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Abstract: Control of autonomous vehicles and providing recommendations to drivers in real
time are challenging tasks from an algorithmic point of view. To include realistic effects, such as
nonlinear tire dynamics, at least medium-sized mathematical models need to be considered. Yet,
fast feedback is of utmost importance. Existing Nonlinear Model Predictive Control (NMPC)
algorithms need to be enhanced to comply with these two contradictory requirements.
As the testing of algorithms in an automatic driving context is cumbersome and expensive, we
propose a virtual testbed for NMPC of driving cars. We use the open source race simulator
VDrift as virtual real world, in which algorithms need to cope with the mismatch between the
detailed physical model in the simulator and a coarser approximative model used for NMPC.
We present the general framework of this virtual environment and an optimal control problem
based on a medium-sized ordinary differential equation model and a generic and flexible
parameterization of the track constraint. We discuss one possible algorithmic approach to the
task of minimum time driving including gear shifts and give preliminary open loop numerical
results for a Porsche on Germany’s Formula One racing circuit Hockenheimring. This can be
used as a reference against which other (closed loop) solutions can be compared in the future.

1. INTRODUCTION

Due to progress in control algorithms and computational
power, automatic driving of cars and driving recommenda-
tions in real time are more than a theoretical idea. See, e.g.,
Falcone et al. [2007] for references to recent developments
in car steering control. However, testing algorithms in such
a context requires a lot of effort. Therefore we propose
to use an open source race simulator, in our case the
platform-independent software VDrift by Venzon [2010b],
as a virtual testbed for control, in particular nonlinear
model predictive control (NMPC) of driving cars.

Additionaly, we propose an optimal control based ap-
proach to calculate controls for time-optimal driving. We
use it to calculate open loop controls for a Porsche on the
Hockenheim ring as a proof of concept. The huge potential
of the simultaneous optimization of driving trajectory and
gear selection that was shown for energy-optimal driving
in Terwen et al. [2004] or Hellström et al. [2009] indicates
potential performance gains also for time-optimal driving.

The paper is organized as follows. In Section 2 we discuss
the open source race simulation software VDrift that
serves as a virtual test environment. In Section 3 we
present a smaller-scale mathematical model that we pro-
pose to use to calculate controls. This includes a discussion
of the track parameterization and the formulation of an
open loop optimal control problem. In Section 4 we pro-
pose a solution approach, based on Bock’s direct multiple
shooting method and a partial outer convexification of the
gear choice control function. Numerical results are given in
Section 5. An outlook to future work concludes the paper.

2. A VDRIFT BASED VIRTUAL ENVIRONMENT

In order to provide a flexible and realistic simulation envi-
ronment as a testbed for control algorithms, we make use
of the cross-platform and open-source driving simulator
VDrift by Venzon [2010b]. We chose VDrift among the
variety of available car simulation packages for various rea-
sons. It is a well-documented open source, cross-platform
software with active support of the developers, in partic-
ular from the creator Joe Venzon himself. It provides a
variety of currently about 30 fully modeled tracks and 30
car models. The VDrift developers put particular effort
in its driving physics engine, which is inspired by and
loosely based on the Vamos physics engine (see Vamos
Team [2010]).

We extended the source code of VDrift to permit a direct
or file-based exchange of data. This allows to couple auto-
matic controllers to the simulation software. We intend to
include this interface in future releases of VDrift. Unfortu-
nately the VDrift documentation includes no mathemat-
ical car model. Although for our setting this is not neces-
sary as algorithms are explicitly meant to cope with model
uncertainty, we describe the most important relationships
in the following that have been deduced from a manual
interpretation of the source code. Parameters can be found
in the source code, in VDrift’s “Documentation Wiki” by
Venzon [2010a] and in the diploma thesis of Kehrle [2010].

2.1 Pacejka’s Magic Formula Tire Model

For the dynamic behavior of a road vehicle, tire charac-
teristics are of essential importance. However, accurate



friction models of road and tire interfaces are very difficult
to obtain. Most of today’s racing simulations, just as
professional tire research, use a version of Pacejka’s so-
called Magic Formula as the state-of-the-art in realistic
tire modeling (cf. Pacejka [2006]).

The Magic Formula is a semi-empirical (based on mea-
sured data, but with physical structures) tire model to
calculate steady-state tire force and moment characteris-
tics. The forces are generated by the model as a result
of different wheel angles and parameters. The main input
variables are the camber angle γ, which is the inclination
of the wheel to the vertical plane, the side slip angle α as
the angle between the wheel’s orientation and the actual
direction of movement, the slip ratio κ = ωRe−v

v that is
used as longitudinal slip while accelerating and braking
and the normal load Fz that influences the grip of the tire
on the road. The wheel’s angular velocity is denoted by ω,
the current wheel speed with respect to the ground by v
and the effective tire rolling radius by Re. The friction
factor fs ∈ [0, 1] is a simplified way to model friction,
depending on what surface the car is driving on.

As a result, three varying forces act on the wheel and
accordingly affect the motion of the vehicle. The force Fx is
directed in longitudinal direction. By pressing the throttle,
the wheel speed increases and gets minimally higher than
the current ground speed, so the car accelerates. If the
wheel spins too fast, grip gets lost, resulting in less
acceleration. For braking instead, the same force exists in
opposite direction.

Fx = D sin(b0 arctan(SB + E(arctan(SB)− SB)))

B =
(b3 Fz + b4) e−b5Fz

(b1 Fz + b2) b0
D = (b1 Fz + b2) Fz fs

E = b6 F
2
z + b7 Fz + b8

S = 100 κ+ b9 Fz + b10

The lateral force Fy depends on the side slip angle, which
describes the direction of the wheel compared to the actual
vehicle direction on the ground.

Fy = D sin(a0 arctan(SB + E(arctan(SB)− SB))) + Sv

B =
a3 sin

(
2 arctan

(
Fz

a4

))
(1− a5|γ|)

a0 (a1 Fz + a2) Fz

D = (a1 Fz + a2) Fz fs
E = a6 Fz + a7
S = α+ a8 γ + a9 Fz + a10

Sv =
(

(a11 Fz + a12) γ + a13
)
Fz + a14

The self-aligning moment Mz acts on the steered wheel,
trying to center the tire back to straight ahead driving.

Mz = D sin(c0 arctan(SB + E(arctan(SB)− SB))) + Sv

B =

(
c3 F

2
z + c4 Fz

)
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c0 D
D = (c1 Fz + c2) Fz fs

E =
(
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2
z + c8 Fz + c9

)
(1− c10 |γ|)

S = α+ c11 γ + c12 Fz + c13

Sv =
(
c14 F

2
z + c15 Fz

)
γ + c16 Fz + c17

2.2 VDrift Engine Model

An overview of the global functionality of an engine and
its transmission of energy to the wheels within VDrift is
illustrated in Figure 1. Within the diagram, blue diamonds
illustrate the individual vehicle parts with their parame-
ters in gray, rounded boxes. Controls are displayed in form
of red circles. The green rectangles show the actual calcu-
lations of the vehicle parts, which combine the different
input values.
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Fig. 1. Overview of VDrift’s car model

In order to accelerate a car, on pressing the throttle gas is
injected into a piston and ignited. The amount of energy
which is released by the combustion can be transmitted
by the crankshaft from linear motion of the pistons into
rotational motion. The engine is controlled by accelerator
pedal position φ.

The total engine torque ME = Mcb +Mfr−MCl is applied
to the crankshaft from combustion Mcb, internal friction
Mfr, and the clutch MCl. To compute the accelerating
combustion torque, a cubic spline interpolates torque curve
g(νE) at the current number of revolutions-per-minute
(rpm) of the crankshaft. Combined with the throttle it
results in the combustion torque Mcb = φg(νE). The
engine’s number of rpm comes with its angular velocity
ωE, implemented in VDrift as a modified Euler method,
see Venzon [2010a], and νE = ωE

30
π . The peak engine

speed is achieved at ωp as ωp = νp
π
30 . This leads to the

friction factor fE, which allies with the engine’s angular



velocity to friction torque fE =
g(νp)
ω2

p
and Mfr = −1.3 ·

103ωEfE(1 − φ). Before we are able to calculate the total
engine torque subject to the throttle position, current
driving speed is necessary for backward computation of
the clutch’s angular velocity via the driveshaft. Assuming
a rear wheel drive, the current driving speed can be
computed from the average of the rear wheel’s rotational
velocity (ωrl, ωrr), differential ratio, and gear transmission
ratio ωD = it

1
2 (ωrl + ωrr) and ωCl = ωDi

µ
g . The clutch

torque represents the friction that arises any time one
side of the clutch is spinning faster than the other side.
The sign of the friction depends on which side is spinning
faster. If the engine speed is faster than the driveshaft,
the clutch friction will generate torque to slow the engine
and accelerate the wheels. Otherwise, if the engine speed is
slower than the driveshaft, the clutch friction will generate
torque to speed up the engine and slow the wheels,

MCl = χ(ωE − ωCl)(AClRCl · fClpCl).

The actual force transmitted by resulting total engine
torque, over driveshaft MDr, to the wheel, can be com-
puted with the current gear transmission ratio. Finally
this leads to the drive torque at rear right and left wheel
Mrr, Mrl for a rear wheel driven car MDr = MEi

µ
g and

Mrr = 1
2 itMDr. The maximum brake torque is counterac-

tive on the front wheels as MBf = ABfRBf ·fBfρfpBf and on
the other as rear wheel torque MBr, applied accordingly
with its rear parameters. To get the current brake torque,
the input control value of the brake pedal is required. In
addition to effective rolling radius Re, the braking force FB

at front and rear wheels is FBf = MBfξ
Ref

and FBr = MBrξ
Rer

.

3. OPTIMIZATION PROBLEM FORMULATION

In this Section we formulate a mathematical model that
will be used within our optimization approach. It is based
on previous work by Gerdts [2005, 2006], Sager et al.
[2008b], Kirches et al. [2010]. Furthermore we introduce
objective and constraint functions, in particular for track
constraints. They are the basis for an optimal control
problem that we will use to calculate controls that are used
within the VDrift environment described in Section 2.

3.1 Car Model

The car model used in this setting is closely related to
the one described in Kirches et al. [2010]. We model only
a single front and rear wheel located in the virtual center
between each original pair of wheels, neglecting any rolling
or pitching of the car body against the track.

The four control functions are listed in Table 1). Note
that the gear choice µ that influences the effective engine
torque’s transmission ratio is an integer control function.

Control Range Unit Description

wδ [−0.5, 0.5] rad
s

Steering wheel angular velocity

ξ [0, 1] – Break pedal position
φ [0, 1] – Accelerator pedal position
µ {1, . . . , nµ} – Selected gear

Table 1. Controls used in the car model.

The single-track dynamics are described by a system
of ODEs, see one of the aforementioned publications
for details. The individual system states are listed in
Table 2. The car’s center of gravity is determined by a

State Unit Description

d m Car’s deviation from centerline
v m

s
Magnitude of directional velocity of the car

δ rad Steering wheel angle
β rad Side slip angle
ψ rad Yaw angle

wz
rad
s

Yaw angle velocity

t s Elapsed time

Table 2. States used in the car model.

coordinate pair (σ, d), where σ describes the car’s progress
on and d denotes its deviation from the track’s centerline.
This is different from prior modeling approaches (e.g.,
Gerdts [2005, 2006], Kirches et al. [2010]), which used a
Cartesian coordinate description, yet necessary to allow
arbitrary tracks. Only slight changes to the car dynamics
are necessary: from a time-dependent ODE system (with
states x(·) and controls u(·) as defined in Tables 1 & 2 and
Section 3.3)

dx

dt
(t) = ft

(
t, x(t), u(t), µ(t)

)
. (4)

as it can be found in Kirches et al. [2010], we obtain
a position-dependent system simply by taking the inner
derivative dt

dσ (σ) = 1
v . It holds

dx

dσ
(σ) = fσ

(
σ, x(σ) · 1

v(σ)
, u(σ), µ(σ)

)
. (5)

By the coordinate system transformation described in
Section 3.2, the centerline of the track is mapped onto the
horizontal x-axis in the model from Kirches et al. [2010].
Consequently, the dynamics of cx w.r.t. σ are redundant.
The deviation d from the centerline is mapped onto cy in
the original model. Therefore, the car’s yaw angle ψ has to
be reduced by the track curvature at the current position.
The new dynamics for d(·) read

dd

dσ
(σ) = sin

(
ψ(σ)− curv(σ)− β(σ)

)
. (6)

Finally, we introduce the elapsed time t as a new state of
the ODE system:

dt

dσ
(σ) =

1

v(σ)
. (7)

3.2 Track Parametrization

As mentioned in Section 3.1, the car’s position is deter-
mined by a pair (σ, d). In order to achieve high flexi-
bility concerning the track choice, we propose a general
coordinate system transformation first approximating the
original track description by bicubic Bézier surfaces before
extracting boundary curves, centerline curve and level
curve (measuring altitude changes) as cubic Bézier splines.
For a set of (n + 1)(m + 1) control points Pi,j given
in Cartesian coordinates, the order (n,m) Bézier patch
(again in Cartesian coordinates) reads as

C(u, v) =

n∑
i=0

m∑
j=0

Pi,j B
n
i (u) Bmj (v) (8)



with parameters u, v ∈ [0, 1] and Bernstein polynomials

Bni (u) =

(
n

i

)
ui (1− u)n−i. (9)

Accordingly, a bicubic Bézier patch is defined by 16 control
points, whereas a cubic Bézier spline is defined by 4
control points. For a general discussion on Bézier spline
interpolation, we refer to Stoer and Bulirsch [2007].

The patch boundaries’ control points define a Bézier
spline, approximating the boundary curves. Jointly they
determine the track centerline as the Bézier spline defined
by the arithmetic middle of the 2D projection of each
pair of boundary control points. The track constraints
now merely are lower and upper bounds on the deviation
state d at each centerline control point. The level curve is
computed analogously as 1D Bézier spline.

Note that the computation of the car’s progress in lon-
gitudinal direction, u, as well as the computation of the
deviation from the centerline d ultimately leads to the
minimization of a polynomial of degree six in u, which has
to be solved numerically, e.g., using Newton’s method.

3.3 Optimal Control Problem

Summing up, the state vector x and the vector u of
continuous controls read

x :=
(
d, v, δ, β, ψ, wz, t

)ᵀ
, u :=

(
wδ, ξ, φ

)ᵀ
.

The integer controls are denoted by a separate vector µ(·).
If we use f to denote the right-hand-side function of the
ODE system, the resulting mixed-integer optimal control
problem reads

min
x(·),u(·),µ(·)

t(σf) +

∫ σf

σ0

w2
δ(σ) dσ (10a)

s.t. ẋ(σ) = f
(
σ, x(σ), u(σ), µ(σ)

)
(10b)

d(σ) ∈
[
−Pu(σ) + B

2 , Pu(σ)− B
2

]
(10c)

nmin
eng ≤ neng(v(σ), µ(σ)) ≤ nmax

eng (10d)

wδ(σ) ∈ [−0.5, 0.5] (10e)

ξ(σ) ∈ [0, 1] (10f)

φ(σ) ∈ [0, 1] (10g)

µ(σ) ∈ {1, . . . , nµ} (10h)

x(σ0) =
(
free, 10, 0, 0, 0, 0, 0

)ᵀ
(10i)

ψ(σf) = 0 (10j)

for σ ∈ [σ0, σf ]. The objective function (10a) strives for
minimization of the loop time t(σf) while keeping the
steering effort wδ(σ) minimal. At any time, the full car
of width B must be positioned within the track course’s
boundaries (cf. (10c)) and the engine speed is bounded
(10d). Note that it is sufficient to use w.l.o.g. only the
upper bound due to symmetry of upper and lower bound
at the centerline. The system’s initial values are fixed in
(10i); the car’s initial vertical position on the track however
remains a free and is only subject to track boundaries. At
the end of the track, straight ahead driving is guaranteed
by (10j).

4. GENERAL SOLUTION FRAMEWORK

We propose to use the optimal control problem from
Section 3 to obtain controls. We start with an open loop

offline solution and intend to extend this in future work to
feedback based NMPC.

4.1 The Direct Multiple Shooting Method

Neglecting the integer control µ(·) for the moment, the op-
timal control problem (10) can be solved using Bock’s di-
rect multiple shooting method (see Bock and Plitt [1984]),
which transforms the optimal control problem into a fi-
nite dimensional optimization problem. This is achieved
by a reduction of the feasible control space to a finite-
dimensional one using basis functions with local support,
and a relaxation of the path constraints to a finite time
grid. A highly structured nonlinear program (NLP) is
obtained that is solved by a tailored sequential quadratic
programming (SQP) method. This includes an extensive
exploitation of the arising structures, in particular using
block-wise high-rank updates and condensing for a reduc-
tion of the size of the quadratic problems (QP) to that of
a single-shooting method. For more details see Bock and
Plitt [1984], Leineweber et al. [2003].

We use an efficient implementation of this method, the
optimal control software package MUSCOD-II, for com-
putational results.

4.2 Convex Relaxation of Integer Controls

We partially convexify the original optimal control prob-
lem with respect to the integer control functions µ(·) as
first suggested in Sager [2005]. We assign one control func-
tion ωi(·) to every possible control choice µi ∈ {1, . . . , nµ}
and obtain

ẋ(σ) =

nµ∑
i=1

f(x(σ), µi, u(σ)) ωi(σ) (11)

instead of (10b) and

ω(σ) ∈ {0, 1}nµ (12a)

1 =

nµ∑
i=1

ωi(σ) (12b)

instead of (10h). There is a bijection µ(t) = µi ⇔ ωi(t) = 1
between the solutions of the original and the partially
convexified problem, see Sager [2005]. The relaxation of
the latter is obtained by replacing the constraint (12a) by

ω(σ) ∈ [0, 1]nµ . (13)

This formulation has two main advantages over other
methods for the calculation of integer solutions for mixed-
integer optimal control problems that suffer from a combi-
natorial explosion when the number of discretized binary
control variables increases. First, for many optimal con-
trol problems the optimal solution will have a bang–bang
character, therefore the solution of the relaxed problem
will yield the optimal integer solution. Second, for cases
in which path-constraints or sensitivity-seeking arcs oc-
cur, the integer gap can be made arbitrarily small by
refinement of the underlying control discretization grid.
We recommend to use a sum up rounding strategy as
developed in Sager [2005] in combination with a switching
time optimization approach (cf. Kirches et al. [2010]).
Details can be found, e.g., in Sager et al. [2009].



5. NUMERICAL RESULTS

As a proof of concept, we compute open loop optimal
controls for a Porsche 911 Club Sport (Porsche CS)
stock car and the Formula One racing circuit Hocken-
heimring, Germany. Numerical data for both are included
in VDrift. The Porsche CS, built in the years 1987
through ’89, is a licensed street car, but the CS-series come
with a racing engine. Car specific parameters are listed in
Kehrle [2010]. The circuit’s length measures σf = 4574m
and is implemented in VDrift by a set of 7776 Bézier
points depicted in Figure 2, together with the calculated
trajectory.

Fig. 2. Track data of Hockenheimring racing circuit, given
as Bézier points in VDrift with a suboptimal open
loop solution: gear choice and trajectory.

The Porsche CS features a five-speed gearbox (nµ = 5),
which is to be controlled manually, i.e., by the optimization
algorithm. For other car-specific parameters, we refer to
Kehrle [2010] or the VDrift implementation and docu-
mentation Venzon [2010b].

Computing optimal controls for the described setting is
significantly more complex than for the settings considered
in Gerdts [2005, 2006], Sager et al. [2008b], Kirches et al.
[2010]. This is due to the length of the track and diffi-
cult track parts like hairpin curves. Every second Bézier
patch was chosen as a Multiple Shooting grid point, re-
sulting in 324 shooting intervals. Note that naturally the
Bézier points are placed more densely in difficult areas.
We applied a homotopy to generate start values for the
optimization.

Optimization starts as the car crosses the scratch line,
using straight ahead driving at full acceleration in first
gear as default control up to that point. Thus, the initial
values for the Porsche CS on Hockenheimring racing
circuit are given by v0 = 11.4509m

s , d = 4.05983m and
ψ0 = −1.55632, 0 for all other states.

Figures 3 through 5 show trajectory details corresponding
to Figure 2. As can be seen, the gear choice control
functions are often bang-bang and hence integer feasible.
On some arcs procedures as described in Sager et al. [2009],
Sager [2009] need to be applied. However, at the price of
a possible frequent switching, the objective function value
of the relaxed problem can always be obtained with an
integer solution, Sager et al. [2011]. For illustration we
depict only the not-yet integer trajectory. The resulting
lap time for the relaxed solution is t = 112.7175s.

It is beyond the scope of this paper to discuss the details of
the actuators and trajectory in Figures 3 to 5. Instead, we
refer to a video visualization that can be found on the web-
page http://mathopt.de/RESEARCH/automotive.php.

(a) Steering angle velocity ωδ. (b) Steering angle δ.

(c) Braking pedal position ξ. (d) Acceleration pedal φ.

Fig. 3. Optimal steering angle velocity, steering angle,
braking and acceleration given as differential state of
the optimal integer solution for the Porsche CS.

(a) 1st gear. (b) 2nd gear.

(c) 3rd gear. (d) 4th gear.

Fig. 4. Relaxed gear choice functions as in Section 4.2:
control is 1 whenever the gear is active. Gear 5 is 1
whenever all others are 0, compare (12b).

When we apply the controls to a Porsche in our virtual
testbed VDrift, the model mismatch leads to a violation
of the path constraint and a subsequent crash already in
the first curve, compare Figures 2 and 6. Future work will
hence include feedback.

6. DIRECTIONS OF FUTURE RESEARCH

We presented a testbed for control algorithms and an
open loop solution for a Porsche on Hockenheimring. We
observed the expected model-plant mismatch effect for the



(a) Vertical position d. (b) Velocity v.

(c) Side slip angle β. (d) Time t.

(e) Yaw angle ψ. (f) Yaw angle ωz .

Fig. 5. Differential states of the open loop trajectory for
the Porsche CS.

Fig. 6. Application of the open loop controls to the
leading red car in VDrift leads to violation of track
constraints, making the need to include feedback
information obvious.

calculated controls: the car crashes shortly after the first
curve. Future work will focus on the inclusion of feedback
in an NMPC context. To achieve real-time capability we
want to evaluate the potential of multi-level optimization
approaches with different levels of model accuracy that
are intertwined in one algorithm. A comparison with
other control algorithms, e.g., based on linearizations, is
expected to give further insight and shall be performed
within the http://embocon.org EU FP7 project.
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