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SUMMARY

We present a numerical method and results for a recently published benchmark problem (Optim. Contr. Appl. Met. 2005;
26:1–18; Optim. Contr. Appl. Met. 2006; 27(3):169–182) in mixed-integer optimal control. The problem has its origin in
automobile test-driving and involves discrete controls for the choice of gears. Our approach is based on a convexification
and relaxation of the integer controls constraint. Using the direct multiple shooting method we solve the reformulated
benchmark problem for two cases: (a) As proposed in (Optim. Contr. Appl. Met. 2005; 26:1–18), for a fixed, equidistant
control discretization grid and (b) As formulated in (Optim. Contr. Appl. Met. 2006; 27(3):169–182), taking into account
free switching times. For the first case, we reproduce the results obtained in (Optim. Contr. Appl. Met. 2005; 26:1–18) with
a speed-up of several orders of magnitude compared with the Branch&Bound approach applied there (taking into account
precision and the different computing environments). For the second case we optimize the switching times and propose
to use an initialization based on the solution of (a). Compared with (Optim. Contr. Appl. Met. 2006; 27(3):169–182) we
were able to reduce the overall computing time considerably, applying our algorithm. We give theoretical evidence on why
our convex reformulation is highly beneficial in the case of time-optimal mixed-integer control problems as the chosen
benchmark problem basically is (neglecting a small regularization term). Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mixed-integer optimal control problems (MIOCPs) in
ordinary differential equations (ODEs) have gained
increasing interest over the last years, see references
[1–16]. This is probably due to the fact that the under-
lying processes have a high potential for optimization.
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Typical examples are the choice of gears in trans-
port, [1, 2, 6, 15] or processes in chemical engineering
involving on–off valves, [5, 17].

Although the first MIOCPs, namely the optimiza-
tion of subway trains that are equipped with discrete
acceleration stages, were already solved in the early
80s for the city of New York, [18], the so-called
indirect methods used there do not seem appropriate
for generic large-scale optimal control problems with
underlying nonlinear differential algebraic equation
systems. Instead direct methods, in particular all–at–
once approaches, [19–21], have become the methods
of choice for most practical problems. See [22] for an
overview.
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In direct methods infinite-dimensional control
functions are discretized by basis functions and corre-
sponding finite-dimensional parameters that enter into
the optimization problem. The drawback of direct
methods with binary control functions obviously is
that they lead to high-dimensional vectors of binary
variables. For many practical applications a fine
control discretization is required, however. Therefore,
techniques from mixed-integer nonlinear program-
ming like Branch&Bound or Outer Approximation
will work only on limited and small time horizons
because of the exponentially growing complexity of
the problem, [23].

We propose to use a convexification with respect
to the binary controls. The reformulated control
problem has two main advantages compared with
the standard formulations or convexifications. First,
especially for time-optimal control problems, the
optimal solution of the relaxed‡ problem will exhibit
a bang–bang structure, and is thus already integer
feasible. Second, theoretical results have recently been
found, [3, 6], that show that even for path-constrained
and sensitivity-seeking arcs the optimal solution of
the relaxed problem yields the exact lower bound on
the minimum of the integer problem. This allows to
calculate the loss of performance, if a coarser control
discretization grid, a simplified switching structure for
the optimization of switching times or heuristics is
used.

This paper is structured as follows. In Section 2
we present the single-track car model and the test
course as used by the references [1, 2]. In addition
the resulting MIOCP is formulated. In Section 3 we
describe the direct multiple shooting method used for
the efficient solution of the underlying continuous
optimal control problem. Subsequently, recently devel-
oped extensions for the treatment of integer controls
are discussed, with a special focus on a convexifi-
cation with respect to the integer controls. Section 4
presents numerical results and compares them to the
reference solutions [1, 2]. Section 5 concludes this
paper.

‡In the following we will use the expression relaxed whenever a
control constraint w(t)∈{0,1} is relaxed to w(t)∈[0,1].

2. PROBLEM FORMULATION

In this section we will give a short overview of car
model and test course used for the computational study,
summing up the description given in [1].

2.1. Car model

We consider a single-track model, derived under the
simplifying assumption that rolling and pitching of the
car body can be neglected. Consequentially, only a
single front and rear wheel is modeled, located in the
virtual center of the original two wheels. Motion of the
car body is considered on the horizontal plane only.

Four controls represent the driver’s choice on
steering and velocity, and are listed in Table I. We
denote with w� the steering wheel’s angular velocity.
The force FB controls the total braking force, while
the accelerator pedal position � is translated into
an accelerating force according to the torque model
presented in (Equation (13)). Finally, the selected gear
� influences the effective engine torque’s transmission
ratio.

The single-track dynamics are described by a system
of ODEs. The individual system states are listed in
Table II. Figure 1 visualizes the choice of coordinates,
angles, and forces.
The center of gravity is denoted by the coordinate pair
(cx,cy),which is obtained by integration over the direc-
tional velocity,

ċx(t)=v(t) cos(�(t)−�(t)) (1)

ċy(t)=v(t) sin(�(t)−�(t)) (2)

Acceleration is obtained from the sum of forces
attacking the car’s mass m in the direction of driving,

v̇(t) = 1

m
((F�

lr −FAx) cos�(t)

+Flf cos(�(t)+�(t))

−(Fsr−FAy) sin�(t)

−Fsf sin(�(t)+�(t))) (3)

Copyright q 2009 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2009)
DOI: 10.1002/oca



TIME-OPTIMAL CONTROL OF AUTOMOBILE TEST DRIVES

Table I. Controls used in the car model.

Control Range Unit Description

w� [−0.5,0.5] rad
s Steering wheel angular velocity

FB [0,1.5×104] N Total braking force
� [0,1] — Accelerator pedal position
� {1, . . . ,5} — Selected gear

Table II. Coordinates and states used in the car model.

State Unit Description

cx m Horizontal position of the car
cy m Vertical position of the car
v m

s Magnitude of directional velocity of the car
� rad Steering wheel angle
� rad Side slip angle
� rad Yaw angle
wz

rad
s Yaw angle velocity

Figure 1. Coordinates and forces in the single-track car model. The figure aligns with the vehicle’s local coordinate system
while dashed vectors denote the earth-fixed coordinate system chosen for computations.

The steering wheel’s angle is obtained from the corre-
sponding controlled angular velocity,

�̇(t)=w� (4)

The slip angle’s change is controlled by the steering
wheel and counteracted by the sum of forces attacking
perpendicular to the car’s direction of driving. The
forces’ definitions are given in (Equation (8)).

�̇(t) = wz(t)− 1

mv(t)
((Flr−FAx) sin�(t)

+Flf sin(�(t)+�(t))

+(Fsr−FAy) cos�(t)

+Fsf cos(�(t)+�(t))) (5)

The yaw angle is obtained by integrating over its
change wz,

�̇(t)=wz(t) (6)

which in turn is the integral over the sum of forces
attacking the front wheel in direction perpendicular to
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the car’s longitudinal axis of orientation,

ẇz(t) = 1

Izz
(Fsf lf cos�(t)−Fsrlsr

−FAyeSP+Flflf sin�(t)) (7)

We now list and explain the individual forces used
in this ODE system. We first discuss lateral and longi-
tudinal forces attacking at the front and rear wheels.
In view of the convex reformulation we will undertake
later; we consider the gear � to be fixed and denote
dependencies on the selected gear by a superscript �
like, e.g., in w

�
mot.

The side (lateral) forces on the front and rear wheels
as functions of the slip angles �f and �r according to
the so-called ‘magic formula’ due to [24] are
Fsf,sr(�f,r) := Df,r sin(Cf,r arctan(Bf,r�f,r

−Ef,r(Bf,r�f,r−arctan(Bf,r�f,r)))) (8)

The front slip angle itself is obtained from

�f :=�(t)−arctan

(
lf �̇(t)−v(t) sin�(t)

v(t) cos�(t)

)
(9)

while the rear slip angle is

�r :=arctan

(
lr�̇(t)+v(t) sin�(t)

v(t) cos�(t)

)
(10)

The longitudinal force at the front wheel is composed
from braking force FBf and resistance due to rolling
friction FRf

Flf :=−FBf−FRf (11)

Assuming a rear wheel drive, the longitudinal force at
the rear wheel is given by the transmitted engine torque
Mwheel and reduced by braking force FBr and rolling
friction FRr. The effective engine torque M�

mot is trans-
mitted twice. We denote by i�g the gearbox transmission
ratio corresponding to the selected gear �, and by it
the axle drive’s fixed transmission ratio. R is the rear
wheel radius.

F�
lr := i�g it

R
M�

mot(�)−FBr−FRr (12)

The engine’s torque, depending on the acceleration
pedal’s position �, is modeled as follows:

M�
mot(�) := f1(�) f2(w

�
mot)

+(1− f1(�)) f3(w
�
mot) (13)

f1(�) := 1−exp(−3�) (14)

f2(wmot) := −37.8+1.54wmot−0.0019w2
mot (15)

f3(wmot) := −34.9−0.04775wmot (16)

Here, w
�
mot is the engine’s rotary frequency in Hertz.

For a given gear � it is computed from

w
�
mot :=

i�g it
R

v(t) (17)

The total braking force FB is controlled by the driver.
The distribution to front and rear wheels is

FBf := 2
3 FB, FBr := 1

3 FB (18)

The braking forces FRf and FRr due to rolling resistance
are obtained from

FRf(v) := fR(v)
mlrg

lf+lr
, FRr(v) := fR(v)

mlfg

lf+lr
(19)

where the velocity-dependent amount of friction is
modeled by

fR(v) :=9×10−3+7.2×10−5v+5.038848×10−10v4

(20)

Finally, drag force due to air resistance is given by FAx,
while we assume that no sideward drag forces (e.g. side
wind) are present.

FAx := 1
2cw�Av2(t), FAy :=0 (21)

The model parameters m,g, lf, lr, lr,eSP, R, Izz,cw,

�, A, it, and i�g and the Pacejka coefficients Bf,r,Cf,r,

Df,r, Ef,r can be found in [1, 2] and on the website [25].
2.2. Test course

The double-lane change manoeuvre presented in [1]
is realized by constraining the car’s position onto a
prescribed track at any time t ∈[t0, tf], see Figure 2.
Starting in the left position with an initial prescribed
velocity, the driver is asked to manage a change of lanes
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Figure 2. Track with path constraints (22d) on the vertical position for Nshoot =10,40,80, from left to right.
Squares show evaluation points equidistant in time.

modeled by an offset of 3.5m in the track. Afterwards
he is asked to return to the starting lane. This manoeuvre
can be regarded as an overtaking move or as an evasive
action taken to avoid hitting an obstacle suddenly
appearing on the starting lane. A description of the
course can be found in [1, 2, 25].
2.3. Optimal control problem

We denote with x the state vector of the ODE system
and by f the corresponding right-hand side function.
The vector u shall be the vector of continuous controls,
whereas the integer control �(·) will be written in a
separate vector,

x := (cx,cy,v,�,�,�,wz)
ᵀ, u := (w�, FB,�)ᵀ

With this notation, the resulting MIOCP reads as

min
tf,x(·),u(·),�(·) tf+

∫ tf

0
w2

�(t)dt (22a)

s.t. ẋ(t)= f (t, x(t),u(t),�(t))

∀t ∈[t0, tf] (22b)

cy(t)∈
[
Pl(cx(t))+ B

2
, Pu(cx(t))− B

2

]
∀t ∈[t0, tf] (22c)

w�(t)∈[−0.5,0.5] ∀t ∈[t0, tf] (22d)

FB(t)∈[0,1.5×104] ∀t∈[t0, tf] (22e)

�(t)∈[0,1] ∀t ∈[t0, tf] (22f)

�(t)∈{1, . . .,5} ∀t ∈[t0, tf] (22g)

x(t0)= (−30, free,10,0,0,0,0)ᵀ (22h)

cx(tf)=140 (22i)

�(tf)=0 (22j)

By employing the objective function (Equation (22a))
we strive to minimize the total time tf required to
traverse the test course, and to do so with minimal
steering effort w�(t). At any time, the car must be
positioned within the test course’s boundaries; this
requirement is formulated by the double inequality
path constraint (Equation (22c)). The system’s initial
values are fixed in (Equation (22h)) with the exception
of the car’s initial vertical position on the track, which
remains a free variable only constrained by the track’s
boundary. Finally, constraints (Equation (22i), (22j))
guarantee that the car actually arrives at the end of the
test course driving straight ahead.

3. GENERAL PROBLEM CLASS
AND ALGORITHM

In this section we will abstract the control problem
to a more general class and propose algorithms for
the solution. In Section 3.2 we sum up the direct
multiple shooting method that we use to solve optimal
control problems without integer constraints. In
Section 3.3 we present a reformulation strategy that
will partly convexify the MIOCP. In Section 3.4 we
discuss methods to come up with integer solutions. In
Section 3.5 we present the switching time optimization
approach.
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3.1. General problem class

The MIOCP formulated in Section 2.3 belongs to a
broader class of equality- and inequality-constrained
optimal control problems on dynamic processes
modeled by ODE systems. We consider the following
class of optimal control problems:

min
tf,p,

x(·),u(·),�(·)
M(tf, x(tf), p) (23a)

s.t. ẋ(t)= f (t, x(t),u(t),�(t), p)

∀t ∈T (23b)

0�c(t, x(t),u(t), p) ∀t ∈T (23c)

0�r in(x(t in1 ), . . ., x(t inNin
), p) (23d)

0=r eq(x(teq1 ), . . ., x(teqNeq
), p) (23e)

�(t)∈� ∀t ∈T (23f)

Herein, let t ∈[t0, tf]=:T⊂R be a fixed time
horizon, and let x(t)∈Rnx describe the state vector
of the dynamic process at any time t ∈T. Further,
let u(t)∈Rnu be the vector of continuous controls
influencing the dynamic process, and let �(t)∈Rn�

be a vector of integer control functions, constrained
to values from a discrete set �. Finally we denote by
p∈Rnp a vector of time-independent model parame-
ters. Point inequalities and equalities are defined on
suited time grids {t ini } and {teqi }.

We require the objective function M :T×Rnx →R,
the path constraint function c :T×Rnx ×Rnp →Rnc ,
and the equality as well as the inequality point
constraint functions r eq : (T×Rnx)Neq ×Rnp →Rneq

and r in : (T×Rnx)Nin ×Rnp →Rnin to be sufficiently
often continuously differentiable with respect to all
arguments. The same shall hold true for the ODE
system’s right-hand side function f :T×Rnx ×Rnu ×
Rn� ×Rnp →Rnx .

3.2. The direct multiple shooting method

This section briefly sketches the direct multiple
shooting method, first described by Plitt [19] and Bock
and Plitt [20] and extended in a series of subsequent
works (see, e.g. [26]). With the optimal control software

package MUSCOD-II [27], an efficient implementation
of this method is available.

The purpose of this method is to transform the
infinite-dimensional OCP presented in Section 3.1
(neglecting the integer variables) into a finite-
dimensional nonlinear program (NLP) by discretization
of the control functions on a time grid t0<t1< · · ·<
tNshoot = tf. For this, let bi j :T→Rnu , 1� j�nqi be
a set of sufficiently often continuously differentiable
base function of the control discretization for the
shooting interval [ti , ti+1]⊂T. Further, let qi ∈Rnqi

be the corresponding set of control parameters, and
define

ûi (t,qi ) :=
nqi∑
j=1

qi jbi j (t), t ∈[ti , ti+1]

0�i<Nshoot (24)

The control space is hence reduced to functions that
can be written as in (24), depending on finitely many
parameters qi . The right-hand side function f and
the constraint functions c,r eq, and r in are assumed
to be adapted accordingly. In the simplest case we
have nqi =1 and bi1(t)=qi1, thereby realizing a piece-
wise constant control discretization. More elaborate
discretizations such as linear or cubic base functions
are easily found. Multiple shooting variables si are
introduced on the time grid to parameterize the differ-
ential states. The node values serve as initial values
for an ODE solver computing the state trajectories
independently on the shooting intervals.

ẋi (t) = f (t, xi(t), ûi(t,qi), p) ∀t ∈[ti , ti+1]
0�i<Nshoot (25a)

xi (ti) = si , 0�i�Nshoot (25b)

One advantage of the multiple shooting approach is
the ability to use state-of-the-art adaptive integrator
methods, see, e.g. [28–30]. Obviously we obtain from
the above IVPs Nshoot trajectories, which in general will
not combine to a single continuous trajectory. Thus,
continuity across shooting intervals needs to be ensured
by additional matching conditions entering the NLP as
equality constraints,

si+1= xi(ti+1; si ,qi , p), 0�i<Nshoot (26)
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Here we denote by xi(ti+1; si ,qi , p) the solution of
the IVP on shooting interval i , evaluated in ti+1, and
depending on the initial values si , control parameters
qi , and model parameters p.

The path constraints c(·) are discretized on an appro-
priately chosen grid. This discretization may have a
strong effect on the solution of the problem, as is the
case for the problem at hand. We will come back to
this point in Section 4.2. To ease the notation, we
assume in the following that all constraint grids match
the shooting grid.

From this discretization and parameterization results
a highly structured NLP of the form

min
	

M(sNshoot, p) (27a)

s.t. 0= si+1−xi (ti+1; si ,qi , p)
0�i<Nshoot (27b)

0�c(ti ,si , ûi (ti ,qi ), p)

0�i�Nshoot (27c)

0�r in(s0,s1, . . .,sNshoot, p) (27d)

0=r eq(s0,s1, . . .,sNshoot, p) (27e)

where the vector 	 shall contain all unknowns of the
problem

	= (s0, . . .,sNshoot,q0, . . .,qNshoot−1, p)

For the ease of notation in (27c), we write
ûNshoot(tNshoot,qNshoot) := ûNshoot−1(tNshoot,qNshoot−1). We
solve this large-scale, but structured NLP by a tailored
sequential quadratic programming (SQP) method.
This includes an extensive exploitation of the arising
structures, in particular using block-wise high-rank
updates and condensing for a reduction of the size
of the quadratic problems to that of a single-shooting
method. For more details see [20, 26].
3.3. Convex relaxation of integer controls

We convexify problem (26) with respect to the integer
control functions �(·) as first suggested in [3]. We
assign one control function wi (·) to every possible
control �i ∈�. This corresponds to nw=|�| controls,
which may be a large number. In practice, however,

there often is a small set of admissible choices leading
to logical exclusion of most of the elements of �.
Here nw would correspond to the number of remaining
feasible choices. Examples are the selection of a distil-
lation column tray [3], an inlet stream port [5], or
a gear in the presented case. In all examples nw is
linear in the number of choices. Furthermore, in most
practical applications the binary control functions enter
linearly (such as valves that indicate whether a certain
term is present or not). Therefore, the drawback of an
increased number of control functions is outweighed
by the advantages concerning the avoidance of integer
variables associated with the discretization in time for
most applications we know of. By convexifying (26)
with respect to �(·), we obtain the following optimal
control problem:

min
tf,p

x(·),u(·),w(·)
M(tf, x(tf), p) (28a)

s.t. ẋ(t)=
nw∑
i=1

f (x(t),�i ,u(t), p) wi (t)

∀t ∈T (28b)

0�c(t, x(t),u(t), p) ∀t ∈T (28c)

0�r in(x(t in1 ), . . ., x(t inNin
), p) (28d)

0=r eq(x(teq1 ), . . ., x(teqNeq
), p) (28e)

w(t)∈{0,1}nw ∀t ∈T (28f)

1=
nw∑
i=1

wi (t) ∀t ∈T (28g)

There obviously is a bijection �(t)=�i ↔wi(t)=1
between the solutions of problems (26) and (32),
compare [3]. The relaxation of problem (32) consists
in replacing constraint (28f) by

w(t)∈[0,1]nw ∀t ∈T (29)

This formulation has two main advantages. First, for
many optimal control problems the optimal solution
will have a bang–bang character; therefore, the solution
of the relaxed problem will yield the optimal integer
solution. Second, for problems that fit into the class (32)
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a theory has been developed that allows to deduce infor-
mation on the optimal integer solution from the optimal
value of the relaxed problem, even if this solution is not
bang–bang, but path-constrained or sensitivity-seeking.
See [3, 5] for theory and applications.

3.4. Calculation of integer solutions

Different methods for the calculation of integer solu-
tions for MIOCPs, based on a direct approach, have
been described and compared in [3]. Among them one
finds Branch&Bound, Outer Approximation, penaliza-
tion heuristics, and rounding strategies. All methods
that suffer from a combinatorial explosion when the
number of discretized binary control variables increases
have a very limited applicability, though.

It can often be observed that the solution of the
relaxed, purely continuous problem already yields an
integer solution for almost all control discretizations. In
addition, simple rounding strategies, taking the special
ordered set constraint (28g) into account, often result in
integer solutions without affecting the objective func-
tion value.

For cases in which path constraints play a role
or a different objective function leads to sensitivity-
seeking arcs; we recommend to use a sum up rounding
strategy as developed in [3, 6] in combination with a
switching time optimization approach to be discussed
in Section 3.5. Sum up rounding yields integer solu-
tions arbitrarily close to the optimal integer solution,
if a sufficiently fine time discretization is used. If
guaranteed global solutions are an issue, this approach
can be readily combined with methods in global opti-
mization, of course.

3.5. Switching time optimization

A different approach to solve problem (26) is motivated
by the idea to optimize the switching times and to take
the values of the integer controls �(·) fixed on given
intervals, as is done, e.g. for bang–bang arcs in indirect
methods. Let us consider the one-dimensional binary
case; that is, we have a binary control function w(·)∈
{0,1}. Instead of the control w(·) : [t0, tf] �→{0,1} we
do get Nswitch fixed constant control functions

wk : [t̃k, t̃k+1] �→{0,1}

defined w.l.o.g. by

wk(t)=
{
0 if k even,

1 if k odd,
t ∈[t̃k, t̃k+1] (30)

with 0�k�Nswitch−1 and t0= t̃0�t̃1� · · ·�t̃Nswitch = tf.
If we assume that an optimal binary control func-

tion w(·) switches only finitely often, then the original
problem is equivalent to optimizing Nswitch and the time
vector t̃ in a multistage formulation with all wk(t) is
fixed to either 0 or 1 and with the additional constraint

Nswitch−1∑
k=0

hk = tf− t0 (31)

for positive hk�0. In practice we do not optimize the
switching points, but the scaled vector h of model stage
lengths hk := t̃k+1− t̃k , see, e.g., [2, 31]. This approach
is visualized in Figure 3 for Nswitch=5.

For fixed values of Nswitch we have an optimal
control problem in which the stage lengths hk take
the role of time-independent variables that have to
be determined. The approach can be extended in
a straightforward way to an nw-dimensional binary
control function w(·). Instead of (30) one defines wk as

wk(t)=wi if k= j 2nw +i−1, t ∈[t̃k, t̃k+1] (32)

for some j�0 and some 1�i�2nw. The values wi

enumerate all 2nw possible assignments of w(·)∈
{0,1}nw, compare Section 3.3.

A closer look at (32) shows some intrinsic problems
of the switching time approach. First, the number
of model stages grows exponentially not only in the
number of control functions, but also grows linearly in
the number of expected switches of the binary control
functions. Starting from a given number of stages,
allowing a small change in one of the control functions
requires an additional 2nw stages. If it is indeed exactly
one function wi (·) that changes while all others stay
fixed, 2nw −1 of the newly introduced stages will have
length 0.

This leads to a second drawback, namely a nonreg-
ular situation that may occur when stage lengths are
reduced to zero. Assume the length of an intermediate
stage, say h2, has been reduced to zero by the optimizer.
Then the sensitivity of the optimal control problem with
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Figure 3. Switching time optimization, one-dimensional example with Nswitch=5.

respect to h1 and h3 is given by the value of their sum
h1+h3 only. Thus special care has to be taken to treat
the case when stages vanish during the optimization
procedure. In [32–34] an algorithm to eliminate such
stages is proposed. Although this is possible, still the
stage cannot be reinserted, as the time when to reinsert
it is undetermined.

The third drawback is that the number of switches
is typically not known, let alone the precise switching
structure. Some authors propose to iterate on Nswitch
until there is no further decrease in the objective
function of the corresponding optimal solution, cf.
[32–34]. But it should be stressed that this can
only be applied to more complex systems if initial
values for the location of the switching points close
to the optimum are available, as they are essen-
tial for the convergence behavior of the underlying
method.

This is closely connected to the fourth and most
important drawback of the switching time approach.
The reformulation yields additional nonconvexities
in the optimization space. Even if the optimiza-
tion problem is convex in the optimization vari-
ables resulting from a constant discretization of the
control function w(·), the reformulated problem may
be nonconvex.

The mentioned drawbacks of the switching time
optimization approach can be overcome, though, if
it is combined with an assortment of other concepts,
compare [3]. This includes rigorous lower and upper
bounds, a strategy to deal with diminishing stage
lengths, and a direct all-at-once approach like direct
multiple shooting that helps when dealing with noncon-
vexities as discussed in [3]. In a general setting, good

initial guesses for all optimization variables are of
utmost importance, as the reformulation is known to be
nonconvex. In this paper we will apply the switching
time optimization approach, starting from a near-
optimal initialization for all optimization variables,
in particular for the stage lengths, that are deduced
from the optimal solution obtained for a fixed control
discretization grid, using the techniques described
above.

3.6. Algorithmic aspects of the benchmark problem

Considering the convex relaxation for the test drive
benchmark problem, we will replace the question which
gear �(t) to choose at every instant t in time by the
five questions whether or not to choose gear number i .
Corresponding relaxed binary controls wi (t)∈[0,1] are
introduced. It turns out that the two potential main
advantages of this approach mentioned earlier in this
paper can be fully exploited for the case of the bench-
mark problem at hand, as will be shown in Section 4.

Concerning rounding strategies for the reconstruc-
tion of integer solutions from the relaxed ones, it turned
out that the solution of the relaxed, purely continuous
problem already yields an integer solution for almost
all control discretizations. In the cases when it does not,
a simple rounding strategy (taking the special ordered
set constraint (28g) into account) resulted in the same
objective function value as the noninteger solution.

Note that problem (32) may still be a nonconvex
problem, as the convexification is only done with
respect to the integer controls, but not to other vari-
ables. In our calculations we use a local, gradient-based
optimization technique for the relaxed problem. We
assume that we do thus find the global optimum. Indeed,
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Figure 4. Initialization of the shooting variables chosen to start the solution process.

different start values for both controls and differential
states lead to the same results, which indicates that
the presented solutions are indeed global ones. As
investigated in [3], the multiple shooting approach
with a reasonable initialization of the state variables
may help to overcome problems of local minima.
Note, however, that the same assumption on global
optimality is made in the reference paper for the
optimal control problems solved in the tree nodes of
the Branch&Bound approach.

4. NUMERICAL RESULTS

In this section we will present numerical results for
the application of the presented algorithm to the test
drive problem. We start with a short summary of the
initialization of the optimization variables, an important
issue if run times are compared. In Section 4.2 we
present the obtained solutions on different fixed grids.
In Section 4.3 we allow for an optimization of the
switching times for a prescribed switching structure.
In Section 4.4 we compare our results and computing
times to those given for this benchmark problem in
[1] resp. [2], and in Section 4.5 we analyze why our
convexification-based algorithm is so much faster.

4.1. Variable initialization

The variables 	 introduced in Section 3.2 have to be
initialized within the iterative optimization procedure.
The direct multiple shooting method allows to supply
additional information on the state vector by way of the

multiple shooting variables, which is typically much
better known than the controls that cause this dynamic
behavior. Figure 4 shows the initial shooting node
values of (cx,cy,v)(t) for Nshoot =40 that were chosen
to start the multiple shooting method. Clearly, this
choice is very easy to come up with. The initial guess
for the end time is made as tf=11.5s, far away from
the actual solution. We initialize w� ≡0, FB≡0,�≡1,
and �≡1, as done in the reference papers.

If the shooting node values are determined by inte-
gration with given values for the controls u(·) and
w(·), the number of iterations needed to obtain conver-
gence typically increases slightly as compared with the
presented initialization. For unphysical initializations of
the control variables this procedure may fail, however.

4.2. Solutions

In the following sections we present numerical calcula-
tions that have been computed with the optimal control
software package MUSCOD-II [27]. All computations
were performed on an AMD Athlon XP 3000+ with
2.166GHz and 1024MB of RAM, running SuSE Linux
10.2.

For the solution of the ODE system, an adap-
tive fourth/fifth-order Runge–Kutta–Fehlberg method
equipped with internal numerical differentiation (IND),
as described in [28, 29], was used. An integration toler-
ance of 10−9 was used. All subproblems were solved
to a KKT tolerance of 10−8 for the SQP algorithm
described in Section 3.

We convexify condition (22h) as described in
Section 3.3, and relax the decisions wi (t)∈{0,1} to
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Table III. Gear choice depending on Nshoot.

Nshoot �=1 �=2 �=3 �=4 �=5 tf

10 0.0 0.679839 2.719356 — — 6.798389
20 0.0 0.338952 2.711614 6.440083 — 6.779035
40 0.0 0.509004 2.714692 6.617062 — 6.786730
80 0.0 0.424345 2.800674 6.619775 — 6.789513

Time points when gear becomes active. No dropping of gears occurs.

Figure 5. States for Nshoot =40: horizontal position, velocity, and raw angle �. For vertical position see Figure 2.

Table IV. Solutions computed by our convex relaxation approach.

Nshoot Nvar Neq Nin Iterations CPU time Relaxed: tf Rounded: tf NvI

10 155 89 365 65 00:00:07 6.798389 6.798389 0
20 316 169 695 93 00:00:24 6.779035 6.779035 0
40 616 329 1355 91 00:00:46 6.786730 6.786730 2
80 1216 649 2765 129 00:04:19 6.789513 6.789513 2

wi (t)∈[0,1], i=1 . . .5. If the so-obtained trajectory
is not integer, we round the solution. Doing this for
different values of Nshoot , we obtain the values for
�(·) given in Table III. Furthermore, in all cases opti-
mization results in FB≡0 and �≡1, i.e. no braking
and full acceleration. Parts of the resulting differential
states are shown in Figure 5.

In Table IV we summarize properties of the problem
and numerical results. Columns one to four give the
problem dimensions. Here we list Nshoot , the number of
multiple shooting intervals used for the state, control,
and constraint discretization. The dimensions of the
underlying NLP, namely the number of variables
(unknowns) Nvar, the number of equality constraints

Neq, and the number of inequality constraints Nin
are also given. The next column lists the number of
SQP iterations that were required to satisfy the KKT
tolerance of 10−8. The CPU time in hh:mm:ss format
spent on these iterations is given in the next column.
The final time tf is listed once for the result of the
relaxed, continuous control problem and once for the
solution that was obtained by rounding the gear choice
decisions. The latter solution can be obtained easily
from the relaxed one, a procedure that requires less
than half a second computation time. The value NvI in
the last column indicates how many discrete decisions
were not in {0,1} in the relaxed solution. As can be
observed, the relaxed solution is in all the cases almost
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integer feasible. The difference occurs on the last two
intervals, as these do not have much influence on the
outcome any more. This is also the reason why the
objective function value of the rounded solution is
identical to six digits. We will investigate and explain
the astonishing observation that the relaxed solutions
are already integer in Section 4.5.

Note that the objective function values are not mono-
tonically decreasing, as one might expect considering
that additional degrees of freedom are available as
Nshoot increases and the control discretization becomes
finer. In [2] it is claimed that this is due to the fact that
the application of his Runge–Kutta method on different
grids was a nonlinear operation. Although this is true,
we doubt that this can explain the observed behavior,
especially considering our error-controlled integration
with a fine tolerance. Instead we see two reasons.
First, the objective term contains also the steering
velocity, compare (22a), which has a minor influence.
Second, and more important, the evaluation of the
path constraints is coupled to the multiple shooting
discretization in our implementation. Using more
shooting nodes leads to more inequalities constraining
the problem, thus potentially increasing the minimum
attained objective. Figure 2 shows this graphically.
This argument is supported by the observation that, in
the presented computations, the number of iterations
tends to increase with the number of shooting nodes,
while we usually find it being rather insensitive. We
suppose that this coupling of constraints is also the case
for the calculations presented in [1, 2], as the objective
function values coincide. If the accurate compliance
with the path constraint is an issue, we recommend
to include safety distances, to evaluate at more points,
or to apply techniques as proposed in [35] in order to
track violations.

A more detailed distribution of the computing times
is given in Table V. As can be clearly seen, for
increasing values of Nshoot condensing and solution
of the condensed quadratic programs (QPs) become
predominant.

4.3. Switching time optimization

If we use the results from Section 4.2 to initialize
the optimization of the switching points, compare

Section 3.5, we obtain the solutions to the control
problem given in Table VI.

Note how the switching points are moved by the
optimizer from the initialization given in Table III to
values that are very much alike, although the continuous
controls and path constraints are still discretized on
different grids.

Table VII gives details about the computational
effort. This effort is an additional cost and has to be
added to the initialization phase, which corresponds to
Table IV. Note again how the final time is growing
with Nshoot due to a finer discretization of the path
constraint.

4.4. Comparison

We compare our results to the reference solutions
published in the OCAMpapers [1, 2]. A Branch&Bound
method was used in [1] for the solution of the MINLPs
arising from the discretization of the presented optimal
control problem. In [2] a time-transformation method
was applied, which is basically similar to the switching
time optimization approach presented in Section 3.5.
The NLP subproblem generated per node of the
branching tree was solved using the SODAS soft-
ware package [36], employing a classical fourth-order
Runge–Kutta scheme with fixed discretization grid for
the solution of the ODE system. Both reference papers
as well as our implementation computed derivatives
via finite differences.

In Table VIII, the first column gives the number N of
discretization points. This number corresponds to the
number Nshoot in our multiple shooting approach. In the
second column the number Nnodes of Branch&Bound
nodes examined (NLP subproblems solved) in [1] is
given. The third column lists the final time tf, which is
the global optimum determined by the Branch&Bound
algorithm. The fourth column gives the computing
time. Columns five and six give the respective results
presented in [2]. According to [1], computation times
refer to a Pentium III machine with 750MHz, in [2] to
a Pentium mobile processor with 1.6GHz processing
speed.

As can be seen comparing Tables IV and VIII,
our approach on a fixed grid yields better results
than the Branch&Bound applied in [1]. We applied
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Table V. Detailed CPU times for most important calculations.

Nshoot=10 Nshoot=20 Nshoot=40 Nshoot=80

Sensitivity generation (IND) 00:00:06 00:00:16 00:00:19 00:00:24
State integration 00:00:01 00:00:01 00:00:01 00:00:01
Condensing 00:00:00 00:00:01 00:00:05 00:00:44
Solution of condensed QPs 00:00:00 00:00:05 00:00:21 00:03:10

Table VI. Gear choice depending on Nshoot.

Nshoot �=1 �=2 �=3 �=4 �=5 tf

10 0.0 0.435956 2.733326 — — 6.764174
20 0.0 0.435903 2.657446 6.467723 — 6.772046
40 0.0 0.436108 2.586225 6.684504 — 6.782052
80 0.0 0.435796 2.748930 6.658175 — 6.787284

Time points when gear becomes active.

Table VII. Solutions obtained by switching time optimization.

Nshoot Iterations CPU time Initial: tf Optimal: tf

10 13 00:00:01 6.798389 6.764174
20 38 00:00:05 6.779035 6.772046
40 49 00:00:11 6.786730 6.782052
80 43 00:00:56 6.789513 6.787284

Table VIII. Selection of reference solutions presented in [1, 2].
N Nnodes tf in [1] CPU time [1] tf in [2] CPU time [2]
20 1119 6.779751 00:23:52 6.772516 00:02:01
40 146 941 6.786781 232:25:31 6.783380 00:09:40
80 — — — 6.789325 01:05:03

All CPU times given in hh:mm:ss.

error-controlled integration (tolerance 10−9) and opti-
mized to a KKT tolerance of 10−8, thus being more
accurate than the reference. Still, for the case N =40
only 46 s instead of almost 10 days are needed (although
on a faster machine), being faster by about four orders
of magnitude (18 190). As comparing computing times
on different computing architectures is always an issue,
the number of 146 941 nonlinear control problems
that needed to be solved vs only 1 in our approach is

more representative for what is happening. For higher
values of N the combinatorial explosion will have
even larger effects in favor of our method, as the effort
grows exponentially in the Branch&Bound approach,
but polynomially for our approach.

For the case that the switching time points are not
fixed and may vary, we propose to use the precalcu-
lated solution as initialization. This helps to overcome
some of the intrinsic problems of the switching time
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approach, in particular the occurrence of many local
minima as pointed out in [3]. Another advantage is
that no a priori knowledge on the switching structure
has to be fed to the optimizer. Comparing Table VIII
with Table VII we see that, including the computation
time we required to compute the initialization using
the first presented approach, for N =80 we obtain
a speed-up from 01:05:03 to 00:04:19 + 00:00:56;
roughly a factor of one order of magnitude despite
the higher precision (on 2.166GHz vs 1.6GHz,
though). The main point, however, is not the speed-up
for this particular case, but the fact that the outer
convexification and the initialization of switching
times have very positive effects on computational
performance.

For the sake of comparability we used the same grids
as in [1, 2]. Applying an adaptive refinement of the
grid only in regions where the computed control is
not integer or a switch is close by, compare [3], the
algorithm will be even more effective and scale way
better.

4.5. Discussion

The question arises, of course, why our convex reformu-
lation of the MIOCP yields already an integer feasible
solution for the relaxed problem, which would corre-
spond to the root node of a possible Branch&Bound
tree. Although this has been observed in other applica-
tions as well [5], this property is not true for general
problems.

Assume we have a solution (x∗,w∗,u∗, p∗) of a
convexified, relaxed (and unconstrained for the sake of
simplicity) MIOCP that is optimal. For this solution,
the maximum principle must hold, see, e.g. [37] or [38].
Thus, we have the condition on the controls w∗ almost
everywhere in [t0, tf] that

w∗(t)=argmin
w

H(x∗(t),w,u∗(t), p∗,
∗(t)) (33)

As the Hamiltonian H(·) of the convexified system
reads as

H(x∗,w,u∗, p∗,
∗)

=
∗T
( nw∑
i=1

f (x∗,�i ,u∗, p∗)wi

)

=
nw∑
i=1


∗T f (x∗,�i ,u∗, p∗)︸ ︷︷ ︸
�i :=

wi

�
nw∑
i=1

min
j

{� j } wi =min
j

{� j }
nw∑
i=1

wi =min
j

{� j }

it follows

min
w

H(x∗,w,u∗, p∗,
∗)=min
j

{� j }

and the minimum of � j with 1� j�nw determines
pointwise the vector w(t). If

k=argmin{� j ,1� j�nw}
is unique, then the pointwise minimization of the
Hamiltonian requires

wi =
{
1, i =k

0, i 
=k

and the optimal solution is purely bang–bang. There
are examples where this minimum is not unique, as,
e.g. in [4]. For the case at hand, however, we deal with
a special situation, as it is basically a time-optimal
control problem. The target, to reach a certain goal
in minimum time, can thus be reached best by a
maximum acceleration if no constraints are active.
Remember that the velocity v depends mainly on F�

lr
given by Equation (12), which is a function of gas
pedal position �, the braking force FB, the current
gear �, and velocity v itself. If we fix � to 1, full
acceleration, and FB to zero, no braking, we can thus
calculate the maximum value of F�

lr for all v in a certain
range.

In Figure 6 we see that for every velocity v always
one gear gives the maximum value, as any convex
combination will be in between, and thus below the
maximum. Exemplarily, a convex combination between
the second and the third gear is shown in circle-line.
Thus, any time-optimal solution in our convexified
formulation will have bang–bang structure and be
therefore integer. This is also true for the discretized
problem, except on intervals on which the velocity
v changes such that argmax� F

�
lr (v) changes as well.

Note that for path-constrained arcs things will be
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Figure 6. The longitudinal forces at the rear wheel F�
lr depending on velocity v, for �=1, . . . ,5 in dotted lines.

Depicted in circles is a noninteger solution, the convex combination 0.5F2
lr +0.5F3

lr , which will result
in less acceleration than the one obtained from an optimal gear choice, for all velocities v.

different and noninteger solutions may turn out to be
optimal.

The outer convexification is only performed with
respect to the integer variables. Hence, the obtained
solutions are, like the reference solutions in [1, 2], local
optima. All approaches could, if guaranteed global
optima were of relevance from a practical point of
view, be combined with established techniques from
global optimization, e.g. convex underestimators and a
spatial Branch&Bound.

5. CONCLUSIONS

We presented a reformulation of a recently published
benchmark problem in mixed-integer optimal control,
based on a convexification and a relaxation of the
integer constraint. We solved the reformulated problem
for two cases: (a) for a fixed, equidistant control
discretization grid and (b) taking into account free
switching times. For the first case, we reproduced the
results obtained in [1] with a higher precision with

a speed-up of more than three orders of magnitude
(taking into account the different computing environ-
ments) compared with a Branch&Bound approach. Our
approach also gives the possibility to discretize even
finer, as it does not suffer from a combinatorial explo-
sion. For the second case we propose to use an initial-
ization based on the solution of (a). We could reduce
the computing time from over 1 h to 5min (although on
a slightly faster machine), applying our algorithm. We
explained, why our reformulation is highly beneficial in
the general case of time-optimal mixed-integer control
problems.

The tremendous speed-up compared with previous
approaches allows for an extension of the problem
under investigation to longer horizons, using the same
discretization precision, and also to investigate more
complicated test tracks that result in nonintuitive
switching structures. Future research will also concen-
trate on path-constrained solutions. Here we will apply
theoretical results that guarantee an exact lower bound
on the integer solution and apply novel rounding
techniques to get initializations for the switching time
optimization approach, as proposed in [6].
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Marburg, 2005. URL: http://sager1.de/sebastian/downloads/
Sager2005.pdf, ISBN: 3-89959-416-9, available at: http://
sager1.de/sebastian/downloads/Sager2005.pdf.

4. Sager S, Bock H, Diehl M, Reinelt G, Schlöder J. Numerical
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