
Efficient Numerics for Nonlinear Model

Predictive Control

Christian Kirches1, Leonard Wirsching1, Sebastian Sager1, and Hans Georg
Bock1

Interdisciplinary Center for Scientific Computing (IWR)
Ruprecht–Karls–Universität Heidelberg,
Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
{christian.kirches|leonard.wirsching|
sebastian.sager|bock}@iwr.uni-heidelberg.de

Summary. We review a closely connected family of algorithmic approaches for fast
and real–time capable nonlinear model predictive control (NMPC) of dynamic pro-
cesses described by ordinary differential equations or index-1 differential-algebraic
equations. Focusing on active–set based algorithms, we present emerging ideas on
adaptive updates of the local quadratic subproblems (QPs) in a multi–level scheme.
Structure exploiting approaches for the solution of these QP subproblems are the
workhorses of any fast active–set NMPC method. We present linear algebra tailored
to the QP block structures that act both as a preprocessing and as block structured
factorization methods.

1 Introduction

Nonlinear model predictive control has become an increasingly popular con-
trol approach, and is both theoretically and computationally well-established.
However, its application to time-critical systems requiring fast feedback is
still a major computational challenge. We review a closely connected family
of algorithmic approaches for fast and real–time capable NMPC of dynamic
processes described by ordinary differential equations (ODEs) or differential-
algebraic equations (DAEs). We start with the discretization of the optimal
control problems (OCPs), focus on active–set based algorithms for the solution
of the resulting nonlinear programs (NLPs), and present emerging ideas on
adaptive updates of the local quadratic subproblems in a multi–level scheme.
Structure exploiting approaches for the solution of these QP subproblems are
the workhorses of any fast active–set NMPC method. Here, we present linear
algebra tailored to the QP block structures that act both as a preprocessing
and as block structured factorization methods. An introduction to a new block
structured active set QP method concludes our review.

2 Authors Suppressed Due to Excessive Length

1.1 Direct Optimal Control in Nonlinear Model Predictive Control

We consider the following class of optimal control problems which typically
arise in nonlinear model predictive control.

min
x(·),u(·)

J(x(t), u(t); p) =

∫ tf

t0

L (x(t), u(t); p) dt + E (x(tf ; p)) (1a)

s.t. x(t0) = x0, (1b)

ẋ(t) = f (t, x(t), u(t); p) , ∀t ∈ [t0, tf]
(1c)

0 ≤ hpath (x(t), u(t); p) , ∀t ∈ [t0, tf]
(1d)

0 ≤ hend(x(tf); p). (1e)

The OCPs are formulated on a fixed and finite time horizon T := [t0, tf]
which is called the prediction horizon. We denote by x(t) ∈ R

nx the state
vector of the dynamic process, and by u(t) ∈ R

nu the vector of continuous
controls influencing the dynamic process. In the following, we drop the explicit
time dependency and write x and u as shorthands for x(t) and u(t).

The state trajectory is determined by the initial value problem (IVP)
(1b)-(1c), where x0 is the current state of the process and f (t, x(t), u(t); p)
describes the dynamic process model. In this paper we consider process models
described by ordinary differential equations to keep the presentation clear.
However, the approach can naturally be extended to models described by
differential-algebraic equations (see [22]). States and controls may be subject
to path constraints hpath (x(t), u(t); p) and the final state may be restricted
by an end-point constraint hend(x(tf); p).

The objective function is of Bolza type with a Lagrange term L (x, u; p)
and a Mayer term E (x(tf); p). An important and frequently occurring choice
for the Lagrange term are least-squares objective functions of the form

L (x, u; p) = ‖l(x, u; p)‖2
2, (2)

where l is the least-squares residual vector. A typical example is the tracking-

type objective

L (x, u; p) = (x − x̄)
T

Q(t) (x − x̄) + (u − ū)
T

R(t) (u − ū) , (3)

with x̄ and ū are given reference trajectories for x and u, and Q(t) and R(t) are
suitable positive definite weighting matrices. A typical choice for the Mayer
term is the quadratic cost

E (x(tf); p) = (x(tf) − x̄(tf))
T

P (x(tf) − x̄(tf)) , (4)

with a suitable weighting matrix P . The Mayer term can be used — typically
in conjunction with the end–point constraint hend — to design feedback con-
trol schemes that guarantee stability of the closed-loop system. For a detailed
discussion of nominal stability for NMPC see, e.g., [24].

Efficient Numerics for Nonlinear Model Predictive Control 3

The problem may also depend on time-independent model parameters p ∈
R

np , but they are not included as degrees of freedom for the optimization.
In practice, it may happen that some of the parameters change their value
during the runtime of the process. This gives rise to the important area of
online state and parameter estimation (see [27, 11]). However, in this work we
assume the parameters to be known and constant over time, and we will drop
them in the following presentation.

1.2 The Principle of Model Predictive Control

Model predictive control schemes generate feedback by repetitively performing
the following actions:

1. Obtain the process state x0 at the current sampling time t0.
2. Solve OCP (1) for the current x0 to obtain optimal state and control

trajectories x⋆(·; x0) and u⋆(·; x0).
3. Feed back the first part of u⋆(·; x0) as feedback control to the process

during the current sampling period [t0, t0 + δ].

Advantages of this approach are the possibility to use a sophisticated process
model to predict the behavior of the process, the flexibility in the choice of an
optimization criterion and a natural incorporation of the process constraints.

However, solving an OCP for each sampling time is computationally chal-
lenging. The fact that OCP (1) depends parametrically on x0 has to be ex-
ploited by carefully using the results from the last problem to solve the current
problem.

1.3 Direct Multiple Shooting Discretization

Approaches to solve OCP (1) divide up in indirect methods which first set
up optimality conditions for the OCP and then discretize and solve these
conditions (see [8]) and direct methods which first discretize the OCP and then
setup und solve optimality conditions for the arising nonlinear program. In this
work, we will consider the Direct Multiple Shooting method, first described by
[26] and [7] and extended in a series of subsequent works (see, e.g., [23]). With
the optimal control software package MUSCOD-II an efficient implementation
of this method is available. For the use of other direct methods such as Single

Shooting and Collocation in the context of online optimization we refer to the
recent survey [10] and the references therein.

For a suitable partition of the horizon [t0, tf] into N subintervals [ti, ti+1],
0 ≤ i < N , we set

u(t) = ϕi(t, qi), for t ∈ [ti, ti+1] (5)

where ϕi are given basis functions parametrized by a finite dimensional param-
eter vector qi. The functions ϕi may be for example vectors of polynomials; a
common choice for NMPC are piecewise constant controls

4 Authors Suppressed Due to Excessive Length

ϕi(t, qi) = qi for t ∈ [ti, ti+1]. (6)

Note that for this particular choice of basis functions bounds on the control
u transfer immediately to bounds on the parameter vectors qi and vice versa.

Furthermore, we introduce additional variables si that serve as initial val-
ues for computing the state trajectories independently on the subintervals

ẋi(t) = f(t, xi(t), ϕi(t, qi)), xi(ti) = si, t ∈ [ti, ti+1], 0 ≤ i < N.

To ensure continuity of the optimal trajectory on the whole interval [t0, tf] we
add matching conditions to the optimization problem

si+1 = xi(ti+1; ti, si, qi), 0 ≤ i < N (7)

where xi(t; ti, si, qi) denotes the solution of the IVP on [ti, ti+1], depending
on si and qi. This method allows using state-of-the-art adaptive integrators
for function and sensitivity evaluation, cf. [2, 25]. The path constraints (1d)
are enforced in the shooting nodes ti.

1.4 Sequential Quadratic Programming

From the multiple shooting discretization we obtain the NLP

min
s,q

N−1∑

i=0

Li (si, qi) + E (sN) (8a)

s.t. 0 = s0 − x0, (8b)

0 = si+1 − xi(ti+1; ti, si, qi), 0 ≤ i < N, (8c)

0 ≤ hpath(si, ϕi(ti, qi)), 0 ≤ i < N, (8d)

0 ≤ hend(sN), (8e)

where

Li (si, qi) =

∫ ti+1

ti

L(x(t), ϕi(t, qi)) dt. (9)

This NLP depends parametrically on x0 and can be written in the generic
form

min
w

φ(w) s.t. c(w) + Λx0 = 0, d(w) ≥ 0, (10)

where Λ = (−Inx
, 0, 0, . . .) and w = (s0, q0, . . . , sN−1, qN−1, sN) is the vector

of all unknowns.
We choose to solve this NLP using a Newton–type framework. The vari-

ous structural features such as the separable Lagrangian, the block diagonal
Hessian, and the block structure of the Jacobians of the matching constraints
(7) can be extensively exploited by tailored linear algebra. In particular using
block–wise high–rank updates of the Hessian and a structure–exploiting algo-
rithm for the solution of the arising QP subproblems as presented in section
4 improves convergence speed and computational efficiency.

Efficient Numerics for Nonlinear Model Predictive Control 5

Starting with an initial guess (w0, λ0, µ0), a full step sequential quadratic
programming (SQP) iteration is performed as follows

wk+1 = wk + ∆wk, λk+1 = λk
QP, µk+1 = µk

QP (11)

where (∆wk, λk
QP, µk

QP) is the solution of the QP subproblem

min
∆w

1
2∆wT Bk∆w + bkT ∆w (12a)

s.t. 0 = Ck∆w + c(wk) + Λx0, (12b)

0 ≤ Dk∆w + d(wk). (12c)

Here, Bk denotes an approximation of the Hessian of the Lagrangian of (8),
and bk, Ck and Dk are the objective gradient and the Jacobians of the con-
straints c and d.

2 SQP based Model–Predictive Control

2.1 Initial Value Embedding and Tangential Predictors

The key to a performant numerical algorithm for NMPC is to reuse informa-
tion from the last QP subproblem to initialize the new subproblem. This is
due to the fact that subsequent problems differ only in the parameter x0 of
the linear embedding Λ. Given that the sampling periods are not too long
and that the process does not behave too different from the prediction by the
model, the solution information of the last problem can be expected to be a
very good initial guess close to the solution of the new subproblem.

In [9] and related works it has been proposed to initialize the current
problem with the full solution of the previous optimization run, i.e., control
and state variables. Doing so, the value of s0 will in general not be the value
of the current state. By explicitly including the initial value constraint (8b)
in the QP formulation, we can guarantee that the constraint is satisfied after
the first full Newton–type step due to its linearity in x0. This is called the
initial value embedding technique.

On the other hand, by using the full solution of the last problem as ini-
tialization of the new problem, the first full Newton–type step already gives
us a first order approximation of the solution of the new problem, even in the
presence of an active set change. This motivates the idea of real–time itera-

tions, which perform only one Newton–type iteration per sample, and is at
the same time the main reason for our preference of active set methods over
interior–point techniques. We refer to [10] for a detailed survey on the topic
of initial value embeddings and the resulting first order tangential predictors.

6 Authors Suppressed Due to Excessive Length

2.2 Real–Time Iterations

Using the initial value embedding also has an important algorithmical advan-
tage. We can evaluate all derivatives and all function values except the initial
value constraint prior to knowing the current state x0. Consequently, we can
also presolve a major part of QP (12). This allows to separate each real–time
iteration into the following three phases.

Preparation

All functions and derivatives that do not require knowledge of x0 are evaluated
using the iterate of the previous step (wk, λk, µk). Due to its special structure,
the variables (∆s1, . . . , ∆sN) can be eliminated from QP (12), cf. section 4.

Feedback

As soon as x0 is available, ∆s0 can be eliminated as well and a small QP
only in the variables (∆q0, . . . , ∆qN−1) is solved. The variable qk+1

0 = qk
0 +

∆qk
0 is then given to the process, allowing to compute the feedback control

ϕ0(t, q
k+1
0). Thus, the actual feedback delay reduces to the solution time of the

QP resulting from both eliminations. The affine-linear dependence of this QP
on x0 via Λ can further be exploited by parametric quadratic programming
as described in section 2.3.

Transition

Finally, the eliminated variables are recovered and step (11) is performed to
obtain the new set of NLP variables (wk+1, λk+1, µk+1).

2.3 Parametric Quadratic Programming

Both the structured NLP (8) and the QP subproblems (12) derived from
it depend parametrically on x0. This linear dependence on x0 is favourably
exploited by parametric active set methods for the solution of (12), cf. [4]
and [12]. The idea here is to introduce a linear affine homotopy in a scalar
parameter τ ∈ [0, 1] ⊂ R from the QP that was solved in iteration k − 1 to
the QP to be solved in iteration k:

min
∆w

1
2∆wT Bk∆w + bT (τ)∆w (13a)

s.t. 0 = Ck∆w + c(τ) + Λx0(τ), (13b)

0 ≤ Dk∆w + d(τ), (13c)

with initial values x0(0) = xk−1
0 , x0(1) = xk

0 . Linear affine gradient and con-
straint right hand sides on the homotopy path,

Efficient Numerics for Nonlinear Model Predictive Control 7

b(τ) = (1 − τ)b(wk−1) + τb(wk), (14)

c(τ) = (1 − τ)c(wk−1) + τc(wk), (15)

d(τ) = (1 − τ)d(wk−1) + τd(wk), (16)

allow for an update of the QP’s vectors in iteration k by one of the multi–level
scheme’s modes, cf. section 3. From the optimality conditions of QP (13) in
τ = 0 and τ = 1 it is easily found that an update of the QP’s matrices is
possible as well, without having to introduce matrix–valued homotopies.

Using this approach to compute the SQP algorithm’s steps has multiple
advantages. First, a phase I for finding a feasible point of the QP is unnec-
essary, as we can start the homotopy in a trivial QP with zero vectors and
known optimal solution. Second, we can monitor the process of solving the
QP using the distance 1 − τ to the homotopy path’s end. Intermediate iter-
ates are physically meaningful and optimal for a known QP on the homotopy
path. Thus, intermediate control feedback can be given during the ongoing
solution process. Finally, premature termination of the QP solution process
due to computing time constraints becomes possible, cf. [12].

3 The Multi–Level Iteration Scheme

A novel and promising algorithmic approach to SQP based nonlinear model
predictive control is the multi–level iteration method, first proposed in [6, 5].

The multi–level iteration method aims at providing feedback very fast,
while updating the data of the feedback-generating QP with information from
the process on different levels. We distinguish four levels or modes, from which
multi–level iteration schemes can be combined.

3.1 Mode A: Feedback Iterations

For Mode A, we assume that QP (12) is given with a Hessian approxima-
tion B, objective gradient b, constraint values c, d, and Jacobians C, D, and
working on a reference solution (w, λ, µ). The aim of Mode A is to compute
feedback by resolving the QP for new given current states x0 and returning
the control parameters q0 + ∆qk

0 to the process as quickly as possible. Mode
A is essentially a linear model predictive controller (LMPC). In contrast to
LMPC which uses linearizations of a steady state model, Mode A works on
linearizations provided by higher modes of the multi–level scheme, which may
include transient phases of the nonlinear process.

3.2 Mode B: Feasibility Improvement Iterations

In Mode B, we assume that we have a Hessian approximation B, a reference
objective gradient b, Jacobians C, D and a reference solution (w, λ, µ). Fur-
thermore, Mode B holds its own variables wk

B, which are initially set to w.

8 Authors Suppressed Due to Excessive Length

To finish the setup of QP (12), we evaluate new function values c(wk) and
d(wk) and approximate the QP gradient by b(wk) = b + B

(
wk

B − w
)
, so that

we come up with the following QP

min
∆wk

B

1

2
∆wk T

B B ∆wk
B + b(wk)T ∆wk

B

s. t. C ∆wk
B + c(wk) + Λx0 = 0

D ∆wk
B + d(wk) ≥ 0.

Once we have solved the QP, we return the control parameters qk
B,0 + ∆qk

B,0

to the process and iterate by setting wk+1
B = wk

B + ∆wk
B.

When performing Mode B iterations with a fixed x0, one can show that
wk

B converges locally to a suboptimal but feasible point of NLP (8), thus
Mode B iterations are also referred to as feasibility improvement iterations.
Optimality is approximately treated by the gradient updates. In comparison
to Mode A, the additional computational cost for a Mode B iteration are
evaluations of the constraints c and d, and condensing of the constraint vectors
and the approximated gradient. Since the QP matrices are fixed, no new
matrix decompositions are required during QP solving.

3.3 Mode C: Optimality Improvement by Adjoint SQP Iterations

In Mode C, we assume that we have a Hessian approximation B, Jacobians
C, D and a reference solution (w, λ, µ). Furthermore, Mode C holds its own
variables (wk

C, λk
C, µk

C), which are initially set to (w, λ, µ). To finish the setup
of QP (12), we have to evaluate new function values c(wk) and d(wk), and we
compute a modified gradient by

b(wk) = ∇φ(wk) +
(

C
T
− Ck T

)

λk +
(

D
T
− Dk T

)

µk, (17)

where Ck and Dk are the Jacobians of the constraints c and d at wk. However,
the Jacobians need not to be calculated completely, but rather the adjoint
derivatives Ck T λk and Dk T µk. This can be done efficiently by the reverse
mode of automatic differentiation, cf. [17]. After solving the following QP

min
∆wk

C

1

2
∆wk T

C B ∆wk
C + b(wk)T ∆wk

C

s. t. C ∆wk
C + c(wk) + Λx0 = 0

D ∆wk
C + d(wk) ≥ 0,

we return the control parameters qk
C,0 + ∆qk

C,0 to the process and iterate by
setting

wk+1
C = wk

C + ∆wk
C, λk+1

C = λk
QP, µk+1

C = µk
QP, (18)

Efficient Numerics for Nonlinear Model Predictive Control 9

where λk
QP and µk

QP are the multipliers obtained from the QP solution.
When performing Mode C iterations with a fixed x0, one can show local

convergence of the sequence (wk
C, λk

C, µk
C) to a KKT–point of NLP (8), cf.

[31], thus Mode C iterations are also referred to as optimality improvement

iterations. In comparison to Mode B, the additional computational cost for a
Mode C iteration are evaluations of the adjoint derivatives Ck T λk and Dk T µk

which can be obtained at no more than five times the cost of the respective
constraint evaluation [17]. Again, no new matrix decompositions are required
during QP solving.

3.4 Mode D: Forward SQP Iterations

Mode D iterations are essentially standard real–time iterations, i.e. full SQP
iterations. Mode D holds its own variables (wk

D, λk
D, µk

D) and in each Mode D
iteration, we evaluate the constraints c(wk) and d(wk), the objective gradi-
ent b(wk), and the constraint Jacobians C(wk) and D(wk), and build a new
Hessian approximation B(wk). After solving QP (12) the control parameters
qk
D,0 + ∆qk

D,0 are given to the process and we iterate by setting

wk+1
D = wk

D + ∆wk
D, λk+1

D = λk
QP, µk+1

D = µk
QP, (19)

where λk
QP and µk

QP are the multipliers obtained from the QP solution. In each
Mode D iteration we have to evaluate the full constraint Jacobians, which
amounts to the computational cost of the number of degrees of freedom times
the cost for a constraint evaluation. Furthermore, a full initial decomposition
has to be performed for the solution of the QP, cf. section 4, which depend-
ing on the chosen block structured QP method may have a computational
complexity of up to O(N2n3).

3.5 Assembling Multi-level Iteration Schemes

From the four modes described above, we can assemble multi-level iteration
schemes in various ways. A sequential approach is outlined in the following:

10 Authors Suppressed Due to Excessive Length

Algorithm 1: Sequential Multi-level Iteration Scheme

Choose initial B,C, D,b,c, d and (w, λ, µ) for all modes;
while Process running do

Determine mode;
case mode A

Perform calculations described in subsection 3.1;
endsw

case mode B
Perform calculations described in subsection 3.2;
Update b, c, d in mode A with the new values from mode B;
Update w in mode A with wB;

endsw

case mode C
Perform calculations described in subsection 3.3;
Update b, c, d in mode A and B with the new values from mode
C;
Update w in mode A and wB with wC;

endsw

case mode D
Perform calculations described in subsection 3.4;
Update B, C, D, b, c, d in mode A, B and C with the new
values from mode D;
Update w in mode A and wB, wC with wD and (λc, µc) with
(λD, µD);

endsw

endw

However, a parallel implementation would be an even more natural choice,
starting all modes at one time and then performing the updates described
above whenever one of the modes has finished one calculation cycle. Of couse,
one has to consider the issue of synchronization, so that the faster modes are
updated only after finishing their current feedback calculation.

Multi-level iteration schemes do not need to employ all modes described
above. An example application of a sequential multi-level iteration scheme
using modes A and D to a vehicle model is presented in [1].

3.6 Euler Steps

In some cases the limiting factor for feedback generation is the sampling rate
of the system states x0, e.g., if the current states are obtained from a mea-
surement procedure with limited throughput.

If it is still desired to update the feedback control with a higher frequency,
a possible remedy is to use the model to predict the next x0 by an Euler step

xnew
0 = x0 + hf(x0, ϕ0(t0, q

k
0)) (20)

Efficient Numerics for Nonlinear Model Predictive Control 11

with a small stepsize h = tnew
0 −t0 and use xnew

0 to obtain a new feedback qk+1
0 .

In addition, as the explicit Euler scheme generates a linear affine homotopy
path for xnew

0 (t) starting in t0, it can be readily combined with the parametric
QP strategy of section 2.3. This allows system state predictions to enter the
QP solution even before the solution process has been completed.

3.7 Computing the Local Feedback Law

Phase A iterations can even be used to generate a local feedback law which
maps differences ∆x0 = xnew

0 − x0 to feedback updates and thus can be used
as an explicit continuous feedback law betweeen two following QP solutions.

To see this, we consider the Karush-Kuhn-Tucker (KKT) system of the
QP after a successful solution





B −CT −DT
A

C

DA





︸ ︷︷ ︸

:=K





∆w

∆λ

∆µA



 = −





b

c + Λx0

dA



 , (21)

where A is the optimal active set. Let I be the index set of ∆q0 within ∆w.
We can easily calculate the part of the inverse of K which gives us ∆q0 when
applied to the right hand side by solving

KT Xi = ei, i ∈ I, (22)

with ei the i-th unity vector. Since a decomposition of K is available from
the QP solver, this amounts to only nu backsolves. Assuming that A keeps
constant for small changes in x0, we can determine an update for ∆q0 by
building

XT





0
Λ∆x0

0



 , (23)

for which we actually need only a small part of the matrix X .

4 Structured Quadratic Programming

This final part of our survey is concerned with numerical methods for the effi-
cient solution of the QPs that arise from a direct multiple shooting discretiza-
tion of the model predictive control problem. The focus is put on methods
that efficiently exploit the block structure of problem (24) by appropriate lin-
ear algebra. We present the condensing algorithm due to [26, 7] that works as
a preprocessing step, mention Riccati recursion to exploit the block structure,
and conclude with a block structured active set method.

12 Authors Suppressed Due to Excessive Length

4.1 The Block Structured Quadratic Subproblem

To gain insight into the direct multiple shooting structure of QP (12) we
rewrite it to expose the individual block matrices. The matching conditions
(7) are separated in (24b), and equality as well as inequality point constraints
are collected in (24c):

min
∆w

N∑

i=0

(
1
2∆wT

i Bi∆wi + ΦT
i ∆w

)
(24a)

s.t. 0 = Xi∆wi − ∆wi+1 − hi 0 ≤ i < N (24b)

0 ≦ Ri∆wi + ri 0 ≤ i ≤ N (24c)

4.2 Condensing and Dense Active Set Methods

The purpose of the following condensing algorithm that is due to [26] and
[7], cf. also [23], is to exploit the block sparse structure of QP (24) in a
preprocessing or condensing step that transforms the QP into a smaller and
densely populated one.

Reordering the Sparse Quadratic Problem

We start by reordering the constraint matrix of QP (24) to separate the mul-
tiple shooting state values ∆v1 = (∆s1, . . . , ∆sN) introduced in section 1.3
from the single shooting values ∆v2 = (∆s0, ∆q0, . . . , ∆qN−1) as shown in
(25). Therein, we use partitions Xi = (Xs

i X
q
i) and Ri = (Rs

i R
q
i) of the

jacobians Xi and Ri with respect to ∆s and ∆q.



















Xs
0 X

q
0 −I

X
q
1 Xs

1 −I

. . .
. . .

. . .

X
q
N−1 Xs

N−1 −I

Rs
0 R

q
0

R
q
1 Rs

1

. . .
. . .

R
q
N−1 Rs

N−1

Rs
N



















. (25)

Elimination Using the Matching Conditions

We may now use the negative identity matrix blocks of the equality match-
ing conditions as pivots to formally eliminate the state values (∆s0, . . . , ∆sN)
from system (25), analogous to the usual Gaussian elimination method for tri-
angular matrices. From this elimination procedure the dense constraint matrix

Efficient Numerics for Nonlinear Model Predictive Control 13

(
X −I

R 0

)

:=


















Xs
0 X

q
0 −I

Xs
1X

s
0 Xs

1X
q
0 X

q
1 −I

...
...

...
. . .

. . .

ΠN−1
0 ΠN−1

1 X
q
0 ΠN−1

2 X
q
1 · · · X

q
N−1 −I

Rs
0 R

q
0

Rs
1X

s
0 Rs

1X
q
0 R

q
1

...
...

...
. . .

Rs
NΠN−1

0 Rs
NΠN−1

1 X
q
0 Rs

NΠN−1
2 X

q
1 · · · Rs

NX
q
N−1


















(26)
is obtained, with sensitivity matrix products Πk

j defined to be

Πk
j :=

k∏

l=j

Xs
l , 0 ≤ j ≤ k ≤ N − 1. (27)

From (26) we deduce that, after this elimination step, the transformed QP in
terms of the two unknowns ∆v1 and ∆v2 reads

min
∆v

1

2

(
∆v1

∆v2

)T
(

B11 B12

B
T

12 B22

)(
∆v1

∆v2

)

+

(
Φ1

Φ2

)T (
∆v1

∆v2

)

(28a)

s.t. 0 = X∆v1 − ∆v2 − h (28b)

0 ≦ R∆v1 − r (28c)

wherein B and Φ are reorderings of B and Φ, and h and r are appropriate
right hand side vectors obtained by applying the Gaussian elimination steps
to h and r.

Reduction to a Single Shooting Sized System

System (28) lends itself to the elimination of the unknown ∆v2. By this step
we arrive at the final condensed QP

min
∆v1

1
2∆vT

1 B∆v1 + Φ
T

∆v1 (29a)

s.t. 0 ≤ R∆v1 − r (29b)

with the following dense Hessian matrix and gradient obtained from substi-
tution of ∆v2 in the objective (28a)

B = B11 + B12X + X
T
B

T

12 + X
T
B22X, (30a)

Φ = Φ1 + X
T
Φ2 − B

T

12h − X
T
B22h. (30b)

The required matrix multiplications are easily laid out to exploit the block
triangular structure of X and the block diagonal structure of B. In addition,
from the elimination steps described in the previous two paragraphs one ob-
tains relations that allow to recover ∆v2 = (∆s1, . . . , ∆sN) from the solution
∆v1 = (∆s0, ∆q0, . . . , ∆qN−1) of the condensed QP (29).

14 Authors Suppressed Due to Excessive Length

Solving the Condensed Quadratic Problem

The resulting condensed QP (29) no longer has a multiple shooting specific
structure. It may thus be solved using any standard dense active–set method,
which is what condensing ultimately aims for. Popular codes are the null space
method QPSOL and its successor QPOPT [15]. The code BQPD [13] is even able
to exploit remaining sparsity to some extent. An efficient code for parametric
quadratic programming is qpOASES [12].

Condensing in Model–Predictive Control

The run time complexity of the condensing preprocessing step is O(N2) due to
the elimination in (26). As all controls remain in the condensed QP, from which
all states additionally introduced in section 1.3 are eliminated, condensing is
a computationally favourable approach for model predictive control problems
with a large number nx of system states, few control parameters, and a limited
number N of discretization points of the prediction horizon. The majority of
condensing can be carried out in the preparation phase, cf. section 2.2, as the
initial value xnew

0 need not be known in advance. This reduces the control
feedback delay to essentially the run time of the QP solver on the condensed
QP (29).

4.3 Riccati Recursion

While the condensing algorithm acts as a preprocessing step on the block
structured QP data, an alternative approach is to exploit this structure inside
the QP solver, i.e. to solve block structured KKT systems. Riccati recur-
sion, based on the dynamic programming principle, is a popular concept here.
Starting with the last shooting node’s cost function

φN (∆sN) = 1
2∆sT

NBN∆sN + ΦT
N∆sN (31)

the cost–to–go function φN−1 of the previous node is found from tabulation
of the optimal control step ∆qN−1 for each admissible state step ∆sN−1. This
procedure is repeated until the backwards recursion arrives at the first node
i = 0, at which point the sequence of optimal control steps ∆q can simply be
obtained from a table look–up using the estimated or measured initial value
xnew

0 .
The optimal control steps ∆qi of nodes i = N−1, . . . , 0 are found by solving

the purely equality-constrained QP (32) using an appropriate factorization of
the associated KKT system,

φi(∆si) = min
∆si+1

∆qi

1

2

(
∆si

∆qi

)T (
Bss

i B
sq
i

B
qs
i B

qq
i

)(
∆si

∆qi

)

+

(
Φs

i

Φ
q
i

)T (
∆si

∆qi

)

+ φi+1(∆si+1)

(32a)

s.t. hi =
(
Xs

i X
q
i

)
(

∆si

∆qi

)

− ∆si+1. (32b)

Efficient Numerics for Nonlinear Model Predictive Control 15

Riccati Recursion in Model–Predictive Control

By observing that the optimal cost–to–go functions φi(∆si) remain quadratic
functions,

φi(∆si) = ∆sT
i Pi∆si + pT

i ∆si + πi, (33)

and by inserting (32b) into (32a), the unknown ∆si+1 can be eliminated.
Problem (32) then becomes an unconstrained minimization problem,

φi(∆si) = min
∆qi

1

2

(
∆si

∆qi

)T (
Bss

i + Xs
i
T Pi+1X

s
i B

sq
i + Xs

i
T Pi+1X

q
i

B
qs
i + X

q
i

T
Pi+1X

s
i B

qq
i + X

q
i

T
Pi+1X

q
i

)(
∆si

∆qi

)

(34)

+

(
Φs

i − Xs
i
T Pi+1hi + Xs

i
T pi+1

Φ
q
i − X

q
i

T
Pi+1hi + X

q
i

T
pi+1

)T (
∆si

∆qi

)

(35)

+ hT
i Pi+1hi − pT

i+1hi + πi+1 (36)

From this, an explicit expression for the optimal ∆qi is easily obtained. Insert-
ing it into the cost–to–go function finally allows for the direct computation
of φi(∆si). The backwards recursion can thus be started with PN = BN ,
pN = Φn, πn = 0, and carried out without knowledge of the true system state
xnew

0 . After the backward sweep has been completed, the feedback control step
is available as

∆q0 = K0(x0 − xnew
0) + k0 (37)

with an nq × nx matrix K0 and an nq-vector k0 obtained from the backward
sweep eliminations. The feedback delay is as small as the time required for a
matrix–vector–multiplication with K0. A forward recursion starting with the
known initial value ∆s0 = xnew

0 − s0 is employed afterwards to recover the
steps ∆q1, . . . , ∆qN−1 and ∆s which are not needed for the immediate control
feedback.

Inequality Constraints

The applicability of Riccati recursion is restricted to purely equality con-
strained systems, i.e. KKT systems or QPs with only equality constraints.
In order to treat inequality constraints, a Riccati recursion based KKT solver
can be employed inside an active set method. The performance of such Riccati
recursion based active set solvers suffers from the O(Nn3) runtime complexity
of the KKT system solution, and the approach is thus more popular for inte-
rior point methods [18, 28, 30], where it has been successfully used in place
of symmetric indefinite factorizations.

16 Authors Suppressed Due to Excessive Length

4.4 Block Structured Active Set Methods

A third possibility of solving QP (24) is to employ a block structured factor-
ization of the KKT system inside an active set method. For efficiency, matrix
updates for such factorizations should be available.

Block Structured Factorization

We present here a block structured factorization due to [19, 30] that is com-
posed from step-wise reductions of the KKT matrix (38), in which all matrices
and vectors are understood as restrictions onto the current active set,


















B0 RT
0 XT

0

R0

X0 P1

PT
1 B1 RT

1 XT
1

R1

X1

. . .

BN RT
N

RN


















(38)

Similar to Ricatti recursion, the idea is to factorize this KKT matrix and
exploit the inherent block structure while avoiding any fill–in.

Matrix Updates

Contrary to Ricatti recursion, though, we desire to derive a factorization that
opens up the possibility of applying matrix update techniques, cf. [14, 16].
These allow to recover the factorization of the KKT matrix after an active
set exchange in O(n2) time, while computing a factorization anew usually
requires O(n3) time. An example is the Schur complement based dual active
set method presented in [29, 3]. A factorization tailored to the block structure
(38) that is based on a hybrid null–space range–space is given in [19]. Suitable
updates are derived in [20], based on techniques by [14].

Runtime Complexity

This approach has O(N) runtime complexity compared to O(N2) for the
condensing approach of section 4.2, and is therefore suited problems that
require longer prediction horizons or finer discretizations of the prediction
horizon. As the factorization eliminates all controls from the system in the
first step, problems with limited state dimension but with a large number
of controls, e.g. in mixed–integer predictive control [21] or in online optimal
experimental design, will benefit from this approach. Compared to the O(n3)
runtime complexity of Riccati recursion techniques, the availability of matrix
updates reduces the runtime complexity for all but the first iteration of the
active set loop to O(n2).

Efficient Numerics for Nonlinear Model Predictive Control 17

5 Summary

We reviewed a collection of state–of–the–art numerical methods for efficient
NMPC of nonlinear dynamic processes in ODE and DAE systems under real–
time conditions. Our presentation started with a presentation of the discussed
problem class and a brief introduction to direct multiple shooting for the dis-
cretization of the optimal control problem. We focussed on a Newton–type
framework for the solution of the resulting nonlinear problem, relying on ac-
tive set based methods. In combination with initial value embedding, the
real–time iteration scheme provides an efficient first order tangential predic-
tor of the optimal feedback control. A multi–level scheme featuring at least
four distinct modes that provide adaptive updates to selected components of
the quadratic subproblem is presented, and we mentioned theoretical results
as well as computational effort of the different modes. Connections to emerg-
ing ideas such as parametric quadratic programming, Euler feedback steps,
and the computation of the local linear feedback law providing microsecond
control feedback opportunities are shown. The efficient solution of the arising
quadratic subproblems is the core of all active–set based NMPC algorithms.
Here we introduced the block structure that is due to direct multiple shooting,
and reviewed the condensing preprocessing step as well as a Riccati recursion
scheme. Both exploit the exhibited block structure, but also left room for im-
provements. Our survey concluded with mentioning block structured active
set methods. These require matrix updates tailored to the block structure,
but are able to reduce the run time of an active set iteration to an unmatched
complexity of O(Nn2).

References

1. J. Albersmeyer, D. Beigel, C. Kirches, L. Wirsching, H. Bock, and J. Schlöder.
Fast nonlinear model predictive control with an application in automotive engi-
neering. In L. Magni, D. Raimondo, and F. Allgöwer, editors, Lecture Notes in
Control and Information Sciences, volume 384, pages 471–480. Springer Verlag
Berlin Heidelberg, 2009.

2. J. Albersmeyer and H. Bock. Sensitivity Generation in an Adaptive BDF-
Method. In H. G. Bock, E. Kostina, X. Phu, and R. Rannacher, editors, Mod-
eling, Simulation and Optimization of Complex Processes: Proceedings of the
International Conference on High Performance Scientific Computing, March 6–
10, 2006, Hanoi, Vietnam, pages 15–24. Springer Verlag Berlin Heidelberg New
York, 2008.

3. R. Bartlett and L. Biegler. QPSchur: A dual, active set, schur complement
method for large-scale and structured convex quadratic programming algorithm.
Optimization and Engineering, 7:5–32, 2006.

4. M. Best. An Algorithm for the Solution of the Parametric Quadratic Program-
ming Problem, chapter 3, pages 57–76. Applied Mathematics and Parallel Com-
puting. Physica-Verlag, Heidelberg, 1996.

18 Authors Suppressed Due to Excessive Length

5. H. Bock, M. Diehl, E. Kostina, and J. Schlöder. Constrained Optimal Feedback
Control for DAE. In L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, and
B. van Bloemen Waanders, editors, Real-Time PDE-Constrained Optimization,
chapter 1, pages 3–24. SIAM, 2007.

6. H. Bock, M. Diehl, P. Kühl, E. Kostina, J. Schlëder, and L. Wirsching. Nu-
merical methods for efficient and fast nonlinear model predictive control. In
R. Findeisen, F. Allgöwer, and L. T. Biegler, editors, Assessment and future
directions of Nonlinear Model Predictive Control, volume 358 of Lecture Notes
in Control and Information Sciences, pages 163–179. Springer, 2005.

7. H. Bock and K. Plitt. A Multiple Shooting algorithm for direct solution of
optimal control problems. In Proceedings of the 9th IFAC World Congress, pages
243–247, Budapest, 1984. Pergamon Press. Available at http://www.iwr.uni-
heidelberg.de/groups/agbock/FILES/Bock1984.pdf.

8. A. Bryson and Y.-C. Ho. Applied Optimal Control. Wiley, New York, 1975.
9. M. Diehl, H. Bock, J. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Real-

time optimization and nonlinear model predictive control of processes governed
by differential-algebraic equations. J. Proc. Contr., 12(4):577–585, 2002.

10. M. Diehl, H. Ferreau, and N. Haverbeke. Efficient numerical methods for non-
linear mpc and moving horizon estimation. In L. Magni, D. Raimondo, and
F. Allgöwer, editors, Nonlinear Model Predictive Control, volume 384 of Springer
Lecture Notes in Control and Information Sciences, pages 391–417. Springer-
Verlag, Berlin, Heidelberg, New York, 2009.

11. M. Diehl, P. Kuehl, H. Bock, and J. Schlöder. Schnelle Algorithmen für die
Zustands- und Parameterschätzung auf bewegten Horizonten. Automatisierung-
stechnik, 54(12):602–613, 2006.

12. H. Ferreau, H. Bock, and M. Diehl. An online active set strategy to overcome
the limitations of explicit MPC. International Journal of Robust and Nonlinear
Control, 18(8):816–830, 2008.

13. R. Fletcher. Resolving degeneracy in quadratic programming. Numerical Anal-
ysis Report NA/135, University of Dundee, Dundee, Scotland, 1991.

14. P. Gill, G. Golub, W. Murray, and M. A. Saunders. Methods for modifying
matrix factorizations. Mathematics of Computation, 28(126):505–535, 1974.

15. P. Gill, W. Murray, and M. Saunders. User’s Guide For QPOPT 1.0: A Fortran
Package For Quadratic Programming, 1995.

16. G. Golub and C. van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, 3rd edition, 1996.

17. A. Griewank. Evaluating Derivatives, Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia,
2000.

18. N. Haverbeke, M. Diehl, and B. de Moor. A structure exploiting interior-point
method for moving horizon estimation. In Proceedings of the 48th IEEE Con-
ference on Decision and Control (CDC09), pages 1–6, 2009.

19. C. Kirches, H. Bock, J. Schlöder, and S. Sager. Block structured quadratic
programming for the direct multiple shooting method for optimal control. Op-
timization Methods and Software, 2010. DOI 10.1080/10556781003623891.

20. C. Kirches, H. Bock, J. Schlöder, and S. Sager. A factorization with up-
date procedures for a KKT matrix arising in direct optimal control. Math-
ematical Programming Computation, 2010. (submitted). Available Online:
http://www.optimization-online.org/DB HTML/2009/11/2456.html.

Efficient Numerics for Nonlinear Model Predictive Control 19

21. C. Kirches, S. Sager, H. Bock, and J. Schlöder. Time-optimal control of auto-
mobile test drives with gear shifts. Optimal Control Applications and Methods,
2010. DOI 10.1002/oca.892.

22. D. Leineweber. Efficient reduced SQP methods for the optimization of chemi-
cal processes described by large sparse DAE models, volume 613 of Fortschritt-
Berichte VDI Reihe 3, Verfahrenstechnik. VDI Verlag, Düsseldorf, 1999.

23. D. Leineweber, I. Bauer, A. Schäfer, H. Bock, and J. Schlöder. An efficient
multiple shooting based reduced SQP strategy for large-scale dynamic process
optimization (Parts I and II). Computers and Chemical Engineering, 27:157–
174, 2003.

24. D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert. Constrained
model predictive control: stability and optimality. Automatica, 26(6):789–814,
2000.

25. L. Petzold, S. Li, Y. Cao, and R. Serban. Sensitivity analysis of differential-
algebraic equations and partial differential equations. Computers and Chemical
Engineering, 30:1553–1559, 2006.

26. K. Plitt. Ein superlinear konvergentes Mehrzielverfahren zur direkten
Berechnung beschränkter optimaler Steuerungen. Diploma thesis, Rheinische
Friedrich–Wilhelms–Universität zu Bonn, 1981.

27. C. V. Rao, J. B. Rawlings, and D. Q. Mayne. Constrained state estimation for
nonlinear discrete-time systems: Stability and moving horizon approximations.
IEEE Transactions on Automatic Control, 48(2):246–258, 2003.

28. C. Rao, S. Wright, and J. Rawlings. Application of interior-point methods to
model predictive control. Journal of Optimization Theory and Applications,
99:723–757, 1998.

29. C. Schmid and L. Biegler. Quadratic programming methods for tailored reduced
Hessian SQP. Computers & Chemical Engineering, 18(9):817–832, September
1994.

30. M. Steinbach. Structured interior point SQP methods in optimal control.
Zeitschrift für Angewandte Mathematik und Mechanik, 76(S3):59–62, 1996.

31. L. Wirsching. An SQP algorithm with inexact derivatives for a direct multiple
shooting method for optimal control problems. Diploma thesis, Universität
Heidelberg, 2006.

