
Universität Ruperto Carola

zu Heidelberg

Fakultät für Mathematik und Informatik

Diplomarbeit

A Numerical Method

for Nonlinear Robust Optimal Control

with Implicit Discontinuities

and an Application to Powertrain Oscillations

cand. math. Christian Kirches

Prof. Dr. Dr. h.c. Hans Georg Bock

Kandel in Rheinland-Pfalz

vorgelegt von

aus

betreut durch

Oktober 2006

A Numerical Method
for Nonlinear Robust Optimal Control with Implicit Discontinuities

and an Application to Powertrain Oscillations

Christian Kirches

Interdisciplinary Center for Scientific Computing (IWR) · University of Heidelberg

Im Neuenheimer Feld 368 · D-69120 Heidelberg · christian.kirches@iwr.uni-heidelberg.de

12th October, 2006

Abstract

This diploma thesis describes an approximative algorithm for robust nonlinear
optimal control of problems described in terms of implicitly discontinuous ODE
models. The algorithm has been embedded into the state-of-the-art optimal con-
trol software package MUSCOD-II developed in the work group of Prof. Dr. Dr.
h.c. Hans Georg Bock at the Ruperto Carola University of Heidelberg.

Nonlinear equality- and inequality-constrained optimal control problems with un-
certain parameters are addressed by an approximate robust formulation based on
linearization of the uncertainty set. Sparsity-preserving formulations of the un-
derlying nonlinear problem are presented.

The algorithm is complemented by a new integrator allowing for the treatment of
implicitly defined discontinuities of non-stiff ODE models. An efficient method
for the generation of second-order sensitivities is described. Proper discontinuity
updates of first- and second-order sensitivities are derived and implemented.

The presented algorithms are applied to the problem of powertrain oscillations.
Fast changes of the engine torque typically occurring during the acceleration of a
car induce very specific oscillations of the car’s powertrain. As these oscillations
degrade the driving comfort, an effort is made to come up with engine control
schemes that realize oscillation-free acceleration while maintaining high respon-
siveness.

An ODE model of the powertrain found in a Mercedes C-Class has been developed
and improved in cooperation with DaimlerChrysler AG in Stuttgart-Untertürkheim,
Germany. A software tool simplifying the process of parameter estimation has
been developed in order to identify unknown parameters from real-world mea-
surements taken on a test track.

Off-line optimal control scenarios are employed to evaluate to what extent the ob-
served powertrain oscillations could ideally be diminished. The obtained engine
control schemes allow for virtually oscillation-free acceleration of the car.

Focussing on a mechanical end-stop in the model, estimated uncertainties of the
model parameters are taken into account. Powertrain acceleration schemes that
gently touch the end-stop when switching from coasting mode to traction mode
are obtained. These schemes show robustness against deviations in parameters,
powertrain states, and applied engine controls.

Mathematics Subject Classification (2000): 62F, 62L, 62P, 65D, 65K, 65L, 90C, 93B.

Eine numerische Methode zur
robusten nichtlinearen Optimalsteuerung bei impliziten Unstetigkeiten

mit Anwendung auf Lastwechselschwingungen

Christian Kirches

Interdisziplinäres Zentrum für wissenschaftliches Rechnen (IWR) · Universität Heidelberg

Im Neuenheimer Feld 368 · D-69120 Heidelberg · christian.kirches@iwr.uni-heidelberg.de

12. Oktober 2006

Zusammenfassung

Diese Diplomarbeit beschreibt einen approximativen Algorithmus zur robusten
nichtlinearen Optimalsteuerung von Problemen, welche durch gewöhnliche Dif-
ferentialgleichungen mit impliziten Unstetigkeiten beschrieben werden können.
Der Algorithmus wurde in die Optimalsteuerungssoftware MUSCOD-II integri-
ert, welche in der Arbeitsgruppe von Prof. Dr. Dr. h.c. Hans Georg Bock an der
Ruprecht-Karls-Universität Heidelberg entwickelt wird.

Nichtlineare gleichungs- und ungleichungsbeschränkte Optimalsteuerungsprob-
leme mit unsicheren Parametern werden durch eine auf Linearisierung des Un-
sicherheitsbereichs basierende approximative robuste Problemformulierung be-
handelt. Varianten dieser Formulierung werden beschrieben, welche die dünne
Besetztheit von Ableitungsmatrizen des zugrunde liegenden nichtlinearen Prob-
lems beibehalten.

Der Algorithmus wird ergänzt durch einen neuen Integrator, welcher die Behand-
lung impliziter Unstetigkeiten in nicht-steifen gewöhnlichen Differentialgleichun-
gen erlaubt. Eine effiziente Methode zur Erzeugung von Sensitivitäten zweiter
Ordnung wird vorgestellt. Korrekte Aktualisierungen dieser Sensitivitäten bei
impliziten Unstetigkeiten werden hergeleitet.

Die vorgestellten Algorithmen werden auf das Problem von Lastwechselschwin-
gungen im KFZ-Antriebsstrang angewandt. Schnelle Änderungen des Motormo-
ments, welche typischerweise während Beschleunigungsvorgängen auftreten, re-
gen den Antriebsstrang zu spezifischen Schwingungen an. Da diese den Fahr-
komfort beeinträchtigen, werden Anstrengungen zur Bestimmung von Motorkon-
trollschemata unternommen, welche schwingungsfreie Beschleunigung bei mög-
lichst hoher Agilität gestatten.

Ein Modell des Antriebsstrangs einer Mercedes C-Klasse wurde in Zusammenarbeit
mit der DaimlerChrysler AG in Stuttgart-Untertürkheim entwickelt und verbessert.
Ein Werkzeug zur Vereinfachung der Parameteridentifizierung wurde entwickelt
und ermöglicht die Bestimmung unbekannter Modellparameter und deren Un-
sicherheiten anhand von auf der Teststrecke aufgenommenen Messdaten.

Anhand von Optimalsteuerungs-Szenarien wird untersucht, inwieweit die beob-
achteten Schwingungen des Antriebsstrangs in verschiedenen Betriebssituationen
gedämpft werden können. Die so erhaltenen Motorkontrollschemata gestatten
eine nahezu schwingungsfreie Beschleunigung.

Während des Umlegens des Antriebsstrangs vom Schubbetrieb in den Zugbe-
trieb ist eine mechanische Nebenbedingung einzuhalten. Robuste Motorkon-
trollschemata, welche diese Bedingung erfüllen, werden berechnet. Dabei werden
geschätzte Unsicherheiten in den Modellparametern, den aktuellen Systemzustän-
den sowie den applizierten Motorkontrollen berücksichtigt.

Acknowledgements

This diploma thesis has been prepared in the Simulation & Optimization work
group at the Interdisciplinary Center for Scientific Computing (IWR) of the Univer-
sity of Heidelberg.

I wish to thank Professor Dr. Dr. h.c. Hans Georg Bock and Dr. Johannes P.
Schlöder for granting me the unique opportunity to participate in the scientific
work of their work group. Various courses and seminars, given by them as well
as by Dr. Moritz Diehl and Dr. Ekaterina Kostina, attracted me to the highly inter-
esting work of their group.

I am deeply indebted to Dr. Moritz Diehl, who now is a Professor at the Katholieke
Universiteit Leuven. He did an extraordinary and outstanding job as my super-
visor while I was working on this thesis. His ideas and suggestions strongly
influenced my work. The continuous interest and enthusiasm I could always feel
when discussing my work with him have been a constant source of motivation.

I thank Dr. Bernd B. Schneider of DaimlerChrysler AG in Stuttgart-Untertürkheim
for many fruitful discussions, and for his hospitality during our visits to his work
group in Stuttgart. His detailed feedback on my work was always very welcome
and much appreciated. It was a thrilling experience to find my work being of
interest to one of the world’s largest automotive companies.

I am grateful to Professor Dr. Moritz Diehl, Dr. Sebastian Sager, and Dr. Bernd B.
Schneider for proof-reading this thesis and for their helpful hints and suggestions
for its improvement.

I wish to extend my thanks to all other members of the Simulation & Optimization
work group. They all helped to create the friendly, cooperative, and inspiring
atmosphere that at all times made it a pleasure to be a member of the team.

I would like to express my gratitude to my girlfriend Simone Evke de Groot.
Thank you for your love, support and motivation, for bearing and crossing the
distance, and for all the visions we share.

Finally, I wish to thank my parents, Ulrike and Claus Kirches, for their continuous
backing of my interest in mathematics and computer science. It is your support
that enabled me to pursue and enjoy my studies in Heidelberg. Without your love
and encouragement, this work would not have been possible.

Contents

Abstract 3

1. Introduction 11

1.1 Goals and Highlights . 11

1.2 A Guiding Example: Powertrain Oscillations . 13

1.3 Outline of the Thesis . 14

2. The Powertrain Model 16

2.1 Model Parts . 16

2.2 Details of the Implementation . 19

2.3 Summary and Reference . 20

3. Nonlinear Programming Theory and Algorithms 23

3.1 Nonlinear Programming Theory . 23

3.2 Sequential Quadratic Programming . 27

3.3 The Constrained Gauß-Newton Method . 30

4. A Continuous Runge-Kutta Method Handling Implicit Switches 33

4.1 Runge-Kutta Methods . 33

4.2 Convergence and Error Control . 34

4.3 Implicitly Defined Discontinuities . 38

4.4 Sensitivity Generation . 41

4.5 Continuous Extensions . 45

4.6 The RKFSWT Integrator Algorithm . 50

5. Parameter Estimation 51

5.1 Parameter Estimation Problems . 51

5.2 Uncertainty Estimates and Confidence Areas . 56

5.3 Initial Value Problems for Parameter Estimation 58

5.4 Powertrain Parameter Estimation . 61

5.5 Powertrain Model Identification . 68

6. Nonlinear Optimal Control Problems 71

6.1 The Continuous Optimal Control Problem . 71

6.2 Discretization of the Continuous Problem . 73

6.3 Treatment of Implicit Switches . 76

6.4 Optimal Control of Powertrain Oscillations . 78

7. Robust Optimal Control Problems 86

7.1 Uncertain Nonlinear Programs . 86

7.2 A Computationally Feasible Linearized Approach 88

7.3 Optimal Control of Uncertain Systems . 91

7.4 Robust Optimal Control of a Powertrain . 97

10 Contents

8. Conclusions and Outlook 104

Appendices 107

A. The Parameter Estimation Tool QuickFit 107

A.1 Input and Output Files . 107

A.2 The Project File . 108

A.3 Data Files . 112

A.4 Output Files . 113

A.5 Command Line Arguments . 113

A.6 Software Architecture . 114

B. Implicit Switches in MUSCOD-II and MATLAB/Simulink 117

B.1 Extensions to the MUSCOD-II User Interface . 117

B.2 Realisation of Switches in MATLAB/Simulink . 119

C. A Framework for Robust Optimal Control in MUSCOD-II 121

C.1 Robustifying a Problem Formulation . 121

C.2 Framework Components . 123

List of Figures, Listings, and Tables 124

Bibliography 126

Nomenclature 130

Index 134

Chapter 1

Introduction

1.1 Goals and Highlights

This thesis aims at combining theory and algorithms from two areas of active research:
Optimization of implicitly discontinuous systems, and optimization under uncertainty. We
present theory and algorithms from both areas, applied to optimal control of ODE systems. In
order to demonstrate the applicability and effectiveness of the presented numerical methods,
all described algorithms have been implemented. In cooperation with DaimlerChrysler AG in
Stuttgart-Untertürkheim, Germany, they are employed to treat a guiding example in automotive
engineering.

Implicit Discontinuities and Switches

When we represent real-world problems in terms of systems of ordinary differential equations
(ODEs), we must require the involved model functions to exhibit sufficient smoothness. This
is to ensure that the systems can be accurately solved by appropriate numerical algorithms
such as one-step or multi-step ODE solvers.
Many phenomena in mechanics, physics, and chemistry, however, feature inherent disconti-
nuities. One may think here, e.g., of mechanical end-stops, friction phenomena, rebounds,
overflowing of vessels, or changes in the phase of matter. We may also desire to exchange
parts of the model in a discontinuous manner whenever the system satisfies certain implicit
conditions. An example might be the automatic selection of gears in a vehicle’s power-
train, depending on the engine’s work load. This is to be clearly distinguished from explicit
switches which are driven and decided by an external source (e.g., a human being, an off-line
optimizer, etc.), and which we may regard as binary control functions applied to the system.
Consequentially, classical methods for the solution of ODE systems need to be extended by a
facility for event detection that has the ability to detect, locate, and treat such implicit switch
conditions.
In this thesis, we present an efficient numerical method for the exact treatment of implicit
discontinuities and switches in non-stiff ODE models. As opposed to explicit switches, the
generation of sensitivities of the ODE system’s solution with respect to model parameters
requires special attention whenever an implicit switch takes place.

Parameter Estimation

When we design a system of ordinary differential equations to model real-world problems
that demand for optimization, the fundamental laws of nature dictate and allow to derive
the structure and dependencies of such a system. What we usually cannot directly derive
from these laws are the values of involved model parameters. Here, one may think of all
kinds of physical quantities such as mass, velocity, torque, coefficients of friction and damp-
ing, temperature, pressure, etc. We may have at hand measurement devices for some of
these quantities, allowing us to obtain observed data. Others, such as acceleration, torque, or
damping coefficients may prove hard to observe on the real-world object of interest.

12 Chapter 1. Introduction

It is the domain and purpose of parameter estimation methods to obtain values for such
unknown and possibly impossible-to-observe model parameters by comparing parts of the
model’s behavior to available observed data, and by making inferences about better parame-
terizations from these comparisons. Having found a parameterization that is in some sense
optimal for the given model and observed data, we may in turn evolve the model to better
represent reality.
In this thesis, we present the theory of estimating parameters using least-squares fits against
observed data. In addition, we present possibilities to express the confidence we may have in
the found parameterizations by determining estimated uncertainties for the estimated nomi-
nal parameter values.

Robust Optimal Control

Assume we have modeled a controllable process using an ODE system. In optimal control,
we are interested in determining the optimal way to control this process in order to achieve a
predefined goal. This goal could be minimizing a cost, minimizing the time required to reach
a certain process state, maximizing the profit or some other quantity, etc. In addition, we will
often require the controlled process to respect certain constraints. Velocity, heat, pressure, or
volume limits which must stay within predefined ranges come to mind here.

We note, however, that the optimal control we obtained from the solution of such a problem
is valid only for the very set of model parameters we used when we computed that control.
We were ignoring the fact that in reality these parameters may, and most often will, vary and
differ from the values we assumed. Even worse, critical constraints may be satisfied only
under the assumption that the model’s parameterization is precise.

Now, the ability to estimate uncertainty of model parameters – if observed data for the model
is available – is perfectly complemented by optimization strategies that take these uncertain-
ties into account. A first step is to analyze the effects of the computed control under variations
of the model parameters as indicated by the estimated uncertainties. It is vitally important at
least to quantify both the extent to which we may miss the prescribed goal, and the violation
of the critical constraints, under a given uncertainty of the parameterization. An even more
desirable ability, of course, is to formulate and solve a robust optimal control problem that
takes the estimated uncertainties into account. Employing the optimal control scheme re-
sulting from the solution of such a problem, the controlled process should exhibit robustness
against deviations of the model parameters. The severity of the previously described and
analyzed effects should be visibly diminished.

In this thesis we present a bi-level problem formulation for solving equality- and inequality-
constrained nonlinear problems under uncertainties. A computationally feasible approach
based on a linearization of the uncertainty sets is presented and transferred to optimal con-
trol of uncertain ODE systems. We describe two advantageous possibilities for generating
required sensitivities of the ODE system’s solution with respect to the uncertain parameters.

A highlight of this thesis is the efficient combination of implicitly discontinuous ODE models
with techniques for optimal control of uncertain ODE systems. For robust optimal control, we
require sensitivities of second order of the ODE system’s solution, whose treatment during an
implicit switch poses a challenge. We describe a new numerical method which has not been
available prior to this work, that enabled us to treat optimal control problems of uncertain
ODE systems with implicitly defined discontinuities and switches.

Software Implementations

All numerical methods presented in this thesis have actually been implemented within the
optimal control software package MUSCOD-II (Diehl et al. [12], Leineweber [38]).

We implemented a new explicit error-controlled continuous Runge-Kutta method named
RKFSWT (Runge-Kutta-Fehlberg with switches) for the solution of non-stiff ODE systems

1.2. A Guiding Example: Powertrain Oscillations 13

that is capable of detecting and treating implicit model discontinuities and switches. This
new integrator has been used for all optimal control computations presented in this thesis.

We developed a new software tool named QuickFit for easy parameter estimation on initial-
value problems. The tool is now being actively used at DaimlerChrysler AG in Stuttgart.
It works in conjunction with either the developed Runge-Kutta integrator RKFSWT, or the
implicit BDF method DAESOL (Bauer [2]).

The numerical method for robust optimal control to be presented has been implemented in
the new ROBUST framework within MUSCOD-II [12, 38], and has been used for all robust
optimal control computations in this thesis.

1.2 A Guiding Example: Powertrain Oscillations

As a guiding example for the demonstration of the numerical methods to be presented,
we tackle the problem of oscillations in a car’s powertrain. The problem of powertrain
parametrization, identification of uncertainties, optimization, and robustification against the
identified uncertainties will guide us through this thesis. Each method we present will be
applied to this guiding example to demonstrate its actual applicability and effectiveness.

The power train comprises all drive-related car components from the engine to the wheels.
As shown in Fig. 1.1 these parts usually encompass a flywheel, the gearbox, the cardan shaft,
the axle drive, and the side shafts together with wheels and tires.

Fig. 1.1: Selected parts of a typical powertrain (Stelzer [55]).

Problem Description

Fast changes of the motor torque typically occur when a car is being accelerated. They induce
very specific oscillations of the car’s powertrain. As these oscillations significantly degrade
the driving comfort, engineers make an effort to come up with engine control schemes that
result in oscillation-free acceleration while maintaining high responsiveness and agility.

In the past, engineers frequently obtained such control laws by trial and error, slowly building
up experience that allowed them to tune the powertrain behavior of every new car type and
model. There was, however, no guarantee for the optimality of the control schemes in terms
of agility, responsiveness, or maximum reduction of the oscillations. Even more so, nothing
could be said or done concerning the robustness of those schemes against deviations from the
assumed powertrain specifications. This is where the REI/EP department of DaimlerChrysler
AG has been working on improving the situation.

14 Chapter 1. Introduction

The Powertrain Model

An ODE model of the powertrain found in a Mercedes C Class has been constructed at Daimler-
Chrysler AG and has been improved for the presented research topics. The model is described
to some detail in the following section. Gear shift, clutch, and differential are not modeled
since the conducted research is restricted to preselected gears. Only a single side shaft is
included (single-track model), being sufficient for the modeling of straight-ahead driving. Six
implicit discontinuities arise from the exact modeling of mechanical plays and friction phe-
nomena. Their vital importance for the precise representation of the oscillation phenomena
gives us one additional motivation for the use of an ODE solver with the capability to detect
and treat implicit discontinuities.

Parameter Estimation and Model Identification

We apply the algorithm for parameter and uncertainty estimation that enables us to fully
identify a minimal powertrain model from real-world measurements taken on the test track.
As a result we obtain a very satisfying representation of the real powertrain’s behavior.

Controlling Powertrain Oscillations

To demonstrate the nonlinear optimal control methods, an optimization problem is formu-
lated to measure and minimize oscillations of the powertrain observed during acceleration
of the car. A mechanical constraint is motivated that must be satisfied at a certain implic-
itly defined point in time. Acceleration scenarios starting in different initial system states
are evaluated. Using the presented numerical methods, optimal engine control schemes are
obtained that diminish powertrain oscillations to a very satisfying extent.

Robust Acceleration into Traction Mode

We focus on the problem of accelerating the powertrain from coasting mode into traction mode.
The sensitivity of the mechanical constraint with respect to deviations in several selected
parameters and system states is evaluated. The results clearly motivate the need for robust
optimal engine control schemes. Such schemes are obtained by solving an appropriate robust
optimal control problem using the presented numerical method.

1.3 Outline of the Thesis

Chapter 2 The employed ODE model of a powertrain, designed at DaimlerChrysler AG in
Stuttgart-Untertürkheim, is described [55].

Chapter 3 The second chapter briefly reviews the theory of nonlinear programming. We
present the sequential quadratic programming (SQP) method [27, 28, 49, 43] as an efficient
and reliable method for the solution of general nonlinear programs such as those obtained
from multiple-shooting discretization of ODE optimal control problems [6, 7]. For the efficient
solution of constrained least-squares problems, a generalization of the constrained Gauß-
Newton (CGN) method [6, 52] is presented.

Chapter 4 This chapter presents an explicit Runge-Kutta integrator [15, 20, 37, 51] capable
of treating implicit discontinuities (switches) in non-stiff ODE models. The efficient detection
of such switches requires the implementation of a continuous extension [16, 20, 44] to this
popular ODE solver. The guiding example features nonlinear springs with a play as instances
of implicit discontinuities. In addition, it will be seen in Chapter 6 that the switch detection
feature gives us considerable additional freedom in formulating optimal and robust optimal
control problems.

1.3. Outline of the Thesis 15

Chapter 5 Deals with parameter estimation techniques for initial-value problems (IVPs). We
motivate least-squares fits against observed data as maximum likelihood estimators assuming
Gaussian distributed measurement errors [43]. Additional statistical information available
from the solution of these problems allows us to obtain confidence information in the form
of uncertainty sets for estimated parameter values [1, 6].
Convincing results for the guiding example — the powertrain oscillations problem — ob-
tained from fits to real-world measurement data observed on a test track are presented. We
derive a reduced non-stiff powertrain model to be used for subsequent optimization tasks.

Chapter 6 A class of nominal optimal control problems, and their solution using the direct
multiple shooting method [6, 7] is reviewed in Chapter 6. The powertrain oscillation prob-
lem setup is discussed, and computational results are presented. We obtain engine control
schemes that allow for virtually oscillation-free acceleration of the powertrain.

Chapter 7 Focuses on a class of nonlinear min-max problems for robust optimal control [3],
and presents a computationally feasible approximation to this problem class that is based on
linearization of the uncertainty sets [13, 14, 35, 40]. Subsequently, we elaborate on a new algo-
rithm that allows for the solution of this class of problems within the optimal control software
package MUSCOD-II. Emphasis is put on the efficient generation of first- and second- order
sensitivities [6, 13, 42] and their interaction with implicit discontinuities present in the ODE
model.
Finally, we turn again to the guiding example, this time focusing on the problem of accel-
erating the powertrain from coasting to traction mode, while respecting an internal rotation
speed constraint. Using the presented algorithm, engine control schemes satisfying this re-
quirement that exhibit some robustness against uncertainty in the model parameters, the
powertrain’s state, and the applied engine controls are obtained.

Chapter 8 The final chapter contains a summary of the presented theory, numerical methods,
and results for the guiding example. We mention several interesting open questions that
require further research, and show extension points for the current software implementations.

Appendices The three appendices to this thesis focus on software architecture and imple-
mentation topics, and serve as brief user’s manuals for those interested in using the new
extensions to the optimal control software package MUSCOD-II [38].

In Appendix A a description and guide to the new parameter estimation tool QuickFit can
be found. While universally applicable to initial-value problems for ODE and DAE models,
this tool was created for DaimlerChrysler AG in order to enable and simplify the process of
estimating parameters in present and upcoming powertrain models.

Appendix B intends to serve as a user’s guide to the newly implemented implicit switch
extension to the optimal control software package MUSCOD-II.

Appendix C does the same for the robust optimal control extension to MUSCOD-II.

Lists of all figures, listings, and tables can be found in the back of the thesis. An extensive
nomenclature, a bibliography, and an index of the most important keywords completes this
work.

Chapter 2

The Powertrain Model

This chapter describes an improved version of the powertrain model designed and imple-
mented in Simulink at DaimlerChrysler AG in Stuttgart-Untertürkheim. It consists of 8 differen-
tial states, and uses 31 model parameters, many of which are unknown in advance.
The joint work resulted in several improvements over the original model described by Stelzer
[55], which include a reformulation of the ODE system to achieve better numerical stability
when applying internal numerical differentiation (IND, cf. Bock [4, 5, 6]) to the model, the
addition of four extra outputs to be fitted against measurement data, and the introduction of
the dual-mass flywheel’s end stop into the model.

2.1 Model Parts

We briefly describe equations for the individual parts of the powertrain in order to motivate
the resulting ODE system. While improvements are already incorporated, this section is
guided by Stelzer [55], which may be consulted for a more detailed discussion.

DMF

Engine

Gearbox

Cardan

Shaft

Axle

Drive

Side

Shaft

Wheel

Minput

Mmot

nss

Mcs

ncs

Mss

vcar

acar

vwh

Mmot

ωdmf,1 ωdmf,2

Mtr

Trans-

mission

Mss

ωgb ωad ωad

Mgb Mcs Mcs

ωtr

∆ϕwh

ωwh

Mss

Fig. 2.1: Signal flow in the powertrain model.

Engine

Depending on the scenario — parameter estimation or optimal control — the effective en-
gine torque Minput is supplied to the model as external data obtained through real-world
measurements (parameter estimation), or it is the solution to be found for an optimal control
problem.

The engine torque Mmot results from a reduction by a braking torque Mfric due to friction:

Mmot := Minput −Mfric, (2.1a)

Mfric := dmot ωdmf,1(t). (2.1b)

2.1. Model Parts 17

Dual-Mass Flywheel

The dual-mass flywheel’s (DMF) purpose is to act as a low-pass filter for the engine torque,
which shows peaks from the individual ignitions. While these peaks are not present in the
observed data sets actually used, it is nonetheless crucial to include the dual-mass flywheel
in the model in order to properly account for delays and oscillations applied to the torque
signal as it propagates through the powertrain.

The DMF’s primary mass Jdmf,1 is fixed to the engine’s mass Jmot and is accelerated by the
engine torque Mmot, while braked by friction Mfric,1 and the spring’s self-aligning torque
Mspring.

(Jdmf,1 + Jmot) ω̇dmf,1(t) = Mmot −Mfric,1 −Mspring, (2.2a)

Mfric,1 := ddmf,1 ωdmf,1(t). (2.2b)

Consequently, the spring accelerates the secondary mass Jdmf,2 which is braked by friction
Mfric,2 and the retransmitted torque Mgb that back-propagates from the cardan shaft.

Jdmf,2 ω̇dmf,2(t) = Mspring −Mfric,2 −Mgb, (2.3a)

Mfric,2 := ddmf,2 ωdmf,2(t). (2.3b)

The spring features two different spring constants k+
dmf and k−

dmf which are selected depend-
ing on the spring torsion’s direction, and it includes a play pdmf as well as an additional
friction term.

∆ϕ̇dmf(t) = ωdmf,1(t)− ωdmf,2(t), (2.4a)

Mspring := ddmf ∆ϕ̇dmf(t) + kdmf

(

∆ϕdmf(t)
)

, (2.4b)

kdmf(∆ϕ) :=

k−
dmf(∆ϕ + pdmf) if ∆ϕ < −pdmf ,

0 if |∆ϕ| 6 pdmf ,

k+
dmf(∆ϕ− pdmf) if ∆ϕ > +pdmf .

(2.4c)

The spring’s torsion |∆ϕdmf | also has an end-stop ∆ϕmax. An implementation of both k(∆ϕ)

and the end-stop that overcomes the introduced non-differentiability is described in Sec-
tion 2.2.

Gearbox

Since the simulation of gear shifts is not of interest, the gearbox can effectively be reduced
to a simple transmission of the DMF’s secondary side angular velocity ωdmf,2. Mgb is the
corresponding back-transmission of the cardan shaft’s braking torque Mcs, increased by some
engine speed- and gear-dependent loss Mloss,gb due to friction, see Eq. (2.16) and Fig. 2.2 on
page 19.

ωgb(t) :=
1

igb
ωdmf,2(t), (2.5a)

Mgb :=

{

1
igbηgb

Mcs + Mloss,gb

(

ωdmf,2(t)
)

if ∆ϕdmf(t) < 0,
ηgb

igb
Mcs −Mloss,gb

(

ωdmf,2(t)
)

if ∆ϕdmf(t) > 0.
(2.5b)

Cardan Shaft

In this complete version of the powertrain model the cardan shaft is included as a mass-
less elasticity with damping. Thus the cardan shaft’s moment of inertia is covered by the
neighbouring moments Jdmf,2 and Jag. As the cardan shafts used in cars manufactured by
the Mercedes Car Group are comparatively stiff, it will be seen that this part of the powertrain
has only a negligible influence on the oscillation phenomena.

Mcs := ccs∆ϕad(t) + dcs∆ϕ̇ad(t). (2.6)

18 Chapter 2. The Powertrain Model

Axle Drive

The axle drive is accelerated by the cardan shaft’s torque Mcs while braked by friction Mfric,ad

and the back-transmitted torque Mtr from the side shaft.

Jad ω̇ad(t) = Mcs −Mfric,ad −Mtr, (2.7a)

Mfric,ad := dadωad(t) (2.7b)

∆ϕ̇ad(t) = ωgb(t)− ωad(t). (2.7c)

Transmission

Since the model only includes a single side shaft, the differential is omitted and only the
corresponding transmission is included in the model. Just like the gearbox, this transmission
also includes a speed-dependent torque loss Mloss,tr, see Eq. (2.16) and Fig. 2.3.

ωtr(t) :=
1

itr
ωad(t), (2.8a)

Mtr :=

{

1
itrηtr

Mss + Mloss,tr

(

ωad(t)
)

if ∆ϕss(t) < 0,
ηtr

itr
Mss −Mloss,tr

(

ωad(t)
)

if ∆ϕss(t) > 0.
(2.8b)

Side Shaft

Like the cardan shaft, the side shafts are modelled as mass-less elasticities. Only a single side
shaft is included in the present model (single-track model). Like in the DMF, the side shaft
spring features a play pss whose implementation is discussed in Section 2.2.

Mss := kss

(

∆ϕwh(t)
)

+ dss∆ϕ̇wh(t), (2.9a)

kss(∆ϕ) :=

css(∆ϕ + pss) if ∆ϕ < −pss,

0 if |∆ϕ| 6 pss,

css(∆ϕ− pss) if ∆ϕ > +pss.

(2.9b)

Wheels

The last part of the model includes the wheel’s moment of inertia Jwh as well as the trans-
lation of the angular forces within the powertrain into acceleration of the car. Tyre slip is
crucial to the model’s correctness as it reduces both the effective accelerating force and the
oscillations observed in the side shaft.
The wheel is accelerated by the side shaft’s torque Mss, while braked by friction and the
tangential force Facc acting on the tyre.

Jwh ω̇wh(t) = Mss −Mfric,wh − rtyreFacc, (2.10a)

Mfric,wh := dwhωwh(t), (2.10b)

∆ϕ̇wh(t) = ωtr(t)− ωrad(t). (2.10c)

Due to tyre slip the wheel’s speed may differ from the vehicle’s speed, which is therefore
introduced as an additional model state. The car is accelerated by the force Facc while braked
by rolling friction Froll, air resistance Fair and downhill force Fdown.

mcar v̇car(t) = Facc − Froll − Fair − Fdown, (2.11a)

Froll := µroll mcar g cos β, (2.11b)

Fair := 1
2 v2

car(t) ̺air Acar cw, (2.11c)

Fdown := mcar g sin β. (2.11d)

2.2. Details of the Implementation 19

The tangential force Facc is calculated from the normal force Fstat + Fdyn by way of the ratio
function µ.

Facc := (Fstat + Fdyn) µ
(

s
(

ωwh(t), vcar(t)
)

)

, (2.12a)

Fstat := mcar g

(

lf
lwb

cos β +
hmc

lwb
sin β

)

, (2.12b)

Fdyn := mcar v̇car(t)
hmc

lwb
, (2.12c)

The function µ models the ratio between tangential and normal force depending on the slip
s, according to a popular approximation due to Pacejka and Bakker [47].

µ(s) := µmax sin
(

cpac arctan(bpac s)
)

. (2.13)

The slip s describes the difference between a wheel’s tangential speed r ω and the car’s speed
v.

s(ω, v) :=
rtyre ω − v

rtyre ω
. (2.14)

Finally, note that by way of Facc Eq. (2.11) contains v̇car(t) on both sides. Solving for v̇car(t)

splits Fdyn and yields

mcar

(

1− hmc

lwb
µ(s)

)

v̇car(t) = Fstat µ(s)− Froll − Fair − Fdown, (2.15)

with s := s
(

ωwh(t), vcar(t)
)

.

2.2 Details of the Implementation

Gearbox and Transmission

Stelzer [55] approximated the nonlinear function Mloss,gb(ωdmf,2) by performing a second-
order polynomial fit (2.16) against a series of torque loss values at certain rotation speeds,
known from the corresponding data sheets. The results are reprinted in Fig. 2.2 and Tab. 2.1.

Mloss,∗ (ω∗) :=

(

λ2

(

60 s

2π

ω∗

)2

+ λ1

(

60 s

2π

ω∗

)

+ λ0

)

Nm (2.16)

Just as in the gearbox, the torque loss Mloss,tr(ωad) in the transmission is approximated using
a second-order polynomial as shown in Fig. 2.3 and Tab. 2.2.

0

 1

 2

 3

 4

 5

0 2 4 6 8 10 12

M
lo

ss
,g

b
[N

m
]

ndmf,2 [·103 rpm]

1st2nd
3rd

4th

Fig. 2.2: Gearbox torque loss.

Gear λ2

[

·10−8
]

λ1

[

·10−6
]

λ0

[

·10−1
]

1st 1.88 4.54 2.3859

2nd 2.06 −2.3284 3.0905

3rd 2.2916 −4.5643 3.7377

4th 2.95 2.96 4.1826

Tab. 2.1: Gearbox torque loss polynomials.

20 Chapter 2. The Powertrain Model

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 2 4 6 8 10

M
lo

ss
,tr

 [N
m

]

nag [·103 rpm]

Fig. 2.3: Transmission torque loss.

λ2

[

·10−8
]

λ1

[

·10−7
]

λ0

[

·10−1
]

6.1535 −1.4246 9.0689

Tab. 2.2: Torque loss polynomial coefficients for
the transmission.

Non-Differentiabilities

The model equations presented in the previous section contain several non-differentiabilities:

1. Springs with a play, found in the DMF and the side shaft;

2. Loss of torque due to friction, depending on direction of the powertrain torsion’s rates
of change ∆ϕdmf and ∆ϕss.

Since the existence of higher-order derivatives is crucial to guarantee convergence of numer-
ical algorithms for the solution of the ODE system, one may think of approximating the
respective equations by smooth functions as shown in Eq. (2.17) and Fig. 2.4 in the case of
the DMF,

k(∆ϕ) = ± k±
dmfγ log

(

exp

(±∆ϕ− pdmf

γ

)

+ 1

)

± k±
2 γ2 log

(

exp

(±∆ϕ−∆ϕmax

γ2

)

+ 1

)

. (2.17)

This approach, however, is frequently found to be too inexact. In addition, the closer the non-
differentiability is approximated, the more stiffness will be introduced. Explicit integrator
methods such as the one presented in Chapter 4 may fail to solve the resulting approximative
smooth ODE model due to its stiffness. A more sophisticated and exact method to treat this
and other types of non-differentiabilities is discussed in Section 4.3.

-∆ϕmax -pdmf +pdmf +∆ϕmax

k(
∆ϕ

)
[N

m
]

∆ϕ [°]
-pdmf 0 +pdmf

k(
∆ϕ

)
[N

m
]

∆ϕ [°]

Ideal
γ = 0.06

γ = 0.1, 0.2, 0.3

Fig. 2.4: Spring torsion dependent friction in the dual-mass flywheel.

2.3 Summary and Reference

In this section we collect model equations, parameters, and outputs from the previous one.
The system of ordinary differential equations is rewritten in Eq. (2.18) to fit the canonic form.
A comprehensive list of all introduced parameters is given in Tab. 2.4. Model outputs that
can be compared to observed data are listed in Tab. 2.3.

2.3. Summary and Reference 21

System of Ordinary Differential Equations

In Eq. (2.18) we summarize the ordinary differential equations from the previous one and
reformulate them to fit the canonic form.

ω̇dmf,1 =
1

Jmot + Jdmf,1
(Mmot −Mfric,1 −Mspring) , (2.18a)

ω̇dmf,2 =
1

Jdmf,2
(Mspring −Mfric,2 −Mgb) , (2.18b)

∆ϕ̇dmf = ωdmf,1 − ωdmf,2, (2.18c)

ω̇ad =
1

Jad
(Mcs −Mfric,ad −Mtr) , (2.18d)

∆ϕ̇ad = ωgb − ωad, (2.18e)

ω̇wh =
1

Jwh
(Mss −Mfric,wh − rtyreFacc) , (2.18f)

∆ϕ̇wh = ωtr − ωwh, (2.18g)

v̇car =
1

mcar

(

1− hmc

lwb
s
) (Fstat µ(s)− Froll − Fair − Fdown) . (2.18h)

Observable Model Outputs

The following table lists outputs of the model that are fitted to observed data in order to
obtain estimates of the unknown model parameters.

Output Description Value Unit

nmot Engine speed.
(

60 s
1 min

1
2π

)

ωdmf,1 min−1

Mcs Cardan shaft torque. Mcs Nm

ncs Cardan shaft revolutions per second.
(

60 s
1 min

1
2π

)

ωgb min−1

Mss Side shaft torque. Mss Nm

nss Side shaft revolutions per second.
(

60 s
1 min

1
2π

)

ωtr min−1

vwh Rear wheel velocity.
(

3600 s
1000 m

)

rtyre ωwh
km/h

vcar Car velocity.
(

3600 s
1000 m

)

vcar
km/h

acar Car acceleration. v̇car
m/s2

Tab. 2.3: List of observable model outputs.

ωdmf,2ωdmf,1

Jmot cdmf ,
ddmf

ddmf,2

ddmf,1

Jdmf,2 Jdmf,1

igb:1

ωgb

ccs,
dcs

Jad

ωad

itr:1

ωtr

css,
dss

ωwh

dwh Jwh

∆ϕad ∆ϕdmf ∆ϕwh

dad

Fig. 2.5: Schematic of the powertrain model.

22 Chapter 2. The Powertrain Model

Model Parameters

Tab. 2.4 summarizes all model parameters along with their unit and a brief description. Un-
known parameters to be included in the parameter estimation problem presented in Chap-
ter 5 are marked. Crosses in parentheses indicate selected parameters which get included in
the estimation problem to improve the quality of fit although a nominal value is known. For
non-disclosure reasons, however, these values are not listed here.

Symbol Description Unit Unknown

dmot Engine block damping coefficient. Nm s/◦

Jmot Engine block moment of inertia. kg m2

ddmf DMF common damping coefficient. Nm s/◦ ×
ddmf,1 DMF primary wheel damping coefficient. Nm s/◦ ×
ddmf,2 DMF secondary wheel damping coefficient. Nm s/◦ ×
Jdmf,1 DMF primary wheel moment of inertia. kg m2 ×
Jdmf,2 DMF secondary wheel moment of inertia. kg m2 ×
k+
dmf DMF spring coefficient of resilience. Nm/◦

k−
dmf DMF spring coefficient of resilience. Nm/◦

pdmf DMF spring play. ◦
∆ϕmax DMF spring torsion’s hard limit. ◦
ηgb Gearbox efficiency. –
igb Gearbox transmission ratio. –

ccs Cardan shaft coefficient of friction. Nm/◦ ×
dcs Cardan shaft damping coefficient. Nm s/◦ ×
dad Axle drive damping coefficient. Nm s/◦ ×
Jad Axle drive damping coefficient. kg m2 ×
ηtr Axle drive transmission efficiency. –
itr Axle drive transmission ratio. –

css Side shaft coefficient of friction. Nm/◦ ×
dss Side shaft damping coefficient. Nm s/◦ ×
pss Side shaft play. ◦ ×
dwh Wheel damping coefficient. Nm s/◦ ×
Jwh Wheel moment of inertia. kg m2 ×
µroll Tire’s rolling friction coefficient. – (×)
rtyre Rear tire radius. m (×)
µmax Peak traction. – (×)
bpac Pacejka coefficient b. – (×)
cpac Pacejka coefficient c. – (×)

Acar Car’s abutting face. m2 ×
cw Car chassis drag coefficient. – (×)
hmc Mass center’s height above ground. m

lwb Rear wheelbase. m

lf Front axle’s distance to mass center. m

mcar Car mass during measurements. kg (×)
β Street’s slope. ◦
̺air Air density. kg/m3 (×)
g Unit of acceleration. m/s2

Tab. 2.4: List of model parameters sorted by power train part.

Chapter 3

Nonlinear Programming Theory and Algorithms

In this chapter we give an overview over the theory of nonlinear programming, and presents
two efficient numerical methods for the solution of constrained nonlinear problems (NLPs),
and constrained nonlinear problems of least squares.
Initially we consider a class of equality- and inequality-constrained nonlinear problems.
NLPs of the considered structure will arise from the discretization of continuous optimal
control problems using the direct multiple-shooting method (cf. Bock [6], Bock and Plitt
[7]) in Chapter 6. We present well-known local optimality conditions based on first- and
second-order derivatives of the objective and constraints. Then the sequential quadratic pro-
gramming (SQP) approach for the efficient and reliable solution of such problems is briefly
presented.
Closely related is the constrained Gauß-Newton (CGN) method for the solution of con-
strained problems of least-squares, such as those arising from parameter estimation problems
discussed in Chapter 5.

3.1 Nonlinear Programming Theory

In this section we consider a general nonlinear problem (NLP) of the form

Definition 3.1. Nonlinear Problem

min
x∈D

f(x) (3.1a)

s.t. g(x) = 0, (3.1b)

h(x) > 0, (3.1c)

where we assume f ∈ C 2(D, R), g ∈ C 2(D, Rng), and h ∈ C 2(D, Rnh). The domain D is a subset
of R

nx .

We strive to identify a point x within the domain D that minimizes the objective function f

(3.1) defined thereon. At the same time, we restrict the set of allowed points to the implicitly
defined subset of the domain D that satisfies the given equality constraints gi, i = 1, . . . , ng

(3.1a), and inequality constraints hi, i = 1, . . . , nh (3.1b).

A Note about Derivatives

Throughout this chapter, we consider all vector values to be column vectors unless otherwise
noted. For some vector valued function f(x) we denote with ∇xf(x) the Jacobian of first
partial derivatives with respect to the vector argument x,

∇xf(x) :=

[

∂fi

∂xj

]

ij

,
i = 1, . . . , nf ,

j = 1, . . . , nx.

Columns of this Jacobian hold the partial derivative of f with respect to the scalar component
xj of the argument x. Row vectors of this Jacobian contain gradients ∇xfi(x) of the scalar
functions fi. Consequentially, gradients of scalar functions are also considered to be row
vectors.

24 Chapter 3. Nonlinear Programming Theory and Algorithms

3.1.1 Feasibility and Optimality

In order to verify that a candidate point x ∈ D is a minimizer of problem (3.1a), a local
characterization of the nearby feasible points is required.

Definition 3.2. Feasible Point, Feasible Set

A point x ∈ D is called a feasible point iff the constraints (3.1a, 3.1b) are fulfilled. The set of all
feasible points is referred to as the feasible set F ,

F :=
{

x ∈ D | g(x) = 0 ∧ h(x) > 0
}

⊆ R
nx . (3.2)

Definition 3.3. Local and Global Minimizer

A feasible point x ∈ F is a local minimizer of the problem (3.1a) iff there exists an open ball
Bε(x) ⊆ R

nx with ε > 0 such that

∀x̃ ∈ Bε(x) ∩ F : f(x) 6 f(x̃). (3.3)

The point x is a strict local minimizer iff the inequality is strictly fulfilled for all x̃ 6= x. A local
minimizer with the smallest objective function value is referred to as a global minimizer of (3.1a).

3.1.2 Constraints

Definition 3.4. Active Constraint, Active Set

An inequality constraint is called active in a feasible point x ∈ F if equality holds, otherwise it is
called inactive. The active set A(x) is the set of all indices of constraints active in the point x,

A(x) :=
{

i | hi(x) = 0
}

⊆
{

1, . . . , nh

}

, x ∈ F . (3.4)

Further, let h̃(x) be the restriction of the inequality constraint vector h to the ñh(x) inequality
constraints active in the point x,

h̃(x) :=
(

hi(x)
)

, i ∈ A(x). (3.5)

When we are searching for a local minimizer, feasibility of the iterates can in general only be
maintained by moving along a nonlinear path in R

nx . Consider such a path α, parametrized
by a scalar θ, and starting in a feasible point α(0) = x. Further, denote it’s tangent direction
in θ = 0 by p ∈ R

nx . We can observe that for the path to remain feasible for some small θ > 0,
the direction p must at least fall into the null-space of the equality- and active inequality
constraint Jacobians ∇xg(x) and ∇xĥ(x) (cf. Leineweber [38]).

Definition 3.5. Constraint Qualification

First order constraint qualification holds in a feasible point x ∈ F if for every non-zero vector
p ∈ R

nx satisfying

∇xg(x) p = 0, (3.6a)

∇xĥ(x) p > 0, (3.6b)

there exists a feasible C 1 arc α(θ) with α(0) = x and dα
dθ

(0) = p.

For linear constraints g, h, constraint qualification always holds, i.e., the feasible arc always
exists for the required directions p (3.6). For nonlinear constraints, the conditions (3.6) are
necessary, though not sufficient. The following theorem provides a practical sufficient test for
constraint qualification.

Theorem 3.6. Linear Independence Constraint Qualification Condition

Constraint qualification holds in a feasible point x ∈ F if the following linear independence con-

straint qualification condition is satisfied,

rank

[∇xg(x)

∇xh̃(x)

]

= ng + ñh(x). (3.7)

3.1. Nonlinear Programming Theory 25

Definition 3.7. Regular Point

A regular point is a feasible point x ∈ F in which the linear independence constraint qualification
condition (3.7) holds.

Consequentially, there may exist non-regular points satisfying constraint qualification, but not
the sufficient condition (3.7). In practical problems, however, condition (3.7) will frequently
be fulfilled (cf. Leineweber [38]).

3.1.3 Necessary Conditions for Optimality

The Lagrangian1 function of problem (3.1a) plays a central role in the characterization of opti-
mal solutions; its definition is given below.

Definition 3.8. Lagrangian Function

The Lagrangian function L belonging to problem (3.1a) is defined as

L(x,λ,µ) := f(x)− λTg(x)− µTh(x). (3.8)

The vectors λ ∈ R
ng and µ ∈ R

nh are called Lagrange multipliers.

The derivative of L with respect to the unknown x is easily computed as

∇xL(x,λ,µ) = ∇xf(x)− λT∇xg(x)− µT∇xh(x). (3.9)

The well-known first-order Karush-Kuhn-Tucker conditions for the local optimality of a re-
gular point have first been derived by Karush [32], and independently by Kuhn and Tucker
[36], and contain a generalization of Lagrange’s multiplier rule (see, e.g., Königsberger [34]).

Theorem 3.9. Karush-Kuhn-Tucker Necessary Condition (Stationarity Condition)

In a local minimizer x∗ of problem (3.1a) there exist unique Lagrange multipliers (λ∗,µ∗) solving the
stationarity conditions

∇xL(x∗,λ∗,µ∗) = 0, (3.10a)

µ∗
> 0, (3.10b)

µ∗T
h(x∗) = 0, (complementarity) (3.10c)

g(x∗) = 0, (feasibility) (3.10d)

h(x∗) > 0. (feasibility) (3.10e)

Proof. Proofs may be found in any standard textbook on numerical optimization (see, e.g.,
Nocedal and Wright [43]).

In a local minimizer, by virtue of condition (3.10a), the objective gradient ∇xf is a linear com-
bination of the constraint gradients ∇xg and ∇xh. Lagrange multipliers of active inequality
constraints must be non-negative (3.10b), while the complementarity condition (3.10c) assigns
zero multipliers to inactive constraints.

Definition 3.10. Karush-Kuhn-Tucker Point

A triplet (x∗,λ∗,µ∗) satisfying the Karush-Kuhn-Tucker first-order necessary conditions of Theo-
rem 3.9 is called a Karush-Kuhn-Tucker point (short KKT point).

Definition 3.11. Stationary Point

A regular point x ∈ F satisfying the Karush-Kuhn-Tucker first-order necessary conditions of Theo-
rem 3.9 (i.e. a regular KKT point) is referred to as a stationary point x∗ of problem (3.1a).

1 Joseph Louis Lagrange (1763–1813)

26 Chapter 3. Nonlinear Programming Theory and Algorithms

3.1.4 A Sufficient Condition for Optimality

The KKT point defined in the previous section is a possible candidate for a local minimum of
the nonlinear problem (3.1a). Many NLP methods thus attempt to converge to a KKT point,
that mandates additional validation after convergence. In order to verify that the resulting
point actually is a minimizer, further conditions like the second-order sufficient condition
presented below need to be satisfied.

Definition 3.12. Strictly Active Constraints

An active constraint hi is said to be strictly active if the associated Lagrange multiplier µi is positive.
The set of strictly active constraints is denoted by

Ã(x) :=
{

i | hi(x) = 0 ∧ µi > 0
}

⊆ A(x), x ∈ F . (3.11)

Theorem 3.13. Second-Order Sufficient Condition

A sufficient condition for the point x∗ to be a local minimizer of problem (3.1a) is that there exists a
KKT point (x∗,λ∗,µ∗) such that for every non-zero direction p ∈ R

nx satisfying

∇xg(x∗) p = 0, (3.12a)

∇xhi(x
∗) p = 0, i ∈ Ã(x∗), (3.12b)

∇xhi(x
∗) p > 0, i ∈ A(x∗) \ Ã(x∗), (3.12c)

it follows that
pT∇2

xL(x∗,λ∗,µ∗) p > 0. (3.13)

We refer to Leineweber [38] for a detailed motivation of this condition, as well as a slightly
stricter variant guaranteeing uniqueness of the Lagrange multipliers.

3.1.5 Stability of a Solution

Definition 3.14. Strict Complementarity

We say that strict complementarity holds in a Karush-Kuhn-Tucker point (x∗,λ∗,µ∗) iff any active
inequality constraint is strictly active,

A(x∗) = Ã(x∗), (3.14)

or equally

∀i ∈ {1, . . . , nh} :
(

hi(x
∗) = 0 ∧ µi > 0

)

∨
(

hi(x
∗) > 0 ∧ µi = 0

)

. (3.15)

If strict complementarity holds (3.14) in a minimum x∗, it can be shown that the solution is
stable against small deviations of the problem. This is vitally important for the validity of
numerically computed minima, since small deviations due to precision and round-off errors
acting as perturbations to the original nonlinear problem are inevitable. In this section we
mention the main stability theorem, a proof of which can be found in Bock [6].

Theorem 3.15. Stability of the Solution

Consider the disturbed problem

min
x∈D

f̃(x; ε) (3.16a)

s.t. g̃(x; ε) = 0, (3.16b)

h̃(x; ε) > 0, (3.16c)

the argument ε > 0 being a disturbation parameter. For ε = 0 the disturbed problem shall coincide
with the original problem (3.1a).

If for a Karush-Kuhn-Tucker point (x∗,λ∗,µ∗)

3.2. Sequential Quadratic Programming 27

1. the second-order sufficient condition (3.12) is satisfied,

2. constraint qualification holds, e.g., the linear independence constraint qualification condition
(3.7) is satisfied,

3. strict complementarity (3.14) holds,

then there exists an open ball V ⊂ R of 0 and an open ballW ⊂ R
nx × R

ng × R
nh of the KKT point

(x∗,λ∗,µ∗) as well as a C 1 mapping ϕ from V toW such that

1. ϕ(ε) =
(

x(ε),λ(ε),µ(ε)
)

is the only KKT point of the disturbed system withinW ,

2. the disturbed system has a strict local minimum in x(ε),

3. the set of active inequality constraints A
(

x(ε)
)

is fixed on the whole of V .

Proof. See Bock [6].

3.2 Sequential Quadratic Programming

The basic principle of sequential methods for the solution of the nonlinear problem (3.1a)
is that of replacing it by a sequence of sub-problems related to the original one. When
locating extremal points, the simplest imaginable sub-problem would be a local quadratic
representation of the original nonlinear problem. Linear representations are inappropriate
since their boundedness cannot be guaranteed.
From the solution of the subproblems one obtains a step towards the minimizer of the local
subproblem. Here it is important for the step to remain in a region of the search space
where the local subproblem can be trusted to satisfactorily approximate the original nonlinear
problem. Ensuring this is the domain of trust-region and line-search methods (cf. Nocedal
and Wright [43]). If, in general, it is possible to ensure that significant progress can be made
in every step, one may obtain a globally convergent method that eventually ends up in a local
solution of the original problem regardless of the choice of the initializer x(0).

3.2.1 Fundamental Idea

SQP methods for the solution of (3.1a) are based on the optimality criteria presented in the
first section of this chapter. From Theorem 3.9 it becomes clear that the optimality of a point
x in the search space D ⊆ R

nx depends on the Lagrangian function L(x,λ,µ) rather than
on the NLP’s objective function f itself. It is therefore straightforward to obtain a local sub-
problem P from a quadratic approximation of the Lagrangian, for example by collecting the
first three terms of the Taylor series of L in the point (x,λ,µ).

P (x + ∆x,λ,µ) = L +∇xL∆x + 1
2∆xT∇2

xL∆x. (3.17)

To obtain the step ∆x we minimize the model P . Omitting the constant term L, and observ-
ing that ∇xL∆x = ∇xf∆x for strict complementarity and directions ∆x in the null-space
of the equality and active inequality constraint Jacobian, we arrive at the simpler model

P (x + ∆x,λ,µ) = ∇xf∆x + 1
2∆xT∇2

xL∆x. (3.18)

In general, a stationary point x∗ of the Lagrangian is only a minimizer on that null-space,
as seen from the second-order sufficient condition of Theorem 3.13. This suggests to im-
pose linear constraints on the quadratic sub-problem (cf. Leineweber [38]). Together with
the derived objective, we obtain a linearly constrained quadratic program (LCQP) from the
quadratic approximation of problem (3.1a) around the current iterate.

28 Chapter 3. Nonlinear Programming Theory and Algorithms

Definition 3.16. Linearly Constrained Quadratic Sub-Problem

min
∆x

∇xf(x)∆x + 1
2∆xT∇2

xL(x,λ,µ)∆x (3.19a)

s.t. g(x) +∇xg(x)∆x = 0, (3.19b)

h(x) +∇xh(x)∆x > 0. (3.19c)

Recall now the first-order necessary Karush-Kuhn-Tucker conditions from Theorem 3.9. Ap-
plying them to the LCQP yields

∇xf(x) + 1
2∇2

xL(x,λ,µ)∆x−∆λT∇xg(x)−∆µT∇xh(x) = 0, (3.20a)

∆µ > 0, (3.20b)

∆µT
(

h(x) +∇xh(x)∆x
)

= 0, (3.20c)

g(x) +∇xg(x)∆x = 0, (3.20d)

h(x) +∇xh(x)∆x > 0. (3.20e)

Implying convergence of the sequential algorithm we look at the limiting case ∆x → 0. If
∆x∗ = 0 is a solution of the LCQP, then there exist Lagrange multipliers ∆λ∗ and ∆µ∗

such that (∆x∗,∆λ∗,∆µ∗) is a KKT point of the LCQP. It immediately follows that (x,λ,µ)

must be a KKT point of the original problem, and that the Lagrange multipliers match. From
Eq. (3.20a) it is clear that we would not see this benefit if we had not replaced the Lagrangian
gradient by the objective gradient before.

3.2.2 A Basic SQP Method

The described idea gives rise to the following very basic SQP algorithm 3.1.

Algorithm 3.1 A basic sequential quadratic programming (SQP) method.

Input: Objective and constraint functions f , g, and h, iterate
(

x(0),λ(0),µ(0)
)

, tolerance TOL.
Output: Approximation x∗ to a local minimum of the NLP, satisfying the tolerance TOL.

Set k := 0.

repeat

Evaluate the functions
f(x(k)), g(x(k)), h(x(k)),

and their gradients
∇xf(x(k)), ∇xg(x(k)), ∇xh(x(k)).

Evaluate the Lagrangian’s Hessian ∇2
xL, or a suitable approximation (cf. Section 3.2.3).

Solve the linearly constrained quadratic program (3.19a) at the current iterate
(

x(k),λ(k),µ(k)
)

, to obtain a step ∆x and Lagrangian multipliers ∆λ, ∆µ.

Determine a step length α(k) ∈ (0, 1] ⊂ R using, e.g., a line search method (cf. Sec-
tion 3.2.3).

Perform the step

x(k+1) := x(k) + α(k)
∆x,

λ(k+1) := λ(k) + α(k)
(

∆λ− λ(k)
)

,

µ(k+1) := µ(k) + α(k)
(

∆µ− µ(k)
)

.

Set k := k + 1

Evaluate a given convergence criterion using the tolerance TOL (cf. Section 3.2.3).

until the convergence criterion is met.

Terminate with x∗ := x(k) as the solution.

3.2. Sequential Quadratic Programming 29

The proof of locally quadratic convergence is by analogy to Newton’s method, and can be
found in, e.g., Nocedal and Wright [43] or Leineweber [38].

3.2.3 Details and Improvements

Obviously the above algorithm leaves much room for details to be specified, and improve-
ments to be made. We refer to Nocedal and Wright [43] for a thorough discussion that is
beyond the scope of this thesis, and just briefly mention some crucial points here.

Solving the Quadratic Subproblem

We haven’t yet made any comment about how to actually solve the linearly constrained
quadratic subproblem (LCQP) to obtain the step and new Lagrangian multipliers. Vari-
ous quadratic program (QP) solving methods for general inequality-constrained QPs may be
found in the literature. Amongst them are primal active-set methods (Gill and Murray [23]),
dual active-set methods (Goldfarb and Idnani [24]), and interior-point methods. Special-
ized methods benefiting from restrictions on the class of treated QPs, such as unconstrained,
equality-constrained, or convex QPs, are available (Nocedal and Wright [43]). We refer to
Leineweber [38] for details on the QP solvers available in the optimal control software pack-
age MUSCOD-II.

Determining a Step Length

Line search strategies for the decision on a suitable step length α(k) are, e.g., based on the
Armijo-Wolfe or Armijo-Goldstein (3.21) criteria,

f (k) + (1− c)α(k)∇T
xf (k)

∆x(k)
6 f(x(k) + α(k)

∆x(k)) 6 f (k) + cα(k)∇T
xf (k)

∆x(k), (3.21)

where f (k) := f(x(k)) and c ∈ (0, 1
2). Satisfying these conditions ensures that the resulting

step α(k)
∆x(k) leads to sufficient decrease of the objective function, while preventing the step

length from getting too small. Many related approaches may be found in the literature. The
condition ensuring sufficient progress may be dropped in favor of a back-tracking line search
method. Curvature information from second-order derivatives may be evaluated to avoid
convergence to non-minimizing stationary points. Interpolation approaches may be used to
reduce the computational cost of evaluating the objective f and its gradient. In addition,
derivative-free line search methods exist. Nocedal and Wright [43] discuss these points to
some detail, and present algorithms.
Line search methods may be employed to globalize the convergence of an otherwise locally
convergent method. Han [28] proved global convergence of the variable metric approach
(Han [27], Leineweber [38]) in conjunction with a special ℓ1 penalty function.

Testing for Convergence

Ideally, an iterate x(k) constituting a solution of problem (3.1a) will satisfy the necessary
Karush-Kuhn-Tucker conditions (3.9). Namely, the iterate will be feasible, and the objective
gradient will be zero.
A suitable termination criterion for the above algorithm pays respect to these properties. For
example, one might test for a norm

∣

∣

∣

∣∇xf(x(k))
∣

∣

∣

∣ of the objective’s gradient, and a norm of
the infeasibility of the current iterate, e.g.,

ng
∑

i=1

∣

∣

∣λ
(k)
i gi(x

(k))
∣

∣

∣+

nh
∑

i=1

∣

∣

∣µ
(k)
i hi(x

(k))
∣

∣

∣ ,

to fall beyond a prescribed tolerance in order to consider an iterate x(k) to be an acceptable
approximate of the solution.

30 Chapter 3. Nonlinear Programming Theory and Algorithms

Shortcomings

In this original version developed by Wilson [60] the presented method suffers from several
shortcomings (Leineweber [38]):

1. The exact Hessian of (3.1a) may become indefinite, which immensely complicates solv-
ing the then non-convex quadratic sub-problems.

2. The exact Hessian turns out to be largely irrelevant for the computation of a good search
direction if the Lagrange multipliers are far off those of the real solution.

Most of these shortcomings may be overcome by the variable metric approach (see Leinewe-
ber [38] for details). A proof of locally q-superlinear convergence was established by Han [27].
A first successful implementation of an SQP method based on these ideas was presented by
Powell [49].

3.3 The Constrained Gauß-Newton Method

The Gauß-Newton2 method for the solution of unconstrained least-squares problems is clas-
sical, and dates back to the work of J.C.F. Gauß (Theoria motus corporum coelestium, 1809).
First successful implementations date back to Levenberg [39], later rediscovered by Mar-
quardt [41]. In this section we briefly present an efficient algorithm for the solution of the
discretized parameter estimation problem of Chapter 5, namely a generalization of the Gauß-
Newton method to constrained least-squares problems that is due to Bock [6] and Schlöder
[52] .

3.3.1 Fundamental Idea

Given a vectorial objective f(x) mapping unknowns x ∈ R
nx to residuals f ∈ R

nf we con-
sider the general constrained nonlinear problem of least squares (3.22a). Observe that the
discretized parameter estimation problem derived in Chapter 5 fits into this framework.

Definition 3.17. Nonlinear Constrained Least-Squares Problem

min
x∈D

1
2 ||f(x)||22 (3.22a)

s.t. g(x) = 0, (3.22b)

h(x) > 0. (3.22c)

We assume f , g, and h to be C 2 functions over the domain D ⊆ R
nx .

Applying the Karush-Kuhn-Tucker first-order necessary conditions of Theorem 3.9 to this
problem we find that a stationary point x∗ ∈ F satisfies

∇xf(x)Tf(x)− λT∇xg(x)− µT∇xh(x) = 0,

µ∗T
h(x∗) = 0.

Consider on the other hand the linearized constrained least-squares problem that results from
the linearization of problem (3.22a) around the point x ∈ D.

Definition 3.18. Linearized Constrained Least-Squares Problem

min
∆x

||f(x) +∇xf(x)∆x||22 (3.23a)

s.t. g(x) +∇xg(x)∆x = 0, (3.23b)

h(x) +∇xh(x)∆x > 0, (3.23c)

2 Johann Carl Friedrich Gauß (1777–1855), Isaac Newton (1643–1727)

3.3. The Constrained Gauß-Newton Method 31

Stationary points of this linearized problem satisfy

∇xf(x)T
(

f(x) +∇xf(x)∆x
)

− λT∇xg(x)− µT∇xh(x) = 0,

µ∗T
(

h(x) +∇xh(x)∆x
)

= 0.

and it is easily seen that a stationary point (0,λ∗,µ∗) of the linearized system is a stationary
point (x∗,λ∗,µ∗) of the original system. This observation closely resembles the one made to
derive the sequential quadratic programming (SQP) framework. Hence, with minor modi-
fications in place, the basic SQP algorithm presented earlier in this chapter may also serve
to solve nonlinear least-squares problems. From the specialized objective function the Hes-
sian approximate ∇xfT∇xf is derived to replace the Lagrangian’s Hessian ∇2

xL, and the
constrained linear least-squares problem takes the place of the quadratic sub-problem.

3.3.2 Solving the Linearized System

It remains to be discussed how to solve the linearized constrained problem (3.23a) in order
to obtain the step ∆x. From Theorem 3.15 we find that the convergence behavior of the
constrained Gauß-Newton (CGN) method actually depends on the equality constraints and
the active inequality constraints only. The latter may thus be viewed as additional equality
constraints when discussing the local convergence behavior of this method. The domain D
needs to be restricted to D ∩W (see the stability Theorem 3.15) to guarantee that no changes
in the active set occur.

Definition 3.19. Linearized Equality-Constrained Least-Squares Problem

min
x∈D∩W

||f(x) +∇xf(x)∆x||22 (3.24a)

s.t. g(x) +∇xg(x)∆x = 0. (3.24b)

Theorem 3.20. Existence of a Generalized Inverse (Bock [6])
Consider the linearized equality-constrained least-squares problem (3.24a). We assume that constraint
qualification holds (e.g., in a regular point), and that the Hessian approximate

∇xf(x)
T∇xf(x) (3.25)

is positive definite on the null-space of ∇xg(x). Then the solution of (3.24a) may be obtained by way
of a generalized inverse:

1. For any value
[

fT gT
]T

∈ R
nf +ng there exists exactly one KKT-point (∆x∗,∆λ∗) of problem

(3.24a). Further, ∆x∗ is a strict local minimum.

2. There exists a linear mapping
J+ : R

nf +ng −→ R
nx (3.26)

such that
∆x := −J+f (3.27)

is the solution of (3.24a) for any value
[

fT gT
]T

.

3. The solution operator J+ is a generalized inverse, satisfying the defining relationship

J+JJ+ = J+. (3.28)

The representability of the linearized problem’s solutions by way of the operator J+ allows
for a generalized treatment of nonlinear problems as well as constrained and unconstrained
least-squares problems. The operator J+ also holds valuable statistical information, as de-
scribed in Section 5.2.

A proof of locally linear convergence as well as an extensive description of effective global-
ization strategies can be found in Bock [6].

32 Chapter 3. Nonlinear Programming Theory and Algorithms

3.3.3 The Levenberg-Marquardt Method

The option to confine the Gauß-Newton step ∆x to a spherical trust-region is given by the
Levenberg-Marquardt modification to the CGN method (cf. Levenberg [39] and Marquardt
[41]). It avoids the weak behavior of the Gauß-Newton method on singular Jacobians ∇xf(x)

by adding a regularizing term λI to the Hessian approximation.

This modification may be viewed as a trust-region approach by virtue of the following lemma.

Lemma 3.21. The vector ∆x is a solution for the trust-region sub-problem

min
∆x

||f(x) +∇xf(x)∆x||22 (3.29a)

s.t. ||∆x||2 6 ∆, (3.29b)

for some ∆ > 0 iff there is a scalar λ > 0 such that

(

∇xf(x)
T∇xf(x) + λI

)

∆x = −∇xf(x)
T
f(x), (3.30a)

λ
(

∆− ||∆x||2
)

= 0. (3.30b)

(3.30c)

Proof. See Nocedal and Wright [43].

Both Levenberg [39] and Marquardt [41] did not view their method as a trust-region approach
but directly selected the multiplier λ according to some heuristic, similar to trust-region
heuristics for the adjustment of the trust-region radius ∆. We refer to Nocedal and Wright
[43] for a discussion on how to find the scalar λ if given a trust-region radius ∆ determined
by such a heuristic.

Ellipsoidal trust-regions, with principal axes lengths matching the scale of the correspond-
ing variables reduce effects generated by poorly scaled least-squares problems. These can
be generated by replacing the identity I with a diagonal matrix D with positive entries.
Nocedal and Wright [43] suggest choosing the diagonal elements of the respective Hessian
approximate.

Chapter 4

A Continuous Runge-Kutta Method Handling

Implicit Switches

In this chapter we describe a continuous extension to the explicit Runge-Kutta method for
the integration of non-stiff ODE systems. The method will support an event detection facility
that allows for the treatment of implicitly defined switches of the model functions, i.e., jumps
in the system’s differential states or discontinuities of the right-hand side. An important
advantage of this approach over the realization of explicit switches using model stages in
MUSCOD-II [12, 38] is the fact that neither the number of actually occurring switches, nor
their order in time need to be known in advance.
We saw in Chapter 1 that the ability to handle discontinuities exactly is crucial for the proper
implementation of the powertrain model. In addition, it gives us considerable additional
freedom in the choice of optimal control scenarios, as will be discussed in Chapter 6.
Named RKFSWT (Runge-Kutta-Fehlberg with switches), an implementation of the described
method is now available in the optimal control software package MUSCOD-II.

4.1 Runge-Kutta Methods

We start this chapter with a brief presentation of Runge-Kutta schemes as specialized one-
step methods for the numerical solution of a non-stiff initial-value problem (IVP) of the form

Definition 4.1. Initial-Value Problem

dy

dt
(t) = f

(

t,y(t)
)

, t ∈ T (4.1a)

y(t0) = y0, (4.1b)

on the time horizon T := [t0, tf] ⊂ R. We assume f to be Lipschitz continuous on T × R
ny ,

thus ensuring existence, uniqueness, and continuous differentiability of the IVP’s solution
y(t) on T .

4.1.1 Definition of Runge-Kutta Methods

Definition 4.2. One-Step Method

A one-step method for the solution of the initial-value problem (4.1) is given by a function Φ de-
pending on (t, h, y, f). Starting in t(0) := t0 with the given initial value η(0) := y0 and using the
iteration scheme

η(k+1) := η(k) + h(k)
Φ

(

t(k), h(k), η(k), f
)

, (4.2a)

t(k+1) := t(k) + h(k), (4.2b)

the function Φ creates a sequence of approximations η(k) to the exact solutions y(t(k)) of (4.1) on the
discretization grid defined by the step lengths h(k).

34 Chapter 4. A Continuous Runge-Kutta Method Handling Implicit Switches

Within this framework, Runge-Kutta methods, first described by Runge [51] and Kutta [37],
are one-step methods with a generating function Φ of the following special structure.

Definition 4.3. Runge-Kutta Method

A Runge-Kutta method with s ∈ N stages is a one-step method with a generating function Φ

depending on (t, h,y,f) which is defined by coefficients c ∈ R
s and ki ∈ R

s, i = 1, . . . , s as follows.

Φ(t, h,y,f) :=

s
∑

i=1

ciki, (4.3)

where the vectors ki are implicitly defined by

ki = f
(

t + αih,y + h

s
∑

j=1

Bijkj

)

, (4.4)

using suitable coefficients α ∈ R
s and B ∈M(s× s, R).

For general matrices B, Eq. (4.4) yields an implicit definition of the vectors ki, whose compu-
tations thus require the solution of a system of nonlinear equations. A Runge-Kutta method is
said to be of the explicit type if the rows of B can be reordered to form a lower triangular ma-
trix of rank s− 1. This allows for iterative direct computation of the values ki. The method’s
coefficients are commonly given in the form of a so-called Butcher tableau (cf. Butcher [10]).
Fig. 4.1 shows Butcher tableaux of two embedded Runge-Kutta-Fehlberg methods.

0
3
8

3
8

9
16 0 9

16
25
32 − 125

672
325
336 0

1 371
891 − 200

297
1120
891 0

37
225

44
117 0 448

975
25
162

32
135

256
567 0 11

70

(a) Nørsett’s 4th-order method RKN3(4).

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 − 7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40
25
216 0 1408

2565
2197
4104 − 1

5
16
135 0 6656

12825
28561
56430 − 9

50
2
55

(b) Fehlberg’s popular method of 5th order, RKF4(5).

Fig. 4.1: Butcher tableaux of two embedded Runge-Kutta methods of Fehlberg type.

4.2 Convergence and Error Control

In this section we look at the approximation errors incurred by Runge-Kutta methods, and
present an overview over approaches for controlling these approximation errors by varying
the method’s step size h(k).

4.2.1 Errors

Definition 4.4. Errors of a One-Step Method

Let Φ be a one-step method, and let y(t) denote the exact solution of an IVP on T ⊂ R. Then the local
discretization error or consistency error τ of step (k) is defined as

τ (k)
(

t(k), h(k),y(k),f
)

:=
y(t(k+1))− y(t(k))

h(k)
−Φ

(

t(k), h(k),y(k),f
)

(4.5)

and the local error σ is defined as

σ(k)
(

t(k), h(k),y(k),f
)

:= h(k) τ (k)
(

t(k), h(k),y(k),f
)

. (4.6)

4.2. Convergence and Error Control 35

The global error ε is

ε(k)
(

t(k), h(k),y(k),f
)

:= η(k+1) − y(t(k+1)). (4.7)

The consistency error τ (k) measures the deviation of the approximated secant from the exact
one, while the local error σ(k) represents the accumulated secant error over the single step
(k). The global error ε(k) also accumulates local errors from all previous steps (0), . . . , (k−1).

4.2.2 Establishing Convergence

Definition 4.5. Consistency of a One-Step Method

A one-step method Φ is called a consistent method iff

lim
h→0

τ(h) = 0, τ(h) := sup
t∈T
||τ (t, h,y,f)|| . (4.8)

A consistent one-step method is said to have a consistency order of p > 1 iff

τ(h) = O(hp), or equivalently σ(h) := sup
t∈T
||σ (t, h,y,f)|| = O(hp+1).

Definition 4.6. Convergence of a One-Step Method

A one-step method Φ is convergent iff

lim
h→0

ε(h) = 0, ε(h) := sup
t∈T
||ε (t, h,y,f)|| (4.9)

and if so, it is said to have a convergence order of p > 1 iff

ε(h) = O(hp).

Definition 4.7. Stability of a One-Step Method

A one-step method Φ is stable iff there exists 0 6 κ <∞ such that

ε(h) 6 κ τ(h).

The convergence order of a one-step method often is simply referred to as “the order” of
the method. Butcher [10] showed that there is no upper limit to the order of constructible
Runge-Kutta methods. The number of stages required to obtain such methods, however,
grows much faster than the order itself, cf. Tab. 4.1 on page 46.

Concerning the behavior of Runge-Kutta methods in this context, proofs of the following
claims that establish the stability of Runge-Kutta methods under mild assumptions can be
found in all standard textbooks on numerical treatment of ODEs, e.g., Stoer and Bulirsch
[56], Press et al. [50].

Lemma 4.8. Lipschitz Continuity of a Runge-Kutta Method

If the right-hand side f of the IVP (4.1) is Lipschitz continuous, then every Runge-Kutta method Φ

(4.3) applied to (4.1) is also Lipschitz continuous.

Lemma 4.9. Consistency of a Runge-Kutta Method

A Runge-Kutta method is consistent iff
s
∑

i=1

ci = 1.

Proposition 4.10. Convergence of a One-Step Method

A Lipschitz-continuous one-step method Φ is stable. It is convergent if it is also consistent, and its
convergence order equals its consistency order.

36 Chapter 4. A Continuous Runge-Kutta Method Handling Implicit Switches

4.2.3 Variable-Step Methods

All modern methods vary the size of the integrator steps h(k) in order to satisfy a certain
prescribed error tolerance TOL. Given an asymptotically correct estimate est of the local
error σ(k) (4.6)

est := y(t(k) + h(k))− η(k+1) +O
(

(h(k))p+1
)

, (4.10)

p being the order of the method, we desire to choose h(k) such that the error estimate ||est||
stays beyond a prescribed tolerance TOL. It is important to chose a suitable norm here, e.g.,
an ℓ∞ norm of the scaled state vector

||est||S,∞ := max
i=1,...,ny

∣

∣

∣

∣

esti

si

∣

∣

∣

∣

.

Obviously the quality of the error estimate is of vital importance to the performance of the
method. Careless overestimation of the local error will lead to unnecessarily small step sizes
wasting computation time, while underestimating the local error hurts the precision and
validity of the computed approximation to the solution of the IVP.
In the literature one may find several estimates of the local error, and we give a brief overview
along the lines of Enright et al. [20].

1. Local error per unit step;
(Fehlberg [21], MUSCOD-II [38])

This is the classical concept devised by Fehlberg. Using two related Runge-Kutta meth-
ods Φ

[p] and Φ
[p+1] of orders p and p+1 respectively, we compute two steps to the new

approximation

∆
[p] := h(k) ·Φ[p](t(k), h(k),η(k),f), (4.11a)

∆
[p+1] := h(k) ·Φ[p+1](t(k), h(k),η(k),f), (4.11b)

and advance with the lower-order step. Using the difference to the higher order step as
an estimate that is asymptotically correct for the lower-order method,

est := ∆
[p+1] −∆

[p], (4.12)

we choose h(k) to satisfy
||est|| 6 h(k) · TOL. (4.13)

2. Local error per unit step, combined with extrapolation;
(Dormand and Prince [15, 16], Shampine [53])

Most commonly used, this approach maintains two Runge-Kutta methods of orders p

and p− 1. Again using the difference to the higher order step as an estimate asymptot-
ically correct for the lower-order method,

est := ∆
[p] −∆

[p−1], (4.14)

this time we advance with the higher-order step and choose h(k) to satisfy

||est|| 6 TOL. (4.15)

Both of the above strategies are most efficiently implemented with embedded Runge-
Kutta methods due to Fehlberg [21].

3. Defect control;

This approach suits continuous Runge-Kutta methods such as those discussed in Sec-
tion 4.5, which have a continuous representation ̺(t) of the approximate solution avail-
able on the time slice [t(k), t(k) + h(k)].

4.2. Convergence and Error Control 37

We effectively require the interpolant to obey a local approximation of order p + 1 for
a method of order p and obtain an asymptotically correct error estimate in the spirit of
the first strategy.

With any of the above strategies, for strict tolerances TOL the controlled step size h may
become very small. Large time intervals [t0, tf] may thus require an excessively high number
of integration steps to be computed. Implementations should therefore introduce an upper
limit to the number of integration steps and trigger an error condition should this limit be
exceeded.

4.2.4 Area of Stability

Stability analysis for one-step methods is carried out on the linear test system

dy

dt
(t) = A · y(t), t ∈ T , (4.16a)

y(t0) = y0. (4.16b)

Assuming A ∈M(n, R) to be non-singular there exist non-singular matrices S,T such that

A = S · diag(λ1, . . . , λn) · T−1, (4.17)

where λi ∈ C, i = 1, . . . , n are the eigenvalues of A. The test system has a stable fixed point
in y = 0 iff all eigenvalues are found in the negative real half of the complex plane C, i.e.,
ℜλi < 0. A stiff ODE system is characterized by eigenvalues with widely differing absolute
values. Such systems frequently are impossible to solve with an explicit solver such as explicit
Runge-Kutta methods, or require excessively many small steps to be computed.
The area A of stability for a one-step method Φ is the set of step sizes h and eigenvalues λ

for which the fixed point is stable under the approximation scheme Φ,

η(k+1) := η(k) + h ·Φ(t(k), h,η(k),A), and η(k) −→ 0 for k −→∞. (4.18)

This is the case whenever the approximation scheme’s eigenvalues are found within the unit
disc. Restricting ourselves to the single eigenvalue λ with largest absolute value, we are thus
interested in the one-dimensional Runge-Kutta map’s derivative, evaluated in the fixed point,

dη(k+1)

dη(k)

∣

∣

∣

∣

∣

η(k)=0

= 1 + h · dΦ

dη(k)
(h, 0, λ), (4.19)

and find
A(Φ) :=

{

(h, λ) ∈ R× C

∣

∣

∣

∣

∣1 + h · dΦ
dy

(h, 0, λ)
∣

∣ < 1
}

. (4.20)

Figure 4.2 shows the stability area of the Fehlberg method RKN3(4) and RKF4(5) in hλ space.

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

ℑ
 h

λ

ℜ hλ

-4

-3

-2

-1

 0

 1

 2

 3

 4

-4 -3 -2 -1 0 1

ℑ
 h

λ

ℜ hλ

Fig. 4.2: Areas of stability for the Runge-Kutta methods RKN3(4) (left) and RKF4(5) (right).
() and () bound the lower- and higher-order method’s area respectively.

38 Chapter 4. A Continuous Runge-Kutta Method Handling Implicit Switches

4.3 Implicitly Defined Discontinuities

For the following discussion of implicitly defined discontinuities we consider a non-stiff
initial value problem on T = [t0, tf] ⊂ R, depending on a time-constant parameter vector
p ∈ R

np and the switching function’s sign structure sgn σ. The problem’s definition is ex-
plained in the section below.

Definition 4.11. Parameter-dependent Initial Value Problem with Switches

dy

dt
(t) = f

(

t,y(t),p, sgn σ(t)
)

, t ∈ T , (4.21a)

y(t0) = y0, (4.21b)

y+(ts) = ∆j

(

ts,y-(ts),p
)

∀ts ∈ T : ∃j ∈ N : σj(ts) = 0. (4.21c)

4.3.1 Defining Switches

A discontinuity in the IVP’s right-hand side f or in its state vector y is called a switch. The
activation time ts ∈ T of switch j ∈ {1, . . . , ns} is implicitly defined by a zero-crossing of the
corresponding component of the switching function σ

σ : T × R
ny × P −→ R,

(

t,y(t),p
)

7→ σ
(

t,y(t),p
)

. (4.22)

At any time t ∈ T , the sign structure of σ uniquely identifies the activation state of any
switch. We assume σj to be a C 1 function of the time t, the states y, and the parameters p. By
virtue of the implicit function theorem, the switching point ts may be considered a function
of (t0,y0,p).

We now introduce some notations to be used when discussing implicitly defined discontinu-
ities. Imagine for a moment that only a single switch is present in the problem. The left-hand
side limit of the states at the switch time ts is called y-, while y+ is the right-hand side limit,
i.e., the new states after the switch.

y-(ts; t0,y0,p) := lim
ε→0
ε<0

y(ts + ε; t0,y0,p), (4.23)

y+(ts; y-,∆,p) := lim
ε→0
ε>0

y(ts + ε; y-,∆,p). (4.24)

We denote with ∆ the jump function of the differential states that becomes effective when
the switch is activated,

∆ : T × R
ny × P −→ R

ny ,
(

t,y-(t),p
)

7→ y+(t). (4.25)

Equivalently, for the right-hand side of the ODE system we’ll denote with f- the right-hand
side in (ts,y-,p), and with f+ the one in (ts,y+,p),

f-(ts,y-,p) := lim
ε→0
ε<0

f(ts + ε,y-,p), (4.26)

f+(ts,y+,p) := lim
ε→0
ε>0

f(ts + ε,y+,p). (4.27)

The right-hand side’s jump vector is δ,

δ(ts,y-(ts; y0,p),p) := f+(ts,y+,p)− f-(ts,y-,p). (4.28)

Note that the discontinuity in the right-hand side need not be solely due to the jump ∆ in
the states; the framework allows for δ 6= 0 even in the case of ∆ = 0, e.g., exchanging the
right-hand side function while maintaining continuity, but not differentiability, in the states.
The three possible cases are visualized in Fig. 4.3.

4.3. Implicitly Defined Discontinuities 39

t

yyyy

yyyy++++

ts tf t0

∆∆∆∆

y

(a) A full switch.

t

yyyy

yyyy++++

ts tf

∆∆∆∆

y

(b) Discontinuity in the states only.

yyyy

---- ====yyyy++++

t

y

ts tf

(c) Discontinuity in the right-hand
side only.

Fig. 4.3: Switches are discontinuities in the states and right-hand side.

4.3.2 Classification of Switches

Considering the one-sided derivatives of the switch function with respect to time

dσ−
j

dts
(ts) :=

dσj

dts
(ts, y-(ts; t0,y0,p), p), (4.29)

dσ+
j

dts
(ts) :=

dσj

dts
(ts, y+(ts; t0,y0,p), p), (4.30)

a switch event may fall into several different categories with varying difficulties in numer-
ical treatment, see Bock [6] and Brandt-Pollmann [8]. Here we list the different conditions
characterizing the respective switch types.

1. Consistent switching:

(a) ∆ = 0, no jump occurs in the differential states:

dσ−
j

dt
(ts) ·

dσ+
j

dts
(ts) > 0. (4.31)

(b) ∆ 6= 0, a jump in the differential states is present:

dσ−
j

dts
(ts) · σ+

j (ts, y+(ts; t0,y0,p), p) > 0. (4.32)

The manifold defined by σj = 0 is crossed in either direction. This is the only type of
switch we will encounter in the DaimlerChrysler powertrain model of Chapter 1.

2. Vanishing derivatives:
dσ−

j

dts
(ts) = 0 ∨

dσ+
j

dts
(ts) = 0. (4.33)

A consistent solution may exist, but its detection would require the evaluation of higher-
order derivatives of σj . This case is not handled in the presented implementation; we
stop with a suitable diagnosis message.

3. A bifurcation:
dσ−

j

dts
(ts) > 0 ∧

dσ+
j

dts
(ts) < 0. (4.34)

A solution currently on the discontinuity manifold defined by σj = 0 may leave it in
both directions. Additional reasoning is required to decide which direction to choose.
We detect this type of switching event and stop the integration with a suitable diagnosis
message.

40 Chapter 4. A Continuous Runge-Kutta Method Handling Implicit Switches

4. An inconsistent switch:

dσ−
j

dts
(ts) < 0 ∧

dσ+
j

dts
(ts) > 0. (4.35)

A solution approaching the discontinuity manifold from either direction must stay on
it as the manifold cannot be left. Brandt-Pollmann [8] describes techniques due to
Filippov [22] that may be applied to continue the integration process in this case. In
view of the application we aimed at, these techniques have not yet been implemented.
We detect inconsistent switching and stop the integration process.

t

σj

t(k) ts t
(k)+h(k)

+δ

—δ

(a) A consistent switch.

t

σj

t(k) ts t
(k)+h(k)

+δ

—δ

(b) A bifurcation.

t

σj

t(k) ts t
(k)+h(k)

+δ

—δ

(c) An inconsistent switch.

Fig. 4.4: Classification of switch events via derivatives of the switching function. () indi-
cates past or future trajectories while () represents the trajectory during the step across ts,
marked by (•). Arrows (րրր) visualize the vector field of the switching function σj .

4.3.3 Detecting Switches

The detection of implicit switches requires the model to allow for its evaluation in a suffi-
ciently large surrounding of the state space around the switching point, cf. Fig. 4.5.

S1

S2

S3

S4
yyyy(t)

t0

tf

Fig. 4.5: Schematic of the switch state space. The solution y () on [t0, t1] traverses validity
regions Si of different sub-models. Overlappings of these regions required around a switch
point (◦) are shaded ().

This makes it possible for the integrator to perform a full integration step across the switching
point, which is detected by evaluation and comparison of the sign structure of σ before and
after the step. A switch j is recognized on [t(k), t(k+1)] ⊂ T if there exists j ∈ {1, . . . , ns} such
that

sgn σj

(

t(k),y(t(k)),p
)

6= sgn σj

(

t(k+1),y(t(k+1)),p
)

.

In this case, the exact switch time ts is found by locating the zero-crossing of the scalar
switch function σj(t,y(t; t0,y0,p),p) within the interval [t(k), t(k+1)]. Since for efficiency
reasons we don’t want to repeatedly call the integrator to compute the solution y(t) for a

4.4. Sensitivity Generation 41

certain time point t within this interval, locating σj = 0 requires a continuous representation
of the solution y(t; t0,y0,p). Furthermore, since we are merely interested in sign changes,
this representation needs to be exact only in a neighborhood of the actual switching point.
Contrary to backward differentiation formula (BDF) methods discussed by Brandt-Pollmann
[8], ordinary explicit Runge-Kutta methods do not naturally provide such a representation.
This problem is resolved in Section 4.5.

Assuming a continuous representation ̺(t) of the solution y(t; t0,y0,p) to be available on
[t(k), t(k+1)], the derivative-free zero finding Algorithm 4.1 due to Brent [9], based on inverse
quadratic interpolation safeguarded by regula falsi and a bisection strategy, is employed to
find ts with sufficient accuracy. Contrary to the secant method or to Newton’s method, this
algorithm guarantees convergence. The rate of convergence usually is the best of the three
available methods.

Algorithm 4.1 Zero-Finding Algorithm due to Brent & Decker

Input: Function σj , search interval [t0, t1], tolerance τ∗, machine precision ε.
Output: Approximation t ∈ [t0, t1] to the root of σj , with |σj(t)| < τ∗.

Set σ0 ← σj(t0), σ1 ← σj(t1), t2 ← t0, σ2 ← σ0.
repeat

Set τ ← 2ε |σ1|+ τ∗

2 , h← t1 − t0, h′ ← 1
2 (t2 − t1).

if |h′| 6 τ ∨ σ1 = 0 then stop, (t1, σ1) is the approximation to the root.
if |h| > τ ∧ |σ0| > |σ1| then

if t0 = t2 then

Set p← σ1

σ0
(t2 − t1), q ← 1− σ1

σ0
.

else

Set p← σ1

σ0

(

σ0

σ2

σ0−σ1

σ2
(t2 − t1)−

(

σ1

σ2
− 1
)

(t1 − t0)
)

.

Set q ←
(

σ0

σ2
− 1
)(

σ1

σ2
− 1
)(

σ1

σ0
− 1
)

.

end if

If p
q

6
3
4 (t2 − t1)− sgn(q) τ

2 ∧
∣

∣

∣

p
q

∣

∣

∣ 6
|h|
2 then h′ ← p

q
.

Set h′ ← sgn(h′)max {|h′| , τ}.
end if

Perform the step: (t0, σ0)← (t1, σ1), t1 ← t1 + h′, σ1 ← σj(t1).
if |σ1| > |σ2| then (t1, σ1)↔ (t2, σ2).
if sgn(σ1) = sgn(σ2) then (t2, σ2)← (t0, σ0).

until —

Numerically, we treat switch function values σj(t) within a strip [−δ,+δ] ⊂ R as being zero.
Scaling of the ODE system’s states y allows for a fixed choice of δ, e.g., δ = 10−6. Equally,
our implementation necessarily supports the treatment of multiple simultaneously occurring
switches. Here we treat switch events occurring at points t1s and t2s in time as simultaneous
if
∣

∣t1s − t2s
∣

∣ 6 ε. Again, scaling of the time horizon to T = [0, 1] ⊂ R allows for the choice of a
fixed value ε as above.

4.4 Sensitivity Generation

The numerical solution of parameter estimation problems (Chapter 5) and optimal control
problems (Chapters 6 and 7) using Newton-Lagrange techniques as presented in Chapter 3

requires the availability of derivatives of the IVP’s solution with respect to unknowns, such
as initial values y0 and parameters p.

42 Chapter 4. A Continuous Runge-Kutta Method Handling Implicit Switches

4.4.1 Differentiability of the Solution

The existence of such derivatives is guaranteed by the following differentiability theorems
under mild conditions.

Theorem 4.12. Differentiability with Respect to Initial Values and Parameters

Let f be in C 0(T × R
ny , Rny) and assume the Jacobians ∇yf(t,y,p) and ∇pf(t,y,p) to exist and

be continuous and bounded thereon.

Then the solution y(t) of the IVP (4.21) is continuously differentiable on T with respect to the initial
value y0 and the parameters p.

Proof. A proof may be found in Stoer and Bulirsch [56].

Definition 4.13. Sensitivity with Respect to Initial Values and Parameters

The matrix Gy(t1; t0,y0,p) ∈ M(ny × ny, R) denotes the sensitivities of the solution y(t1) with
respect to the initial values in y0 ∈ R

ny ,

Gy(t1; t0) :=
∂y

∂y0

(t1; t0,y0,p), (4.36)

while the matrix Gp(t1; t0,y0,p) ∈ M(ny × np, R) denotes the sensitivities of the solution y(t1)

with respect to the parameters p,

Gp(t1; t0) :=
∂y

∂p
(t1; t0,y0,p). (4.37)

When unambiguous, we will specify the time interval only, and omit the implicit dependen-
cies of the sensitivity matrices on y0 and p.

Theorem 4.14. Propagation of Sensitivities

The sensitivity matrices with respect to y0 satisfy

1. Gy(tb; ta) = Gy(ta; tb)
−1 for [ta, tb] ⊆ T ,

2. Gy(tc; ta) = Gy(tc; tb) ·Gy(tb; ta) for tb ∈ [ta, tc] ⊆ T .

The sensitivity matrices with respect to p satisfy

1. Gp(tb; ta) = Gp(ta; tb)
−1 for [ta, tb] ⊆ T ,

2. Gp(tc; ta) = Gy(tc; tb) ·Gp(tb; ta) + Gp(tc; tb) for tb ∈ [ta, tc] ⊆ T .

Proof. Immediately results from standard calculus.

4.4.2 Generating Sensitivities of the Solution

For the efficient and numerically stable generation of sufficiently precise first-order deriva-
tives we make use of internal numerical differentiation (IND, Bock [4, 5]). Alternatively,
the explicit solution of variational differential equations along with the nominal trajectory
is possible. For systems with considerably more parameters than differential states, or for
system with many local parameters, the computation of adjoint sensitivities is more efficient.
Detailed presentations of both approaches can be found in Bock [6].

4.4. Sensitivity Generation 43

Internal Numerical Differentiation

The derivatives with respect to y0, and p analogously, are approximated by one-sided finite
differences

∂y

∂y0,i

(t; t0,y0,p) ≈ y(t; t0,y0 + εsie
i,p)− y(t; t0,y0,p)

ε
, (4.38)

obtained from trajectories disturbed by εsie
i integrated along with the solution. The funda-

mental principle of internal numerical differentiation (IND), as opposed to external numerical
differentiation (END), is to generate derivatives of the approximative solution by differentia-
tion of the integrator method itself. Adaptive parts of the method, such as error control and
step size selection, are evaluated for the nominal solution only and get frozen during sensi-
tivity generation (cf. Bock [4, 5, 6]). Nominal and varied trajectories are integrated simulta-
neously, using a common discretization scheme dictated by the error-controlled variable-step
size Runge-Kutta method. For each directional derivative, the ODE system grows by nx

differential states, which yields nx(nx + np) states for the full set of derivatives, if required.

Variational Differential Equations

The variational differential equations augment the ODE system by differential equations
whose unique solutions are the sensitivity matrices Gy(t; t0) and Gp(t; t0). They can be
found by differentiating the integral form of the IVP formulation with respect to y0 and p

respectively. In general, the computational load is no less than that of internal numerical
differentiation (IND).
The sensitivity matrix trajectory Gy(t; t0) is the solution of the following variational initial-
value problem

∂Gy

∂t
(t; t0,y0,p) =

∂f

∂y
(t,y,p) ·Gy(t; t0,y0,p), (4.39a)

Gy(t0; t0,y0,p) = I. (4.39b)

Analogously, the sensitivity matrix trajectory Gp(t; t0) is the solution of the following varia-
tional initial-value problem

∂Gp

∂t
(t; t0,y0,p) =

∂f

∂y
(t,y,p) ·Gp(t; t0,y0,p) +

∂f

∂p
(t,y,p), (4.39c)

Gp(t0; t0,y0,p) =
∂y0

∂p
(p). (4.39d)

Here we obtain derivatives of the solution y(t) from derivatives of the model functions
f(t,y,p) with respect to y and p. Hence, this approach lends itself to automatic differen-
tiation (cf. Griewank et al. [25]) where one provides exact symbolic derivatives of f .

4.4.3 Sensitivity Updates in Implicit Discontinuities

If discontinuities are present in the integration process, Runge-Kutta methods can cope with
this difficulty using techniques like the one described in Section 4.3. The sensitivity informa-
tion generated by the variational differential equations (4.39a, 4.39c), however, will generally
be incorrect or even totally wrong. Bock [6], Mombaur [42] show how to handle sensitivity
updates in the presence of discontinuities in both the differential states and the right-hand
side of the ODE system; Brandt-Pollmann [8] presents the extension to the DAE case.

The differentiability of the ODE system’s solution across a switching point ts can in general be
shown whenever the switching structure of the trajectory does not change in a neighborhood
of the switching point, as stated in the theorem below. This means that the order and number
of actually occurring implicit switches remains unchanged therein. Switch events must not
appear, disappear, coincide, or come to lie on the borders of the integration step interval.

44 Chapter 4. A Continuous Runge-Kutta Method Handling Implicit Switches

Theorem 4.15. Differentiability across Implicit Discontinuities (Bock [6])
Let I := [t0, t1] be an interval containing without loss of generality exactly one switching point in
ts ∈ I, which bipartitions the interval into I- := [t0, ts] and I+ := (ts, t1]. Let y(t) be a solution of the
initial-value problem (4.21). The right-hand side f , the jump function ∆ (4.25), and the switching
function σj (4.22) are assumed to be sufficiently often continuous differentiable. Further, let the
regularity conditions (4.31, 4.32) for a consistent switch event be satisfied.
Then there exists a ball B ⊂ T × R

ny × P around (ts,y(ts; y(t(k)),p),p) with y(ts; y(t(k)),p)

sufficiently smooth. All solutions of the IVP (4.21) within B have exactly one switching point.

Proof. See Bock [6].

We now show the derivation of these first-order sensitivity updates. Consider an integrator
step from time point t0 to t1, with a switch occurring in ts ∈ (t0, t1) ⊂ T . Let’s suppose
for a moment that only a single switch j ∈ {1, . . . , ns} is present. In the switching point,
the solution is characterized by a jump ∆j (4.25) in the states, and a jump δj (4.28) in the
right-hand side. The full dependencies of the solution in the end-point t1 on (t0,y(t0),p) are
as follows:

y1 := y
(

t1; ts,y+, p
)

, y+ := y- + ∆j ,

∆j := ∆j(ts,y-,p), y- := y-(ts; t0,y0,p),

y0 := y(t0),

σj := σj(ts,y-,p), ts := ts(t0,y0,p).

(4.40)

Hence, the sensitivity matrix Gy on this interval according to Definition 4.13 is

Gy(t1; t0) =
dy1

dy0

=
∂y1

∂ts

∂ts
∂y0

+
∂y1

∂y+

∂y+

∂y0

. (4.41)

We resolve the individual differentials separately. For the first differential in (4.41), standard
calculus yields

∂y1

∂ts
= −∂y1

∂y+

dy+

dts
. (4.42)

For the second differential, observe that by definition of ts we have σj = 0, i.e., the switching
function does not actually depend on the initial value y0. This gives

0 =
dσj

dy0

=
∂σj

∂ts

∂ts
∂y0

+
∂σj

∂y-

∂y-

∂ts

∂ts
∂y0

+
∂σj

∂y-

dy-

dy0

=
dσj

dts

∂ts
∂y0

+
∂σj

∂y-

dy-

dy0

=⇒ ∂ts
∂y0

= −
(

dσj

dts

)−1
∂σj

∂y-

dy-

dy0

. (4.43)

Finally, from strict expansion of the last differential in question in (4.41) we find

∂y+

∂y0

=

(

I +
∂∆j

∂y-

)

dy-

dy0

+

(

∂∆j

∂ts
+

(

I +
∂∆j

∂y-

)

dy-

dts

)

dts
dy0

. (4.44)

Substitution of (4.43) into (4.41, 4.44) and (4.42, 4.44) into (4.41) afterwards yields

Gy(t1; t0) =
dy1

dy+

[

I +
∂∆j

∂y-
+

(

dy+

dts
− dy-

dts
− ∂∆j

∂ts
− ∂∆j

∂y-

dy-

dts

) ∂σj

∂y-

dσj

dts

]

dy-

dy0

. (4.45)

By using the very same approach to derive the sensitivity matrix Gp we obtain

Gp(t1; t0) =
dy1

dy+

[(

I +
∂∆j

∂y-
+

(

dy+

dts
− dy-

dts
− ∂∆j

∂ts
− ∂∆j

∂y-

dy-

dts

) ∂σj

∂y-

dσj

dts

)

dy-

dp
(4.46)

+
∂∆j

∂p
+

(

dy+

dts
− dy-

dts
− ∂∆j

∂ts
− ∂∆j

∂p

dy-

dts

) ∂σj

∂p

dσj

dts

]

dy-

dy0

+ Gp(t1; ts).

4.5. Continuous Extensions 45

By collecting the following update matrices from Eq. (4.45) and (4.46), and by substituting
the right-hand side function f and its discontinuity jump δj where appropriate,

Uy = I +
∂∆j

∂y-
+

(

δj −
∂∆j

∂ts
− ∂∆j

∂y-
f(ts,y-,p)

) ∂σj

∂y-

dσj

dts

, (4.47a)

Up =
∂∆j

∂p
+

(

δj −
∂∆j

∂ts
− ∂∆j

∂p
f(ts,y-,p)

) ∂σj

∂p

dσj

dts

, (4.47b)

we may finally present the sensitivity updates to Gy and Gp in the following form:

Gy(t1; t0) = Gy(t1; ts) Uy Gy(ts; t0), (4.48a)

Gp(t1; t0) = Gy(t1; ts) (Uy Gp(ts; t0) + Up) Gy(ts; t0) + Gp(t1; ts). (4.48b)

When implementing these updates using finite differences, as opposed to automatic differ-
entiation [25], it is important to remember that the detected switching time ts is an approx-
imation. In order to avoid instabilities, one should not assume σ(ts) = 0 but compute the
derivatives of the switching function σ using two proper evaluations (in the case of one-sided
finite differences), cf. Bock [6].

4.5 Continuous Extensions

In Section 4.3.3 we established the need for evaluation of the approximates at arbitrary points
in time. This sections now focusses on the dense output problem connected to Runge-Kutta
methods: Contrary to our needs, the iteration scheme (4.2) computes approximations η(k) to
the solution y(t) of the IVP only at discrete time points t(k) determined by the step sizes h(k).

A quick solution to this problem is to introduce for the step size h an upper bound h small
enough to guarantee the required evaluation resolution. Obviously, for very fine resolutions
this entirely defeats the purpose of error-controlled variable step size methods. Even for
coarser resolutions the number of performed steps, and thus the number of potentially costly
evaluations of the ODE system’s right-hand side, will be much larger than necessary. Ul-
timately, for the purpose of switch detection this approach is not suitable at all, since the
evaluation point is implicitly defined here. We cannot know in advance at which points on
the integrator step interval we are going to evaluate the continuous solution, and thus cannot
infer satisfactory upper bounds h.

4.5.1 Literature Survey

In the literature one can find several more sophisticated approaches to the dense output
problem. One of the first attempts, limited to Fehlberg’s pair RKF4(5) and yielding a C 0

interpolant, was described by Horn [30]. Subsequent approaches yield significantly improved
interpolants that mainly differ in the following aspects:

1. The continuity order of the obtained interpolant across integrator steps;

Shampine [53] argues that a C 1 interpolant is highly desirable, and most of the ap-
proaches found agree with this assertion: Enright et al. [19, 20], Dormand and Prince
[16], Owren and Zennaro [46]. Higham [29] also covers the construction of interpolants
from C n, n > 1, at significantly increased computational cost.

2. The applicability of the method used to construct the interpolant;

While Horn [30] initially constructed her interpolants through ad-hoc observations,
Owren and Zennaro [44, 46] construct interpolants by solving a continuous variant

46 Chapter 4. A Continuous Runge-Kutta Method Handling Implicit Switches

of the order conditions (cf. Butcher [10]) for the specific method in question. They
consider amongst others the popular extrapolation pair by Dormand and Prince [15].
In Enright [18] a large collection of newly created higher-order continuous Runge-Kutta
schemes is presented.

On the other hand, in Enright et al. [19], an iterative approach based on the solution of
Hermite-Birkhoff interpolation problems is developed, that allows for generic construc-
tion of C 1 interpolants for existing explicit and implicit Runge-Kutta methods. Very
similar approaches are described by Dormand and Prince [16] and Shampine [53].

3. The truncation order, and computational cost incurred by evaluating the interpolant;

The papers by Owren and Zennaro [44, 45] give some theoretical foundations and derive
lower bounds for the number of right-hand side evaluations required to guarantee an
interpolant with a given approximation order. The iterative scheme of Enright et al. [19]
allows for trade-offs here.

We found that the paper by Enright et al. [20] serves as an excellent starting point for research
on existing literature in this area.

4.5.2 Theoretical Limits

Concerning the stage count of continuous embedded Runge-Kutta methods with C 1 inter-
polants across integrator step boundaries, Owren and Zennaro [45, 46] prove that for any
Fehlberg-type Runge-Kutta method of order (n, n + 1) employing the minimal number of re-
quired stages, there is no C 1 continuous extension of global approximation order n with the
same stage count. In other words, at least one additional stage and evaluation of the right-
hand side is required, and it will be seen that in the case of RKF4(5) even two evaluations are
needed. Tab. 4.1 collects minimal required stage counts for various flavors of Runge-Kutta
methods. It may be possible to employ a first-same-as-last (FSAL) strategy where the last
stage of the method can be reused as the first if the next step. For some methods and orders,
e.g., for CRK(3) to CRK(5), the number of required stages may be reduced by one (see, e.g.,
Enright et al. [20]).

Order p 1 2 3 4 5 6 7 8

RKp 1 2 3 4 6 7 9 11

CRKp 1 2 4 6 8 11 > 12 > 14

RKFp(p + 1) 2 3 5 6 8 13

CRKFp(p + 1) 3 4 6 8 11

Tab. 4.1: Minimal stage counts of explicit Runge-Kutta (RK) and Fehlberg (RKF) methods as
well as their C 1 continuous counterparts (CRK, CRKF).

4.5.3 Construction of Interpolants

For the discussion to follow, we focus on supplying the existing Runge-Kutta-Fehlberg meth-
ods of the optimal control software package MUSCOD-II [12] with C 1 interpolants. Thus, the
approach of Enright et al. [19] appears to best suit our needs, and we briefly present it in this
section.

4.5. Continuous Extensions 47

The Cubic Hermite Polynomial

An immediate and obvious idea is to construct such an interpolating polynomial ̺(t) on
[t(k), t(k+1)] from the values

̺(t(k)) = η(t(k)), ̺(t(k+1)) = η(t(k+1)),

d̺

dt
(t(k)) = k

(k)
1 ,

d̺

dt
(t(k+1)) = k

(k+1)
1 .

(4.49)

The resulting third-order interpolation polynomial ̺ on [t(k), t(k+1)] is uniquely determined,

̺(t(k) + τh(k)) = β0(τ)η(k) + β1(τ)h(k)k
(k)
1 + β2(τ)η(k+1) + β3(τ)h(k)k

(k+1)
1 (4.50)

where βj(τ), τ ∈ [0, 1] ⊂ R are the cubic Hermite base polynomials

β0(τ) := (2τ + 1)(τ − 1)2, β1(τ) := τ(τ − 1)2,

β2(τ) := τ2(3− 2τ), β3(τ) := τ2(τ − 1).
(4.51)

We can find from basic polynomial interpolation theory that for a one-step method of order
p it satisfies

sup
τ∈[0,1]

∣

∣

∣

∣

∣

∣̺(t(k) + τh(k))− y(t(k) + τh(k); t0,y0)
∣

∣

∣

∣

∣

∣ = O(h(k)q
), q := min {4, p + 1} (4.52)

As a Hermite interpolation polynomial, it is inherently C 1 continuous across integrator steps.
Note that the implementation of this interpolant in Runge-Kutta codes requires k

(k+1)
1 in

(4.50) to be pre-calculated in the preceding step.
It is straightforward to compare the interpolant’s error to the local error σ (4.6) of the one-
step method. A requirement commonly found (cf. Shampine [53]) is that the interpolant
be at least as accurate as the underlying method, i.e., we consider an interpolant of local
approximation order q = p + 1 sufficient for Runge-Kutta methods with a convergence order
up to p. By that measure, this plain Hermite interpolant is sufficiently precise for third-order
Runge-Kutta methods only.

Hermite-Birkhoff Polynomials

An iterative process (”bootstrapping method“) for the construction of higher-order interpolants
based on a series ̺j of Hermite-Birkhoff interpolation polynomials starting with the pre-
sented cubic Hermite polynomial ̺0 is presented by Enright et al. [19].
The underlying Hermite-Birkhoff interpolation problem extends the problem (4.49) by im-
posing matching constraints on the derivative of the interpolant in additional time points
τj,k ∈ (0, 1).

d̺j

dt
(t(k) + τj,kh(k)) = f

(

t(k) + τj,kh(k),̺j−1(t
(k) + τj,kh(k))

)

,

q = 4, j = 1, . . . , p− q + 1, k = 1, . . . , j.
(4.53)

The existence of a – not necessarily unique – solution to these Hermite-Birkhoff interpolation
problems depends on the choice of the intermediate time points τj,k ∈ (0, 1). For maximum
computational efficiency, it would be desirable to select them from the vector of coefficients
α ∈ R

s (4.4) found in the method’s Butcher tableau, as this would save us from invoking ad-
ditional and potentially costly evaluations of the ODE system’s right-hand side. It is obvious
from the results presented in Section 4.5.2, however, that this is not always possible.
In case of solvability it can be shown that for the polynomials ̺j one obtains

sup
τ∈[0,1]

∣

∣

∣

∣

∣

∣̺j(t
(k) + τh(k))− y(t(k) + τh(k); t0,y0)

∣

∣

∣

∣

∣

∣ = O(h(k)q+j
), (4.54)

a process that naturally terminates with q + j = p+1, i.e., when the interpolant ̺j has finally
reached the approximation order of the underlying one-step method’s local error σ. Again,
the resulting interpolant is inherently C 1 continuous.

48 Chapter 4. A Continuous Runge-Kutta Method Handling Implicit Switches

4.5.4 Selected Interpolants

Amongst the selection of integrators available in MUSCOD-II are the popular Runge-Kutta-
Fehlberg methods RKF1(2), RKF2(3), and RKF4(5) (cf. Fehlberg [21]). This section shows the
interpolants we selected, and summarizes the reasoning behind the decisions.
For methods of order four and higher, the interpolant cannot be obtained for free. In view of
the potentially large number of differential states due to the generation of first- and second-
order sensitivities (see Chapter 7), we put emphasis on keeping the computational impact
incurred by the interpolants to be selected as low as possible. After analysis of the various
possibilities, we decided to trade precision for speed where inevitable.
Using the selected interpolant enabled our implementation to realize the following new fea-
tures:

1. The efficient detection of implicit switches;

2. The evaluation of continuous objectives of least-squares;

3. A more elegant approach to the generation of on-line graphics output.

The Runge-Kutta-Fehlberg Method RKF4(5)

Using no additional evaluations of the right-hand side, Enright et al. [19] construct a locally
fifth-order interpolant for Fehlberg’s method RKF4(5), based on an observation described by
Horn [30] that for

η 3
5

:= η(k) + h(k)
(

1559
12500k1 + 153856

296875k3 + 68107
2612500k4 − 243

31250k5 − 2106
34375k6

)

(4.55)

it can be shown that
∣

∣

∣

∣

∣

∣
y(t(k) + 3

5h(k))− η 3
5

∣

∣

∣

∣

∣

∣
= O(h(k)5). (4.56)

Furthermore, Horn [30] also showed that the point τ1,1 = 3
5 is unique. The solution to the

corresponding Hermite-Birkhoff interpolation problem is

̺(t(k) + τh(k)) = β0(τ)η(k) + β1(τ)h(k)k
(k)
1 + β2(τ)η(k+1) + β3(τ)h(k)k

(k+1)
1 + β4(τ)η 3

5
,

(4.57)
with the base polynomials

β0(τ) := (τ − 1)2(1− 5
3τ)(11

3 τ + 1), β1(τ) := τ(τ − 1)2(1− 5
3τ),

β2(τ) := τ2(3
4 − 5

4τ)(9τ − 11), β3(τ) := τ2(τ − 1)(5
2τ − 3

2),

β4(τ) := 625
36 τ2(τ − 1)2.

(4.58)

A locally sixth-order interpolant is presented by Enright et al. [19] as well. After consid-
ering the solvability of the Birkhoff interpolation problem and analyzing the interpolant’s
error bounds, they chose τ2,1 := 0.86 and τ2,2 := 0.93 to obtain the quintic Hermite-Birkhoff
interpolant

̺(t(k) + τh(k)) = β0(τ)η(k) + β1(τ)h(k)k
(k)
1 + β2(τ)η(k+1)

+ β3(τ)h(k)k
(k+1)
1 + β4(τ)h(k)k7 + β5(τ)h(k)k8, (4.59)

using the base polynomials

β0(τ) := (τ − 1)2
(

375
64 τ3 − 8925

1024τ2 + 2τ + 1
)

,

β1(τ) := τ(τ − 1)2
(

5375
3968τ2 − 19062325

8189952 τ + 1
)

,

β2(τ) := −τ2
(

375
64 τ3 − 20925

1024 τ2 + 12949
512 τ − 11997

1024

)

,

β3(τ) := (τ − 1)2
(

199625
6272 τ2 − 5385075

100352 τ + 2291427
100352

)

,

β4(τ) := τ2(τ − 1)2
(

78125
1568 τ − 47953125

1078784

)

,

β5(τ) := −τ2(τ − 1)2
(

234375
3038 τ − 8734375

145824

)

(4.60)

4.5. Continuous Extensions 49

and requiring the two additional evaluations of the system’s right-hand side per step,

k7 := f(t(k) + τ2,1h
(k),η0.86), (4.61)

η0.86 := − 396851
1250000η(k) + 3918031

5000000η(k+1) + 90601
360000η 3

5
− h(k)

(

27391
3750000k

(k)
1 + 168259

2500000k
(k+1)
1

)

,

k8 := f(t(k) + τ2,2h
(k),η0.93), (4.62)

η0.93 := − 237699
20000000η(k) + 75064671

70000000η(k+1) + 47089
640000η 3

5
− h(k)

(

50127
20000000k

(k)
1 + 1997919

40000000k
(k+1)
1

)

.

The Runge-Kutta methods implemented in MUSCOD-II integrate a large number of varied
trajectories or variational differential equations along with the nominal solution. They gener-
ally advance with the lower order method’s step only, and also control the nominal solution’s
error only. They may thus save some computation time since it is possible to skip the com-
putation of the higher-order method’s coefficient k6 (4.4) for the sensitivity solutions.
Since the 5th-order interpolant (4.57) relies on k6, this shortcut is no longer possible when
using the presented interpolant. Once we accept the additional computations required to
obtain k6, we may as well advance with the higher-order method’s step and get the possibly
improved precision for free. Then again, a fifth-order step would be best accompanied by
locally sixth-order interpolant, requiring the evaluation of two additional stages as can be
seen from Tab. 4.1 and Eq. (4.61).
For our implementation RKFSWT we favored the locally fifth-order interpolant (4.57) together
with the higher-order step. This choice leads to moderately increased computational cost,
while exploiting the highest possible increase in precision.

Orders Required RHS
ε η ̺ Stages Evaluations

5 4 – 6 6 + 5n Existing RKF4(5) code.
5 4 3 6 6 + 5n The Hermite interpolant is free.
5 4 4 6 6 + 6n The Birkhoff interpolant is not.
5 5 4 6 6 + 6n Advance with the higher-order step.
5 5 5 8 8 + 8n A 5th-order interpolant is costly.

Tab. 4.2: Cost of RKF realizations. The columns ε, η, and ̺ denote the global order of the
error, the approximate, and the interpolant respectively. The number of computed trajectories
is denoted by n.

The Runge-Kutta-Nørsett Method RKN4(3)

From Tab. 4.1 it is clear that there exists a continuous fourth-order method with a locally
fifth-order interpolant and the computational cost of the non-continuous fifth-order method
RKF4(5). Instead of accepting additional computations to obtain an interpolant while main-
taining the method’s order, we reduce the order to maintain the method’s computational
cost.
The fourth-order cubic Hermite interpolant ̺0 (4.50) can be obtained without additional
evaluations of the right-hand side. After one bootstrapping iteration with τ1,1 := 1

10 ,

k6 := f
(

t(k) + 1
10h(k),̺0(t

(k) + 1
10h(k))

)

, (4.63)

̺0(t
(k) + 1

10h(k)) =
(

243
250η(k) + 7

250η(k+1)
)

+ h(k)
(

81
1000k

(k)
1 − 9

1000k
(k+1)
1

)

, (4.64)

Enright et al. [19] derived the following fifth-order interpolant ̺1 (4.65) for Nørsett’s method
RKN3(4), cf. Fig. 4.1(a):

̺1(t
(k) + τh(k)) = β0(τ)η(k)β1(τ)h(k)k

(k)
1

+ β2(τ)η(k+1) + β3(τ)h(k)k
(k+1)
1 + β4(τ)h(k)k6, (4.65)

50 Chapter 4. A Continuous Runge-Kutta Method Handling Implicit Switches

with the base polynomials

β0(τ) := (τ − 1)2(15
4 τ2 + 2τ + 1), β1(τ) := τ(τ − 1)2(1− 35

8 τ),

β2(τ) := 1− β0(τ), β3(τ) := 1
72τ2(τ − 1)(85τ − 13), (4.66)

β4(τ) := 125
18 τ2(τ − 1)2.

4.6 The RKFSWT Integrator Algorithm

Algorithm 4.2 The switch-detecting Runge-Kutta-Fehlberg method RKFSWT.

Input: t0, tf , h, y0, f(·), σ(·), Butcher tableau
(

s[p−1], s[p],α,B, c[p−1], c[p]
)

, dense output grid
θ ∈ [t0, tf]

ng with θi < θj for i < j, tolerance TOL.
Set t(0) ← t0, η(0) ← y0, i← 0, g ← 0.
Precompute k

(0)
1 ← f

(

t(0),η(0)
)

(4.4) for solution and sensitivities (4.39a, 4.39c).
while t(k) < tf do

repeat

Compute k
(k)
j , j = 2, . . . , s[p] from Eq. (4.4).

Compute step delta: ∆η[p] −∆η[p−1] ←∑s[p]

j=1(c
[p]
j − c

[p−1]
j)kj .

Compute local error estimate: est← ||∆η[p] −∆η[p−1]||S .
if est > TOL then

Reduce step size: h(k) ← 0.9 h(k)
(

TOL
est

)
1
p .

If h(k) < h then Stop with error “Local error exceeds TOL for h(k) < h.”
end if

until est 6 TOL.
Perform higher-order step: η(k+1) ← η(k) + ∆η[p].
Precompute k

(k+1)
1 ← f

(

t(k) + h(k),η(k+1)
)

(4.4).
Evaluate switch states σ(t(k) + h(k),η(k+1)) (4.22).
for all switches j that changed their sign do

Find ts ∈ [t(k), t(k) + h(k)] satisfying σj(ts,̺(ts)) = 0, c.f Algorithm 4.1.
if t(k) + h(k) > ts then

Reduce step length: h(k) ← ts − t(k).
end if

end for

If necessary, compute and perform step ∆η[p] for new step length.
Save switch states σ(t(k) + h(k),η(k+1)).
Compute k

(k)
j , j = 2, . . . , s[p] and k

(k+1)
1 (4.4) for sensitivities (4.39a, 4.39c).

Compute and perform higher-order step in the sensitivities.
while θg 6 t(k) + h(k) ∧ g 6 ng do

Evaluate a suitable interpolant ̺(θg), cf. Section 4.5.
Provide dense output of solution and sensitivities.
g ← g + 1.

end while

if a switch just occurred then

Compute the state jump ∆ (4.25) and the right-hand side jump δ (4.28).
Perform the first-order sensitivity updates at discontinuities (4.48, 4.48).

end if

Adjust step size: h(k+1) ← 0.9 h(k)
(

TOL
est

)
1
p . Ensure h(k+1) ∈ [h, tf − t(k)].

i← i + 1.
end while

Chapter 5

Parameter Estimation

In this chapter we discuss the topic of parameter estimation for models of ordinary differ-
ential equations (ODEs). Solving this type of problems necessarily requires a look at the
statistical background, as the solution is valid only in the context of the model in use, and the
data observed. We motivate least-squares fits against observed data as maximum-likelihood
estimators associated with observation errors that satisfy certain statistical assumptions. Af-
ter having established the connection to nonlinear problems of least squares, we give a brief
overview over the constrained Gauß-Newton (CGN) method used to solve problems of this
structure. We conclude this chapter with a discussion of confidence estimates for the obtained
solutions.
In Appendix A the implementation and usage of the new software tool QuickFit for easy pa-
rameter estimation based on the optimal control software package MUSCOD-II is described.

5.1 Parameter Estimation Problems

The collection of observed data used as input to the parameter estimation task inevitably
is subject to random experimental measurement errors, and the observed data may thus be
considered as a series of random values. The probability for the experimenter to obtain a
specific series of observed data is referred to as the likelihood of this data series. In the case of
parameter estimation, the probability depends on a set of parameters, and we are interested
in determining such a set maximizing the likelihood.

5.1.1 Observation Errors

Consider a series of observed data points

ξi ∈ R, i = 1, . . . , nr, nr ∈ N, (5.1)

whose observation is subject to measurement errors εi

εi := ξ̂i − ξi, i = 1, . . . , nr, (5.2)

that represent the deviation from the true but inaccessible data point ξ̂i. This means that the ξi

are realizations of random variables Ξi, each ξi being one sample out of all possible outcomes
of the observation process. As a consequence, we may also consider the true observation
errors εi to be outcomes of random variables Ei. They are distributed according to some a
priori unknown probability distribution.
The theory to follow assumes the observation errors Ei to satisfy the following characteristics
(Nocedal and Wright [43], von Schwerin [57]):

1. They are free of systematic errors;

This essentially means that we assume the model y to be valid, and attribute diverging
observed data to measurement errors. Most often the correct model is not known in ad-
vance, so this usually, and also in case of the powertrain model presented in Chapter 1,

52 Chapter 5. Parameter Estimation

constitutes an iterative process during which the model is continually refined to match
the observed data, until eventually no systematic errors remain.

2. They are random variables independent from each other;

This assumption allows to compute the probability (5.5) as the simple product of the
probabilities of the individual data samples.

3. They are attributed with constant variances;

Which allows for a description of the observed data series in terms of a mean series
plus disturbations of constant strength.

4. They are distributed around a mean of zero;

This is a simplifying criterion only. By introducing a constant offset, distributions
around other mean values may be accounted for.

5. They are distributed according to a common probability density function;

This allows to set up a common objective function for all observed data points. In this
chapter, we will mainly discuss normally (Gaussian) distributed measurement errors,
resulting in least-squares objectives.

5.1.2 Maximum Likelihood Estimators

Parameter estimation attempts to compare the observations ξ against a model y dependent
on a set of parameters x ∈ X ,

y : R
nx −→ R

nr , x 7→ y(x). (5.3)

We define the residual ri(x) as the discrepancy between model and observation,

ri(x) := yi(x)− ξi, i = 1, . . . , nr. (5.4)

For a correct model evaluated using the true parameters x̂, the measurements errors εi equal
the residuals ri. Given some parameter vector x ∈ X the probability of observing a particular
series ξ of data samples is

P(ε = r | x) =

nr
∏

i=1

P(εi = ri(x)) =

nr
∏

i=1

f(ri(x)), (5.5)

where f denotes the probability density function of the observation errors’ distribution. Since
we actually know the particular series ξ we are working with, we now identify the probability
of observing the series ξ with the likelihood of x (cf. Press et al. [50]). A most likely, but not
necessarily unique value x∗ is referred to as a maximum likelihood estimate of the unknowns x

given the observed data ξ and the model y.

5.1.3 Normally Distributed Observation Errors

For several reasons the most important distribution of observation errors is the normal or
Gaussian distribution.

1. When observing typical quantities like mass, acceleration, velocity, or length, one com-
monly assumes the measurement errors to be distributed according to a normal, or
Gaussian, distribution (Bard [1], von Schwerin [57]).

2. The preceding point is stressed by the existence of central-limit theorems that state
that under mild assumptions the resulting distribution of many additive, independent
random effects approaches the normal distribution.

5.1. Parameter Estimation Problems 53

3. Employing Shannon’s measure of information (Shannon [54]), one may show that the
normal distribution conveys the least possible amount of a priori information concern-
ing the values that the random variable may assume (Bard [1]).

Definition 5.1. Normal Distribution Nν(µ,Σ)

Let x ∈ R
ν be a random variable of ν degrees of freedom, with a mean E(x) =: µ ∈ R

ν and variance-
covariance matrix cov(x) =: Σ ∈ M(ν, R). The probability density of the multivariate normal

distribution is given by the function

fN (x) :=
1

√

(2π)ν detΣ
exp

(

−1

2
(x− µ)

T
Σ

−1(x− µ)

)

. (5.6)

In the one-dimensional case ν = 1 we commonly find the notation Σ :=
[

σ2
]

leading to√
detΣ = σ, and thus

fN (x) :=
1√
2πσ

exp

(

−1

2

(

x− µ

σ

)2
)

. (5.7)

Assuming a one-dimensional normal distribution of the observation errors, with mean µ = 0

and a variance σ2, we may specialize equation (5.5) to

P(ε = r | x) =
1√

2π
nr

nr
∏

i=1

1

σi

exp

(

−r2
i (x)

2σ2
i

)

. (5.8)

Maximizing this probability over all x ∈ X amounts to finding an x with maximum likeli-
hood. Conveniently, function (5.8) is also referred to as the likelihood function L of the estimate
x. Due to the monotony of the logarithm, it is sufficient to minimize

− log P(ε = r | x) =
1

2

nr
∑

i=1

r2
i (x)

σ2
i

+

nr
∑

i=1

log
√

2πσi, (5.9)

where the latter part is constant. After introducing residuals weighted by their respective
standard deviations σi

r̃i(x) :=
1

σi

ri(x) (5.10)

this problem takes the form of a general nonlinear problem of least squares (5.11) with nr

residuals and nx unknowns to be determined,

min
x∈X

1

2

nr
∑

i=1

r̃2
i (x). (5.11)

Assuming a normal distribution of the observation errors therefore relates to determining an
estimator x∗ minimizing their ℓ2-norm. A brief overview of the Gauß-Newton method for
the efficient solution of this kind of problem is presented in Chapter 3.

5.1.4 Other Error Distributions

It is in general possible to minimize with respect to different ℓp-norms, 1 6 p 6 ∞, (see von
Schwerin [57]) to obtain maximum likelihood estimators for observation errors distributed
according to the respective probability density functions

fp(ri(x)) :=
p

2αi(σi)Γ
(

1
p

) exp

(

−
∣

∣

∣

∣

ri(x)

αi(σi)

∣

∣

∣

∣

p)

, i = 1, . . . , nr, (5.12)

where αi(σi) needs to be chosen such that the probability density functions satisfy
∫

R

fp(ri(x)) dri = 1.

54 Chapter 5. Parameter Estimation

For p = 2 it is easily seen that by setting αi(σi) :=
√

2σi one again obtains the ℓ2 maximum
likelihood estimator. From fp one derives the ℓp objective function just as in the ℓ2 case
demonstrated in the previous section,

min
x∈X

1

p

nr
∑

i=1

|ri(x)|p . (5.13)

The case p = 1 is of special interest. One minimizes the sum of the absolute deviations of
the ri from the model prediction yi, while putting most emphasis on residuals with small
observation errors. Under certain assumptions exactly nx residuals vanish in the solution,
which thus interpolates nx of nr observations (cf. Bock [6], Körkel et al. [35]).

5.1.5 A Measurement for Goodness-Of-Fit

Aside from the feeling that the model’s output matches the observed data quite well when
we visually compare them to each other, we have not yet introduced any means of judging
the quality of a parameter set. An estimate for this quality can be found in Press et al. [50]
and is presented here.

Definition 5.2. Upper Incomplete Gamma Function

The upper incomplete Gamma function1 Γ(a, z) is defined as

Γ(a, z) :=

∞
∫

z

exp(−t) ta−1 dt (here a ∈ R
+, z ∈ R). (5.14)

It extends the (ordinary) Gamma function such that Γ(a) = Γ(a, 0).

Theorem 5.3. Chi-Square Distribution X 2
ν

Let x ∈ R
ν be a random variable of ν degrees of freedom, whose individual components are normally

distributed with unit variance around a mean of zero. Then the sum of squares ||x||22 is a chi-square

distributed random variable, and the probability for it to exceed a threshold value of χ2 is

PX (χ2 | ν) := P(||x||22 > χ2) = Γ

(

ν

2
,
χ2

2

)

Γ−1
(ν

2

)

. (5.15)

Proof. Compute by transformation to ν-dimensional polar coordinates (cf. Königsberger [34])
the integral

P(||x||22 > χ2) =

∫

||x||22>χ2

1√
2π

exp

(

−1

2
||x||22

)

dx

and apply Eq. (5.14).

It is obvious that the least-squares objective is, by way of its dependency on the residuals ri, a
random variable of nr degrees of freedom. In addition, the residuals r̃i (5.10) divided by their
standard deviations have unit variance. Having been adjusted to maximize the likelihood, the
components of x, however, are no longer statistically independent of each other but satisfy a
common constraint. Thus the presented definition cannot be directly applied.
For linear models y it is nonetheless possible to derive the statistical distribution of x∗ an-
alytically, and it turns out to be the chi-square distribution of nr − nx degrees of freedom.
Furthermore, it is quite common to assume this relation to hold even for models not strictly
linear in x (cf. Press et al. [50]). Given a correct model and a maximum likelihood estimator
x∗ found from the solution of problem (5.11), the probability for the least-squares objective
to exceed by chance a value of

χ2 :=

nr
∑

i=1

r̃2
i (x∗)

1 GAMMA(a,z) in Maple V, gammainc(a,z) in MATLAB. Press et al. [50] present a C implementation.

5.1. Parameter Estimation Problems 55

equals, by this assumption,
Q := PX (χ2 | nr − nx). (5.16)

The larger that probability is, the more significance bears the solution x∗ we found. In
contrast, with PX approaching zero, virtually any choice of the estimator x would be as good
as the x∗ we identified from problem (5.11). This may be regarded as an indicator of a wrong
model y being in use.
Finally, note that the applicability of this measure for goodness-of-fit requires, besides the
prerequisites stated in the introductory section, that the variances σ2

i of the residuals are
known in advance. If we used estimates of the σi, an excellent goodness-of-fit might only mean
that we severely overestimated the variances.

5.1.6 Regularization

Often it is the case that some a priori information about the values of the parameters x̂ to
be estimated is available. In that case it is obviously desirable to be able to exploit that
information in the parameter estimation method used.

1. The vector σ could be a vector of standard deviations from the mean parameter values
x. This would lead us to an assumed Nnx

(x,diag(σ)2) distribution of the parameter.

2. It is also very convenient to specify upper and lower bounds for the parameters, in
which case σ is the maximum deviation allowed from x. We obtain a uniform distribu-
tion of x over the hypercube [x− σ,x + σ] ⊂ R

nx .

We refer to the respective probability density function as the prior density function f0(x) of the
unknown parameters. In both cases, the assumed probability distributions convey the least
possible information according to Shannon [54].
The presence of a priori information may be considered a case of conditional probability.
Along the lines of Bard [1] we use Bayes’ theorem to derive the posterior probability distri-
bution given prior information about the unknowns by way of f0 (5.21), and about the data
by way of the likelihood function L (5.8).

Theorem 5.4. Bayes’ Theorem (T. Bayes, 1763)
Let A and B be two events whose probabilities P(A) and P(B) 6= 0. The conditional probability
P(A|B) that A occurs given that B has occurred equals

P(A|B) =
P(B|A) · P(A)

P(B)
. (5.17)

Proof. Straightforward from the definition of conditional probability, see, e.g., Bard [1].

In our case we consider the two events A: That the true value x̂ of the unknowns falls within
the hypercube of size dx centered at x; and B: That the true value ξ̂ of the measurements falls
within a hypercube of size dΞ centered at ξ. By definition we have

P(A) = f0(x) dx, P(B|A) = L(x) dΞ, (5.18)

and obtain the value of P(B) by summing P(B|A) · P(A) over all possible A,

P(B) =

∫

Rnx

L(x)f0(x) dx

 dΞ. (5.19)

Applying Bayes’ theorem now yields the likelihood

P (A|B) = L(x) dΞ · f0(x) dx ·

∫

Rnx

L(x)f0(x) dx

−1

. (5.20)

56 Chapter 5. Parameter Estimation

To incorporate both of the above types of a priori information, we assume a non-truncated
normal distribution Nnx

(x,T) of the parameters to be estimated, and impose explicit in-
equality constraints on the unknowns x. The treatment of constrained nonlinear least-squares
problems is discussed in Chapter 3.

With the covariance matrix being T = diag(τ)2, the prior density function f0 is

f0(xi) :=
1√
2πτi

exp

(

−1

2

(

xi − xi

τi

)2
)

(5.21)

Plugging (5.21) into (5.20) and ignoring the integral factor that is independent of x we obtain

− log P(A|B) =
1

2

nr
∑

i=1

r2
i (x)

σ2
i

+
1

2

nx
∑

i=1

(xi − xi)
2

τ2
i

+ const. (5.22)

up to a common factor. Comparing this to Eq. (5.9) we are led to include the additional
residuals

rnr+i(x) :=
1

2

(

xi − xi

τi

)2

, i = 1, . . . , nx. (5.23)

in the least-squares parameter estimation problem. We may extend this approach even further
to include a priori covariance information in the problem. If we extend the assumed a priori
distribution to T = [τij]ij being the full variance-covariance matrix associated with x, we
obtain the following additional least-squares residuals instead of those given in (5.23):

rnr+i(x) :=
1

2

nx
∑

j=1

(xi − xj)
2

τij

, i = 1, . . . , nx. (5.24)

5.2 Uncertainty Estimates and Confidence Areas

A practical method for the estimation of parameters not only requires the solution of the
underlying least-squares problem, but also asks for an analysis of the quality of the obtained
maximum likelihood estimate. We are especially interested in the sensitivity of this estimate
with respect to observation errors.

5.2.1 Covariance of the Solution

Let f denote the least-squares objective

f(x) :=

nr
∑

i=1

r̃2
i (x). (5.25)

Theorem 5.5. Covariance Matrix of the Solution (Bard [1], Bock [6], von Schwerin [57])

Under the assumptions of Section 5.1, the generalized Gauß-Newton method’s solution x∗ = −J+f is
a normally distributed random variable. The true solution is its expectation value, and its covariance

matrix is computed as

cov x∗ = J+(x∗)

[

Inr
0

0 0

]

J+(x∗)
T
. (5.26)

If no restrictions are active, we find from an explicit representation of the generalized in-
verse J+ that the covariance matrix may simply be obtained as the inverse of the Hessian
approximation

cov x∗ =

(

∂f

∂x
(x∗)

T ∂f

∂x
(x∗)

)−1

. (5.27)

5.2. Uncertainty Estimates and Confidence Areas 57

5.2.2 An Estimate for the Common Variance Factor

If estimates Σ̃ of the residuals’ variances Σ have been used, or if the variances are unknown
at all (and we used, e.g., Σ̃ = τI), the common variance factor β2 of the observed data’s
variances is unknown as well. An independent estimate of the common variance factor is
available as β̃2 (see Bard [1]),

β̃2 :=
||f(x∗)||22

nr − (nx − nc)
, (5.28)

where nc is the number of constraints active in the solution of problem (5.13), corresponding
to equality constraints in problem (3.24a),

nc := ng + n̂h. (5.29)

Estimates σ2
i close to the true variances yield a common factor of β̃2 ≈ 1. In any case, the

unbiased covariance matrix Σx of the estimate x∗ is then obtained from the biased one (5.27)
as

Σx := β2J+(x∗)

[

Inr
0

0 0

]

J+(x∗)
T
. (5.30)

5.2.3 Confidence Area of the Solution

Having obtained an optimal set of parameters given a model and observed data, we are also
interested in its statistical significance. A suitable tool is the specification of confidence areas,
centered around the estimated parameter value, and indicating with what probability the
real-world parameter falls into these areas.
The area of confidence of the solution x∗ of (5.13) may be represented by the indifference
region GN of the least-squares objective (see Bock [6])

GN(x∗, α) :=
{

x ∈ F
∣

∣

∣
g(x) = 0 ∧ ||f(x)||22 − ||f(x∗)||22 6 γ(α)

}

. (5.31)

We are looking for an appropriate indifference level γ > 0 determined by the desired level of
uncertainty α ∈ [0, 1], e.g., α = 0.05 for the area of 95% confidence. Since the estimate x∗ is
truly not a random variable, this statement is to be interpreted as follows: The region GN is
defined in such a way that only a fraction α of the regions GN resulting from multiple inde-
pendent observations of the same scenario, which are subject to random observation errors,
will not contain the true value x̂,

P
(

x̂ ∈ GN(x∗, α)
)

= 1− α. (5.32)

It can be shown (see, e.g., Bard [1]) that by Taylor expansion up to second-order terms the
objective function’s indifference region takes the approximate form

||x− x∗||2Σ−1
x ,2 = (x− x∗)

T
Σx

−1(x− x∗) 6 γ(α). (5.33)

For errors normally distributed around zero, the resulting estimates are normally distributed
as well, with a mean of x∗. We may thus consider the above scaled norm to be distributed
as X 2 with nx degrees of freedom. Taking the equality constraints g(x) into account, the
number of degrees of freedom reduces to nx − nc.

Definition 5.6. Quantile of a Distribution

Let PS(z) be the cumulative probability density function of a statistical distribution S with ν degrees
of freedom. The quantile Sν(α) is defined for 0 6 α 6 1 as

Sν(α) := inf
{

z | PS(z) > α
}

. (5.34)

It specifies the scalar value below which one finds a fraction α of all cases.

58 Chapter 5. Parameter Estimation

Assuming the estimate’s covariance Σx is known, we obtain from this definition

γ(α) := X 2
nx−nc

(1− α). (5.35)

Since the nonlinear confidence area GN (5.31) is generally hard to compute, an approximation
may be obtained by linearization around x∗ and yields the following confidence ellipsoid
restricted to the feasible set

GL(x∗, α) :=
{

x ∈ F
∣

∣

∣ g(x∗) +∇xg(x∗)(x− x∗) = 0 (5.36a)

∧ ||f(x∗) +∇xf(x∗)(x− x∗)||22 − ||f(x∗)||22 6 γ(α)
}

=
{

x∗ + ∆x
∣

∣

∣ ∆x = −J+

[

∆y

0

]

, ||∆y||22 6 γ(α)
}

. (5.36b)

For a proof of this equality, we refer to Bock [6].

If the observation errors’ variances Σ are unknown, i.e., if they have been estimated, the com-
mon variance factor estimate β̃2 needs to be taken into account. The least-squares residual
objective ||f(x∗)||22 of (5.28) depends on the estimate x∗, but is known to be distributed inde-
pendently of that estimate. The distribution of β2 is thus X 2 with nr − (nx − nc) degrees of
freedom (see Bard [1]). The resulting objective indifference region radius

||x− x∗||2(β̃2Σx)
−1

,2
= (x− x∗)

T
(

β̃2
Σx

)−1

(x− x∗) (5.37a)

=
(

nr − (nx − nc)
) ||x− x∗||2Σ−1

x ,2

||f(x)||22
(5.37b)

is thus F-distributed with nx−nc and nr− (nx−nc) degrees of freedom if divided by nx−nc,
as can be seen from the following theorem.

Theorem 5.7. Fisher’s F-Distribution Fν1,ν2

Let x ∈ R
ν1 ,y ∈ R

ν2 be independent random and normally distributed variables, with zero mean and
unit variance. Then the quotient

z :=

(

1

ν1

ν1
∑

i=1

x2
i

)(

1

ν2

ν2
∑

i=1

y2
i

)−1

(5.38)

is an F-distributed scalar random variable with ν1 and ν2 degrees of freedom.

We obtain

γ(α) := (nx − nc)Fnx−nc,nr−(nx−nc)(1− α). (5.39)

However, it should be noted that when ν1 ≫ ν2, the Fν1,ν2
-distribution approaches the X 2

ν1
-

distribution again as a result of central limit theorems. Here ν1 = nr and ν2 = nx, so this will,
for example, very frequently be the case when estimating parameters by fitting the discretized
solution of a parametrized initial-value problem (IVP).

5.3 Initial Value Problems for Parameter Estimation

While in general the model y(x) may create data points yi from the parameter set x by way
of many different mechanisms (one may think of systems of linear or nonlinear equations,
neural networks, etc.) we are especially interested in models composed from a system of
ordinary differential equations (ODEs).

5.3. Initial Value Problems for Parameter Estimation 59

5.3.1 Problem Formulation

We specify the model y(x) in terms of an initial value problem (IVP) (5.40) on the time
horizon T := [t0, tf] ⊂ R,

dy

dt
(t; t0,y0,p) = f(t,y(t),p), t ∈ T , (5.40a)

y(t0) = y0, (5.40b)

and compose the vector x of model parameters from the IVP’s global parameters p ∈ P and
initial values y0 ∈ Y ,

x :=

[

y0

p

]

. (5.41)

In addition, it is favorable to put constraints on the individual parameters pi and initial values
y0,i,

y0 ∈
[

y
0
,y0

]

=: Y ⊂ R
ny , (5.42a)

p ∈
[

p,p
]

=: P ⊂ R
np . (5.42b)

Badly conditioned parameters that cannot be properly estimated from the available data set
will quickly hit one of these bounds, and may subsequently be eliminated from the parameter
estimation problem by setting them to a reasonable fixed value (cf. Bock [6]). This formula-
tion easily includes the case of fixed parameters or known initial values by setting p

i
= pi or

similarly y
0,i

= y0,i for the appropriate components of the bounds vectors.

From the ODE model’s behavior dependent on (y0,p) we compute output trajectories

zi : T × R
ny −→ R, t 7→ zi (t,y(t; t0,y0,p)) , i = 1, . . . , nz, (5.43)

to be fitted against trajectories of observed data

ξi : T −→ R, t 7→ ξi(t). (5.44)

For a given parameter set [y0,p] the computation of the residual vector r (5.4) involves the
solution of the IVP (5.40) on the time horizon T . Due to imprecise initial values, inherently
unstable ODE systems, as well as due to truncation and round-off errors incurred by the ODE
solver method, it is likely that the simple integration of the ODE system over the time horizon
T might lead to inexact solutions, or even that a numerical solution can not be obtained at all
(Bock [6]). We therefore solve the IVP using the multiple shooting method due to Bock and
Plitt [7], as described in Chapter 6 in the context of optimal control problems.

5.3.2 Discretization

As of now we would attempt to fit trajectories zi(t) against ξi(t), aiming at minimizing the
L2 semi-norm

||zi − ξi||2L2
=

∫

T

(

zi (y (t; t0,y0,p))− ξi(t)
)2

dt. (5.45)

The formulation of such semi-infinite parameter estimation problems with continuous ob-
served data is delicate, and the convergence theory for the least-squares method presented in
Chapter 3 is valid for finite sets of unknowns and observations only. Thus, the trajectories zi

get discretized using a suitably chosen discretization grid (5.46) fine enough to represent the
observation’s features we are interested in.

t0 = t1 < . . . < tnt
= tf , nt ∈ N. (5.46)

60 Chapter 5. Parameter Estimation

Depending on the measurement device, the trajectories probably will be sampled and dis-
cretized during recording (polling, or event-driven recording of data samples), and a contin-
uous representation will not be available anyway. From the discretization we obtain series of
sampled data points

ξi ∈ R
nt , i = 1, . . . , nz, (5.47)

the dimension nt ∈ N being the (possibly very large) number of sampled points. In this
discretized form the nr = nz · nt residuals are computed as

ri,j(y0,p) := zi (y (tj ; t0,y0,p))− ξi,j , (5.48)

and we end up with the following discrete least-squares minimization problem

min
y0,p

nz
∑

i=1

nr
∑

j=1

r2
i,j(y0,p) (5.49a)

s.t.
dy

dt
(t; t0,y0,p) = f(t,y(t),p), t ∈ T , (5.49b)

y(t0) = y0. (5.49c)

5.3.3 Scaling and Weighting

To put emphasis on certain time-local features of the trajectories zi(t) it may be desirable to
put weights ωi(tj) on the samples ξi,j resulting from the discretization.

min
y0,p

nz
∑

i=1

nr
∑

j=1

ωi(tj)r
2
i,j(y0,p). (5.50)

In addition, the weighting functions ωi should also be used to compensate for different scales
of the trajectories. For example, consider trajectories z1 and z2, where z1 might represent
engine revolutions per second and samples roughly range from 103 [min−1] to 104 [min−1].
Trajectory z2 might represent acceleration samples well below 101 [m/s2]. It would be mis-
leading to set up an unscaled parameter estimation problem on this type of observed data,
as even large discrepancies of the fit against the second trajectory would yield only small
residuals compared to those of the first trajectory.

x

ξi

y(a,b)

y

(a) Fitting a linear model y(x) =
ax + b to observed data points ξi.

t

y

t0

y(t,y0,p)

ξ1,i

tf

y0

(b) Fitting an ODE model y(t, y0, p)
to a discretized trajectory ξ1,i.

5.4. Powertrain Parameter Estimation 61

5.4 Powertrain Parameter Estimation

In this section we turn to the guiding example for the first time, and present parameter
estimation results obtained by application of the methods presented in Chapter 5 to data
observed in a Mercedes C-Class on the test tracks of Stuttgart-Untertürkheim. It will be seen
that the powertrain model described in the introductory Chapter 1 allows for a very accurate
and satisfying representation of the powertrain oscillation phenomena.
A look at the eigenvalues of a suitably linearized system enables us to identify one harmonic
oscillator whose contributions to the oscillations under investigation are negligible. As a con-
sequence we construct a smaller powertrain model that equally well represents the behavior
seen from the observed data series, without even requiring a re-run of the parameter esti-
mation procedure. This smaller model is non-stiff and may be integrated using an explicit
integration method such as one of the explicit Runge-Kutta schemes presented in Chapter 4.

5.4.1 Parameter Estimation Scenario and Setup

Fig. 5.1 shows the observed input motor torque that was used to drive the ODE model and
defines the parameter estimation scenario. On the time horizon of 37.0 seconds we can clearly
distinguish four separate acceleration phases, each one taking place at increasing velocity and
engine speed.

 0 5 10 15 20 25 30 35

M
in

pu
t

t [s]

Fig. 5.1: Input motor torque Mmot defining the parameter estimation scenario.

For non-disclosure reasons, all graphs of observed and simulated data remain unlabeled on
the ordinate when presenting results for the DaimlerChrysler powertrain models.

Initial Values

Initial values for the ODE system’s angular velocities are computed from observed data at
t = 0 s. The powertrain’s angular torsions ∆ϕ∗ cannot easily be initialized from observed
data and are set to zero. This assumption is not too far off, since recording of observed data
used for the parameter estimation scenario starts with a neutral motor torque that does not
actively accelerate the powertrain.

State Value Unit

ωdmf,1 2.205 · 102 rad/s

ωdmf,2 1.279 · 102 rad/s

∆ϕdmf 0.000 · 100 rad

ωad 4.516 · 101 rad/s

State Value Unit

∆ϕad 0.000 · 100 rad

ωwh 4.594 · 101 rad/s

∆ϕwh 0.000 · 100 rad

vcar 1.434 · 101 m/s

Tab. 5.1: Initialization of the powertrain model IVP for parameter estimation.

62 Chapter 5. Parameter Estimation

Model Parameters

Parameters are initialized to coarse estimates along with relatively lax bounds, allowing for
parameter variations over two orders of magnitude. As long as physically meaningful, a
bound gets shifted and adapted when hit during the process of parameter estimation.

Model Outputs

Output residuals are divided by scaling factors to be found in Tab. 5.2 in order to yield
approximately equal ℓ2 residuals on the first iteration. Residuals of selected outputs are
weighted by the observed trajectory’s curvature in the neighborhood of the residual. This
puts emphasis on the oscillation phenomena found in the observed data, whose accurate
representation is the prior aim of the parameter estimation process. The side shaft torque
signal Mss is excluded from this setup since the level of this torque signal shows a noticeable
offset when compared to observed data. This is blamed on an inaccurately tuned measure-
ment device. As clearly visible from the graphs on page 66, the acceleration signal is far too
noisy to serve as a good reference for the acceleration computed from the ODE model. Thus
the model output acar is also excluded from this setup.

Model Output Signal Delays

Careful comparison of the ODE model’s behavior against the measurement data reveals that
the velocity signals got recorded with noticeable delays during observation on the test track.
These delays may be blamed on low data transmission rates combined with long signal paths,
and the usage of a prioritized data transfer scheme in the car. We account for them by
introduction of additional signal delay parameters into the parameter estimation problem,
that allow the time shift of the observed data to be estimated. This enabled us to significantly
improve the obtained results. Signal delays are initialized to zero, with an allowed range of
one second.

Model Output nmot Mcs ncs Mss nss vwh vcar acar

Used in Objective × × × – × × × –
Curvature Weighting × × × – × – – –
Delays Expected – – – – – × × –
Scale 3.500 11.000 0.030 3.500 1.900 0.550 0.005 0.005

Tab. 5.2: Usage and curvature weighting of the powertrain model outputs.

5.4.2 Parameter Estimation Results

This section contains the signal delays, model parameters, and model output residuals we
found using the new software tool QuickFit (appendix A).

Output Delay Standard Deviation Unit

vwh −3.124415 · 10−2 −4.100000 · 10−3 13.12% s

vcar −2.235588 · 10−3 −2.820410 · 10−3 126.16% s

Tab. 5.3: Estimated signal delays in observed data for the powertrain model.

Output vcar shows no traceable delay, the estimated delay can be assumed as zero within the
estimated standard deviation. The estimated delay of the output signal vwh falls within the
expected bounds of 20 to 40 milliseconds.

5.4. Powertrain Parameter Estimation 63

Parameter Std. Dev. Unit

ddmf 27.06% Nm s/◦

ddmf,2 8.72% Nm s/◦

Jdmf,1 2.46% kg m2

Jdmf,2 0.39% kg m2

ccs 15.52% Nm/◦

dcs 52.11% Nm/◦

dad 24.39% Nm s/◦

Jad 7.60% kg m2

css 4.23% Nm/◦

Parameter Std. Dev. Unit

dss 53.00% Nm/◦

pss 5.52% ◦
dwh 8.09% Nm s/◦

Jwh 6.03% kg m2

µroll 0.17% –
rtyre 0.06% m

Acar 1.05% m2

mcar 0.05% kg

Tab. 5.4: Estimated uncertainties for the optimal parameter set of the powertrain model, given
in percent of the estimated parameter values. For non-disclosure reasons, the actual values
are omitted.

We were able to identify most parameter values with good confidence, e.g., with an estimated
standard deviation of around 5% of the nominal parameter value. We found, however, that
the uncertainty in the damping coefficients such as ddmf , dcs, dad, and dss, is noticeably higher.
We could not obtain an estimate for the parameter ddmf,1, which hit the lower bound of zero.
Parameters that can be directly compared to real-world measurements, such as mcar or rtyre,
stay close to the expected values. The deviation of Acar from the expected value is attributed
to actual deviations of the parameters ̺air, cw, and β (see Eq. (2.11c)), which were encoded
as fixed values and not exposed as variable parameters in the present model.

Samples Weighted ℓ2 Unweighted ℓ2
[Hz] Overall per Sample Overall per Sample

nmot 100 8.6168 ·101 7.0741 ·10−1 1.6691 ·102 1.3703 ·100

Mcs 1000 1.1857 ·102 9.7342 ·10−1 4.0551 ·102 3.3291 ·100

ncs 1000 1.1035 ·102 9.0590 ·10−1 3.8731 ·102 3.1797 ·100

Mss 1000 1.0913 ·102 8.9593 ·10−1 1.2032 ·103 9.8776 ·100

nss 1000 1.0526 ·102 8.6422 ·10−1 5.7897 ·101 4.7532 ·10−1

vwh 50 1.3315 ·102 1.0931 ·100 6.1253 ·10−1 5.0286 ·10−3

vcar 50 9.5147 ·101 8.0968 ·10−1 4.9476 ·10−1 3.7245 ·10−3

acar 1000 1.0677 ·102 8.7660 ·10−1 3.2033 ·100 2.6298 ·10−2

Tab. 5.5: Residuals of the optimal powertrain model parametrization.

Pages 64 to 67 compare the model’s outputs using the obtained parameter set against the se-
ries of observed data from the test track. The model obviously contains no systematic errors;
the presented average residuals per sample (given in units of the output signal) are negligi-
ble. All graphs show an extremely satisfying match of the simulated trajectories against the
observed data, the already mentioned exception being the side shaft torque signal Mss. The
results constitute a considerable improvement over those presented by Stelzer [55].

64 Chapter 5. Parameter Estimation

Powertrain Torques

On the top of Fig. 5.2, an overview over the whole time horizon of 37.0 seconds is shown, al-
lowing to judge on the general validity of the model. Detailed graphs of the four acceleration
phases follow, each one staring with a tip in, terminated by a tip out after two to four seconds.

 0 5 10 15 20 25 30 35

T
or

qu
e

[N
m

]

t [s]

(a) Cardan shaft (Mcs, bottom) and side shaft (Mss, top) torque over the whole time horizon.

 7.5 8 8.5 9 9.5 10 10.5 11 11.5

T
or

qu
e

[N
m

]

t [s]

Observed
Model

(b) Details of the first acceleration phase.

 16 17 18 19 20 21

T
or

qu
e

[N
m

]

t [s]

Observed
Model

(c) Details of the second acceleration phase.

 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

T
or

qu
e

[N
m

]

t [s]

Observed
Model

(d) Details of the third acceleration phase.

 31.5 32 32.5 33 33.5 34 34.5

T
or

qu
e

[N
m

]

t [s]

Observed
Model

(e) Details of the fourth acceleration phase.

Fig. 5.2: Observed () and simulated () cardan and side shaft torques after parameter
estimation.

5.4. Powertrain Parameter Estimation 65

Powertrain Rotation Speeds

 0 5 10 15 20 25 30 35

S
pe

ed
 [m

in
-1

]

t [s]

Observed
Model

(a) Motor (nmot, top), cardan shaft (ncs, middle), and side shaft (nss, bottom) rotation speeds over the whole time
horizon.

 7.5 8 8.5 9 9.5 10 10.5 11 11.5

S
pe

ed
 [m

in
-1

]

t [s]

Observed
Model

(b) Details of the first acceleration phase.

 16 17 18 19 20 21

S
pe

ed
 [m

in
-1

]

t [s]

Observed
Model

(c) Details of the second acceleration phase.

 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

S
pe

ed
 [m

in
-1

]

t [s]

Observed
Model

(d) Details of the third acceleration phase.

 31.5 32 32.5 33 33.5 34 34.5

S
pe

ed
 [m

in
-1

]

t [s]

Observed
Model

(e) Details of the fourth acceleration phase.

Fig. 5.3: Observed () and simulated () rotation speeds after parameter estimation: En-
gine (top), cardan shaft (middle), and side shaft (bottom).

66 Chapter 5. Parameter Estimation

Car Acceleration

The observed acceleration signal is too noisy to serve as a good reference, and is omitted from
the objective. Nonetheless, especially during the first three acceleration phases we obtain an
acceptable match of the oscillations in both amplitude and frequency.

 0 5 10 15 20 25 30 35

A
cc

el
er

at
io

n
[m

/s
2]

t [s]

Observed
Model

(a) Car acceleration (acar) over the whole time horizon.

 7.5 8 8.5 9 9.5 10 10.5 11 11.5

A
cc

el
er

at
io

n
[m

/s
2]

t [s]

Observed
Model

(b) Details of the first acceleration phase.

 16 17 18 19 20 21

A
cc

el
er

at
io

n
[m

/s
2]

t [s]

Observed
Model

(c) Details of the second acceleration phase.

 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

A
cc

el
er

at
io

n
[m

/s
2]

t [s]

Observed
Model

(d) Details of the third acceleration phase.

 31.5 32 32.5 33 33.5 34 34.5

A
cc

el
er

at
io

n
[m

/s
2]

t [s]

Observed
Model

(e) Details of the fourth acceleration phase.

Fig. 5.4: Observed () and simulated () car acceleration after parameter estimation.

5.4. Powertrain Parameter Estimation 67

Rear Wheel Velocity

Up to the delay of approximately 31 milliseconds listed in Tab. 5.3, the second velocity signal
vcar shows identical features and quality of fit. In favor of clarity we omitted it here.

 0 5 10 15 20 25 30 35

V
el

oc
ity

 [k
m

/h
]

t [s]

Observed
Model

(a) Rear wheel velocity (vwh) over the whole time horizon.

 7.5 8 8.5 9 9.5 10 10.5 11 11.5

V
el

oc
ity

 [k
m

/h
]

t [s]

Observed
Model

(b) Details of the first acceleration maneuver.

 16 17 18 19 20 21

V
el

oc
ity

 [k
m

/h
]

t [s]

Observed
Model

(c) Details of the second acceleration maneuver.

 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29

V
el

oc
ity

 [k
m

/h
]

t [s]

Observed
Model

(d) Details of the third acceleration maneuver.

 31.5 32 32.5 33 33.5 34 34.5

V
el

oc
ity

 [k
m

/h
]

t [s]

Observed
Model

(e) Details of the fourth acceleration maneuver.

Fig. 5.5: Observed () and simulated () rear wheel velocity after parameter estimation.

68 Chapter 5. Parameter Estimation

5.5 Powertrain Model Identification

This section motivates and describes the construction of a reduced powertrain model. This
model is non-stiff, and can be solved by the explicit Runge-Kutta method presented in Chap-
ter 4.

5.5.1 Eigenvalue Analysis

By linearization of the nonlinear ODE system around the point (t, ŷ,p),

dy

dt
(t) =

df

dy
(t,y,p)

∣

∣

∣

y=ŷ
(y − ŷ) + f(t, ŷ,p) (5.51)

we obtain the nonlinear system’s time-dependent fundamental matrix F (t) := df

dy
(t,y,p). If

analytic derivatives of the right-hand side (cf. Griewank et al. [25]) are not available, the
columns of the fundamental matrix can be obtained by finite-difference approximation,

F •j(t) :=
df

dyj

(t,y,p) ≈ f(t,y + εsje
i,p)− f(t,y,p)

εsj

, (5.52)

where the sj are scalers of the states yj . The disturbance ε should be chosen as ε =
√

mach

where mach denotes the machine precision (cf. Bock [6]).

Eigenvalues of the matrix F characterize the fundamental solutions of the ODE system as
follows. We may associate an eigenfrequency fe and a damping factor D with a pair of
complex conjugated eigenvalues with non-zero imaginary part, while a decay constant t may
be computed for a single non-zero real eigenvalue (cf. Königsberger [33], Stelzer [55]),

fe :=
1

2π
|ℑλ| , D := − 1

|λ|ℜλ, t := − 1

λ
(λ ∈ R). (5.53)

A stiff ODE system is characterized by eigenvalues with widely differing absolute values.
Such systems frequently are impossible to solve with an explicit solver such as explicit Runge-
Kutta methods, or require excessively many small steps to be computed.

5.5.2 Eigenvalues of the Powertrain Model

Using the presented scenario and set of parameters, the eigenvalues of the powertrain ODE
model were computed over the time horizon of 37.0 seconds. The results are visualized in
Fig. 5.6; eigenfrequencies and damping factors can be found in Tab. 5.6.

In Stelzer [55], an earlier revision of the powertrain model was analytically linearized. The
eigenvalues of such a system obviously stay fixed over the whole time horizon. Thus, our
results contain those of [55] as a subset. A notable difference concerns the cardan shaft’s
eigenvalues (clusters (3) and (4) in Fig. 5.6), which indicate overdamping if using our param-
eter set. Stelzer [55] found a complex conjugated pair associated with an eigenfrequency of
about 400 Hz here, being highly dependent on the cardan shaft’s damping coefficient dcs.
From Tab. 5.4 we find that exactly this parameter is most ill-determined. We can reproduce
the reported results by replacing dcs with an artificially lowered value still within the uncer-
tainty set.

5.5. Powertrain Model Identification 69

 0

 20

 40

 60

 80

 100

 120

-1000 -800 -600 -400 -200 0

ℑ

ℜ

(1)

(2)

(3) (4) (5)
 0

 20

 40

 60

 80

 100

 120

-60 -50 -40 -30 -20 -10 0

ℑ

ℜ

(1)

(2)

(4) (5)

Fig. 5.6: Eigenvalues of the full powertrain model.

Lowest Highest D [−] fe [Hz]

(1) −46.07 ±68.23ı −42.60 ±101.3ı 0.385 − 0.674 10.86 − 16.12

(2) −9.589 ±20.80ı −3.410 ±28.47ı 0.119 − 0.419 3.311 − 4.532

Lowest Highest t [s]

(3) −900.3 −893.6 0.001

(4) −56.54 −50.83 0.018 − 0.02

(5) −0.0086 −0.0143 69.93 − 116.3

Tab. 5.6: Eigenvalues of the full powertrain model during the scenario of Fig. 5.1. Eigenvalues
and corresponding eigenfrequencies, damping factors, and decay constants are given to four
significant digits.

Concerning the cardan shaft we conclude

1. That the cardan shaft constitutes the main source of stiffness in the powertrain model;

2. That information about a critical parameter determining its behavior cannot be obtained
from the observed data available;

3. That it does not contribute to the modeling of the oscillation phenomena we are inter-
ested in, taking place at around 4 Hz to 16 Hz (cf. Stelzer [55]).

5.5.3 Curing Stiffness by Removing the Cardan Shaft

As clearly seen from the eigenvalue analysis carried out in the previous section, the opti-
mal parametrization introduces a degree of stiffness into the powertrain model. This makes
it inherently hard to treat with explicit integration methods such as Runge-Kutta methods
discussed in Chapter 4. The results allow to identify the harmonic oscillator modeling the
cardan shaft as the single source of stiffness.

By omitting the cardan shaft (ccs, dcs) and the associated axle drive’s moment of inertia (Jad),
we’re led to the following modifications to the powertrain model. The gearbox input torque
Mcs is supplied by the transmission, thus Eq. (2.5) is replaced by

Mgb :=

{

1
igbηgb

Mtr if ∆ϕss(t) < 0,
ηgb

igb
Mtr if ∆ϕss(t) > 0,

(5.54)

70 Chapter 5. Parameter Estimation

whereas the transmission’s input angular velocity ωad is supplied by the gearbox and Eq. (2.8)
is replaced by

Mtr :=

{

1
itrηtr

Mss + Mloss,tr (ωgb(t)) if ∆ϕss(t) < 0,
ηtr

itr
Mss −Mloss,tr (ωgb(t)) if ∆ϕss(t) > 0,

(5.55)

ωtr(t) :=
1

itr
ωgb(t). (5.56)

In this reduced model the cardan shaft and axle drive equations listed in Section 2.1 are no
longer required. The resulting model is visualized in Fig. 5.7

ωdmf,2ωdmf,1

Jmot cdmf ,
ddmf

ddmf,2

ddmf,1

Jdmf,2 Jdmf,1

igb:1

ωgb

itr:1

ωtr

css,
dss

ωwh

dwh Jwh

∆ϕdmf ∆ϕwh

Fig. 5.7: Schematic of the reduced powertrain model.

 0

 20

 40

 60

 80

 100

 120

 140

-1000 -800 -600 -400 -200 0

ℑ

ℜ

(1)

(2)

(5)
 0

 20

 40

 60

 80

 100

 120

 140

-100 -80 -60 -40 -20 0

ℑ

ℜ

(1)

(2)

(5)

Fig. 5.8: Eigenvalues of the reduced powertrain model.

Lowest Highest D [−] fe [Hz]

(1) −87.92 ±99.36ı −83.71 ±130.6ı 0.54 − 0.66 15.81 − 20.78

(2) −11.90 ±28.06ı −4.706 ± 32.7ı 0.143 − 0.390 4.466 − 5.196

Lowest Highest t [s]

(5) −0.0084 −0.0143 69.93 − 119.0

Tab. 5.7: Eigenvalues of the reduced powertrain model during the scenario of Fig. 5.1. Eigen-
values and corresponding eigenfrequencies, damping factors, and decay constants are given
to four significant digits.

Chapter 6

Nonlinear Optimal Control Problems

In this chapter we present a class of optimal control problems, and their treatment using the
direct multiple shooting method due to Bock and Plitt [7]. We describe a discretization approach
to obtain a finite-dimensional nonlinear problem (NLP) that may be solved using, e.g., the
SQP method presented in Chapter 3. The introduction of implicit switches into the optimal
control problem class is discussed, and an overview over the advantages and sensitive points
of the chosen approach is given.

The guiding example of powertrain oscillations is used to to present and formulate a real-
world optimal control problem. The oscillation phenomena occurring when a car is being
accelerated are discussed in detail, and an objective function for the measurement of such
oscillations is presented. We formulate an optimal control problem fitting into the presented
problem class. From its solution using the discussed techniques, we obtain engine control
schemes that allow for virtually oscillation-free acceleration of the car in a multitude of oper-
ating conditions.

6.1 The Continuous Optimal Control Problem

We present here a fairly general optimal control problem formulation closely related to the
one treated by the optimal control software package MUSCOD-II [38]. From the simulation
of the state trajectory x(t) of a dynamic process on the time horizon T := [t0, tf] ⊂ R

x : T −→ X ⊂ R
nx , t 7→ x(t),

we compute and strive to minimize a performance index φ

φ
(

tf ,x(tf),p
)

(6.1)

evaluated at the end of T , while requiring certain constraints to be satisfied. This dynamic
process is fully described by the solution of a system of ordinary differential equations (ODEs)
with initial values x0 ∈ X ⊂ R

nx subject to optimization

s.t.
dx

dt
(t; x0,u,p) = f

(

t,x(t),u(t),p, sgn σ(t)
)

, t ∈ T , (6.2a)

x(t0) = x0. (6.2b)

The process is controlled by an external control function u(t) on the whole of T , also subject
to optimization,

u : T −→ U ⊂ R
nu , t 7→ u(t).

We may require the solution to fulfill implicitly defined inequality constraints on T ,

s.t. c
(

t,x(t),u(t),p
)

> 0, t ∈ T , (6.3a)

as well as equality and inequality point constraints depending on the states and controls,

s.t. g
(

x(t0),u(t0), . . . ,x(tf),u(tf),p
)

= 0, (6.4a)

h
(

x(t0),u(t0), . . . ,x(tf),u(tf),p
)

> 0. (6.4b)

72 Chapter 6. Nonlinear Optimal Control Problems

These point constraints are evaluated on a predefined constraint grid only:

t0 < t1 < . . . < tm−1 < tm = tf , m ∈ N. (6.5)

In addition, differential states x(t) and controls u(t) at any point t ∈ T are commonly re-
stricted to appropriate subsets of R

n∗ ,

s.t. x(t) 6 x(t) 6 x(t), (6.6a)

u(t) 6 u(t) 6 u(t). (6.6b)

The same is true for the global model parameters p,

s.t. p 6 p 6 p. (6.7)

These constraints, as well as the initial value condition (6.2b), however, are already covered
by the more general inequality constraint function c.
The treatment of implicit discontinuities requires a switch function σ (4.22) whose sign struc-
ture vector

sgn σ(t) := sgn σ
(

t,x(t),u(t),p
)

(6.8)

appears as a dependency in the ODE system’s right-hand side (6.2a) to realize discontinuities
of the right-hand side. Discontinuities of the states x are realized using jump functions ∆,

x(t+s) = ∆j

(

t−s ,x(t−s),u(t−s),p, sgn σ(t−s)
)

∀ts ∈ T : ∃j ∈ N : σj(t
−
s) = 0. (6.9)

Here, the superscript signs stand for the left- vs. right-hand side limits with respect to time.
The theory and algorithms behind the detection, location, and treatment of such implicit
switches are presented in Chapter 4.

We assume all functions to be C 2 functions of their arguments. In addition we assume the
ODE system’s right-hand side f (6.2a) to fulfill for given initial values x0, controls u(t), and
parameters p the usual assumptions ensuring local existence and uniqueness of the solution
x(t) describing the state trajectory of the dynamic process on T (cf. Stoer and Bulirsch [56]).

6.1.1 Generality of the Problem Formulation

Some of the restrictions found in the above optimal control problem class can be lifted by
procedures described in this section. We mention scenarios with variable end-time tf , and
objective functions other that the Mayer-term objective φ evaluated at the end of the dynamic
process.

Variable Time Horizons

It is without loss of generality to use a fixed time horizon T in the above formulation. For
instance, observe that for problems with free end time t̃f , we may introduce a new differential
state xnx+1 whose initial value xnx+1(t0) := t̃f represents the free end time and is subject to
optimization. By appropriate extension and linear time transformation of the original ODE
system’s right hand side,

θ(t) := t0 + t(xnx+1 − t0), t ∈ [0, 1] ⊂ R, (6.10a)

dx

dθ
(θ; x0,u) = f̃

(

θ,x(θ),u(θ)
)

:= (xnx+1 − t0)

[

f
(

θ,x(t),u(t)
)

0

]

, (6.10b)

we easily obtain a new problem description on the normalized time horizon [0, 1] ⊂ R whose
solution coincides with the one of the original problem on [t0, t̃f] ⊂ R. For numerical reasons,
a reasonable implementation will actually want to automatically apply these transformations
so as to always work on the normalized time horizon internally.

6.2. Discretization of the Continuous Problem 73

Objective Functions

In the literature, several different performance index types are distinguished. Amongst them
one finds the objective function of generalized Bolza1 type (6.11), comprising the Mayer2-type
objective M evaluated at the end of the controlled process (as included in the above problem
class), and the Lagrange-type integral objective Λ evaluated on the whole of T ,

φ
(

t,x(t),u(t),p, sgn σ(t)
)

:= M
(

tf ,x(tf),p
)

+

∫

T

Λ
(

t,x(t),u(t),p, sgn σ(t)
)

dt. (6.11)

In addition, least-squares objectives

φ
(

t,x(·),u(·),p, sgn σ(t)
)

:=

∫

T

L2
(

t,x(t),u(t),p, sgn σ(t)
)

dt. (6.12)

as discussed in Chapter 5 are commonly supported. From a theoretical point of view it is
obviously sufficient to discuss Mayer-type objectives. All other types of objectives may be
regarded as additional differential states with terminal values contributing to the objective of
Mayer type.

6.2 Discretization of the Continuous Problem

In order to solve the presented optimal control task, we discretize the continuous problem
formulation by replacing the control function u with approximations of finite dimension. The
resulting discrete problem can then be solved by standard Newton-Lagrange algorithms for
nonlinear programs (NLP), such as sequential quadratic programming (SQP), an overview of
which is given in Section 3.2.

6.2.1 Control Discretization

We replace the control function u by an approximation defined by way of a finite set of
control parameters qj ∈ R

nq , j = 1, . . . , k. From an algorithmic point of view, separable rep-
resentations of the approximation are to be preferred over global representations for several
reasons (cf. Leineweber [38]):

1. Discontinuities, frequently encountered in exact solutions to bang-bang optimal control
problems, are difficult to deal with.

2. The influence of a specific parameter qj on a global representation may be difficult to
grasp (think of, e.g., power or Fourier series here).

3. For numerical efficiency, it is of great benefit to have a Lagrangian function that is
separable in the sense that it may be composed from sums of functions depending on a
local subset of the control discretization parameters only; see Equation (6.23a).

As a consequence, a piecewise approximation to the control function u is sought for. In a
general framework, we introduce a control discretization grid on T = [t0, tf],

t0 < t1 < . . . < tm−1 < tm = tf , m ∈ N. (6.13)

For simplicity, we will assume that this grid coincides with the decoupled point constraint
grid (6.13). We compose approximations to the control function u on each of the subintervals
[ti, ti+1] ⊂ T from selected basis functions bi parametrized by control parameters qi ∈ R

ki×nu ,

u(t) |[ti,ti+1]:= bi(t, qi), i = 0, . . . ,m− 1. (6.14)

Simple choices as depicted in Fig. 6.1 could be
1 Oskar Bolza (1857–1942)
2 Adolph Mayer (1839–1908)

74 Chapter 6. Nonlinear Optimal Control Problems

1. piecewise constant controls

bi(t, qi) := qi,1, ki = 1, (6.15)

2. piecewise linear controls,

bi(t, qi) := qi,1 + (qi,2 − qi,1)
t− ti

ti+1 − ti
, ki = 2, (6.16)

3. or cubic spline controls, the functions βj(τ) being the cubic spline base polynomials on
[0, 1] ⊂ R,

bi(t, qi) :=

ki
∑

j=1

qi,jβj

(

t− ti
ti+1 − ti

)

, ki = 4. (6.17)

t
t1 tm t

0

u

tm-1 … … t
2

q
0

q
1

q
2

q
m-1

(a) Piecewise constant controls.

t
t
1
 t

m
 t

0

u

tm-1 … … t
2

q
0

q
1

q
2

q
m-1

(b) Piecewise linear controls with
continuity.

t
t
1
 t

m
 t

0

u

tm-1 … … t
2

q
0

q
1

q
2

q
m-1

(c) Cubic spline controls with conti-
nuity, but not differentiability.

Fig. 6.1: Examples of control discretizations.

It is obvious that the choice of the discretization grid (6.5) strongly influences the quality of
the obtained solution. If a continuous piecewise discretization of u is desired, it is favourable
to enforce continuity through additional constraints on the control discretization parameters,

bi+1

(

ti+1, qi+1

)

− bi (ti+1, qi) = 0. i = 0, . . . ,m− 1. (6.18)

6.2.2 Constraint Discretization

The inequality constraints (6.3) have to be discretized, and are enforced on the discretization
grid nodes only.

c
(

ti, si, bi (t, qi) ,p
)

> 0. (6.19a)

While this generally leads to an approximation of the original constraints only, one finds that
in many practical cases this approximation is sufficiently precise, or even exact due to the
nature of the underlying problem [38]. A more advanced approach from the field of semi-
infinite programming is presented in Potschka [48] to reduce the approximative solution’s
violation of the continuous constraints.

6.2.3 State Parametrization

After the presented discretization steps, the new problem might now be solved by combining
single shooting integration of the IVP with some NLP solving technique.

As shown by Bock [6] in the case of boundary-value problems (BVPs) for parameter estima-
tion, however, this approach will frequently fail even if excellent estimates of the initial values
x(t0) are available. The nonlinear problem solving method may fail to converge, or a solution
to the initial-value problem may not even exist numerically, so that the constraints c, g, and

6.2. Discretization of the Continuous Problem 75

h cannot even be evaluated on the whole of T . These problems arise due to the propagation
of discretization and truncation errors while integrating unstable ODE systems.

The direct multiple shooting method, cf. Bock and Plitt [7], considerably improves the situation.
Instead of using a single initial value x(t0) = x0 only, we compute the values

si = x(ti), i = 0, . . . ,m, (6.20)

on the nodes of the discretization grid (6.5), or more generally on a suitable sub- or superset
of that grid. The IVP (6.2) is thus separated into m IVPs on the sub-intervals [ti, ti+1] ⊂ T ,

dx

dt
(t; si, qi) = f

(

t,x(t), bi(t, qi),p, sgn σ(t)
)

, t ∈ [ti, ti+1], (6.21a)

x(ti) = si. (6.21b)

The problem is further augmented by the matching conditions

x(ti+1, si, qi,p) = si+1, i = 0, . . . ,m− 1, (6.22)

that ensure continuity of the spliced trajectory x(t) hence representing a solution of the orig-
inal IVP (6.2).

t
t1 tm

x

t
m-1 … … t2

s2
s1

s
m

t0

s0

(a) Initial states and spliced trajectory.

t
t1 tm

x

t
m-1 … … t2

s2

s1
s
m

t0

s0

(b) Matching conditions fulfilled by the final
trajectory.

Fig. 6.2: State discretization for the direct multiple-shooting method.

6.2.4 The Discrete Nonlinear Problem

We summarize here the nonlinear problem formulation resulting from the discretization of
the optimal control problem class we presented.

min
p,qisi,sm

φ
(

tf , sm,p
)

(6.23a)

s.t.
dxi

dt
(t; si, qi,p) = f

(

t,xi(t), bi (t, qi) ,p, sgn σ(t)
)

, t ∈ [ti, ti+1], (6.23b)

xi(ti) = si, (6.23c)

0 = si+1 − xi (ti+1, si, qi,p) , (6.23d)

0 = bi+1

(

ti+1, qi+1

)

− bi

(

ti+1, qi

)

, (6.23e)

0 = g
(

ti, si, bi (ti, qi) ,p
)

, (6.23f)

0 > h
(

ti, si, bi (ti, qi) ,p
)

, (6.23g)

0 > c
(

ti, si, bi (ti, qi) ,p
)

, (6.23h)

where i = 0, . . . ,m− 1. This problem may be solved with the sequential quadratic program-
ming (SQP) method presented in Chapter 3.

76 Chapter 6. Nonlinear Optimal Control Problems

6.3 Treatment of Implicit Switches

In this section we look at the treatment of implicit switches on the multiple-shooting and SQP
level of the algorithm. We discuss both restrictions and features that arise from the inclusion
of implicit discontinuities in the optimal control problem.

6.3.1 Implicit Switches and the Multiple Shooting Method

During the iterative process of finding a solution to the optimal control problem, guided by
the sequential quadratic programming (SQP) algorithm, special care must be taken of implicit
switch events.
The integrator method described in Chapter 4 properly accounts for updates of the first-order
sensitivities. Thus, the discontinuity is effectively hidden from the SQP level as long as the
switch time point ts stays within a single multiple-shooting interval [ti, ti+1].
Things are different when looking at second-order sensitivity information contained in the
Hessian of the Lagrangian (3.18). Finite-difference computation of the Hessian, in addition
to being extremely costly, suffers from imprecise approximations of the second derivatives.
Within the optimal-control software MUSCOD-II, rank-2 BFGS updates are employed (cf.
Leineweber [38], Nocedal and Wright [43]) that accumulate curvature information from first-
order sensitivities over the course of several iterations.
Here the caveat is, that, once an implicit switch crosses a multiple-shooting discretization
grid boundary, the solution as well as it’s derivatives of first order change in a discontinuous
manner. The curvature information accumulated in the Hessian approximate may essentially
be invalid for subsequent iterations. For this reason, we currently artificially restrict switch
events to the shooting interval they occurred in during the first SQP iteration. If optimality
cannot be reached under this restriction, different initial controls are chosen to move the
switch event to the proper adjacent shooting interval.
Experience shows that discontinuities in the right-hand side only (∆ = 0 using the notation
of Chapter 4) can be overcome by the SQP algorithm, and the Hessian approximation appears
to get adjusted by the BFGS updates of subsequent iterations. As of now, switches showing
jumps in the differential states, however, need to be restricted as described above. A well-
founded theory that allows for adapting the SQP algorithm to handle such discontinuities
that cannot be hidden on the integrator level seems highly desirable and mandates further
research efforts.

6.3.2 Implicit Objective and Constraints

At the very beginning of this chapter we presented an optimal control problem class with
specialized objective function as well as equality- and inequality constraints. While the Mayer
objective is evaluated at the end of the time horizon T only, the constraint functions may
be evaluated on pre-selected (or possibly all) multiple shooting grid nodes. It is, however,
impossible to evaluate an objective or constraint in an a-priori unknown point in time being
defined by an implicit condition.
In MUSCOD-II, this lack of flexibility may partially be overcome by the use of a multi-stage
problem setup. Essentially, we concatenate several sub-problems with variable duration, each
of which is terminated upon satisfaction of the respective implicit condition.
We’re still limited in several ways, though. We need to know in advance the order and
number of required stages, and need to make sure that both stay fixed during the whole
optimization scenario. We must also ensure that all implicit conditions are met on every
iteration, and that the first time they’re met is actually the proper time.
The inclusion of implicit switches relieves us from this burden. We introduce additional dif-
ferential states representing the value of the objective or the equality- or inequality constraint
in question. Upon fulfillment of the implicit condition, we trigger a jump in the respective

6.3. Treatment of Implicit Switches 77

differential state. Conventional Mayer-term objective or end-point constraints are then evalu-
ated from the values of these additional states at the end of the time horizon. This effectively
removes all of the mentioned restrictions of multi-stage problem setups. In addition, the
effort to be put in coding and proper problem setup is much reduced.

78 Chapter 6. Nonlinear Optimal Control Problems

6.4 Optimal Control of Powertrain Oscillations

In the final section of this chapter we focus again on the guiding example of powertrain oscil-
lations. Using the model presented in Chapter 1 and the set of model parameters identified
in Section 5.4, we describe the optimal control problem formulation. Convincing results are
obtained that allow for acceleration of the powertrain while preventing nearly all oscillations.

6.4.1 Overview

In this section we present the optimal control problem setup. We give some motivation
and explanations from engineering for the formulation of objective and constraints and the
presentation of the obtained results.

Controls

The optimal control problem formulation respects two different engine controls. First, the
plain engine torque, denoted by u1(t), is controllable within given upper and lower bounds
for the torque level (6.24d) and derivative (6.24e). It can be changed every ten milliseconds,
thus defining the minimal multiple-shooting grid resolution. In the actual implementation
we control the piecewise constant derivative u̇1(t) and introduce an additional differential
state for u1(t) itself, which in turn is piecewise linear continuous.
The ignition timing angle u2(t) ranges between zero and one (6.24f). It defines a negative offset
to the plain engine torque, depending on the powertrain’s current revolutionary speed, and
the plain engine torque. This is accomplished by interpolating from a table of given torque
offsets for certain revolutionary speeds and plain engine torques. When presenting results,
the graphs show the effective engine torque only. The engine torque’s lower limit might thus
appear to be violated, but it is clear that this is actually never the case.
In reality we are able to instantaneously change the ignition timing angle six times during a
single duty cycle (two revolutions) of the engine. As this would require a variable multiple-
shooting grid resolution depending on the powertrain’s revolutionary speed, we chose to
restrict ourselves to changing the ignition timing angle on the same time basis as the plain
engine torque, and argue that the incurred loss of freedom does not significantly worsen the
obtained solutions.

Objective

Our objective is to diminish powertrain oscillations, effectively observed in the acceleration of
the car, as far as possible. In order to define an objective function measuring oscillations, we
compute the non-oriented area of the acceleration trajectory over the final acceleration af that
is reached once the oscillations have decayed. This becomes clear from Fig. 6.3. The start-
ing time ta is scenario-dependent. The implementation is using a continuous least-squares
objective function (6.24), treated by the Gauß-Newton algorithm presented in Chapter 3.

t
tf t0

a(t)

ta

0

af

acar

Fig. 6.3: A least-squares objective for measuring oscillations.

6.4. Optimal Control of Powertrain Oscillations 79

Graphs

Fig. 6.4 visualizes the powertrain’s behavior in the uncontrolled case. For non-disclosure
reasons, all graphs of simulated data remain unlabeled on the ordinate. We simply apply
a plain engine torque ramp of maximum height and slope (Fig. 6.4(a)), and observe the
resulting oscillations in both acceleration (Fig. 6.4(b)) and velocity (Fig. 6.4(c)).

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Engine torque ramp.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

100%

105%

 0 0.1 0.2 0.3 0.4 0.5

v c
ar

 [k
m

/h
]

t [s]

(c) Car’s velocity vcar.

-pss

 0

+pss

 0 0.1 0.2 0.3 0.4 0.5

∆ϕ
ss

 [°
]

t [s]

(d) Side shaft angle ∆ϕss.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(e) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(f) Plot of ∆ω against ∆ϕss.

Fig. 6.4: Powertrain oscillations in coasting mode at 3,000 rpm when applying an engine
torque ramp with maximum height and slope.

Constraints

The side shaft’s angular delta is shown in Fig. 6.4(d) to explain the rotation speed delta
constraint. As seen in the introductory chapter, the side shaft contains a mechanical play
between −pss degrees and +pss degrees, indicated by vertical lines in the graph.

When starting in traction mode, the car is being actively accelerated by the engine, and the
side shaft is twisted in positive direction, i.e., ∆ϕss > pss. Further acceleration of the car is
then possible without the side shaft needing to traverse the play.

When starting in coasting mode, however, the car is moved by its own inertia and braked by
the engine. The side shaft is twisted in negative direction, i.e., ∆ϕss < −pss, and accelerating
the car requires to fully traverse the play in order to enter traction mode first. The incurred
delay of approximately 100 milliseconds can be seen in Fig. 6.4(b). When leaving the play and
entering traction mode (as indicated by the vertical line at around 0.1 s in the graphs above),
it is important to do so with limited revolutionary speed difference of the powertrain’s ends
(Fig. 6.4(e)). Otherwise, the mechanical play will hit its end-stop, which is undesirable for
both acoustic and durability concerns. Using the trivial engine torque ramp to accelerate the
car, this limit is clearly violated as seen in Fig. 6.4(e). The corresponding constraint is given
by Eq. (6.24a) in the optimal control problem formulation below.

Finally, Fig. 6.4(f) shows the side shaft’s angular delta ∆ϕss(t) plotted against the powertrain’s
rotation speed difference ∆ω(t). Coasting mode scenarios start in the leftmost area, while
traction mode scenarios start in the rightmost. The central area indicates an active side shaft
play. Engine control schemes satisfying the constraint are characterized by a trajectory that
crosses the vertical line +pss between the horizontal lines indicating the constraint on ∆ω.

80 Chapter 6. Nonlinear Optimal Control Problems

tf

traction mode active play

t0

+psw —psw

feasible speed delta

∆ϕsw

∆ω

+∆ωmax

—∆ωmax

coasting mode

Fig. 6.5: Explanation of the plot ∆ϕss against ∆ω. () is the resulting trajectory going from
t0 to tf (•) in time. The active side shaft play area () and the feasible rotation speed delta
area () are shaded. A trajectory is feasible if it crosses the strong vertical line ().

6.4.2 Problem Formulation

The complete optimal control problem formulation is as follows:

min
u,x

tf
∫

ta

(acar(t)− af)
2

dt +

tf
∫

t0

(

γ1u
2
1(t) + γ2u

2
2(t)

)

dt (6.24a)

s.t. ∆ωmax >
1

igbitr
ωdmf,1(t∆)− ωwh(t∆), (6.24b)

dx

dt
(t) = f

(

t,x(t),u(t),p, sgn σ(t)
)

, t ∈ T , (6.24c)

x(t0) = x0, (6.24d)

u1(t) ∈ [u1, u1], (6.24e)

du1

dt
(t) ∈ [δu1, δu1] on (ti, ti+1) ⊂ T , i = 0, . . . ,m− 1, (6.24f)

u2(t) ∈ [0, 1]. (6.24g)

where t0, ta, and tf are preselected time points. The unique point t∆ is implicitly and defined
by ∆ϕss(t∆) = +pss, and is obviously effective in coasting mode (∆ϕss(t0) < −pss) only.
Both controls are regularized by inclusion in the objective using appropriately chosen scalers
γ1 and γ2. We refer to Chapter 1 for a detailed presentation of the powertrain model f , and
the computation of acar(t). The states ωdmf,1(t), ωwh(t), and ∆ϕss(t) are scalar components of
the state vector x(t).
Over a time horizon of one second, the discretized nonlinear problem resulting from the use
of 100 multiple-shooting nodes consists of 1,000 variables, 800 equality constraints, and 2,001

inequality constraints.

6.4.3 Results

The above optimization problem was solved starting in coasting mode (∆ϕss(t0) < −pss) and
traction mode (∆ϕss(t0) > +pss), for initial engine speeds nmot(t0) of 2,000 and 5,000 revo-
lutions per minute, and for desired final accelerations af of 50% and 100% of the maximum
possible acceleration.
In general it can be seen that the oscillation phenomenon is worse in coasting mode, and
worse for lower initial engine speeds. As can be seen from the graphs, we succeeded in
obtaining engine control schemes that diminish powertrain oscillations to a very satisfying
degree for all evaluated scenarios.

6.4. Optimal Control of Powertrain Oscillations 81

All computations were performed using the RKFSWT integrator presented in Chapter 4 with
a tolerance TOL = 10−10, and using the MSSQP algorithm of MUSCOD-II (see Diehl et al.
[12], Leineweber [38]). Tab. 6.1 holds details on the numerical quality of the obtained solu-
tions. From the column of iteration counts it is clear that the main difficulty in solving the
above problem is to satisfy the rotation speed delta constraint (6.24a) in coasting mode.

Scenario KKT Scaled Lagrange Number of
Fig. Mode rpm af Tolerance Infeasibility Gradient Iterations

6.6 C., unconstr. 2000 100% 2.67 · 10−7 1.10 · 10−9 6.91 · 10−4 4

6.7 Coasting 2000 50% 8.97 · 10−9 2.84 · 10−6 8.37 · 10−5 25

6.8 Coasting 2000 100% 1.06 · 10−8 5.30 · 10−5 3.84 · 10−4 75

6.9 Coasting 5000 50% 5.39 · 10−7 2.14 · 10−4 8.30 · 10−3 62

6.10 Coasting 5000 100% 4.02 · 10−8 1.60 · 10−4 4.87 · 10−2 99

6.11 Traction 2000 50% 6.79 · 10−10 1.57 · 10−10 5.61 · 10−3 3

6.12 Traction 2000 100% 2.65 · 10−7 2.98 · 10−7 5.10 · 10−3 3

6.13 Traction 5000 50% 8.73 · 10−12 1.61 · 10−11 4.78 · 10−6 4

6.14 Traction 5000 100% 3.48 · 10−9 1.17 · 10−10 3.56 · 10−4 3

Tab. 6.1: Minimum powertrain oscillation: Qualities of the solutions. The acceptable KKT
tolerance was set to 10−6. Refer to Diehl et al. [12], Leineweber [38] for a detailed discussion
of these values.

Coasting Mode without the Rotation Speed Delta Constraint

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Effective engine torque.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(d) The constraint on ∆ω is violated.

Fig. 6.6: Minimum powertrain oscillations ignoring the rotation speed delta constraint. Here
nmot(t0) = 2000 min−1, ta = 0 s, af maximal. () denotes the optimal solution while ()
denotes the trajectories generated by a torque ramp with maximum slope.

82 Chapter 6. Nonlinear Optimal Control Problems

Coasting Mode at 2,000 rpm

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Effective engine torque.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(d) ∆ω plotted against ∆ϕss.

Fig. 6.7: Minimum powertrain oscillations in coasting mode. Here nmot(t0) = 2000 min−1,
ta = 0.25 s, af at 50% of the maximum.

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Effective engine torque.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(d) ∆ω plotted against ∆ϕss.

Fig. 6.8: Minimum powertrain oscillations in coasting mode. Here nmot(t0) = 2000 min−1,
ta = 0.25 s, af maximal. () denotes the optimal solution while () denotes the trajectories
generated by a torque ramp with maximum slope.

6.4. Optimal Control of Powertrain Oscillations 83

Coasting Mode at 5,000 rpm

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Effective engine torque.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(d) ∆ω plotted against ∆ϕss.

Fig. 6.9: Minimum powertrain oscillations in coasting mode. Here nmot(t0) = 5000 min−1,
ta = 0.1 s, af at 50% of maximum.

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Engine torque ramp.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(d) ∆ω plotted against ∆ϕss.

Fig. 6.10: Minimum powertrain oscillations in coasting mode. Here nmot(t0) = 5000 min−1,
ta = 0.1 s, af maximal. () denotes the optimal solution while () denotes the trajectories
generated by a torque ramp with maximum slope.

84 Chapter 6. Nonlinear Optimal Control Problems

Traction Mode at 2,000 rpm

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Engine torque ramp.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(d) ∆ω plotted against ∆ϕss.

Fig. 6.11: Minimum powertrain oscillations in traction mode. Here nmot(t0) = 2000 min−1,
ta = 0 s, af at of 50% of maximum.

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Engine torque ramp.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(d) ∆ω plotted against ∆ϕss.

Fig. 6.12: Minimum powertrain oscillations in traction mode. Here nmot(t0) = 2000 min−1,
ta = 0 s, af maximal. () denotes the optimal solution while () denotes the trajectories
generated by a torque ramp with maximum slope.

6.4. Optimal Control of Powertrain Oscillations 85

Traction Mode at 5,000 rpm

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Engine torque ramp.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(d) ∆ω plotted against ∆ϕss.

Fig. 6.13: Minimum powertrain oscillations in traction mode. Here nmot(t0) = 5000 min−1,
ta = 0 s, af at 50% of maximum.

min
 0

max

 0 0.1 0.2 0.3 0.4 0.5

M
m

ot
 [N

m
]

t [s]

(a) Engine torque ramp.

 0

 0 0.1 0.2 0.3 0.4 0.5

a c
ar

 [m
/s

2]

t [s]

(b) Car’s acceleration acar.

min

 0

max

 0 0.1 0.2 0.3 0.4 0.5

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

min

 0

max

-pss 0 +pss

∆ω
 [m

in
-1

]

∆ϕss [°]

(d) ∆ω plotted against ∆ϕss.

Fig. 6.14: Minimum powertrain oscillations in traction mode. Here nmot(t0) = 5000 min−1,
ta = 0 s, af maximal. () denotes the optimal solution while () denotes the trajectories
generated by a torque ramp with maximum slope.

Chapter 7

Robust Optimal Control Problems

In this chapter we consider nonlinear programs with uncertain parameters, and derive al-
gorithms that yield solutions that exhibit robustness against the specified uncertainties. The
popular worst-case approach of Ben-Tal and Nemirovskii [3] is presented, and leads to non-
linear programs with a bi-level structure that is hard to solve computationally. A linearization
approach due to Diehl et al. [13] and Körkel et al. [35], independently derived by Ma and
Braatz [40], restores the NLP structure and allows for treatment of the resulting robust non-
linear problems with Newton-Lagrange techniques such as the SQP method of Chapter 3.
Using the presented approach, we describe a robustified formulation of the optimal control
problem class of Chapter 6. We give details on the generation of second-order sensitivities,
and reveal a sparsity structure in the resulting sensitivity matrices. We further present an
approach to implement proper updates to the second-order sensitivities in implicit disconti-
nuities.

We apply the resulting algorithm to the problem of gentle powertrain acceleration, focusing
on the problem of controlling a smooth transition from coasting to traction mode. Con-
vincing results that exhibit robustness against the uncertainties identified in Chapter 5.4 are
presented, and prove the applicability of the invented algorithm.

The presented algorithm has been implemented within the ROBUST framework extension to
the optimal control software package MUSCOD-II, a brief description of which can be found
in Appendix C.

7.1 Uncertain Nonlinear Programs

In this section we present a class of robust nonlinear equality and inequality constrained
optimization problems with uncertain parameters. We address this problem class by a ro-
bust worst-case formulation due to Ben-Tal and Nemirovskii [3], which is difficult to treat
computationally.

7.1.1 Problem Formulation

We consider the following class of uncertain nonlinear problems

Definition 7.1. Uncertain Nonlinear Problem

min
x,u

f(x,u) (7.1a)

s.t. g(x,u,p) = 0, (7.1b)

h(x,u) > 0, (7.1c)

with an uncertain parameter vector p ∈ P . The functions f , g, and h are C 2 functions of their
arguments.

The parameters p are considered uncertain, and in general, we do not know the exact value
of p. We are merely confident to find the actual parameter p within some uncertainty set Up.

7.1. Uncertain Nonlinear Programs 87

Note that there is no actual restriction in the fact that the objective f and the inequality
constraints h are assumed to be independent of p. This apparent independence is easily
cured by the introduction of trivial additional equality constraints xnx+i = pi, i = 1, . . . , np.
The optimization variables of this problem class are partitioned into states x ∈ R

nx and
controls u ∈ R

nu . This distinction naturally arises in model-based optimal control problems
such as the nominal optimal control problem class presented in Chapter 6. The Jacobian ∂g

∂x

is assumed to be non-singular, so the states x can be regarded as implicit functions of the
controls u and the uncertain parameters p.

7.1.2 Expressing Uncertainty of a Parameter

The parameters p ∈ P are assumed to be uncertain, and we address this uncertainty by
assuming that we may restrict p to a generalized closed ball Up, the uncertainty set.

Definition 7.2. Uncertainty Set

Let p be an uncertain parameter, and denote its nominal assumed value with p. The set Up of all values
p̃ that the parameter p may actually assume,

Up :=
{

p̃ ∈ R
np

∣

∣

∣
||p− p̃|| 6 1

}

, (7.2)

is referred to as the uncertainty set of p. It is defined using a norm ||·|| suiting the statistical
distribution of the uncertain parameter.

Observe that the ball’s center p takes the role of a mean value for a statistical distribution of
the uncertain parameter values. Here, two specially shaped uncertainty sets are of practical
interest:

1. Confidence Ellipsoids:

Confidence ellipsoids are generated by normally (Gaussian) distributed random param-
eters with expectation value p and variance-covariance matrix Σ,

Σij := cov(pi, pj), i, j = 1, . . . , np,

Up =
{

p̃ ∈ R
np

∣

∣

∣

∣

∣

∣

∣

∣

∣
Σ− 1

2 (p̃− p)
∣

∣

∣

∣

∣

∣

2
6 1
}

. (7.3)

2. Confidence Boxes:

If lower and upper bounds pl, pu for a uniformly distributed uncertain parameter p are
known, expectation value p and maximum deviation ∆p simply are

p :=
1

2
(pl + pu) , ∆p :=

1

2
(pl − pu) ,

and the uncertainty set

Up :=
{

p̃ ∈ R
np

∣

∣

∣ pl 6 p̃ 6 pu
}

may be expressed by choosing the infinity norm ||·||∞,

Up :=
{

p̃ ∈ R
np

∣

∣

∣

∣

∣

∣

∣diag(∆p)−1 (p̃− p)
∣

∣

∣

∣

∞
6 1
}

. (7.4)

Mixed types of confidence sets for different components of the uncertain parameter vector p

can easily be accounted for by composing the uncertainty set Up using the cartesian product
of the respective uncertainty subsets of uniform type.

88 Chapter 7. Robust Optimal Control Problems

7.1.3 Incorporating Uncertainty into the Problem

We chose the classical worst-case formulation of Ben-Tal and Nemirovskii [3] in order to
account for uncertainty of the parameters p in the formulation of problem (7.1a). We consider
the uncertain scenario to be a game, in which the optimizer plays against an adverse player.
Knowing the controls u chosen by the optimizer in advance, the adverse player responds
by choosing uncertain parameters p and resulting states x in the most unfavorable way.
Parameters p are chosen from the uncertainty set Up, and the unknowns x are only subject to
equality constraints imposed on the problem.

To compute this choice we introduce the worst-case operator Wmin as a tool that, if given the
optimizers choice of controls u, yields the worst possible value of a scalar-valued function ϕ

to be minimized with respect to the controls.

Definition 7.3. Worst-Case Response of the Adverse Player

Let u ∈ R
nu be the set of controls chosen by the optimizer, and let ϕ(x,u) −→ R be a C 1 func-

tion. Then, respecting the equality constraints g and the uncertainty set Up, the worst-case response
Wmin(ϕ,u) of the adverse player is given by the solution of the following maximization problem:

Wmin(ϕ,u) := max
x,p

ϕ(x,u) (7.5a)

s.t. g(x,u,p) = 0, (7.5b)

||p− p|| 6 1. (7.5c)

Worst-case choices for the objective f and each of the inequality constraint functions hi,
i = 1, . . . , nh are computed using the operator Wmin. We arrive at the following worst-case
robust counterpart formulation of problem (7.1a).

Definition 7.4. Worst-Case Robust Counterpart Problem

min
u

Wmin(f,u) (7.6a)

s.t. −Wmin(−hi,u) > 0, i = 1, . . . , nh. (7.6b)

Due to its bi-level structure, nesting a maximization problem into a minimization problem,
this problem is difficult to solve without imposing further restrictions on the functions f , g,
and h.

7.2 A Computationally Feasible Linearized Approach

In order to avoid this bi-level structure we apply a linearization approach developed by Diehl
et al. [13] and independently by Ma and Braatz [40]. Related approaches may be found in
Diehl [11], Diehl et al. [14]. The basic idea is to replace the worst-case operator Wmin by a
suitable approximation W̃min that is easier to compute.

7.2.1 Worst-Case Choice as a Convex Problem

Given the controls u chosen by the optimizer, we linearize both the objective f and the in-
equality constraints h around the the point (x,u,p) that shall satisfy the equality constraints
g. We then replace the worst-case operator Wmin by its linearized form W̃min which takes the
structure of a convex maximization problem.

Definition 7.5. Approximating Convex Problem for the Worst-Case Choice

W̃min(ϕ,u) := max
∆x,∆p

ϕ(x,u) +
∂ϕ

∂x
(x,u)∆x (7.7a)

s.t.
∂g

∂x
(x,u,p)∆x +

∂g

∂p
(x,u,p)∆p = 0, (7.7b)

||∆p|| 6 1. (7.7c)

7.2. A Computationally Feasible Linearized Approach 89

Again the function ϕ serves as a placeholder for the objective f and the inequality constraints
hi, i = 1, . . . , nh. This convex problem has an analytical solution, which we’ll derive after
some small preparations.

Definition 7.6. Dual of a Norm

Let ||·|| denote a norm on R
n. The associated dual norm ||·||∗ on R

n is defined by

||·||∗ : R
n −→ R, a 7→ max

b∈Rn
aTb

s.t. ||b|| 6 1.
(7.8)

Lemma 7.7. Duals of Scaled Hölder p-Norms

We denote by

||a||A,p := ||Aa||p =

(

n
∑

i=1

|(Aa)i|p
)

1
p

(7.9)

the scaled Hölder p-Norm of a ∈ R
n, with 1 6 p 6 ∞, and A ∈ M(n, R) non-singular. Its dual is

the norm
||a||∗ := ||a||A−1, p

1−p
. (7.10)

Here we set p
1−p

:=∞ for p = 1, and p
1−p

:= 1 for p =∞.

Proof. A proof may be found in Werner [58].

For uncertainty sets with mixed confidence types, observe also from this lemma that the dual
of a sum of two norms (ℓ1-norm) is the maximum of the respective dual norms,

||x|| := ||xa||A,p + ||xb||B,q =⇒ ||x||∗ := max
{

||xa||A−1, p
1−p

, ||xb||B−1, q
1−q

}

. (7.11)

Vice versa, the dual of the maximum (ℓ∞-norm) of two norms is the sum of the respective
dual norms. The important point here is that we may explicitly give duals of such norms that
we typically use when specifying uncertainty sets.
The solution to the convex problem may now be derived analytically, as claimed by the
following theorem.

Theorem 7.8. Analytical Solution of the Worst-Case Choice Problem

The optimal solution to the convex maximization problem (7.7a) defining W̃min is

W̃min(ϕ,u) := ϕ(x,u) +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂g

∂p
(x,u,p)

T ∂g

∂x
(x,u,p)

−T ∂ϕ

∂x
(x,u)

T
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗

. (7.12)

where ||·||∗ denotes the dual of the norm defining the uncertainty set of the parameter p.

Proof. Obvious after eliminating ∆x in (7.7a) and applying Lemma 7.7.

Having derived the analytical solution of the convex problem approximating the worst-case
operator Wmin we may now cast a linearized form of the robust counterpart problem (7.6a).

Definition 7.9. Linearized Robust Counterpart Problem

min
u,x

f (x,u) +

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂g

∂p
(x,u,p)

T ∂g

∂x
(x,u,p)

−T ∂f

∂x
(x,u)

T
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗

(7.13a)

s.t. hi(x,u)−
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂g

∂p
(x,u,p)

T ∂g

∂x
(x,u,p)

−T ∂hi

∂x
(x,u)

T
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∗

> 0, i = 1, . . . , nh, (7.13b)

g(x,u,p) = 0. (7.13c)

It is important to note that all derivatives depend on the controls u and are thus subject to op-
timization. Standard Newton-Lagrange algorithms for the solution of this nonlinear program
such as the SQP method presented in chapter 3 consequentially will require the computation
of second-order derivatives, and mandate the existence of third-order derivatives as well.

90 Chapter 7. Robust Optimal Control Problems

7.2.2 Non-Smoothness of the Dual Norms

The dual norm appearing in the objective and inequality constraint functions of either the di-
rect or the adjoint sensitivity formulation of the linearized robust counterpart problem intro-
duces points of non-smoothness into the problem. It is to be expected that special precaution
needs to be taken if the resulting NLPs are to be solved using standard Newton-Lagrange
techniques.

Addressing Non-Smoothness of scaled ℓ1 and ℓ∞ Norms

Non-smoothness introduced by these norms can be overcome by simple slack variable ap-
proaches and is possible for both the direct and the adjoint sensitivity formulations. Since
both application and implementation are restricted to ellipsoidal uncertainty sets associated
with the ℓ2 norm, we refer to Diehl et al. [13] for details on the slack formulation.

Addressing Non-Smoothness of other scaled ℓp Norms

For all other scaled Hölder norms ||a||A,p, 1 < p < ∞, and in particular for the scaled
Euclidean norm ||a||Σ−1,2 associated with ellipsoidal uncertainty sets, there exists no corre-
sponding slack variable approach. However, for the ℓ2 norm there also exists only a single
point of non-differentiability in the origin a = 0.

We observe that when treating the DaimlerChrysler powertrain optimal control problems with
the MSSQP algorithm employing BFGS updates to the Hessian, it is not necessary to pay
special attention to this non-differentiability. This observation is anticipated in Diehl et al. [13]
for the case that it is impossible to reduce any of the first-order sensitivities of the objective
(or the inequality constraint functions) to zero. The optimizer simply stays away from the
single point of non-differentiability during the computed iterations. It is further justified by
successful application to robust experimental design by Körkel et al. [35].

7.2.3 Sensitivities preserving Sparsity

The problem formulation (7.13) suffers from the drawback that due to the presence of an ex-
plicit inverse, any sparsity structure is likely to get lost in both the objective and the inequality
constraint derivatives. More convenient and efficient formulations that maintain sparsity are
available and shall now be presented.

Direct Sensitivities

Observe that the nx × np derivative matrix D

D(x,u,p) :=
∂g

∂x
(x,u,p)

−1

· ∂g

∂p
(x,u,p) (7.14)

is common to both (7.13a) and (7.13b), and obviously satisfies the following matrix equality
constraint

∂g

∂x
(x,u,p) ·D(x,u,p)− ∂g

∂p
(x,u,p) = 0. (7.15)

By introducing the derivative matrix D as an additional variable into the linearized robust
counterpart problem, we arrive at the following linearized robust counterpart problem for-
mulation using direct sensitivities.

7.3. Optimal Control of Uncertain Systems 91

Definition 7.10. Linearized Robust Counterpart Problem with Direct Sensitivities

min
u,x,D

f (x,u) +

∣

∣

∣

∣

∣

∣

∣

∣

D(x,u,p)
T ∂f

∂x
(x,u)

T
∣

∣

∣

∣

∣

∣

∣

∣

∗

(7.16a)

s.t. hi(x,u)−
∣

∣

∣

∣

∣

∣

∣

∣

D(x,u,p)
T ∂hi

∂x
(x,u)

T
∣

∣

∣

∣

∣

∣

∣

∣

∗

> 0, i = 1, . . . , nh, (7.16b)

g(x,u,p) = 0, (7.16c)

∂g

∂x
(x,u,p) ·D(x,u,p)− ∂g

∂p
(x,u,p) = 0. (7.16d)

The last equation (7.16c) is a matrix equation inM(nx × np, R).

Adjoint Sensitivities

If the problem formulation satisfies np > nh, i.e., there are more uncertain parameters than
inequality constraints to be robustified, the following adjoint formulation may be preferred.
We define adjoint sensitivities λi of the objective f and the inequality constraints hi, i =

1, . . . , nh, by

λ0(x,u,p) :=
∂f

∂x
(x,u) · ∂g

∂x
(x,u,p)

−1

, (7.17a)

λi(x,u,p) :=
∂hi

∂x
(x,u) · ∂g

∂x
(x,u,p)

−1

, i = 1, . . . , nh. (7.17b)

Observe now that the adjoint sensitivity row vectors λi are again common to both (7.13a) and
(7.13b), and satisfy the constraints

λ0(x,u,p) · ∂g

∂x
(x,u,p)− ∂f

∂x
(x,u) = 0, (7.18a)

λi(x,u,p) · ∂g

∂x
(x,u,p)− ∂hi

∂x
(x,u) = 0, i = 1, . . . , nh. (7.18b)

Introducing the adjoint sensitivities as optimization variables into the problem, we arrive at
the following linearized robust counterpart problem formulation using adjoint sensitivities.

Definition 7.11. Linearized Robust Counterpart Problem with Adjoint Sensitivities

min
u,x,

λ0,...,λnh

f (x,u) +

∣

∣

∣

∣

∣

∣

∣

∣

∂g

∂p
(x,u,p)

T

λ0(x,u,p)
T
∣

∣

∣

∣

∣

∣

∣

∣

∗

(7.19a)

s.t. hi(x,u)−
∣

∣

∣

∣

∣

∣

∣

∣

∂g

∂p
(x,u,p)

T

λi(x,u,p)
T
∣

∣

∣

∣

∣

∣

∣

∣

∗

> 0, i = 1, . . . , nh, (7.19b)

g(x,u,p) = 0, (7.19c)

λ0(x,u,p) · ∂g

∂x
(x,u,p)− ∂f

∂x
(x,u) = 0, (7.19d)

λi(x,u,p) · ∂g

∂x
(x,u,p)− ∂hi

∂x
(x,u) = 0, i = 1, . . . , nh. (7.19e)

7.3 Optimal Control of Uncertain Systems

In this section we briefly establish the connection between the above class of uncertain discrete
nonlinear problems and the class of optimal control problems from Chapter 6. Although
unnecessary from a theoretical point of view, and probably a bit more cumbersome, we
adhere to the problem formulation treated by MUSCOD-II. Initial values are considered to be
independent of the model parameters, i.e., ∂x0

∂p
= 0. Consequentially we separately account

for uncertainty in the initial values x0. For simplicity we again consider the whole vector p

of model parameters and the whole vector x0 of initial values to be uncertain.

92 Chapter 7. Robust Optimal Control Problems

7.3.1 Problem Formulation

Analogous to the linearized counterpart problem formulation with direct sensitivities (7.16a)
we may derive a linearized robust formulation of the optimal control problem class discussed
in Chapter 6. The required sensitivities Gx and Gp of the now time-dependent states x(t)

with respect to the uncertain parameters p and the uncertain initial values x0 are obtained
by augmenting the IVP by the corresponding variational differential equations.

Definition 7.12. Robust Optimal Control Problem with Direct Sensitivities

Robustified objective function of Mayer type:

min
p,u,x,G

φ
(

tf ,x(tf),p
)

+

∣

∣

∣

∣

∣

∣

∣

∣

G(tf)
T ∂φ

∂x

(

tf ,x(tf),p
)T
∣

∣

∣

∣

∣

∣

∣

∣

∗

(7.20a)

Robustified inequality constraints:

s.t. 0 6 hi(t,x(t),u(t),p)−
∣

∣

∣

∣

∣

∣

∣

∣

G(tf)
T ∂hi

∂x

(

tf ,x(tf),p
)T
∣

∣

∣

∣

∣

∣

∣

∣

∗

, i = 1, . . . , nh, (7.20b)

Initial-value problem defining the state trajectory of the dynamic process:

dx

dt
(t) = f

(

t,x(t),u(t),p, sgn σ(t)
)

, t ∈ T (7.20c)

x(t0) = x0, (7.20d)

Variational differential equations for direct sensitivities:

dGx

dt
(t) =

df

dx

(

t,x(t),u(t),p, sgn σ(t)
)

·Gx(t), t ∈ T (7.20e)

Gx(t0) = I, (7.20f)

dGp

dt
(t) =

df

dx

(

t,x(t),u(t),p, sgn σ(t)
)

·Gp(t) +
df

dp

(

t,x(t),u(t),p, sgn σ(t)
)

, (7.20g)

Gp(t0) = 0, (7.20h)

Implicitly defined discontinuities:

x(t+s) = ∆j

(

ts,x(t−s),u(t−s),p, sgn σ(t−s)
)

, ∀ts ∈ T : ∃j ∈ N : σj(t
−
s) = 0, (7.20i)

First-order sensitivity updates in discontinuities:

Gx(t
+
s) = UxGx(t

−
s), (7.20j)

Gp(t+s) = UxGp(t−s) + Up. (7.20k)

Here t−s and t+s denote the left-hand vs. right-hand limit in ts with respect to time. The
implicit switch formalism used in Eq. (7.20h) to (7.20j) is presented in detail in Chapter 4.
The complete matrix G(t) ∈M(nx×(nx +np), R) of sensitivities with respect to the uncertain
values is defined by

G(t) :=
[

Gx(t) Gp(t)
]

. (7.21)

7.3.2 Generation of Direct Second-Order Sensitivities

As already hinted, the sensitivities of first order Gx(tf) and Gp(tf) at the end of the time
horizon T = [t0, tf] depend on the control profile u(t) and are thus subject to optimization.
Since standard Newton-Lagrange algorithms such as the SQP method presented in Chapter 3

require derivatives of all optimization variables, the need for second-order sensitivities of the
solution x(t) with respect to the uncertain parameters p and the uncertain initial values x0

arises. We discuss two possibilities to generate these sensitivities.

7.3. Optimal Control of Uncertain Systems 93

Variational Differential Equations

In the spirit of the discussion of first-order sensitivity generation in Chapter 4, and assuming
sufficient smoothness of the right-hand side function f , we can derive second-order varia-
tional differential equations (cf. Bauer [2]). These may then be solved along with the nominal
solutions and the first-order sensitivity equations.

To avoid having to introduce tensor notations, we start by considering the second-order sen-
sitivity gijk

xx of a scalar component xi(t) of the differential state x(t) with respect to two single
scalar components x0,j and x0,k of the initial value vector x0. We also introduce second-
order sensitivity matrices Gj

xx associated with a selected first-order sensitivity (central index
j). In the same spirit we obtain second-order sensitivities of the solution with respect to the
parameters p and mixed second-order sensitivities.

gijk
xx (t) :=

∂2xi

∂x0,k∂x0,j

(t; t0,x0,p), Gj
xx(t) :=

g1,j,1
xx · · · g1,j,nx

xx
...

. . .
...

gnx,j,1
xx · · · gnx,j,nx

xx

, (7.22a)

gijk
pp (t) :=

∂2xi

∂pk∂pj

(t; t0,x0,p), Gj
pp(t) :=

g1,j,1
pp · · · g

1,j,np
pp

...
. . .

...
gnx,j,1
pp · · · g

nx,j,np
pp

, (7.22b)

gijk
xp (t) :=

∂2xi

∂pk∂x0,j

(t; t0,x0,p), Gj
xp(t) :=

g1,j,1
xp · · · g

1,j,np
xp

...
. . .

...
gnx,j,1
xp · · · g

nx,j,np
xp

. (7.22c)

These sensitivities are solutions of the following second-order variational differential equa-
tions. We use the notations Gx =

[

gij
x

]

ij
and Gp =

[

gij
p

]

ij
for the first-order sensitivity

matrices.

dgijk
xx

dt
(t) = gik

x

∂2fi

∂x2
j

gij
x +

∂fi

∂xj

gijk
xx , (7.23a)

dgijk
pp

dt
(t) =

(

∂2fi

∂x2
j

gik
p +

∂2fi

∂pk∂xj

)

gij
p +

∂2fi

∂xj∂pj

gik
p +

∂fi

∂xj

gijk
pp +

∂2fi

∂pk∂pj

, (7.23b)

dgijk
xp

dt
(t) =

(

∂2fi

∂x2
j

gik
p +

∂2fi

∂pk∂xi

)

gij
x +

∂fi

∂xj

gijk
xp , (7.23c)

all with initial values set to zero. Note that, given that H.A. Schwarz’ theorem is satisfied,
we have gijk

px (t) = gikj
xp (t). To ease the notation, we omitted the arguments of the sensitivity

matrices, as well as those of the right-hand side function f .

Augmented System

Looking at the internal architecture of the optimal control software package MUSCOD-II we
favored the following approach over the explicit solution of second-order sensitivity equa-
tions.
Since the sensitivities are subject to optimization, there must exist entries of the state vector x

corresponding to the sensitivity matrix entries. Thus it is anyway necessary to solve an ODE
model f augmented by the first-order variational differential equations. Consequentially, this
augmentation is automatically performed by the ROBUST framework extension developed
to implement robust optimization in MUSCOD-II.
Then, from the integrator’s point of view, the model function f already contains functionality
to generate first-order sensitivities. It is straightforward to let the integrator generate first-
order sensitivities of this augmented system. In fact, any integrator found within MUSCOD-II

94 Chapter 7. Robust Optimal Control Problems

does this anyway as described in the discussion of sensitivity generation found in Chapter 4.
As a result we obtain second-order sensitivities by twice generating first-order sensitivities —
once within the model, and once within the integrator.

7.3.3 Improving Efficiency of the Augmented System Approach

One drawback of the augmented system approach is that we generate a lot of non-existent
sensitivity information as well. Let x̂ ∈ R

nx(1+nx+np) denote the augmented system’s state

x̂(t) :=
[

x(t)T (vec Gx(t))
T (vec Gp(t))T

]T
, (7.24)

with initial values x̂0

x̂0 :=
[

x0
T (vec Gx(t0))

T (vec Gp(t0))
T
]T

, (7.25)

where the vectorizing operator vec A indicates that a column vector should be composed
from the individual columns of the matrix A. Note that, since their elements are included in
the multiple shooting state vectors si (6.20), the initial sensitivity matrices Gx(t0) and Gp(t0)

for a subinterval equal I and 0 respectively on the first multiple shooting interval only.
Generating first-order sensitivities of this augmented system with respect to x̂0 and p, as is
done by the standard integrators, results in a sparse matrix as shown on the opposite page.

∂x̂

∂x̂0

(t, t0, x̂0,p) =

∂x
∂x0

∂x
∂G1

x0

· · · ∂x
∂G

nx
x0

∂x
∂G1

p0

· · · ∂x

∂G
np
p0

∂G1
x

∂x0

∂G1
x

∂G1
x0

· · · ∂G1
x

∂G
nx
x0

∂G1
x

∂G1
p0

· · · ∂G1
x

∂G
np
p0

...
...

. . .
...

...
. . .

...
∂Gnx

x

∂x0

∂Gnx
x

∂G1
x0

· · · ∂Gnx
x

∂G
nx
x0

∂Gnx
x

∂G1
p0

· · · ∂Gnx
x

∂G
np
p0

∂G1
p

∂x0

∂G1
p

∂G1
x0

· · · ∂G1
p

∂G
nx
x0

∂G1
p

∂G1
p0

· · · ∂G1
p

∂G
np
p0

...
...

. . .
...

...
. . .

...
∂G

np
p

∂x0

∂G
np
p

∂G1
x0

· · · ∂G
np
p

∂G
nx
x0

∂G
np
p

∂G1
p0

· · · ∂G
np
p

∂G
np
p0

(7.26a)

=

Gx 0 0

G1
xx Gx

...
. . . 0

Gnx

xx Gx

G1
px Gx

... 0
. . .

Gnp

px Gx

(7.26b)

∂x̂

∂p
(t, t0, x̂0,p) =

[

∂x
∂p

T ∂G1
x

∂p

T

· · · ∂Gnx
x

∂p

T ∂G1
p

∂p

T

· · · ∂G
np
p

∂p

T
]T

(7.26c)

=
[

GT
p G1

xp

T · · · Gnx

xp
T

G1
pp

T · · · Gnp

pp
T
]T

(7.26d)

For brevity, we omit the dependencies; superscript indices denote sensitivity matrix columns;
blank entries are zero. The presented sparsity pattern can easily be verified from an analy-
sis of the interdependencies of the respective first- and second-order variational differential
equations. It is obvious that the sensitivity Gi

x of the solution with respect to the initial value

7.3. Optimal Control of Uncertain Systems 95

component x0,i is independent of that with respect to another component x0,j , therefore we
find

∂Gi
x

∂Gj
x

= 0 for i 6= j. (7.27)

The same is true for any pair of global model parameters pi and pj , and equally well for
mixed sensitivities. For the actual second-order sensitivities with respect to the initial values
and parameters remaining on the diagonal of the above matrix, we look at the underlying
sensitivity IVP

dGxx

dt
(t,x0,p) =

∂f

∂x
(t,x(t),p) ·Gx(t), (7.28a)

Gxx(t0) = G0. (7.28b)

From its explicit solution

Gxx(T) = Gx(T) ·G0, T > t0, (7.29)

it becomes clear that the diagonal of the above matrix consists of identical block matrices.
The same is true for the sensitivities Gpp with respect to model parameters p. Therefore, the
number of sensitivities that actually need to be computed can be reduced from O(n2

x) to the
intuitively necessary complexity of O(nx).

7.3.4 Second-Order Sensitivity Updates in Implicit Discontinuities

We observed that completely ignoring the theoretical need for second-order sensitivity up-
dates in discontinuities of the ODE model leads to a number of problems. The SQP method
frequently failed to converge, or ended up in unreliable results of inferior quality only. In
this section we therefore have a look at how to efficiently implement the cumbersome second-
order sensitivity updates in implicit discontinuities.

Second-Order Update Formulas

Analogous to the derivation found in Chapter 4, explicit sensitivity updates for the second-
order sensitivities are derived by Mombaur [42]. They are, however, of extremely complicated
shape, require the computation of an excessively large number of derivatives, and their im-
plementation is likely to be prone to many errors. Consequently, Mombaur [42] concludes
that it is doubtful whether an attempt at a direct implementation of these updates would be
beneficial.

First-Order Update of the Augmented System

For the augmented system approach we present another realization of second-order sensi-
tivity updates in implicit discontinuities. Since the integrator code presented in Chapter 4

implements the first-order sensitivity updates anyway, it is straightforward to apply this
update twice. The first application to the sensitivities Gx and Gp contained within the aug-
mented state x̂ properly updates the first-order sensitivities. It also possibly extends the
discontinuity of x to the sensitivity part of the augmented state x̂. This first application has
to be performed by the augmented model.
The second application is performed by the integrator anyway. Hiding the fact that a part
of the augmented state x̂ actually holds first-order sensitivity information, the integrator
updates first-order sensitivities of the augmented state as usual, thereby in fact producing a
proper second-order sensitivity update.
Careful design of the code allows for re-use of the first-order sensitivity update code to
perform both updates.

96 Chapter 7. Robust Optimal Control Problems

7.3.5 Summary of the Augmented System Approach Algorithm

We give a list of the important points of the sensitivity generation and implicit discontinuity
update algorithm for the augmented state approach from the integrator’s point of view here.

1. The integrator maintains an augmented state x̂ =
[

x Gx Gp

]

along with the cor-
responding (here unnamed) first-order sensitivities of x̂. It does not need insight into
the fact that the augmented state contains sensitivity components itself.

2. Evaluation of the augmented right-hand side f̂ yields the derivative dx
dt

, as did the orig-
inal right-hand side function f . Furthermore, it also yields the sensitivity derivatives
dGx

dt
and dGp

dt
of the plain state, obtained from evaluation of the variational differential

equations.

3. Sensitivity information for the augmented state x̂ is generated by internal numerical
differentiation (IND), cf. Bock [4, 5, 6], or again by simultaneous solution of the varia-
tional differential equations, cf. Chapter 4. To improve efficiency, we may exploit our
insight into the structure of the augmented state here, as detailed in Section 7.3.3.

4. If a switch (implicit discontinuity) is detected, we require updates of the first and
second-order sensitivities. We therefore perform the first-order sensitivity update on
the sensitivities of the plain state x, found as Gx, Gp within the augmented state x̂.
Afterwards, we perform the same first-order update on the (here unnamed) first-order
sensitivities of the augmented state. Careful design allows to use the same code here.

The direct sensitivity approach has been implemented in the ROBUST framework extension
to the optimal control software package MUSCOD-II. Some technical details can be found
in Appendix C. The support of implicit discontinuities has been implemented within the
explicit Runge-Kutta integrator RKFSWT presented in Chapter 4.

7.4. Robust Optimal Control of a Powertrain 97

7.4 Robust Optimal Control of a Powertrain

In the final section of this chapter we apply the presented numerical method for robust
optimal control to the guiding example of powertrain oscillations. We derive a subset problem
from the powertrain optimal control problem described and solved in Chapter 6. Analysis
of the nominal solution’s sensitivity with respect to selected uncertainties motivates the need
for robust solutions to this problem. The presented linearized approach yields engine control
schemes which are proven to be more robust against deviations of the selected parameters.

7.4.1 Overview

We saw from the nominal optimal control results that the main difficulty of the optimization
problem lies in the satisfaction of the implicit rotation speed delta constraint. We can further
see from the graphs of the various results that a significant acceleration of the car can be
observed only after the implicitly defined point in time has been passed.
We therefore choose to separate the constraint fulfillment problem from the problem of di-
minishing powertrain oscillations (Engelhard [17]). Starting in coasting mode, we strive to
accelerate the powertrain into traction mode in the fastest possible way, while fulfilling the
rotation speed delta constraint. The car’s acceleration will start to increase only after the
powertrain has arrived in traction mode. We may thus detect traction mode checking for a
positive acceleration level af that is still well beyond the final acceleration level that is subject
to oscillations.

7.4.2 Problem Formulation

The optimal control problem formulation resulting from these findings is given in Eq. (7.30a).
It is robustified according to the linearized counterpart problem with direct sensitivities
(7.16a).

min
u,x,tf

tf +

tf
∫

t0

(

γ1u
2
1(t) + γ2u

2
2(t)

)

dt (7.30a)

s.t. acar(tf) > af , (7.30b)

∆ωmax >
1

igbitr
ωdmf,1(t∆)− ωwh(t∆), (7.30c)

dx

dt
(t) = f

(

t,x(t),u(t),p, sgn σ(t)
)

, t ∈ T , (7.30d)

x(t0) = x0, (7.30e)

u1(t) ∈ [u1, u1], (7.30f)

du1

dt
(t) ∈ [δu1, δu1] on (ti, ti+1) ⊂ T , i = 0, . . . ,m− 1, (7.30g)

u2(t) ∈ [0, 1]. (7.30h)

The unique point t∆ ∈ T is implicitly defined by ∆ϕss(t∆) = +pss. This implicit constraint
is realized as described in Section 6.3.2. Further implicit switches introduced by model non-
differentiabilities are omitted from the problem formulation (7.30a) for simplicity, and can be
found in the model description Chapter 2. The problem is well-defined only when starting in
coasting mode (∆ϕss(t0) < −pss). Both controls are regularized by inclusion in the objective
using appropriately chosen scalar values γ1 and γ2.
The nominal non-robust result of this optimal control problem for nmot(t0) = 3000 min−1 is
presented in Fig. 7.1. The controls were initialized to a rough scheme taken from the optimal
results presented in Chapter 6. For non-disclosure reasons, all graphs of simulated data
remain unlabeled on the ordinate.

98 Chapter 7. Robust Optimal Control Problems

Scenario KKT Scaled Lagrange Number of
Fig. Tolerance Infeasibility Gradient Iterations

7.1 3.7 · 10−8 6.09 · 10−11 2.22 · 10−4 12

Tab. 7.1: Acceleration into traction mode: Numerical quality of the nominal result. Refer to
Diehl et al. [12], Leineweber [38] for a detailed discussion of these values.

min
 0

max

 0 0.05 0.1 0.15 0.2

M
m

ot
 [N

m
]

t [s]

(a) Optimal engine torque.

-pss

 0

+pss

 0 0.05 0.1 0.15 0.2

∆ϕ
ss

 [°
]

t [s]

(b) Side shaft delta ∆ϕss.

min

 0

max

 0 0.05 0.1 0.15 0.2

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

 0

 0 0.05 0.1 0.15 0.2

a c
ar

 [m
/s

2]

t [s]

(d) Car’s acceleration acar.

99%

100%

101%

 0 0.05 0.1 0.15 0.2

v c
ar

 [k
m

/h
]

t [s]

(e) Car’s velocity vcar.

Fig. 7.1: Accelerating the powertrain into traction mode at nmot(t0) = 3000 min−1.

7.4.3 Sensitivity Analysis

We analyze the sensitivity of this nominal optimal solution against various uncertainties
selected by our cooperating partner DaimlerChrysler AG. The selected standard deviations
are assumed to be reasonable from practical experience of our cooperation partner. For
the formulation of the optimization problem, however, it is important that even extreme
deviations of the powertrain’s internal states ∆ϕdmf and ∆ϕss remain in coasting mode. We
disturb the respective parameters and initial values by a random normally distributed error
with zero mean and using selected standard deviations, but apply the controlled engine
torque trajectory that has been optimized for the parameter’s mean value. We take 100

samples of ∆ω(t∆) in order to obtain a good representation of the distribution of the resulting
constraint violations (7.30b).

Parameter Std. Dev. Unit Description

Acar 5% m2 Car’s abutting face.
µroll 10% – Coefficient of rolling friction.
mcar 20% kg Car’s mass.
pss 10% ◦ Side shaft play size.
usca 10% – Scaler to the controlled engine torque.
uofs 10% Nm Offset to the controlled engine torque.
∆ϕdmf(t0) 20% rad Initial torsion of the DMF.
∆ϕss(t0) 20% rad Initial torsion of the side shaft.

Tab. 7.2: Evaluated uncertainties for the robust powertrain acceleration problem.

7.4. Robust Optimal Control of a Powertrain 99

∆ωmax

+0.5%

-2σ -1σ Acar +1σ +2σ

∆ω
 [m

in
-1

]

Acar [m
2]

(a) Sensitivity on Acar.

∆ωmax

+1%

+2%

-2σ -1σ µroll +1σ +2σ

∆ω
 [m

in
-1

]

µroll [-]

(b) Sensitivity on µroll.

∆ωmax

+2%

-2σ -1σ mcar +1σ +2σ

∆ω
 [m

in
-1

]

mcar [kg]

(c) Sensitivity on mcar.

∆ωmax

+25%

+50%

+75%

-2σ -1σ pss +1σ +2σ

∆ω
 [m

in
-1

]

pss [°]

(d) Sensitivity on pss.

Fig. 7.2: Sensitivity analysis for the rotation speed delta constraint ∆ω(t∆) 6 ∆ωmax. The
plots show constraint violations in percent of ∆ωmax for 100 random samples.

∆ωmax

+100%

+200%

-2σ -1σ usca +1σ +2σ

∆ω
 [m

in
-1

]

usca [-]

(a) Sensitivity on usca.

∆ωmax

+100%

+200%

-2σ -1σ uofs +1σ +2σ

∆ω
 [m

in
-1

]

uofs [Nm]

(b) Sensitivity on uofs.

∆ωmax

+50%

+100%

-2σ -1σ ∆ϕdmf +1σ +2σ

∆ω
 [m

in
-1

]

∆ϕdmf [rad]

(c) Sensitivity on ∆ϕdmf (t0).

∆ωmax

+50%

+100%

-2σ -1σ ∆ϕss +1σ +2σ

∆ω
 [m

in
-1

]

∆ϕss [rad]

(d) Sensitivity on ∆ϕss(t0).

Fig. 7.3: Constraint sensitivity analysis. Two related uncertain parameters are disturbed at
once, and the projections of the constraint onto either one’s space are shown.

100 Chapter 7. Robust Optimal Control Problems

7.4.4 Robust Results

On the following pages we present robustified engine control schemes obtained from solving
the above problem with the numerical method for nonlinear robust optimal control presented
in this chapter. Tab. 7.3 shows some data on the numerical quality of the obtained solutions.

Scenario KKT Scaled Lagrange Number of
Fig. Problem Tolerance Infeasibility Gradient Iterations

7.4 µroll 7.45 · 10−6 3.04 · 10−4 1.75 · 10−3 5

7.5 pss 6.47 · 10−6 1.25 · 10−4 1.75 · 10−2 6

7.6 usca, uofs 1.95 · 10−6 5.40 · 10−5 1.17 · 10−3 16

7.7 ∆ϕdmf(t0), ∆ϕss(t0) 6.76 · 10−7 1.92 · 10−4 2.52 · 10−3 23

Tab. 7.3: Robust acceleration into traction mode: Qualities of the solutions. The acceptable
KKT tolerance was set to 10−5. Refer to Diehl et al. [12], Leineweber [38] for a detailed
discussion of these values.

In addition to the engine control schemes obtained from solving the robust optimal control
problems, we present the difference to the nominal solution. For the robust results, we again
performed a sensitivity analysis as described in the previous section. The results are shown
together with the nominal results to stress the achieved sensitivity reductions. For multi-
parameter scenarios, we analyze the sensitivity with respect to a single selected uncertain
parameter within a range [−2σ, 2σ] of two standard deviations around the mean. The other
uncertain parameters stay within [−1σ, 1σ], the uncertainty set taken into account by the
formulated robust optimization problem.

Uncertainty in the Rolling Friction Coefficient

-5%

 0

+1%

 0 0.05 0.1 0.15 0.2

∆M
m

ot
 [N

m
]

t [s]

(a) Difference to nominal torque.

 0

 0 0.05 0.1 0.15 0.2

∆ω
 [m

in
-1

]

t [s]

(b) Side shaft delta ∆ϕss.

min

 0

max

 0 0.05 0.1 0.15 0.2

∆ω
 [m

in
-1

]

t [s]

(c) Rotation speed delta ∆ω.

∆ωmax

+1%

+2%

-2σ -1σ µroll +1σ +2σ

∆ω
 [m

in
-1

]

µroll [-]

(d) Sensitivity comparison.

Fig. 7.4: Robust result for uncertainty in the rolling friction coefficient µroll. () indicates
the nominal solution of Fig. 7.1, while () indicates the robust solution.

7.4. Robust Optimal Control of a Powertrain 101

Although the constraint is not particularly sensitive to reasonable deviations in the rolling
friction coefficient µroll, this result illustrates two points. First, the model appears to be linear
in this region, so the linearized approach is exact. Thus it is observed that the constraint
is never violated within the interval [−1σ,+1σ]. Second, the possibility of obtaining a ro-
bust solution by introducing a backoff when it’s impossible to reduce the sensitivity itself is
demonstrated.

Uncertainty in the Side Shaft Play’s Size

Robust result obtained for a standard deviation of 10% in the side shaft play’s size pss. The lin-
earized sensitivity has been reduced, and a suitable additional backoff has been introduced.
The (underestimating) linearized sensitivity properly hits the constraint ∆ωmax at −1σ in
Fig. 7.5(e). The bar diagram in Fig. 7.5(f) sorts the constraint violations of the 100 samples in
10% steps. The significant increase in feasibility, seen to the left of ∆ωmax, is obvious.

min
 0

max

 0 0.05 0.1 0.15 0.2

M
m

ot
 [N

m
]

t [s]

(a) Optimal engine torque.

min

 0

+10%

+20%

 0 0.05 0.1 0.15 0.2

∆M
m

ot
 [N

m
]

t [s]

(b) Difference to nominal torque.

 0

 0 0.05 0.1 0.15 0.2

∆ω
 [m

in
-1

]

t [s]

(c) Side shaft delta ∆ϕss.

min

 0

max

 0 0.05 0.1 0.15 0.2

∆ω
 [m

in
-1

]

t [s]

(d) Rotation speed delta ∆ω.

∆ωmax

+25%

+50%

+75%

-2σ -1σ pss +1σ +2σ

∆ω
 [m

in
-1

]

pss [°]

(e) Sensitivity comparison.

 0

 5

 10

 15

 20

 25

 30

 35

-40% -20%∆ωmax+20% +40% +60% +80% +100%

C
ou

nt

∆ω [min-1]
(f) Sampled constraint violations.

Fig. 7.5: Robust result for uncertainty in the side shaft play’s size pss. () indicates the
nominal solution of Fig. 7.1, while () indicates the robust solution.

102 Chapter 7. Robust Optimal Control Problems

Uncertainty in the Controlled Engine Torque

Fig. 7.6 shows the robust result for uncertainty in the controlled engine torque’s scale and
offset. In this two-parameter scenario the sensitivity with respect to both of the uncertain
parameters is taken into account. Observe that the sensitivity with respect to uofs has been
much reduced in a neighborhood of the mean. Figures 7.6(g) and 7.6(h) clearly show that the
constraint violations have shifted to concentrate around the limit ∆ωmax.

min
 0

max

 0 0.05 0.1 0.15 0.2

M
m

ot
 [N

m
]

t [s]

(a) Optimal engine torque.

min

 0

+10%

+20%

 0 0.05 0.1 0.15 0.2

∆M
m

ot
 [N

m
]

t [s]

(b) Difference to nominal torque.

 0

 0 0.05 0.1 0.15 0.2

∆ω
 [m

in
-1

]

t [s]

(c) Side shaft delta ∆ϕss.

min

 0

max

 0 0.05 0.1 0.15 0.2

∆ω
 [m

in
-1

]

t [s]

(d) Rotation speed delta ∆ω.

∆ωmax

+100%

+200%

-2σ -1σ usca +1σ +2σ

∆ω
 [m

in
-1

]

usca [-]

(e) Sensitivity comparison for usca, with
uofs ∈ [−1σ, +1σ].

∆ωmax

+100%

+200%

-2σ -1σ uofs +1σ +2σ

∆ω
 [m

in
-1

]

uofs [Nm]

(f) Sensitivity comparison for uofs, with
usca ∈ [−1σ, +1σ].

 0

 2

 4

 6

 8

 10

 12

 14

-40% ∆ωmax +40% +80% +120% +160% +200%

C
ou

nt

∆ω [min-1]
(g) Sampled constraint violations.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

-40% ∆ωmax +40% +80% +120% +160% +200%

C
ou

nt

∆ω [min-1]
(h) Sampled constraint violations.

Fig. 7.6: Robust result for uncertainty in the controlled engine torque’s scale and offset.
() indicates the nominal solution of Fig. 7.1, while () indicates the robust solution.

7.4. Robust Optimal Control of a Powertrain 103

Uncertainty in the Powertrain’s Initial Torsion

Fig. 7.7 shows the robust result for uncertainty in the powertrain’s initial torsion angles
∆ϕdmf(t0) and ∆ϕss(t0). As seen from Fig. 7.7(d) the linearized sensitivity has been reduced
to almost zero. Figures 7.7(e) and 7.7(f) confirm the much improved robustness.

min
 0

max

 0 0.05 0.1 0.15 0.2

M
m

ot
 [N

m
]

t [s]

(a) Optimal engine torque.

min

 0

+10%

+20%

 0 0.05 0.1 0.15 0.2

∆M
m

ot
 [N

m
]

t [s]

(b) Difference to nominal torque.

 0

 0 0.05 0.1 0.15 0.2

∆ω
 [m

in
-1

]

t [s]

(c) Side shaft delta ∆ϕss.

min

 0

max

 0 0.05 0.1 0.15 0.2

∆ω
 [m

in
-1

]

t [s]

(d) Rotation speed delta ∆ω.

∆ωmax

+50%

+100%

-2σ -1σ ∆ϕss +1σ +2σ

∆ω
 [m

in
-1

]

∆ϕss [rad]

(e) Sensitivity comparison for ∆ϕdmf , with
∆ϕss ∈ [−1σ, +1σ].

∆ωmax

+50%

+100%

-2σ -1σ ∆ϕdmf +1σ +2σ

∆ω
 [m

in
-1

]

∆ϕdmf [rad]

(f) Sensitivity comparison for ∆ϕss, with
∆ϕdmf ∈ [−1σ, +1σ].

 0

 5

 10

 15

 20

 25

-40% ∆ωmax +40% +60% +80% +100%

C
ou

nt

∆ω [min-1]
(g) Sampled constraint violations for
Fig. 7.7(e).

 0

 5

 10

 15

 20

 25

 30

 35

-40% ∆ωmax +40% +60% +80% +100%+120%

C
ou

nt

∆ω [min-1]
(h) Sampled constraint violations for
Fig. 7.7(f).

Fig. 7.7: Robust result for uncertainty in the powertrain’s initial torsions. () indicates the
nominal solution of Fig. 7.1, while () indicates the robust solution.

Chapter 8

Conclusions and Outlook

This final chapter is divided into three parts matching the major topics of this diploma the-
sis. We summarize the presented theory as well as the implemented algorithms, and collect
the achievements concerning the guiding example of powertrain oscillations. Furthermore,
we mention open topics and give an outlook on possible further research and work on the
software implementations.

Parameter Estimation

We presented the theory of parameter estimation using least-squares fits against observed
data, and motivated this approach by aiming at identifying maximum-likelihood estimators
for normally distributed observation errors. We gave details on applying this parameter
estimation methods to models described in terms of parameter-dependent ordinary differen-
tial equations (ODEs) with possibly unknown initial values. The constrained Gauß-Newton
(CGN) method together with the direct multiple shooting method was chosen to solve the
discrete nonlinear least-squares problems obtained from discretization of the initial-value
problem (IVP) formulations. In addition, we showed how to obtain information about the
uncertainty of the obtained solution by specifying confidence sets for the estimated parameter
values.

Achievements The presented and numerical method for parameter estimation on IVPs was
applied to the ODE model of a car’s powertrain. It allowed us to precisely identify previously
unknown parameters. The achieved match against data observed on the test tracks constitutes
a significant improvement over previously available parameterizations. An analysis of the
model’s eigenvalues and their dependency on certain model parameters allowed us to derive
a reduced non-stiff powertrain ODE model that was used for subsequent optimal control
computations.

Implementation The described parameter estimation method was implemented on top of
the optimal control software package MUSCOD-II. The new parameter estimation software
QuickFit allowed for easy and user-friendly setup and treatment of the presented problem
class. Internally, the resulting discretized nonlinear problems were solved with the con-
strained Gauß-Newton (CGN) version of the MSSQP algorithm of the MUSCOD-II optimal
control software package.

Outlook The software is now being actively used in the REI/EP department of Daimler-
Chrysler AG in Stuttgart-Untertürkheim, Germany, in order to obtain precise models of au-
tomatic gear-shift powertrains.

105

Implicitly Defined Discontinuities

We presented a class of explicit Runge-Kutta methods capable of detecting and handling im-
plicit discontinuities of the ODE model equations (switch events). The solution of parameter
estimation and optimal control problems using Newton-Lagrange techniques requires deriva-
tives of the solution with respect to model parameters and initial values. Special updates to
these sensitivities of the solution, which are required during switch events, were presented.

Achievements The efficient detection of switch events, which are marked as zero-crossings of
the switching function, required a continuous representation of the discrete approximation to
the IVP’s solution. For that purpose, we discussed continuous extensions to classical discrete
Runge-Kutta methods, which do not naturally have available such a continuous representa-
tion. The inverse quadratic interpolation algorithm by Brent and Decker was presented to
reliably detect zero-crossings of the switching function.
In addition, the availability of a continuous representation made it possible to evaluate con-
tinuous least-squares objective functions.
The new integrator method enabled us to treat the important discontinuities of the guiding
example in a precise manner. Furthermore, the support of implicit switches allowed for
the formulation of objective and constraint functions evaluated at specific implicitly defined
points in time, rather than at selected multiple shooting nodes only.

Implementation The presented continuous Runge-Kutta method was implemented as the RK-
FSWT integrator method within MUSCOD-II. The implementation of previously unavailable
continuous least-squares objectives benefited from the continuous extension. This feature was
an essential requirement for the efficient solution of parameter estimation problems within
the multiple shooting framework.

Outlook We had to put minor effort in the fact that the ODE model discontinuities need
to be hidden from the sequential quadratic programming (SQP) level of the presented nu-
merical method. It appeared extremely desirable to have at hand an SQP algorithm capable
of handling implicitly defined discontinuities occurring when an integrator-handled switch
crosses a multiple shooting node.
Since absent from the powertrain ODE model, the implemented method currently lacks treat-
ment of inconsistent switching behaviour.

Robust Optimal Control

We have presented an approach for nonlinear programming under uncertainties that yields
a problem structure that is computationally difficult to solve. A simplifying approach based
on linearization has been used, and two different formulations preserving sparsity of the
involved derivative matrices have been presented. After a transfer of the described methods
to a class of optimal control problems, we have obtained a problem formulation that has been
matched to the MUSCOD-II software architecture.

Achievements We have seen that in robust optimal control problems, sensitivities of the solu-
tion with respect to model parameters and initial values are themselves subject to optimiza-
tion. Consequentially, second-order sensitivities are required within the Newton-Lagrange
method solving the underlying discretized problem. We have developed an efficient ap-
proach for automatic generation of these second-order sensitivities, and have presented a
way to implement proper updates of these sensitivities in implicit discontinuities, circum-
venting the need for extremely involved and error-prone explicit second-order updates.

106 Chapter 8. Conclusions and Outlook

The resulting numerical method has been applied to robustly solve a problem of optimal
powertrain control. A mechanical limit imposed on the acceleration of the powertrain from
coasting to traction mode has been evaluated, and the developed method has allowed us to
obtain engine control schemes that implement this type of acceleration while exhibiting ro-
bustness against uncertainty in the model parameters, states, and the applied motor controls.

Implementation The developed numerical method has been implemented in the new RO-
BUST framework within the optimal control software package MUSCOD-II. The framework
covers automatic generation of second-order sensitivities, as well as proper updates to all sen-
sitivities during switch events. It has been designed to allow for very quick and convenient
robustification of existing problem implementations.
To solve the discrete nonlinear programs resulting from our optimal control and robust opti-
mal control problem formulations, we employed the MSSQP sequential quadratic program-
ming algorithm of MUSCOD-II with BFGS updates to the Hessian.

Outlook The presented possibility for efficient second-order sensitivity generation could be
further extended to include a modification of the condensing method (cf. Leineweber [38])
that exploits the sparsity structure of the sensitivity matrix.
We saw from the presented robust results that the linearization approach frequently underes-
timates the sensitivity of the highly nonlinear model. Approaches incorporating second-order
approximations to the sensitivities are known, but lack possibilities for efficient implementa-
tion analogous to those we presented for the linearizing approach.
Finally, the framework does not currently support other uncertainty set shapes than those of
ellipsoid shape described by scaled euclidean norms.

Appendix A

The Parameter Estimation Tool QuickFit

This chapter describes the parameter estimation tool QuickFit based on the optimal-control
software package MUSCOD-II, which has been completed as a part of this thesis in order
to simplify the process of estimating parameters in the presented powertrain models. The
first version of QuickFit had been created and baptized by Samuel Bandara during a student
research assistantship in the Simulation & Optimization work group.

An overview of the features, architecture, and implementation of the tool is given, aiming at
creating a starting point for developers willing to extend QuickFit’s functionality. In addition,
since QuickFit’s applicability is in no way restricted to the discussed powertrain models, this
chapter also intends to serve as a user’s guide for anyone interested in tackling his or her
specific parameter estimation problem using that tool.

QuickFit is now being actively used in the REI/EP department of DaimlerChrysler AG in
Stuttgart-Untertürkheim, Germany.

A.1 Input and Output Files

In this section we present in detail the files introduced by QuickFit, while we refer to Diehl
et al. [12] for an extensive description of the MUSCOD-II files. Tab. A.1 holds a short listing
of all QuickFit and MUSCOD-II input and output files.

.qfp

.dat

.res

.bin

.log

.m

.plot

.ps

QuickFit

Parameter Estimation

Tool

MUSCOD-II

Multiple-Shooting Code

for Direct Optimal

Control

results

fit

data

Fig. A.1: QuickFit & MUSCOD-II input and output files.

108 Appendix A. The Parameter Estimation Tool QuickFit

Path File Description

QuickFit
./ .qfp QuickFit input project file,

.m QuickFit output results file readable by MATLAB,

.plot QuickFit output plot file readable by MATLAB and gnuplot,

MUSCOD-II
./DAT/ .dat MUSCOD-II input file generated by QuickFit,
./RES/ .log MUSCOD-II error log file,

.txt MUSCOD-II console output log file,

.bin MUSCOD-II binary file for restarts,

.ps PostScript pictures of the MUSCOD-II windows.

Tab. A.1: QuickFit and MUSCOD-II input/output file and directory structure.

A.2 The Project File

In this section we take a closer look at the QuickFit project file (QFP), which holds the major
part of the parameter estimation problem’s description. Syntax and semantics of the project
file are described. Familiarity with the layout and functionality of MUSCOD-II’s DAT files
described in Diehl et al. [12], however, is of advantage.
From the QuickFit project file (QFP) the DAT file containing the problem setup for MUSCOD-
II is automatically generated. Whenever the QFP is modified, the DAT file is updated accord-
ingly. You may force the update of the DAT file using the ’-F‘ command line switch.

A.2.1 Lexical Conventions

Project file authors need to adhere to a few lexical conventions, all of which are listed in this
section.

Comments start with an asterisk (“*”) and run till the end of the same line. There is currently
no provision for multi-line comments.

Blocks are introduced by a signature immediately followed by a colon (“:”). What follows is
a set of numbered objects contained in this block.

Objects are contained in a block and occupy a single line of the project file each. The line
consists of columns that list the object’s properties and are separated by at least one
whitespace character, e.g., a blank or a horizontal tabulator. The first column holds
the objects number within the current block; objects must be given consecutive numbers
starting from zero, but the list of objects may be unordered.

Properties of an object have a fixed column and type associated with them. Possible types
include:

• integral constant (“int”),

• double-precision floating-point constant (“double”),

• boolean switch (“bool”),

• textual string (“string”).

Integral and floating-point values must conform to the C/C++ syntax. Acceptable val-
ues for boolean switches are “y” and “n” to enable vs. disable the switch. Textual
strings must not contain whitespace characters, quoting strings has no effect. All prop-
erty values must be specified.

A.2. The Project File 109

A.2.2 Project File Syntax

The following tables describe the contents of all project file blocks. Compare this to listing
A.2 on page 112 showing a typical project file. A more formal specification of the project file
is given in listing A.1 on page 109, which encodes the syntax using EBNF (cf. [31]).

eol ::= ’\n’;
digit ::= ’0’..’9’;
whitespace ::= ’ ’ | ’\t’;
char ::= any character - whitespace;

5

bool ::= (’n’ | ’N’ | ’y’ | ’Y’), *char;
integer ::= [’-’ | ’+’], +digit;
double ::= integer, [’.’, +digit], [(’e’ | ’E’), integer];
string ::= +char

10

property ::= bool | double | integer | string;
object ::= integer, [property, *(whitespace, property)]

signature ::= ’cntrls’ | ’geometry’ | ’outputs’
15 | ’params’ | ’states’ | ’timing’;

comment ::= ’*’, any character - eol;
block ::= signature, ’:’, [comment], eol,

*([object], [comment], eol);

20 keyvaluepair ::= string, ’=’, *whitespace, string;

start ::= +(block | keyvaluepair | comment);

Listing A.1: EBNF specification of the QuickFit project file syntax.

Controls

Unlike controls in MUSCOD-II that are part of the solution of an optimal control problem,
and thus are subject to modifications by the solver, controls in a parameter estimation scenario
are simply inputs of fixed observed data into the ODE model.

Signature cntrls:

Column Type Description

1 int Object number.
2 string Name of the control.
3 string Unit of the control.
4 string Relative path and name of the file containing the control trajectory.
5 bool “y” to smoothen the trajectory by applying a Gaussian filter.
6 double Sample time of the trajectory data.

Key/Value Pairs

In addition to objects contained in blocks, the project file recognizes key/value pairs, that is,
identifiers being assigned an arbitrary value. Both the identifier name and the value must
not contain whitespace characters.

Key Type Description

model string Name of the ODE model to be used.

110 Appendix A. The Parameter Estimation Tool QuickFit

Geometry

The observed data specified in the outputs block can be shifted in time (delay) and level
(offset) using the geometry block. Both delay and offset may either be fixed to known initial
values, or be included in the parameter estimation problem.

Signature outputs:

Column Type Description

1 int Object number of the corresponding output object.
2 double Lower bound for the delay.
3 double Initial delay of the corresponding observed output data.
4 double Upper bound for the delay.
5 bool “y” to fix the delay to its initial value, “n” to estimate it.
6 double Lower bound for the offset.
7 double Initial offset of the corresponding observed output data.
8 double Upper bound for the offset.
9 bool “y” to fix the offset to its initial value, “n” to estimate it.

Objective

Although the block layout of the file allows for more than one objective to be defined, only
the objective with an object number of zero will actually be used.

Signature objective:

Column Type Description

1 int Object number.
2 string Name of the objective function.
3 string Unit of the objective function.
4 double Lower bound of the range of expected objective values.
5 double Upper bound of the range of expected objective values.
6 double Scale of the expected objective values.
7 int Number of least-squares residuals to be taken per multiple-shooting

interval, using an equidistant time grid.

Outputs

The outputs block specifies the files containing observed data used to fit the model. Smooth-
ing and weighting options may be selected.

Signature outputs:

Column Type Description

1 int Object number.
2 string Name of the model output.
3 string Unit of the model output.
4 string Path and name of the file containing the observed output data.
5 bool “y” to smoothen the trajectory by applying a Gaussian filter.
6 double Sample time of the trajectory data.
7 double Confidence in the computed model output.

A.2. The Project File 111

8 double Factor for curvature-dependent weighting.
9 bool “y” to include the output in the objective, “n” to exclude it.

Parameters

This block contains information about fixed and unknown parameters.

Signature params:

Column Type Description

1 int Object number.
2 string Name of the parameter.
3 string Unit of the parameter.
4 double Lower bound of the range of feasible parameter values.
5 double Initial value of the parameter.
6 double Upper bound of the range of feasible parameter values.
7 double Confidence in the initial value, if it is not fixed.
8 double Scale of the expected parameter values.
9 bool “y” to fix the parameter’s value, “n” to estimate it.

States

This block describes the initial values for the ODE model. Initial values may either be fixed
or be included in the parameter estimation problem.

Signature states:

Column Type Description

1 int Object number.
2 string Name of the differential state.
3 string Unit of the differential state.
4 double Lower bound of the range of feasible state values.
5 double Initial value of the differential state to its initial value.
6 double Upper bound of the range of feasible state values.
7 double Confidence in the initial value, if it is not fixed.
8 double Scale of the expected differential state values.
9 bool “y” fixes the state’s value to its initial value.

Timing

Time slices are appended to each other, ordered by their object number. Thus the start time
of any time slice matches the preceding time slice’s end time, and is implicitly set to zero for
slice number 0.

Signature timing:

Column Type Description

1 int Object number.
2 double End time of the time slice.
3 int Number of multiple-shooting intervals on this time slice.

112 Appendix A. The Parameter Estimation Tool QuickFit

timing: 2
** t_end #shoot
0 43 43

5 objective: 1
** name unit min max sca nstop
0 LSQ - 0 1e2 1e2 200

states: 6
10 ** name unit min init max sigma sca fix

0 x_w_dmf2 rad/s 176.5 177.1 177.5 177 177 n
...
5 x_dphi_dmf rad -0.15 -0.1 0.1 0.1 0.1 n

15 params: 20
** name unit min init max sigma sca fix
0 p_i_g - 1.6 1.6 1.6 1.6 1.6 y

...
19 p_J_dmf1 kgm^2 0.01 0.1 1 0.1 0.1 n

20

controls: 1
** name unit file smooth sampletime
0 u_M_mot Nm M_mot_calc.txt no 0.01

25 outputs: 8
** name unit file smooth sampletime sigma f use
0 z_M_cs Nm M_cs.txt no 0.001 2 5 y
1 z_M_ss Nm M_ss.txt no 0.001 2 5 n
2 z_a_car m/s^2 ax_car.txt no 0.001 10 0 n

30 3 z_n_cs rpm n_cs.txt no 0.001 10 0 y
4 z_n_mot rpm n_mot_avg.txt no 0.01 10 0 y
5 z_n_ss rpm n_ss.txt no 0.001 10 0 y
6 z_v_car km/h v_wh_front_avg.txt no 0.02 1 0 y
7 z_v_wh km/h v_wh_rear_avg.txt no 0.02 1 0 y

35

geometry: 8
** min_d init_d max_d fix_d min_o init_o max_o fix_o
0 -0.1 0 0 y -30 0 30 y
1 -0.1 0 0 y -30 0 30 y

40 2 -0.1 0 0 y -1 0 1 y
3 -0.1 0 0 y -100 0 100 y
4 -0.1 0 0 y -200 0 200 y
5 -0.1 0 0 y -50 0 50 y
6 -0.1 0 0 n 0 0 0 y

45 7 -0.1 0 0 n 0 0 0 y

Listing A.2: A typical QuickFit project file.

A.3 Data Files

Plain text files are used to provide QuickFit with observed data for each of the model outputs.
The files are expected in either Windows or UNIX format and must contain one double-
precision floating-point value per line, conform to the C/C++ syntax.

Plain text data is parsed, preprocessed, and possible smoothed at the start of every run of
the QuickFit software. With large parameter estimation scenarios consisting of many model
outputs observed over a longer time or recorded with a very fine resolution, this process may
easily take several minutes. For a significant speed-up, the processed data is cached on disk
in a binary format that allows for very fast loading on the next startup. The cached files
are consistently checked against the plain text data files and get automatically updated if the
plain text data changes.

A.4. Output Files 113

A.4 Output Files

In addition to the files created by MUSCOD-II, QuickFit creates a set of two output files of its
own to document its findings for further use.

A.4.1 Results Output File

The estimated values and uncertainties of all free parameters and free output signal delays
can be found in the results output file. In addition, the ℓ2 residuals overall and per sample are
given for each output. The data output file carries the extension “.m” indicating compatibility
with MATLAB.

A.4.2 Trajectory Output File

The trajectory output file (“.plot”) holds the discretized IVP solution of the most recent it-
eration. Each column conforms to the layout shown in table A.10; each column entry is a
double-precision floating-point value. The resolution is currently fixed to 1000 equidistant
samples per multiple-shooting interval. The trajectory output file can be read by gnuplot [59]
as well as by MATLAB.

First Column # of Columns Content

1 1 Time.
2 nx Differential states of the ODE model.
2 + nx no Model outputs fitted against observed trajectories.
2 + nx + no no Observed trajectories from the fit data input file.

Tab. A.10: Column layout of the QuickFit trajectory output file.

A.5 Command Line Arguments

Table A.11 holds a list of useful QuickFit and MUSCOD-II command line switches. We refer
to Diehl et al. [12] for a full list of the MUSCOD-II command line switches with a detailed
description.

Switch Parameter Default Description

QuickFit
-F – – Forces an update of the DAT file.
-R – – Prints the ℓ1 and ℓ2 residual norms per output.

MUSCOD-II
-a double 10−6 Sets the KKT tolerance.
-c, -w – – Continues from previous solution.
-i long 100 Sets the maximum number of SQP iterations.
-l double 0 Sets the Levenberg-Marquardt regularization factor.
-t double 10−8 Sets the integrator tolerance TOL.

Tab. A.11: QuickFit and MUSCOD-II command line switches. For a full list with detailed
description, we refer to Diehl et al. [12].

114 Appendix A. The Parameter Estimation Tool QuickFit

A.6 Software Architecture

In this section we give a very brief overview of the software architecture of QuickFit by
presenting a diagram of the various classes. We describe in detail how ODE models are
coupled to QuickFit and how new model implementations can be added.

A.6.1 Class Diagram

As an extensive presentation and description of QuickFit’s internals is beyond the scope of
this thesis, figure A.2 on page 116 shows a UML class diagram [26] of the important core
classes of QuickFit. Arrows visualize dependencies and relationships according to the UML
specification. The design is modular and allows for easy extension of the project file’s struc-
ture.

A.6.2 Adding new ODE Model Implementations

Before QuickFit can treat a parameter estimation problem, it is necessary to include an im-
plementation of the underlying ODE model in the application. Since this involves a small
amount of modifications to the existing code base, the process is documented in this section
to some detail. Notice that QuickFit is designed to hold a collection of different models all
at once. Thus there is no need for models to be replaced; they can simply be added to the
application.

Step 1: Preparing the Model Sources

Model sources together with a suitable makefile are to be placed in a separate directory
per model located in SRC/Models. The ODE model needs to be implemented in a class
named Model contained in a namespace of your choice. The class declaration is shown in
listing A.3. The functions and parameters conform to the MUSCOD-II naming conventions
described in Diehl et al. [12]. The function getName must return a unique model name. The
DaimlerChrysler powertrain ODE models that may serve as a starting point for new model
implementations can be found in the existing code base.

namespace SmallPowertrain // Your model name here
{

class Model : public qModelInterface
{

5 public:
Model ();
virtual ~Model ();
virtual bool ffcn (double t, double *xd, double *xa, double *p,

double *u, double *xd_dot, double *y);
10 virtual bool gfcn (double t, double *xd, double *xa, double *p,

double *u, double *xa_res);
static const char *getName ();

};
}

Listing A.3: Model class declaration expected by QuickFit.

Step 2: Coupling to the Existing Code Base

QuickFit dynamically selects one of the models included in its code base depending on the
value of the model key set in the current project file, see Section A.2.2. In order to properly
extend the list of recognised model names, you need to make a one-line modification to the
source file SRC/Common/qmodels.cpp as indicated in Listing A.4.

A.6. Software Architecture 115

qModelInterface* qModelFactory::createModel (
const char* a_modelname

)
{

5 assert (a_modelname != 0);

qModelInterface *iface = 0;
if ((iface = test_create< ATS_mit_Zusatzsensorik_deltaphi::Model >

(a_modelname)) != 0) return iface;
10 if ((iface = test_create< ATS_mit_Zusatzsensorik_ohnegw AC::Model >

(a_modelname)) != 0) return iface;
if ((iface = test_create< SmallPowertrain::Model >

(a_modelname)) != 0) return iface;

15 // Add further models here in the same manner.

throw qException (format ("Unknown model ’%s’ !", a modelname),
__FILE__, __LINE__, __FUNCTION__);

}

Listing A.4: Update to qmodels.cpp required to add a new ODE model to QuickFit.

Step 3: Modifications to the Makefiles

Two straightforward extensions to the makefiles need to be carried out, as shown in listings
A.5 and A.6.

all: smallpowertrain deltaphi smalldeltaphi
Append your model’s name to this list.

smallpowertrain:
5 pushd .; cd SmallPowertrain; \

${MAKE} "CXXC=${CXXC}" "CFLAGS=${CFLAGS}" \
"CXXCSFLAGS=${CXXCSFLAGS}" "RM=${RM}" all; \

popd

10 # Copy the above instruction block and adjust its name and directory.

Listing A.5: Update to SRC/Models/makefile to add a new ODE model to QuickFit.

MODEL OBJECT = \
${MODELSPATH}/ATS_mit_Zusatzsensorik_deltaphi/ \

ATS_mit_Zusatzsensorik_deltaphi_class.o \
${MODELSPATH}/ATS_mit_Zusatzsensorik_ohnegw AC/ \

5 ATS_mit_Zusatzsensorik_ohnegw AC_class.o \
${MODELSPATH}/SmallPowertrain/SmallPowertrain_class.o

Add you model’s object file to this list.

Listing A.6: Update to SRC/makefile to add a new ODE model to QuickFit.

Step 4: Recompiling

Finally, executing make in the directory SRC/ will update QuickFit’s executable qfitgn.

116 Appendix A. The Parameter Estimation Tool QuickFit

qParser

getObjects()
parse()
registerFactory()

«interface»

qModelInterface

ffcn()
gfcn()
getName()

getDimensions()

qObject

readTokens()
getName()

«interface»

qObjectFactoryBase

getSignature()
getTokenCount()

create()

qObjectFactory

ObjectType

qObjectFactoryBase

MUSCODWrapper

onAfterInitialize()
onAfterIteration()
onBeforeInitialize()
onBeforeIteration()
onCmdLineSwitch()
onDefineModel()
onFinalize()
getParameters()
getTrajectory()

Trajectory

appendSamplePoint()
at()
begin()
end()
getStartTime()
getEndTime()
getNumSamplePoint()
getSamplePoint()
getSamplePointByIndex()
setSamplePoint()
setSamplePointByIndex()

m_trajectories

m_trajectory

*

creates

creates

creates

m_factories

m_model

1

qSeqData

getDuration()
getLength()
getLinValue()
getSca()
getSeries()
getSmplTime()

qOutput

attachGeometry()
getGeometry()
getResid()
getSigma()
getStdResid()
isUsed()

qCntrl

*

0..1

qGeometry

attachGeometry()
getGeometry()
getResid()
getSigma()
getStdResid()
isUsed()

TrajectoryIterator

operator ++, +=
operator --, -=
operator ==, !=
operator >, >=, <, <=
operator *
operator double

qModelFactory

ModelType

0..1

qfWrapper

isDATFileOutdated()
writeDATFile()
readProjectFile()
writePlotFile()
writeResultsFile()

returns

qNoSeqData

getInit()
getMax()
getMin()
getSca()
getSigma()
isFixed()

1

m_geometry

qModelInterface

qModelInterface

ATS_mit_Zusatzsen-
sorik_deltaphi

ATS_mit_Zusatzsen-
sorik_ohnegw_AC

SmallPowertrain

qModelInterface

qState

qParam

m_states

m_params

*

*

qTiming

getEndTime()
getNShoot()

qObjective

m_objectives

1

m_outputs

*

*

*

*

m_cntrls

m_geometries

m_timings

Fig. A.2: A UML class diagram of the QuickFit software architecture.

Appendix B

Implicit Switches in MUSCOD-II and

MATLAB/Simulink

This appendix presents the new extensions to the MUSCOD-II user interface for the definition
of ODE models with implicit switches, and extends the User’s Manual [12] which should be
consulted for further reference. Since the DaimlerChrysler powertrain model has been imple-
mented in MATLAB/Simulink, we also implemented a method to realize the implicit switch
detection feature within this modeling tool. The presented idea is of general applicability
and may be used for any existing Simulink model that is to be connected to MUSCOD-II.

B.1 Extensions to the MUSCOD-II User Interface

B.1.1 Defining Switches in the Model

def_msolver (1, def_RKF45SWT);

As a first step, command MUSCOD-II to use the switch-detecting integrator RKFSWT
presented in Chapter 4; here the 4th/5th-order Fehlberg variant is used. You are of
course free to use other solvers on additional model stages not containing implicit
switches.

def_swt (imos, nswt, swtdtcfcn, swtexecfcn)

This new function extends the MUSCOD-II user interface for the definition of models.
Call it to define nswt switch event types on model stage imos. The switch-detecting
integrator RKFSWT will call the user-supplied function swtdtcfcn during each inte-
grator step to detect the presence of a switch event. Upon successful detection, the
user-supplied function swtexecfcn is called to allow for discontinuous changes of the
ODE system’s differential states.

swtdtcfcn (imos, t, xd, xa, u, p, nstep, iswt, nswsta, res, rwh,
iwh, info)

This function is part of the model implementation to be supplied by the user. Its pur-
pose is to evaluate the function (4.22)

σ
(

t; x(t),z(t),u(t),p, sgn σ(t)
)

to determine the new switch signature in the time point t as presented in Chapter 4.
Several arguments require explanation:

nstep

This argument is currently unused, and users are advised not to access it.

iswt

A pointer to a list of switch event indices whose respective scalar switch functions
σi are to be evaluated. Your model’s implementation of the function swtdtcfcn
should be prepared to safely ignore indices out of range.

118 Appendix B. Implicit Switches in MUSCOD-II and MATLAB/Simulink

nswsta

The number of valid switch event indices to be found in the list pointed to by
iswt. nswsta is guaranteed to be at least one, and not greater than the number
of switch event types nswt specified by the respective call to def_swt.

res

A pointer to the output list of residuals σi to be filled by this function call.

The following code snippet shows how to iterate through the list of switch event indices
i and fill in the residuals σi.

void
swtdtcfcn (long *imos, double *t, double *xd, double *xa, double *u,

double *p, long *nstep, long *iswt, long *nswsta, double *res,
double *rwh, long *iwh, long *info)

5 {
long ii;

// iterate through the list of switch event indices
for (ii = 0; ii < *nswsta; ++ii)

10 {
// validate switch event index. Let NSWT be the number
// of switch events on stage imos defined by def_swt.
if ((iswt[ii] >= 0) && (iswt[ii] <= NSWT))
{

15 // evaluate component iswt[ii] of sigma here.
res[ii] = ...;

}
}

}

Listing B.1: Sample implementation of the switch detection function.

swtexecfcn (imos, t, xd, xa, u, p, iswt, rwh, iwh, info)

This last model function is used to execute a jump ∆ (4.25) in the differential states
x(t) by providing a chance to explicitly modify the state vector xd. It is perfectly valid
to provide an empty function, though, if the implicit switch feature is being used to
realize discontinuities δ (4.28) in the ODE system’s right-hand side only. The integer
value iswt holds the index of the switch event to be executed, and ranges from 0 to
nswt-1, see the description of def_swt.

B.1.2 Obtaining the Current Switch Signature

When evaluating the ODE model’s right-hand side ffcn, the model implementer will want to
react to the current switch signature as specified by the switch-detecting integrator RKFSWT.
Ideally, one would have liked to extend the right-hand side function’s list of arguments by
a switch signature vector. In order to maintain compatibility with the vast collection of
MUSCOD-II problems already implemented, however, we chose an approach that effectively
hides the switching extension from model implementations that are unaware of its existence.
As described in the MUSCOD-II User’s Manual [12], the model’s right-hand side is defined
as

ffcn (t, xd, xa, u, p, rhs, rwh, iwh, info).

In detail, info is a pointer to an integer error code to be returned by ffcn. Without modify-
ing the definition of ffcn agreed upon, the switch-detecting integrator hides a structure of
the following layout (see the file IND/RKFSWT/ind_rkfXXswt.h)

B.2. Realisation of Switches in MATLAB/Simulink 119

typedef struct
{

long info;
long *swt;

5 }
rkfXXswt_info_t;

Listing B.2: Extended structure containing the switch signature, pointed to by info.

behind that pointer in such a way that makes it safe to type-cast the info pointer in order to
obtain the switch signature. Accessing it is as easy as shown in listing B.3.

#include "ind_rkfXXswt.h"

void
ffcn (double *t, double *xd, double *xa, double *u, double *p,

5 double *rhs, double *rwh, long *iwh, long *old_info)
{

rkfXXswt_info_t* info = (rkfXXswt_info_t *) old_info;

// info->swt[...] contains the switch signature
10 }

Listing B.3: Obtaining the switch signature within the model’s right-hand side ffcn.

B.2 Realisation of Switches in MATLAB/Simulink

The powertrain model presented in the introductory Chapter 1 was designed in MATLAB/Si-
mulink; the C code generated from this model was coupled to the software package MUSCOD-
II using a MATLAB interface specially tailored to fit this task. We present here a brief
overview over the extensions to this interface we made in order to realize the proper handling
of implicit model switches also in a MATLAB/Simulink-designed model.
Fig. B.1 visualizes the building blocks required to implement an implicit switch. In a pure
Simulink environment the model developer would choose a Switch component that drives
its output using one out of two input signals, depending on, e.g., the positiveness of a third
input signal which we’ll call the selector. The model itself would appropriately drive that
selector input.

MC_Selector

MC_Sigma

Switch

Fig. B.1: General realisation of a switch in MATLAB/Simulink.

As discussed in Chapter 4, however, the selection of the state of any switch within the model
must be entirely up to the switch-handling integrator RKFSWT. We therefore introduce a new
building block MC_Selector that routes the model’s current switch signature vector (cf.
Section B.1.2) and makes it available to the Simulink model as an input signal.
Furthermore, we’re interested in automatic evaluation of the switch detection function (4.22)
by the Simulink model so as to avoid having to add hand-written switch detection code to
the automatically generated mode code. For this purpose, any MC_Selector input block is

120 Appendix B. Implicit Switches in MUSCOD-II and MATLAB/Simulink

complemented by an MC_Sigma output block. MUSCOD-II expects these outputs to provide
the current value of σi for the respective switch. Evaluating the switch detection function σ

then means nothing but (again) evaluating the model’s right-hand side code exported from
Simulink.
Finally, Fig. B.2 shows the implementation of the side shaft spring’s play, combining two
switches to accurately model the two non-differentiabilities.

MC_Selector

MC_Selector

Switch_ss_l

Switch_ss_r

0
Selector_ss_l

Selector_ss_r

+

∆ϕsw—psw

∆ϕsw+psw

MC_Sigma

Sigma_ss_l

k(∆ϕsw)

Constant
Add

MC_Sigma

Sigma_ss_r

Fig. B.2: Implementation of the side shaft spring switches in MATLAB/Simulink.

Appendix C

A Framework for Robust Optimal Control in

MUSCOD-II

In this appendix we present the robust optimization framework that extends the optimal
control software package MUSCOD-II [38] by the robustification algorithm presented in this
thesis. The appendix extends the MUSCOD-II User’s Manual [12], which has been updated
appropriately and should be consulted for further reading.

C.1 Robustifying a Problem Formulation

In this section we consider the robustification of an existing optimal control problem imple-
mentation. This robust optimization framework has been carefully designed to require as
little changes to existing implementations as possible.

C.1.1 Source Files

The model source file requires the straightforward replacement of the MUSCOD-II model
definition calls contained within def_model() by their robust counterparts presented in this
section. We list all newly introduced functions, but assume familiarity with the MUSCOD-II
model definition interface as described in Diehl et al. [12] and restrict ourselves to a discussion
of the differences that users should be aware of.

def_robust_mdims (NMOS, NP, NRC, NRCE)

Define global model dimensions. This function must be called prior to any call to
def_robust_mstage.

def_robust_mstage (IMOS, NXD, NXA, NU, mfcn, lfcn, jacmlo, jacmup,
astruc, afcn, ffcn, gfcn, rwh, iwh, ISLV)

Define a model stage and prepare it for robustification. This includes increasing NXD to
contain sensitivity states, augmenting ffcn to automatically compute these directional
sensitivities, and also the Mayer-term penalty if the objective is to be robustified.

def_robust_mpc (IMOS, N, NRD, NRDE, rdfcn, rcfcn, rdfcn_der)

Defines "NRD"decoupled point-constraints on multiple shooting nodes of the model
stage IMOS. The affected nodes are selected by the argument N, which may assume the
values s, i, e, or * for the first, the interior, the last, or all nodes on the model stage.
The first NRDE constraints are considered equality constraints, while the remaining ones
are treated as inequality constraints. Only the latter may be selected for robustification
using rd_rob. rdfcn_der may be specified to supply analytical derivatives of rdfcn,
e.g., for coupling to automatic differentiation tools, cf. Griewank et al. [25]. The model
stage IMOS must have been defined by a call to def_robust_mstage. In addition,
this function defines the coupled point-constraints function rcfcn.

122 Appendix C. A Framework for Robust Optimal Control in MUSCOD-II

def_robust_swt (IMOS, NSWT, swtdtcfcn, swtexecfcn)

Define NSWT implicit switches on the model stage with index IMOS, as described in
appendix B. The crucial first-order sensitivity updates on implicit switch events are au-
tomatically performed, while the integrator RKFSWT deals with second-order sensitivity
updates as described in Chapter 7. The model stage IMOS must have been defined by a
call to def_robust_mstage.

C.1.2 Data File

The model data file has to be extended by several new keys which provide uncertainty and
robustification information, and are described in this section.

mfcn_rob(*), type long

This key holds a single binary flag which should be set to a one in order to robustify the
Mayer-term objective function of the selected stages. Set it to zero to use a conventional
non-robust Mayer objective function.

rd_rob(*,*), type LVec

A list of NRD-NRDE binary flags to enable the robustification of the decoupled inequality
points constraints. Each flag should be set to one in order to robustify the respective
inequality constraint. Reset it to zero to disable the robustification of the constraint.

p_rob, type LVec

A list of NP binary flags to incorporate uncertainty of the respective model parameter.
The model parameters must previously have been defined using the standard keys p,
p_min, p_max, p_sca, and p_fix. Only fixed parameters may be attributed with
an amount of uncertainty. You may account for uncertainty of free model parameters
that are subject to optimization by splitting the parameter into a fixed uncertain mean
value parameter and a free but certain offset to the mean that is subject to optimization.
Variance and covariances are specified using the covariance key, see below.

sd0_rob, type LVec

A list of NX binary flags to incorporate uncertainty of the respective initial value.
The differential states must previously have been defined using the standard keys sd,
sd_min, sd_max, sd_sca, and sd_fix. Uncertainty in free initial values may be ac-
counted for as described for uncertain free model parameters. Variance and covariances
are specified using the covariance key, see below.

covariance, type DMat

For the initial values and parameters selected by the keys sd0_rob and p_rob, this
key holds the variance and covariance information in the following format.

Suppose we defined nsd uncertain initial values x0 ∈ R
nsd and np uncertain parameters

p ∈ R
np . The variance-covariance matrix Σx must be of full rank, and is expected to

obey the following layout:

Σx =

[

Σsd0,sd0 Σsd0,p

Σsd0,p
T

Σp,p

]

∈M(nx + np, R), (C.1)

where the two square sub-matrices are

Σsd0,sd0 =
[

cov(x0,i, x0,j)
]

ij
∈ Sym(nsd, R), (C.2)

Σp,p =
[

cov(pi, pj)
]

ij
∈ Sym(np, R), (C.3)

C.2. Framework Components 123

and for the matrix Σsd0,p we have without further restrictions

Σsd0,p =
[

cov(x0,i, pj)
]

ij
∈M(nsd × np, R). (C.4)

The covariance matrix is thus symmetric, and only the lower left triangular sub-matrix
needs to be specified in the DAT file.

gamma, type double

A common factor for scaling the covariance matrix. When working your way towards
a robust solution of an optimal control problem, one quite often finds it impossible to
immediately obtain robust solutions using uncertainty informations from the unscaled
covariance matrix Σ. In this case a convenient method is to start with an optimal
non-robust solution, and obtain increasingly robust solutions by way of successive and
appropriately chosen homotopy steps.

C.1.3 Makefile

In order to use the robustification algorithm with an existing MUSCOD-II optimal control
problem, edit the makefile and replace the file MODEL/model.o by its new counterpart
MODEL/model_rob.o.
In addition, make sure that the file ROBUST/robust_framework.o is included in the list of
object files to be linked1. For example, a robustified Gauß-Newton algorithm could look like
this:

MC2OBJS = \
${MC2PATH}/MODEL/model_rob.o \
${MC2PATH}/PDAUX/pdaux.o \
${MC2PATH}/MSSQP/mssqp.o \

5 ${MC2PATH}/EVAL/eval.o \
${MC2PATH}/SCALE/scale.o \
${MC2PATH}/PRSQP/prsqp_den.o \
${MC2PATH}/MSPLOT/msplot.o \
${MC2PATH}/HESS/hess_std.o \

10 ${MC2PATH}/SOLVE/solve_slse.o \
${MC2PATH}/COND/cond_std.o \
${MC2PATH}/TCHK/tchk.o \
${MC2PATH}/UTIL/util.o \
${MC2PATH}/ROBUST/robust_framework.o

Listing C.1: Object files for a robustified Gauß-Newton algorithm.

C.2 Framework Components

The robust optimal control framework consists of the following object files.

Object File Contents

ROBUST/robust_module.o DAT file I/O routines to read information as
described in Section C.1.2.

ROBUST/robust_framework.o User interface routines, cf. Section C.1.1.
MODEL/model_rob.o Replacement for model.o that connects to the

ROBUST framework.

Tab. C.2: Object files of the robust optimal control framework.

1 It should be noted that with the introduction of dynamic linking into MUSCOD-II, this procedure is likely to
change in the near future.

List of Figures, Listings, and Tables

List of Figures

1.1 Selected parts of a typical powertrain. 13

2.1 Signal flow in the powertrain model. 16

2.2 Gearbox torque loss. 19

2.3 Transmission torque loss. 20

2.4 Spring torsion dependent friction in the dual-mass flywheel. 20

2.5 Schematic of the powertrain model. 21

4.1 Butcher tableaux of two embedded Runge-Kutta methods of Fehlberg type. . . 34

4.2 Areas of stability for two Runge-Kutta methods. 37

4.3 Switches are discontinuities in the states and right-hand side. 39

4.4 Classification of switch events via derivatives of the switching function. 40

4.5 Schematic of the switch state space. 40

5.1 Input motor torque Mmot defining the parameter estimation scenario. 61

5.2 Observed and simulated torques after parameter estimation. 64

5.3 Observed and simulated rotation speeds after parameter estimation. 65

5.4 Observed and simulated car acceleration after parameter estimation. 66

5.5 Observed and simulated rear wheel velocity after parameter estimation. 67

5.6 Eigenvalues of the full powertrain model. 69

5.7 Schematic of the reduced powertrain model. 70

5.8 Eigenvalues of the reduced powertrain model. 70

6.1 Examples of control discretizations. 74

6.2 State discretization for the direct multiple-shooting method. 75

6.3 A least-squares objective for measuring oscillations. 78

6.4 Powertrain oscillations when applying an maximum torque ramp. 79

6.5 Explanation of the plot ∆ω against ∆ϕss. 80

6.6 Minimum powertrain oscillations ignoring the rotation speed delta constraint. 81

6.7 Minimum powertrain oscillations in coasting mode (2,000 rpm, af at 50%). . . 82

6.8 Minimum powertrain oscillations in coasting mode (2,000 rpm, af at 100%). . . 82

6.9 Minimum powertrain oscillations in coasting mode (5,000 rpm af at 50%). . . . 83

6.10 Minimum powertrain oscillations in coasting mode (5,000 rpm, af at 100%). . . 83

6.11 Minimum powertrain oscillations in traction mode (2,000 rpm, af at 50%). . . . 84

6.12 Minimum powertrain oscillations in traction mode (2,000 rpm, af at 100%). . . 84

6.13 Minimum powertrain oscillations in traction mode (5,000 rpm, af at 50%). . . . 85

6.14 Minimum powertrain oscillations in traction mode (5,000 rpm, af at 100%). . . 85

7.1 Accelerating the powertrain into traction mode. Nominal result. 98

7.2 Sensitivity analysis for the rotation speed delta constraint, part 1. 99

7.3 Sensitivity analysis for the rotation speed delta constraint, part 2. 99

7.4 Robust result for uncertainty in the rolling friction coefficient µroll. 100

7.5 Robust result for uncertainty in the side shaft play’s size pss. 101

List of Listings 125

7.6 Robust result for uncertainty in the controlled engine torque’s scale and offset. 102

7.7 Robust result for uncertainty in the powertrain’s initial torsions. 103

A.1 QuickFit & MUSCOD-II input and output files. 107

A.2 A UML class diagram of the QuickFit software architecture. 116

B.1 General realisation of a switch in MATLAB/Simulink. 119

B.2 Implementation of the side shaft spring switches in MATLAB/Simulink. 120

List of Listings

A.1 EBNF specification of the QuickFit project file syntax. 109

A.2 A typical QuickFit project file. 112

A.3 Model class declaration expected by QuickFit. 114

A.4 Update to qmodels.cpp required to add a new ODE model to QuickFit. . . . 115

A.5 Update to SRC/Models/makefile to add a new ODE model to QuickFit. . . 115

A.6 Update to SRC/makefile to add a new ODE model to QuickFit. 115

B.1 Sample implementation of the switch detection function. 118

B.2 Extended structure containing the switch signature, pointed to by info. . . . 119

B.3 Obtaining the switch signature within the model’s right-hand side ffcn. . . . 119

C.1 Object files for a robustified Gauß-Newton algorithm. 123

List of Tables

2.1 Gearbox torque loss polynomials. 19

2.2 Torque loss polynomial coefficients for the transmission. 20

2.3 List of observable model outputs. 21

2.4 List of model parameters sorted by power train part. 22

4.1 Order versus minimal stage count of explicit Runge-Kutta methods. 46

4.2 Computational cost of various RKF realizations. 49

5.1 Initialization of the powertrain model IVP for parameter estimation. 61

5.2 Usage and curvature weighting of the powertrain model outputs. 62

5.3 Estimated signal delays in observed data for the powertrain model. 62

5.4 Estimated uncertainties for the optimal parameter set of the powertrain model. 63

5.5 Residuals of the optimal powertrain model parametrization. 63

5.6 Eigenvalues of the full powertrain model. 69

5.7 Eigenvalues of the reduced powertrain model. 70

6.1 Minimum powertrain oscillation: Qualities of the solutions. 81

7.1 Acceleration into traction mode: Numerical quality of the nominal result. . . . 98

7.2 Evaluated uncertainties for the robust powertrain acceleration problem. 98

7.3 Robust acceleration into traction mode: Qualities of the solutions. 100

A.1 QuickFit and MUSCOD-II input/output file and directory structure. 108

A.10 Column layout of the QuickFit trajectory output file. 113

A.11 QuickFit and MUSCOD-II command line switches. 113

C.2 Object files of the robust optimal control framework. 123

Bibliography

[1] Y. Bard. Nonlinear Parameter Estimation. Academic Press, New York, 1974.

[2] I. Bauer. Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Generierung
von ersten und zweiten Ableitungen mit Anwendungen bei Optimierungsaufgaben in Chemie
und Verfahrenstechnik. PhD thesis, Ruprecht-Karls-Universität, Heidelberg, 1999.

[3] A. Ben-Tal and A. Nemirovskii. Lectures on Modern Convex Optimization: Analysis, Al-
gorithms, and Engineering Applications. MPS-SIAM Series on Optimization. MPS-SIAM,
Philadelphia, 2001.

[4] H.G. Bock. Numerical treatment of inverse problems in chemical reaction kinetics.
In Jäger Ebert, Deuflhard, editor, Modelling of Chemical Reaction Systems, volume 18 of
Springer Series Chemical Physics, pages 102–125. Springer Verlag, Berlin Heidelberg New
York, 1981.

[5] H.G. Bock. Recent advances in parameter identification techniques for ordinary differ-
ential equation. In Progress in Scientific Computing, volume 2. Birkhäuser, Boston, 1983.

[6] H.G. Bock. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer
Differentialgleichungen, volume 183 of Bonner Mathematische Schriften. University of Bonn,
Bonn, 1987.

[7] H.G. Bock and K.J. Plitt. A multiple shooting algorithm for direct solution of optimal
control problems. In Proceedings of the 9th World Congress of the International Federation of
Automatic Control, Budapest, Hungary, pages 243–247. Pergamon Press, 1984.

[8] U. Brandt-Pollmann. Numerical solution of optimal control problems with implicitly defined
discontinuities with applications in engineering. PhD thesis, University of Heidelberg, Hei-
delberg, 2004.

[9] R.P. Brent. Algorithms for minimization without derivatives. Prentice Hall series in automatic
computation. Prentice Hall, 1973.

[10] J.C. Butcher. Coefficients for the study of Runge-Kutta integration processes. J. Australian
Math. Soc., 3:185–201, 1963.

[11] M. Diehl. A heuristic for chance constrained optimization and application to a batch
distillation process. Optimization and Engineering (OPTE), 2006. (submitted).

[12] M. Diehl, D.B. Leineweber, and A.A.S. Schäfer. MUSCOD-II User’s Manual. IWR Preprint
2001-25. Interdisciplinary Center for Scientific Computing, University of Heidelberg,
2001.

[13] M. Diehl, H.G. Bock, and E. Kostina. An approximation technique for robust nonlinear
optimization. Math. Prog. Series B, 107(1–2):213–230, 2006.

[14] M. Diehl, J. Gerhard, W. Marquardt, and M. Mönnigmann. Numerical solution ap-
proaches for robust nonlinear optimal control problems. Comp. Chem. Eng., 2006. (sub-
mitted).

Bibliography 127

[15] J.R. Dormand and P.J. Prince. A family of embedded Runge-Kutta formulae. J. Comput.
appl. Math., 6(1):19–26, 1980.

[16] J.R. Dormand and P.J. Prince. Runge-Kutta triples. Comp. & Maths. with Appls., 12A(9):
1007–1017, 1986.

[17] T. Engelhard. Personal communication on June 14th, 2006.

[18] W.H. Enright. The relative efficiency of alternate defect control schemes for high-order
continuous Runge-Kutta formulas. SIAM Journal on Numerical Analysis, 30(5):1419–1445,
October 1993.

[19] W.H. Enright, K.R. Jackson, S.P. Nørsett, and P.G. Thomsen. Interpolants for Runge-
Kutta formulas. ACM Transactions on Mathematical Software (TOMS), 12:193–218, 1986.

[20] W.H. Enright, D.J. Higham, B. Owren, and P.W. Sharp. A survey of the explicit Runge-
Kutta method. Technical Report 291/94, Department of Computer Science, University of
Toronto, 1995.

[21] E. Fehlberg. Classical fifth-, sixth-, seventh-, and eighth order Runge-Kutta formulas
with step size control. Computing, 4:93–106, 1969. Tech. Rep. 287, NASA, 1968.

[22] A.F. Filippov. Differential equations with discontinuous right-hand side. Amer. Math.
Soc. Trans., 42:199–231, 1961.

[23] P.E. Gill and W. Murray. Numerically stable methods for quadratic programming. Math.
Prog., 14:349–372, 1978.

[24] D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex
quadratic programs. Math. Prog., 27:1–33, 1983.

[25] A. Griewank, D. Juedes, H. Mitev, J. Utke, O. Vogel, and A. Walther. A package for the
automatic differentiation of algorithms written in C/C++. ACM Transactions on Mathe-
matical Software (TOMS), 22:131–167, 1996. Algor. 755.

[26] Object Management Group. Unified modelling language su-
perstructure specification. Website (valid Feb 13, 2006), 2005.
http://www.omg.org/docs/formal/05-07-04.pdf.

[27] S.P. Han. Superlinearly convergent variable-metric algorithms for general nonlinear pro-
gramming problems. Math. Progr., 11:263–282, 1976.

[28] S.P. Han. A globally convergent method for nonlinear programming. J. Optimization
Theory Applications (JOTA), 22:297–310, 1977.

[29] D. Higham. Highly Continuous Runge-Kutta Interpolants. ACM Transactions on Mathe-
matical Software, 17:368–386, 1989.

[30] M. Horn. Fourth- and fifth-order, scaled Runge-Kutta algorithms for treating dense
output. SIAM J. Numer. Anal., 20:558–568, 1983.

[31] ISO/IEC. International Standard ISO/IEC 14977:1996(E). Website (valid Sep 1st, 2006),
1996. http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf.

[32] W. Karush. Minima of functions of several variables with inequalities as side conditions.
Master’s thesis, University of Chicago, 1939.

[33] K. Königsberger. Analysis 1. Springer-Verlag, Berlin Heidelberg New York, 5th edition,
2001.

http://www.omg.org/docs/formal/05-07-04.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf

128 Bibliography

[34] K. Königsberger. Analysis 2. Springer-Verlag, Berlin Heidelberg New York, 3th revised
edition, 2000.

[35] S. Körkel, E. Kostina, H.G. Bock, and J.P. Schlöder. Numerical methods for optimal con-
trol problems in design of robust optimal experiments for nonlinear dynamic processes.
Optimization Methods and Software, 19:327–338, 2004.

[36] H.W. Kuhn and A.W. Tucker. Nonlinear programming. In Proceedings of the Second Berke-
ley Symposium on Mathematical Statistics and Probability. University of California Press,
Berkeley, 1941.

[37] W. Kutta. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen.
Zeitschrift für Mathematik und Physik, 46:435–453, 1901.

[38] D.B. Leineweber. The Theory of MUSCOD in a Nutshell – Analyse und Restrukturierung
eines Verfahrens zur direkten Lösung von Optimal-Steuerungsproblemen. Diploma the-
sis, University of Heidelberg, Heidelberg, 1995.

[39] K. Levenberg. A method for the solution of certain problems in least squares. Quart.
Appl. Math. 2, pages 164–168, 1944.

[40] D.L. Ma and R.D. Braatz. Worst-case analysis of finite-time control policies. IEEE Trans-
actions on Control Systems Technology, 9(5):766–774, 2001.

[41] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM
J. Appl. Math. 11, pages 431–441, 1963.

[42] K.D. Mombaur. Stability optimization of open-loop controlled walking robots. PhD thesis,
University of Heidelberg, Heidelberg, 2002.

[43] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Series in Operations Re-
search. Springer-Verlag, New York, 1999.

[44] B. Owren and M. Zennaro. Continuous explicit Runge-Kutta methods. In Proceedings of
the London 1989 Conference on Computational ODEs, 1989.

[45] B. Owren and M. Zennaro. Order barriers for continuous explicit Runge-Kutta methods.
Math. Comp., 56:645–661, 1991.

[46] B. Owren and M. Zennaro. Derivation of efficient continuous explicit Runge-Kutta meth-
ods. SIAM J. Sci. Stat. Comp., 13:1488–1501, 1992.

[47] H.B. Pacejka and E. Bakker. The magic formula tyre model. In Proc. 1st International
Colloquium on Tyre Models for Vehicle Dynamics Analysis, Delft, The Netherlands, 1991.

[48] A. Potschka. Handling Path Constraints in a Direct Multiple Shooting Method for Opti-
mal Control Problems. Diploma thesis, University of Heidelberg, 2006.

[49] M.J.D. Powell. A fast algorithm for nonlinearly constrained optimization calculations.
In G.A. Watson, editor, Numerical Analysis, Dundee, 1977, Lecture Notes in Mathematics
No. 630. Springer-Verlag, Berlin, 1978.

[50] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes in C.
Cambridge University Press, Cambridge, MA, 2nd corrected edition, 2002.

[51] C. Runge. Über die numerische Auflösung von Differentialgleichungen. Mathematische
Annalen, 46:167–178, 1895.

[52] J.P. Schlöder. Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parame-
teridentifizierung, volume 187 of Bonner Mathematische Schriften. University of Bonn, Bonn,
1988.

Bibliography 129

[53] L.F. Shampine. Interpolation for Runge-Kutta methods. SIAM J. Numer. Analysis, 22:
1014–1027, 1985.

[54] C.E. Shannon. A mathematical theory of communication. The Bell System Technical Jour-
nal, 27:379–423, 1948.

[55] C. Stelzer. Regelungstechnisches Modell eines KFZ-Antriebsstranges zur Simulation von
Lastwechselschwingungen. Diploma thesis, Trier University of Applied Sciences, Trier,
2005.

[56] J. Stoer and R. Bulirsch. Numerische Mathematik 2. Springer-Verlag, Berlin Heidelberg
New York, 4th edition, 2000.

[57] M. von Schwerin. Numerische Methoden zur Schätzung von Reaktionsgeschwindigkeiten bei
der katalytischen Methankonversion und Optimierung von Essigsäure- und Methanprozessen.
PhD thesis, University of Heidelberg, Heidelberg, 1997.

[58] D. Werner. Funktionalanalysis. Springer-Verlag, Berlin Heidelberg New York, 4th revised
edition, 2002.

[59] T. Williams and C. Kelley et al. Gnuplot, a portable command-line driven in-
teractive data and function plotting utility. Website (valid Feb 13, 2006), 2004.
http://www.gnuplot.info/.

[60] R.B. Wilson. A simplicial algorithm for concave programming. PhD thesis, Graduate School
of Business Administration, Harvard University, 1963.

http://www.gnuplot.info/

Nomenclature

Decorations of Symbols

Symbol Description

a, α Scalar values in lowercase roman and greek letters.
a,α Vector values in lowercase roman and greek letters with boldface style.
A Matrix values in uppercase roman and greek letters with boldface style.
A Sets and subsets in uppercase roman letters with calligraphic style.
A Function space in uppercase roman letters with script style.
kg, s Physical units in sans serif style.

a Supremum or upper bound of a. Also the mean value of a.
a Infimum or lower bound of a.
â Unknown real value belonging to an estimated value a.
ã A value that somehow deviates from a.
a∗ Optimum, final accepted iterate.
a(k) a belongs to step or iteration k.
a[k] a belongs to a one-step method of order k.
a- Left-hand side limit of a.
a+ Right-hand side limit of a.
a0 Initial value of a.
A−1 Inverse of the regular matrix A.
A+ Generalized inverse of the possibly singular matrix A.
AT, aT Transpose of matrix A or vector a.
Ai, ai Row i of matrix A, the column index is missing. Element i of vector a.
A•j Column j of matrix A, the row index is skipped.
Aij Element in row i and column j of matrix A.

Roman Symbols

Symbol Domain Description

b T × R
ki → U Control discretization base functions.

c R Spring coefficient (powertrain models).
c T × X × U → R

nc Continuous inequality constraint function.
c R

s Vector of Runge-Kutta step coefficients (Chapter 4 only).
d R Damping coefficient (powertrain models).
ei

R
n i-th unit vector.

f X → R Objective function of an optimization problem.
f R

nr → R Objective function of a least-squares problem.
f T × X × U → R

nx Right-hand side of an ODE system.
g T × X × U → R

ng Equality constraint function of an optimization problem.
h T × X × U → R

nh Inequality constraint function of an optimization problem.
ĥ T × X × U → R

n
ĥ Active inequality constraint function.

h R Integrator step size
ı C Imaginary unit, ı2 := −1.

Nomenclature 131

Symbol Domain Description

i, j, l N Subscript indices denoting components (Aij , yl).
k, n N0 Sub- or superscript indices denoting a step or count.
m N Number of multiple shooting subintervals.
nc N0 Number of continuous inequality constraints.
ng N0 Number of equality constraints.
nh N0 Number of inequality constraints.
ñh N0 Number of active inequality constraints in NLPs.
no N Number of observable model outputs.
nr N Number of residuals in parameter estimation problems.
p P ⊂ R

np Vector of global model parameters.
r X → R

nr Residual function in least-squares problems.
s N Number of stages of a Runge-Kutta method.
s M(m× nx, R) Initial values of the multiple shooting subproblems.
t T ⊂ R Current time.
t0, tf T ⊂ R Start- and end-time.
ts T ⊂ R Activation time of an implicit switch.
u T → U Control function in optimal control problems.
x T → X Differential states trajectory.
y X → R

nr Valid model in parameter estimation problems.

B M(s− 1, R) Part of the Butcher tableau of a Runge-Kutta method.
E Random var. from which observation errors ε are drawn.
F R Force (powertrain models).
Gp T →M(nx × np, R) Sensitivity of an IVP’s solution x w.r.t. the parameters p.
Gx T →M(nx, R) Sensitivity of an IVP’s solution x w.r.t. the initial values x0.
In M(n, R) Unit matrix of size n× n.
J R Mass moment of inertia (powertrain models).
J+

R
nf +ng → R

nx Generalized inverse solution operator.
O Zero matrix.
T M(nx, R) Variance-covariance matrix of the estimate x.
Ux M(nx, R) Update with respect to the states in an implicit switch.
Up M(nx × np, R) Update with respect to the parameters in an implicit switch.
W C 1 × U → R Adverse player’s worst-case response operator.
W̃ C 1 × U → R Convex approximation to the worst-case response operator.

Greek Symbols

Symbol Domain Description

α R
s Vector of Runge-Kutta stage evaluation time points.

β R Interpolation base polynomial.
δ R

nx Discontinuity of the right-hand side.
ε R

nr Observation error in parameter estimation problems.
ε, ε R

nx , R Global error of a one-step method.
η R

nx Numerical approximate to the solution y of an IVP.
λ C Eigenvalue.
λ R

ng Lagrange multiplier of the equality constraints.
µ R

nh Lagrange multiplier of the inequality constraints.
ν N Degrees of freedom of a statistical distribution.
φ T × X → R Mayer-type objective function.
̺ T → X Continuous interpolant of a Runge-Kutta method.
σ R Standard deviation of a statistical distribution.
σ T × X × P → R Switching function.

132 Nomenclature

Symbol Domain Description

σ, σ R
nx , R Local error of a one-step method.

τ , τ R
nx , R Consistency error of a one-step method.

ξ R
nr Observed data, subject to observation errors ε.

ξ̂ R
nr Unobservable but error-free data underlying ξ.

ω R Angular velocity (powertrain models).

∆ R
nx Discontinuity in the states.

∆ϕ R Angle difference (powertrain models).
Λ T × X × U → R Lagrange-type objective function.
Φ T ×R× X × C 1 → X Generating function of a one-step method.
Σ M(nr, R) Variance-covariance matrix of the observations.
Ξ Random variable from which observations are drawn.

Calligraphic Symbols

Symbol Domain Description

A(x) ⊆ N Set of active inequality constraints in the point x.
Ã(x) ⊆ N Set of strictly active inequality constraints in the point x.
Fν1,ν2

Fisher’s F-distribution with ν1 and ν2 degrees of freedom.
M(n, K) Set of n× n square matrices over the field K.
M(m× n, K) Set of m× n matrices over the field K.
Nν Normal (Gaussian) distribution with ν degrees of freedom.
O Landau symbol.
P ⊆ R

np Global ODE model parameter space.
T ⊆ R Time horizon for initial-value problems.
U ⊆ R

nu Control space for ODE optimal control problems.
Up ⊆ R

np Uncertainty set of the uncertain parameter p.
X ⊆ R

nx State space for IVPs and ODE optimal control problems.
X 2

ν Chi-square distribution with ν degrees of freedom.

Blackboard, Fracture, and Script Symbols

Symbol Description

C n(D,V) Set of n-times (0 6 n 6∞) continuously differentiable functions over the
domain D with values in the domain V .

C Set of complex number.
N, N0 Set of natural numbers (excluding, and including zero).
P(A|B) Probability of the event A, given satisfied preconditions B.
R, R+, R+

0 Sets of real (positive real, non-negative real) numbers.
Z Set of integer numbers.

ℑ Imaginary part of a complex numbers.
ℜ Real part of a complex number.

Nomenclature 133

Other Symbols

Symbol Description

||·|| , ||·||p Euclidean (ℓ2-) norm, ℓp-norm (1 6 p 6∞) of a vector.
≪,≫ Much less than, much greater than.
∇xf(. . .) Vector (gradient) or matrix (Jacobian) of first partial derivatives of f with

respect to x.
∇2

xf(. . .) Matrix (Hessian) of second partial derivatives of the scalar function f

with respect to x.
sgn Signum function.
vec Vectorization operator.

Abbreviations

Abbreviation Description

BDF Backward Differentiation Formula.
BFGS Broyden-Fletcher-Goldfarb-Shanno
BVP Boundary Value Problem
CGN Constrained Gauß-Newton
DAE Differential-Algebraic Equation
DMF Dual-Mass Flywheel
EBNF Extended Backus-Naur Form
END External Numerical Differentiation
IND Internal Numerical Differentiation
IVP Initial Value Problem
KKT Karush-Kuhn-Tucker
LCQP Linearly Constrained Quadratic Program
MUSCOD Multiple-Shooting Code for Direct Optimal Control
NLP Nonlinear Program
ODE Ordinary Differential Equation
QFP QuickFit Project File
QP Quadratic Program
RKF Runge-Kutta-Fehlberg
s.t. subject to
SQP Sequential Quadratic Programming
w.r.t. with respect to

Index

a priori information, 55

acceleration
comparison to observed data, 66

active set, 24

adverse player, 88

algorithm
augmented system approach, 96

constrained Gauß-Newton (CGN), 30

for robust optimal control, 121

of Brent and Decker, 41

of Levenberg and Marquardt, 32

RKFSWT integrator, 50

Sequential Quadratic Progr. (SQP), 28

Armijo criteria, 29

augmented system, 93

axle drive, 18, 70

Bayes’ theorem, 55

bifurcation, 39

bisection, 41

bootstrapping process, 46

Butcher tableau, 34

cardan shaft, 17, 69, 70

CGN method, see constrained Gauß-Newton method
chi-square distribution, 54, 57

coasting mode, 79, 81–83, 100

complementarity, 25

strict, 26

condition
constraint qualification, 24

KKT first-order necessary, 25

second-order sufficient, 26

conditional probability, 55

confidence
area, 57

boxes, 87

ellipsoids, 87

consistency
error of a one-step method, 34

of a one-step method, 35

of a Runge-Kutta method, 35

consistent switch, 39

constrained Gauß-Newton method, 30

convergence, 31

constraint, 24

active, 24

implicit, in optimal control, 76

powertrain rotation speed delta, 79, 81, 98

qualification, 24

strictly active, 26

control function, 71, 78, 88

controls
in the QuickFit project file, 109

convergence
of a one-step method, 35

of the algorithm of Brent and Decker, 41

of the CGN method, 31, 59

of the SQP method, 29

convex problem, 88

covariance
independent estimate, 57

of the maximum likelihood estimate, 56

damping, 68

defect control, 36

delays, 62

in the QuickFit project file, 110

differentiability
of the IVP solution, 42

of the IVP solution across a switch, 43

discontinuity
implicitly defined, 38

discretization
error of a one-step method, 34

grid, 59, 73

of observed data, 58, 59

of the constraints, 74

of the control function, 73

of the optimal control problem, 73

distribution
Fisher’s, 58

normal, 52, 56, 58

DMF, see dual-mass flywheel
dual

of a norm, 89, 90

dual-mass flywheel, 17

EBNF, see enhanced Backus-Naur form
eigenfrequency, 68

eigenvalues
of a linear test system, 37

of a nonlinear ODE system, 68

of the powertrain model, 68, 70

embedded Runge-Kutta method, 36

enhanced Backus-Naur form
of the QuickFit project file (QFP), 109

error

Index 135

consistency, 34

control of a Runge-Kutta method, 36

discretization, 34

distribution, 52, 53

global, 35

local, 34

of observations, 51

systematic, 51

extrapolation, 36

feasible set, 24

Fehlberg method, 36

stage counts, 46

Fisher’s F-Distribution, 58

Gamma function, 54

Gaussian distribution, see normal distribution
gearbox, 17, 70

generalized inverse, 31

generating function
of a one-step method, 33

of a Runge-Kutta method, 34

goodness of fit, 54

Hessian, 30

ignition angle, 78

inconsistent switch, 39

IND, see internal numerical differentiation
indifference region, 57

infeasibility, 29, 81, 97, 100

initial-value problem, 33

for parameter estimation, 58, 59

parameter-dependent with switches, 38

internal numerical differentiation, 43

interpolation
cubic Hermite, 47, 74

Hermite-Birkhoff, 47

inverse quadratic, 41

of Runge-Kutta solutions, 48

inverse
generalized, 31

IVP, see initial-value problem

jump vector, 38

Lagrangian
function, 25

gradient, 81, 97, 100

multipliers, 25, 30

objective, 73

LCQP, see linearly constr. quadratic problem
least-squares

linearized problem, 30, 31

nonlinear problem, 30, 60

objective, 30, 53, 56, 60, 73

least-squares problem
linearized constrained, 30

linearized equality-constrained, 31

nonlinear, 30, 60

Levenberg-Marquardt method, 32

likelihood, 52

line search, 29

linearized approach, 88

linearly constrained quadratic problem, 27

solvers, 29

maximum likelihood estimator, 52

for ℓp-distributed errors, 54

for normally distributed errors, 53

minimizer
local, global, 24

model
identification, 68

of the powertrain, 16

validity regions, 40

multiple shooting, 75, 76

NLP, see nonlinear program
nonlinear program

discretized optimal control problem, 75

general form, 23

uncertain, 86

normal distribution, 52, 56–58

probability density function, 53

null-space, 27, 31

objective
implicit, in optimal control, 76

in the QuickFit project file, 110

least-squares, 30, 53, 56, 60, 73

measuring oscillations, 78

of Langrange type, 73

of Mayer type, 73

observation errors, 51

one-step method, 33

optimal control, 71

continuous problem formulation, 71

discretized problem formulation, 75

of powertrain oscillations, 78

of uncertain ODE systems, 91

under uncertainties, 86

oscillations, 13, 65, 66

measurement, 78

optimal control problem, 80

uncontrolled, 79

outputs
in the QuickFit project file, 110

of the powertrain model, 21, 62, 63

parameter estimation, 51, 61, 107

parameters
in the QuickFit project file, 111

of the powertrain model, 22, 62

uncertain, 87

parametrization
of the states, 74

performance index, see objective

136 Index

play
in the DMF, 17

in the side shaft, 18, 120

point
feasible, 24

Karush-Kuhn-Tucker (KKT), 25

regular, 25

stationary, 25, 27, 31

powertrain, 13

model, 16

operation modes, 79, 81–85, 97, 100

optimal control, 80

optimal control results, 80

parameter estimation, 61

parameter estimation results, 62

robust optimal control, 97

robust optimal control results, 100

powertrain model
description, 16, 69

identification, 68

observable outputs, 21, 62, 63

ODE system summary, 20

parameters, 22, 62

probability
conditional, 55

density function, 52

density of the chi-square distribution, 54

density of the normal distribution, 53

of observing a data series, 52

quadratic model, 27

quantile of a distribution, 57

QuickFit, 107

data files, 112

output files, 113

project file, 108

software architecture, 114

regula falsi, 41

regularization, 55, 80, 97

residual, 52, 56, 59, 63

robust nonlinear problem
linearized formulation, 89

linearized with adjoint sensitivities, 91

linearized with direct sensitivities, 90

worst-case formulation, 88

robust optimal control, 86

framework in MUSCOD-II, 121

of the powertrain, 97

problem formulation, 92

rotation speed
comparison to observed data, 65

Runge-Kutta method
continuous extension, 45

continuous solution, 41

definition, 34

error-controlled, 36

RKN34, RKF45, 34, 37, 48, 49

stage counts, 46

sensitivity
adjoint, 91

analysis of the powertrain control, 98

direct, 90

first-order updates during a switch, 44

matrices, 42, 44

of an IVP solution, 41

preserving sparsity, 90

second-order, 92

second-order updates during a switch, 95

update matrices, 45

sequential quadratic programming, 27, 75, 76

algorithm, 28

set
active, 24

feasible, 24

uncertainty, 87, 89

side shaft, 18, 79, 101, 120

slip, 19

software architecture
of the implicit switch extension, 117

of the QuickFit tool, 114

of the robust optimization framework, 121

SQP method, see sequential quadratic progr.
stability

area of a Runge-Kutta method, 37

of a one-step method, 35

of an NLP solution, 26

stationarity condition, 25

stiffness, 68, 69

switch
classification, 39

consistent, inconsistent, 39

definition, 38, 117

detection, 40, 117

execution, 118

function, 38, 40, 72

switches
implementation in MUSCOD-II, 117

implementation in MATLAB/Simulink, 119

in the multiple-shooting method, 76

in the powertrain model, 20

torque
as a control, 78, 102

comparison to observed data, 64

in the powertrain model, 16

traction mode, 79, 84, 85, 97

transmission, 18, 70

trust-region, 32

tyre
model, 18

radius, 18

slip, 19

uncertainty
effect on the rotation speed constraint, 98

Index 137

estimated, 56, 62

expressing, 87

in nonlinear programs (NLP), 86

in the powertrain model, 98

of the powertrain model parameters, 62

set, 87, 89

worst-case formulation, 88

variable metric approach, 30

variable-step method, 36

variational differential equations
first-order, 43

second-order, 93

velocity
comparison to observed data, 67

weighting, 53, 60

wheel
model, 18

velocity compared to observed data, 67

whitespace, 108

worst-case response, 88

	Abstract
	Introduction
	Goals and Highlights
	A Guiding Example: Powertrain Oscillations
	Outline of the Thesis

	The Powertrain Model
	Model Parts
	Details of the Implementation
	Summary and Reference

	Nonlinear Programming Theory and Algorithms
	Nonlinear Programming Theory
	Sequential Quadratic Programming
	The Constrained Gauß-Newton Method

	A Continuous Runge-Kutta Method Handling Implicit Switches
	Runge-Kutta Methods
	Convergence and Error Control
	Implicitly Defined Discontinuities
	Sensitivity Generation
	Continuous Extensions
	The RKFSWT Integrator Algorithm

	Parameter Estimation
	Parameter Estimation Problems
	Uncertainty Estimates and Confidence Areas
	Initial Value Problems for Parameter Estimation
	Powertrain Parameter Estimation
	Powertrain Model Identification

	Nonlinear Optimal Control Problems
	The Continuous Optimal Control Problem
	Discretization of the Continuous Problem
	Treatment of Implicit Switches
	Optimal Control of Powertrain Oscillations

	Robust Optimal Control Problems
	Uncertain Nonlinear Programs
	A Computationally Feasible Linearized Approach
	Optimal Control of Uncertain Systems
	Robust Optimal Control of a Powertrain

	Conclusions and Outlook
	Appendices
	The Parameter Estimation Tool QuickFit
	Input and Output Files
	The Project File
	Data Files
	Output Files
	Command Line Arguments
	Software Architecture

	Implicit Switches in MUSCOD-II and MATLAB/Simulink
	Extensions to the MUSCOD-II User Interface
	Realisation of Switches in MATLAB/Simulink

	A Framework for Robust Optimal Control in MUSCOD-II
	Robustifying a Problem Formulation
	Framework Components

	List of Figures, Listings, and Tables
	Bibliography
	Nomenclature
	Index

