N independently solvable

97

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

parts. We call this set J narrow if there is no subset J ′ ⊂ J of coupling constraints
whose relaxation decomposes the overall optimization problem into k independently solv-
able parts.

To prove the major results of theorems 5.2.8 and 5.2.9, we will use the following lemmata.

Lemma 5.2.6. If two subproblems i1, i2 ∈ {1, ..., N} are represented by the same node
of H, a narrow set of subproblems, for which the fixing of related variables decomposes
the overall problem, contains either none or both of i1, i2. If the narrow set does not
contain them, one of the resulting independently solvable parts contains both, i1 and i2.

Proof Let I be a narrow set of subproblems for which variable fixing decomposes the
overall optimization problem into parts {P1, ..., Pk}, with Pi ⊂ {1, ..., N} \ I ∀ i ∈
{1, ..., k}, Pi

⋂
Pj = ∅ ∀ i 6= j ∈ {1, ..., k},

⋃k
i=1 Pi = {1, ..., N} \ I. If two subproblems

i1, i2 ∈ {1, ..., N} are represented by the same node of H, both problems are affected
by exactly the same set of constraints. Let us assume that I contains only subproblem
i1, but not i2. Since I is narrow there exists a constraint gj(x) =

∑N
i=1 gi,j(xi) ≤ 0 (or

hj(x) = 0) with gi1,j 6≡ 0, gp,j 6≡ 0, and gq,j 6≡ 0 for p ∈ Pi, q ∈ Pj, i 6= j ∈ {1, ..., k}.
However, since i1 ∈ I and i2 ∈ {1, ..., N} \ I are assumed to be represented by the same
node, we must also have gi2,j 6≡ 0, which means that the parts Pi and Pj cannot be
solved independently, and which contradicts that I is a narrow set of subproblems for
which variable fixing decomposes the overall optimization problem into k parts.
The same argument shows that a part Pi, i ∈ {1, ..., k}, contains either none or both of
i1, i2.

Lemma 5.2.7. If two coupling constraints j1, j2 ∈ {1, ...,m+ p} are represented by the
same net of H, a narrow set of coupling constraints, whose relaxation decomposes the
overall problem, contains either none or both of j1, j2. If the narrow set does not contain
them, one of the resulting independently solvable parts contains both, j1 and j2.

Proof Let J be a narrow set of coupling constraints whose relaxation decomposes the
overall optimization problem into parts {P1, ..., Pk}, Pi ⊂ {1, ..., N} ∀ i ∈ {1, ..., k},
Pi
⋂
Pj = ∅ ∀ i 6= j ∈ {1, ..., k},

⋃k
i=1 Pi = {1, ..., N}. If two coupling constraints j1, j2

are represented by the same net of H, both coupling constraints affect exactly the same
set of subproblems. Let us assume that J contains only the coupling constraints j1, but
not j2. Since J is narrow, the constraint gj1(x) =

∑N
i=1 gi,j1(xi) ≤ 0 (or hj1(x) = 0)

couples two subproblems p ∈ Pi, q ∈ Pj, i 6= j ∈ {1, ..., k}, i.e., gp,j1 6≡ 0, and gq,j1 6≡ 0.
However, since j1 and j2 are assumed to be represented by the same net, we must also
have gp,j2 6≡ 0 and gq,j2 6≡ 0, which means that the parts Pi and Pj cannot be solved
independently, and which contradicts that J is a narrow set of coupling constraints
whose relaxation decomposes the overall optimization problem into k parts.
The same argument shows that a part Pi, i ∈ {1, ..., k}, contains either none or both of
j1, j2.

98

5.2 Determining Advantageous Decompositions

Theorem 5.2.8. A narrow set I ⊂ {1, ..., N} of subproblems for which the fixing of
variables xi, i ∈ I, decomposes the overall optimization problem into k ≤ N−|I| indepen-
dently solvable parts uniquely corresponds to a narrow k-way vertex-separator V ⊂ V red

s

of H.
The weight of the vertex-separator V ,

∑
v∈V w(v), equals

∑
i∈I ni, where ni is the di-

mension of xi. The dimension of each independently solvable subproblem is equal to the
sum of vertex-weights in the corresponding component of H − V .

Proof a) Let I be such a narrow set of subproblems, and let {P1, ..., Pk} be the related
partition of subproblems, i.e., Pi ⊂ {1, ..., N} \ I ∀ i ∈ {1, ..., k}, Pi

⋂
Pj = ∅ ∀ i 6= j ∈

{1, ..., k},
⋃k
i=1 Pi = {1, ..., N} \ I. If two subproblems i1, i2 ∈ {1, ..., N} are represented

by the same node of H, either I, or one part Pi, i ∈ {1, ..., k} contains both subproblems
i1, i2, cf. lemma 5.2.6. Therefore, the partition {P1, ..., Pk, I} of the index set {1, ..., N}
implies a partition {V1, ..., Vk, VI} of V red

s . H − VI must decompose into k components
with vertex sets V1, ..., Vk since a hyperedge connecting vi ∈ Vi and vj ∈ Vj, i 6= j ∈
{1, ..., k} would imply a coupling constraint between two parts Pi and Pj. If VI were not
narrow, this would contradict that I is narrow.
b) Let V ⊂ V red

s be a narrow vertex-separator ofH that induces a partition {V1, ..., Vk, V }
of V red

s . By H’s definition, it naturally implies a partition {P1, ..., Pk, PV } of the index
set {1, ..., N} of subproblems. If there were a coupling constraint connecting two parts
Pi and Pj, i 6= j ∈ {1, ..., k}, the corresponding vertex-sets Vi and Vj would be connected
by a net because of the correspondence between nets of H and coupling constraints.
Furthermore, PV must be a narrow set of subproblems for which the fixing of variables
xi, i ∈ PV , decomposes the overall optimization problem, since otherwise V would not
be a narrow separator.
The equality of weights and dimensions is due to the definition of vertex-weights in H.

Theorem 5.2.9. A narrow set J ⊆ {1, ...,m+p} of coupling constraints whose relaxation
decomposes the overall optimization problem into k ≤ N independently solvable parts
uniquely corresponds to a narrow k-way net-separator NJ ⊆ Nd of H.
The weight of the net-separator NJ is equal to the cardinality of J :

∑
n∈NJ w(n) = |J |.

The dimension of each independently solvable subproblem is equal to the sum of vertex-
weights in the corresponding component of H ′ := (V red

s , Nd \NJ).

Proof a) Let J be a narrow set of coupling constraints whose relaxation decomposes
the optimization problem into parts {P1, ..., Pk}, with Pi ⊂ {1, ..., N} ∀ i ∈ {1, ..., k},
Pi
⋂
Pj = ∅ ∀ i 6= j ∈ {1, ..., k},

⋃k
i=1 Pi = {1, ..., N}. By lemma 5.2.7, two coupling

constraints which are represented by the same net of H are either contained in J or in
one of the independently solvable parts. Therefore, J implies a set of nets NJ ⊆ Nd. NJ

is a k-way net-separator of H, since H ′ := (V red
s , Nd\NJ) decomposes into k components

naturally corresponding to {P1, ..., Pk}. If NJ were not narrow, J would not be narrow.
b) Let NJ ⊆ Nd be a narrow net-separator of H inducing a partition {V1, ..., Vk} of V red

s .
By H’s definition, NJ and {V1, ..., Vk} naturally imply a set J ⊆ {1, ...,m+p} of coupling

99

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

constraints and a partition {P1, ..., Pk} of the index set {1, ..., N} of subproblems, re-
spectively. If there were a coupling constraint l ∈ {1, ...,m+p}\J connecting two parts
Pi and Pj, i 6= j ∈ {1, ..., k}, the corresponding vertex-sets Vi and Vj would be connected
by a net nl ∈ Nd \ NJ because of the correspondence between nets of H and coupling
constraints. Furthermore, the set J must be a narrow set of coupling constraints whose
relaxation decomposes the overall optimization problem, since otherwise NJ would not
be a narrow separator.
The equality of weights and dimensions is due to the definitions of vertex-weights and
net-weights in H.

Theorems 5.2.8 and 5.2.9 show that primal decompositions of an optimization prob-
lem uniquely correspond to vertex-cuts of the hypergraph H, and dual decompositions
uniquely correspond to net-cuts of H. Thus the task is to detect suitable vertex-cuts
and net-cuts of H.
Since by theorem 4.5.19, vertex-cuts of the hypergraph H are identical to those of its
induced graph Gind, one can determine them by methods and algorithms presented in
sections 4.4 and 4.5. As originally shown by [KPcA12] and outlined in section 4.5, every
vertex-cut of H’s net intersection graph GNIG implies a net-cut of H. However, as seen
in examples 5.2.1 and 5.2.2, not every net-cut of H corresponds to a vertex-cut of GNIG.
Namely, if a net-cut of H separates single nodes of H, i.e., if at least one of the resulting
components includes only one vertex and, therefore, no net, this net-cut is not repre-
sented by a vertex-cut of GNIG. Especially for large problems, such decompositions with
a very small component are obviously less favorable than a decomposition of which each
component includes at least one net. Thus, it is reasonable to search for vertex-cuts of
GNIG to partition H.
Possible quality criteria for graph partitions are a small cut-size, a predetermined num-
ber of components, balanced size of components, or low intra-component connectivity,
cf. section 4.5. Which of them are most important for a decomposition, depends on the
respective application and on the purpose of the decomposition. According to specific
aims, distinct algorithms for graph partitioning should be applied. For example, to ap-
proximate a subproblem, as described in the following section, a small cut-size is very
important.
Since the quality of an optimization result does not depend on the chosen decomposi-
tion in a well-known way, we do not necessarily benefit from the, in some predefined
sense, optimal decomposition of a large problem. Therefore, it is reasonable to use fast
heuristics to compute good partitions of the hypergraph H.

Remark 5.2.10. Besides primal and dual decomposition, further decomposition schemes
can be obtained by simultaneously fixing suitable primal and dual variables. We illus-
trated this at the end of example 5.2.2. Such decompositions correspond to vertex-cuts
of the bipartite graph Gb that include elements of both vertex sets, V red

s and V red
d . In the

hypergraph H this would correspond to a “mixed vertex-net-cut” which is not considered
in graph theory. This fact justifies the definition of the bipartite graph Gb in addition

100

5.3 Approximating Subproblems

to the hypergraph H, even if both graphs display quite similar information.
The described decompositions can become useful if the objective is to find a cut of as
few links as possible, since a “mixed vertex-net-cut” could have a smaller weight than a
pure vertex-cut or a pure net-cut.

5.3 Approximating Subproblems

As mentioned above, subproblems of an overall problem (5.1) can be regarded as para-
metric problems in the links. If the optimal value functions of the subproblems were
known, the overall problem could be solved just by solving the master problem. If one
aims to solve a decomposed problem multiple times for varying parameters in certain
subproblems, while the parameters in others are fixed, the approximation of subproblems
with fixed parameters could be timesaving. Apart from this, in applications, the estab-
lishment of a parametric model for the optimal value function of a subproblem can be
interesting with regard to modeling and analysis. In this section, we discuss the approx-
imation of subproblems’ optimal value functions, which are in general non-differentiable.
We mainly focus on primal decomposition and dual decomposition. Approximating op-
timal value functions of the subproblems in case of a mixed primal-dual decomposition
is mentioned in remark 5.3.2.
In this section, φi(ui) denotes the optimal value function of a subproblem i in case of
primal decomposition, and di(si, ti) denotes the optimal value function of a subproblem
i in case of dual decomposition. ui and (si, ti) denote the links that connect subprob-
lem i with the master problem. They correspond to certain components of the primal
variable x and of the dual variable (λ,µ), respectively. Let I i ⊂ {1, ..., N} (primal
decomposition) and J i ⊆ {1, ...,m + p} (dual decomposition) denote the index sets of
the corresponding links.

Definition 5.3.1. We call the number of links of a subproblem i, which is the dimension
of ui or of (si, ti), the link degree dil of subproblem i. For dual decomposition, the link
degree splits into a part corresponding to inequality relaxation and a part corresponding
to equality relaxation: dil = dili + dile.

Furthermore, in this section, we denote the variables of a subproblem i by x̃i. x̃i

comprises several components xk, k ∈ Pi ⊂ {1, ..., N}, which have dimension nk. The
subproblem dimension, which is the dimension of x̃i, is given by Ñi :=

∑
k∈Pi nk.

For the general case of an overall problem (5.1) with coupling constraints, the optimal
value functions of the subproblems, φi(ui) : Rdil → R or di(si, ti) : (R+

0)d
i
li × Rdile → R,

have the form

φi(u
i) = infexi∈ eF i(ui) f i(x̃

i), (5.20)

di(s
i, ti) = infexi∈ eF i f i(x̃

i) +
∑

k∈Ji∩{1,...,m}

sikg
i
k(x̃

i) +
∑

k∈Ji∩{m+1,...,m+p}

tik−mh
i
k−m(x̃i). (5.21)

101

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

F̃ i denotes the local feasible set of subproblem i in variable x̃i and F̃ i(ui) has the form

F̃ i(ui) := { x̃i ∈ F̃ i | gk(ui, x̃i) ≤ 0 ∀ k ∈ J̃ ii and hk(u
i, x̃i) = 0 ∀ k ∈ J̃ ie }, (5.22)

where the index set J̃ ii corresponds to those inequality constraints k with gl,k(xl) ≡ 0

∀ l ∈ {1, ..., N} \ (I i ∪ Pi) and J̃ ie corresponds to those equality constraints k with
hl,k(xl) ≡ 0 ∀ l ∈ {1, ..., N} \ (I i ∪ Pi). Furthermore,

f i(x̃i) :=
∑
l∈Pi

fl(xl), gik(x̃
i) :=

∑
l∈Pi

gil,k(xl), ∀ k ∈ J i ∩ {1, ...,m}, and

hik(x̃
i) :=

∑
l∈Pi

hil,k−m(xl), ∀ k ∈ J i ∩ {m+ 1, ...,m+ p}.
(5.23)

Explicit examples for the optimal value functions (5.20) and (5.21) are given in (5.13)
and (5.12). Continuity properties of optimal value functions can be derived from theo-
rem 3.2.4. Theorem 3.2.7 provides conditions under which they are convex. Conditions
for local differentiability of the optimal value functions are stated in theorems 3.2.10 and
3.2.11.

Let us first consider primal decomposition. Under appropriate continuity and convexity
assumptions on the overall problem (5.1), the optimal value function φi of a subprob-
lem i, given by (5.20), is continuous and convex. Regarding a decomposition of the
overall problem into k subproblems, these properties of the subproblems’ optimal value
functions ensure convexity of the master problem

min
u∈Fu

k∑
i=1

φi(u
i), (5.24)

where u is the union of all subproblem links, corresponding to the index set
⋃k
i=1 I

i,
and Fu consists of the inequality and equality constraints that do not affect variables
xl, l ∈ {1, ..., N} \

⋃k
i=1 I

i. However, since the functions φi need not be differentiable, in
general, problem (5.24) is nonsmooth.
To analyze the problem, it may be useful to approximate the optimal value functions φi
of some subproblems. The same can be profitable if variants of the overall problem have
to be solved many times while certain subproblems remain the same. To approximate a
submodel function φi, we must realize several points:

1. Choose K values of ui within a domain over which φi should be approximated and
generate K data points (uik, φi(u

i
k))(k=1,...,K) by solving the subproblem for each

value uik, k = 1, ..., K.

2. Select a parametric model φθi for φi, where the dimension of φθi ’s domain equals
the link degree dil.

102

5.3 Approximating Subproblems

3. Fit φθi to the data (uik, φi(u
i
k))(k=1,...,K) by determining an estimator θ̂ of the pa-

rameter θ. The resulting function φθ̂i serves as an approximation φ̂i : Fu → R of
φi.

We will shortly discuss these three steps after considering dual decomposition. Since the
optimal value function di of a subproblem i, given by (5.21), is the pointwise infimum
of a family of linear functions in (si, ti), it is concave and continuous, even if the overall
problem (5.1) is not convex. Therefore, a dual master problem of the form

min
si≥0,ti

−
k∑
i=1

di(s
i, ti), (5.25)

is a convex problem. However, since di, i = 1, ..., k, need not be differentiable, the master
problem is in general nonsmooth. Approximating a submodel function di is similar to
approximating φi:

1. Choose K values of (si, ti) within a domain over which di should be approximated
and generate K data points ((sik, t

i
k), di(s

i
k, t

i
k))(k=1,...,K) by solving the subproblem

for each value (sik, t
i
k), k ∈ {1, ..., K}.

2. Select a parametric model dθi for di, where the dimension of dθi ’s domain equals the
link degree dil = dili + dile.

3. Fit dθi to the data ((sik, t
i
k), di(s

i
k, t

i
k))(k=1,...,K) by determining an estimator θ̂ of the

parameter θ. The resulting function dθ̂i serves as an approximation d̂i : (R+
0)d

i
li ×

Rdile → R of di.

Generating data points:
The choice of the data points uik and (sik, t

i
k), in particular the choice of the domain that

they cover, is usually crucial for a suitable approximation of the optimal value functions
φi and di. Conventionally, these values are chosen as multidimensional grid points.
Since the links ui of a primal decomposition correspond to some primal variables of the
overall model, they are often restricted by constraints of the overall problem. Basically,
one should choose uik ∈ Fu, where Fu is the feasible set of master problem (5.24). Further
restrictions on the data points could be implied by constraints gk(ui, x̃i) ≤ 0, k ∈ J̃ ii , and
hk(u

i, x̃i) = 0, k ∈ J̃ ie, that determine subproblem i’s local feasible set F̃ i(ui), cf. (5.22).
Only values uik for which F̃ i(ui) 6= ∅ should be taken into account. Since a wide approx-
imation domain can lead to a locally bad approximation of φi, it can be worthwhile to
further truncate the domain based on individual information or a reasonable idea about
the order of magnitude, in which the value of ui should lie in an optimal solution of the
overall problem.
In case of dual decomposition, in general, every point in (R+

0)d
i
li × Rdile can be chosen

as data point (sik, t
i
k). However, due to the interpretability of dual variables as shadow

103

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

prices, there are sometimes natural bounds on the links by the model context, or the
values of dual variables in an optimal solution can at least be restricted by reasonability.
Regarding the numerical solution of a subproblem i for each parameter (uik), k ∈
{1, ..., K}, or (sik, t

i
k), k ∈ {1, ..., K}, it can be efficient to solve these parametric prob-

lems at least partly sequentially and to use already computed optimal solutions of prob-
lems as start values for subsequent optimizations of problems in adjacent parameters.
If the optimal value sensitivities of a subproblem are available, they might be used for
an adaptive grid refinement.

Selecting a parametric model:
Since φi is convex and di is concave, a natural way, which requires only few parameters,
is to model these functions by a multivariate quadratic polynomial. Principally, also a
linear model, a polynomial of higher degree or a different model can be used. A suitable
choice strongly depends on the application. For the purpose of an efficient numerical
optimization, a tabulation of the calculated optimal values of a subproblem and local
interpolations during the optimization procedure of the master problem might be prefer-
able to the estimation of a global model with only a few number of parameters.

Determining the parameters:
An estimator θ̂ of the parameter θ can be obtained for example by a least squares es-
timation, cf. section 3.7. If one aims to compute a lower or an upper bound on the
optimal solution of the master problems (5.24) and (5.25), the functions φ̂i and −d̂i
should underestimate or overestimate φi and −di, respectively. The former may be
achieved by constraining the corresponding least squares estimation by the conditions
φθi (u

i
k) ≤ φi(u

i
k) ∀ k ∈ {1, ..., K} and dθi (s

i
k, t

i
k) ≥ di(s

i
k, t

i
k) ∀ k ∈ {1, ..., K}, respec-

tively.9 Overestimators can be obtained analogously.

Remark 5.3.2. Approximating optimal value functions of subproblems is in principle
also possible in the case of a mixed primal-dual decomposition, cf. 5.2.10. However, due
to the two-level structure of the resulting master problem, it is in general not possible
to compute lower or upper bounds on the optimal solution of the overall problem by
underestimating or overestimating submodel functions.

Remark 5.3.3. (Sensitivity analysis within subproblems) Solving a subproblem
for varying values uik, or (sik, t

i
k), k ∈ {1, ..., K}, which cover the relevant domain of the

subproblems’ optimal value function, generates, besides the optimal values φi(uik), or
di(s

i
k, t

i
k), further interesting data. These are the optimal solutions and, usually, also

their sensitivities with respect to model parameters. Under the appropriate regularity
assumptions, sensitivities are given through theorem 3.2.11. The matrices that are neces-
sary to compute sensitivities are calculated by many numerical optimization algorithms
while iterating. Firstly, considering the optimal solutions of a subproblem dependent

9[EFS12] obtains promising results in view of global optimal solutions of MINLPs by using underesti-
mators for the optimal value functions of selected subsystems.

104

5.3 Approximating Subproblems

on ui, or (si, ti), we obtain an overview of possible subproblem solutions. Secondly, let
us consider an optimization problem that includes a large number of parameters. The
availability of subproblem sensitivities with respect to these parameters for all relevant
values of ui, or (si, ti), makes an extended sensitivity analysis possible, which facilitates
the differentiation between influential parameters and parameters that have only little
effect on the overall solution.

105

5 A Graph-Theoretical Approach to Decomposing Constrained Nonlinear Programs

106

6 Decomposing a Multi-Commodity Supply-Demand
Network

In chapter 2, we introduced a constrained nonlinear optimization model for the simula-
tion of price formation in a multi-commodity market, at which products are connected by
production processes. Depending on the market that one simulates, this model can be-
come large and include many parameters. Besides data for the modeling of the demand-
price relationship of products with external demand, prices of external products and
data about production and processing facilities are required. Since real market data is
often hardly available or costly, data procurement can be difficult. To facilitate the task
of data procurement, a classification of parameters into more and less important ones is
useful. Furthermore, the interpretation of optimization results is complicated in a large
model since major dependencies are not self-evident. Therefore, this chapter aims at
developing a suitable method for reducing the complexity of a large multi-commodity
market model. Specifically, we intend to

• structure the overall problem by determining weakly connected market compo-
nents,

• aggregate components that are of less interest than other ones regarding a certain
analysis,

• differentiate between parameters that strongly influence simulation results and
those that have little to no effect.

The reduction of network models through the aggregation of components is accom-
plished in several scientific fields. In the context of operations research, for example,
[Stu02] proposes a graph-theoretical approach to reduce a model for the technological
oriented simulation of energy systems. Furthermore, [SRWD+11] presents a method
for a structure-preserving reduction of large-scale logistic networks based on the Log-
Rank as measure for the importance of nodes. Reduction methods that are specifically
tailored to the optimization of natural gas transmission networks were published by
[RMWSB02, MHH+04, BSH11]. They operate to some extent automatically. Gas trans-
mission networks differ from our production network mainly by the crucial fact that, in
our model, commodities are transformed while “flowing” through the network. More-
over, network reduction is accomplished in the scientific area of molecular biology: for
example, [BCFK08, CSRS+06] deal with an automated domain-oriented reduction ap-
proach for networks of signaling proteins, which provides a macroscopic description of
network dynamics. However, despite the variety of existing reduction methods, there is,

107

6 Decomposing a Multi-Commodity Supply-Demand Network

as far as we know, no reduction method that is applicable to a constrained nonlinear
network optimization model as ours, presented in chapter 2. Therefore, in chapter 5, we
developed a general approach to the decomposition of constrained nonlinear programs
with a block-separable structure. This approach reveals model components that are
particularly suited for aggregation.
In this chapter, we apply a tailored version of our reduction approach of chapter 5 to the
network optimization model of chapter 2. The block-separable structure of this model is
due to its separable objective function and the products connected by chemical reaction
chains. We detach branches of the production network that are linked to the remaining
part of the network by only a few products called links. Within these branches, we max-
imize profit (or minimize costs) given chosen input (or output) quantities of the linking
products. This enables us to approximate subproblems’ optimal value functions, which
represent the input/output-profit/cost relationship for a whole subsystem so that we
can treat it like a single consumption sector or the aggregated costs of some preceding
production processes, respectively.
This approach is advantageous because it divides the overall optimization problem into
subproblems with less variables and constraints. Only few variables are necessary to de-
scribe the connection between subproblems and the main problem. Thus, the subprob-
lems can be solved nearly independently from the remaining network. Once solved and
aggregated, the subproblems’ results can be used for various simulations of the overall
problem under the sole assumption that the subsystem parameters do not vary dramat-
ically. Accomplishing sensitivity analyses within subsystems over the whole range of
possible input/output quantities yields global sensitivity results with respect to parame-
ters outside the subsystem. The approach facilitates the interpretation of the simulation
results, decreases the simulation time, and enables to differentiate between more and
less influencing parameter data.
Section 6.1 defines the version of the multi-commodity model on which we focus in this
chapter. Section 6.2 adapts the decomposition approach of the previous chapter to the
model of section 6.1 and formulates resulting subproblems. In section 6.3, we present
first numerical results of aggregations within a small consistent production system. Fur-
thermore, we extend this production system to a larger model. Section 6.4 deals with the
automatic identification of subsystems that are suited for an aggregation. Our developed
algorithm is applied to the extended commodity market. In section 6.5, we discuss the
aggregation of subsystems in terms of approximating the subproblems’ optimal value
functions. This discussion includes the definition of the relevant approximation domain,
the properties of the optimal value functions, the choice of an appropriate parametric
model, and an alternative formulation of the subproblem, which can be used to generate
subsystem data. Section 6.6 addresses sensitivity analysis within the overall model and
within subsystems. We explain why sensitivity analysis may justify model simplifica-
tions and how it supports the task of data procurement. Section 6.7 includes numerical
results of subsystems’ aggregations within the extended market model. Sensitivity anal-
yses within the subsystems reveal several possibilities for model simplifications.

108

6.1 The Model

6.1 The Model

Given the definitions of section 2.1, we consider a special case of the optimization problem
defined in section 2.2 by making the following assumptions/simplifications (in parts they
were already stated for the example in section 2.5):

• We assume that all consumers have the same demand behavior. By remark 2.1.3,
this means that we must consider only one consumer. Therefore, we omit the
consumer index c.

• We consider only one time period and one region, i.e., we omit also the indices t
and r. Thus, there are no storage facilities.

• Fixed costs for running the plants are neglected so that we do not need to consider
plants, but we can attribute the aggregated capacities of plants that run a certain
process to this process, i.e., we define ∀ s ∈ S : acaps :=

∑
i∈I a

cap
i,s and respective

decision variables xqs .

• Assuming that the supplier offers his whole production output at the market, prices
are determined by these quantities through the demand-price relationship (6.2).
This means, we can leave the price variables out and end up only with the variables
for production quantities.

The Price-Demand Relationship

By the above simplifications, the demand function (2.3) is given by

φpout(x
π
pout) = max

[
a1
pout · tanh

(a2
pout + wpout(a

GDP , aIndPro)− xπpout
a3
pout

)
, 0
]
, (6.1)

where a1
pout , a

2
pout , and a

3
pout are defined by (2.2) and wpout(aGDP , aIndPro) by equation (2.4).

Inverting (6.1), we can construct the corresponding demand-price relation

Ppout(x
sales
pout) = max

[
a2
pout + wpout(a

GDP , aIndPro)− a3
pout · artanh

(xsalespout

a1
pout

)
, 0
]
. (6.2)

In the domain of positive function values, i.e., for 0 ≤ xsalespout < φpout(0), where φpout(0) <
a1
pout , we can neglect the maximum-operator and the first and second derivatives of Ppout

are given by

P ′pout(x
sales
pout) =

−a3
pout · a

1
pout

a1
pout

2 − xsalespout
2 (6.3)

and

P ′′pout(x
sales
pout) =

−2 · a3
pout · a

1
pout · x

sales
pout

(a1
pout

2 − xsalespout
2)2

. (6.4)

109

6 Decomposing a Multi-Commodity Supply-Demand Network

Remark 6.1.1. The following decomposition approach is applicable in the same manner
using any other price-demand relationsship that leads to a convex optimization prob-
lem (6.5). We propose to use a function Ppout : R+

0 → R+
0 with the following properties:

• Ppout is continuous, decreasing, and bounded,
• Ppout has a minimal zero, say y0, and Ppout(y) = 0 for y ∈ [y0,∞],
• Ppout is twice continuously differentiable on]0, y0[with P ′pout(y) < 0 and P ′′pout(y) < 0.

The Optimization Problem

Under the above assumptions, we consider the following nonlinear optimization problem
with capacity bounds on the variables and non-negative gross production for products
with external demand and all intermediates:

max
xq

F (xq) = max
xq

∑
pout∈Pout

(∑
s∈S

xqs ·afs,pout
)
·Ppout

(∑
s∈S

xqs ·afs,pout
)

+
∑

pex∈Pex,
s∈S

xqs ·afs,pex ·a
π
pex

(6.5a)such that

∀ s ∈ S : 0 ≤ xqs ≤ acaps (6.5b)

∀ p ∈ Pout
⋃̇
Pmid : 0 ≤

∑
s∈S

xqs · afs,p. (6.5c)

Remark 6.1.2. (Differentiability and convexity) To assure differentiability and
convexity of this problem, one can add as further constraints∑

s∈S

xqs · afs,pout ≤ φpout(0) (< a1
pout) ∀ pout ∈ Pout. (6.6)

Compare also remark 2.2.1 and 2.5.1 concerning the maximum function in the demand
function and the price-demand relationship, respectively. However, in most applications
that only include one consumer, such constraints are not active since producing a product
whose price is zero is unprofitable. It would be economically reasonable only if this
product was a byproduct of a process whose primary output is in strong demand and,
therefore, compensates for the profitless byproduct.
To show that the above optimization problem is convex, by remark 3.1.4, definition 3.1.5
and example 3.1.7, we have to prove that

(∑
s∈S x

q
s · afs,pout

)
· Ppout

(∑
s∈S x

q
s · afs,pout

)
is

concave ∀ pout ∈ Pout. Then, convexity follows since the second part of the objective
function as well as the constraints of problem (6.5) are linear, and since sums of convex
(concave) functions are again convex (concave).
We have for Gpout(y) := y · Ppout(y):

G′pout(y) = Ppout(y) + y · P ′pout(y) (6.7)
G′′pout(y) = 2P ′pout(y) + y · P ′′pout(y) (6.8)

110

6.1 The Model

P ′pout(y) < 0 and P ′′pout(y) < 0 ∀ y ∈]0, φpout(0)[, pout ∈ Pout, gives G′′pout(y) < 0 ∀ y ∈
]0, φpout(0)[, pout ∈ Pout, which means that Gpout(y) is strictly concave. Furthermore,
with xθ := (1− θ)xa + θxb, θ ∈ [0, 1], we have

n∑
s=1

xθs · afs = (1− θ)
n∑
s=1

xas · afs + θ
n∑
s=1

xbs · afs. (6.9)

In summary, this yields with yθ := (1− θ)ya + θyb := (1− θ)
∑n

s=1 x
a
s · afs + θ

∑n
s=1 x

b
s · afs(∑

s∈S

xθs · afs
)
· Ppout

(∑
s∈S

xθs · afs
)

= Gpout(y
θ)

≥ (1− θ)Gpout(y
a) + θGpout(y

b)

= (1− θ)
(∑
s∈S

xas · afs
)
· Ppout

(∑
s∈S

xas · afs
)

+ θ
(∑
s∈S

xbs · afs
)
· Ppout

(∑
s∈S

xbs · afs
)
.

(6.10)

However, since xa 6= xb does not imply ya 6= yb, our optimization problem is in general
not strictly convex.

To apply the reduction approach proposed in chapter 5 to problem (6.5), we introduce
additional variables and constraints so that we obtain a separable optimization problem
with coupling constraints:

Production optimization problem in a separable formulation
To make the objective function of problem (6.5) separable, we must introduce addi-
tional variables xnet_prod

p , describing the aggregated production, at least for all products
p ∈ Pout because of the nonlinear price-demand functions Ppout , pout ∈ Pout. This leads
to a model in the variables xqs (s ∈ S) and xnet_prod

p (p ∈ Pout):

max
xq,xnet_prod

∑
pout∈Pout

xnet_prod
pout · Ppout

(
xnet_prod
pout

)
+

∑
pex∈Pex,s∈S

xqs · afs,pex · a
π
pex (6.11a)

such that

∀ s ∈ S : 0 ≤ xqs ≤ acaps

∀ p ∈ Pmid : 0 ≤
∑
s∈S

xqs · afs,p → coupling constraints (dual variables λpmid)

∀ p ∈ Pout : 0 ≤ xnet_prod
p

∀ p ∈ Pout : 0 = xnet_prod
p −

∑
s∈S

xqs · afs,p

→ coupling constraints (dual variables λpout)
(6.11b)

111

6 Decomposing a Multi-Commodity Supply-Demand Network

Relaxing the coupling constraints, we obtain a partial dual function of this problem:

d(λPout ,λPmid) = inf
xq,xnet_prod,
0≤xq

s≤acap
s ,

0≤xnet_prod
p

−
∑

pout∈Pout

xnet_prod
pout · Ppout

(
xnet_prod
pout

)
−
∑

pex∈Pex,
s∈S

xqs · afs,pex · a
π
pex

+
∑

pout∈Pout

λpout · (xnet_prod
pout −

∑
s∈S

xqs · afs,p)

−
∑

pmid∈Pmid,s∈S

λpmid · xqs · afs,pmid

= inf
xq,xnet_prod,
0≤xq

s≤acap
s ,

0≤xnet_prod
p

−
∑

pout∈Pout

xnet_prod
pout · (Ppout

(
xnet_prod
pout

)
− λpout)

−
∑
s∈S

xqs · (
∑

p∈Pout
S
Pmid

afs,p · λp +
∑

pex∈Pex

afs,pex · a
π
pex)

(6.12)

Here, primal variables are blue-colored and dual variables are magenta-colored. This
partial dual function d decomposes into |Pout|+ |S| subproblems, of which each is in one
primal variable. The dimension of d’s domain is |Pout|+ |Pmid|.

6.2 The Approach

Aiming to analyze the structure of problem (6.5) by the approach of chapter 5, we
start with a graphical representation of connections between primal variables xqs , s ∈ S,
and x

net_prod
p , p ∈ Pout, and dual variables λpout , pout ∈ Pout, and λpmid , pmid ∈ Pmid.

The required information for the graphical representation, described in section 5.1, can,
for example, be extracted from the partial dual function (6.12). Basically, we have
one node for each primal variable and one for each dual variable. However, there are
processes si, sj ∈ S including exactly the same products p ∈ Pij ⊂ Pout

⋃
Pmid, but

with possibly different input/output factors, i.e., afsi,p 6= 0, afsj ,p 6= 0 ∀ p ∈ Pij and
afs,p = 0 ∀ p ∈

(
Pout

⋃
Pmid

)
\ Pij. Such processes are represented by the same node

of the graph. In principle, there could also be products p ∈ Pout
⋃
Pmid appearing in

exactly the same processes, but this case does not occur in our commodity market data,
and we do not take it into account. Therefore, the bipartite graph Gb has a structure as
shown in figure 6.1.
Let us first consider the connections between the primal process variables xqs , s ∈ S, and
the dual variables λp, p ∈ Pout

⋃
Pmid. Assuming that the input/output factors afs,p of

processes, which include exactly the same products, i.e., which are represented by the
same node of Gb, are of the same sign with respect to a certain product, we equip the
corresponding edges of Gb with an arrow according to the sign of afs,p. If afs,p > 0, i.e.,
if p is an output of process s, the arrow points at the product (dual variable λp), and

112

6.2 The Approach

Figure 6.1: Basic structure of the production optimization problem. All variables are
represented by their indices. A blue node with multiple process indices represents the
production variables of processes that include the same products, but possibly with distinct
input/output factors.

if afs,p < 0, i.e., if p is an input of process s, the arrow points at the process (primal
variable xqs). Now, let us consider the connections of primal net production variables
x
net_prod
p , p ∈ Pout, and the dual variables λp, p ∈ Pout

⋃
Pmid. Each of these primal

variables xnet_prod
p , p ∈ Pout, is connected to its respective dual variable λp, p ∈ Pout.

This is why, in figure 6.1, we choose a graphical representation of Gb that slightly differs
from the usual bipartite graph representation. Because of the described unique relation,
we do not need to regard the second set of primal variables, xnet_prod

p , p ∈ Pout, in our
following connectivity analysis.
In commodity markets, usually, the number of different processes, |S|, is much larger
than the number of relevant products, |Pout

⋃
Pmid|, and there are mostly several pro-

cesses including similar products. Thus, aiming for a small link degree, cf. defini-
tion 5.3.1, let us consider the dual variables λp, p ∈ Pout

⋃
Pmid, corresponding to cou-

pling constraints as possible links of a decomposition. We search for small subsets
Plink ⊂ Pout

⋃
Pmid such that the relaxation of the respective coupling constraints cuts

off a subproblem from the overall optimization problem (6.5). In the following tailored
approach, however, we will not relax the chosen coupling constraints and use the re-
spective dual variables as links, but we will include additional variables in the chosen
coupling constraints such that they decompose. By this, we are able to formulate the
subproblems and interprete the results without requiring duality theory. Considering the
respective dual solutions optionally is advantageous with respect to the interpretation
of the overall results because of the economical meaning of a dual variable λp as shadow
price of the related product p. We will discuss this in section 6.5.

113

6 Decomposing a Multi-Commodity Supply-Demand Network

The Restatement of the Optimization Problem

Suppose that we determined a small, nonempty set of links Plink ⊂ Pout
⋃
Pmid and

a related nonempty set of submodel products Pb ⊂ Pout
⋃
Pmid, where Plink

⋂
Pb = ∅,

Pb

⋃
Plink ⊂ Pmid

⋃
Pout, and no process of S includes both, a product of Pb and a prod-

uct of (Pmid
⋃
Pout)\(Pb

⋃
Plink), i.e., @ s ∈ S, p1 ∈ Pb, p2 ∈ (Pmid

⋃
Pout)\(Pb

⋃
Plink) :

af
s,p1
6= 0 ∨ af

s,p2
6= 0. This situation is sketched in figure 6.2.1

Let Sb ⊂ S be a set of processes that defines together with the products Pb a submodel
with links Plink. In general, Sb is not uniquely determined by Pb. It must contain at
least all processes that include products of the set Pb and must not contain processes
including products of P \ (Pb

⋃
Plink). A method for an automated identification of

subproblems that are coupled to the remaining network by only few links is detailed in
section 6.4. There, we also explain how the set Sb can be determined. In accordance
with definition 5.3.1, we call the number of linking products, |Plink|, the link degree of a
submodel of products Pb and processes Sb.2
To reduce complexity, we separate the subproblem of optimizing the production corre-
sponding to the processes sb ∈ Sb from the overall optimization. To preserve the con-
nection of the problems, we augment the subproblem by additional constraints, namely
certain fixed input or output quantities of the linking products plink ∈ Plink. The sub-
problem is solved n-times for different input/output bounds yq1, ...,yqn ∈ D ⊂ R|Plink|.
The results of these subsystem optimizations are later included in the optimization of the

1The shown graph corresponds to a projection of a bipartite graph, similar to the one in figure 6.1,
onto its set of dual variables λp, p ∈ Pout

⋃
Pmid.

2In general, one can also allow Pb = ∅. However, this case is only useful if there is a reasonable number
of processes including only linking products and external products. An example of Pb = ∅ is given
by example 1.3 of section 6.3. A subsystem with Pb = ∅ leads to a linear subproblem. Similarly,
in principle, a subsystem aggregation is possible if Pb

⋃
Plink = Pmid

⋃
Pout. However, we focus on

more balanced decompositions with Pb 6= ∅ and Pb

⋃
Plink ⊂ Pmid

⋃
Pout.

Figure 6.2: System before reduction Figure 6.3: System after reduction

114

6.2 The Approach

remaining part of the network through a function that approximates the input/output-
profit/cost relationship of the subsystem, cf. figure 6.3.
In summary, a solution of the overall problem (6.5) can be approximated in three steps:

1. Solve the subproblem of processes Sb for varying constraints yq1, ...,yqn.

2. With the results of step 1, estimate a joint input/output-profit/cost function c :
D → R, yq 7→ c(yq) for the linking products plink ∈ Plink , where D ⊂ R|Plink|.

3. Solve the optimization problem of the remaining processes s ∈ S \ Sb taking into
account the approximating input/output-profit/cost function c of the subsystem.

Step 1 is accomplished by solving for each parameter vector yqi = (yqp1,i, ..., y
q
p|Plink|,i

)T,

i = 1, ..., n,

max
xq
Sb

F1(xq
Sb) = max

xq
Sb

∑
pout∈
Pout

T
Pb

(∑
s∈Sb

xqs · afs,pout
)
·Ppout

(∑
s∈Sb

xqs · afs,pout
)

+
∑

pex∈Pex,
s∈Sb

xqs · afs,pex · a
π
pex

(6.13a)
such that

∀ s ∈ Sb : 0 ≤ xqs ≤ acaps (6.13b)

∀ p ∈ (Pout
⋃̇
Pmid)

⋂
Pb : 0 ≤

∑
s∈Sb

xqs · afs,p (6.13c)

∀ plink ∈ Plink : 0 ≤ yqplink,i
+
∑
s∈Sb

xqs · afs,plink
. (6.13d)

Step 2 consists in fitting a function c : D → R, yq 7→ c(yq), D ⊂ R|Plink|, to the data
(yqi , πi)i=1,...,n, where πi is the optimal objective value of problem (6.13) given the pa-
rameter vector yqi . Then, by definition 3.2.1, c is an approximation of the optimal value
function F ∗1 of the parametric problem (6.13). In the small example of section 6.3, we will
use different parametric models for this curve fitting and estimate them by the method
of least squares, cf. section 3.7. In a large model, it is not obvious how D ⊂ R|Plink| and
the quantities yq1, ...,yqn ∈ D are chosen advantageously. We discuss the whole task of a
submodel approximation in a detailed way in section 6.5.

Step 3 comprises the solution of the following optimization problem, given an estimated
input/output-profit/cost function c. This problem approximates the original optimiza-

115

6 Decomposing a Multi-Commodity Supply-Demand Network

tion problem (6.5):

max
xq
S\Sb

,

xsub
Plink

∈D

F2(xq
S\Sb ,x

sub
Plink

)

= max
xq
S\Sb

,

xsub
Plink

∈D

∑
pout∈

Pout\(Pb
S
Plink)

(∑
s∈S\Sb

xqs · afs,pout
)
· Ppout

(∑
s∈S\Sb

xqs · afs,pout
)

+
∑

pex∈Pex,
s∈S\Sb

xqs · afs,pex · a
π
pex +

∑
plink∈Plink

T
Pout

xsalesplink
· Pplink(xsalesplink

) + c(xsub
Plink

)

(6.14a)

such that

∀ s ∈ S \ Sb : 0 ≤ xqs ≤ acaps (6.14b)

∀ p ∈ (Pout
⋃̇
Pmid)\(Pb

⋃̇
Plink) : 0 ≤

∑
s∈S\Sb

xqs · afs,p (6.14c)

∀ plink ∈ Plink

⋂
Pout : 0 ≤ xsalesplink

=
∑

s∈S\Sb

xqs · afs,plink
− xsubplink

(6.14d)

∀ plink ∈ Plink \ Pout : 0 ≤
∑

s∈S\Sb

xqs · afs,plink
− xsubplink

, (6.14e)

where xsales
Plink

T
Pout are slack variables.

Remark 6.2.1. Problem (6.14) can be generalized to the case of multiple submod-
els. For this purpose, we introduce the set M of submodels and variables xsubp,m for
input/output quantities of linking products p ∈ Plink related to a submodel m ∈ M.
We denote the input/output-profit/cost functions of the submodels by cm for m ∈ M.
Furthermore, we define DM := D1 × ...×D|M|. The result is the following constrained
problem

max
xq
S ,

xsub
Plink,M

∈DM

F2(xq
S ,x

sub
Plink,M)

= max
xq
S ,x

sub
Plink,M

∑
pout∈

Pout\(Pb
S
Plink)

(∑
s∈S\Sb

xqs · afs,pout
)
· Ppout

(∑
s∈S\Sb

xqs · afs,pout
)

+
∑

pex∈Pex,
s∈S\Sb

xqs · afs,pex · a
π
pex +

∑
plink∈Plink

T
Pout

xsalesplink
· Pplink(xsalesplink

) +
∑
m∈M

cm(xsub
Plink,m

)

(6.15a)

116

6.2 The Approach

such that

∀ s ∈ S\Sb : 0 ≤ xqs ≤ acaps (6.15b)

∀ p ∈ (Pout
⋃̇
Pmid)\(Pb

⋃̇
Plink) : 0 ≤

∑
s∈S\Sb

xqs · afs,p (6.15c)

∀ plink ∈ Plink

⋂
Pout : 0 ≤ xsalesplink

=
∑

s∈S\Sb

xqs · afs,plink
−
∑
m∈M

xsubplink,m

(6.15d)

∀ plink ∈ Plink \ Pout : 0 ≤
∑

s∈S\Sb

xqs · afs,plink
−
∑
m∈M

xsubplink,m
, (6.15e)

where xsales
Plink

T
Pout are slack variables.

Remark 6.2.2. Considering the approximation of one subsystem, a reasonable alterna-
tive is to include the optimization of sales quantities xsales

Plink
T
Pout of linking products with

external demand in the optimization problem (6.13) instead of problem (6.14). This
obviously influences the choice of input/output values yq1, ...,yqn ∈ D ⊂ R|Plink|, and also
the interpretation of results. In case of multiple subsystems with overlapping sets of
links, one must ensure that each linking product is only sold in one part of the overall
problem. Which part should include the selling of linking products can depend on the
application and on the size of the subsystems. In our applications, we always include it,
as described above, in the main problem part, represented by problem (6.14) or (6.15),
respectively.

In a next step we discuss the relationship between optimal solutions of problem (6.5) and
solutions of problem (6.14) if we choose c(yq) = F ∗1 (yq), where F ∗1 is the optimal value
function of problem (6.13) with parameter yq. As we will show in the proof of theo-
rem 6.5.2, F ∗1 is concave on the relevant domain D̃ that will be defined by equation (6.32).
This makes problem (6.14) to a convex optimization problem, cf. also remark 6.1.2.
The following theorem serves as a justification and basis for our model reduction ap-
proach.3

Theorem 6.2.3. Let F ∗1 (yq) be the optimal value function and S(yq) be the optimal
solution map of the parametric problem (6.13) and set in optimization problem (6.14)
c(yq) = F ∗1 (yq). Then,

a) each (global) maximum (xq∗
S\Sb ,x

q∗
Sb) of the original optimization problem (6.5) in-

cludes, with xsub∗
plink

:= −
∑

s∈Sb x
q∗
s ·af

s,plink
, a solution (xq∗

S\Sb ,x
sub∗
Plink

) of problem (6.14)
and

3The result is strongly related to Bellman’s Principle of Optimality, which is the basis of dynamic
programming.

117

6 Decomposing a Multi-Commodity Supply-Demand Network

b) each (global) maximum (xq∗
S\Sb ,x

sub∗
Plink

) of problem (6.14) leads to a (global) max-
imum (xq∗

S\Sb ,x
q∗
Sb) of the original optimization problem (6.5) by choosing xq∗

Sb ∈
S(xsub∗

Plink
).

Proof Let F and F2 be the feasible sets of problem (6.5) and problem (6.14), respec-
tively. Then, we have

(xq
S\Sb ,x

q
Sb) ∈ F , xsubplink

= −
∑
s∈Sb

xqs ·afs,plink
∀ plink ∈ Plink ⇒ (xq

S\Sb ,x
sub
Plink

) ∈ F2 (6.16)

and
(xq
S\Sb ,x

sub
Plink

) ∈ F2, x
q
Sb ∈ S(xsub

Plink
) ⇒ (xq

S\Sb ,x
q
Sb) ∈ F . (6.17)

Furthermore, it is clear that each solution (xq∗
S\Sb ,x

q∗
Sb) of problem (6.5) fulfills xq∗

Sb ∈
S(xsub∗

Plink
), where xsub∗plink

:= −
∑

s∈Sb x
q∗
s · afs,plink

∀ plink ∈ Plink. Therefore, with c = F ∗1
and the above relationship between the variables xq∗

Sb and xsub∗
Plink

, the objective function
values of both problems are equal. This means,

a) if there was a feasible point (x̃q
S\Sb , x̃

sub
Plink

) of (6.14) with a higher objective value,
(xq∗
S\Sb ,x

q∗
Sb) would not maximize (6.5), since we could construct a feasible point

(x̃q
S\Sb , x̃

q
Sb) of (6.5) with a higher objective function value by choosing x̃q

Sb ∈
S(x̃sub

Plink
) and

b) if there was a feasible point (x̃q
S\Sb , x̃

q
Sb) of (6.5) with a higher objective function

value, (xq∗
S\Sb ,x

sub∗
Plink

) would not maximize (6.14), since we could find a feasible
point (x̃q

S\Sb , x̃
sub
Plink

) of (6.14) with a higher objective function value by defining
x̃subplink

:= −
∑

s∈Sb x̃
q
s · afs,plink

∀ plink ∈ Plink.

Let us discuss these results in the context of decomposition methods, cf. section 3.5.
Our approach is closely related to primal decomposition of block-separable problems
with coupling constraints, which we presented in section 3.5. This can be seen if we
include an additional variable yq

Plink
∈ D, where D ⊂ R|Plink| is suitably chosen, and the

partitions of the sets S and Pout
⋃
Pmid in the production optimization problem in a

separable formulation, which is given by (6.11). We get

max
yq
Plink

(
max

xq
S\Sb

,x
net_prod
Pout\Pb

∑
pout∈Pout\Pb

xnet_prod
pout · Ppout

(
xnet_prod
pout

)
+

∑
pex∈Pex,s∈S\Sb

xqs · afs,pex · a
π
pex

+ max
xq
Sb
,x

net_prod
Pout

T
Pb

∑
pout∈Pout

T
Pb

xnet_prod
pout · Ppout

(
xnet_prod
pout

)
+

∑
pex∈Pex,s∈Sb

xqs · afs,pex · a
π
pex

)
(6.18a)

such that

∀ s ∈ S : 0 ≤ xqs ≤ acaps (6.18b)

118

6.2 The Approach

∀ p ∈ Pout : 0 ≤ xnet_prod
p (6.18c)

∀ p ∈ Pmid \ (Plink

⋃
Pb) : 0 ≤

∑
s∈S\Sb

xqs · afs,p (6.18d)

∀ p ∈ Pout \ (Plink

⋃
Pb) : 0 = xnet_prod

p −
∑

s∈S\Sb

xqs · afs,p (6.18e)

∀ plink ∈ Pmid
⋂
Plink : 0 ≤

∑
s∈S\Sb

xqs · afs,plink
− yqplink

(6.18f)

∀ plink ∈ Pout
⋂
Plink : 0 = xnet_prod

plink
−
∑

s∈S\Sb

xqs · afs,plink
+ yqplink

(6.18g)

∀ plink ∈ Pmid
⋂
Plink : 0 ≤ yqplink

+
∑
s∈Sb

xqs · afs,plink
(6.18h)

∀ plink ∈ Pout
⋂
Plink : 0 = yqplink

+
∑
s∈Sb

xqs · afs,plink
(6.18i)

∀ p ∈ Pmid
⋂
Pb : 0 ≤

∑
s∈Sb

xqs · afs,p (6.18j)

∀ p ∈ Pout
⋂
Pb : 0 = xnet_prod

p −
∑
s∈Sb

xqs · afs,p (6.18k)

This problem decomposes into two subproblems. The first one is in the variables xq
S\Sb

and xnet_prod
Pout\Pb and constrained by (6.18d) to (6.18g), the second one is in the variables

xq
Sb and xnet_prod

Pb and constrained by (6.18h) to (6.18k). The master problem entails
maximizing the overall profit by adjusting the variable yq

Plink
.

In our above approach, we consider the second problem as a parametric problem in
the variable yq

Plink
, and approximate its optimal value function by the input/output-

profit/cost function c.4 Then, we combine the subproblem in the remaining variables
with the master problem, which results in problem (6.14).

Before we apply our approach to the first small example, we summarize its advantages:

• The connection between the main part of the production system and subsystems is
described by a few linking variables. Each optimal solution of the overall problem

4Note that, in contrast to the required equality in constraint (6.18i) for linking products with external
demand, the corresponding constraint (6.13d) of problem (6.13) allows inequality. However, a certain
inequality constraint of (6.13d) is inactive only if a further freely available quantity of the linking
product does not raise profit in the subsystem. This happens, e.g., if the respective subsystem
capacities are exploited. Assuming the same optimal objective value of problem (6.13) for two
different parameters ỹq

plink
and ȳq

plink
, an optimal solution of problem (6.14) usually includes the

lower value, i.e., xsub *
plink

= min(ỹq
plink

, ȳq
plink

), since producing the product usually raises costs and
selling the product at the market usually increases profit. In this situation, providing the substem
with the product does not make any sense. Therefore, this difference in the problem formulations
does not affect the overall solution.

119

6 Decomposing a Multi-Commodity Supply-Demand Network

includes a solution of each subproblem as partial solution. Therefore, varying the
linking variables of a subproblem gives complete information about the range of
its primal and dual optimal solutions. This range depends on the subsystem’s
parameters but not on the parameters of the remaining part of the system.

• Sensitivities within the subsystem can be computed together with each subsystem
optimization. Therefore, not merely local sensitivities are available, but rather
the whole range of sensitivity values, given fixed subsystem parameters, can be
analyzed. This is because the variation of the linking quantities reflects all possible
variations of parameters outside the subsystem.

• Detailed subsystem analyses and simulations of diverse subsystem scenarios be-
come possible through the decoupling.

• In our network optimization model, changes in parameter values often cause active-
set-changes in the optimal solutions. Thus, it is difficult to approximate perturbed
optimal solutions using only sensitivity information of one optimization. Using
aggregations of subsystems with fixed parameters and calculating the exact solu-
tion of the approximating optimization problem with perturbed parameters is a
reasonable alternative.

• Our decomposition approach preserves the structure of the model so that the
results remain well interpretable.

• Sensitivity analysis within small subsystems facilitates the classification of param-
eters into more and less important ones, which reduces the effort of data procure-
ment.

6.3 Numerical Results 1

We apply our approach to the model of section 6.1 with sets and parameter values
shown in tables 6.1 to 6.4. It is the same small part of the petrochemical network that
we simulated in the example of section 2.5. In the present example, however, we consider
prices of one region in one time period. Hence, there are less processes related to the
products of interest. The chosen sets of products and processes build a consistent model
to simulate prices of the products 54, 55, 84, 102, and 179 under the assumption that
there is no incentive for trade and transport between the region under consideration
and other regions. The used parameters are real historical data as far as available and
reasonable estimates if real data is missing. In each of the following three examples, we
present aggregations of one selected subsystem of the production network.

120

6.3 Numerical Results 1

Pex 25, 31, 49, 66, 68, 76, 89, 98, 111, 120, 143, 260, 273, 284
Pout 54, 55, 84, 102, 179
S 47, 48, 49, 58, 97, 120, 121, 135, 136, 139, 165, 169, 244, 278, 291

Table 6.1: Sets

25 31 49 66 68 76 89 98 111 120 143 260 273 284
47 0 0 0 0 -0.78 0 0 0 -0.28 0 0 0 0 0
48 0 0 0 0 -0.81 0 0 0 -0.29 0 0 0 0 0
49 0 0 0 0 0 0 0 -0.01 0 0 0 0 0 0
58 0 0 0 0 0 0 0 0 0 0 -0.07 0 0 0
97 0 1 0 0 0 0 -0.48 0 0 0 0 0 0 0
120 0 0 0 0 0 0 -0.7 0 0 0 0 0 0 0
121 0 0 0 0 0 0 -0.7 0 0 0 0 0 0 0
135 -0.24 0 0 0 0 0 -0.17 0 0 0 0 0 0 0
136 -0.26 0 0 0 0 0 -0.17 0 0 0 0 0 0 0
139 0 1 0 0 0 0 -0.48 0 0 0 0 0 0 0
165 0 0 0 0 0 1 -0.65 0 0 0 0 0 0 0
169 0 0 0.43 0 -0.86 0 0 0 -0.31 -0.34 0 0 0 0
244 0 0 0 0 0 0 0 0 0 0 0 1 0 0
278 -0.39 0 0 0 0 0 -0.15 0 0 0 0 0 0.25 0
291 0 0 0 -0.4 0 0 -0.3 0 0 0 0 0 0 1
aπpex

1808 2630 1500 2700 1016 2500 1734 1195 1276 1412 890 4100 1900 2700

Table 6.2: Production factors af
s,p (p ∈ Pex) together with external prices aπp (p ∈ Pex)

in the last row

54 55 84 102 179 Capacity
47 0 0 1 0 0 3215
48 0 0 1 0 0 2617
49 0 1 -1 0 0 3460
58 0 0 -0.95 0 1 1883
97 0 0 -0.57 0 0 1388
120 0 0 -0.26 1 0 295
121 0 0 -0.24 1 0 1247
135 1 0 -0.52 0 0 926
136 1 0 -0.56 0 0 205
139 0 0 -0.4 0 0 248
165 0 0 -0.3 0 0 425
169 0 0 1 0 0 2445
244 0 0 -1 0 0 36
278 1 0 -0.67 0 0 210
291 0 0 -0.3 0 0 95

Table 6.3: Production factors af
s,p (p ∈ Pout) and process capacities acap

s

54 55 84 102 179
a
con_last
pout 1153 3266 1646 1304 1761
a
π_last
pout 2250 1674 1284 3010 1920
αGDPpout

0.1046 0.0919 0.1156 0.7014 0.07
βIndPropout

13.07 6.23 3.51 -149.15 47.40
aGDP 21323 - 20129
aIndPro 110.46 - 109.56

Table 6.4: Parameters related to Pout

121

6 Decomposing a Multi-Commodity Supply-Demand Network

Example 1.1

Our first partition of the network is visualized in figure 6.4.5 The only linking product
in the example is product 84, so that the function c that we will fit is univariate.
Solving problem (6.13) for varying values yq84,i leads to the optimal solutions πi that
are shown in table 6.5 together with the Lagrange multipliers λsub84,i := λsub84 (yq84,i) corre-
sponding to constraint (6.13d). These values present the derivative of the optimal value
function F ∗1 (yq84,i) of the parametric problem (6.13) at its differentiable points. To fit the
data (yq84,i, πi), i ∈ {1, ..., 16}, we choose a scaled hyperbolic tangent (tanh) function as
well as a quadratic polynomial. Results of the least squares estimations are

ctanh(y) = 9049840 · tanh(y/1108.14) (6.19)

cpoly(y) = 762033 + 6889y − 1.4298y2. (6.20)

5The network in this figure can be considered as a hypergraph if we regard all edges with same label,
i.e., edges representing the same processes, as one hyperedge. Note that most products of this
network are external products, which are not represented in graphs like those of figures 6.1 and 6.2.

Figure 6.4: Partition of the network (example 1.1)

yq
84,i 0 160 320 480 640 800 960 1120
πi 0 2114960 3316520 4052990 4771340 5420570 5970140 6474780
λsub

84,i 15432 10815 4771 4577 4346 3723 3154 3154

yq
84,i 1280 1440 1600 1760 1920 2080 2240 2400
πi 6979420 7484060 7988700 8489410 8867370 9048600 9049840 9049840
λsub

84,i 3154 3154 3154 2934 1747 181 0 0

Table 6.5: Optimal values πi of problem (6.13) for varying input parameters yq
84,i together

with sensitivities λsub
84,i (example 1.1)

122

6.3 Numerical Results 1

Figure 6.5: Two fits of the input/output-profit/cost function c (example 1.1)

47 48 49 58 97 120 121 135 136 139 165 169
orig. results 3215 1893 2810 1619 1388 129 1247 863 0 248 425 2445
tanh approx. 3215 1680 2810 1619 1388 56 1247 760 0 248 425 2445
poly. approx. 3215 1881 2810 1619 1388 123 1247 842 0 248 425 2445

244 278 291 54 55 84 102 179 zq∗
84 xsub*

84 obj.value
orig. results 36 210 95 2476 1916 1599 3609 2133 - 2004 10964684
tanh approx. 36 0 95 2759 1916 1599 3715 2133 2992 1791 10585857
poly. approx. 36 210 95 2497 1916 1599 3618 2133 3193 1992 10794734

Table 6.6: Solutions of (6.14) with c(y) = ctanh(y) and c(y) = cpoly(y) (example 1.1),
where zq∗

84 :=
∑

s∈S\Sb
xq∗
s af

s,84. The numbers 47,...,291 denote the processes, 54,...,179 denote

the products with external demand.

Figure 6.5 shows these curve fits. Regarding the scaled hyperbolic tangent fit, ctanh(y),
we set the first parameter equal to the maximum value of the π-data, 9049840, which
cannot be exceeded because of the capacity limits of the subnetwork. Thus, only the
second parameter is estimated.
Next, we solve the optimization problem (6.14) with both, c(y) = ctanh(y) and c(y) =
cpoly(y). Table 6.6 includes corresponding results along with the solutions of the original
problem (6.5). The gray numbers in the table result from solving the subproblem (6.13)
with yq = yq84 = xsub*84,tanh = 1791 and yq = yq84 = xsub*84,poly = 1992, respectively. The
results of splitting the overall problem (6.5) into the two subproblems (6.13) and (6.14)
show the following: even if we do not correctly reproduce the original solutions for the
submodel, which consists of processes 97, 120, 121, 135, 136, 139, 165, 244, 278, and 291
and products 54 and 102, the prices of products 55, 84, and 179, in which we are mainly
interested in this example, are properly simulated.

123

6 Decomposing a Multi-Commodity Supply-Demand Network

Example 1.2

In this second example, we focus on the prices of products 54, 84, and 102. Therefore,
we choose another subnetwork to be aggregated, cf. figure 6.6. Fitting the data of
table 6.7, which are the optimal solutions of the corresponding subproblem (6.13) under
predetermined varying values of yq

84, leads to

ctanh(y) = 13286500 · tanh(y/3746.5) (6.21)

cpoly(y) = 278148 + 3371y − 0.212y2. (6.22)

The least squares estimates are visualized in figure 6.7. As in (6.19), we set the first
parameter in (6.21) equal to the maximum value of the π-data, here 13286500.
The results of solving problem (6.14) with c(y) = ctanh(y) and c(y) = cpoly(y) can be
found in table 6.8 along with the solutions for the full system. The gray numbers in
the table derive from solving the subproblem (6.13) with yq84 = xsub*84,tanh = 4273 and
yq84 = xsub*84,poly = 5137, respectively. The results resemble those of example 1.1: the prices
of the “relevant” products 54, 84, and 102 do not change through the reduction, while

Figure 6.6: Partition of the network (example 1.2)

yq
84,i 0 400 800 1200 1600 2000 2400 2800 3200
πi 0 1624280 2885880 4111540 5166810 6128740 7050570 7931300 8769180
λsub

84,i 4577 3154 3154 2802 2470 2355 2254 2149 2039

yq
84,i 3600 4000 4400 4800 5200 5600 6000 6400
πi 9561700 10305500 10995800 11626700 12189500 12672500 13058500 13286500
λsub

84,i 1922 1795 1655 1496 1313 1095 825 0

Table 6.7: Optimal values πi of problem (6.13) for varying input parameters yq
84,i together

with sensitivities λsub
84,i (example 1.2)

124

6.3 Numerical Results 1

Figure 6.7: Two fits of the input/output-profit/cost function c (example 1.2)

47 48 49 58 97 120 121 135 136 139 165 169
orig. results 3215 1893 2810 1619 1388 129 1247 863 0 248 425 2445
tanh approx. 3215 737 1955 1301 1388 129 1247 863 0 248 425 2445
poly. approx. 3215 1600 2595 1537 1388 129 1247 863 0 248 425 2445

244 278 291 54 55 84 102 179 zq∗
84 xsub*

84 obj.value
orig. results 36 210 95 2476 1916 1599 3609 2133 - 5430 10964684
tanh approx. 36 210 95 2476 2108 1599 3609 2299 5474 4273 10690084
poly. approx. 36 210 95 2476 1969 1599 3609 2179 6338 5137 10836847

Table 6.8: Solutions of (6.14) with c(y) = ctanh(y) and c(y) = cpoly(y) (example 1.2),
where zq∗

84 :=
∑

s∈S\Sb
xq∗
s af

s,84. The numbers 47,...,291 denote the processes, 54,...,179 denote

the products with external demand.

subsystem quantities are more or less influenced. Furthermore, in both examples, the
polynomial fit of the input/output-profit/cost function c yields better results than the
tanh fit.

Example 1.3

In this example, we do not aggregate a subnetwork that requires the linking product
84 for processing, but a subnetwork that produces the linking product, cf. figure 6.8.
Therefore, we must fit a cost function c(y) depending on the output from the subnet-
work instead of a profit function depending on the input to the subnetwork. Since the
submodel processes, Sb = {47, 48, 169}, only contain the linking product 84 and external
products, the set Pb is empty.
We fit the piecewise linear costs data of table 6.9, which we received by solving problem

125

6 Decomposing a Multi-Commodity Supply-Demand Network

(6.13) for varying negative values of yq84, by a linear function as well as by a polynomial
of degree 2. This leads to

clin(y) = 69528 + 1148y (6.23)

cpoly(y) = −2706 + 1090y − 0.007y2. (6.24)

The curve fits clin and cpoly are plotted in figure 6.9. Table 6.10 shows the results from
solving problem (6.14) with c(y) = clin(y) and c(y) = cpoly(y), where the gray numbers
arise from solving the subproblem (6.13) with yq84 = xsub*84,lin = −7686 and yq84 = xsub*84,poly =
−7545, respectively.
In contrast to the previous examples, the prices of products 54, 55, 84, 102, and 179,
in which we are mainly interested and which are highlighted in the gray columns of
table 6.10, differ in the reduced models from the solution of the original problem (6.5).
This deviation is due to the approximation error in the production costs c(y) of product
84 that are the direct price drivers of the products 54, 55, 84, 102, and 179.

Figure 6.8: Partition of the network (example 1.3)

yq
84,i 0 -800 -1600 -2400 -3200 -4000
πi 0 -883392 -1766780 -2650180 -3567890 -4487660
λsub

84,i 0 1104 1104 1104 1150 1150

yq
84,i -4800 -5600 -6400 -7200 -7760
πi -5407430 -6327190 -7278950 -8233310 -8901360
λsub

84,i 1150 1150 1193 1193 1193

Table 6.9: Optimal values πi of problem (6.13) for varying output parameters yq
84,i to-

gether with sensitivities λsub
84,i (example 1.3)

126

6.3 Numerical Results 1

Figure 6.9: Two fits of the input/output-profit/cost function c (example 1.3)

47 48 49 58 97 120 121 135 136 139 165 169
orig. results 3215 1893 2810 1619 1388 129 1247 863 0 248 425 2445
lin. approx. 3215 2026 2868 1642 1388 131 1247 869 0 248 425 2445
poly. approx. 3215 1885 2806 1618 1388 129 1247 862 0 248 425 2445

244 278 291 54 55 84 102 179 zq∗
84 xsub*

84 obj.value
orig. results 36 210 95 2476 1916 1599 3609 2133 - -7553 10964684
lin. approx. 36 210 95 2469 1901 1582 3606 2120 -6436 -7686 11020793
poly. approx. 36 210 95 2476 1917 1600 3609 2134 -6347 -7545 10984303

Table 6.10: Solutions of (6.14) with c(y) = clin(y) and c(y) = cpoly(y) (example 1.3),
where zq∗

84 :=
∑

s∈S\Sb
xq∗
s af

s,84. The numbers 47,...,291 denote the processes, 54,...,179 denote

the products with external demand.

Extension of the Showcase Network

Algorithm 2.4.1 sets up a minimal consistent network model starting with at least one
product with external demand for which one intends to simulate price formation, cf. sec-
tion 2.4. Moreover, algorithm 2.4.2 is able to expand a given consistent network model
using algorithm 2.4.1. Since we aim to apply our reduction approach to a larger network,
we expand our above small showcase model by running algorithm 2.4.2.
Figure 6.10 shows the resulting extension of the small network shown in figure 6.4, where
the highlighted part forms the original model. Being more general than the smaller pro-
duction system, this one includes intermediates without external demand (e.g., product
32). The products with external demand are gray-colored. To restrict the size of the
model extension, the intermediate product 128 is regarded as external product. Ta-
ble 6.11 lists the product and process numbers of the extended model together with
process capacities. Tables 6.12 to 6.13 show external prices as well as parameters con-
cerning the products with external demand. Regarding this extended model, we desist
from listing all production factors as we did for the smaller model in table 6.2.

127

intermediate
regarded as

external product

original model of
examples 1.1 - 1.3

possible
linking

products

P pos_link

Figure 6.10: Extended petrochemical network

6.4 Automated Identification of Network Components Suited for Aggregation

Pex 21, 23, 25, 31, 33, 36, 45, 56, 64, 66, 75, 76, 81, 82, 83, 85, 87, 92, 107, 111, 116, 120, 122,
123, 128, 131, 133, 137, 140, 142, 143, 150, 174, 175, 195, 260, 263, 273, 284, 285, 306

Pout 48, 49, 50, 52, 54, 55, 57, 61, 68, 84, 88, 89, 102, 105, 114, 179
Pmid 32, 35, 78, 98, 115, 121, 176, 249
S 38(1457), 39(590), 40(200), 42(200), 43(1570), 44(16), 45(1408), 46(1209), 47(3215),
(with 48(2617), 49(3460), 51(3214), 56(1128), 57(470), 58(1883), 72(245), 76(82), 97(1388),
capa- 120(295), 121(1247), 132(1225), 133(1230), 135(926), 136(205), 139(248), 146(2100),
cities) 151(3092), 155(620), 163(40), 164(7911), 165(425), 169(2445), 170(157), 172(50), 174(7424),

175(3154), 176(70), 177(230), 180(2176), 181(682), 182(6144), 185(2500), 188(1080),
189(4561), 190(1361), 191(3740), 192(1015), 206(1310), 223(755), 224(258), 229(811),
231(2420), 233(440), 234(1053), 235(150), 236(1460), 237(350), 238(80), 239(1705), 244(36),
251(2191), 253(45), 255(155), 257(1225), 259(1847), 266(181), 274(215), 275(164), 276(351),
278(210), 288(28), 291(95), 296(100), 305(480), 307(84), 333(250)

Table 6.11: Sets

21 23 25 31 33 36 45 56 64 66 75 76 81 82
1200 2097 1808 2630 1168 1538 1205 1311 2500 2700 2665 2500 505 1210

83 85 87 92 107 111 116 120 122 123 128 131 133 137
2016 939 1308 1215 1220 1276 1225 1412 350 827 737 500 1092 450

140 142 143 150 174 175 195 260 263 273 284 285 306
1230 818 890 813 629 1235 1240 4100 1245 1900 2700 1250 2393

Table 6.12: External prices aπpex of Pex

48 49 50 52 54 55 57 61
a
con_last
pout 2306 2516 19301 38 1153 3266 786 220
a
π_last
pout 800 1925 1559 1061 2250 1674 1500 1046
aGDP -0.0203 0.0489 -0.0241 0.0597 0.1046 0.0919 0.0051 -0.1406
aIndPro 32.18 25.70 6.3 22.61 13.07 6.23 5.58 118.58

68 84 88 89 102 105 114 179
a
con_last
pout 4157 1646 2723 1176 1304 5241 122 1761
a
π_last
pout 1031 1284 1642 1185 3010 1893 1106 1920
aGDP 0.0535 0.1156 0.3454 -0.0028 0.7014 0.0665 -0.0009 0.07
aIndPro 42.94 3.51 -56.03 42.42 -149.15 30.98 22.07 47.40

Table 6.13: Parameters related to Pout

6.4 Automated Identification of Network Components Suited for
Aggregation

In view of applying the approach proposed in section 6.2 to a large production network,
which shall be optimized, this section concerns the identification of network components

129

6 Decomposing a Multi-Commodity Supply-Demand Network

that are convenient for aggregation. This means, we aim to detect small, nonempty
sets of links, Plink ⊂ Pout

⋃
Pmid, and related nonempty sets of submodel products,

Pb ⊂ Pout
⋃
Pmid, where Plink

⋂
Pb = ∅, Pb

⋃
Plink ⊂ Pmid

⋃
Pout, and no process of

S includes both, a product of Pb and a product of (Pmid
⋃
Pout) \ (Pb

⋃
Plink), i.e.,

@s ∈ S, p1 ∈ Pb, p2 ∈ (Pmid
⋃
Pout) \ (Pb

⋃
Plink) : af

s,p1
6= 0 ∨ af

s,p2
6= 0.

Following [SRWD+11], we distinguish between three basic types of subnetworks that
clearly differ from each other.6 Figures 6.11 to 6.13 sketch these three kinds of network
components: sequentially connected nodes, nodes connected in parallel, and marginal
subnetworks. In applications, networks also include hybrids of these basic types of
subnetworks. In terms of graph theory, cf. chapter 4, our production network can be
regarded as hypergraph with products as vertices and hyperedges representing processes,
i.e., all products that appear in one process are connected by a hyperedge. Since hy-
peredges are much harder to visualize than edges, we mostly represent a hyperedge by
multiple edges labeled with the same process numbers. Even if external products, Pext,
do not influence the connectivity structure of variables, we sometimes represent them in
a network illustration.7
By its definition, a production network of products Pmid

⋃
Pout consists of several com-

ponents if and only if its underlying optimization problem (6.5) decomposes into inde-

6Inspired by [MSOI+02], [SRWD+11] refers to such network components as motifs, where motifs are,
in general, subgraphs that repeat themselves in a specific network or even among various networks.

7Without regard to external products, the hypergraph of products Pmid
⋃
Pout is induced by the

bipartite graph of figure 6.1. In contrast to the hypergraph of all products, P = Pout
⋃
Pmid

⋃
Pext,

which represents all processes of the set S, this hypergraph does not include processes that contain
only one product of the set Pmid

⋃
Pout.

P

P

b

link

Plink

Figure 6.11: Sequentially connected nodes

P

P

b

link

Plink

Figure 6.12: Nodes connected in parallel

130

6.4 Automated Identification of Network Components Suited for Aggregation

PP
b

link

Figure 6.13: Almost disconnected subgraph

pendent parts. If so, we can divide the set of processes S into k ≥ 2 disjoint, nonempty
subsets Si such that

⋃k
i=1 Si = S, where for i 6= j the processes of Si and the processes

of Sj have no intermediates, p ∈ Pmid, and no products with external demand, p ∈ Pout,
in common.

Assumption 6.4.1. During the rest of this section, we assume that the production
network of products Pmid

⋃
Pout is connected, i.e., it does not consist of several subsets

of processes that have only external products in common.

If this assumption is violated, the respective optimization problem can be immediately
decomposed into independent subproblems, and the following procedure can be applied
to each component separately.

We divide the identification of network components that are suited for aggregation into
three working steps:

a. Identification of all products that come into consideration as linking products as
well as the determination of the relevant connections between them
⇒ network of possible linking products, which is an undirected graph

b. Partitioning of this network of possible linking products

c. Transfer of the network partition to the original model

a. Determining the Network of Possible Linking Products

Regarding the reduction approach of section 6.2, in principle, all products with external
demand, Pout, and all intermediates that are not considered as external products, Pmid,
are candidates for linking products. In the most simple way, the connectivity of these
products is represented by connecting each two products that appear in the same process

131

6 Decomposing a Multi-Commodity Supply-Demand Network

by an undirected edge. The resulting graph is the induced graph of the hypergraph with
node set Pmid

⋃
Pout, which we described above, and also the projection of the bipartite

graph of figure 6.1 onto the set of dual variables. Figure 6.14 exemplarily shows this
simple, undirected graph for the extended optimization problem, which we presented in
the end of section 6.3, cf. figure 6.10.
However, this network includes nodes that are not as much qualified to be a link as
others. First, these are the products with only one neighbor. In general, there does not
exist any narrow vertex-cut that contains such a node of degree one, since any vertex-
cut including such a node, is also a vertex-cut without this node. Furthermore, we can
disregard the products with only two neighbors that are both at least of degree three as
possible links. To make this clear, let us consider a narrow vertex-cut that includes such
a vertex v with only two neighbors and induces a bipartition with components of at least
size two. Since the vertex-cut is narrow, it does not contain any of the two neighbors of
v. Hence, at least one of v’s neighbors can replace v in the vertex-cut, while leading to
a higher graph fragmentation because of its higher degree. Thus, in a sufficiently large
problem, we can exclude several products from the set of possible links: those with only
one neighbor and those with two neighbors that are of at least degree three. We will see
later on that these neglected products can be assigned to certain network components by
means of the processes containing them, cf. paragraph c. Figure 6.15 shows the graph of
the reduced set of possible linking products, Ppos_link, which results from the following
procedure, given the sets Pout

⋃
Pmid and S:

1. Detect all products of the set Pout
⋃
Pmid with only one neighbor ⇒ set Pdeg_1.

High betweenness centrality

Only one neighbor

Only two neighbors

Figure 6.14: Network of all principally possible linking products, Pout
⋃
Pmid

132

6.4 Automated Identification of Network Components Suited for Aggregation

Figure 6.15: Reduced network of possible linking products Ppos_link

2. Detect all products of the set Pout
⋃
Pmid with only two neighbors, which are of

at least degree three ⇒ set Pdeg_2.

3. Define an edge between each two products of

Ppos_link :=
(
Pout

⋃
Pmid

)
\
(
Pdeg_1

⋃
Pdeg_2

)
(6.25)

that are part of a common process as well as between each two products that are
connected via two different processes to the same product p ∈ Pdeg_2.

Algorithm 6.4.1 formalizes steps 1 to 3 given a connected, consistent network model.
Its output is an appropriate network of possible linking products: each process s ∈ S
can either be uniquely assigned to one product p ∈ Ppos_link or the possible linking
products to which it can be assigned are neighbors, i.e., connected by an edge, within
the network of possible linking products. At the end of this section, we will show
how a decomposition of this network, which is based on a selection of several linking
products Plink ⊂ Ppos_link, can be retransferred to the original model. By this, we finally
achieve network components that can be aggregated by approximating an input/output-
profit/cost function c as described in section 6.2.

b. Partitioning the Network of Possible Links

Next, we discuss the problem of partitioning the graph of possible linking products and
propose, among others, a heuristic approach to solve it. This approach is based on be-
tweenness centrality of vertices.
In general, our task consists in identifying subsets Plink ⊂ Ppos_link of products whose
removal decomposes the hypergraph of relevant products Pout

⋃
Pmid, i.e., a set Plink of

133

6 Decomposing a Multi-Commodity Supply-Demand Network

Algorithm 6.4.1: Determining the Network of Possible Linking Products
Input: Disjoint product sets Pout, Pmid and set of processes S that build a

connected, consistent model.
Output: Set of possible linking products Ppos_link ⊆ (Pout ∪ Pmid) and set E of

edges {pi, pj}pi,pj∈Ppos_link between each two possible linking products pi
and pj that are directly connected in the meaning of the above step 3.

Ppos_link = E = Pdeg_1 = Pdeg_2 = ∅
for p1 ∈ Pout ∪ Pmid do

if
∣∣{p ∈ (Pout ∪ Pmid) \ {p1} | ∃s ∈ S : af

s,p, a
f
s,p1
6= 0
}∣∣ = 1 then

Pdeg_1 := Pdeg_1 ∪ p1

else if
{
p ∈ (Pout ∪ Pmid) \ {p1}| ∃s ∈ S : af

s,p, a
f
s,p1
6= 0
}

= {p2, p3} ∧∣∣{p ∈ (Pout ∪ Pmid) \ {p2} | ∃s ∈ S : af
s,p, a

f
s,p2
6= 0
}∣∣ ≥ 3 ∧∣∣{p ∈ (Pout ∪ Pmid) \ {p3} | ∃s ∈ S : af

s,p, a
f
s,p3
6= 0
}∣∣ ≥ 3 then

Pdeg_2 := Pdeg_2 ∪ p1

Ppos_link := (Pout ∪ Pmid) \ (Pdeg_1 ∪ Pdeg_2)
for p1 6= p2 ∈ Ppos_link do

if ∃s ∈ S : af
s,p1
6= 0 ∧ af

s,p2
6= 0 then

E := E ∪ {p1, p2}
else if ∃p3 ∈ Pdeg_2, s1 6= s2 ∈ S : (af

s1,p1
, af

s1,p3
, af

s2,p2
, af

s2,p3
6= 0) then

E := E ∪ {p1, p2}

links must be a vertex-cut of this graph. The components into which a graph decomposes
by the vertex-cut Plink will define parts of the network that can be aggregated, i.e., for
which the input/output-profit/cost function c can be approximated. This means, the set
Pb of a subproblem’s products is given by the nodes of a hypergraph component. Since
a vertex-cut of the reduced graph of possible links, Ppos_link, is also one of the simple
undirected graph of products Pout

⋃
Pmid, it is, by theorem 4.5.19, likewise a vertex-cut

of the hypergraph of products Pout
⋃
Pmid. Thus, depending on size and structure of the

problem, and on the preferred size of components, one can either partition the simple
undirected graph of nodes Ppos_link, or the simple undirected graph of nodes Pout

⋃
Pmid,

which are both described in the preceding section. The acceptable size of a vertex-cut
depends on the problem. Conceivable objectives of the partitioning problem are the de-
tection of a minimum vertex-cut or of a cut of predetermined size that leads to highest
graph fragmentation.
In our showcase model, we allow up to two vertices between the subsystem of products
that shall be aggregated and the rest of the network, i.e., we request |Plink| ≤ 2. Since
our example is relatively small, we can identify such subsets of nodes manually. They
are visualized in figure 6.16.
In the following, we sketch algorithms that find such decompositions automatically.

134

6.4 Automated Identification of Network Components Suited for Aggregation

b(link)_2P

Pb(link)_3

b(link)_1

b(link)_4

P

P

Figure 6.16: Major network components of degree 1 and 2

Many different methods from graph theory support an automated identification of vertex-
cuts and associated components, cf. chapter 4. Regarding the partitioning of our network
of linking products, the following ones are very convenient. Which of these methods
should be chosen in an application strongly depends on the problem’s size and structure
as well as on the desired properties of a partition.

• In sparse networks, algorithms for the identification of biconnected and triconnected
components of the graph can be useful, cf. section 4.4.

• Large networks can be successively bipartitioned, for example by multiply com-
puting minimum or balanced vertex-separators. Such common graph partitioning
problems are discussed in section 4.5.

• Given a predetermined link degree k, the problem of identifying a graph’s k key
players, presented in section 4.6, meets our requirements well.8 A high fragmen-
tation of the residual graph, obtained by removing the links, suggests relatively
easily solvable subproblems.

• Vertices of high centrality, cf. section 4.3, represent reasonable candidates for link-
ing nodes, which motivates heuristic methods.

Regarding the last point, betweenness centrality is obviously the most appropriate cen-
trality measure to detect linking products. Therefore, we propose the following approach
to an automated identification of network parts that are suited for aggregation:

1. Compute the betweenness centrality cB(v) of each vertex v of the graph.9

8k should at least equal the vertex-connectivity κ of the graph.
9To calculate betweenness centralities, you can use, e.g., the respective algorithm of the Boost Graph
Library (BGL), cf. [SLL02].

135

6 Decomposing a Multi-Commodity Supply-Demand Network

2. Order the vertices by their centrality and search for a gap that separates around
20-30% of the vertices with highest betweenness centrality.

3. Check if removing subsets of the chosen vertices (and all their connecting edges)
decomposes the graph into (at least two) components.10

If a vertex-cut is found, it can be used as set of links, and our aggregation procedure
proposed previously can be applied to one or several components that the vertex-cut
induces. First, however, the decomposition of the network of products Ppos_link, must
be transferred to the original optimization problem. This means, given a set of links
Plink that is a narrow vertex-cut separating a set of products Pb(link) from the network of
products Ppos_link, we must reconstruct the sets Pb and Sb, which define a subproblem
as described in section 6.2. We will discuss this in subsection c., but first let us consider
the decomposition of our showcase problem in the following example.

Example 6.4.2. Computing and ordering the betweenness centralities for the network
of products Ppos_link, shown in figure 6.15, leads to the following values:

Linking product 68: 23.17 (0.35) Linking product 115: 2.25 (0.03)
Linking product 52: 15.75 (0.24) Linking product 50: 1.08 (0.02)
Linking product 49: 14.92 (0.23) Linking product 121: 1.08 (0.02)
Linking product 84: 13.75 (0.21) Linking product 32: 0 (0)
Linking product 61: 9.67 (0.15) Linking product 98: 0 (0)
Linking product 48: 3 (0.05) Linking product 89: 0 (0)
Linking product 114: 2.33 (0.04)

Removing either one or two of the blue colored network products, leads to exactly the
network decomposition shown in figure 6.16.
Let us compare these results with the vertex betweenness centralities of the network of
products Pout

⋃
Pmid, shown in figure 6.14:

Linking product 84: 122.8 (0.49) Linking product 98: 3.70 (0.01)
Linking product 68: 95.04 (0.38) Linking product 32: 0 (0)
Linking product 52: 61.54 (0.24) Linking product 54: 0 (0)
Linking product 49: 57.46 (0.23) Linking product 55: 0 (0)
Linking product 89: 43.50 (0.17) Linking product 57: 0 (0)
Linking product 114: 24.73 (0.10) Linking product 78: 0 (0)
Linking product 48: 21.00 (0.08) Linking product 88: 0 (0)
Linking product 61: 18.11 (0.07) Linking product 102: 0 (0)
Linking product 115: 16.83 (0.07) Linking product 105: 0 (0)
Linking product 35: 12.29 (0.05) Linking product 176: 0 (0)
Linking product 121: 9.67 (0.04) Linking product 179: 0 (0)
Linking product 50: 4.33 (0.02) Linking product 249: 0 (0)

10The BGL [SLL02] also provides an algorithm that determines the connected components of a graph.

136

6.4 Automated Identification of Network Components Suited for Aggregation

Except for product 35, the centrality index of each product p ∈ Pdeg_1
⋃
Pdeg_2 is zero.

This is because the two neighbors of each product p ∈ Pdeg_2 are connected by an edge,
except for those of product 35. Similarly, the adjacency of the three neighbors of product
32 is the reason for its zero betweenness centrality.
The most remarkable consequence of removing products Pdeg_1

⋃
Pdeg_2 from the net-

work, is the decrease of product 89’s centrality. Regarding the small size of components
that result using either only product 89 or product 89 and product 84 as links, cf. fig-
ure 6.14, it is reasonable to disregard product 89 as linking product and to compute
centralities in the network of products Ppos_link. However, if the objective is also to
determine very small model components, one should compute centralities and search for
vertex-cuts in the network of products Pout

⋃
Pmid, since not every vertex-cut of this

network is one in the smaller network of products Ppos_link.

Remark 6.4.3. In general, the graphical representation of the network optimization
problem facilitates many interesting analyses. Depending on the application and the
questions that one aims to answer, it can be advantageous, for instance, to aggregate
a roughly prespecified area of the network model. This can be a component including
certain products. Therefore, one could search for as less linking products as possible
whose removal separates a component that includes these predetermined products. Fur-
thermore, it could be useful to restrict such a component to a predetermined maximum
or minimum size.

c. Transferring the Decomposition of the Network of Linking Products back to
the Original Model

The final step consists in transferring the decomposition of the network of products
Ppos_link to the original optimization problem. Given a set of links Plink that is a narrow
vertex-cut separating a set of products Pb(link) from the network of products Ppos_link, we
aim to reconstruct compatible sets Pb and Sb, which define a subproblem as described
in section 6.2.
We will see that, given Plink and Pb(link), the choice of Sb and also Pb is not necessarily
unique, but, in general, there are different possibilities to construct the submodel.11
These are bounded by a certain minimal set of submodel processes Sb_min and a certain
maximal set of submodel processes Sb_max.
To reconstruct a complete submodel, we pass through the following steps:

1. Let Padj
b(link) ⊆ Pdeg_1

⋃
Pdeg_2 denote the subset of products of Pdeg_1

⋃
Pdeg_2 that

are adjacent to a product p ∈ Pb(link) within the graph of products Pout
⋃
Pmid.

By this definition, each product p ∈ Padj
b(link) appears in at least one process that

also includes a product of Pb(link). We define Pb_min := Pb(link)
⋃
Padj
b(link).

11Regarding hypergraph partitioning, the different possibilities to choose sets Sb correspond to the
assignment of free nodes to components, cf. section 4.5. We discuss this connection in more detail
in remark 6.4.5.

137

6 Decomposing a Multi-Commodity Supply-Demand Network

2. Let S incp denote the set of all processes s ∈ S that include product p. Then, a
submodel compatible to Plink and Pb(link) must include at least the processes

Sb_min :=
⋃

p∈Pb_min

S incp . (6.26)

3. Let Padj
link ⊆ (Pdeg_1

⋃
Pdeg_2) \ Padj

b(link) denote the subset of products of Pdeg_1
⋃

Pdeg_2 that are solely adjacent to products of Plink within the graph of products
Pout

⋃
Pmid. By this definition, there does not exist any product p ∈ Padj

link ap-
pearing in a process that also includes a product of Ppos_link \ Plink. We define
Pb_max := Pb_min

⋃
Padj
link.

4. The largest possible submodel compatible to Plink and Pb(link), called Sb_max, con-
tains, in addition to the processes of Sb_min, those processes that include linking
products of the submodel and products of the set Padj

link but no further possible
linking products:

Sb_max := Sb_min ∪
(⋃
p∈Plink∪Padj

link

S incp \ (
⋃

p∈Ppos_link\Plink

S incp)
)
. (6.27)

5. Having defined these sets, we can now choose Sb such that

Sb_min ⊆ Sb ⊆ Sb_max, (6.28)

where s1, s2 ∈ Sb_max \ Sb_min with af
s1,p
6= 0 and af

s2,p
6= 0 for a p ∈ Padj

link must be
either both included in the submodel (s1, s2 ∈ Sb) or not (s1, s2 ∈ S \ Sb).
Remark 6.4.4. If we would like to use multiple submodel aggregations with over-
lapping sets of linking products Plink_1,...,Plink_n to simulate the whole network
model, it must be ensured that the aggregated sets of submodel processes and cor-
responding product sets are disjoint: Sb_1

⋂
...
⋂
Sb_n = ∅ and Pb_1

⋂
...
⋂
Pb_n =

∅.

6. Given Sb, Pb consists of all products p ∈ (Pout
⋃
Pmid) \ Plink that are included in

at least one of the processes s ∈ Sb.
For example, if Sb = Sb_min, we have Pb = Pb_min, and if Sb = Sb_max, we have
Pb = Pb_max.

The above steps can be realized by algorithm 6.4.2 and 6.4.3. Algorithm 6.4.2 constructs
the sets Sb_min and Pb_min as well as Sb_max and Pb_max. Given any set Sb_chosen

that fulfills Sb_min ⊂ Sb_chosen ⊂ Sb_max, algorithm 6.4.3 sets up a minimal submodel,
represented by Sb and Pb, that includes Sb_chosen and is suited for aggregation.

We will now verify that

138

6.4 Automated Identification of Network Components Suited for Aggregation

a) the network definition by algorithm 6.4.1,
b) the choice of a narrow vertex-cut Plink ⊂ Ppos_link that separates a component
Pb(link) ⊂ Ppos_link from the network of possible linking products, and

c) algorithms 6.4.2 and 6.4.3
jointly lead, as requested, to a set Sb of processes that is only connected to the remaining
processes S \ Sb by linking products, i.e., Sb and S \ Sb do not have any product of the
set (Pout

⋃
Pmid) \ Plink in common:

Let s1, s2 ∈ S, p ∈ Pout
⋃
Pmid with af

s1,p
6= 0 and af

s2,p
6= 0. We have to show that

Algorithm 6.4.2: Retransferring a Decomposition to the Original Model (Part 1)
Input: Disjoint product sets Pout, Pmid and set of processes S that build a

connected, consistent model. Nonempty set of possible linking products
Ppos_link ⊆ Pout

⋃
Pmid with nonempty subset Plink ⊂ Ppos_link of chosen

linking products, which is a narrow separator with regard to the
corresponding network component Pb(link) ⊂ Ppos_link.

Output: Minimal sets Sb_min and Pb_min that build a submodel with respect to
Plink, which is suited for aggregation. Maximal sets Sb_max and Pb_max

that build a submodel with respect to Plink, which is suited for
aggregation.

Sb_min = Padj
b(link) = Padj

link = ∅
for p ∈ (Pout

⋃
Pmid) \ Ppos_link do

if ∃ s ∈ S, p1 ∈ Pb(link) : af
s,p, a

f
s,p1
6= 0 then

Padj
b(link) := Padj

b(link) ∪ p

Pb_min := Pb(link)
⋃
Padj
b(link)

for s ∈ S do
if ∃ p ∈ Pb_min : af

s,p 6= 0 then
Sb_min := Sb_min ∪ s

for p ∈ (Pout
⋃
Pmid) \ (Ppos_link

⋃
Padj

b(link)) do
if @ s ∈ S, p1 ∈ Ppos_link \ Plink : af

s,p, a
f
s,p1
6= 0 then

Padj
link := Padj

link ∪ p

Pb_max := Pb_min
⋃
Padj
link

Sb_max := Sb_min

for s ∈ S \ Sb_min do
if ∀ ppos_link ∈ Ppos_link \ Plink : af

s,ppos_link
= 0 ∧ ∃ p ∈ Plink

⋃
Padj

b(link) : af
s,p 6= 0

then
Sb_max := Sb_max ∪ s

139

6 Decomposing a Multi-Commodity Supply-Demand Network

Algorithm 6.4.3: Retransferring a Decomposition to the Original Model (Part 2)
Input: Minimal sets Sb_min and Pb_min as well as maximal sets Sb_max and Pb_max

that build submodels suited for aggregation, cf. output of algorithm 6.4.2.
Chosen set Sb_chosen fulfilling Sb_min ⊂ Sb_chosen ⊂ Sb_max.

Output: Sets Sb and Pb that build a minimal submodel that includes Sb_chosen

and is suited for aggregation.

Sb := Sb_chosen,Pb := Pb_min

for p ∈ Pb_max \ Pb_min do
if ∃ s1 ∈ Sb_chosen : af

s1,p
6= 0 then

Pb := Pb ∪ p
for s2 ∈ Sb_max \ Sb_chosen do

if af
s2,p
6= 0 then

Sb := Sb ∪ s2

p /∈ Plink ⇒ s1, s2 ∈ Sb or s1, s2 ∈ S \ Sb.
Case 1: p ∈ Pb(link) ⇒ s1, s2 ∈ Sb
Case 2: p ∈ Ppos_link \ (Plink

⋃
Pb(link)) ⇒ s1, s2 ∈ S \ Sb

Case 3: p ∈ (Pout
⋃
Pmid) \ Ppos_link, i.e., p ∈ Pdeg_1

⋃
Pdeg_2

⇒ since the original model is connected, by algorithm 6.4.1, ∃s3 ∈ S, p1 ∈
Ppos_link : af

s3,p
, af

s3,p1
6= 0

⇒ by the definition of Sb_min and Sb_max in algorithm 6.4.2 and the condi-
tion on the choice of Sb in algorithm 6.4.3, we have either s1, s2, s3 ∈ Sb
or s1, s2, s3 ∈ S \ Sb with the following case differentiation:
Case 3.1: p1 ∈ Pb(link) ⇒ p ∈ Padj

b(link) ⇒ s1, s2, s3 ∈ Sb_min ⊆ Sb
Case 3.2: p1 ∈ Ppos_link \ (Plink

⋃
Pb(link)) ⇒ s1, s2, s3 ∈ S \ Sb_max

Case 3.3: p1 ∈ Plink ⇒ s1, s2, s3 ∈ Sb or s1, s2, s3 ∈ S \ Sb
Table 6.14 contains the sets Pb_min and Pb_max related to the two components of the
network shown in figure 6.16 that are represented by the sets Pb(link)_1 = {89} and
Pb(link)_2 = {98}. Note that, if both submodels are simultaneously aggregated, only one
of them may include product 179, cf. remark 6.4.4
Figure 6.17 shows a network partition of the whole petrochemical model, which cor-
responds to that of the possible linking products in figure 6.16. The products and

Plink Pb(link) Pb_min Pb_max

{84} {89} {54, 57, 89, 102, 249} {54, 57, 89, 102, 249, 179}
{68, 84} {98} {55, 98} {55, 98, 78, 179}

Table 6.14: Exemplary sets of submodel products regarding the networks
shown in figures 6.14 and 6.16

140

6.4 Automated Identification of Network Components Suited for Aggregation

processes highlighted in violet match component Pb(link)_1, the yellow ones correspond
to Pb(link)_2, the orange products and processes fit Pb(link)_3 and the green ones fit com-
ponent Pb(link)_4. The blue colored linking products interconnect these components as
well as the remaining part of the network. We decide to assign the products 78 and 179
as well as all processes only including the linking products 68 and 84 to the second sub-
model, highlighted in yellow. The single process only including product 49 is assigned
to the fourth subproblem, which is highlighted in green. The remaining linking product
52 is not contained in any freely assignable process.

Besides the appropriate definition of model components, the choice of the varying con-
straints yq1, ...,yqn is crucial in order to aggregate the subproblem of optimizing the
production quantities related to processes Sb. A convenient way to choose them will be
discussed in the following section.

Remark 6.4.5. (Free node assignment) Let us consider the bipartite graph of fig-
ure 6.1, and its induced hypergraphH with primal variables (corresponding to processes)
as nodes and dual variables (corresponding to products) as hyperedges, which are also
called nets, cf. section 4.1. We call its net intersection graph GNIG. Mostly, a vertex-cut
Plink of the undirected graph of products Ppos_link, defined in paragraph a), is also a
vertex-cut of GNIG and, therefore, a net-cut of H. However, the node partition of H by
this net-cut is not necessarily uniquely determined. Processes that only include products
of the cut-set Ppos_link represent “free” nodes. In some cases, they can be assigned to
different parts of the graph, cf. hypergraph partitioning in section 4.5.

141

intermediate
regarded as

external product

linking products

Figure 6.17: Network partition into four submodel components

6.5 Approximating the Optimal Value Function of a Subproblem

6.5 Approximating the Optimal Value Function of a Subproblem

In this section, we discuss on which domain the optimal value function of a subprob-
lem should be estimated and study its properties on this domain, cf. also the general
approach presented in section 5.3. Afterwards, we propose a parametric model for the
approximating input/output-profit/cost function c to fit the generated submodel data
(yqi , πi)i=1,...,n. Finally, we present a different formulation of the subproblem, which
can alternatively be used to calculate subproblem data. It is strongly related to the
subproblem’s Lagrangian dual problem.

a. Determining and Discretizing the Relevant Approximation Domain

The choice of the grid yq1, ...,yqn, with y
q
i ∈ D ⊂ R|Plink|, and, in particular, the choice of

the domain that it covers, is crucial for a suitable approximation of a subproblem’s opti-
mal value function and, consequently, for an appropriate aggregation of the subproblem
by means of an input/output-profit/cost function c. Since a wide approximation domain
can lead to a locally bad approximation, we try to restrict the domain, over which we
generate data by computing subproblem solutions, as much as possible. In the following,
we discuss structural restrictions and plaubsible restrictions of this domain.

Structural restrictions through process capacities

Given a submodel with linking products Plink and processes Sb, lower and upper bounds
for input/output of plink ∈ Plink with respect to the submodel are given by

yq,lplink
= max

(
−
∑
s∈Sb

acaps ·max(0, afs,plink
), −acon_max

pout +
∑

s∈S\Sb

acaps ·min(afs,plink
, 0)
)

≤ 0

(6.29)

and

yq,uplink
= min

(
−
∑
s∈Sb

acaps ·min(afs,plink
, 0),

∑
s∈S\Sb

acaps ·max(0, afs,plink
)
)

≥ 0.

(6.30)

The lower bound yq,lplink
is (the negative of) the minimum of two quantities: first, the

quantity of product plink that can be produced in the submodel and, second, the quantity
of it that can be processed and sold in the remaining part of the model. Accordingly,
yq,uplink

is the minimum of the quantity that can be processed in the submodel and the
one that can be produced in the remaining network. We define a domain D ⊂ R|Plink|

corresponding to these bounds by

D := {yq = (yqplink_1
, ..., yqplink_|Plink|

)T ∈ R|Plink| | yq,lplink
≤ yqplink

≤ yq,uplink
∀ plink ∈ Plink}.

(6.31)

143

6 Decomposing a Multi-Commodity Supply-Demand Network

However, in general, the input/output quantities yqplink
, plink ∈ Plink, cannot be chosen

independently: there can be input/output values y ∈ D that lead to an empty set of
feasible points for the optimization problem (6.13). This means that, possibly, we have
to restrict D to ensure feasibility. Therefore, we define the smaller set

D̃ := {yq ∈ D |F1(yq) 6= ∅}, (6.32)

where

F1(yq) =

xq ∈ R|Sb|
∀ s ∈ Sb : 0 ≤ xqs ≤ acaps

∀ p ∈ (Pout
⋃̇
Pmid)

⋂
Pb : 0 ≤

∑
s∈Sb x

q
s · afs,p

∀ plink ∈ Plink : 0 ≤ yqplink
+
∑

s∈Sb x
q
s · afs,plink


(6.33)

is the feasible set of optimization problem (6.13). Note that, for ȳq ≥ yq, i.e., ȳqplink
≥

yqplink
∀ plink ∈ Plink, we have

F1(yq) ⊆ F1(ȳq), (6.34)

and therefore
F1(yq) 6= ∅ ⇒ F1(ȳq) 6= ∅. (6.35)

Remark 6.5.1. D̃ is convex: let y1,y2 ∈ D̃, i.e., ∃ x1 ∈ F1(y1),x2 ∈ F1(y2) with

−
∑
s∈Sb

x1
s · afs,plink

≤ y1
plink

, −
∑
s∈Sb

x2
s · afs,plink

≤ y2
plink

, ∀ plink ∈ Plink. (6.36)

Then it holds that ∀ t ∈ [0, 1]

−
∑
s∈Sb

(tx1
s + (1− t)x2

s) · afs,plink
≤ ty1

plink
+ (1− t)y2

plink
, ∀ plink ∈ Plink, (6.37)

where tx1 + (1 − t)x2 is also feasible regarding the first two conditions of (6.33). This
means, we have

tx1 + (1− t)x2 ∈ F1(ty1 + (1− t)y2), (6.38)

i.e., ty1 + (1− t)y2 ∈ D̃.

The shape of the domain D̃, if D̃ ⊂ D, is sketched in figure 6.18 for the two-dimensional
case. Note that we have

{yq ∈ R|Plink| | 0 ≤ yqplink
≤ yq,uplink

} ⊆ D̃. (6.39)

Similarly, we can further exclude input/output values yq ∈ D̃ that lead to an empty set
of feasible points for optimization problem (6.14), since they cannot lead to a feasible

144

6.5 Approximating the Optimal Value Function of a Subproblem

Figure 6.18: The domain D̃ for |Plink| = 2

Figure 6.19: The domain D̂ for |Plink| = 2

point of the overall optimization problem. Given the feasible set of optimization problem
(6.14) by

F2(yq) =

xq ∈ R|S\Sb|
∀ s ∈ S \ Sb : 0 ≤ xqs ≤ acaps

∀ p ∈ (Pout
⋃̇
Pmid)\(Pb

⋃̇
Plink) : 0 ≤

∑
s∈S\Sb x

q
s · afs,p

∀ plink ∈ Plink : yqplink
≤
∑

s∈S\Sb x
q
s · afs,plink

,
(6.40)

we define,
D̂ := {yq ∈ D̃ |F2(yq) 6= ∅}. (6.41)

It is easy to show, that D̂, as the intersection of convex sets, is also convex. Its shape is
sketched in figure 6.19.

145

6 Decomposing a Multi-Commodity Supply-Demand Network

Depending on the size of the examined network in terms of the quantities of the linking
products that can be produced and processed, the bounds (6.29) and (6.30), and even
the restricted domains D̃ and D̂, may admit a wide range on which the input/output-
profit/cost function c can be estimated. Because of the prespecified parametric model
for the function c, e.g., a polynomial of degree two, see below, such a wide domain can
lead to a locally bad approximation of the data. For this reason, it can be worthwhile
to further truncate the domain based on individual information about the order of mag-
nitude of the optimal input or output of linking products with respect to the submodel.
In the following paragraph, we sketch a possibility to further restrict the domain by
considering the subproblem’s Lagrange multipliers.

Plausible restrictions through shadow prices

Comparing optimal solutions of problem (6.13) with optimality conditions of prob-
lem (6.14), we can restrict the domain over which the function c should be estimated
by some plausible conclusions. However, in contrary to the structural restrictions, in
order to apply this approach, we must first generate submodel solutions (yqi , F

∗
1 (yqi)) by

solving (6.13). Afterwards, we can exclude those data points that do not meet certain
conditions regarding their Lagrange multipliers, which we will specify in the following.

Consider optimization problem (6.13):
In an optimal solution of each subsystem optimization i, the vector λsub

i ∈ R|Plink| of
Lagrange multipliers corresponding to the constraints

∀ plink ∈ Plink : 0 ≤ yqplink,i
+
∑
s∈Sb

xqs · afs,plink
(6.42)

tells, if it is unique, i.e., under certain regularity conditions as the LICQ, cf. theo-
rem 3.1.10, how much the optimal value of the objective F1 would increase if the right
hand side of the constraints was increased for one product plink ∈ Plink, respectively.
This fact causes the interpretation of the Lagrange multipliers as shadow prices, cf. also
corollary 3.2.12.
Under the assumptions of theorem 3.2.10 with respect to the parameter vectors yqi =
(yqplink_1,i

, ..., yqplink_|Plink|,i
)T, i = 1, ..., n, we have by corollary 3.2.12, in a neighborhood of

yqi , for each i = 1, ..., n and plink ∈ Plink

λsubplink,i
=

∂F ∗1
∂yqplink,i

(yqi), (6.43)

where F ∗1 is the optimal value function of problem (6.13), which we aim to fit by a
function c, as described above. The differentiability of F ∗1 will be further discussed in
theorem 6.5.3.

Consider optimization problem (6.14):
Formulating the objective function of problem (6.14) without the slack variables xsales

Plink
,

146

6.5 Approximating the Optimal Value Function of a Subproblem

and with c ≡ F ∗1 , we obtain

max
xq
S\Sb

,xsub
Plink

F2(xq
S\Sb ,x

sub
Plink

) =

max
xq
S\Sb

,xsub
Plink

∑
pout∈

Pout\(Pb
S
Plink)

(∑
s∈S\Sb

xqs · afs,pout
)
· Ppout

(∑
s∈S\Sb

xqs · afs,pout
)

+
∑

pex∈Pex,
s∈S\Sb

xqs · afs,pex· a
π
pex

+
∑

plink∈Plink
T
Pout

(zqplink
− xsubplink

) · Pplink(zqplink
− xsubplink

) + F ∗1 (xsub
Plink

),

(6.44)

where zqplink
:=
∑

s∈S\Sb x
q
s · afs,plink

, and the variables xsubplink
, plink ∈ Plink, only appear in

the constraints

∀ plink ∈ Plink : 0 ≤
∑

s∈S\Sb

xqs · afs,plink
− xsubplink

. (6.45)

Let λmain
plink

≥ 0, plink ∈ Plink, denote the Lagrange multipliers corresponding to these
constraints.
First, we consider linking products with external demand, i.e., plink ∈ Plink

⋂
Pout. In

a common optimal solution of problem (6.14) with xsales ∗plink
= zq ∗plink

− xsub ∗plink
> 0, the

constraints (6.45) are inactive, which means that λmain
plink

= 0.
Partial derivatives of F2 with respect to the variables xsubplink

, plink ∈ Plink
⋂
Pout, are given

by

∂F2

∂xsubplink

(xq
S ,x

sub
Plink

) =− Pplink(zqplink
− xsubplink

) +
∂Pplink

∂xsubplink

(zqplink
− xsubplink

) · (zqplink
− xsubplink

)

+
∂F ∗1
∂xsubplink

(xsub
Plink

).

(6.46)

By the Karush-Kuhn-Tucker (KKT) conditions of theorem 3.1.10, the expression

∂F2

∂xsubplink

(xq
S ,x

sub
Plink

) + λmain
plink︸ ︷︷ ︸
=0

(6.47)

vanishes in an optimal solution (xq ∗
S\Sb ,x

sub ∗
Plink

) ∀ plink ∈ Plink, i.e., we have, in case of
linking products with external demand,

Pplink(zq ∗plink
− xsub ∗plink

)− ∂Pplink

∂xsubplink

(zq ∗plink
− xsub ∗plink

)︸ ︷︷ ︸
=−P ′plink

(zq ∗plink−x
sub ∗
plink

)>0

· (zq ∗plink
− xsub ∗plink

)︸ ︷︷ ︸
>0

=
∂F ∗1
∂xsubplink

(xsub ∗
Plink

). (6.48)

147

6 Decomposing a Multi-Commodity Supply-Demand Network

This equation can be interpreted as follows: In an optimum of problem (6.14), there are
internal equilibrium prices between the subsystem and the main system for all linking
products plink ∈ Plink. The main system optimizes the production of processes S \ Sb.
At a production state xq

S\Sb and subsystem input/output xsub
Plink

, in the main system,
the value of a product plink with external demand is given by Pplink(zqplink

− xsubplink
) −

P ′(zqplink
− xsubplink

) · (zqplink
− xsubplink

). The subsystem optimizes the processes Sb. Given
a subsystem input/output xsub

Plink
, in the subsystem, the value of the product plink is

λsubplink
=

∂F ∗1
∂yqplink,i

(xsub
Plink

). If the value of the linking product in the subsystem and in
the main system differed, the overall profit could be increased by changing the overall
production. This means, such a situation would not be optimal.
From equation (6.48), it follows that at the optimal solution (xq ∗

S\Sb ,x
sub ∗
Plink

), we have

∂F ∗1
∂xsubplink

(xsub ∗
Plink

) < Pplink(zq ∗plink
− xsub ∗plink

) ∀ plink ∈ Plink

⋂
Pout, (6.49)

where zq ∗plink
=
∑

s∈S\Sb x
q ∗
s · afs,plink

.

Next, let us consider linking products without external demand, i.e., plink ∈ Plink
⋂
Pmid.

For these products, constraint (6.45) is usually active. The KKT condition corresponding
to (6.47) becomes

λmain
plink

=
∂F ∗1
∂xsubplink

(xsub ∗
Plink

)(= λsubplink
). (6.50)

As above, the condition can be interpreted as the existence of an equilibrium price. At
this, in the main system, the value of a linking product without external demand is given
by its shadow price regarding constraint (6.45).

Conclusion:
We summarize the presented results by combining (6.43) and (6.49). Let (yqi , πi) be
generated by solving (6.13), which means πi = F ∗1 (yqi). We can neglect the data points
(yqi , πi) for which at least one of the corresponding Lagrange multipliers λsubplink,i

consid-
erably exceeds a reasonable price for the related product plink. This is because such
values yqi can impossibly become the value xsub ∗

Plink
in an optimal solution (xq ∗

S\Sb ,x
sub ∗
Plink

)

of problem (6.14).
In principle, we can similarly set a reasonable lower bound for the Lagrange multipliers
λsubplink

. However, in case of products with external demand, in order to define such a
bound, we need a reasonable upper bound on the absolute value of P ′plink

, which is the
slope of the demand-price relation, see equation (6.3).
Note that there are jumps in shadow prices λsubplink

=
∂F ∗1
∂xsub
plink

(xsub
Plink

) caused by the piece-
wise linear production possibilities that lead to an only piecewise differentiable optimal
value function F ∗1 , as we will show in the following subsection. The optimal solution
of problem (6.44) can lie at such a non-differentiable point of the subproblem’s optimal
value function, at which an active set change takes place because one process reaches its

148

6.5 Approximating the Optimal Value Function of a Subproblem

capacity bound and another one starts to produce.
Note that, instead of a predetermined grid yq1, ...,yqn, an adaptive grid refinement would
be very advantageous. However, this topic is beyond the scope of this thesis.

b. Properties of a Subproblem’s Optimal Value Function

In the following, we consider the optimal value function F ∗1 (yq) of problem (6.13), which
we aim to approximate. Using the results from section 3.2, we show some properties
of this optimal value function on the domain D̃ (cf. equation (6.32)). These proper-
ties are basic for the choice of an appropriate parametric model for the approximating
input/output-profit/cost function c.

Theorem 6.5.2. The optimal value function F ∗1 (yq) of the parametric optimization
problem (6.13) is continuous on D̃0, and upper semicontinuous and concave on D̃.

Proof Continuity: By theorem 3.2.4, F ∗1 is continuous at ȳq, if F1 is continuous on
F1(ȳq)×{ȳq}, F1(ȳq) is compact and the feasible set F1 (cf. equation (6.33)) is contin-
uous at ȳq.
Let be ȳq ∈ D̃0, where D̃ is defined in (6.32). The objective function

F1(xq) =
∑

pout∈Pout
T
Pb

(∑
s∈Sb

xqs ·afs,pout
)
·Ppout

(∑
s∈Sb

xqs ·afs,pout
)

+
∑

pex∈Pex,
s∈Sb

xqs ·afs,pex ·a
π
pex (6.51)

is independent of ȳq and the sum of continuous functions in xq, i.e., it is continuous on
F1(ȳq)×{ȳq}. In addition, F1(ȳq) is a closed and bounded set and, therefore, compact.
To show the continuity of F1 at ȳq, we use theorem 3.2.5: The upper semicontinuity
is given by part a) of the theorem through the compactness of F1(yq) ∀ yq ∈ D̃. By
part b), lower semicontinuity is given for yq ∈ D̃0, since they fulfill F0

1 (yq) 6= ∅ and
F0

1 (yq) = F1(yq). This proves continuity of F ∗1 on D̃0.
Since upper semicontinuity of F1 implies, by theorem 3.2.4, lower semicontinuity of −F ∗1
at yq ∈ D̃, we have upper semicontinuity of F ∗1 at every yq ∈ D̃.12
Concavity: Translating theorem 3.2.7 from a minimization problem to a maximization
problem while taking into account that F1 is independent of the parameter yq, we get
that F ∗1 is concave on D̃ if F1 is concave, D̃ is convex, and F1 is essentially convex on
D̃:

12Note that we consider a maximization problem in this chapter, which is in contrast to the minimization
problem of section 3.2.

149

6 Decomposing a Multi-Commodity Supply-Demand Network

Let yq1,y
q
2 ∈ D̃,y

q
1 6= yq2 and c ∈ (0, 1), then under the three foresaid conditions

F ∗1 (cy1 + (1− c)y2) = max
x∈F1(cy1+(1−c)y2)

F1(x, cy1 + (1− c)y2)

= max
x∈F1(cy1+(1−c)y2)

F1(x)

≥ max
x1∈F1(y1),x2∈F1(y2)

F1(cx1 + (1− c)x2)

≥ max
x1∈F1(y1),x2∈F1(y2)

(
cF1(x1) + (1− c)F1(x2)

)
= c max

x1∈F1(y1)
F1(x1) + (1− c) max

x2∈F1(y2)
F1(x2)

= cF ∗1 (y1) + (1− c)F ∗1 (y2).

(6.52)

Since the concavity of F1 has been shown in remark 6.1.2, the first condition is fulfilled.
Furthermore, by remark 6.5.1, D̃ is convex. By definition 3.2.6, it remains to show that

cF1(yq
1) + (1− c)F1(yq2) ⊆ F1(cyq1 + (1− c)yq2) (6.53)

∀ yq
1,y

q
2 ∈ D̃,y

q
1 6= yq2 and ∀ c ∈ (0, 1). This holds, as showed in remark 6.5.1, because

x1 ∈ F1(y1),x2 ∈ F1(y2)⇒ cx1 + (1− c)x2 ∈ F1(cy1 + (1− c)y2). (6.54)

Theorem 6.5.3. The optimal value function F ∗1 (yq) is almost everywhere differentiable
on D̃0. We have ∀ yq ∈ D̃0: ∂F ∗1 (yq) 6= ∅ and13

λsub ∈ ∂F ∗1 (yq) (6.55)

if and only if λsub = (λsub
plink_1

, ..., λsub
plink_|Plink|

)T is part of an optimal solution of problem
(6.13)’s dual problem as multiplier corresponding to the constraints

∀ plink ∈ Plink : 0 ≤ yq
plink

+
∑
s∈Sb

xq
s · af

s,plink
. (6.56)

Proof Since −F ∗1 (yq) is finite and convex on D̃, the directional derivative14 of F ∗1 (yq)
exists in every direction d ∈ R|Plink| at every point yq ∈ D̃ and the subdifferential
is nonempty, ∂F ∗1 (yq) 6= ∅, at every yq ∈ D̃0, cf. [Flo95, Roc70]. By Rademacher’s
theorem, since F ∗1 is Lipschitz continuous on D̃0, it is almost everywhere differentiable
on D̃0, i.e., ∂F ∗1 (yq) = {∇F ∗1 (yq)} almost everywhere.
By corollary 3.2.12, we have under the assumptions of theorem 3.2.10 in a neighborhood
of yq ∈ D̃ for each plink ∈ Plink

∂F ∗1
∂yqplink

(yq) = λsubplink
. (6.57)

13The subdifferential of a function f at a point x, denoted by ∂f(x), is introduced in definition 3.4.1.
14See definition 3.4.1.

150

6.5 Approximating the Optimal Value Function of a Subproblem

Since strong duality holds for problem (6.13), cf. remark 3.3.5, we have the following
generalized result if LICQ does not hold and the Lagrangian multipliers are not unique:

λsub ∈ ∂F ∗1 (yq) (6.58)

if and only if λsub is part of an optimal solution of problem (6.13)’s dual problem as
multiplier corresponding to the constraints (6.56), see theorem 3.4.6 and [Flo95].

Note that there can be subdomains on which the optimal value function F ∗1 (yq) is
linear. This piecewise linearity is due to the structure of a submodel and appears if
only production with regard to external products varies over the subdomain, i.e., if the
production with regard to products with external demand is constant and sales quantities
of these products do not vary. A small example of a piecewise linear optimal value
function is given in the third example of section 6.3. Since the considered subproblem
does not contain any product with external demand, it is a linear parametric problem.
Its optimal value function consists of two linear parts with slightly different slopes.

c. Selecting a Parametric Model for the Submodel’s Optimal Value Function

Because of F ∗1 ’s properties discussed in paragraph b., we propose a multivariate quadratic
polynomial c : R|Plink| → R to model the optimal value function F ∗1 :

c(y) = θ0 +

|Plink|∑
i=1

θ1iyi +
∑

1≤i≤j≤|Plink|

θ2ijyiyj, (6.59)

with parameters θ0, θ1i , θ2ij ∈ R. The parameters are estimated using the generated data
(yqi , F

∗
1 (yqi))i=1,...,n. The most common parameter estimation method to fit the data is

the least squares method, see section 3.7.
Alternatively, there are, of course, many other reasonable parametric models that could
be used. For example, in case |Plink| = 1, one can choose the hyperbolic tangent function
in view of modeling the profit bound, which is due to limited process capacities, cf. the
numerical examples of section 6.3. Note that, in general, it is difficult to identify and
model the non-differentiable points of the optimal value function so that, mostly, a dif-
ferentiable function with few parameters is preferable. Furthermore, a non-differentiable
submodel approximation would necessitate methods for nonsmooth convex optimization
to solve the overall problem, which are usually much slower than methods for differen-
tiable problems.
As mentioned at the end of section 5.3, one could aim to globally underestimate the sub-
system profit (or, if F ∗1 is negative, to globally overestimate the costs occurring in the
subsystem,) to be able to compute a lower bound on the optimal value of the overall sys-
tem. For this, c must be a lower bound on the optimal value function F ∗1 , at least on the
relevant domain D̂ defined in (6.41). Therefore, the corresponding least squares parame-
ter estimation should contain additional constraints forcing c(yqi) ≤ F ∗1 (yqi) ∀ i = 1, ..., n.

151

6 Decomposing a Multi-Commodity Supply-Demand Network

d. Alternative Formulation of the Subsystem Optimization

In this paragraph, we deduce a way to generate data (yqi , F
∗
1 (yqi))i=1,...,n that differs from

solving for varying parameters yqi ∈ R|Plink| the subsystem optimization problem (6.13)
given by

max
xq
Sb

F1(xq
Sb) = max

xq
Sb

∑
pout∈
Pout

T
Pb

(∑
s∈Sb

xqs · afs,pout
)
· Ppout

(∑
s∈Sb

xqs · afs,pout
)

+
∑

pex∈Pex,
s∈Sb

xqs · afs,pex · a
π
pex

such that

∀ s ∈ Sb : 0 ≤ xqs ≤ acaps

∀ p ∈ (Pout
⋃̇
Pmid)

⋂
Pb : 0 ≤

∑
s∈Sb

xqs · afs,p

∀ plink ∈ Plink : 0 ≤ yqplink,i
+
∑
s∈Sb

xqs · afs,plink
.

Let us consider the following parametric problem. Instead of presetting submodel in-
put/output quantities yq ∈ R|Plink| of the linking products, we specify prices of linking
products by the parameter θ ∈ (R+

0)|Plink|:

max
xq
Sb

F̃1(xq
Sb ,θ) = max

xq
Sb

∑
pout∈
Pout

T
Pb

(∑
s∈Sb

xqs · afs,pout
)
· Ppout

(∑
s∈Sb

xqs · afs,pout
)

+
∑

pex∈Pex,
s∈Sb

xqs · afs,pex · a
π
pex +

∑
plink∈Plink,
s∈Sb

xqs · afs,plink
· θplink

(6.60a)

such that

∀ s ∈ Sb : 0 ≤ xqs ≤ acaps (6.60b)

∀ p ∈ (Pout
⋃̇
Pmid)

⋂
Pb : 0 ≤

∑
s∈Sb

xqs · afs,p. (6.60c)

A solution xq
Sb(θ) of this problem for a fixed parameter θ constitutes some solution

xq
Sb(yq) of problem (6.13) for an appropriately chosen parameter yq:15

15Note the resemblance of the objective function in (6.60) to the relaxation of the constraints (6.13d)
in problem (6.13), which yields an objective∑

pout∈
Pout

T
Pb

(∑
s∈Sb

xq
s ·af

s,pout

)
·Ppout

(∑
s∈Sb

xq
s ·af

s,pout

)
+
∑

pex∈Pex,
s∈Sb

xq
s ·af

s,pex
·aπpex

+
∑

plink∈Plink

λsub
plink,i

(
yq
plink,i

+
∑
s∈Sb

xq
s ·af

s,plink

)
.

152

6.5 Approximating the Optimal Value Function of a Subproblem

Theorem 6.5.4. Let xq∗
Sb be a global solution of problem (6.60) for a fixed parameter

θ ∈ (R+
0)|Plink| and let yq = (yq

plink_1
, ..., yq

plink_|Plink|
)T be given by

yq
plink

:=
∑
s∈Sb

xq∗
s · af

s,plink
. (6.61)

Then xq∗
Sb is also a global solution of problem (6.13) for the parameter yq. Furthermore,

we have
F ∗1 (yq) = F̃ ∗1 (θ) −

∑
plink∈Plink,
s∈Sb

xq
s · af

s,plink
· θplink

. (6.62)

Proof By remark 3.3.5, theorem 3.1.13 holds for convex problems with linear constraints
in general. Concerning problems (6.13) and (6.60), this means that for each maximizer
there exist Lagrange multipliers constituting, together with the maximizer, a KKT-
point. Conversely, each KKT-point includes a maximizer.
Let us consider the global maximizer xq∗

Sb of problem (6.60). There exist λzero,λcap ∈
(R+

0)|Sb|, and λnet_prod ∈ (R+
0)|(Pout

Ṡ
Pmid)

T
Pb| such that

∇xL̃(xq∗
Sb ,λ

zero,λcap,λnet_prod,θ) = 0, (6.63)

where the Lagrangian function L̃ is given by

L̃(xq
Sb ,λ

zero,λcap,λnet_prod,θ) = F̃1(xq
Sb ,θ) +

∑
s∈Sb

λzero
s · xq

s

+
∑
s∈Sb

λcap
s (acaps − xq

s) +
∑

p∈(Pout
Ṡ
Pmid)

T
Pb

(
λnet_prod
p

∑
s∈Sb

xqs · afs,p
)
,

(6.64)

and such that complementarity holds:∑
s∈Sb

λzero
s ·xq∗

s +
∑
s∈Sb

λcap
s (acaps −xq∗

s) +
∑

p∈(Pout
Ṡ
Pmid)

T
Pb

(
λnet_prod
p

∑
s∈Sb

xq∗s ·afs,p
)

= 0. (6.65)

Considering these equations, we see that (xq∗
Sb ,λ

zero,λcap,λnet_prod,θ) is a KKT-point of
the parametric problem (6.13) with parameter yq defined by (6.61): complementarity
obviously holds by (6.65) and the definition of yq, and for the Lagrangian function L of
problem (6.13), we have

∇xL(xq∗
Sb ,λ

zero,λcap,λnet_prod,θ) = ∇xL̃(xq∗
Sb ,λ

zero,λcap,λnet_prod,θ) = 0. (6.66)

This means, by theorem 3.1.13, xq∗
Sb is a global solution of problem (6.13) for the param-

eter yq. Furthermore, we have

F ∗1 (yq) = F1(xq∗
Sb) = F̃1(xq∗

Sb ,θ)−
∑

plink∈Plink,
s∈Sb

xq
s ·af

s,plink
·θplink

= F̃ ∗1 (θ)−
∑

plink∈Plink,
s∈Sb

xq
s ·af

s,plink
·θplink

.

(6.67)

153

6 Decomposing a Multi-Commodity Supply-Demand Network

Theorem 6.5.4 shows that, aiming to approximate the optimal value function F ∗1 , we
can generate data points (yqi , F

∗
1 (yqi))i=1,...,n by solving problem (6.60) for varying θi ∈

(R+
0)|Plink| instead of solving problem (6.13) for varying yq

i ∈ R|Plink|. This means, instead
of presetting submodel input/output quantities of the linking products in problem (6.13),
we specify prices of linking products in problem (6.60). The alternative approach is of
interest if the optimal value function is nonlinear or nonsmooth, since the price pa-
rameter θ in problem (6.60) corresponds to the shadow prices of linking products in
problem (6.13) and hence to the (sub)gradient of the optimal value function F ∗1 .
Let us regard the restriction of the domain on which the optimal value function should
be approximated by taking into account shadow prices. We discussed this topic in para-
graph a. The alternative approach to generate data (yqi , F

∗
1 (yqi))i=1,...,n is useful in this

context since it allows to predetermine reasonable prices of linking products instead
of computing first a solution of problem (6.13) and deciding afterwards, by means of
shadow prices, if the computed data point is suitable.
In general, it is useful to bear both ways to compute submodel solutions in mind, since
they allow varying analyses. Note that a linear piece of problem (6.13)’s optimal value
function F ∗1 corresponds to a certain parameter θ for which problem (6.60) has infinite
many solutions. Conversely, a non-differentiable point of problem (6.13)’s optimal value
function F ∗1 corresponds to a set of infinite many parameters θ leading to the same
optimal solution of problem (6.60), however inducing different optimal values.

6.6 Various Aspects of a Sensitivity Analysis

In this section, we analyze the influence of parameter values on the solutions of our
network optimization model by using the theoretical results of section 3.2. Regarding
real applications that need reliable price simulations, this topic is of special interest due
to the high procurement costs of detailed market data. The knowledge about sensitivities
allows to decide which data is worth to expend much effort or money. Furthermore,
sensitivities are essential for the risk management of companies that buy products of
the considered market. Considering long-term decisions, sensitivity analysis becomes
relevant also regarding investments in additional production capacities.
With regard to the market modeling, sensitivity analysis possibly justifies the fixing of
some model variables. By this, edges of the overall network may disappear, which leads
to a simpler network structure and, perhaps, allows a new network partition, i.e., a new
decomposition of the overall problem into subproblems.

Particularly, we aim to

• conduct submodel analysis without any restrictive assumptions on the parameters
of the remaining part of the model.

• systematically identify model parameters, as prices of external products and pro-
cess capacities, that strongly influence our price simulations, i.e., the price solutions

154

6.6 Various Aspects of a Sensitivity Analysis

of our optimization model.

• analyze to which extent submodel solutions are influenced by submodel parameters
and in what way they are influenced by the input/output quantities of linking
products.

• differentiate between several submodels, i.e., to find out which ones have strong
influence on the remaining part of the network (problem (6.14)) and which not,
and in which cases, the optimal decisions in the main part of the model highly
depend on the amount of the linking products that is injected into (or withdrawn
from) the submodel.

• determine the influence of subsystem parameters on the aggregation of the subsys-
tem, i.e., on the input/output-profit/cost function, since this function represents
the subsystem in the problems (6.14) and (6.15), respectively, which approximate
the overall problem (6.5).

• find out if some submodel input/output-profit/cost functions c could be simplified,
for instance, be modeled additively separable, i.e., c(yq) =

∑
p∈Plink

cp(y
q
p).

Given a parametric optimization problem as in (3.20)

min
x∈F(θ)

f(x,θ) (6.68a)

with

F(θ) = { x ∈ Rn | gi(x,θ) ≤ 0 (i ∈ I), hj(x,θ) = 0 (j ∈ J) }, (6.68b)

where f : Rn × Rl → R, gi : Rn × Rl → R (i ∈ I), and hj : Rn × Rl → R (j ∈ J), we
distinguish between optimal value sensitivities

∇θf ∗(θ) (6.69)

and solution sensitivities
∇θx(θ). (6.70)

Since the aim of our modeling approach is mainly in correct price simulations, we are
particularly interested in solution sensitivities, specifically in price/sales sensitivities of
products with external demand. However, regarding our model reduction approach,
optimal value sensitivities become relevant with regard to the input/output-profit/cost
function c(yq) of a submodel, which approximates the optimal value function F ∗1 (yq) of
problem (6.13).
In the following, we first outline sensitivity analysis within the original optimization
problem (6.5). Afterwards, we discuss possibilities of sensitivity analysis within the sub-
problem (6.13) as well as their advantages and results regarding the objectives mentioned
above.

155

6 Decomposing a Multi-Commodity Supply-Demand Network

a. Sensitivity Analysis within the Original Optimization Problem (6.5):

In this paragraph, we calculate optimal value and solution sensitivities with respect
to external prices aπpex , pex ∈ Pex, and with respect to process capacities acaps , s ∈ S.
To compute solution sensitivities, we need first and second partial derivatives of the
objective function with respect to process variables xqs , s ∈ S. For processes i, j ∈ S,
these are given by

∂F

∂xqi
(xq) =

∑
pout∈Pout

(
afi,poutPpout

(∑
s∈S

xqsa
f
s,pout

)
+
(∑
s∈S

xqsa
f
s,pout

)
· ∂Ppout

∂xqi

(∑
s∈S

xqsa
f
s,pout

)
︸ ︷︷ ︸
af
i,pout

·P ′pout (
P
s∈S x

q
saf
s,pout

)

)

+
∑

pex∈Pex

afi,pexa
π
pex

(6.71)

and

∂2F

∂xqi ∂x
q
j

(xq) =
∑

pout∈Pout

(
afi,pout

∂Ppout
∂xqj

(∑
s∈S

xqsa
f
s,pout

)
+
∑

pout∈Pout

afj,pout
∂Ppout
∂xqi

(∑
s∈S

xqsa
f
s,pout

)
+
(∑
s∈S

xqsa
f
s,pout

)
· ∂

2Ppout
∂xqi ∂x

q
j

(∑
s∈S

xqsa
f
s,pout

))
=

∑
pout∈Pout

(
2 afi,pouta

f
j,poutP

′
pout(

∑
s∈S

xqsa
f
s,pout)

+
(∑
s∈S

xqsa
f
s,pout

)
afi,pouta

f
j,poutP

′′
pout

(∑
s∈S

xqsa
f
s,pout

))
,

(6.72)

where P ′pout and P ′′pout are given by (6.3) and (6.4), respectively. Since problem (6.5)
is a maximization problem, we consider the minimization of −F and the Lagrangian
function

L(xq,λ) = −F (xq) +
∑
s∈S

λzeros (−xq
s) +

∑
s∈S

λcaps (xq
s − acaps)

+
∑

p∈Pout
S
Pmid

λnet_prod
s (−

∑
s∈S

xq
sa

f
s,p),

(6.73)

where λ = (λzero,λcap,λnet_prod) is the vector of Lagrange multipliers corresponding to
the production bounds (6.5b) and the positive net production (6.5c), respectively. Taking
these expressions into account, the matrix M of theorem 3.2.11, equation (3.28), is for

156

6.6 Various Aspects of a Sensitivity Analysis

problem (6.5) given by

M =

−1 0 1 0 −af1,1 . . . −af1,np
−∇2

xqxqF
.

0 −1 0 1 −afns,1 . . . −afns,np
−λzero1 0 −xq

1 0
. 0 0

0 −λzerons 0 −xq
ns

λcap1 0 xq
1−a

cap
1 0

. . . 0
. . . 0

0 λcapns 0 xq
ns−a

cap
ns

−λnet_prod
1 af1,1 . . . −λ

net_prod
1 afns,1 −

∑
s∈S

xqsa
f
s,1 0

... 0 0
. . .

−λnet_prod
np af1,np . . .−λ

net_prod
np afns,np 0 −

∑
s∈S

xqsa
f
s,np


(6.74)

where ns := |S| and np := |Pout
⋃
Pmid|. M is a (3ns + np)× (3ns + np) matrix. Primal

and dual variable values in M depend on the considered parameter.

We first treat problem (6.5) as parametric problem in the external prices aπpex , pex ∈ Pex.
Optimal value sensitivities with respect to external prices are, by theorem 3.2.11 b)
under the respective regularity conditions, given by

∂F ∗

∂aπpex
(aπ) = − ∂L

∂aπpex
(xq(aπ),aπ) =

∂F

∂aπpex
(xq(aπ),aπ) =

∑
s∈S

xqs(a
π)afs,pex , (6.75)

where xq(aπ) is the solution of the optimization problem (6.5) as function of the param-
eter aπ. Usually, most external products are either only processed or only produced,
except for some special cases of modeling, as in our example product 128, cf. the last
part of section 6.3. Thus, we commonly have the sensitivity bounds∣∣∣ ∂F ∗

∂aπpex
(aπ)

∣∣∣ ≤ ∣∣∑
s∈S

acaps afs,pex
∣∣. (6.76)

To compute solution sensitivities, we need to calculate the matrix N of theorem 3.2.11:

Naπ =



−af1,1 . . . −af1,|Pex|
...

−af|S|,1 . . . −afns,|Pex|

0


. (6.77)

157

6 Decomposing a Multi-Commodity Supply-Demand Network

Naπ is of size (3ns + np)× |Pex|. By (3.27), the corresponding solution sensitivities are
given by 

∇aπxq(aπ)
∇aπλzero(aπ)
∇aπλcap(aπ)

∇aπλnet_prod(aπ)

 = −M−1Naπ . (6.78)

Defining price variables xπpout := Ppout(
∑

s∈S x
q
sa

f
s,pout) ∀ pout ∈ Pout by the price-demand

relationship (6.2), we get the sensitivities of these prices with respect to external prices
by the chain rule

∂xπpout
∂aπpex

(aπ) = P ′pout
(∑
s∈S

xqs(a
π)afs,pout

) af1,pout
...

af|S|,pout


T


∂xq
1

∂aπpex
(aπ)
...

∂xq
|S|

∂aπpex
(aπ)

 . (6.79)

Similarly, we calculate sensitivities with respect to capacities acaps , s ∈ S. Therefore,
we consider problem (6.5) as parametric problem in the capacity vector acap. By corol-
lary 3.2.12, we have

∂F ∗

∂acaps
(acap) = − ∂L

∂acaps
(xq(acap),acap) = λcaps (acap). (6.80)

The matrixN of theorem 3.2.11 regarding capacities is of size (3ns+np)×|S| and reads

Nacap =



0

0

−λcap1 (acap) 0
. . .

0 −λcap|S| (acap)

0


. (6.81)

The corresponding solution sensitivities are
∇acapxq(acap)
∇acapλzero(acap)
∇acapλcap(acap)

∇acapλnet_prod(acap)

 = −M−1Nacap . (6.82)

Using the sensitivities of the primal variables xqs , s ∈ S, we can also calculate sensitivities

158

6.6 Various Aspects of a Sensitivity Analysis

of the prices xπpout = Ppout(
∑

s∈S x
q
sa

f
s,pout), pout ∈ Pout, with respect to capacities:

∂xπpout
∂acaps

(acap) = P ′pout
(∑
s∈S

xqs(a
cap)afs,pout

) af1,pout
...

af|S|,pout


T


∂xq
1

∂acap
s

(acap)
...

∂xq
|S|

∂acap
s

(acap)

 . (6.83)

Of course, one can also compute all solution sensitivities at once by −M−1(Naπ ,Nacap).
Note that there can be discontinuities in the discussed optimal value and solution sen-
sitivities caused by active set changes. In the case that LICQ or strict complementarity
are not fulfilled, optimal value and solution derivatives can be analyzed by the method
of [CCC+06, CCMGB06], which we presented at the end of section 3.2.

Remark 6.6.1. The sensitivities calculated for a parameter value a0 can be used to
approximate a solution of a perturbed problem in a parameter a. First order estimates
are given by x(a)

λ(a)

 ≈
x(a0)

λ(a0)

+

dx(a0)

da
dλ(a0)

da

 (a− a0). (6.84)

To compute these approximations, one can, for instance, apply the program sIPOPT,
see [PLNB12, PLNB11]. It is based on the interior point solver IPOPT, cf. section 3.6.
Note that a special proceeding is required if the considered perturbation causes an active
set change. For this purpose, sIPOPT provides a bound correction algorithm.

Remark 6.6.2. In the context of sensitivities, we would also like to draw attention to
the Lagrange multipliers λnet_prod

p , p ∈ Pmid, corresponding to the constraints that avoid
negative net production of intermediate products. At an optimal solution, they display
the system’s marginal prices of the intermediates, cf. also remark 2.1.1.

b. Sensitivity Analysis within the Subnetwork Optimization Problem (6.13)

Submodel sensitivities can be computed similar to the sensitivities of the overall model.
The related matrix M sub differs from M in (6.74) in the following way: M sub contains
only those rows and columns of M that correspond to subsystem processes Sb and
subsystem products (Pout

⋃
Pmid)

⋂
Pb. Furthermore, we summarize in the remaining

entries only over processes s ∈ Sb. Let M red denote the described modification of M .
Additionally,M sub includes rows and columns corresponding to the constraints (6.13d).

159

6 Decomposing a Multi-Commodity Supply-Demand Network

Hence, it is a square matrix of order 3|Sb|+ |(Pout
⋃
Pmid)

⋂
Pb|+ |Plink| and reads

M sub =



−af1,1 . . . −af1,np
...

M red −afns,1 . . . −afns,np

0

−λsub1 af1,1 . . . −λsub1 afns,1 −yq1 −
∑
s∈Sb

xqsa
f
s,1 0

... 0
. . .

−λsubnp a
f
1,np . . . −λsubnp a

f
ns,np 0 −yqnp −

∑
s∈Sb

xqsa
f
s,np


(6.85)

where ns := |Sb|, np := |Plink|, and λsub consists of the Lagrange multipliers correspond-
ing to the constraints (6.13d).
Let us consider sensitivities with respect to the submodel input/output parameters
yqplink

, plink ∈ Plink. As stated in (6.43), we have

∂F ∗1
∂yqplink

(yq) = λsubplink
(yq). (6.86)

With the (3|Sb|+ |(Pout
⋃
Pmid)

⋂
Pb|+ |Plink|)× |Plink| matrix

Nyq =


0

−λsub1 (yq) 0
. . .

0 −λsub|Plink|(y
q).

 , (6.87)

we have the following sensitivities of the submodel’s primal and dual variables xq ∈
(R+

0)|Sb|, λzero ∈ (R+
0)|Sb|, λcap ∈ (R+

0)|Sb|, λnet_prod ∈ (R+
0)|(Pout

S
Pmid)

T
Pb|, and λsub ∈

(R+
0)|Plink|: 

∇yqxq(yq)
∇yqλzero(yq)
∇yqλcap(yq)

∇yqλnet_prod(yq)

∇yqλsub(yq)

 = −M sub−1
Nyq . (6.88)

Similar to (6.75) and (6.80), optimal value sensitivities with respect to external prices
are given by

∂F ∗1
∂aπpex

(aπ) =
∑
s∈Sb

xqs(a
π)afs,pex , (6.89)

160

6.6 Various Aspects of a Sensitivity Analysis

and, with respect to the production bounds of processes s ∈ Sb, we have

∂F ∗1
∂acaps

(acap) = λcaps (acap). (6.90)

Solution sensitivities with respect to external prices and production bounds can be ob-
tained by calculating −M sub−1

(N sub
aπ ,N

sub
acap), where the matrices N sub

aπ and N sub
acap are

modifications of Naπ and Nacap analogously to the modification M sub of M .
Sensitivities of the price variables xπpout , pout ∈ Pout

⋂
Pb, can be calculated similar to

(6.79) and (6.83) by the chain rule using sensitivities of production variables.

Before discussing in the following the consequences that one can possibly draw from
sensitivity analyses within the subsystem, let us make a short remark: Contrary to the
objective function F ∗1 , which is non-decreasing in each component yqplink

, plink ∈ Plink, the
production variables, summarized in xq, the price variables, summarized in xπ, as well
as the dual variables, summarized in λ, are in general not monotonically increasing or
decreasing in the input/output quantities yqplink

, plink ∈ Plink, of a submodel. This con-
futes the possible hasty presumption that production of each subsystem process should
increase or, at least, remain constant as long as an input yqplink

to a subsystem increases.
Considering equations (6.89) and (6.90), this implicates that there can be changes in
the monotonicity of the optimal value sensitivities regarding a fixed external price or
capacity parameter when input/output quantities vary.
However, under the regularity conditions of theorem 3.2.10, for a parameter value
yq = yq0, we have once continuously differentiable functions xq(yq), xπ(yq), and λ(yq)
in a neighborhood of yq0. The respective regularity conditions are usually fulfilled if there
is no constraint turning from active to inactive, or reversely, at the input/output value
yq0.

Let us now discuss which conclusions we can draw from a sensitivity analysis and which
simplifications of the model a sensitivity analysis might justify. Note that, if we solve
problem (6.13) for varying values of the parameter yq, commonly, all sensitivities can
be obtained very cheaply for each single problem since necessary calculations are made
during the numerical optimization procedure. For instance, in IPOPT, the matrix M
is available in factored form. For all the following considerations, it is expedient to
first determine, respectively restrict as much as possible, the relevant domain of the
function c, in which the optimal solution could lie, cf. section 6.5, paragraph a. Let
{yqi = (yq1,i, ..., y

q
|Plink|,i)

T, i ∈ {1, ..., n}} be a set of input/output grid points that suffi-
ciently covers the relevant domain.

Sensitivity analysis with respect to external prices aπpex, pex ∈ Ppex, and capac-
ities acap

s , s ∈ Sb

We first consider sensitivities at an optimal subproblem solution regarding a certain
input/output quantity yqi . Let xq∗ := xq(yqi) be the corresponding vector of optimal
production quantities and let λzero∗ := λzero(yqi), λ

cap∗ := λcap(yqi) be the Lagrange

161

6 Decomposing a Multi-Commodity Supply-Demand Network

multipliers corresponding to the production bounds, 0 ≤ xq ≤ acap. We assume that
strict complementarity holds. For each process s ∈ Sb with acaps > 0 there are three
possibilities:

1. xq∗s = 0 ⇒ λcap∗s = 0, λzero∗s > 0, and, ∀ pex ∈ Pex, we have ∂xq∗
s

∂aπpex
(aπ,acap

Sb) = 0.

2. xq∗s = acaps ⇒ λzero∗s = 0, λcap∗s > 0, and, ∀ pex ∈ Pex, we have ∂xq∗
s

∂aπpex
(aπ,acap

Sb) = 0.

3. 0 < xq∗s < acaps ⇒ λzero∗s = λcap∗s = 0.

In 1. and 2., the solution sensitivities with respect to external prices are zero because,
since strict complementarity holds, the respective active constraints must remain ac-
tive after an infinitesimal parameter perturbation. See also conditions (3.31). These
two cases of production variables at one of their bounds are of interest regarding model
simplifications: in the most extreme case, the optimal production quantity xqs(y

q
i) of a

certain process s ∈ Sb is at one of its bounds ∀ i ∈ {1, ..., n}, i.e., xqs(y
q
i) = 0 ∀ i or

xqs(y
q
i) = acaps ∀ i. Assuming fixed subsystem parameters, this situation justifies the

fixing of the variable xqs to the respective bound even in the original problem (6.5) where
changes in parameters that do not appear in the subsystem are allowed.16 This is be-
cause the variation of the input/output quantity yq reflects the whole range of possible
influences of latter parameters on the subsystem. Processes whose production quantity is
at zero for all relevant input/output quantities yqi , i ∈ {1, ..., n}, are non-profitable and
processes whose production quantity is at acaps for all relevant input/output quantities
yqi , i ∈ {1, ..., n}, are highly profitable, both independently of the exogenous influences.
Highly profitable processes are obviously suited for future investments in terms of ca-
pacity expansion, at least, under the assumption that subsystem parameters will not
vary too much in future. Let s ∈ Sb be such a process that runs always at its capacity
bound with Lagrange multipliers λcaps (yqi) > 0 ∀ i ∈ {1, ..., n}. Let us assume that there
is not any external product pex ∈ Pex with afs,pex 6= 0 that is included in any other
process of the set Sb. Then, taking account of the production factors afs,pex , a Lagrange
multiplier λcaps (yqi) contains information about how much the related external prices can
vary without influencing the optimal production quantity xqs . This is because a change
c ∈ [−aπpex ,∞[of such an external price aπpex causes a change max[cafs,pex ,−λ

cap
s (yqi)] of the

Lagrange multiplier λcaps (yqi). If cafs,pex < −λ
cap
s (yqi), the bound becomes inactive, i.e.,

the production of the process s decreases. Note, however, that, under the assumptions
afs,pex = 0 ∀ s ∈ Sb \{s} and cafs,pex ≥ −λ

cap
s (yqi), such a parameter perturbation changes

the optimal value function F ∗1 by cafs,pexa
cap
s . Analogous conclusions can be drawn in case

of non-profitable processes s ∈ Sb with positive multipliers λzeros (yqi) > 0 ∀ i ∈ {1, ..., n}.
Accumulating the effects of changes in all external prices, we can, starting from optimal

16In general, a variable xq
s can diverge from a bound and revert to the bound between the grid points

yq
i , i ∈ {1, ..., n}, remember our above comment on the non-monotonic dependence of variables on

the input/output quantity yq. However, since there is a finite number of possible active sets, the
described situation can be avoided by choosing grid points sufficiently close.

162

6.6 Various Aspects of a Sensitivity Analysis

solutions corresponding to a parameter vector aπ, determine external price parameters
ãπ ∈ (R+

0)|Pex| which do not cause any change in the optimal production quantities xq,
but only in the Lagrange multipliers (λzero,λcap):

Theorem 6.6.3. Let xq∗ ∈ (R+
0)|Sb| be a maximizer of problem (6.13) for an in-

put/output parameter yq ∈ D ⊂ R|Plink| and an external price parameter aπ ∈ (R+
0)|Pex|.

Let (xq∗,λzero∗,λcap∗,λnet_prod∗,λsub∗) ∈ (R+
0)(3|Sb|+|(Pout

S
Pmid)

T
Pb|+|Plink|) be a corre-

sponding KKT-point. Let ãπ ∈ A, where

A :={a ∈ (R+
0)|Pex| |

∑
pex∈Pex

af
s,pex(apex − a

π
pex) ≤ λzero

s (yq) ∀ s ∈ Sb}⋂
{a ∈ (R+

0)|Pex| |
∑

pex∈Pex

af
s,pex(a

π
pex − apex) ≤ λcap

s (yq) ∀ s ∈ Sb}.
(6.91)

Then, with

λ̃zero∗
s := λzero∗

s − 1{λzero∗
s >0} ·

∑
pex∈Pex

af
s,pex(ã

π
pex − a

π
pex) and (6.92a)

λ̃cap∗
s := λcap∗

s − 1{λcap∗
s >0} ·

∑
pex∈Pex

af
s,pex(a

π
pex − ã

π
pex) (6.92b)

∀ s ∈ Sb, (xq∗, λ̃
zero∗

, λ̃
cap∗

,λnet_prod∗,λsub∗) is a KKT-point of the perturbed problem
with external price parameter ãπ, i.e., by theorem 3.1.13, xq∗ is also a maximizer of the
perturbed problem.

Proof: Complementarity at the point (xq∗,λzero∗,λcap∗,λnet_prod∗,λsub∗) implies com-
plementaritiy at (xq∗, λ̃

zero∗
, λ̃

cap∗
,λnet_prod∗,λsub∗), cf. equation (3.11). Condition (3.10)

reads for problem (6.13) as follows:

−∂F1

∂xq
i

(xq)− λzeros + λcaps −
∑

p∈Pb
T

(Pout
S
Pmid)

λnet_prod
s afs,p −

∑
p∈Plink

λsubs afs,p = 0 ∀ s ∈ Sb, (6.93)

where ∂F1

∂xq
i
(xq) computes analogously to ∂F

∂xq
i
(xq) given by (6.71). Compare also equa-

tion (6.73), which states the Lagrange function of the original problem (6.5). Therefore,
we must show that ∀ s ∈ Sb

−λzero∗
s + λcap∗

s −
∑

pex∈Pex

af
s,pexa

π
pex = −λ̃zero∗

s + λ̃cap∗
s −

∑
pex∈Pex

af
s,pex ã

π
pex . (6.94)

Case 1: λzero∗
s = λcap∗

s = 0. (6.92) implies λ̃zero∗
s = λ̃cap∗

s = 0 and, by (6.91), we have∑
pex∈Pex a

f
s,pex(a

π
pex − ã

π
pex) = 0. ⇒ (6.94) holds.

Case 2: λzero∗
s > 0, λcap∗

s = 0. (6.92b) implies λ̃cap∗
s = 0. (6.92a) implies λ̃zero∗

s =

163

6 Decomposing a Multi-Commodity Supply-Demand Network

λzero∗
s −

∑
pex∈Pex a

f
s,pex(ã

π
pex − a

π
pex), which is ≥ 0 because of (6.91). ⇒ (6.94) holds.

Case 3: λzero∗
s = 0, λcap∗

s > 0. (6.92a) implies λ̃zero∗
s = 0. (6.92b) implies λ̃cap∗

s =
λcap∗
s −

∑
pex∈Pex a

f
s,pex(a

π
pex − ã

π
pex), which is ≥ 0 because of (6.91). ⇒ (6.94) holds.

Intersecting the sets Ai that correspond to the varying input/output parameters yq
i ,

i ∈ {1, ..., n}, we get the set

Ared :={a ∈ (R+
0)|Pex| |

∑
pex∈Pex

af
s,pex(apex − a

π
pex) ≤ min

i∈{1,...,n}
λzero
s (yq

i) ∀ s ∈ Sb}⋂
{a ∈ (R+

0)|Pex| |
∑

pex∈Pex

af
s,pex(a

π
pex − apex) ≤ min

i∈{1,...,n}
λcap
s (yq

i) ∀ s ∈ Sb}

(6.95)

of perturbed external price parameters that do not influence any of the optimal solu-
tions xq(yqi). Regarding the effect on the input/output-profit/cost relationship of the
subproblem, these perturbations lead to an up or down shift of the optimal value func-
tion F ∗1 , but they do not effect its derivatives λsubplink

(yq
i), plink ∈ Plink for i ∈ {1, ..., n}.

Since, by (6.79), price changes of products pex ∈ Pex influence the prices of products
pout ∈ Pout via the changes in the production quantities, the perturbed external prices
ãπ do not effect the price solutions xπ∗i either. Let us finally consider a certain external
product pex ∈ Pex and its influence on the price of a certain product pout ∈ Pout with
external demand, which is in general given by equation (6.79). By the previous discus-
sion, we see that the sensitivity of the price variable xπpout with respect to the external
price aπpex is zero if the production of all processes s related to pout, i.e., with afs,pout 6= 0,
is either zero or at the capacity bound and strong complementarity holds.

Sensitivity analysis with respect to input/output quantities yq
plink

, plink ∈ Plink

The optimal value sensitivity of a subproblem (6.13) with respect to an input/output
component yq

plink
, plink ∈ Plink, is equal to the Lagrange multiplier of the corresponding

input/output constraint (6.13d), cf. (6.86). Therefore, in addition to the optimal values
F ∗1 (yqi) of a subsystem for the input/output quantities yqi , i ∈ {1, ..., n}, it is very inter-
esting to analyze the respective values λsub(yqi).
For example, let us consider two subsystems of processes S1

b and S2
b with S1

b
⋂
S2
b = ∅

and with the same single linking product plink, i.e., P1
link = P2

link = {plink}. We assume
to know the optimal value functions F ∗1,1 and F ∗1,2 and consider the optimization of the
remaining processes S \ (S1

b
⋃
S2
b), cf. problem (6.15). Subsystem profits can be directly

compared through the functions F ∗1,1 and F ∗1,2. Furthermore, it is easy to see that, usu-
ally17, the derivatives λsubplink,1

and λsubplink,2
of F ∗1,1 and F ∗1,2, respectively, are equal at an

17If plink is a product with external demand, we assume that
∑

s∈S\(S1
b

S
S2

b)

xq∗
s ·af

s,plink
−xsub∗

plink,1
−xsub∗

plink,2

is a positive quantity that is sold at a positive price Pplink(
∑

s∈S\(S1
b

S
S2

b)

xq∗
s ·af

s,plink
−xsub∗

plink,1
−xsub∗

plink,2
).

164

6.6 Various Aspects of a Sensitivity Analysis

optimum of problem (6.15). To show this equality, we first assume plink ∈ Pout and that
a positive quantity of the product plink is sold at a positive price, i.e., constraint (6.15d)
is inactive. By the KKT conditions of theorem 3.1.10, equation (3.10), we have in the
regular case at an optimum of problem (6.15) for j ∈ {1, 2}:18

0 =− Pplink(
∑
s∈

S\(S1
b

S
S2

b)

xq∗s · afs,plink
− xsub∗plink,1

− xsub∗plink,2
)

− (
∑
s∈

S\(S1
b

S
S2

b)

xq∗s · afs,plink
− xsub∗plink,1

− xsub∗plink,2
)P ′plink

(
∑
s∈

S\(S1
b

S
S2

b)

xq∗s · afs,plink
− xsub∗plink,1

− xsub∗plink,2
)

+ λsubplink,j
(xsub∗plink,j

).

(6.96)

This means that, at an optimum, each marginal subsystem profit λsubplink,j
(xsub∗plink,j

) is equal
to the marginal profit from selling the link product at the market.
Second, in case plink ∈ Pmid, we have for j ∈ {1, 2}:

0 = λsubplink,j
(xsub∗plink,j

)− λnet_prod∗
plink

, (6.97)

where λnet_prod∗
plink is the Lagrange multiplier corresponding to constraint (6.15e). (6.97)

means that, at an optimum, each marginal subsystem profit λsubplink,j
(xsub∗plink,j

) is equal to
the marginal price of the link product within the system of processes S \ (S1

b
⋃
S2
b),

cf. also remark 6.6.2.

c. Conclusion

With regard to sensitivity analysis, our decomposition approach is particularly advan-
tageous because it allows to describe the connection between a subproblem (6.13) and
the main problem (6.14) by the input/output quantities of only a few linking products.
After determining the relevant range of input/output quantities with respect to a subsys-
tem, their variation within this range represents the main system’s accumulated possible
impact on a subsystem. In this sense, we are able to accomplish global analyses within
subsystems. Without the identification of the important linking quantities, it is, in
general, impossible to analyze the potential effects of unrestricted parameter variations
within a large model component on an interesting component with fixed parameters.
This is due to the vast number of model parameters as external prices and capacities.
Finally, we summarize how the presented sensitivity results meet the objectives that we
stated in the beginning of this section:

• Computing a subsystem’s sensitivities for varying input/output quantities leads to
a sensitivity overview that does not assume any parameter outside the submodel
to be fixed.

18We choose a problem formulation without the slack variable xsales
plink

.

165

6 Decomposing a Multi-Commodity Supply-Demand Network

• Price sensitivities with respect to external prices and capacities are calculated
by (6.79) and (6.83) via production sensitivities. If price sensitivities within a sub-
model are low over the whole range of relevant input/output quantities regarding
the submodel, the related parameters are much less important than those with high
or varying price sensitivities. Given a set of subsystem parameters and optimal
subsystem solutions for varying input/output qunatities, the set (6.95) describes
the perturbations of external prices that do not cause any change in the optimal
production quantities and prices as long as all other subsystem parameters are
fixed.

• Sensitivity analyses with respect to parameters of the subproblem over the whole
domain of relevant input/output quantities show how far a subsystem’s sensitivities
depend on the input/output quantities that link it to the main system. Sensitivities
with respect to these linking parameters show their immediate impact on the
subsystem, cf. (6.86) and (6.88).

• We can study the influence of subsystems on the main problem (6.14) in terms of
their optimal value functions F ∗1 and their approximating input/output-profit/cost
functions c, respectively. Regarding several submodels and comparing the val-
ues of the corresponding functions at certain input/output quantities shows how
much the overall profit may be influenced by a subsystem. Furthermore, it is
useful to analyze the derivatives/sensitivities of these functions since they effect
the optimal solution of problem (6.14), as can be seen by the KKT conditions,
cf. equations (6.96) and (6.97).

• The subsystem parameters influence the remaining system by their impact on the
subproblem’s optimal value function F ∗1 , i.e., by their impact on the input/ouput-
profit/cost function. The influence of subsystem parameters on F ∗1 is given by
the sensitivities (6.89) and (6.90). Let us consider a certain subsystem parameter.
We distinguish three cases. Firstly, if the optimal value sensitivity with respect
to this parameter is low over the whole relevant domain of input/output quanti-
ties, its influence on the remaining system is low. Secondly, if the optimal value
sensitivity with respect to this parameter is highly varying over the relevant do-
main of input/output quantities, the parameter influences the shape of the optimal
value function F ∗1 . This means, it influences, in addition to the values of the func-
tion, F ∗1 (yq), its derivatives with respect to the input/output quantities, which
are λsubplink

(yq), plink ∈ Plink. Thirdly, if the optimal value sensitivity with respect to
this parameter is uniformly high over the whole relevant domain of input/output
quantities, a change in the parameter shifts the function F ∗1 up or down, but it
does not effect its derivatives λsubplink

(yq), plink ∈ Plink. Regarding the approximating
problems (6.14) and (6.15), a shift in the functions c effects the optimal objective
values, but not the optimal production and price solutions. Changes in the deriva-
tives λsubplink

(yq), plink ∈ Plink, such as in the second case, can considerably influence

166

6.7 Numerical Results 2

the optimal solutions of the problems (6.14) and (6.15).

• If, in the relevant domain, the sensitivity λsubp̄link
of each link product p̄link ∈ Plink

of a subsystem depends only on the input/output quantity yqp̄link and not on the
quantities yqplink

for plink ∈ Plink \ {p̄link}, the subsystem’s optimal value function
is separable. The separability may be caused by subsystem variables which are
independent of yq. Such quantities can be fixed as long as subsystem parameters
are not allowed to vary. This simplifies the overall problem structure and may lead
to a new partition of the overall problem into subproblems.

6.7 Numerical Results 2

In each of the following four examples, we aggregate one component of the petrochemical
network that we partitioned in section 6.4, cf. figure 6.17. Using the resulting approxima-
tion of the input/output-profit/cost relation for the respective component, we calculate
in each example a solution of the overall network optimization problem. Finally, in
example 2.5, we solve the overall problem using approximations of all four subsystems.
Since, in the examples of section 6.3, we got much better fitting results for the function
c(y) by a polynomial than by a scaled hyperbolic tangent function, we fit the generated
subsystem data in the following examples by quadratic polynomials.

Example 2.1

The first submodel that we discuss arises from the linking product 84. It includes only
one possible linking product, namely product 89, see also figure 6.16. The subsystem is
defined by the following products and processes and is visualized in figure 6.20.

Plink_1 = {84}
Pb(link)_1 = {89}
Pb_1 = {54, 57, 89, 102, 249}
Sb_1 = {51, 72, 97, 120, 121, 135, 136, 139, 165, 185, 229, 274, 275, 278, 288, 291, 305}

Figure 6.20: Subsystem 1

167

6 Decomposing a Multi-Commodity Supply-Demand Network

yq
84,i 0 144 288 432 576 720 864 1008
πi 1350634 3488735 4913883 5722030 6446265 7096845 7664180 8176319
λsub

84,i 16830 12744 6251 5069 4849 4183 3588 3558

yq
84,i 1151 1295 1439 1583 1727 1871 2015 2159
πi 8688355 9197226 9698354 10192067 10670489 11034336 11241227 11257860
λsub

84,i 3558 3508 3455 3405 3046 1901 644 0

Table 6.15: Optimal values πi of problem (6.13) for varying input parameters yq
84,i to-

gether with sensitivities λsub
84,i (example 2.1). Highlighted data is used for curve fitting.

Figure 6.21: Polynomial fit cpoly,1, (6.98), of subproblem 1’s input/output-profit/cost
function (example 2.1)

zq∗
49 xsub∗

49 zq∗
52 xsub∗

52 zq∗
68 xsub∗

68 zq∗
84 xsub∗

84

original problem (6.5) - -342,-1128 - 3372 - -1846,2854 - 1975,-1441
subsys 1 agg. (ex. 2.1) - - - - - - 3112 1959
subsys 2 agg. (ex. 2.2) - - - - 437 -1606 58 -865
subsys 3 agg. (ex. 2.3) 1881 -313 - - 5421 2854 - -
subsys 4 agg. (ex. 2.4) 1239 -956 3381 3376 - - - -
all subsys agg. (ex. 2.5) 1051 -313,-872 3381 3377 2924 -1974,2854 2445 1941,-451

Table 6.16: Linking products’ quantitative solutions of problem (6.14) with different
aggregated subsystems, where zq∗

plink :=
∑

s∈S\Sb
xq∗
s af

s,plink
. The values of xsub∗

plink
in the first

row are in order of the subsystems.

Solving problem (6.13) for varying values yq84,i leads to optimal solutions πi := F ∗1 (yq84,i)
that are shown in table 6.15 together with Lagrange multipliers λsub84,i := λsub84 (yq84,i) that
correspond to constraint (6.13d). Thereby, lower and upper bounds for yq84,i are chosen
according to equations (6.29) and (6.30). In the present example, these bounds are
determined by the capacities within the subsystem. Assuming a realistic system price of

168

6.7 Numerical Results 2

48 49 50 52 54 55 57 61 68
original problem (6.5) 777 2141 1785 1492 2472 1930 1864 1247 1322
subsys 1 agg. (ex. 2.1) 777 2141 1785 1492 2501 1930 1862 1247 1322
subsys 2 agg. (ex. 2.2) 777 2084 1785 1492 2500 1930 1862 1247 1372
subsys 3 agg. (ex. 2.3) 777 2141 1785 1492 2472 1930 1864 1247 1322
subsys 4 agg. (ex. 2.4) 777 2141 1785 1543 2472 1930 1864 1237 1322
all subsys agg. (ex. 2.5) 777 2124 1785 1543 2525 1930 1861 1236 1372

84 88 89 102 105 114 179 obj. value
original problem (6.5) 1616 2336 1616 3578 2147 1307 2145 35610041
subsys 1 agg. (ex. 2.1) 1616 2336 1614 3588 2147 1307 2145 35608178
subsys 2 agg. (ex. 2.2) 1688 2336 1614 3588 2147 1307 2145 35534372
subsys 3 agg. (ex. 2.3) 1616 2336 1616 3578 2147 1307 2145 35589189
subsys 4 agg. (ex. 2.4) 1616 2336 1616 3578 2147 1298 2145 35576501
all subsys agg. (ex. 2.5) 1678 2336 1612 3597 2147 1298 2145 35517976

Table 6.17: Price solutions Ppout(xsales∗
pout) of problem (6.14) with different aggregated

subsystems, where xsales∗
plink

=
∑

s∈S\Sb
xq∗
s af

s,plink
− xsub∗

plink
for linking products and xsales∗

pout =∑
s∈S

xq∗
s af

s,pout for other products with external demand. Strong deviations from the

original solution through the approximation error are highlighted. Gray subsystem
results are calculated afterwards by solving (6.13) with yq = xsub∗.

variables # equality constr. # inequality constr. # iterations
original problem (6.5) 92 16 8 56
subsys 1 agg. (ex. 2.1) 72 12 7 52
subsys 2 agg. (ex. 2.2) 73 14 6 49
subsys 3 agg. (ex. 2.3) 83 15 5 53
subsys 4 agg. (ex. 2.4) 81 12 7 51
all subsys agg. (ex. 2.5) 32 5 1 38

Table 6.18: Compared to the original problem (6.5), the number of variables, con-
straints, and iterations of problem (6.14) and (6.15), respectively, is reduced by using
subsystem aggregations.

product 84 in an optimal solution of problem (6.14), cf. paragraph a. of section 6.5, we
can already see that the submodel input should be more than 1727. This is because the
shadow price of 3046 is much higher than historical prices of product 84. Therefore, we
use only the last four data points for the curve fitting. The result of the least squares
estimation is

cpoly,1(y84) = −7314280 + 17646.3y84 − 4.19y2
84. (6.98)

Figure 6.21 visualizes this curve along with the resulting optimal subsystem input of
problem (6.14) under this subsystem approximation, which we highlight red. For com-
parison, it also includes the original optimal subsystem input of problem (6.5). Ta-
ble 6.16 summarizes the linking products’ quantitative solutions, where the first line

169

6 Decomposing a Multi-Commodity Supply-Demand Network

shows the optimal production quantities and subsystem inputs/outputs of the origi-
nal problem (6.5) without any approximation.19 The second line includes the approx-
imated quantitative solutions that result from solving problem (6.14) with the esti-
mated input-profit function (6.98) of our first subsystem. The approximated price so-
lutions Ppout(xsales∗pout) of this example as well as of the following examples are shown in
table 6.17. The gray numbers in the second lines result from solving subproblem (6.13)
with yq84 = xsub∗84 = 1959, which is equal to zq∗84 − xsales∗84 .

Example 2.2

The next submodel is the first one that comes from two linking products, namely prod-
uct 68 and product 84. It includes the possible linking product 98. In addition to the
minimal set of processes {49, 164, 170}, we added the processes that include only the
possible linking products 68 and 84, cf. remark 6.4.4 and remark 6.4.5. Alternatively,
we could have added some of them to the third and first submodel, respectively. All
in all, the submodel consists of the following products and processes and is shown in
figure 6.22.

Plink_2 = {68, 84}
Pb(link)_2 = {98}
Pb_2 = {55, 78, 98, 179}
Sb_2 = {45, 46, 47, 48, 49, 58, 76, 164, 170, 174, 175, 206, 231, 234, 236, 244, 257, 266, 307}
Figure 6.23 visualizes the fitting of the data that we generated by successively optimiz-
ing the submodel for varying values yq68,i and yq84,i. The lower bounds for these values
given by (6.29) are much too low regarding a realistic overall solution because of the
multitude of production and processing facilities for product 68 and product 84. There-
fore we increased the lower bounds a bit to determine a reasonable domain for the
submodel input/output-profit/cost function. A representative subset of the data points
(yq68,i, y

q
84,i, πi) is specified in table 6.19 together with the Lagrange multipliers λsub68,i and

λsub84,i corresponding to the constraints (6.13d). The estimated polynomial to model these
data is

cpoly,2(y) = cpoly,2(y68, y84) = 10450500 + 1067.8y68 + 1260.51y84

− 0.0243y2
68 − 0.0463y2

84 − 0.0435y68y84.
(6.99)

An optimization of the overall model under this approximation of the submodel results in
an optimal submodel output -1606 of product 68 and -865 of product 84 as listed in the
third row of table 6.16. The corresponding price results are shown in the third lines of
table 6.17. As in the first example, the gray numbers result from solving the subproblem
with the optimal subsystem input/output quantities, here (yq68, y

q
84) = (xsub∗68 , xsub∗84) =

(−1606,−865).
19If there are two values in a cell because of two submodels using the same linking product, the order

is according to the order of the submodels in the following examples.

170

6.7 Numerical Results 2

Figure 6.22: Subsystem 2

Figure 6.23: Polynomial fit cpoly,2, (6.99), of subproblem 2’s input/output-profit/cost
function (example 2.2)

171

6 Decomposing a Multi-Commodity Supply-Demand Network

yq
68,i → -5452 -3021 -589 1842 4274 6705
yq
84,i ↓
-2375 -566943 3852450 6548281 9143955 11739634 13716359

1906 1641 1068 1068 1068 774
1914 1699 1615 1615 1615 1617

-1411 1252701 5308959 7908885 10504558 13100238 15075069
1827 1148 1068 1068 1068 774
1850 1300 1235 1235 1235 1173

-447 3027900 6503513 9099189 11694862 14180278 16062572
1807 1068 1068 1068 774 774
1834 1235 1235 1235 997 997

517 4734383 7693820 10289495 12885168 15141498 16984373
1750 1068 1068 1068 774 501
1722 1235 1235 1235 997 776

1481 6241902 8868504 11464179 14059852 16102717 17731947
1291 1068 1068 1068 774 501
1364 1190 1190 1190 997 776

2445 7419959 10015638 12611314 15148496 17030790 18416129
1068 1068 1068 774 774 0
1190 1190 1190 961 961 357

Table 6.19: Optimal values πi of problem (6.13) for varying input/output parameters
(yq

68,i, y
q
84,i) together with sensitivities (λsub

68,i, λ
sub
84,i) (example 2.2). All data points are used

for the curve fitting.

Example 2.3

The third submodel arises from the linking products 49 and 68 and includes three possible
linking products 115 and 121. It consists of the following products and processes and is
visualized in figure 6.24.

Plink_3 = {49, 68}
Pb(link)_3 = {115, 121}
Pb_3 = {88, 115, 121, 176}
Sb_3 = {57, 146, 151, 188, 235, 237, 251, 255, 259, 333}
Some of the profit/cost data πi that we generated by optimizing the submodel for varying
values yq49,i and y

q
68,i are listed along with Lagrange multipliers in table 6.20. Lower and

upper bounds for yq49,i and yq68,i are chosen according to equations (6.29) and (6.30).
As in example 2.1, we use only the data points with Lagrange multipliers that do not
exceed reasonable prices of the linking products for the curve fitting. The visualization
of the complete fitting situation is given by figure 6.25. The corresponding estimated
polynomial is

cpoly,3(y) = cpoly,3(y49, y68) = −478879 + 447y49 + 2888.1y68 − 0.2527y2
68.
(6.100)

172

6.7 Numerical Results 2

Figure 6.24: Subsystem 3

yq
49,i → -470 -376 -282 -188 -94 0
yq
68,i ↓
0 -514949 -249547 -125971 -83980 -41990 0

2823 2823 447 447 447 0
2583 2583 2583 2583 2583 2583

571 787268 1052670 1176247 1218237 1260227 1302217
2823 2823 447 447 447 0
2159 2159 2159 2159 2159 2159

1142 2019832 2285234 2408811 2450801 2492791 2534781
2823 2823 447 447 447 0
2159 2159 2159 2159 2159 2159

1712 3205004 3470407 3593983 3635973 3677964 3719954
2823 2823 447 447 447 0
2014 2014 2014 2014 2014 2014

2283 4284811 4550213 4673790 4715780 4757770 4799760
2823 2823 447 447 447 0
1744 1744 1744 1744 1744 1744

2854 5186757 5452160 5575736 5617726 5659717 5701707
2823 2823 447 447 447 0
493 493 493 493 493 493

Table 6.20: Optimal values πi of problem (6.13) for varying input/output parameters
(yq

49,i, y
q
68,i) together with sensitivities (λsub

49,i, λ
sub
68,i) (example 2.3). Highlighted data is used

for curve fitting.

Optimizing the overall system by using this polynomial as approximation of the submodel
results in (xsub∗49 , xsub∗68) = (−313, 2854) as listed in the fourth line of table 6.16. The
corresponding price results are shown in the fourth rows of table 6.17.

173

6 Decomposing a Multi-Commodity Supply-Demand Network

Figure 6.25: Polynomial fit cpoly,3, (6.100), of subproblem 3’s input/output-profit/cost
function (example 2.3)

Figure 6.26: Subsystem 4

Example 2.4

This last submodel comes from the linking products 49 and 52 and includes three possible
linking products, namely 50, 61, and 114. It consists of the following products and
processes and is visualized in figure 6.26. Analogously to the assignment of processes,

174

6.7 Numerical Results 2

yq
49,i → -1128 -849 -571 -293 -15 263
yq
52,i ↓
0 -1245617 -938328 -631039 -323750 -16461 0

1105 1105 1105 1105 1105 0
4032 4032 4032 4032 4032 4032

676 1306689 1613978 1921267 2228556 2535845 2552306
1105 1105 1105 1105 1105 0
3513 3513 3513 3513 3513 3513

1352 3493616 3800905 4108194 4415483 4722772 4739233
1105 1105 1105 1105 1105 0
2951 2951 2951 2951 2951 2951

2029 5348576 5655865 5963154 6270443 6577732 6594193
1105 1105 1105 1105 1105 0
2527 2527 2527 2527 2527 2527

2705 6896985 7204274 7511563 7818852 8126141 8142602
1105 1105 1105 1105 1105 0
2044 2044 2044 2044 2044 2044

3381 8098943 8406232 8713521 9020810 9328099 9357216
1105 1105 1105 1105 1105 0
1346 1346 1346 1346 1346 1505

Table 6.21: Optimal values πi of problem (6.13) for varying input/output parameters
(yq

49,i, y
q
52,i) together with sensitivities (λsub

49,i, λ
sub
52,i) (example 2.4). Highlighted data is used

for curve fitting.

which are not uniquely relatable, in example 2.2, we add process 56 to this fourth
submodel. It is the only process connected exclusively to the possible linking products
49 and 52.

Plink_4 = {49, 52}
Pb(link)_4 = {50, 61, 114}
Pb_4 = {35, 50, 61, 105, 114}
Sb_4 = {56, 132, 133, 182, 189, 190, 191, 253, 276}
Table 6.21 and figure 6.27 show, as before, the estimation of the input/output-profit/cost
relation of this submodel by a polynomial, which results in

cpoly,4(y) = cpoly,4(y49, y52) = − 426641 + 692.5y49 + 4213.2y52

− 0.2972y2
49 − 0.3987y2

52 + 0.0116y49y52.
(6.101)

Thereby, we choose the bounds for yq49,i and y
q
52,i again by equations (6.29) and (6.30).

The function is only supposed to fit the data points with Lagrange multipliers that do
not exceed reasonable prices of the linking products. Using this approximation in the
optimization of the overall model, we get the price simulations that are shown in the
fifth lines of table 6.17, and optimal subsystem input/output quantities (xsub∗49 , xsub∗52) =
(−956, 3376) as listed in the fifth row of table 6.16.

175

6 Decomposing a Multi-Commodity Supply-Demand Network

Figure 6.27: Polynomial fit cpoly,4, (6.101), of subproblem 4’s input/output-profit/cost
function (example 2.4)

Example 2.5

In this example, we use all four submodel approximations of the above examples simul-
taneously, as visualized in figure 6.17. That means:

Plink = Plink_1
⋃
Plink_2

⋃
Plink_3

⋃
Plink_4 = {49, 52, 68, 84}

Pb(link) = Pb(link)_1
⋃̇
Pb(link)_2

⋃̇
Pb(link)_3

⋃̇
Pb(link)_4

Pb = Pb_1
⋃̇
Pb_2

⋃̇
Pb_3

⋃̇
Pb_4

Sb = Sb_1
⋃̇
Sb_2

⋃̇
Sb_3

⋃̇
Sb_4

The formulation of the corresponding optimization problem including multiple submod-
els is given by (6.15). Solving this problem, we obtain the quantitative results that are
listed in the last line of table 6.16. If there are two values in a cell because of two
submodels using the same linking product, the order is according to the order of the
submodels. We have zq*plink

= xsales∗plink
+
∑

m∈M xsub∗plink,m
, where zq*plink

is the total production
of a linking product in the main part of the model, i.e., the production generated by
the processes S \ Sb. The corresponding price results for the products 48, 49, 52, 68,
and 84 as specified in the last lines of table 6.17. Prices for the remaining products are
calculated by setting yqPlink

= xsub∗
Plink,m

and solving (6.13) for each submodel m ∈M.

Sensitivity Analysis

As stated in section 6.6, sensitivity analyses can be restricted to the relevant input/output
quantities yqi , which we have also used for fitting the input/output-profit/cost functions
c(yq). In the following, we analyze if there are highly profitable or non-profitable pro-

176

6.7 Numerical Results 2

cesses in a subsystem and, if existing, which simplifications these processes allow. We
deduce how much several subsystem parameters can vary without influencing optimal
solutions. The results considerably facilitate the data procurement for a real market
simulation. Afterwards, we discuss the separability of some subsystems’ input/output-
profit/cost functions and possible consequences on the overall problem structure.

Highly profitable or non-profitable processes and related external products

For convenience, we discuss example 2.1, which includes only one linking product.
Table 6.22 shows the Lagrange multipliers λcaps , s ∈ Sb_1, corresponding to the ca-
pacity bounds. Ten of seventeen process variables are at their upper bound for all
relevant subsystem inputs yq84,i.20 Let Sprofitb_1 denote the set of these processes, i.e.,
Sprofitb_1 := {51, 72, 97, 139, 165, 274, 275, 288, 291, 305}. Given the current values of the
submodel parameters, the profitability of these ten processes is completely independent
of model parameters outside the submodel. Therefore, precluding variations in submodel
parameters, we can fix the production quantities of these submodel processes to their
respective capacity acaps . This fixing of select variables leads to a reduced version of the
original problem (6.5), which can be used to simulate various scenarios of the overall
market under the sole restriction that submodel parameters are, in general, prohibited
from varying. However, as we will see in the following, there may even be exceptions
from this restriction.

Remark 6.7.1. Through process 135, table 6.22 includes an example of a Lagrange
multiplier that is not monotonic in yq84. Similarly, all other optimal solutions are not
necessarily monotonic in the subsystem input. One should take this into account before
fixing variables. As mentioned in section 6.6, changes in monotonicity occur at active
set changes. In our example a proper analysis approves that the production quantities
of the ten detected processes are at their upper bound ∀ yq84 ∈ [1727, 2159]. Moreover,
the corresponding Lagrange multipliers are monotonic in yq84.

A Lagrange multiplier λcap
s , s ∈ Sb_1, states how much the optimal objective value F ∗1 of

the subproblem changes with the parameter acap
s . The value of λcap

s depends on the prices
of the external products that the process s includes. Thus, let us look at the external
prices that influence the Lagrange multipliers corresponding to the ten selected high prof-
itable processes Sprofitb_1 . These are aπpex , pex ∈ {21, 31, 66, 76, 123, 150, 175, 195, 284, 306}
=: Pprofit

ex . None of these external products is included in any other process s ∈ S\Sprofitb_1 .
Furthermore, except for process 291, which is influenced by aπ66 and aπ284, there is no fur-
ther process that includes more than one external product. Therefore, computing the

20The optimal solutions xq
i , which we do not display here, show that there is not any process in the first

subsystem with production quantity zero for all relevant values yq
84,i. In general, conclusions from

non-profitable processes can be drawn analogous to them from highly profitable processes, cf. the
discussion in section 6.6.

177

6 Decomposing a Multi-Commodity Supply-Demand Network

yq
84,i 1727 1871 2015 2159 acap

λcap
51 230 266 296 309 3214
λcap

72 517 553 583 596 245
λcap

97 181 817 1519 1879 1388
λcap

120 0 0 0 0 295
λcap

121 61 38 13 0 1247
λcap

135 0 51 62 36 926
λcap

136 0 0 0 0 205
λcap

139 699 1140 1628 1879 248
λcap

165 621 941 1299 1484 425
λcap

185 0 0 0 0 2500
λcap

229 0 0 0 0 811
λcap

274 260 236 217 208 215
λcap

275 235 212 192 184 164
λcap

278 0 0 200 271 210
λcap

288 152 125 103 93 28
λcap

291 261 594 962 1151 95
λcap

305 1399 1374 1355 1346 480

Table 6.22: Lagrange multipliers λcap
s , s ∈ Sb_1 corresponding to the capacity bounds

of problem (6.13) regarding example 2.1 for the relevant input parameters yq
84. The last

column shows process capacities acap
s , s ∈ Sb_1.

set (6.95), we derive, except for products 66 and 284, independent ranges in which ex-
ternal prices can vary without influencing optimal production quantities xq, but only
Lagrange multipliers λcap, cf. table 6.23. The values regarding products 66 and 284 de-
rive from (6.95) by taking process 291 into account. aπ_min

66 and aπ_max
284 must commonly

fulfill
−0.4 · (2700− aπ_max

66) + (2700− aπ_min
284) < 261, (6.102)

i.e.,

a
π_max
66 < (261 + 0.4 · 2700− (2700− aπ_min

284))/0.4 = (a
π_min
284 − 1359)/0.4 and

(6.103)

a
π_min
284 > −261− 0.4 · (2700− aπ_max

66) + 2700 = 1359 + 0.4 · aπ_max
66 . (6.104)

The sensitivities of the production and price solutions with respect to all external prod-

pex 21 31 66 76 123 150 175 195 284 306
a
π_orig
pex 1200 2630 2700 2500 827 813 1235 1240 2700 2393
a
π_min
pex 1016 2449 0 1879 0 0 1142 1032 1359+0.4aπ_max

66 1048
a
π_max
pex ∞ ∞ (aπ_min

284 −1359)/0.4 ∞ 934 1247 ∞ ∞ ∞ ∞

Table 6.23: Ranges in which certain external prices can vary without influencing optimal
production quantities of the first subsystem, cf. (6.95).

178

6.7 Numerical Results 2

ucts of table 6.23 are zero. On the contrary, optimal production quantities and prices
are sensitive to other external prices as those of products 25 and 273.
We can make further conclusions considering table 6.22. The production quantities of
processes 120, 136, 185, and 229 are below their upper bounds acaps for all relevant values
yq84,i. Therefore, the parameters acap120, a

cap
136, a

cap
185, and a

cap
229 can change, to a certain extent,

without any effect on the optimal solutions and on the optimal objective value. By
detecting the maximal optimal production quantities of the respective processes over all
relevant values yq84,i, one can easily establish ranges in which the parameters acap120, a

cap
136,

acap185, and a
cap
229 can vary without influencing any reasonable optimal solution.

Separability of the input/output-profit/cost functions c

Table 6.20 and equation (6.100) show that the input/output-profit/cost function c3 of
subsystem 3 is additively separable. For plink ∈ {49, 68}, the Lagrange multipliers λsubplink,i

corresponding to the constraints (6.13d), which are in general dependent on the vector
yqi , depend solely on the component yqplink,i

. We analyze the subsystem to detect the rea-
son for the separability. It turns out that product 121 is a by-product in the processes
57 (af57,121 = 0.1), 151, and 333 (af151,121 = af333,121 = 0.61) and that its production by
process 57 is not relevant for the subsystem. Therefore, we can change the production
factor af57,121 from 0.1 to 0, which splits subsystem 3 into 2 independent subsystems, one
small subsystem with link product 49, which includes only the processes 57 and 188,
and a larger one with link product 68, which includes all other processes of subsystem
3. In the network of figure 6.16, the edge between products 49 and 121 disappears.
Furthermore, table 6.21 and equation (6.101) indicate that the input/output-profit/cost
function c4 of subsystem 4 can be approximated by an additively separable function. In
submodel 4, there is only a small number of values yq52,i, for which the value of λsub52,i de-
pends on yq49,i, and, in those few cases, the influence of yq49,i is comparatively low, cf. the
last line of table 6.21: λsub52 (−15, 3381) = 1346 and λsub52 (263, 3381) = 1505. An analysis
of subsystem 4 reveals that process 253 constitutes the sole connection between the link-
ing products 49 and 52 within this subsystem. Its capacity, acap253, is only 45. Therefore,
we decide to fix process 253’s production to half of its capacity, i.e., xq253 = acap253/2 = 22.5.
The influence of this fixing on optimal solutions and optimal objective value is bounded
by appropriate values. By this fixing, subsystem 4 decomposes into one subsystem with
linking product 49 and production variables corresponding to processes 56 and 276 and
one subsystem with linking product 52, which includes the remaining non-fixed pro-
duction variables. In the network of figure 6.16, the edge between products 49 and 61
disappears.
Figure 6.28 shows the new network of possible linking products, which results from the
discussed simplifications. Each of the new subnetworks 3 and 4 depends on only one
linking product. The possible linking product 49 builds the basis of a new model com-
ponent linked to the main network by the products 68 and 84. If desired, this new
subsystem could be aggregated with subsystem 2 because of the same linking products.

179

6 Decomposing a Multi-Commodity Supply-Demand Network

b(link)_2P

Pb(link)_new_3

b(link)_1

b(link)_new_4

P

P

P
b(link)_new

Figure 6.28: New submodel components in the reduced network of possible linking products

Besides the processes 56, 57, 188, and 276, the new subsystem should include process
169, which links the products 49, 68, and 84.

Conclusion

Regarding the optimal price solutions of table 6.17, we get, in principle, very satisfactory
results. Using the submodel approximations of example 2.1 and 2.3 does not cause any
difference in the prices of the remaining part of the network, in which we are mainly
interested when choosing the respective subsystem aggregations. However, in examples
2.2 and 2.4, we get some considerable price deviations for the products 49, 54, 68,
84, and 52, respectively. These deviations reproduce in the price results of example
2.5. The differences in the quality of the submodel approximations can be explained in
part by the different sizes of the domains on which we approximate the input/output-
profit/cost function c, i.e., on the chosen grid points yqi . In the examples 2.1, 2.3, and
2.4, we can considerably restrict the relevant domains by the approach proposed in
section 6.5, paragraph a. With a restriction of the domain on which the function c of
the second subsystem is approximated, we expect better results. The wide domain of
theoretically possible linking quantities in the second submodel is, among others, due
to the assignment of “free” processes to this submodel, cf. section 6.4, paragraph c. In
this case, the free processes are those related only to the linking products 68 and 84.
Alternatively, one could divide this subproblem into two or three ones. Especially, there
are many processes related only to product 68, of which none includes any product with
external demand. These are the processes 45, 46, 76, 174, 175, 206, 231, 234, 236, 257,

180

6.7 Numerical Results 2

266, and 307. An aggregation and a common analysis of these processes could reveal
several possibilities for reduction, such as we exposed during the sensitivity analysis
within the first subsystem.
Table 6.18 gives a short summary of the IPOPT console output for each optimization
procedure. The number of variables, nvar, the number of equality constraints, nec, and
the number of inequality constraints, nic, are calculated as follows:

nvar = |S \ Sb|+ |Pout \ Pb|+ |PMlink|, (6.105)
nec = |Pout \ Pb|, (6.106)

nic = |Pmid \ (Pb

⋃
Plink)|, (6.107)

where |PMlink| is the number of linking products whereby each product is weighted by the
number of submodels in which it appears. For example, we have |PMlink| = 7 in example
2.5. The corresponding variables are xsub

Plink,M. The term |Pout \Pb| in nvar and nec comes
from the additional variables xsales

plink
=
∑

s∈S\Sb x
q
sa

f
s,plink

− xsub
plink

for linking products and
xsales
pout =

∑
s∈S x

q
sa

f
s,pout for other products with external demand. Concerning the in-

equality constraints, the requirements of non-negativity for total production of products
with external demand are automatically fulfilled in the optimal solution. Thus, we must
postulate non-negativity only for the total production of intermediates.
The last column of table 6.18 shows the number of iterations that IPOPT needs to solve
the optimization problems. First of all, we see that all numbers are very small, which
means that our problem is relatively easy to solve and well formulated. Furthermore, we
notice that the problems with aggregated submodels are solved even a bit faster than
the original problem. This gives cause to expect good results with our model reduction
approach for much larger network models, especially, when we look at the number of
iterations to solve the system with four submodel aggregations, which are listed in the
last line of the table.
In general, sensitivity analysis within a subsystem over the whole relevant domain of in-
put/output quantities yq is highly useful since it takes account of all reasonable variations
of parameters outside the subsystem. In this sense, it is a global analysis. Regarding the
first subsystem, our sensitivity analyses reveal various possible model simplifications and
support the differentiation between more and less important data for simulations. Ten
of seventeen processes run at their production capacities for all relevant input quantities
of the linking product. The profitability of these processes depends solely on subsystem
parameters. Therefore, these processes can be fixed for further analysis of the overall
model in which variations of the parameters outside the subsystem are allowed. Fur-
thermore, we are able to determine ranges in which several external prices and capacity
parameters can vary without any influence on optimal prices and production quantities.
Regarding real applications, our modeling, simulation, and analysis support suppliers’
investment decisions since the detected highly profitable processes indicate investment
opportunities.
Moreover, our numerical study shows that the input/output-profit/cost functions of the

181

6 Decomposing a Multi-Commodity Supply-Demand Network

third and fourth subsystem can be modeled additively separable. Further submodel
analyses reveal the weak connections within the subsystems. Corresponding small mod-
ifications of the overall model lead to a reduced connectivity of the overall system, which
is reflected on a new network of possible linking products. A new favorable partition
into small subsystems, which are connected by only a few linking products, becomes
possible.

182

7 Conclusions and Outlook

Our first aim was the development of a multi-commodity market model that allows for
the simulation and analysis of price formation, sensitivity analyses with respect to dif-
ferent kinds of market parameters, and various scenario simulations. In this thesis, we
proposed a deterministic optimization model that represents the profit maximization
of the supply side given the price-demand relationship for products that are sold to
consumers. This fundamental modeling approach allows high flexibility at the level of
detail and also further model extensions. The simulation results for a small part of the
petrochemical market are satisfactory and confirm our model, although there is room
for improvement in some aspects. This might be due to the straightforward choice of
demand parameters and insufficient availability of supply-side data. We expect better
results by using demand functions whose parameters are estimated on an adequate data
set.
Future applications of our model could include fixed costs for running plants and storage
possibilities. Moreover, consumers with distinct demand behavior could be considered.
We disregarded these model components in our simulations because of the lack of cor-
responding data.

To analyze the structure of constrained nonlinear optimization problems, we proposed a
graph-theoretical decomposition approach. It allows for the exploration and comparison
of possible decompositions into different sets of subproblems. Regarding parametric op-
timization problems, the approach facilitates the detailed analysis of subproblems while
keeping the connection to the remaining part of the problem through only a small num-
ber of variables. The application of the approach to the multi-commodity market model,
which is a constrained convex optimization problem with a large number of parameters,
led to promising results.
Future research should apply the graph-theoretical decomposition approach to a set of
benchmark problems including mixed-integer nonlinear programs in order to analyze,
in a general way, its usefulness regarding efficient numerical optimization. It should be
studied how far the choice of a decomposition influences the performance of an opti-
mization procedure and if balanced decompositions are particularly advantageous. In
this context, the benefit of different kinds of subproblem approximations can also be
analyzed. In addition, there is a distinct interesting direction of research in the con-
text of the reduction of optimization problems, which we would like to mention at this
point. There might be a way to adapt some of the existing model reduction methods for
dynamical systems, e.g., [Maa98, DHM96], to optimization problems. However, in our
view, there is no evident way to treat inequality constraints. Furthermore, the approach
proposed in this thesis is preferable concerning our market model, since the meaning of

183

7 Conclusions and Outlook

the newly introduced variables is easily comprehensible, whereas the variables appearing
in dynamical reduction methods are artificial.

We adapted the graph-theoretical decomposition approach to a special case of our multi-
commodity market model. For the formulation of the decomposed problem, we chose
the input/output quantities of selected products as linking variables between the sub-
problems and the remaining problem. A set of products must fulfill together with a set
of processes certain properties to constitute a subsystem that is suited for aggregation.
We developed an algorithm that identifies such sets. To approximate the input/output-
profit/cost function of a market component that is suited for aggregation, the respective
subproblem was solved for an appropriate set of fixed input/output quantities of the
linking products. To generate subsystem data, we further deduced an alternative sub-
problem formulation, in which intrasystem prices represent the linking variables. The
two formulations correspond to primal and dual decomposition. Since they have different
benefits, it is worthwhile to bear both in mind regarding a subproblem approximation.
The main advantage of the decomposition approach lies in the small number of vari-
ables that represent the major connecting quantities within the overall problem. The
input/output-profit/cost relationship describes the optimal value of a subproblem de-
pendent on the values of the linking variables. The only way in which parameters of
a subsystem effect the main system is through the input/output-profit/cost function.
The impact of subsystem parameters on this function can be analyzed by the optimal
value sensitivities of the subproblem. Conversely, the variation of parameters outside
the subsystem affects the subsystem solely by the effect on the linking variables. The
solution sensitivities within a subproblem with respect to input/output quantities quan-
tify these effects. Summarizing these two aspects, sensitivity analyses within subsystems
considerably increase the understanding of the relationship between a subsystem and the
remaining system. Furthermore, these analyses show which parameters have little to no
effect in view of a certain question and, thus, must be just roughly estimated for the
respective market simulations.
Applying the approach to a part of the real petrochemical market, we could separate
four subsystems. For the first submodel, we determined considerable ranges in which
several parameters can vary without influencing the price simulations. In addition, two
input/output-profit/cost functions turned out to be separable. The fixing of the re-
spective subproblem variables simplifies the overall problem structure and leads to new
weakly connected market components that are suited for aggregation.
In future, our decomposition approach should be applied to larger parts of the petro-
chemical market and also to different commodity markets. Furthermore, the approach
should be adapted to models that include multiple regions and time periods. A de-
composition seems also useful with regard to testing demand models and other model
components. Solving a subproblem for varying input/output quantities leads to an
overview of possible price and sales solutions within the subproblem, i.e., to ranges in
which simulated submodel prices and sales must lie. This fact can be used to test if

184

a submodel is reasonable: the simulated range of submodel prices and sales should in-
clude the historical price and sales data. A rather different application area for our
graph-theoretical decomposition approach is in biochemistry. Since metabolic networks
are, due to the underlying chemical processes, quite similar to petrochemical production
networks, our approach might be usefully applied within the flux-balance analysis of
metabolic networks [PRP04, OTP10].

185

List of Figures

2.1 Shape of the demand function φc,pout,r,t 14
2.2 Products and processes of a small petrochemical production system . . . 24
2.3 Price and sales of product 54 resulting from three different kinds of market

simulations . 26
2.4 Price and sales of product 84 resulting from three different kinds of market

simulations . 27

3.1 Decomposition of an optimization problem 50
3.2 Multilevel decomposition . 55

5.1 Structure of the optimization problem (ex. 5.1.2) 90
5.2 Structure of the optimization problem represented by different graphs

after merging nodes (ex. 5.1.2) . 91
5.3 Structure of the optimization problem represented by different graphs

after merging nodes (ex. 5.1.3) . 92

6.1 Basic structure of the production optimization problem 113
6.2 System before reduction . 114
6.3 System after reduction . 114
6.4 Partition of the network (example 1.1) 122
6.5 Two fits of the input/output-profit/cost function c (example 1.1) 123
6.6 Partition of the network (example 1.2) 124
6.7 Two fits of the input/output-profit/cost function c (example 1.2) 125
6.8 Partition of the network (example 1.3) 126
6.9 Two fits of the input/output-profit/cost function c (example 1.3) 127
6.10 Extended petrochemical network . 128
6.11 Sequentially connected nodes . 130
6.12 Nodes connected in parallel . 130
6.13 Almost disconnected subgraph . 131
6.14 Network of all principally possible linking products, Pout

⋃
Pmid 132

6.15 Reduced network of possible linking products Ppos_link 133
6.16 Major network components of degree 1 and 2 135
6.17 Network partition into four submodel components 142
6.18 The domain D̃ for |Plink| = 2 . 145
6.19 The domain D̂ for |Plink| = 2 . 145
6.20 Subsystem 1 . 167

vii

List of Figures

6.21 Polynomial fit of the input/output-profit/cost function (example 2.1) . . 168
6.22 Subsystem 2 . 171
6.23 Polynomial fit of the input/output-profit/cost function (example 2.2) . . 171
6.24 Subsystem 3 . 173
6.25 Polynomial fit of the input/output-profit/cost function (example 2.3) . . 174
6.26 Subsystem 4 . 174
6.27 Polynomial fit of the input/output-profit/cost function (example 2.4) . . 176
6.28 New submodel components in the reduced network of possible linking

products . 180

viii

List of Tables

6.1 Sets . 121
6.2 Production factors af

s,p (p ∈ Pex) and external prices aπp (p ∈ Pex) 121
6.3 Production factors af

s,p (p ∈ Pout) and process capacities acap
s 121

6.4 Parameters related to Pout . 121
6.5 Optimal values πi of problem (6.13) for varying input parameters yq

84,i

together with sensitivities λsub
84,i (example 1.1) 122

6.6 Solutions of (6.14) with c(y) = ctanh(y) and c(y) = cpoly(y) (example 1.1) 123
6.7 Optimal values πi of problem (6.13) for varying input parameters yq

84,i

together with sensitivities λsub
84,i (example 1.2) 124

6.8 Solutions of (6.14) with c(y) = ctanh(y) and c(y) = cpoly(y) (example 1.2) 125
6.9 Optimal values πi of problem (6.13) for varying output parameters yq

84,i

together with sensitivities λsub
84,i (example 1.3) 126

6.10 Solutions of (6.14) with c(y) = clin(y) and c(y) = cpoly(y) (example 1.3) . 127
6.11 Sets . 129
6.12 External prices aπpex of Pex . 129
6.13 Parameters related to Pout . 129
6.14 Exemplary sets of submodel products regarding the networks shown in

figures 6.14 and 6.16 . 140
6.15 Optimal values πi of problem (6.13) for varying input parameters yq

84,i

together with sensitivities λsub
84,i (example 2.1) 168

6.16 Linking products’ quantitative solutions of problem (6.14) with different
aggregated subsystems . 168

6.17 Price solutions of problem (6.14) with different aggregated subsystems . . 169
6.18 Number of variables, constraints, and iterations in the original prob-

lem (6.5) and in problem (6.14) and (6.15), respectively, with different
subsystem aggregations . 169

6.19 Optimal values πi of problem (6.13) for varying input/output parameters
(yq

68,i, y
q
84,i) together with sensitivities (λsub

68,i, λ
sub
84,i) (example 2.2) 172

6.20 Optimal values πi of problem (6.13) for varying input/output parameters
(yq

49,i, y
q
68,i) together with sensitivities (λsub

49,i, λ
sub
68,i) (example 2.3) 173

6.21 Optimal values πi of problem (6.13) for varying input/output parameters
(yq

49,i, y
q
52,i) together with sensitivities (λsub

49,i, λ
sub
52,i) (example 2.4) 175

6.22 Lagrange multipliers λcap
s , s ∈ Sb_1 corresponding to the capacity bounds

for the relevant input parameters yq
84 . 178

ix

List of Tables

6.23 Ranges in which certain external prices can vary without influencing op-
timal production quantities . 178

x

Notation

⊆ subset of a set (including equality)
⊂ proper subset of a set
⊇ superset of a set (including equality)
⊃ proper superset of a set
N positive integers
N0 non-negative integers, N0 = N ∪ {0}
R real numbers
R+ positive real numbers, R+ = {x ∈ R|x > 0}
R+

0 non-negative real numbers, R+
0 = {x ∈ R|x ≥ 0}

B(x, r) open ball with center x and radius r
|A| cardinality of a set A
1A indicator function of set A
co(A) convex hull of a set A, i.e., smallest convex set that contains A
aff(A) affine hull of a set A,

aff(A) = {
∑n

i=1 kiai|n > 0, ai ∈ A, ki ∈ R,
∑n

i=1 ki = 1}
relint(A) relative interior of a set A,

relint(A) = {a ∈ A|∃ε > 0, B(a, ε) ∩ aff(A) ⊆ A}
MT transpose of matrix M
In n× n identity matrix
dom f domain of a function f
∇f(x) gradient of the function f at the point x
∂f(x) subdifferential of the function f at the point x
E(X) expected value of a random variable X
Var(X) variance of a random variable X
Cov(X, Y) covariance of the random variables X and Y

xi

Bibliography

[AA95] E. D. Andersen and K. D. Andersen. Presolving in linear programming.
Mathematical Programming, 71:221–245, 1995.

[ACEP09] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M. Pardalos.
Detecting critical nodes in sparse graphs. Computers & Operations Re-
search, 36(7):2193–2200, 2009.

[Alt02] W. Alt. Nichtlineare Optimierung. Vieweg Verlag, 2002.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[AQE09] K. Al-Qahtani and A. Elkamel. Multisite refinery and petrochemical net-
work design: Optimal integration and coordination. Industrial & Engi-
neering Chemistry Research, 48(2):814–826, 2009.

[ARV04] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings
and graph partitioning. In Proceedings of the 36th Annual ACM Sympo-
sium on Theory of Computing, pages 222–231, 2004.

[BC03] G. Bitran and R. Caldentey. An overview of pricing models for rev-
enue management. Manufacturing & Service Operations Management,
5(3):203–229, 2003.

[BCFK08] N. M. Borisov, A. S. Chistopolsky, J. R. Faeder, and B. N. Kholodenko.
Domain-oriented reduction of rule-based network models. IET Systems
Biology, 2(5):342–351, 2008.

[BDG+08] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,
and D. Wagner. On modularity clustering. IEEE Transactions on Knowl-
edge and Data Engineering, 20(2):172–188, 2008.

[BE05] U. Brandes and T. Erlebach, editors. Network Analysis: Methodological
Foundations. Springer, Berlin Heidelberg, 2005.

[Ben62] J. F. Benders. Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik, 4:238–252, 1962.

[Ber63] C. Berge. Topological Spaces. MacMillan, New York, 1963.

xiii

Bibliography

[Ber98] D. P. Bertsekas. Network Optimization: Continuous and Discrete Models.
Athena Scientific, Belmont, Massachusetts, 1998.

[Ber99] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont,
Massachusetts, second edition, 1999.

[Ber03] D. P. Bertsekas. Convex Analysis and Optimization. Athena Scientific,
Belmont, Massachusetts, 2003.

[Ber09] D. P. Bertsekas. Convex Optimization Theory. Athena Scientific, Belmont,
Massachusetts, 2009.

[BGK+82] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer. Nonlinear
Parametric Optimization. Akademie-Verlag, Berlin, 1982.

[BGLS06] J. F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal.
Numerical Optimization. Springer, Berlin Heidelberg New York, second
edition, 2006.

[BGN00] R. H. Byrd, J. C. Gilbert, and J. Nocedal. A trust region method based
on interior point techniques for nonlinear programming. Mathematical
Programming A, 89:149–185, 2000.

[BGS07] M. Burger, B. Graeber, and G. Schindlmayr. Managing Energy Risk: An
Integrated View on Power and Other Energy Markets. John Wiley & Sons,
2007.

[BGS09] J. Burgschweiger, B. Gnädig, and M. C. Steinbach. Nonlinear program-
ming techniques for operative planning in large drinking water networks.
Open Applied Mathematics Journal, 3:14–28, 2009.

[BHN99] R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm
for large-scale nonlinear programming. SIAM Journal on Optimization,
9(4):877–900, 1999.

[Bie10] L. T. Biegler. Nonlinear Programming: Concepts, Algorithms, and Appli-
cations to Chemical Processes. SIAM Publications, Philadelphia, 2010.

[BJ92] T. N. Bui and C. Jones. Finding good approximate vertex and edge par-
titions is NP-hard. Information Processing Letters, 42(3):153–159, 1992.

[BK04] N. H. Bingham and R. Kiesel. Risk-Neutral Valuation: Pricing and Hedg-
ing of Financial Derivatives. Springer Finance, second edition, 2004.

[BKS07] H. G. Bock, E. Kostina, and J. P. Schlöder. Numerical methods for pa-
rameter estimation in nonlinear differential algebraic equations. GAMM-
Mitteilungen, 30(2):376–408, 2007.

xiv

Bibliography

[BLN98] R. H. Byrd, G. Liu, and J. Nocedal. On the local behavior of an interior
point method for nonlinear programming. In D. F. Griffiths, D. J. Higham,
and G. A. Watson, editors, Numerical Analysis 1997, pages 37–56. Addison
Wesley Longman, Harlow, UK, 1998.

[BLRS01] L. Bacaud, C. Lemaréchal, A. Renaud, and C. A. Sagastizábal. Bun-
dle methods in stochastic optimal power management: A disaggregated
approach using preconditioners. Computational Optimization and Appli-
cations, 20(3):227–244, 2001.

[BM11] M. D. Biha and M.-J. Meurs. An exact algorithm for solving the vertex
separator problem. Journal of Global Optimization, 49(3):425–434, 2011.

[BMMN95] M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, edi-
tors. Network Models, volume 7 of Handbooks in Operations Research and
Management Science. Elsevier Science & Technology, 1995.

[BMW75] A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical
programming problems prior to applying the simplex algorithm. Mathe-
matical Programming, 8:54–83, 1975.

[Bod12] A. Bodea. Valuation of Swing Options in Electricity Commodity Mar-
kets. PhD thesis, Naturwissenschaftlich-Mathematische Gesamtfakultät,
Ruprecht-Karls-Universität Heidelberg, 2012.

[Bon72] P. Bonacich. Factoring and weighting approaches to status scores and
clique identification. Journal of Mathematical Sociology, 2(1):113–120,
1972.

[Bor06] S. P. Borgatti. Identifying sets of key players in a social network. Compu-
tational and Mathematical Organization Theory, 12(1):21–34, 2006.

[BP84] H. G. Bock and K. J. Plitt. A Multiple Shooting algorithm for direct
solution of optimal control problems. In Proceedings of the 9th IFAC World
Congress, pages 242–247, Budapest, 1984. Pergamon Press.

[BS00] J. F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization
Problems. Springer, New York, 2000.

[BSH11] C. Borraz-Sánchez and D. Haugland. Minimizing fuel cost in gas trans-
mission networks by dynamic programming and adaptive discretization.
Computers & Industrial Engineering, 61(2):364–372, 2011.

xv

Bibliography

[BTN] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization,
spring semester 2012. Extension of their book Lectures on Modern Con-
vex Optimization: Analysis, Algorithms, Engineering Applications, SIAM,
Philadelphia, 2001.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univer-
sity Press, 2004.

[BXMM07] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley. Notes on decomposition
methods. Lecture Notes for EE364B: Convex Optimization II, Stanford
University, Winter 2006-07, 2007.

[CCC+06] E. Castillo, A. J. Conejo, C. Castillo, R. Mínguez, and D. Ortigosa. Per-
turbation approach to sensitivity analysis in mathematical programming.
Journal of Optimization Theory and Applications, 128(1):49–74, 2006.

[CCMGB06] A. J. Conejo, E. Castillo, R. Mínguez, and R. García-Bertrand. Decompo-
sition Techniques in Mathematical Programming: Engineering and Science
Applications. Springer, Berlin Heidelberg, 2006.

[CGJ+13] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and
P. Mutzel. The open graph drawing framework (OGDF). In R. Tamassia,
editor, Handbook of Graph Drawing and Visualization, chapter 17. Chap-
man & Hall/CRC Press, 2013.

[Cha05] A. K. Chakravarty. Global plant capacity and product allocation with
pricing decisions. European Journal of Operational Research, 165:157–181,
2005.

[Cla83] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons,
1983.

[CLCD07] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering as
optimization decomposition: A mathematical theory of network architec-
tures. Proceedings of the IEEE, 95(1):255–312, 2007.

[CMLW01] X. Cai, D. C. McKinney, L. S. Lasdon, and D. W. Watkins. Solving large
nonconvex water resources management models using generalized Benders
decomposition. Operations Research, 49(2):235–245, 2001.

[CSB+11] W.-Y. Chen, Y. Song, H. Bai, C.-J. Lin, and E. Y. Chang. Parallel spectral
clustering in distributed systems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(3):568–586, 2011.

xvi

Bibliography

[CSRS+06] H. Conzelmann, J. Saez-Rodriguez, T. Sauter, B. N. Kholodenko, and
E. D. Gilles. A domain-oriented approach to the reduction of combinatorial
complexity in signal transduction networks. BMC Bioinformatics, 7:34,
2006.

[DDGDA05] L. Danon, A. Díaz-Guilera, J. Duch, and A. Arenas. Comparing commu-
nity structure identification. Journal of Statistical Mechanics: Theory and
Experiment, 2005(9):P09008, 2005.

[DHM96] P. Deuflhard, J. Heroth, and U. Maas. Towards dynamic dimension re-
duction in reactive flow problems. Proc. 3rd Workshop on Modelling of
Chemical Reaction Systems, Heidelberg, 1996.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[dSB05] C. de Souza and E. Balas. The vertex separator problem: algorithms and
computations. Mathematical Programming A, 103(3):609–631, 2005.

[DW60] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs.
Operations Research, 8:101–111, 1960.

[DXT+10] T. N. Dinh, Y. Xuan, M. T. Thai, E. K. Park, and T. Znati. On approx-
imation of new optimization methods for assessing network vulnerability.
In INFOCOM, 2010 Proceedings IEEE, 2010.

[EB99] M. G. Everett and S. P. Borgatti. The centrality of groups and classes.
Journal of Mathematical Sociology, 23(3):181–201, 1999.

[EFS12] M. Engelhart, J. Funke, and S. Sager. A decomposition approach for a
new test-scenario in complex problem solving. Journal of Computational
Science, 2012. Available at: http://dx.doi.org/10.1016/j.jocs.2012.06.005.

[EG70] J. P. Evans and F. J. Gould. Stability in nonlinear programming. Opera-
tions Research, 18(1):107–118, 1970.

[EK10] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning
About a Highly Connected World. Cambridge University Press, 2010.

[EM92] J. R. Evans and E. Minieka. Optimization Algorithms for Networks and
Graphs. Marcel Dekker, second edition, 1992.

[Eve63] H. Everett. Generalized Lagrange multiplier method for solving problems
of optimum allocation of resources. Operations Research, 11(3):399–417,
1963.

xvii

Bibliography

[Eve79] S. Even. Graph Algorithms. Computer Science Press, 1979.

[EW03] A. Eydeland and K. Wolyniec. Energy and Power Risk Management: New
Developments in Modeling, Pricing, and Hedging. John Wiley & Sons,
2003.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Cana-
dian Journal of Mathematics, 8:399–404, 1956.

[FGK03] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. Duxbury, second edition, 2003.

[FGW02] A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear
optimization. SIAM Review, 44(4):525–597, 2002.

[FHL08] U. Feige, M. Hajiaghayi, and J. R. Lee. Improved approximation algo-
rithms for minimum weight vertex separators. SIAM Journal on Comput-
ing, 38(2):629–657, 2008.

[FHT96] L. Fahrmeir, A. Hamerle, and G. Tutz. Multivariate statistische Verfahren.
Walter de Gryter & Co., second edition, 1996.

[FI90] A. V. Fiacco and Y. Ishizuka. Sensitivity and stability analysis for nonlin-
ear programming. Annals of Operations Research, 27:215–236, 1990.

[Fia83] A. V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlin-
ear Programming. Academic Press, New York, 1983.

[Fie73] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23(98):298–305, 1973.

[FK86] A. V. Fiacco and J. Kyparisis. Convexity and concavity properties of the
optimal value function in parametric nonlinear programming. Journal of
Optimization Theory and Applications, 48(1):95–126, 1986.

[FL02] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty
function. Mathematical Programming, 91(2):239–269, 2002.

[Fle87] R. Fletcher. Practical Methods of Optimization. JohnWiley & Sons, second
edition, 1987.

[Flo62] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM,
5(6):345, 1962.

[Flo95] C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals
and Applications. Oxford University Press, 1995.

xviii

Bibliography

[FM90] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. SIAM, Philadelphia, PA, 1990.
Reprint of the 1968 original.

[Fox08] J. Fox. Applied Regression Analysis and Generalized Linear Models. Sage,
second edition, 2008.

[Fre77] L. C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, 1977.

[FT87] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in im-
proved network optimization algorithms. Journal of the ACM, 34(3):596–
615, 1987.

[FTT04] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and
minimum cut trees. Internet Mathematics, 1(4):385–408, 2004.

[FW08] J. Ferrio and J. Wassick. Chemical supply chain network optimization.
Computers and Chemical Engineering, 32:2481–2504, 2008.

[Gan11] E. R. Gansner. Drawing Graphs with Graphviz: Graphviz Drawing Library
Manual. 2011.

[Gem05] H. Geman. Commodities and Commodity Derivatives. John Wiley & Sons,
2005.

[Geo72] A. M. Geoffrion. Generalized Benders decomposition. Journal of Opti-
mization Theory and Applications, 10(4):237–260, 1972.

[GG97] T. Gal and H. J. Greenberg, editors. Advances in Sensitivity Analysis and
Parametric Programming. Kluwer Academic Publishers, 1997.

[GH61] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the
Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[GK07] N. Garg and J. Könemann. Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems. SIAM Journal on
Computing, 37(2):630–652, 2007.

[GM01] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees.
In Proceedings of the 8th International Symposium on Graph Drawing (GD
2000), volume 1984 of Lecture Notes in Computer Science, pages 77–90.
Springer, 2001.

[GMZ03] C. Gkantsidis, M. Mihail, and E. Zegura. Spectral analysis of Internet
topologies. In Proceedings of the 22nd IEEE International Conference on
Computer Communications, INFOCOM, pages 364–374, 2003.

xix

Bibliography

[GN02] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences,
99(12):7821–7826, 2002.

[GN04] M. Girvan and M. E. J. Newman. Finding and evaluating community
structure in networks. Physical Review E, 69(2):026113, 2004.

[GOST01] N. I. M. Gould, D. Orban, A. Sartenaer, and P. L. Toint. Superlinear
convergence of primal-dual interior point algorithms for nonlinear pro-
gramming. SIAM Journal on Optimization, 11(4):974–1002, 2001.

[GOT05] N. I. M. Gould, D. Orban, and P. L. Toint. Numerical methods for large-
scale nonlinear optimization. Acta Numerica, 14:299–361, 2005.

[GT88] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. Journal of the Association for Computing Machinery, 35(4):921–
940, 1988.

[GvL96] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore, third edition, 1996.

[GvR97] G. Gallego and G. J. van Ryzin. A multiproduct dynamic pricing problem
and its applications to network yield management. Operations Research,
45(1):24–41, 1997.

[Hac08] S. T. Hackman. Production Economics: Integrating the Microeconomic
and Engineering Perspectives. Springer, Berlin Heidelberg, 2008.

[HFH+11] T. Huschto, G. Feichtinger, R. F. Hartl, P. M. Kort, S. Sager, and A. Seidl.
Numerical solution of a conspicuous consumption model with constant
control delay. Automatica, 47(9):1868–1877, 2011.

[HT73] J. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected compo-
nents. SIAM Journal on Computing, 2(3):135–158, 1973.

[Hüb07] R. Hübner. Strategic Supply Chain Management in Process Industries: An
Application to Specialty Chemicals Production Network Design. Springer,
Berlin Heidelberg, 2007.

[HUL93] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimiza-
tion Algorithms. Springer, Berlin Heidelberg, 1993.

[Ipo] Introduction to IPOPT: A tutorial for downloading, installing, and using
IPOPT. http://www.coin-or.org/Ipopt/documentation/.

xx

Bibliography

[JM04] M. Jünger and P. Mutzel, editors. Graph Drawing Software. Springer,
Berlin Heidelberg, 2004.

[Kal02] J. Kallrath. Gemischt-ganzzahlige Optimierung: Modellierung in der
Praxis. Vieweg, 2002.

[Kan08] M. Kannegiesser. Value Chain Management in the Chemical Industry:
Global Value Chain Planning of Commodities. Physica-Verlag Heidelberg,
2008.

[KC08] T.-H. Kuo and C.-T. Chang. Optimal planning strategy for the supply
chains of light aromatic compounds in petrochemical industries. Comput-
ers & Chemical Engineering, 32:1147–1166, 2008.

[KC12] M. Kim and K. S. Candan. SBV-Cut: Vertex-cut based graph partitioning
using structural balance vertices. Data & Knowledge Engineering, 72:285–
303, 2012.

[Kel60] J. E. Kelley. The cutting-plane method for solving convex programs. Jour-
nal of the Society for Industrial and Applied Mathematics, 8(4):703–712,
1960.

[Kel13] S. Kellner. Modeling and Analysis of Demand for Commodities and a Case
Study of the Petrochemical Market. PhD thesis, Naturwissenschaftlich-
Mathematische Gesamtfakultät, Ruprecht-Karls-Universität Heidelberg,
2013. (submitted in November 2013).

[KGvB+09] M. Kannegiesser, H.-O. Günther, P. van Beek, M. Grunow, and C. Habla.
Value chain management for commodities: a case study from the chemical
industry. OR Spectrum, 31:63–93, 2009.

[KL70] B. W. Kernighan and S. Lin. An efficient heuristic procedure for parti-
tioning graphs. Bell System Technical Journal, 49:291–307, 1970.

[KLL07] K. C. Kiwiel, T. Larsson, and P. O. Lindberg. Lagrangian relaxation
via ballstep subgradient methods. Mathematics of Operations Research,
32(3):669–686, 2007.

[KMT98] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communica-
tion networks: shadow prices, proportional fairness and stability. Journal
of the Operational Research Society, 49(3):237–252, 1998.

[Kol09] E. D. Kolaczyk. Statistical Analysis of Network Data: Methods and Models.
Springer US, 2009.

xxi

Bibliography

[KPcA12] E. Kayaaslan, A. Pinar, Ü. Çatalyürek, and C. Aykanat. Partitioning
hypergraphs in scientific computing applications through vertex separa-
tors on graphs. SIAM Journal on Scientific Computing, 34(2):A970–A992,
2012.

[Kra09] L. Kramer. Ein Fundamentalmodell zur stochastischen Modellierung von
Elektrizitätspreisen. Diploma thesis, Fakultät für Mathematik und Infor-
matik, Ruprecht-Karls-Universität Heidelberg, 2009.

[KVV04] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and
spectral. Journal of the ACM, 51(3):497–515, 2004.

[Las70] L. S. Lasdon. Optimization Theory for Large Systems. Macmillan Com-
pany, New York, 1970.

[LB08] H. Lakkhanawat and M. J. Bagajewicz. Financial risk management with
product pricing in the planning of refinery operations. Industrial & Engi-
neering Chemistry Research, 47:6622–6639, 2008.

[LBBS03] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder. An efficient
multiple shooting based reduced SQP strategy for large-scale dynamic pro-
cess optimization. Part 1: theoretical aspects. Computers and Chemical
Engineering, 27(2):157–166, 2003.

[Lem01] C. Lemaréchal. Lagrangian relaxation. In M. Jünger and D. Naddef,
editors, Computational Combinatorial Optimization: Optimal or Provably
Near Optimal Solutions, Lecture Notes in Computer Science, pages 112–
156, 2001.

[LR99] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and
their use in designing approximation algorithms. Journal of the ACM,
46(6):787–832, 1999.

[Lud13] S. Ludwig. Optimal Portfolio Allocation of Commodity Related As-
sets Using a Controlled Forward-backward Stochastic Algorithm. PhD
thesis, Naturwissenschaftlich-Mathematische Gesamtfakultät, Ruprecht-
Karls-Universität Heidelberg, 2013.

[Lue08] D. G. Luenberger. Linear and Nonlinear Programming. Springer US, third
edition, 2008.

[Maa98] U. Maas. Efficient calculation of intrinsic low-dimensional manifolds for
the simplification of chemical kinetics. Computing and Visualization in
Science, 1(2):69–81, 1998.

xxii

Bibliography

[MC09] J. G. Martin and E. R. Canfield. Ranks and representations for spectral
graph bisection. SIAM Journal on Scientific Computing, 31(5):3529–3546,
2009.

[Men27] K. Menger. Zur allgemeinen Kurventhorie. Fundamenta Mathematicae,
10:96–115, 1927.

[MHH+04] J. Mohring, J. Hoffmann, T. Halfmann, A. Zemitis, G. Basso, and P. Lag-
oni. Automated model reduction of complex gas pipeline networks. In
Proceedings of the 36th Annual Meeting of the Pipeline Simulation Inter-
est Group, Palm Springs, California, 2004.

[Min01] M. Minoux. Discrete cost multicommodity network optimization problems
and exact solution methods. Annals of Operations Research, 106:19–46,
2001.

[MSOI+02] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon.
Network motifs: Simple building blocks of complex networks. Science,
298:824–827, 2002.

[NB01] A. Nedić and D. P. Bertsekas. Incremental subgradient methods for nondif-
ferentiable optimization. SIAM Journal on Optimization, 12(1):109–138,
2001.

[Nes05a] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization.
SIAM Journal on Optimization, 16(1):235–249, 2005.

[Nes05b] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical
Programming A, 103(1):127–152, 2005.

[New04] M. E. J. Newman. Fast algorithm for detecting community structure in
networks. Physical Review E, 69(6):066133, 2004.

[New06] M. E. J. Newman. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[New10] M. E. J. Newman. Networks: An Introduction. Oxford University Press,
2010.

[NJW02] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and
an algorithm. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems 14, pages 849–856.
MIT Press, 2002.

[NN94] Y. Nesterov and A. Nemirovski. Interior-Point Polynomial Algorithms in
Convex Programming. SIAM Publications, Philadelphia, 1994.

xxiii

Bibliography

[NO08] A. Nedić and A. Ozdaglar. Approximate primal solutions and rate analysis
for dual subgradient methods. SIAM Journal on Optimization, 19(4):1757–
1780, 2008.

[Now05] I. Nowak. Relaxation and Decomposition Methods for Mixed Integer Non-
linear Programming. Birkhäuser, Basel Boston Berlin, 2005.

[NS08] I. Necoara and J. A. K. Suykens. Application of a smoothing technique to
decomposition in convex optimization. IEEE Transactions on Automatic
Control, 53(11):2674–2679, 2008.

[NT08] A. S. Nemirovski and M. J. Todd. Interior-point methods for optimization.
Acta Numerica, 17:191–234, 2008.

[NW06] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Sci-
ence+Business Media, second edition, 2006.

[Oel87] O. R. Oellermann. On the l-connectivity of a graph. Graphs and Combi-
natorics, 3:285–291, 1987.

[OMV00] A. Ouorou, P. Mahey, and J.-P. Vial. A survey of algorithms for con-
vex multicommodity flow problems. Management Science, 46(1):126–147,
2000.

[OTP10] J. D. Orth, I. Thiele, and B. Ø. Palsson. What is flux balance analysis?
Nature biotechnology, 28(3):245–248, 2010.

[PC06] D. P. Palomar and M. Chiang. Alternative decompositions for distributed
maximization of network utility: Framework and applications. In Proceed-
ings of the 25th IEEE International Conference on Computer Communi-
cations, INFOCOM, 2006.

[PED07] R. Puzis, Y. Elovici, and S. Dolev. Fast algorithm for successive computa-
tion of group betweenness centrality. Physical Review E, 76(5), 2007. Id:
056709.

[Pil07] D. Pilipovic. Energy Risk: Valuing and Managing Energy Derivatives.
McGraw-Hill, second edition, 2007.

[PLNB11] H. Pirnay, R. López-Negrete, and L. T. Biegler. sIPOPT Reference Man-
ual. 2011.

[PLNB12] H. Pirnay, R. López-Negrete, and L. T. Biegler. Optimal sensitivity based
on IPOPT. Mathematical Programming Computation, 4(4):307–331, 2012.

xxiv

Bibliography

[PR10] R. S. Pindyck and D. L. Rubinfeld. Microeconomics. Prentice Hall, 7th
edition, 2010.

[PRP04] N. D. Price, J. L. Reed, and B. Ø. Palsson. Genome-scale models of
microbial cells: evaluating the consequences of constraints. Nature Reviews
Microbiology, 2(11):886–897, 2004.

[PSL90] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices
with eigenvectors of graphs. SIAM Journal on Matrix Analysis and Ap-
plications, 11(3):430–452, 1990.

[Ras11] S. Rasmussen. Production Economics: The Basic Theory of Production
Optimisation. Springer, Berlin Heidelberg, 2011.

[RMWSB02] R. Z. Ríos-Mercado, S. Wu, L. R. Scott, and E. A. Boyd. A reduction tech-
nique for natural gas transmission network optimization problems. Annals
of Operations Research, 117:217–234, 2002.

[Roc70] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Ruj08] S. Rujivan. Stochastic Modeling for Commodity Prices and Valuation of
Commodity Derivatives under Stochastic Convenience Yields and Season-
ality. PhD thesis, Naturwissenschaftlich-Mathematische Gesamtfakultät,
Ruprecht-Karls-Universität Heidelberg, 2008.

[Sab66] G. Sabidussi. The centrality index of a graph. Psychometrica, 31(4):581–
603, 1966.

[SK07] H. Stadtler and C. Kilger, editors. Supply Chain Management and Ad-
vanced Planning: Concepts, Models, Software, and Case Studies. Springer,
Berlin Heidelberg, 4th edition, 2007.

[SLL02] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User
Guide and Reference Manual. Addison-Wesley, 2002.

[Sno08] User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear
Programming. http://www.sbsi-sol-optimize.com/manuals/SNOPT Man-
ual.pdf, 2008.

[SRWD+11] B. Scholz-Reiter, F. Wirth, S. Dashkovskiy, T. Makuschewitz, M. Schön-
lein, and M. Kosmykov. Structure-preserving model reduction of large-
scale logistics networks. European Physical Journal B, 84(4):501–520, 2011.

[Stu02] A. Stuible. Ein Verfahren zur graphentheoretischen Dekomposition und al-
gebraischen Reduktion von komplexen Energiesystemmodellen. PhD thesis,
Institut für Energiewirtschaft und Rationelle Energieanwendung, Univer-
sität Stuttgart, 2002.

xxv

Bibliography

[SW97] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the
ACM, 44(4):585–591, 1997.

[Tar72] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[TBS12] M. Talebian, N. Boland, and M. Savelsbergh. Assortment and pricing with
demand learning. Optimization Online, January 2012.

[TDNSD13] Q. Tran Dinh, I. Necoara, C. Savorgnan, and M. Diehl. An inexact per-
turbed path-following method for Lagrangian decomposition in large-scale
separable convex optimization. SIAM Journal on Optimization, 23(1):95–
125, 2013.

[TDSD13] Q. Tran Dinh, C. Savorgnan, and M. Diehl. Combining Lagrangian de-
composition and excessive gap smoothing technique for solving large-scale
separable convex optimization problems. Computational Optimization and
Applications, 55(1):75–111, 2013.

[Var10] H. R. Varian. Intermediate Microeconomics: A Modern Approach. Norton,
8th edition, 2010.

[vL07] U. von Luxburg. A tutorial on spectral clustering. Statistics and Comput-
ing, 17(4):395–416, 2007.

[VW03] S. Voß and D. L. Woodruff. Introduction to Computational Optimization
Models for Production Planning in a Supply Chain. Springer, Berlin Hei-
delberg, 2003.

[Wäc02] A. Wächter. An Interior Point Algorithm for Large-Scale Nonlinear Opti-
mization with Applications in Process Engineering. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 2002.

[WB05] A. Wächter and L. T. Biegler. Line search filter methods for nonlinear
programming: Motivation and global convergence. SIAM Journal on Op-
timization, 16(1):1–31, 2005.

[WB06] A. Wächter and L. T. Biegler. On the implementation of a primal-dual
interior point filter line search algorithm for large-scale nonlinear program-
ming. Mathematical Programming, 106(1):25–57, 2006.

[Whi32] H. Whitney. Congruent graphs and the connectivity of graphs. American
Journal of Mathematics, 54(1):150–168, 1932.

xxvi

Bibliography

[ZLB08] V. M. Zavala, C. D. Laird, and L. T. Biegler. Interior-point decompo-
sition approaches for parallel solution of large-scale nonlinear parameter
estimation problems. Chemical Engineering Science, 63:4834–4845, 2008.

[ZSZ13] F. Zheng, A. R. Simpson, and A. C. Zecchin. A decomposition and mul-
tistage optimization approach applied to the optimization of water distri-
bution systems with multiple supply sources. Water Resource Research,
49(1):380–399, 2013. doi:10.1029/2012WR013160.

[ZSZD13] F. Zheng, A. R. Simpson, A. C. Zecchin, and J. W. Deuerlein. A
graph decomposition-based approach for water distribution network
optimization. Chemical Engineering Science, 49(4):2093–2109, 2013.
doi:10.1002/wrcr.20175.

xxvii

