
Ruprecht-Karls-Universität Heidelberg

Optimal Control of Vehicles in
Driving Simulators

Diplomarbeit

von

Florian Kehrle

Betreuer:

Dr. Sebastian Sager

March 11, 2010

Abstract

The focus of this thesis is on the mathematical modeling, simulation, and optimal
control of racing cars under realistic conditions. A mathematical model yielding a
compromise between being suited for optimization in real-time and an adequate ap-
proximation of physical reality is derived, based on previous work from literature and
an intrinsic model used in an open source racing simulation software. State-of-the-art
methods for nonstandard optimal control problems are applied. To our knowledge,
for the first time an offline solution for a time-optimal drive on the Hockenheimring
including non-automatic gear shifts is calculated. The intention of our work is to test
algorithmic improvements in the optimization software under highly realistic condi-
tions. The racing simulation supplies a visualization tool for the complex, nonlinear
processes to be optimized. The combination of an optimization software and a rac-
ing simulation furthermore establishes the basis to apply Nonlinear Model Predictive
Control (NMPC). Solution techniques for the described mixed integer optimal control
problems (MIOCPs) are discussed, including an Outer Convexification approach. These
techniques are implemented in the optimization software Muscod-II, which has been
developed by the working group of Prof. Dr. Dr. h.c. H.G. Bock and Dr. J.P. Schlöder at
the Interdisciplinary Center for Scientific Computing (IWR) of the University of Heidelberg.
For interfacing an existing example for time optimal control of a vehicle with gear
shifts to the racing simulator, a transformation of the coordinate system as well as
modifications in the set of ordinary differential equations has been necessary. Hence,
this thesis describes the optimal control problem not only on a short test track, but
on realistic three-dimensional racing tracks. Therefore, an automatic import of the
racing simulation track data into the standard form of the optimization software is
implemented. The embedded mathematical car model improved in functionality and
car specific parameters, which can be automatically included from various vehicles of
the racing game as well. The numerical results of an optimal control on a complete
Formula One Grand Prix racing circuit are presented, including two different car mod-
els. This optimal solution is achieved with an independently optimized gear selection,
which is not implicitly defined to the actual state. The length and nature of the track,
as well as the challenges appearing with the binary controls of gear shifting, result
in a large-scale optimization problem. The computed optimal solution with a 1989

Porsche Clubsport (max. velocity 248km
h) of 118.85s for a complete lap on the Hock-

enheimring, can be compared to a real world lap time record driven by a 2006 Porsche

997 GT3 (max. velocity 310km
h) in 116.41s. Additionally, the computed optimal control

values are integrated to the racing simulator and illustrated with screenshots.

Mathematics Subject Classification (2010): 49J15.

Zusammenfassung

Der Fokus dieser Diplomarbeit liegt auf dem mathematischen Modellieren, der Simulation
und der optimalen Steuerung von Rennfahrzeugen unter realistischen Bedingungen. Anhand
eines integrierten Modells, das in einer open-source Rennsimulationssoftware benutzt wird,
und früherer Arbeiten aus der Literatur, wird ein mathematisches Modell abgeleitet, welches
einen Kompromiss zwischen Eignung für Echtzeitoptimierung und einer angemessenen Annä-
herung der physikalischen Realität bildet. Es werden modernste Methoden für nicht standar-
disierte Optimalsteuerungsprobleme angewendet und - nach unserem Kenntnisstand - zum
ersten Mal eine Offline Lösung für zeit-optimales Fahren mit Gangschaltung auf dem Hocken-
heimring berechnet. Das Ziel dieser Arbeit ist, algorithmische Erweiterungen in der Optimal-
steuerungssoftware zukünftig unter sehr realistischen Bedingungen testen zu können. Die vor-
handenen Visualisierungen der Rennsimulation machen es möglich, die komplexen nichtlinea-
ren Zusammenhänge, die man aus einer Optimierung erwarten kann, zu veranschaulichen. Die
Verknüpfung einer Software zur Optimalsteuerung mit einer Rennsimulation zielt außerdem
darauf ab, Nichtlineare Modell-Prädiktive Steuerung (NMPC) auf das Problem anwenden zu kön-
nen. In diesem Zusammenhang werden spezielle Lösungsverfahren für Gemischt-Ganzzahliger
Optimalsteuerungsprobleme (MIOCPs) vorgestellt, unter anderem die Methode der Konvexifizie-
rung. Die präsentierten Lösungsverfahren sind in der Optimalsteuerungssoftware Muscod-
II implementiert, welche in der Arbeitsgruppe von Prof. Dr. Dr. h.c. H.G. Bock und Dr. J.P. Schlö-
der am Interdisziplinären Zentrum für wissenschaftliches Rechnen (IWR) der Universität Heidelberg
entwickelt wird. Um ein vorhandenes Beispiel zur zeit-optimalen Steuerung eines Fahrzeuges
mit Gangschaltung mit dem Rennsimulator verknüpfen zu können, wurden Transformatio-
nen der vorhandenen Koordinatensysteme, sowie des eingebauten Differentialgleichungsmo-
dells notwendig. Diese Arbeit beschreibt das untersuchte Optimalsteuerungsproblem nicht nur
auf einer kurzen Teststrecke wie bisher, sondern auf realistischen drei-dimensionalen Renn-
strecken. Dabei wurde ein Verfahren implementiert, welches einen automatischen Import der
gewünschten Streckendaten aus der Rennsimulation in das Standardformat erlaubt. Das einge-
baute mathematische Fahrzeugmodell wurde im Bezug auf Funktionalität ebenso verbessert,
wie in der Genauigkeit fahrzeugspezifischer Parameter, welche nun für beliebige Fahrzeuge
aus dem Rennspiel automatisch eingebunden werden können. Die numerischen Ergebnisse
zur optimalen Steuerung zweier unterschiedlicher Fahrzeugmodelle werden für eine komplet-
te Formel 1 Grand-Prix-Rennstrecke präsentiert. Dabei ist die Gangschaltung nicht implizit ab-
hängig vom aktuellen Zustand, sondern wird unabhängig davon optimiert. Die Beschaffenheit
und Länge der Strecke, sowie die auftretenden Schwierigkeiten der binären Steuerungen der
Gangschaltung, führen zu einem großflächigen Problem. Die berechnete optimale Lösung ei-
nes 1989 Porsche Clubsport (Maximalgeschwindigkeit 248 km

h) auf einer vollständigen Runde
des Hockenheimrings in 118.85s kann mit dem aktuell bestehenden Rundenrekord eines 2006

Porsche 997 GT3 (Maximalgeschwindigkeit 310 km
h) von 116.41s verglichen werden. Die be-

rechnete Lösung zur Optimalsteuerung wird außerdem noch in den Rennsimulator eingebaut
und mittels Screenshots in der Arbeit präsentiert.

Contents

0 Introduction 1
0.1 Thesis Outline . 2

1 Racing Simulators 5
1.1 Commercial Racing Video Games . 5

1.2 Open-Source Software . 5

1.2.1 Racer . 6

1.2.2 TORCS . 6

1.3 VDrift . 7

2 Mathematical Models of Car Driving 9
2.1 Multibody Systems . 9

2.2 Pacejka’s Magic Formula Tire Model . 11

2.3 VDrift . 12

2.3.1 VDrift Car Model . 14

2.4 Testdrive . 21

2.4.1 Testdrive Car Model . 22

2.5 Extended Testdrive Model . 26

2.5.1 Transformation of ODE System . 27

2.5.2 Modifications in Car Model . 28

3 Coordinate Systems 32
3.1 Testdrive Track . 32

3.2 Bézier Patches in VDrift . 33

3.3 Transformations between Coordinate Systems 35

3.3.1 Locate Car Position with Newton’s Method 36

4 Mixed-Integer Optimal Control Problems 38
4.1 Problem Formulation . 39

4.2 The Direct Multiple Shooting Method . 42

4.2.1 Control Discretization . 42

4.2.2 State Parametrization . 43

VII

VIII Contents

4.2.3 Constraint Discretization . 43

4.2.4 Discrete Nonlinear Problem . 44

4.3 Sequential Quadratic Programming Method 44

4.4 Outer Convexification . 45

4.4.1 Motivation . 45

4.4.2 Outer Convexification . 45

4.5 MUSCOD-II . 47

5 Comparison of Models on Test Track 48
5.1 Modification of the Track Course . 48

5.2 Optimal Control Problems . 50

5.2.1 Original Testdrive Optimal Control Problem 50

5.2.2 Extended Testdrive Optimal Control Problem 50

5.3 Numerical Results . 51

5.3.1 Variable Initialization . 51

5.3.2 Comparison of the Solutions . 53

6 Optimal Control of Vehicles on a Race Track 55
6.1 Hockenheimring - Track Information . 56

6.2 Initialization Approach . 57

6.3 Numerical Results . 58

6.3.1 Porsche Clubsport - Relaxed Solution 58

6.3.2 Porsche Clubsport - Integer Solution 62

6.3.3 2002 Formula One Car . 69

7 Integration of Numerical Results to Racing Simulator 73
7.1 Input/Output Operations . 73

7.2 Preliminary Considerations . 74

7.3 Illustration of the Solution . 74

8 Conclusion and Outlook 82
8.1 Vanishing Constraints and Ill-Conditioning 82

8.2 Model Adjustment . 84

8.3 Nonlinear Model Predictive Control . 84

8.3.1 Moving Horizon . 85

8.4 Summary . 87

Appendices 88

A Car Parameters of VDrift 88

Bibliography 94

Chapter 0

Introduction

The simulation of driving vehicles has gained a lot of relevance over the past years.
These simulations are applied in driving characteristics under extreme conditions,
like in crash tests or in the “moose test”. There are further applications in reduction
of energy consumption and raising acceleration of a vehicle. In this connection, as
well as primarily due to the computer gaming industry, several realistic mathematical
models have been developed in the field of simulation software.

This thesis aims for coupling such racing simulation software, available as open
source, to software for optimization of dynamic processes. Here the intention is on
the ability to try algorithmic improvements in the optimization software under highly
realistic conditions. Furthermore, the racing simulation supplies a great visualization
tool for the complex, nonlinear processes to be optimized.

The combination of an optimization software and a racing simulation is designed
with a view to time optimal control of a vehicle on a particular track. Most of the
racing simulators come along with so-called artificial intelligence or AI drivers, which
are normally controlled by a more or less simple algorithmic calculation of a racing
line. The acceleration, as well as braking, and steering of the AI driver result from the
basis of this racing line.

However, recently a more complex approach has been developed, as can be seen
in the papers of Gerdts [15, 16], and Kirches [22]. Therein, a time optimal control of a
vehicle with gear shifts on a short test track is presented, in the following simply called
testdrive. Furthermore, a fast solution of periodic optimal control problems in automobile
test-driving with gear shifts is given by Sager in [32]. Based on the same optimal control
problem as in testdrive, the periodic version is applied on an elliptic track.

The difficulty of these problems lie in the integer controls of the gear shifts, which
in combination with the continuous controls of acceleration, braking, and steering
results in a problem class, called mixed-integer optimal control problems (MIOCP). To
handle these problems, a combination of the particular solving techniques of sequen-

1

2 0.1. Thesis Outline

tial quadratic programming, the direct multiple shooting method and partly the MS Mintoc

algorithm is used in the context of this thesis. These techniques are implemented in
the mentioned optimization software called Muscod-II, which has been developed by
the working group of H.G. Bock and J.P. Schlöder at the Interdisciplinary Center for Sci-
entific Computing (IWR) of the University of Heidelberg.

In addition to the mathematical difficulties, appearing even for smaller problems as in
the about 200m testdrive track, the main improvement of this thesis is the approach to
optimize a vehicle control with gear shifts on a complete realistic Formula One racing
track of a length of several kilometers. The complexity of this problem rises extremely
with the track length as well as with its course.

As preliminary work, an extensive literature and software evaluation and repro-
cessing is made. We extend the existing model of testdrive by a modification of the
ordinary differential equations (ODEs). With the intention to integrate the computed op-
timal solution into the racing simulator, it is necessary to take a closer look at each of
the embedded mathematical models of automobiles. Besides, a sensitivity analysis of
each mathematical model is produced. We achieve three-dimensional track informa-
tion in the standard format of the optimal control problem. This is implemented via
automatic import of optional racing tracks from the racing simulation game. Besides,
an appropriate track parametrization has to be attached to the optimization software.
To actually integrate the optimal solution to the racing simulator, input/output oper-
ations are implemented within its source code.

0.1 Thesis Outline

Chapter 1 Chapter One gives a historical overview of racing video games. Different
open-source games of that genre are presented, as well as the racing simulation we
focus on: VDrift.

Chapter 2 Chapter Two introduces multibody systems and explains how mathemat-
ical models of real world procedures operate. The importance of tire dynamics in car
modeling is presented, in particular with Pacejka’s so-called Magic Formula [25], that
shows how forces act on spinning wheels. We describe the functionality of the engine
model in VDrift, in addition to transmission of energy to the wheels. Therefore, spe-
cific parameters of two realistic VDrift vehicles are illustrated, representing the same
cars that are used in the following optimization part of the thesis. Then we focus on
the buildup of a car model in the mixed-integer optimal control problem testdrive (short
testdrive), as shown in [15, 22]. Furthermore, we demonstrate the necessity of the
extensions and modifications in testdrive’s set of ordinary differential equations, for the
interaction with the racing simulator VDrift. These modifications lead to the extended
version of testdrive, finally presented in this chapter.

0.1. Thesis Outline 3

Chapter 3 Chapter Three starts with a track course formulation of the original test-
drive problem. Besides, an overview in Bézier splines and patches [34] is used to give
an idea of the functionality of the embedded coordinate system in VDrift. Due to
the intention to apply the extended testdrive optimal control problem to an optional
VDrift track, we use Bézier patches for a transformation between both embedded
coordinate systems.

Chapter 4 Chapter Four presents the basic mathematical problems that are used in
the context of this thesis. We define the general form of a nonlinear problem, as well
as in particular a mixed-integer optimal control problem (MIOCP) and approaches how to
treat those. Hence, the direct multiple shooting method in combination with a sequential
quadratic programming algorithm is shown [37, 29, 17, 24]. Finally, the difficulty of
integrality in combination with nonlinearity of the MIOCP formulation can be solved,
by reformulating via the Outer Convexification approach [33].

Chapter 5 Chapter Five shows the numerical results of the original testdrive problem
in comparison to the extended version. Due to the modifications in the ODE model,
the track course had to be smoothed to solve the new, transformed optimal control
problem. On the basis of the visualized numerical results, it is illustrated that the new
model produces similar solutions in the driving behavior, but has some differences in
velocity and steering, based on modifications in car and track model.

Chapter 6 Chapter Six illustrates the numerical results of the optimal control of two
different vehicles, driving a lap of an official Formula One Grand Prix racing circuit. In
this connection, the solution of a continuously optimized gear selection is presented,
which not addicted to the actual state like in automatic transmission. This improve-
ment is one of the main characteristics of this thesis. We give some information about
the track as well as the initialization approach for the optimization and discuss the
visualized numerical results.

Chapter 7 Chapter Seven represents in a way the inversion of the previous chap-
ter, in which we achieved the optimal solution of a VDrift car and track within the
“Muscod-II/testdrive world”. This chapter shows the other way around. This means
that the optimal control of a specific car and track calculated with Muscod-II, is ap-
plied to the control of an AI driver within VDrift. Therefore, we primarily have to
implement some extensions in VDrift’s source code. The results are illustrated as
screenshots.

Chapter 8 Chapter Eight discusses the challenges appearing with the presented ap-
proaches, in linearization by Outer Convexification of the constraints, with the huge-
ness of the optimization problem, and with the accuracy while putting the numerical

4 0.1. Thesis Outline

results as control data into the racing game. Finally, proposals for solution are pre-
sented with model adjustment and Nonlinear Model Predictive Control closing with a
summary of the achieved research.

Chapter 1

Racing Simulators

1.1 Commercial Racing Video Games

Racing video games can roughly be classified in two different genres. On the one
hand there are racing simulations, on the other arcade racing games. Additionally
you can divide every PC game in commercial and open source software. The main
focus in racing simulations is on extremely realistic physics engines, whereas arcades
are primarily concerned with gaming fun and a high speed experience with more
“liberal” physics.

Due to limited hardware capabilities, mostly simple arcade games have been de-
veloped in the early stages of racing video games (Gran Trak 10 released by Atari in
1974). The precursor of today’s racing games with a third person view and AI drivers
was Pole Position (1982), which included a real racing circuit for the first time. How-
ever, there were also racing simulations with focus on reality like Revs - Formula Three
simulation (1984), which had only one selectable track due to hardware limitations, but
with high track details compared to other games at that time.

Since the late 1990’s faster CPUs allowed more and more realistic physics and of
course better graphics (Gran Turismo - 1997). Higher grade of reality increases the
difficulty of handling the car, which is one reason why arcade games generally are
more popular than realistic simulations. Hence, most simulations have different levels
of difficulty, which provide the possibility to activate little helpers like traction control,
automatic gear shift, steering assistance or damage resistance.

1.2 Open-Source Software

Our intention is to couple the optimization algorithms we developed (presented in
Chapter 4) with a car racing simulation game. We like to compare the solutions of
our algorithms, which include optimal control of steering, accelerating, braking and
gear shifting, to the existing AI drivers of the racing game. Furthermore, we want to

5

6 1.2. Open-Source Software

integrate those solutions to the racing simulator to have an excellent visualization of
optimized results. Therefore, modifications in the source code of the racing game will
be necessary. By using open source software, we are able to make required modifica-
tions in this source code. Besides, higher developed open source racing games place
emphasis on detailed realistic physics. Most of these simulations try to exactly repli-
cate the handling of the original automobile, often under different car names, when
the acquisition of licenses would be too expensive.

We compared several open source racing simulators in reference to:

• physical models

• programming language

• coordinate systems

• computer controlled drivers

• graphics

• contact and support by the software engineer

Three different simulators were considered more precisely - Racer, Torcs and VDrift.
We will briefly explain the decision against Racer and Torcs. Thereafter, we present
our decision to work with the open source racing simulator VDrift in a more detailed
report.

1.2.1 Racer

Racer, created by Ruud van Gaal (in 2000-2001)1 is using professional car physics and
an excellent render engine for graphical realism. It is written in C++ and OpenGL
is used for rendering. Cars and tracks can easily be created and modified with tools
available on the website. Therefore, there are many very good car and track models.
Racer is using Pacejka’s Magic Formula (see Section 2.2) for tire modeling.

According to the website, Racer is a free cross-platform car simulation project,
however there is a comment by the author in a small section of the website saying
“This is NOT an Open Source project. . . ”. We decided not to use that simulator due
to prevention of license problems.

1.2.2 TORCS

“The Open Racing Car Simulator”2, was initially written by Eric Espié and Christophe
Guionneau in 1997. The current project leader is Bernhard Wymann. Torcs is a car

1www.racer.nl
2www.torcs.org

www.racer.nl
www.torcs.org

1.3. VDrift 7

racing simulation which features more than 50 different cars, 20 tracks and 50 oppo-
nents to race against. You can also develop your own computer-controlled driver in C
or C++. The graphics are good, but Torcs has some weaknesses in the physical model
compared to the physics engine of VDrift.

1.3 VDrift

According to its website3, VDrift is a cross-platform, open source driving simulation
made with drift racing in mind. VDrift was created by Joe Venzon in early 2005.
The driving physics engine was recently re-written from scratch, but it was inspired
and owes much to the Vamos4 physics engine. It is released under GNU General Public
License (GPL) v2 and currently available for Linux, FreeBSD, Mac OS X, and Windows.

Figure 1.1 – Screenshot VDrift (VDrift website [36]).

Joe Venzon, developer of VDrift, describes the creation of the project in Auto Sim
Sport Magazine5:

“I started experimenting with breaking traction during turns, not so much
interested in getting a fast time, but with getting the car sideways [. . .]

3www.vdrift.net
4http://vamos.sourceforge.net
5Joe Venzon in Auto Sim Sport Magazine - http://issuu.com/autosimsportmediallc/docs/

vol5num1/1?viewMode=magazine

www.vdrift.net
http://vamos.sourceforge.net
http://issuu.com/autosimsportmediallc/docs/vol5num1/1?viewMode=magazine
http://issuu.com/autosimsportmediallc/docs/vol5num1/1?viewMode=magazine

8 1.3. VDrift

Unfortunately the racing games I was playing at the time did a poor job
of modeling car behavior when traction is lost [. . .] I found a great open-
source simulator called Vamos that offered solid physics but little else [. . .]
worked on improving the graphics and adding some small layers of game-
play.”

Since the beginning of the project in 2005

“[. . .] VDrift has become a pretty good grip racing game, and even allows
a decent F1 driving experience. Drift is still in the name, but it’s more of a
general driving simulation game now.”

The tire model of VDrift started with the classic Pacejka system (presented in Chap-
ter 2.2) and was refined based on the ideas from Brian Beckman’s ’Physics of Rac-
ing’ [3] papers. There are more than 30 cars and also 30 fully modeled tracks (scenery
and terrain) in VDrift. Optional driver assistance like automatic shifting, traction
control and anti-lock braking mode are implemented. You are able to switch between
several different camera angles and even to replay the race with a Skip Forward /
Skip Backward function. Furthermore, there is the possibility to show the optimal
racing line during the race, calculated by Remi Coulom’s K1999 Path-Optimization
Algorithm [9]. VDrift is still in development and any question to code or game will
be answered by Joe Venzon or other forum users right away.

Chapter 2

Mathematical Models of Car
Driving

In this chapter, we start with a common description of multibody systems. Thereupon,
we give a brief illustration of a widespread method in tire modeling. This method,
which is called Pacejka’s Magic Formula [25], is used in different varieties in all kinds
of models of this thesis. After that, we will present three different car models.

First of all, there is the racing simulator VDrift. The layout of a vehicle engine
is shown at the explicit example of VDrift’s car model. Therefore we use a detailed
description with parameters of two different vehicles.

The foundation of the model that is used in this thesis is given by Gerdts in [15].
Gerdts presents a mixed-integer optimal control problem of a vehicle with gear shift on
a short test track, called testdrive (in the following denoted by “original testdrive exam-
ple” or simply “testdrive”). This original version of testdrive involves discrete controls
for the choice of gears and was compared by Kirches in [22] to a convexification and
relaxation of the integer control constraints. The testdrive car model and its system of
ordinary differential equations (ODEs) is defined as second model.

At last, an extended version of the original testdrive model is illustrated that was
built in the context of this thesis. Our intention is to use the mixed-integer opti-
mal control of the original testdrive car model with convexification and relaxation of
the integer control constraints on an optional VDrift track. This was realized by a
modification of the ODE system. In addition we enhanced the engine model and car
parameters of testdrive, using car specific parameters of the two different VDrift cars,
which we introduce in the “VDrift Car Model” section.

2.1 Multibody Systems

To describe physical or mechanical real world trajectories, for example of walking
robots or driving vehicles, you have to replace the trajectories with an equivalent math-

9

10 2.1. Multibody Systems

ematical model. The models that are used in this thesis, consisting of connected rigid
or deformable parts are called multibody systems. You can describe multibody sys-
tems by ODEs, which are normally highly non-linear and cannot be solved analytically.
Therefore, you need to approach a solution with numerical methods.

In order to identify the position and orientation of a rigid body in three-dimensional
space, six coordinates are required. Each three coordinates to describe translational
and rotational motion of the body. Generally, in dealing with multibody systems two
different kinds of coordinate systems are used. A fixed “global” coordinate system,
which allows to identify relations between different bodies or translation of a body
in a certain time. The origin of the second type of coordinate systems is stuck to the
center of mass of each body called “local” coordinate system. This system naturally
changes with every time shift and is used for orientation and angle calculations at the
body.

Thus, for unconstrained motion a rigid body in three-dimensional space exhibits
six degrees of freedom (DOF), as you can see in Figure 2.1. These DOF, as a number
of system coordinates, are reduced by the number of independent equalities for con-
strained motion. If a body is fixed on a plane, as in two-dimensional car driving for
example, only three DOF (one rotational, two translational) are left.

Figure 2.1 – Six degrees of freedom - yaw, pitch and roll angle for rotational and x, y and
z for translational motion of an airplane (website [1]).

2.2. Pacejka’s Magic Formula Tire Model 11

2.2 Pacejka’s Magic Formula Tire Model

For the dynamic behavior of a road vehicle, tire characteristics are of essential impor-
tance. However, accurate friction models of road and tire interfaces are very difficult
to obtain. For Example: A vehicle does not follow the road precisely for a specific
steered angle of the wheel, due to lateral sliding forces. Most of today’s racing sim-
ulations, just as professional tire research, are using a version of Pacejka’s so-called
Magic Formula. It is the state-of-the-art in realistic tire modeling. In the following, we
give an overview over this Magic Formula, as both models of testdrive and VDrift are
built with variations of it. For more detailed analysis, take a look at Pacejka’s ”Tyre
and Vehicle Dynamics“ [25].

The Magic Formula is a semi-empirical1 tire model to calculate steady-state tire force
and moment characteristics. The forces are generated by the model as a result of
different wheel angles and parameters. The main input variables are:

camber angle γ, which is the inclination of the wheel to the vertical plane

side slip angle α, as the angle between the wheel’s orientation and the actual direc-
tion of movement

slip ratio κ is used as longitudinal slip, while accelerating and braking

normal load Fz influences the grip of the tire on the road

As a result, three varying forces act on the wheel and accordingly affect the motion of
the vehicle:

• Fx heading in longitudinal direction

By pressing the throttle, the wheel speed increases and gets minimally higher
than the current ground speed, so the car accelerates. If the wheel spins too fast,
grip gets lost, resulting in less acceleration. For braking instead, the same force
exists in opposite direction.

• Lateral force Fy

Depending on the side slip angle, which describes the direction of the wheel
compared to the actual vehicle direction on the ground.

• The (self) aligning moment Mz

Acts on the steered wheel, trying to center the tire back to straight ahead driving.

1Based on measured data, but with physical structures

12 2.3. VDrift

The Magic Formula

The general form of the formula for given values of side slip, slip ratio, vertical load
and camber angle reads as follows. A more detailed description of the composed
factors of longitudinal force, lateral force, and the aligning moment is given at the
particular example of VDrift in Equation 2.14, 2.15, and 2.16.

y(x) = D sin
(
C arctan

(
Bx− E (Bx− arctanBx)

))
(2.1a)

with

Y (X) = y(x) + SV (2.1b)

where

x = X + SH (2.1c)

Y : output variable Fx, Fy or possible Mz

X : input variable tanα or κ

and including input variables γ, Fz

B stiffness factor

C shape factor

D peak value

E curvature factor

SH horizontal shift

SV vertical shift

The function describes a curve that matches the measurement data quite well, as can
be seen in Figure 2.2 and 2.3. The forces are displayed for different loads Fz and
variable camber or slip angles. For varying parameters of stiffness, shape, peak or
curvature at each tire set, the curve shows force Fx, Fy or the aligning moment Mz .
In the following sections we will display how the Magic Formula parameters and vari-
ables are composed depending on the particular car model.

2.3 VDrift

Unfortunately the VDrift documentation includes no mathematical car model. Hence,
we had to search the code to discover detailed information, like the operation method
of the engine. However, VDrift’s “Documentation Wiki”[2] gives some reference
about car parameters. An overview of the global functionality of an engine and its

2.3. VDrift 13

Figure 2.2 – Force characteristics of a 195/65 R15 car tire. Magic Formula computed results
compared with data from measurements (dotted curves) (Pacejka [25]).

Figure 2.3 – Aligning torque characteristics of a 195/65 R15 car tire. Magic Formula
computed results compared with data from measurements (dotted curves) (Pace-
jka [25]).

14 2.3. VDrift

transmission of energy to the wheels, specifically at the example of VDrift’s car
model, is presented in Figure 2.5. For a closer look, an extensive description of the
individual car parts follows.

2.3.1 VDrift Car Model

Within the diagram, blue rhombuses illustrate the individual vehicle parts with their
parameters. For each car model there are different parameters shown in the gray,
rounded boxes. Controls are displayed in form of a red circle. The green rectangles
show the actual calculations of the vehicle parts, which combine the different input
values. States needed in the evaluation are enclosed by a yellow rounded box (see
Figure 2.4).

ControlsParametersParts Calculations States

Figure 2.4 – Legend of the diagram

2.3. VDrift 15

Crankshaft

Throttle

EnginePeak-RPM

Torque-Curve Interp.

Crankshaft Speed

Transmission

Gearshift

Clutch

Clutch Area

Sliding

Max-Press.

Radius

Drive Torque

Driveshaft Speed

Driveshaft RPM

Wheel Speed

Differential

Final-Drive

Anti-Slip-Torq.

Clutch Speed

Wheel Forces

Steering

Brake Torque

Brake

Brake

Friction Area

Max-Press.

Bias

Suspension

Camber

Caster

Toe

TireRoll. Resist. Radius

Long. Pacejka

Lat. PacejkaAlign. Pacejka

Figure 2.5 – Overview of VDrift’s car model

16 2.3. VDrift

Figure 2.6 – Porsche 911 Club Sport

(VDrift website [36])
Figure 2.7 – 2002 Formula 1 car

(VDrift website [36])

We use two different cars in the optimization of the test tracks (see Chapter 6). The
important parameters for both vehicles, a Porsche 911 Club Sport (“Porsche”, Fig-
ure 2.6) as well as a Formula 1 car (“F1-02”, Figure 2.7), are listed in the following
relevant tables. The remaining parameters can be seen in Appendix A.

The Porsche CS, built in the years 1987 till ’89, is a licensed street car, but the CS-
series come with a racing engine. The F1-02 is a realistic version of 2002’s Formula One
season, with values according to the official FIA Regulations, like weight distributions
or tire restrictions.

Control Range Porsche Range F1-02 Unit Description

φ [0, 1] [0, 1] – Accelerator pedal position
χ [0, 1] [0, 1] – Clutch (engaged at 1)
ξ [0, 1] [0, 1] – Brake pedal position
µ {1, . . . , 5} {1, . . . , 7} – Selected gear
δ [−1, 1] [−1, 1] – Steering ratio to max. angle
δmax [−33.19, 33.19] [−42, 42] deg Max. steering wheel angle

Table 2.1 – Controls used in the VDrift model.

Engine To accelerate a car by pressing the throttle, initially gas is put into a piston2

and ignited. The amount of energy, which is released in such a small space in form of
expanding gas, can be transmitted by the crankshaft from linear motion of the pistons
into rotational motion. The engine is controlled by accelerator pedal position φ (Listed
in Table 2.1 with all the other control values).

2A piston is a cylindrical piece of metal that moves up and down inside the cylinder

2.3. VDrift 17

Parameter Value Porsche Value F1-02 Unit Description

Pmax 1.72 · 105 633844 W Max. power
I 0.35 0.2 kg m2 Moment of inertia
νp 5.50 · 103 1.90 · 104 1

min Peak engine rpm
νu 6.84 · 103 1.95 · 104 1

min Upper rpm-limit
νl 4.00 · 102 3.50 · 103 1

min Lower (stall) rpm-limit

Table 2.2 – Engine parameters used at the crankshaft.

Total engine torque ME is applied to the crankshaft from combustion Mcb, internal
friction Mfr, and the clutch MCl:

ME = Mcb +Mfr −MCl. (2.2)

To compute the accelerating combustion torque, a cubic spline interpolates torque
curve g(νE) at the current number of revolutions-per-minute (rpm) of the crankshaft
(See control values for interpolation in Appendix Table A.1). Combined with the
throttle it results in the combustion torque

Mcb = φ g(νE). (2.3)

The engine’s number of rpm comes with its angular velocity ωE, implemented in
VDrift as a modified Euler method (a survey of the general idea can be seen in sec-
tion Numerical Integration in VDrift’s Documentation Wiki [2]). Peak engine speed
is achieved at ωp,

νE = ωE
30
π
, ωp = νp

π

30
.

This leads to the friction factor fE, which allies with the engine’s angular velocity to
friction torque

fE =
g(νp)
ω2

p
, (2.4)

Mfr = −1.3 · 103 ωE fE (1− φ). (2.5)

18 2.3. VDrift

Parameter Value Porsche Value F1-02 Unit Description

fCl 0.27 0.10 – Sliding (friction)
pCl 11079.26 7.0 · 104 N

m2 Max. pressure
RCl 0.1 0.15 m Clutch radius
ACl 0.75 0.90 m2 Clutch area
i1g 3.50 4.50 – Transmission ratio of first gear
i2g 2.06 3.60 – Transmission ratio of second gear
i3g 1.41 3.00 – Transmission ratio of third gear
i4g 1.13 2.60 – Transmission ratio of fourth gear
i5g 0.89 2.30 – Transmission ratio of fifth gear
i6g – 2.05 – Transmission ratio of sixth gear
i7g – 1.90 – Transmission ratio of seventh gear
it 3.88 3.7 – Differential transmission ratio

Table 2.3 – Clutch and transmission parameters

Before we are able to calculate the total engine torque subject to the throttle position,
current driving speed is necessary for backward computation of the clutch’s angular
velocity via driveshaft. Assuming a rear wheel drive, the current driving speed can be
computed from the average of the rear wheel’s rotational velocity (ωrl, ωrr), differential
ratio, and gear transmission ratio

ωD = it
1
2

(ωrl + ωrr), (2.6)

ωCl = ωD iµg . (2.7)

The clutch torque represents the friction at any time one side of the clutch is spinning
faster than the other side. The sign of the friction depends on which side is spinning
faster. If the engine speed is faster than the driveshaft, the clutch friction will generate
torque to slow the engine and accelerate the wheels. Otherwise, if the engine speed
is slower than the driveshaft, the clutch friction will generate torque to speed up the
engine and slow the wheels3:

MCl = χ (ωE − ωCl) (ACl RCl · fCl pCl). (2.8)

The actual force transmitted by resulting total engine torque, over driveshaft MDr, to
the wheel, can be computed with the current gear transmission ratio. Finally this leads

3Happens every time you shift to a lower gear

2.3. VDrift 19

to the drive torque at rear right and left wheel Mrr, Mrl for a rear wheel driven car

MDr = ME i
µ
g , (2.9)

Mrr =
1
2
it MDr. (2.10)

The maximum brake torque is counteractive at this point. Calculated with parameters
of Table 2.4 and acting on the one hand at the front wheels as

MBf = ABf RBf · fBf ρf pBf (2.11)

and on the other as rear wheel torque MBr, applied accordingly with its rear param-
eters. To get the current brake torque, the input control value of the brake pedal4 is
required. In addition to effective rolling radius Re

5 braking force FB at front and rear
wheels is

FBf =
MBf ξ

Ref
, FBr =

MBr ξ

Rer
. (2.12)

Parameter Value Porsche Value F1-02 Unit Description

fBf 1.13 1.4 – Friction of front brake
fBr 1.13 1.4 – Friction of rear brake
pBf 2.0 · 106 3.0 · 106 N

m2 Max. pressure
pBr 2.0 · 106 3.0 · 106 N

m2

ρf 0.57 0.60 – Fraction front
ρr 0.43 0.40 – to rear brake
RBf 0.14 0.15 m Radius front brake disc
RBr 0.14 0.14 m Radius rear brake disc
ABf 1.5 · 10−2 2.5 · 10−2 m2 Brake area front
ABr 1.5 · 10−2 1.5 · 10−2 m2 Brake area rear

Table 2.4 – Brake parameters

Tire Forces Due to the complexity of tire modeling, there are different approaches
to use Pacejka’s Magic Formula, at full length shown in [25]. We will simply give an
overview of the composition of different tire force equations used in VDrift. For a
summary see Beckman [3], who picked up the basic ideas of Genta [14]. All parameters
are listed in Table 2.5 and Appendix A.

4Handbrake is also available in VDrift, but neglected in this thesis
5Radius dependent on velocity

20 2.3. VDrift

Parameter Value Porsche Value F1-02 Unit Description

γf −1.0 −1.0 deg Camber angle at front suspension
γr −0.5 −0.5 deg Camber angle at rear suspension
Rf 0.31265 0.33 m Front tire radius
Rr 0.3179 0.33 m Rear tire radius

Table 2.5 – Suspension and tire parameters

For computation of longitudinal force Fx, two variables are necessary: The dynamic
parameter Fz, which is the normal load in kilo-newtons on the tire, as well as the
instantaneous slip angle κ6, given as

κ =
ωRe − v

v
, (2.13)

with the wheel’s angular velocity ω, current wheel speed v with respect to the ground
and effective tire rolling radius Re. See the resulting curve for longitudinal Fx (as well
as lateral force Fy) with different loads in Figure 2.2.

The friction factor fs ∈ [0, 1] is a simplified way to model friction, depending on
what surface the car is driving on. Maximum grip is reached at 1. If the car is off the
road on a grass track surface, for example, it could be set to 0.5. Further corresponding
parameters of Porsche CS and F1-02 are listed in Table A.4 and A.5.

Longitudinal force Fx:

Fx = D sin
(
b0 arctan

(
SB + E

(
arctan (SB)− SB

)))
(2.14a)

B =
(b3 Fz + b4) e−b5Fz

(b1 Fz + b2) b0
(2.14b)

D = (b1 Fz + b2) Fz fs (2.14c)

E = b6 F
2
z + b7 Fz + b8 (2.14d)

S = 100 κ+ b9 Fz + b10 (2.14e)

6Variable name from Pacejka [25], varying in Beckman [3] and Genta [14], where it is denoted by σ

2.4. Testdrive 21

Lateral force Fy with side slip angle α as input variable and camber angle γ. Remain-
ing parameters are listed in A.2 and A.3:

Fy = D sin
(
a0 arctan

(
SB + E

(
arctan (SB)− SB

)))
+ Sv (2.15a)

B =
a3 sin

(
2 arctan

(
Fz
a4

))
(1− a5|γ|)

a0 (a1 Fz + a2) Fz
(2.15b)

D = (a1 Fz + a2) Fz fs (2.15c)

E = a6 Fz + a7 (2.15d)

S = α+ a8 γ + a9 Fz + a10 (2.15e)

Sv =
(

(a11 Fz + a12) γ + a13

)
Fz + a14 (2.15f)

Aligning moment Mz is illustrated in Figure 2.3, example parameters specified in
Table A.6 and A.7:

Mz = D sin
(
c0 arctan

(
SB + E

(
arctan (SB)− SB

)))
+ Sv (2.16a)

B =

(
c3 F

2
z + c4 Fz

)
(1− c6 |γ|) e−c5 Fz

c0 D
(2.16b)

D = (c1 Fz + c2) Fz fs (2.16c)

E =
(
c7 F

2
z + c8 Fz + c9

)
(1− c10 |γ|) (2.16d)

S = α+ c11 γ + c12 Fz + c13 (2.16e)

Sv =
(
c14 F

2
z + c15 Fz

)
γ + c16 Fz + c17 (2.16f)

2.4 Testdrive

A mixed-integer optimal control problem with its origin in automobile test driving
called testdrive was published by Gerdts in 2005, 2006 [15, 16]. The original benchmark
problem involves discrete controls for the choice of gears. Our approach is based on a
convexification and relaxation of the integer control constraint.

We will introduce the original testdrive car model as presented by Kirches in [22], in
which an Outer Convexification (see Section 4.4.2) is used in comparison to an inner
convexification of Gerdts [15]. Thereafter, the subsequent section shows the actual
modifications of the testdrive car model and ODE system that have been made in the
context of this thesis.

22 2.4. Testdrive

2.4.1 Testdrive Car Model

We consider a single-track model, derived under the simplifying assumption that
rolling and pitching of the car body can be neglected. Consequentially, only each
one single front and rear wheel is modeled, located in the virtual center of the original
two wheels. Motion of the car body is considered on the horizontal plane only.

Control Range Unit Description

ωδ [−0.5, 0.5] rad
s Steering wheel angular velocity

FB [0, 1.5 · 104] N Total braking force
φ [0, 1] – Accelerator pedal position
µ {1, . . . , 5} – Selected gear

Table 2.6 – Controls used in the car model.

The model includes four control values for the vehicle, which are the steering wheel’s
angular velocity ωδ and the total braking force FB. Additionally, the effective engine
torque’s transmission ratio is controlled by the selected gear µ, which is in conjunction
with the accelerator pedal position φ translated into an accelerating force. All controls
are listed in Table 2.6.

The equations of motion are described by a system of ODEs. The individual sys-
tem states are listed in Table 2.7, while Figure 2.8 visualizes the choice of coordinates,
angles and forces.

State Unit Description

cx m Horizontal position of the car
cy m Vertical position of the car
v m

s Magnitude of directional velocity of the car
δ rad Steering wheel angle
β rad Side slip angle
ψ rad Yaw angle
ωz

rad
s Yaw angle velocity

Table 2.7 – Coordinates and states used in the car model.

The coordinate pair (cx, cy) denotes the position of the car’s center of gravity on the
horizontal plane. Then, let v be the magnitude of the car’s velocity in the direction
of driving. The steering wheel angle (the angle of the front wheel with respect to the
general orientation of the car’s longitudinal axis) is named δ, while the slip angle β

2.4. Testdrive 23

gives the angle of the car’s direction of movement against that axis. Finally, ψ and ωz

denote the car’s yaw angle and its angular velocity, representing the orientation of the
car’s longitudinal axis against the horizontal coordinate axis.

The center of gravity is denoted by the coordinate pair (cx, cy) which is obtained by
integration over the directional velocity

ċx(t) = v(t) cos
(
ψ(t)− β(t)

)
, (2.17)

ċy(t) = v(t) sin
(
ψ(t)− β(t)

)
. (2.18)

Acceleration is obtained from the sum of forces attacking the car’s mass m in the
direction of driving

v̇(t) =
1
m

((
Fµlr − FAx

)
cosβ(t) + Flf cos

(
δ(t) + β(t)

)
−
(
Fsr − FAy

)
sinβ(t)− Fsf sin

(
δ(t) + β(t)

))
. (2.19)

The steering wheel’s angle is given by the corresponding controlled angular velocity

δ̇(t) = ωδ. (2.20)

The slip angle’s change is controlled by the steering wheel and counteracted by the
sum of forces attacking perpendicular to the car’s direction of driving

β̇(t) = ωz(t)− 1
m v(t)

(
(Flr − FAx) sinβ(t) + Flf sin

(
δ(t) + β(t)

)
+
(
Fsr − FAy

)
cosβ(t) + Fsf cos

(
δ(t) + β(t)

))
. (2.21)

The yaw angle is obtained by integrating over its change ωz

ψ̇(t) = ωz(t), (2.22)

which in turn is the integral over the sum of forces attacking the front wheel in direc-
tion perpendicular to the car’s longitudinal axis of orientation

ẇz(t) =
1
Izz

(
Fsf lf cos δ(t)− Fsr lsr − FAy eSP + Flf lf sin δ(t)

)
. (2.23)

In the following we describe the engine model and explain the resulting forces trans-
lated to the tire and used in the ODE system.

24 2.4. Testdrive

Figure 2.8 – Coordinates and forces in the single-track car model (Gerdts [16]).

Engine

The engine’s rotary frequency νµmot in Hertz can be computed from the car’s speed.
We denote the gearbox transmission ratio corresponding to the selected gear µ by iµg
and the axle drive’s fixed transmission ratio by it. Assuming a rear wheel drive, hence
for a rear wheel radius R and a given gear µ, the rotary frequency is:

νµmot :=
iµg it

R
v(t). (2.24)

The effective engine torque Mµ
mot, depending on the acceleration pedal’s position φ, is

modeled as follows:

Mµ
mot(φ) := f1(φ) f2(νµmot),+

(
1− f1(φ)

)
f3(νµmot), (2.25)

f1(φ) := 1− exp(−3 φ), (2.26)

f2(νmot) := −3.78 · 101 + 1.54 νmot − 1.9 · 10−3 ν2
mot, (2.27)

f3(νmot) := −3.49 · 101 − 4.775 · 10−2 νmot. (2.28)

Tire Forces

The longitudinal force at the rear wheel is given directly by the transmitted engine
torque and reduced by braking force FBr and resistance due to rolling friction FRr

Fµlr :=
iµg it

R
Mµ

mot(φ)− FBr − FRr. (2.29)

Whereas the longitudinal force at the front wheel is simply composed of braking force
and rolling friction

Flf := −FBf − FRf. (2.30)

2.4. Testdrive 25

Parameter Value Unit Description

m 1.239 · 103 kg Mass of the car
g 9.81 m

s2 Gravity constant
lf 1.19016 m Front wheel distance to center of gravity
lr 1.37484 m Rear wheel distance to center of gravity
R 0.302 m Wheel radius
Izz 1.752 · 103 kg m2 Moment of inertia
cw 0.3 – Air drag coefficient
ρ 1.249512 kg

m3 Air density
A 1.4378946874 m2 Effective flow surface
i1g 3.09 – Transmission ratio of first gear
i2g 2.002 – Transmission ratio of second gear
i3g 1.33 – Transmission ratio of third gear
i4g 1.0 – Transmission ratio of fourth gear
i5g 0.805 – Transmission ratio of fifth gear
it 3.91 – Differential transmission ratio
Bf 1.096 · 101 – Pacejka coefficients (stiffness)
Br 1.267 · 101 –
Cf 1.3 – Pacejka coefficients (shape)
Cr 1.3 –
Df 4.5604 · 103 – Pacejka coefficients (peak)
Dr 3.94781 · 103 –
Ef −0.5 – Pacejka coefficients (curvature)
Er −0.5 –

Table 2.8 – Parameters used in the original testdrive car model.

The total braking force FB is controlled by the driver. For its distribution to front and
rear wheels we choose:

FBf :=
2
3
FB, FBr :=

1
3
FB. (2.31)

The braking forces FRf and FRr due to rolling resistance are obtained from

FRf(v) := fR(v)
m lr g

lf + lr
, FRr(v) := fR(v)

m lf g

lf + lr
, (2.32)

where the velocity-dependent amount of friction is modeled by

fR(v) := 9.0 · 10−3 + 7.2 · 10−5 v + 5.038848 · 10−10 v4. (2.33)

26 2.5. Extended Testdrive Model

The side (lateral) force on the front wheel as a function of the front slip angle αf is cal-
culated by Pacejka’s Magic Formula (see Section 2.2), with the fixed Pacejka parameters
of Table 2.8:

Fsf(αf) := Df sin
(
Cf arctan

(
Bf αf − Ef(Bf αf − arctan(Bf αf))

))
(2.34)

The front slip angle itself is obtained from

αf := δ(t)− arctan

(
lf ψ̇(t)− v(t) sinβ(t)

v(t) cosβ(t)

)
. (2.35)

The same approximation is used for the lateral force at the rear wheel depending on
the rear slip angle αr

Fsr(αr) := Dr sin
(
Cr arctan

(
Br αr − Er(Br αr − arctan(Br αr))

))
(2.36)

with the rear slip angle being

αr := arctan

(
lr ψ̇(t) + v(t) sinβ(t)

v(t) cosβ(t)

)
. (2.37)

The aligning moment is being neglected in this model. Furthermore we assume that
there is no sidewards drag force (e.g. side wind) present, but drag force due to air
resistance is given by

FAx :=
1
2
cw ρ A v2(t), FAy := 0. (2.38)

2.5 Extended Testdrive Model

The previous sections illustrate the mathematical model of the original testdrive exam-
ple. It allows to compute an optimal control of a vehicle with gear shift on a fixed
track7. However, the embedded set of ODEs is only applicable for calculations on
tracks which are built in one direction along the x-axis8. Hence, for optimization of an
optional track while coupling testdrive to VDrift, modifications in the ODE system,
as well as a transformation of the coordinate system are required. Our approach is
to change the time-dependent set of ODEs to a system dependent on a car’s position
to the midline of the track. So the first step is to modify the ODEs and afterwards
essentially transform the coordinate system in the way that the midline of the track is
mapped to the x-axis of the coordinate system (described in Section 3).

7testdrive track course presented in Section 3.1
8With maximum variance of less than 90 degrees

2.5. Extended Testdrive Model 27

In addition, we tried to attach specific car parameters and parts of VDrift’s tire and
engine model. Therefore, the extended testdrive version is now closer to the “real”
world, which in this case is designed by VDrift. One major improvement is the
possibility to select an optional car from VDrift with its realistic parameters. The
accuracy of the lateral force Fy improved due to a greater extent of Pacejka parameters.
Furthermore, the engine model has been rebuilt with car specific torque curve and
transmission ratio. The 2-D model expands up to three dimensions, so one can drive
not only on even tracks.

2.5.1 Transformation of ODE System

We denote the state vector of the ODE system by x and the corresponding right-
hand side function by f in the original testdrive example. The continuous controls are
described in vector u. The separate vector µ contains the integer controls.

x :=
(
cx, cy, v, δ, β, ψ, ωz

)T
, u :=

(
ωδ, FB, φ

)T
, µ ∈ {1, . . . , 5}.

The time-dependent differential equation reads as

dx

dt
= ft

(
t, x(t), u(t), µ(t)

)
. (2.39)

σ denotes the independent variable in the new set of ODEs as current advance on the
midline. We transform Equation 2.39 by multiplying a factor, which can also be seen
as the inverse of the magnitude of the car’s velocity v:

dt

dσ
=

1
v

(2.40)

This leads to a position-dependent system, in which every state of the previous system
has to be divided by v:

dx

dσ
= fσ

(
σ, x(σ) · 1

v(σ)
, u(σ), µ(σ)

)
(2.41)

The center of gravity of the vehicle in the original testdrive example is denoted by
(cx, cy). So far cx specifies the horizontal position of the car. Due to a transformation
of the coordinate system, illustrated in Chapter 3.3, the midline of the track is mapped
to the horizontal x-axis. This means that after the modification, the advance on the
midline equals the advance in horizontal direction. Accordingly the state cx drops out
after the ODE transformation, because it equals σ now.

dcx
dt

=̂
dσ

dt
⇒ dσ

dt

dt

dσ
= 1

28 2.5. Extended Testdrive Model

The current deviation of the midline is labeled with d(σ), which equals cy in the old
coordinate system. To compute d(σ) for an optional track course, we have to reduce
the yaw angle ψ by the “curvature” of the track course at the current car position. For
that purpose the dimension of the track data is decreased by one. Then the curvature
of the track course is computed by the arc tangent 2 operating on a trajectory, which
is represented by the midline of the track. One can imagine this trajectory by looking
from above on the track course. As desired, this means that the difference (ψ − curv)
is now representing the orientation of the car’s longitudinal axis against the midline
of the track.

d′(σ) = sin
(
ψ(σ)− curv(σ)− β(σ)

)
(2.42)

Finally, we have to add the time to the state vector in the new ODE system:

t′(σ) =
dt

dt
· dt
dσ

=
1
v

(2.43)

2.5.2 Modifications in Car Model

Most of the car specific parameters of a chosen VDrift car are now assumed by test-
drive. Parameters like mass of the car, front or rear wheel drive, measurement data, or
air drag coefficient are added to the testdrive car model.

Controls We changed the control of the maximum braking force, as described in test-
drive Equation 2.31, to a control of the braking pedal position ξ ∈ [0, 1] like presented in
VDrift’s car model. Therefore, we calculated a car specific maximum braking torque
(See Equation 2.11

9) with the parameters of Table 2.4 and multiplied the brake pedal
position (Equations 2.12) for the resulting braking force at front and rear wheels.

Due to the fact that a Formula 1 has seven possibilities for the choice of gears, the
extended version of testdrive is able to model a car with an optional number of gears.

The state and control vectors of the new set of ODEs are

x :=
(
d, v, δ, β, ψ, ωz, t

)T
, u :=

(
ωδ, ξ, φ

)T
, µ ∈ {1, . . . , 5}.

Note that µ ∈ {1, . . . , 7} for the Formula One car F1-02.

Engine Model The engine model of testdrive is fixed to a certain car type. However,
our intention is the possibility to use different car models of VDrift in the extended

9Though with fixed tire radius instead of effective rolling radius

2.5. Extended Testdrive Model 29

testdrive version. The attached engine parameters of the Porsche CS worked reason-
ably well in the old engine model. But as shown in Figure 2.9, this engine model in
combination with the transmission ratios of the F1-02 creates an unrealistic accelerat-
ing force, with respect to a Formula One car. This is caused by a much higher number
of revolutions per minute of the Formula One car in comparison to the original test-
drive engine model. Hence, we decided to include the engine model of VDrift to the
testdrive optimal control problem.

0 5 10 15 20 25 30 35 40 45 50
0

5000

10000

15000

Velocity [m/s]

M
ax

im
um

 a
cc

el
er

at
in

g
fo

rc
e

[N
]

1. Gear
2. Gear
3. Gear
4. Gear
5. Gear
6. Gear
7. Gear

Figure 2.9 – Maximum acceleration force of the original testdrive engine model with trans-
mission ratio of the F1-02.

Total engine torque is now applied by combustion and friction torque as described in
VDrift’s car model, Equation 2.3 and 2.5, with a car specific torque curve and engine
parameters. The clutch torque is being neglected in this context, due to the fact that
an additional state in the ODE system would have been necessary for its calculation.

However, one problem appears in the conjunction with the included torque curve.
Within VDrift, the engine constraints are formulated as upper and lower bounds
of the engine’s number of revolutions per minute. This is easily realized by an “if
query” formulation in VDrift’s source code. Therefore, the torque curve data is only
formulated within these bounds. For this purpose, see the gear independent torque
curve of Porsche’s engine in Figure 2.10 and for the F1-02 engine in Figure 2.11.

The difficulties raise with the new testdrive optimal control problem, in the way
that the torque curve has to be continuously differentiable beyond the upper and
lower constraints. This is caused by the fact that the curve is embedded in the ODE
system’s right hand side. Additionally, the engine constraints are not activated until
the engine torque is computed.

30 2.5. Extended Testdrive Model

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

300

rpm [1/min]

T
or

qu
e

[N
m

]

Figure 2.10 – Engine revolution depen-
dent torque curve of the Porsche

911 Club Sport of VDrift

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

50

100

150

200

250

300

350

400

rpm [1/min]

T
or

qu
e

[N
m

]

Figure 2.11 – Engine revolution depen-
dent torque curve of a 2002 For-
mula 1 car of VDrift

Thus, we extended the torque curve, which is given as two-dimensional point data and
interpolated with Bézier splines (explained in Section 3.2), by adding further points
at both ends. The gear dependent maximum acceleration force of the F1-02 with
respect to velocity, is illustrated in Figure 2.12. It is based on the new testdrive engine
model. The vertical lines are representing the upper and lower gear addicted engine
constraints. Furthermore, the dashed/dotted lines describe the original VDrift torque
curve, whereas the simply dashed lines show the required extensions of the curve.

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Velocity [m/s]

M
ax

im
um

 a
cc

el
er

at
in

g
fo

rc
e

[N
]

Engine Constraint

1. Gear

VDrift Data

Engine Constraint

2. Gear

VDrift Data

Engine Constraint

3. Gear

VDrift Data

Engine Constraint

4. Gear

VDrift Data

Engine Constraint

5. Gear

VDrift Data

Engine Constraint

6. Gear

VDrift Data

Engine Constraint

7. Gear

VDrift Data

Figure 2.12 – Maximum acceleration force of the new F1-02 engine model with respect
to velocity. Included from VDrift, illustrating the upper and lower engine con-
straints of every gear.

2.5. Extended Testdrive Model 31

The acceleration force of the Porsche CS, including the new engine model as well, is
shown in Figure 2.13.

Summing up, the new engine model produces significantly more realistic results
for both presented vehicles. More information about the optimal control problem, the
set of ODEs, as well as the formulation of the engine constraints is given in Chapter 4.

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Velocity [m/s]

M
ax

im
um

 a
cc

el
er

at
in

g
fo

rc
e

[N
]

Engine Constraint

1. Gear

VDrift Data

Engine Constraint

2. Gear

VDrift Data

Engine Constraint

3. Gear

VDrift Data

Engine Constraint

4. Gear

VDrift Data

Engine Constraint

5. Gear

VDrift Data

Figure 2.13 – Maximum acceleration force of the new Porsche CS engine model with
respect to velocity. Included from VDrift, illustrating the upper and lower engine
constraints of every gear.

Tire Model The original testdrive uses fixed Pacejka parameters for B,C,D,E (see
Table 2.8), as well as the side slip angle of Equation 2.35 to get the lateral tire force.
In the extended version we implemented a tire specific calculation like in VDrift (see
Equation 2.15), depending on varying Pacejka parameters for each vehicle (Appendix A)
and the normal load:

Fzf =
1

1000
m lr g cos

(
arctan(slope)

)
lf + lr

(2.44)

Fzr =
1

1000
m lf g cos

(
arctan(slope)

)
lf + lr

(2.45)

The current slope is calculated from the level curve of the track with the aid of Bézier
splines, which are presented in detail in the following Chapter 3.

Chapter 3

Coordinate Systems

The embedded coordinate system and the method of calculation of the track course
are very important for an exact and realistic track model of a racing simulation. The
coordinate system is essential for computation of the current car position and whether
the car fulfills track boundary conditions. Our ambition is to change the current test
track of testdrive to an optional VDrift racing track, according to the modifications in
the ODE system of Section 2.5.1.

First of all, we start with a short explanation of the original testdrive track. After
that, we take a look at the definition of Bézier splines and patches, due to the fact
that VDrift uses Bézier patches for calculation of the track data. The last section of
this chapter shows how the transformation of the coordinate system is realized. This
transformation permits to compute an optimal control using the modified testdrive set
of ODEs on an optional VDrift racing track.

3.1 Testdrive Track

The test track of testdrive (as presented in Gerdts [15] and Kirches [22]) is a stan-
dardized driving process in automobile industry called double-lane-change maneu-
ver. It is realized by constraining the car’s position onto a prescribed track at any
time t ∈ [t0, tf], as seen in Figure 5.1. The driver has to manage to avoid hitting an
obstacle suddenly appearing on the starting lane by a change of lanes with an offset of
3.5 meters. Starting in the left position with an initial velocity and ending in the same
lane the maneuver can also be regarded as an overtaking move.

From a mathematical point of view, the test track is described by setting up piece-
wise cubic spline functions Pl(x) and Pr(x) with given horizontal position x. The
functions are modeling the top and bottom track boundaries (compare Figure 3.1) and

32

3.2. Bézier Patches in VDrift 33

Figure 3.1 – Layout of test course (Gerdts [15]).

read as follows:

Pl(x) :=

0 if x ≤ 44,
4 h2 (x− 44)3 if 44 < x ≤ 44.5,
4 h2 (x− 45)3 + h2 if 44.5 < x ≤ 45,
h2 if 45 < x ≤ 70,
4 h2 (70− x)3 + h2 if 70 < x ≤ 70.5,
4 h2 (71− x)3 if 70.5 < x ≤ 71,
0 if 71 < x,

(3.1)

Pu(x) :=

h1 if x ≤ 15,
4 (h3 − h1) (x− 15)3 + h1 if 15 < x ≤ 15.5,
4 (h3 − h1) (x− 16)3 + h3 if 15.5 < x ≤ 16,
h3 if 16 < x ≤ 94,
4 (h3 − h4) (94− x)3 + h3 if 94 < x ≤ 94.5,
4 (h3 − h4) (95− x)3 + h4 if 94.5 < x ≤ 95,
h4 if 95 < x,

(3.2)

where B = 1.5 m is the car’s width and

h1 := 1.1 B + 0.25, h2 := 3.5, h3 := 1.2 B + 3.75, h4 := 1.3 B + 0.25.

3.2 Bézier Patches in VDrift

The track coordinates in VDrift are embedded as bicubic Bézier points. We briefly
introduce Bézier splines and patches in the following section. A more extensive look
at Bézier spline interpolation is given in Stoer [34](pages 100–112).

Bézier patches are a surface extension of Bézier curves. One advantage of both
polynomial maps is the simple evaluation of optional points on the curve or surface
by interpolation. Furthermore, Bézier curves permit a fast run time evaluation.

34 3.2. Bézier Patches in VDrift

Definition 3.1. Bézier Curve
A Bézier curve of order n, with given n+ 1 control or Bézier points (Pi)ni=0 is defined as

C(u) =
n∑
i=0

Pi B
n
i (u), (3.3)

for u ∈ [0, 1], with the Bernstein polynomial

Bn
i (u) =

(
n

i

)
ui (1− u)n−i. (3.4)

In general, composed continuous splines are used for fixed-order curves due to the
global influences, while modifying a single point. For a three-dimensional world coor-
dinate system, a cubic Bézier spline is given for u ∈ [0, 1] with the following equation:

C(u) =
3∑
i=0

(
3
i

)
Pi u

i (1− u)3−i

= P3u
3 + 3P2 u

2(1− u) + 3P1 u(1− u)2 + P0(1− u)3. (3.5)

To imagine a three-dimensional Bézier patch, one can think of two orthogonal Bézier
curves. Each bicubic patch is defined by a set of 16 control points. With these control
points you are able to generate any point on the surface.

P33 P32
P31

P30

P23 P22
P21

P20

P13
P12

P11

P10P03 P02
P01

P00u

v

Figure 3.2 – An array of 16 control points creates a bicubic Bézier patch.

Definition 3.2. Bézier Patch
A given Bézier patch of order (n,m) is defined by a set of (n+ 1)(m+ 1) control points Pi,j

C(u, v) =
n∑
i=0

m∑
j=0

Pi,j B
n
i (u) Bm

j (v) (3.6)

with the Bernstein polynomials Bn
i (u) and Bm

j (v) as described in equation 3.4.

3.3. Transformations between Coordinate Systems 35

To obtain P0, . . . , P3 with the given control points, one has to choose u ∈ [0, 1]. An
additional v ∈ [0, 1] then produces any desired position on the surface.

P0 = P30u
3 + 3P20 u

2(1− u) + 3P10 u(1− u)2 + P00(1− u)3 (3.7a)

P1 = P31u
3 + 3P21 u

2(1− u) + 3P11 u(1− u)2 + P01(1− u)3 (3.7b)

P2 = P32u
3 + 3P22 u

2(1− u) + 3P12 u(1− u)2 + P02(1− u)3 (3.7c)

P3 = P33u
3 + 3P23 u

2(1− u) + 3P13 u(1− u)2 + P03(1− u)3 (3.7d)

Pcar = P3v
3 + 3P2 v

2(1− v) + 3P1 v(1− v)2 + P0(1− v)3 (3.8)

3.3 Transformations between Coordinate Systems

The three-dimensional track data of the world coordinate system in VDrift (called
CSI or Coordinate System I), creates an excellent replication of the real world track
(compare Figure 3.3 and 3.4).

Figure 3.3 – Aerial picture of the Hockenheimring (website [19]).

For the ability to compute optimal controls and states of the new position-dependent
ODE system presented in Chapter 2.5.1, a transformation of CSI is required. Hence,
our intention is to map the track’s midline onto the x-axis of the coordinate system.
Therefore, we calculate the arc length of every patch by setting up a frequency polygon
to the midline of the track. After that we are able to transform all patches from CSI to
a second coordinate system, short CSII. The track boundaries can now be regarded as
upper and lower constraints, as in the original testdrive example in Section 3.1.

Moreover the track course results from the curvature of the two-dimensional track,
looking from above. It is calculated with the arc tangent 2 and interpolated with Bézier

36 3.3. Transformations between Coordinate Systems

splines. The slope of the track is described by a level curve and implemented as one-
dimensional Bézier splines as well.

Figure 3.4 – Track data of the Hockenheimring, given as Bézier points in VDrift

3.3.1 Locate Car Position with Newton’s Method

To translate the current vehicle position between the two different coordinate systems,
the patch number as well as car’s position data Pcar(x, y, z) is required. If it is possible
to get u, v ∈ [0, 1] of a given patch in one coordinate system with the input values
of Pcar, the actual car position arises within the other coordinate system from Equa-
tion 3.7d and 3.8.

At first, one requires u in longitudinal direction of the patch to compute four
control points on this level. Therefore, we take the car position and search for a u

that gives the euclidean distance to a point on the track boundaries. Without loss of
generality, we use the inner boundary for this purpose and convert Equation 3.7d for
easier calculation of the derivatives:

3.7d⇔ P3 = (P33 − 3P23 + 3P13 − P03) u3+

3(P23 − 2P13 + P03) u2 + 3(P13 − P03) u+ P03. (3.9)

3.3. Transformations between Coordinate Systems 37

For clarity reasons, we define a, b, c, and d as

a : = P33 − 3P23 + 3P13 − P03, (3.10a)

b : = 3(P23 − 2P13 + P03), (3.10b)

c : = 3(P13 − P03), (3.10c)

d : = P03, (3.10d)

whereas the resulting function with its derivatives reads as follows

f(u) : = au3 + bu2 + cu+ d, (3.11a)

f ′(u) = 3au2 + 2bu+ c, (3.11b)

f ′′(u) = 6au+ 2b. (3.11c)

Subsequently with the aid of the Pythagorean theorem, we define a distance function
(3.12) to the inner boundary and look for it’s minimum

d2(u) : = (f(u)x − x)2 + (f(u)z − z)2. (3.12)

Based on monotony, the minimum of d2 equals the minimum of d. Hence, we set d2

to d̂ for simplification

d̂(u) : = (f(u)x − x)2 + (f(u)z − z)2, (3.13a)

d̂′(u) = 2 (f(u)x − x) f ′(u)x + 2 (f(u)z − z) f ′(u)z
!= 0. (3.13b)

This extremum problem leads to a polynomial F of grade five, which in general cannot
be solved analytically. Therefore, we decided to use Newton’s method to find the zero
point of the polynomial:

⇒ F (u) : = (f(u)x − x) f ′(u)x + (f(u)z − z) f ′(u)z, (3.14)

F ′(u) = (f(u)x − x) f ′′(u)x + f ′(u)2
x + (f(u)z − z) f ′′(u)z + f ′(u)2

z, (3.15)

un+1 = un +
F (un)
F ′(un)

. (3.16)

The same procedure executed in the other direction of the patch, leads to a v ∈ [0, 1].
Thereafter, it is possible to compute the position of the car in CSII respectively CSI,
like shown in Equation 3.7 and 3.8.

Chapter 4

Mixed-Integer Optimal Control
Problems

In this chapter we give an overview of the basic mathematical problems that are solved
in the context of this thesis. In particular, we focus on a mixed-integer optimal control
problem (MIOCP). The ability to deal with integer controls is required for the optimiza-
tion of a car’s gear selection.

There are two key problems in dealing with MIOCP. On the one hand, the diffi-
culty is nonlinearity and on the other its discrete nature. Therefore, we present solving
techniques for general nonlinear programs, as well as in particular possibilities to treat
integrality like in discrete mixed-integer nonlinear programs (MINLPs).

First of all the definition of a general nonlinear problem (NLP) with equality and inequal-
ity constraints is presented. Then we take a closer look at the variables, which assign
it to a MIOCP. To treat this kind of infinite-dimensional optimal control problem, we
use the direct multiple shooting method, developed by Bock and Plitt in 1984 [7], in
combination with a discretization of the controls and parametrization of the states. To
achieve an exact and efficient solution for the resulting NLP, the sequential quadratic
programming (SQP) approach is introduced. Further information on this is given by
Wilson [37], Powell [29], Han [17], Nocedal and Wright [24], and combined with the
direct multiple shooting method by Leineweber [23].

Generally, the solution of MINLPs is more difficult to obtain than the solution of a
continuous problem. There are several algorithms which could be applied to MINLPs,
like Sum Up Rounding, Outer Convexification, Branch&Bound or Bender’s Decomposition.
In the last section, we take a closer look at an approach first suggested by Sager [30,
31], using a reformulation of the problem by Outer Convexification combined with a
transformation and relaxation of the constraints.

38

4.1. Problem Formulation 39

4.1 Problem Formulation

Primarily, we look at the general type of problem in nonlinear programming:

Definition 4.1. Nonlinear Problem (NLP)

min
x∈D

f(x) (4.1a)

subject to g(x) = 0, (4.1b)

h(x) ≥ 0, (4.1c)

with a subset D ⊂ Rnx , objective function f ∈ C 2(D,R), equality constraints
g ∈ C 2(D,Rng), and inequality constraints h ∈ C 2(D,Rnh).

This definition is obviously not restricted to minimum problems. To solve maximum
problems instead, it is mentioned that a maximization of f(x) equates a minimization
of −f(x).

The most common examples of optimization problems with dynamical systems
are constrained by differential equations, like differential algebraic equations (DAEs),
partial differential equations (PDEs) or by ODEs, as presented in Section 2.4 and 2.5.1.
These problems are called optimal control problems. We will now take a closer look at
the variables of a NLP described by ODEs, with continuous and additional binary
controls to obtain a mixed-integer problem.

The optimization vector of variables is denoted by x. Some of the variables are defined
as states

xi : [t0, tf]→ R, t 7→ xi(t), t0, tf ∈ R, i ∈ {1, . . . , nx}. (4.2)

The corresponding time-dependent set of ODEs, including this state vector is given by

ẋ(t) = f
(
t, x(t), u(t), µ(t), p, ρ

)
, t ∈ [t0, tf]. (4.3)

Further right-hand side variables may be parameters p ∈ Rnp , as well as continuous
controls

ui : [t0, tf]→ R, t 7→ ui(t), i ∈ {1, . . . , nu}. (4.4)

Additionally, there can be discrete controls

µi(t) ∈ Ω := {µ1, µ2, . . . , µnµ}, Ω ⊂ Rnµ , (4.5)

and parameters ρ ∈ Nnρ , such as integer or binary variables. Path- and control con-
straints may exist as

0 ≤ c
(
t, x(t), u(t), µ(t), p, ρ

)
, t ∈ [t0, tf], (4.6)

40 4.1. Problem Formulation

and further interior point constraints as

0 = eg
(
x(t0), x(tf), p, ρ

)
, (4.7)

0 ≤ eh
(
x(t0), x(tf), p, ρ

)
. (4.8)

The complete mixed-integer optimal control problem, with an objective function Φ
reads as follows:

min
x,u,µ,p,ρ,tf

Φ
(
tf, x(t), p, ρ

)
, (4.9a)

s.t. ẋ(t) = f
(
t, x(t), u(t), µ(t), p, ρ

)
, t ∈ [t0, tf] (4.9b)

0 ≤ c
(
t, x(t), u(t), µ(t), p, ρ

)
, t ∈ [t0, tf] (4.9c)

0 = eg
(
x(t0), x(tf), p, ρ

)
, (4.9d)

0 ≤ eh
(
x(t0), x(tf), p, ρ

)
, (4.9e)

µ(t) ∈ Ω, (4.9f)

ρ ∈ Nnρ . (4.9g)

The objective function Φ could be available as Mayer term ΦM , evaluated at the end
time tf

ΦM = ΦM

(
tf, x(tf), p, ρ

)
, (4.10a)

as Lagrangian term ΦL, evaluated on the whole time interval (t0, tf)

ΦL =
∫ tf

t0

L
(
t, x(t), u(t), µ(t), p, ρ

)
dt, (4.10b)

or as a sum of both, called Bolza type functional

Φ = ΦM + ΦL. (4.10c)

The variables and constraints of the MIOCP can be described at the specific example
of testdrive. The right hand side f(·) is given by the physics. In the original testdrive ex-
ample f(·) is described by the time derivative of the position, which results in velocity.
Additionally, by the time derivative of the velocity by the acting forces. Otherwise the
transformed ODE model is position-dependent on σ, but with minimum end time as
objective function as well.

4.1. Problem Formulation 41

Example of a MIOCP at the extended testdrive version

Objective function Φ:

min
tf

ΦM

(
σf , x(σf)

)
, whereas σ denotes the current advance on the mid-

line, see Section 2.5.1.

States x(·):

d position to midline,

v velocity,

ψ car orientation,

ωz car orientation velocity,

δ steering wheel angle,

β side slip angle,

t time.

Continuous controls u(·):

φ acceleration,

ξ braking,

ωδ steering.

Discrete controls µ(·):

µ ∈ {1, . . . , nµ} describes the gear choice.

Parameters p, ρ:

No parameters.

Path constraints c(·):

Track boundaries.

Interior point constraints eg, eh:

x(σ0) is the fixed initial car position or other initial values.

In the following, we present an efficient and reliable way to treat optimal control prob-
lems in general, as well as in the specific case of a mixed-integer problem. Due to the
fact that the parameters p, ρ can also be defined as functions and added to the state
or control vector, from now on we renounce on the notation of their explicit depen-
dency. Furthermore, we assume a time-dependent set of ODEs, whereas the position-
dependent system could be treated equally after the transformation of Section 2.5.1.

42 4.2. The Direct Multiple Shooting Method

4.2 The Direct Multiple Shooting Method

In this section we present Bock’s direct multiple shooting method, developed by Bock
and Plitt in the early eighties [26, 7]. We describe a discretization and parametrization
approach of the infinite-dimensional optimal control problem 4.9. This treatment is
necessary to solve any type of optimal control problems numerically, for example
using the SQP method, which is shown in the subsequent section.

The main idea of direct optimization methods like in multiple shooting is that dis-
cretization comes previous to optimization. By contrast, indirect methods operate the
other way using Pontryagin’s maximum principle, see e.g. [27]. A third approach how
to treat this kind of problems is dynamic programming based on Bellman [4]. How-
ever, the indirect approach and dynamic programming both have trouble dealing with
large-scale optimal control problems, which is also known as the curse of dimensional-
ity. Thus, direct methods have become more and more common in optimization, in
particular with large ODE control problems.

The key practices in direct methods are single shooting, Bock’s direct multiple shoot-
ing method, and collocation. Further references are given in Betts [5], Binder [6].

4.2.1 Control Discretization

For the discretization of the controls, the time horizon is separated in a finite num-
ber of intervals. These intervals have to be neither of equal length, nor equate the
parametrization grid of the states. Due to advantages in efficiency we use the same
grid for states, as well as continuous and integer controls. Besides, for clarity reasons
we combine the continuous and integer controls in vector u in this section, due to the
fact that both can be treated equally for the control discretization. The selected time
grid reads as

t0 = τ0 < τ1 < . . . < τm = tf, m ∈ N, (4.11)

with intervals

Ii := [τi, τi+1], ∀i ∈ {0, . . . ,m− 1}. (4.12)

The control functions are now replaced by basis functions

bi : Ii → R, t 7→ bi(t), ∀i ∈ {0, . . . ,m− 1}, (4.13)

which could be of the type of piecewise constant functions (Figure 4.1(a)), piecewise
linear functions (Figure 4.1(b)) or for example cubic splines. However, spline functions
are rather unsuitable, because bi(t) should only have local influences.

4.2. The Direct Multiple Shooting Method 43

τ

u

τ0 τ1 τ2
. . . τm

q0

q1

q2

qm−1

(a) Piecewise constant controls.

τ

u

τ0 τ1 τ2
. . . τm

q0

q1

q2

qm−1

(b) Piecewise linear controls.

Figure 4.1 – Examples of control discretizations.

Now we are able to describe the infinite-dimensional control function u by vector
qj ∈ Rnq , j = 1, . . . , k, which depends only on a finite number of control discretization
parameters:

u(t)
∣∣∣
Ii

= bi(t, qi), qi ∈ Rki×nu , ∀i ∈ {0, . . . ,m− 1}. (4.14)

4.2.2 State Parametrization

On the same time grid as before, we introduce m+ 1 variables s0, . . . , sm, si ∈ Rnx as
initial values of the ODE’s state vector x. One initial value stands for each interval Ii
as well as one for the final state τm. This leads to m initial value problems of the form

ẋ(t; si, qi) = f
(
t, xi(t), bi(t, qi)

)
, t ∈ [τi, τi+1], (4.15a)

x(τi) = si. (4.15b)

Additional matching conditions

si+1 = x(τi+1; si, qi), ∀i ∈ {0, . . . ,m− 1} (4.16)

guarantee continuity of the assembled trajectory of x(t), compare Figure 4.2.

4.2.3 Constraint Discretization

Furthermore, the path constraints of Equation 4.9c have to be discretized. That leads
to an only pointwise enabled, finite number of inequality constraints

c
(
τi, si, bi(τi, qi)

)
≥ 0, ∀i ∈ {0, . . . ,m}. (4.17)

This discretization involves that the constraints between the grid knots could be vi-
olated. However, in most practical cases the approximation is sufficiently accurate,
otherwise there are possibilities to reduce this constraint violation, see Potschka [28].

44 4.3. Sequential Quadratic Programming Method

τ

u

τ0 τ1 τ2
. . . τm

s0 s1
s2

sm

(a) Initial states s and assembled trajec-
tory.

τ

u

τ0 τ1 τ2
. . . τm

s0

s1

s2
sm

(b) Fulfilled matching conditions by the
final trajectory.

Figure 4.2 – Examples of state parametrization of the multiple shooting method with
matching conditions and the resulting trajectory.

4.2.4 Discrete Nonlinear Problem

The infinite dimensional optimal control problem of 4.9 is now discretized to a finite
dimensional nonlinear problem as defined in 4.1.

min
qi,si,sm

Φ(tf, sm) (4.18a)

s.t. ẋi(t, si, qi) = f
(
t, xi(t), bi(t, qi)

)
(4.18b)

xi(τi) = si (4.18c)

0 = si+1 − xi(τi+1, si, qi) (4.18d)

0 = eg
(
τi, si, bi(τ, qi)

)
(4.18e)

0 ≤ eh
(
τi, si, bi(τ, qi)

)
(4.18f)

0 ≤ c
(
τi, si, bi(τ, qi)

)
(4.18g)

This type of problem can be solved with a SQP method and converges to the solution
of 4.9 for m→∞. The SQP approach is introduced in the following section.

4.3 Sequential Quadratic Programming Method

After discretizing and parametrizing, the resulting form of a NLP is described in Def-
inition 4.1. In this section, we will briefly explain how to use the SQP method to solve
this problem. For further information compare [37, 29, 17, 24, 23].

The basic idea is to approximate the solution of a NLP, starting from an initial
value x0 with the iteration

xk+1 = xk + tk ∆xk, tk ∈ (0, 1], (4.19)

4.4. Outer Convexification 45

by solving constrained quadratic sub-problems of the following form:

Definition 4.2. Constrained Quadratic Sub-Problem

min
∆x

∇xf(xk)∆x+
1
2

∆xTHk∆x (4.20a)

s.t. g(xk) +∇xg(xk)T∆x = 0 (4.20b)

h(xk) +∇xh(xk)T∆x ≥ 0 (4.20c)

∇xf(xk) displays the gradient of the function f in iteration k, whereas Hk is typically
an approximation of the Hessian of the Lagrangian function in this iteration step.
Hence, as precondition the functions f, g, h have to be at least two times continuously
differentiable. In general, the termination condition of iteration step k + 1 is reached
if xk differs only negligible of xk+1.

4.4 Outer Convexification

4.4.1 Motivation

The solution of a MIOCP as presented in 4.9 is difficult to obtain due to the combina-
tion of its nonlinear and discrete nature. In problems with integer controls for exam-
ple, the behavior between two close, feasible points of the objective may significantly
change, compared to a smooth continuous function. There are several algorithms
which are able to treat this kind of problems. Negative fact in most of these algorithms
is that they probably find the optimal solution of the problem on the underlying dis-
cretization grid, but only with an expensive calculation. Additionally, the computed
solution might not be very useful for the continuous problem.

However there have been some improvements recently, which show the connection
between rigorous bounds on the optimal integer solution value and results of relaxed,
continuous control problems - first suggested by Sager in [30].

The intention on this is to equivalently reformulate a NLP to obtain a so-called
binary-control-affine system. Afterwards, a relaxation of the binary controls produces
an optimal solution which yields the lower bound of the NLP. Further information on
this in Sager [31, 33].

4.4.2 Outer Convexification

We present the idea of the Outer Convexification approach, in combination with a
relaxation of the binary controls. The µ(·) of the MIOCP in 4.9f are denoted by integer
controls. For every possible control of µi ∈ Ω, we now introduce a control function
wi(·) with the special attribute w(t) ∈ {0, 1}nw . These particular w(·) are called binary

46 4.4. Outer Convexification

controls. The transformation of the integer into binary controls results in a binary
nonlinear problem.

However, the reformulation of the integer controls results in additional control
constraints. At the specific examples of a gear selection of a vehicle with five gears,
this would lead to five different binary controls instead of one five-dimensional integer
control. Hence, after eliminating one control with the linear equality constraint of the
SOS1 condition 4.22d, we have four additional controls.

We are now able to formulate a binary convex problem by a convexification, includ-
ing a modification of the ODEs (4.9b → 4.21b). For clarity reasons, we neglect path
constraints c, as well as interior point constraints eg, eh in the following formulation.
They remain just as in the MIOCP 4.9:

min
x,u,µ

Φ
(
x(t)

)
, (4.21a)

s.t. ẋ(t) =
nw∑
i=1

f
(
t, x(t), u(t), µi

)
· wi(t), t ∈ [t0, tf], (4.21b)

w(t) ∈ {0, 1}nw . (4.21c)

Furthermore, we add a special ordered set type one (SOS1) condition with

1 =
nw∑
i=1

wi(t). (4.21d)

To achieve the following convex relaxed problem, the binary controls 4.21c are replaced
by the relaxation 4.22c.

min
x,u,µ

Φ
(
x(t)

)
, (4.22a)

s.t. ẋ(t) =
nw∑
i=1

f
(
t, x(t), u(t), µi

)
· wi(t), t ∈ [t0, tf], (4.22b)

w(t) ∈ [0, 1]nw , t ∈ [t0, tf], (4.22c)

1 =
nw∑
i=1

wi(t). (4.22d)

First important issue of these transformations is the existing bijection between the so-
lutions of MIOCP 4.9 and the convexified problem 4.21. Furthermore, a solution of
a binary convex problem, can be arbitrarily close approximated by the solution of a
relaxed convex problem. A more detailed explanation as well as proofs are given in
Sager [31, 30]. The SOS1 condition in this connection is necessary whenever the binary
solution is constructed from the relaxed solution.

4.5. MUSCOD-II 47

The additional controls resulting from the Outer Convexification, in this thesis given
as number of gears, only enter linearly in the ODE system just as in most practical
applications, compare Sager [31] as well. Hence as a conclusion, the negative aspect
of an increased number of control functions is clearly out-weighted by the advantages
of the presented method.

4.5 MUSCOD-II

The software package Muscod-II - multiple shooting code for direct optimal control -
has been developed in the Simulation and Optimization group of H.G. Bock and
J.P. Schlöder at the University of Heidelberg. Muscod-II is able to solve dynamic
optimization problems, by the use of a multiple shooting approach in combination
with the sequential quadratic programming method. Both of these methods have been
presented in the previous sections, for further details of their usage in conjunction
with Muscod-II see Leineweber [23], Diehl [13] and Bock [7].

In the context of this thesis, we use Muscod-II to solve mixed-integer nonlinear
optimal control problems, which arise with the intention to achieve an optimal con-
trol of racing vehicles. Additionally, we use the Outer Convexification approach of
Section 4.4.2, with a relaxation of the integer controls to handle the difficulties ap-
pending in gear shifting. This idea is part of the MS Mintoc algorithm - multiple
shooting based mixed-integer optimal control - first proposed by Sager in [30, 31] and im-
plemented in Muscod-II as well. MS Mintoc combines different MINLP algorithms,
like Grid-Adaptivity, Switching Time Optimization, Sum Up Rounding, and the Outer
Convexification approach.

Chapter 5

Comparison of Models on Test
Track

In this chapter we present a comparison of the original testdrive optimal control prob-
lem to the modified one, which is called extended testdrive problem. Due to the im-
provements in ODE, car, and track model shown in the previous context of this thesis,
one can see the basic differences of the optimal control problems at the relation of their
numerical results.

The time-optimal control of a double-lane-change maneuver (see Section 3.1), com-
puted with the car model of the original problem is described in Section 2.5. Numerical
results for this purpose are presented in Gerdts [15, 16], as well as in Kirches [22] in-
cluding the outer convexification approach. In this chapter, we use the latter case as
solution data of the original testdrive example.

In the extended version we use a new car model, more precisely the Porsche CS,
shown in Section 2.4. On the other hand, there is a slightly modified track course,
due to non-differentiability in the computation of the track within the new coordinate
system.

We briefly review both mixed-integer optimal control problems. Afterwards, initial
values are introduced which are used as multiple shooting variables in the context of
the direct multiple shooting method, presented in Chapter 4. Finally, the similarities
and differences of both models are illustrated as visualized numerical results of states
and controls of the ODE system.

5.1 Modification of the Track Course

The original track data is given by piecewise cubic Bézier splines, described in Sec-
tion 3.1. After the transformation of the original to the extended testdrive version and
the resulting modifications in the ODE system 2.5.1, it is necessary to transform the
original track course to another coordinate system (CSII), compare Section 3.3. There-

48

5.1. Modification of the Track Course 49

15 30 25 25 15

110

Pu

Pl

3.5

1 1

11

Figure 5.1 – Layout of test course with non differentiable midline.

fore, we first have to convert the piecewise splines into control points of cubic Bézier
patches. For the transformation of the coordinate system, we have to compute the
midline out of the Bézier patches. Then the curvature of the midline is used to get the
routing of the track at a finite number of points.

The problem of the modifications in this case is that the track boundaries, given as
piecewise splines, are not differentiable. Hence, the midline which is defined as half
of the distance between the upper and lower track boundary is also not differentiable,
as can be seen in Figure 5.1. However, the function that describes the curvature of the
midline essentially has to be at least two times continuously differentiable, due to the
fact that it is used for the calculation of the new ODE right-hand side function (see
Section 4). To fix this, we decided to smooth the track boundaries, which leads to a
smoothed midline as well. The smoothed track is comparable with the old one, due to
the remaining key points at the transition curves of the track course, see Figure 5.2.

15 30 25 25 15

110

Pu

Pl

3.5

21 16

1621

9

9

4

4

Figure 5.2 – Layout of smoothed test course

50 5.2. Optimal Control Problems

5.2 Optimal Control Problems

We briefly review the two different mixed-integer optimal control problems of test-
drive at a glance.

5.2.1 Original Testdrive Optimal Control Problem

The original testdrive, as shown in [22, 16], strives to minimize the total time tf while
doing minimal steering effort ωδ(t). At any time, the car of width b must be positioned
within the test course’s boundaries, which are formulated by the double inequality
path constraint in Equation 5.1c. The system’s initial values are fixed in all states in
Equation 5.1h, with the exception of the car’s initial vertical position on the track,
which remains a free variable only constrained by the track’s boundary. Finally, con-
straints of Equation 5.1i, 5.1j guarantee that the car actually arrives at the end of the
test course, driving straight ahead. The entire problem reads as

min
tf,x(·),u(·),µ(·)

tf +
∫ tf

0
ω2
δ (t) dt (5.1a)

s.t. ẋ(t) = f
(
t, x(t), u(t), µ(t)

)
, (5.1b)

cy(t) ∈
[
Pl(cx(t)) +

b

2
, Pu(cx(t))− b

2
]
, (5.1c)

ωδ(t) ∈ [−0.5, 0.5], (5.1d)

FB(t) ∈ [0, 1.5 · 104], (5.1e)

φ(t) ∈ [0, 1], (5.1f)

t ∈ [t0, tf], (5.1g)

x(t0) =
(
−30, free, 10, 0, 0, 0, 0

)T
, (5.1h)

cx(tf) = 140, (5.1i)

ψ(tf) = 0, (5.1j)

with state vector x(·), vector of the continuous controls u(·), and integer control vec-
tor µ(·)

x :=
(
cx, cy, v, δ, β, ψ,wz

)T
, u :=

(
ωδ, FB, φ

)T
, µ(t) ∈ {1, . . . , 5}.

5.2.2 Extended Testdrive Optimal Control Problem

The extended MIOCP strives to minimize the total time tf as well, but with a position-
dependent set of ODE’s. In the following formulation the advance on the midline is

5.3. Numerical Results 51

given at the starting position by σ0 = 0, while the final value reads as σf = 170.637.

min
x(·),u(·),µ(·)

t(σf) +
∫ σf

σ0

ω2
δ (σ) dσ (5.2a)

s.t. ẋ(σ) = f
(
σ, x(σ), u(σ), µ(σ)

)
, (5.2b)

d(σ) ∈
[
−Pup(σ) +

b

2
, Pup(σ)− b

2
]
, (5.2c)

ωδ(σ) ∈ [−0.5, 0.5], (5.2d)

ξ(σ) ∈ [0, 1], (5.2e)

φ(σ) ∈ [0, 1], (5.2f)

σ ∈ [σ0, σf], (5.2g)

x(σ0) =
(
free, 10, 0, 0, 0, 0, 0

)T
, (5.2h)

ψ(σf) = 0. (5.2i)

The track boundaries are described by the double inequality path constraint of Equa-
tion 5.2c using only the upper bound and the car’s width b, due to the same difference
between upper and lower bound to the midline. The initial values in Equation 5.2h
are fixed, except the difference d of the start position to the midline. The track length
equates the original problem, but is now described by the length of the midline with
170.637, starting in 0. At the end of the track, straight ahead driving is guaranteed as
well (5.2i). Braking is now controlled by a model of the brake pedal, see Equation 5.2e,
which influences the resulting vehicle dependent braking force. In the following, state
vector x(·), continuous control vector u(·), as well as integer control vector µ(·) are
illustrated:

x :=
(
d, v, δ, β, ψ, ωz, t

)T
, u :=

(
ωδ, ξ, φ

)T
, µ(σ) ∈ {1, . . . , 5}.

5.3 Numerical Results

To solve these mixed-integer optimal control problems, we use the techniques pre-
sented in Chapter 4. Therefore, the introduced variables for discretization and
parametrization in the multiple shooting method at first have to be initialized. Af-
terwards, we compare the achieved solutions of both testdrive problems.

5.3.1 Variable Initialization

The initial control values of an optimal control problem are often difficult to obtain.
However, the direct multiple shooting method allows to supply additional information
about the state vector. The following figure shows the initial state variables (cx, cy, v)(t)
of the original testdrive problem, for 40 multiple shooting nodes (Nshoot = 40). With

52 5.3. Numerical Results

the initial guess of these state and control variables, the number of iterations which
are needed to obtain convergence differs consequently. For unphysical initializations
however, the whole procedure may fail.

(a) Horizontal position cx. (b) Vertical position cy . (c) Velocity v.

Figure 5.3 – Initialization of the shooting variables of the original testdrive example, chosen
to start the solution process.

We have initialized the end time tf = 11.5s in the previous time-dependent set of
ODEs, whereas in the following position-dependent problem the time has to be ini-
tialized as additional state, compare Figure 5.4(a). On the other hand, the horizontal
position cx in Figure 5.3(a) is comparable with the advance on the midline σ, after
the coordinate transformation and ODE modification. The vertical position cy, shown
in 5.3(b) of the original example has to be initialized, depending on the track course.
The smoothed track course however, is attached to the state d in Figure 5.4(b) as posi-
tion to the midline and can easily be initialized by 0.

(a) Time t. (b) Vertical position to mid-
line d.

(c) Velocity v.

Figure 5.4 – Initialization of the shooting variables of the extended testdrive example on the
smoothed track course, chosen to start the solution process.

5.3. Numerical Results 53

5.3.2 Comparison of the Solutions

The driving behavior of the optimal solution in both examples is very similar. During
the entire time, respectively space horizon the brake is inactive and the vehicle is
driving with maximum acceleration. Although the Porsche CS accelerates faster and
has a higher final velocity (compare Figure 5.5(b), 5.6(b)), the gear shift acts nearly
identical for the old engine model and the Porsche CS. This is caused by different
gear ratios and the resulting higher range of revolutions per minute.

(a) Horizontal position cx. (b) Velocity v. (c) Yaw angle ψ.

Figure 5.5 – States for the original testdrive problem with Nshoot = 40.

Logically speaking, the Porsche CS results by the use of a higher amount of velocity,
within a faster end time. This is represented in the old model explicitly in combination
with the horizontal position, resulting at the end condition cx = 140 within the optimal
time tf = 6.786794 (Figure 5.5(a)). On the other hand, the additional state of time in
the extended model results in tf = 6.315952 (5.6(a)). Furthermore, the illustrations of
the different yaw angles 5.5(c), 5.6(c) display that the behavior of the car’s orientation
is very similar - the slight differences are caused by the variations in the track course.

(a) Time t. (b) Velocity v. (c) Yaw angle ψ.

Figure 5.6 – States for the extended testdrive problem on the smoothed track course with
Nshoot = 40.

In spite of the similarities of both testdrive versions, the differences of car and track

54 5.3. Numerical Results

models lead to a slightly varying steering behavior. Figure 5.7(a) and Figure 5.8(a)
clarify that the vehicle is able to round the obstacle within one arc. Whereas the
steering angle velocity of the extended version in Figure 5.7(b) shows that the steering
wheel shortly remains in a certain position within the turn, followed by an increased
steering effort.

(a) Steering angle velocity ωδ of the origi-
nal testdrive example.

(b) Steering angle velocity ωδ of the ex-
tended testdrive model.

Figure 5.7 – Slightly different steering behavior due to differences in velocity.

The vertical position to the midline (Figure 5.8(b)) can be tracked in Figure 5.2, which
shows the smoothed track. The car closely passes the key points for the optimal control
on that test course.

(a) Vertical position cy of the original test-
drive example.

(b) Vertical position to midline d of the ex-
tended testdrive model.

Figure 5.8 – Differences in vertical amplitude of the vehicle due to different embedded
coordinate systems.

Chapter 6

Optimal Control of Vehicles on a
Race Track

In this chapter, we finally present the optimal control of different car models on a
realistic race track. We introduced the optimal control problem testdrive, included in
the optimization software package Muscod-II, as basic idea in the previous course. So
far, Muscod-II has been capable to optimize a certain car on a short test track with the
integrated problem formulation.

With intent to enlarge the test track to an realistic race track, first of all testdrive’s
set of ODEs had to be modified. We used the track data of the racing simulation game
VDrift and transformed the coordinate system. This allows to optimize a vehicle on
an optional VDrift track within the testdrive problem. Furthermore, we are able to use
optional VDrift vehicles and improved testdrive’s engine model, wheel forces, and car
parameters, so that the computed solution is more realistic and gets closer to the “real”
VDrift world.

In particular, we show the solution of an optimal controlled lap, of a Porsche

Clubsport as well as a Formula One car of the year 2002 F1-02, both presented in
Chapter 2, driving on Germany’s official Formula One racing track the Hockenheim-
ring. We demonstrate not only the optimization of the racing line but especially the
gear-shifting of the vehicle. Here, the gear selection is not optimized addicted to the
actual state like in automatic transmission, but continuously optimized which to our
knowledge never has been accomplished in this form yet.

The huge potential of this approach is shown for energy-optimal controlled trucks
in Buchner [8], Terwen [35], and Hellstrom [18], which allows the assumption to gain
performance for time-optimal control of racing vehicles as well.

55

56 6.1. Hockenheimring - Track Information

6.1 Hockenheimring - Track Information

The Hockenheimring, Baden-Württemberg1 was originally built in 1932 at a length of al-
most 8km as racing circuit and furthermore to test Mercedes Benz vehicles. The racing
track became more and more successful over the years, especially with motorcycle
events until the 1960’s. In 2002 the whole track was redesigned and shortened, to cre-
ate new overtaking possibilities for Formula One cars as well as more seating capacity.

There are two different track courses, which is the official Formula One racing
circuit with a length of 4574m, as well as a shorter lap where other racing events
are battled. The current lap record on the Formula One track was made by Kimi
Räikkönen in 2004 with a McLaren Mercedes in 73.780s, which equals an average speed
of 223.182km

h .
In Figure 6.1 an illustration of the Hockenheimring Formula One Grand Prix circuit

is shown, including an advised gear shifting for a part of the track, given by Sport Auto
magazine (see website [20]). The driving direction on the Hockenheimring is clockwise.

Figure 6.1 – Illustration of an advised gear shifting by “Sport Auto” magazine (web-
site [20]) for a partial lap on the Hockenheimring driving a BMW M3 CSL, which
lap time is about 2min. The starting line is represented by the small sign on the
left straight track part.

1Former name up to 1947 was Kurpfalzring, later on simply Hockenheimring until in 2002 the official
name became Hockenheimring, Baden-Württemberg.

6.2. Initialization Approach 57

6.2 Initialization Approach

In the previous Chapter 5 we presented the time-optimal control of a car on a short
test track with a length of about 170 meters. In comparison to that, the optimization
problem of the driving behavior on an original race track with a length of multiple
kilometers is significantly more complex. The dimension of this problem makes it
impossible to solve, in desirable accuracy within the set constraints, all at once. Hence,
our idea was to split the track in several overlapping parts, optimize those and put the
segments back together. This leads to a partial optimal solution, which we can use as
initial values of the complete optimization problem. Nevertheless, this problem with
several hundred multiple shooting nodes will be huge.

Another difficulty lies in the position of the multiple shooting nodes. Naturally, in
track parts like in hairpin curves for example, with a lot of steering, braking, or gear
shifting, the multiple shooting grid should be more accurate than in straight track
segments. Fortunately, the Bézier points of the track data in VDrift are arranged
just in that way. Therefore, we decided to set one multiple shooting node on the
beginning in every second Bézier patch, which results in 324 multiple shooting nodes
for a complete lap of the Hockenheimring.

The initial values of the track segments are estimated depending on the track’s
curvature. The several segments are in general initialized by about 40 multiple shoot-
ing nodes, although differing with the track course. Every segment within the track
course has an overlap of 5 to 15 nodes of the optimized previous track part’s state and
control values.

The first multiple shooting point is set onto the starting line, which also equates
the zero point in CSII (see Chapter 3). We assume that the vehicle launches out of a
specific starting position, which is given by VDrift’s track data, several meters before
the actual starting line and shifted in relation to the midline. Hence, we have to assign
the velocity as well as the vertical position on the starting line and fix them as first mul-
tiple shooting point. Therefore, we use the output data of VDrift in the zero point,
driving straight ahead with maximum acceleration in the first gear, which is achieved
by little improvements we made in VDrift’s source code (further in Chapter 7).

Thus, the Porsche CS has a fixed initial velocity v0 = 11.4509m
s and vertical position

as distance to the midline d = 4.05983m. The car’s orientation is given by the yaw
angle ψ0 = −1.55632, which equals straight ahead driving on the Hockenheimring at
this particular track position. For the F1-02 the initial variables are v = 15.2314m

s ,
d = 4.05983, and ψ0 = −1.55632. All other states are set to 0.0 as fixed initial values.

The initial control values for both cars are given by maximum acceleration, no
braking and steering, with the first gear engaged. All initial control values are free for
optimization.

58 6.3. Numerical Results

6.3 Numerical Results

In addition to the huge size of the optimization problem driving a complete lap on
the Hockenheimring, difficulties appear in conjunction with the Outer Convexification
of the binary control constraints. Further information on these problems is given in
Section 8.1.

According to this, we primarily produce a relaxed optimal solution, which is pre-
sented subsequently using a Porsche CS. Then we apply specific heuristics to the
relaxed solution, to finally achieve the optimal solution with binary constraints for
gear shifting.

Afterwards, the optimal solution of the Formula One car F1-02 is illustrated, driv-
ing a partial lap on the Hockenheimring. Here, the mentioned problems appeared to be
too complicated to achieve an optimal solution for a complete lap. Therefore, an idea
to handle these challenges by a different approach is given in the outlook of the thesis,
compare Chapter 8.

6.3.1 Porsche Clubsport - Relaxed Solution

The Porsche Clubsport has been introduced in Chapter 2, including its parameters
as well as the functionality of the embedded mathematical model. We now show the
numerical results of the optimal control problem, which is presented in formulation 5.2
in the previous chapter. The only difference to this formulation is the underlying track
course, used for the calculation of the vehicle’s orientation, which is now given by the
Hockenheimring instead of the test track data. Hence the new final value of the advance
on the midline reads as σf = 4503.23m.

The formulation of the integer control constraints has been introduced with the
Outer Convexification approach in Section 4.4.2. To actually achieve an optimal solu-
tion of a complete lap, initialized with the optimized parts of the track, we primarily
have to target the solution with relaxed binary control constraints. This solution, com-
puted by Muscod-II, is presented in the following. Here the x-axis shows the advance
on the midline of the vehicle in meters, while the y-axis illustrates the specific control
or state value.

In Figure 6.2(a) and 6.2(b) the course of a lap can be tracked by the control of the
steering wheel angular velocity ωδ, as well as the state of the steering wheel angle δ.
The first curve appears after about 200m, followed by a sharper double curve, which
results in an increased steering activity. An additional trajectory amplitude in the
double curve can be seen in both figures, showing turn in, counter steering and a
subsequent straightening back of the car. Then, the course yields a drawn-out curve
of about 1000m with ωδ near zero. However, the little activity of the steering angle
δ, with the increasing vehicle velocity (see Figure 6.5(b)) it is enough to handle this
curve. A very high steering amplitude appears logically within the hairpin curve at

6.3. Numerical Results 59

(a) Steering angle velocity ωδ . (b) Steering angle δ.

Figure 6.2 – Optimal control of the steering angle velocity and steering angle given as
differential state of the relaxed optimal solution of the Porsche CS.

about 2000m. Likewise, this curve can be seen at the side slip angle β in Figure 6.5(c),
with an at least fourfold amount of the slip angle compared to the remaining track. In
the second half of the lap, a lot more steering is going on. This is mainly caused by
shorter distances between the curves in this track part.

(a) Braking pedal position ξ. (b) Acceleration pedal position φ.

Figure 6.3 – Differential states of braking and accelerating of the relaxed optimal solution
of the Porsche CS.

Figure 6.3(a) and 6.3(b) illustrate the position of the braking and the accelerating pedal.
It is enough to shortly get off the acceleration pedal without any braking use to handle
the first curve, due to the little velocity which is reached since the starting position and
the condition of the curve. Within the following double curve however the braking
pedal is used. It can be seen very well that the braking and accelerating correlate.

60 6.3. Numerical Results

Obviously the hairpin curve after the high speed track segment at 2000m appears to
be the longest braking distance.

(a) 1. Gear. (b) 2. Gear.

(c) 3. Gear. (d) 4. Gear.

Figure 6.4 – Gear activity of the relaxed solution, showing the first four gears of the
Porsche CS. The 5. Gear has been eliminated as specific binary control with the
linear equality constraint of the SOS1 condition.

Figure 6.4 shows the relaxed binary controls of the gears in the optimization problem
without the control of the 5. Gear, which is eliminated as specific binary control by the
SOS1 condition of Equation 4.22d. That means, whenever no other gear is active in
the above illustrations, the 5. Gear is engaged. This is the case, for the long high speed
segment between 1200m to 2000m for instance. The relation of the gear shifting to the
state trajectory of the velocity can be seen in Figure 6.5(b).

In the first half of the track the relaxed solution is often of bang-bang type, which
means that the relaxed controls only take values at its bounds. As mentioned, the
second half of the track is sticked with a higher amount of curves in a shorter distance.
The velocity acts mainly within 20m

s to 50m
s with many amplitudes, which causes a lot

of gear shifting. At this point, the relaxed solution is frequently not of bang-bang type.

6.3. Numerical Results 61

(a) Vertical position d to the midline. (b) Velocity v.

(c) Side slip angle β. (d) Time t.

(e) Yaw angle ψ. (f) Yaw angle ωz .

Figure 6.5 – Differential states of the relaxed optimal solution of the Porsche CS.

62 6.3. Numerical Results

The differential states of the relaxed optimal solution are illustrated in Figure 6.5. The
orientation of the car is given as the yaw angle ψ in Figure 6.5(e). If the yaw an-
gle changes its value within a short time period, this can be seen as indication for a
curve. The time t with regard to the advance of the car increases continuously with
the only noticeable point at the hairpin curve, where the vehicle needs more time to
drive within less distance. Obviously this is caused by the extremely slow velocity at
this point, see Figure 6.5(b).

The optimal objective function value of the presented relaxed solution is t = 112.7175s.

6.3.2 Porsche Clubsport - Integer Solution

To achieve a feasible integer solution, there are several heuristics which can be ap-
plied to a relaxed optimal solution, like Grid Adaptivity, Switching Time Optimization,
or different rounding strategies. For closer examination of all techniques, we refer to
Sager [33]. All heuristics are implemented within the MS Mintoc extension of the
software package Muscod-II.

The concept of Grid Adaptivity is based on a refining technique of the discretiza-
tion of the control space. In this case, a bang-bang structured solution is assumed,
although the relaxed solution is not of this form yet. This approach aims in reproduc-
ing the controls of the relaxed solution which are already ∈ {0, 1} and refine the time
grid anywhere else.

Switching Time Optimization can be applied to a bang-bang structured solution
as well as to an already rounded solution which has been computed on a fixed time
grid. Then, instead of free controls the time grid is considered free to achieve a better
solution, for an exemplary application see Gerdts [16].

Grid Adaptivity followed by Sum Up Rounding would be the method of choice for
which convergence towards a theoretically guaranteed feasible integer solution would
be obtained, Sager [31]. However, for technical reasons (coupling of shooting notes to
Bezier patches) and the high dimensionality this was not possible in a straightforward
way. Therefore we used a rounding strategy on a shrinking horizon. Here, every
control is rounded one by one, which means that the control of the relaxed solution
at the first grid point is rounded, followed by a new optimization. If convergence is
achieved, one advances with the control in the second grid point and so on.

Although the resulting solution improved much from the relaxed one, concerning
the integrality of gear shifting, there are still few of the binary controls left which are
not feasible. At this, we refer to Chapter 8, where the occurred problems are discussed
and ideas for future work are presented. Anyway we stick to the name integer solution
for the presented numerical results in this section.

6.3. Numerical Results 63

(a) Steering angle velocity ωδ . (b) Steering angle δ.

Figure 6.6 – Optimal control of the steering angle velocity and steering angle given as
differential state of the optimal integer solution of the Porsche CS.

Compared to the relaxed solution, the integer solution shows a lot more steering ac-
tivity at the first sight. Although the trajectory’s amplitude of the steering wheel angle
velocity in Figure 6.6(a) increased, the single time periods of steering are shortened.
Particularly noticeable at this point is the resulting vertical position to the midline in
Figure 6.9(a), which is quite different now. This vertical position, which can be inter-
preted as optimal racing line is illustrated with respect to the actual track data of the
Hockenheimring in Figure 6.10.

Furthermore, the use of the braking pedal increased especially in the second half
of the track. At the same time the use of the acceleration pedal is reduced.

(a) Braking pedal position ξ. (b) Acceleration pedal position φ.

Figure 6.7 – Differential states of braking and accelerating of the optimal integer solution
of the Porsche CS.

64 6.3. Numerical Results

Figure 6.8 illustrates the gear shifting of the integer solution, achieved with the de-
scribed rounding heuristic applied to the relaxed solution. An illustration of the op-
timal gear shifting points within the actual track data of the Hockenheimring is given
in Figure 6.11. Here, the complete shifting controls can be tracked at downshifting in
curves, compare the hairpin curve, and up shifting at the high-speed track parts. In
the last curve the remaining difficulties with the integer solution can be seen, where
the gear is switched from the third into the fifth gear. At that point, once again we
refer to the ideas in the outlook in Chapter 8.

(a) 1. Gear. (b) 2. Gear.

(c) 3. Gear. (d) 4. Gear.

Figure 6.8 – Gear activity of the integer solution, showing the first four gears of the
Porsche CS. The 5. Gear has been eliminated as specific binary control with the
linear equality constraint of the SOS1 condition. Note that the solution is not
integer feasible because of the problems mentioned in Section 8.1, and technical
difficulties with an adaptation of the control grid size.

6.3. Numerical Results 65

(a) Vertical position d to the midline. (b) Velocity v.

(c) Side slip angle β. (d) Time t.

(e) Yaw angle ψ. (f) Yaw angle ωz .

Figure 6.9 – Differential states of the optimal integer solution of the Porsche CS.

66 6.3. Numerical Results

The optimal objective function value of the integer solution is t = 118.8537s, which is
6.1362s slower than then relaxed solution, logically caused by fixing of the controls.

To classify that solution in real world, note the lap time driven by a
2006 Porsche 997 GT3. According to website fastestlaps.com [21], this lap time is the
leading result of a non Formula One vehicle on the Grand Prix circuit of the Hocken-
heimring.

Car vmax in m
s vmax in km

h Lap Time t

2006 Porsche 997 GT3 86.1 310 116.41s
1989 Porsche CS 68.8 248 118.85s

Table 6.1 – Comparison of the computed optimal solution to a real world lap time, driven
on the Hockenheimring, see website [21].

6.3. Numerical Results 67

Figure 6.10 – Optimal racing line for a complete lap with a Porsche CS on the Hocken-
heimring, produced with the optimal integer solution of the vertical position to
the midline. The driving direction is clockwise.

68 6.3. Numerical Results

Figure 6.11 – Gear shifting for a complete lap with a Porsche CS on the Hockenheimring.
The driving direction is clockwise. Compare Figure 6.1 on page 56.

6.3. Numerical Results 69

6.3.3 2002 Formula One Car

In this section, the numerical results for an optimal control of a Formula One car are
presented. The vehicle has been introduced as F1-02 in Chapter 2. As described in the
previous sections, a particular heuristic is applied to the primarily computed relaxed
optimal solution, which yields the optimal integer solution.

The integer solution is illustrated in the following, at a length of σf = 943.396m
on the Hockenheimring. Due to the difficulties to get a feasible binary solution for the
choice of seven gears (see Section 8.1) and the high dimensionality of the optimization
problem, the solution is produced only on a partial lap.

(a) Steering angle velocity ωδ . (b) Steering angle δ.

(c) Braking pedal position ξ. (d) Acceleration pedal position φ.

Figure 6.12 – Optimal control of the steering angle velocity, as well as the differential states
of steering angle, braking pedal position, and accelerating pedal position of the
optimal integer solution of the F1-02.

70 6.3. Numerical Results

(a) 1. Gear. (b) 2. Gear.

(c) 3. Gear. (d) 4. Gear.

(e) 5. Gear. (f) 6. Gear.

Figure 6.13 – Gear activity of the integer solution, showing the first six gears of the F1-02.
The 7. Gear has been eliminated as specific binary control with the linear equality
constraint of the SOS1 condition. Note that the solution is not integer feasible
because of the problems mentioned in Section 8.1, and technical difficulties with
an adaptation of the control grid size.

6.3. Numerical Results 71

(a) Vertical position d to the midline. (b) Velocity v.

(c) Side slip angle β. (d) Time t.

(e) Yaw angle ψ. (f) Yaw angle ωz .

Figure 6.14 – Differential states of the optimal integer solution of the F1-02.

72 6.3. Numerical Results

Figure 6.15 – Gear shifting for a partial lap with the F1-02 on the Hockenheimring, compare
to the gear shifting of the Porsche CS in the Figure 6.11.

Chapter 7

Integration of Numerical Results to
Racing Simulator

So far we tried to attach parts of the racing simulation VDrift into the optimization
tool Muscod-II to realize the optimal control of a VDrift car on a realistic racing
track. This chapter shows the other way around, which means that we try to integrate
the offline calculated optimal solution for a specific track into VDrift. In this con-
text, “offline” means that once the optimization process started, there are no further
information updates used in the calculation.

Therefore, we have to implement input possibilities within VDrift’s source code
for the control data of a vehicle. The optimized solution is illustrated in several exem-
plary screenshots of VDrift.

7.1 Input/Output Operations

First of all, the challenge is to find a way to include the computed optimal control of
a vehicle into VDrift. There is the possibility to use the human controlled car, which
is normally controlled e.g. by the keyboard, or to include the input data into the AI
controlled driver. We decided to use the AI driver for this purpose, which results in
the opportunity to directly challenge the optimized car. Additionally it is possible to
add a VDrift controlled AI driver as third competitor.

Every input operation has to be at a particular time, which equates the position of
the multiple shooting points in the optimization problem. For the Porsche CS this
position is every second Bézier patch intersection.

Furthermore, the adjustment of the controls is important. The acceleration pedal
in both VDrift and testdrive is controlled by φ ∈ [0, 1], just as the braking pedal
position ξ ∈ [0, 1], which we already changed within the extended testdrive formulation
(see Section 2.5). However, the steering control differs. Given in the optimal control

73

74 7.2. Preliminary Considerations

problem by the steering angle velocity ωδ ∈ [−0.5, 0.5], it is formulated within the
racing simulator by the steering wheel angle ratio δVD ∈ [−1, 1]. At this, 1 represents
the car dependent ratio to the maximum positive steering angle and −1 its negative
equivalent. The essential transformation is made by the solution of the steering wheel
angle δtt, formulated as state of the ODE system in testdrive. In this connection, δtt has
to be transformed from radians into degrees:

δVD =
δtt 180
δmax π

(7.1)

The current optimal gear in VDrift is controlled in the same way as in testdrive, by
binary variables.

Additionally, it is possible to compare “measured data” of the optimized VDrift ve-
hicle to the solutions of controls and states of the optimization problem. Therefore,
output data is written to a text file at every patch intersection.

7.2 Preliminary Considerations

We briefly want to consider the expected result, for including the offline calculated
solution of Muscod-II into VDrift’s AI driver. As described in Chapter 2, we tried
to adjust the model of the optimal control problem testdrive to the VDrift car model.
We included specific car dependent parameters, as well as mathematical models of
different car parts of VDrift within Muscod-II. Nevertheless, the two models have
still some differences, e.g. in the computation of the engine progress. This results in a
slightly different velocity of the extended testdrive model compared to the VDrift car,
due to the missing clutch torque (described in Equation 2.8).

However, the differences within one patch will probably not be very big, the error
accumulates with the car’s movement. Therefore, we expect the car with the offline
calculated solution, to go off the track and accordingly crash into a constraining wall
sooner or later.

7.3 Illustration of the Solution

The following screenshots illustrate two Porsche CS, driving on the Hockenheimring in
the racing simulation VDrift. The red vehicle (see Figure 7.1) is controlled by input
data, which is offline calculated as optimal solution of the extended testdrive example,
implemented in Muscod-II. The black Porsche (Figure 7.1) is human controlled.

The “head-up display” (HUD) shows the current gear as well as a rotation speed
indicator on the lower left screen and the actual vehicle velocity in km

h on the lower
right. On the upper left of the screenshots, the current lap time is displayed, starting
on GO (Figure 7.2) and is turned back to zero, while the vehicle is crossing the starting

7.3. Illustration of the Solution 75

line (Figure 7.3). On the upper right, the track course is shown with the actual car
positions. All HUD information refer to the optimal controlled vehicle.1

As previously mentioned, the AI driver starts in the first gear with maximum ac-
celeration and no steering. While crossing the starting line, the first optimal control
data is entered to the AI driver.

Figure 7.1 – Porsche CS in starting position on the Hockenheimring. The red car in the
rear is controlled by the optimal solution, while the black car is human controlled.

1But the “Place” shows the human controlled car’s position.

76 7.3. Illustration of the Solution

Figure 7.2 – Starting positions of the Hockenheimring. Due to engaging the first gear, the
rotation speed indicator primarily declines.

Figure 7.3 – The optimal controlled Porsche is crossing the starting line with the velocity
of 11.45 m

s =̂ 41.22 km
h , which equates the fixed initial value of the first multiple

shooting point (compare Section 6.2). The lap time is turned back to zero, while
entering the first lap.

7.3. Illustration of the Solution 77

Figure 7.4 – Driving in the first gear with 58 km
h , while the revolutions per minute reaches

the upper engine constraint.

Figure 7.5 – Hockenheimring starting line after about 50m with pit lane on the right - head-
ing towards the first curve.

78 7.3. Illustration of the Solution

Figure 7.6 – Although the steering angle only slowly increases, the car starts to drive to
the left with a higher amount of velocity.

Figure 7.7 – The optimized Porsche CS slightly touches the grass - driving in the fourth
gear now - while steering right at the transition curve.

7.3. Illustration of the Solution 79

Figure 7.8 – Backspacing at maximum velocity within the curve. As can be seen, the
optimal controlled car is a bit early in the curve, due to the slightly different math-
ematical engine models, which results in different velocity of the optimized offline
model and the “real world”.

Figure 7.9 – Consequently the AI car turns off the road, due to the early turn in to the
curve.

80 7.3. Illustration of the Solution

Figure 7.10 – Due to different off-road steering characteristics, the AI driver is now late
for straightening the vehicle. Furthermore, the off-road ride naturally reduced
the car’s velocity.

Figure 7.11 – Hence, the AI car touches the right, delimiting wall and additionally steers
to the left, due to the intention to straighten the car.

7.3. Illustration of the Solution 81

Figure 7.12 – Consequently, the AI driver heads up way to much left.

Figure 7.13 – Finally, the AI car ends up crashing in the delimiting, left wall.

Chapter 8

Conclusion and Outlook

In Chapter 6, we presented the offline calculated optimal control of a Porsche CS,
driving a complete lap on the Hockenheimring. In the previous chapter, we used this
offline solution as input data in VDrift’s AI driver. Although the mathematical model
of the extended testdrive MIOCP has been adjusted to VDrift’s car model, the previous
section shows that there are still some differences. As suggested, the optimized vehicle
crashes sooner or later. Unfortunately, this happens already within the first curve.
Additional difficulties appeared in achieving the optimal control of a complete lap
due to ill-conditioning and vanishing constraints, which we describe in the following.

Then we like to present two different approaches to solve some of these problems
as an outlook of this thesis. This could be adjustment of the mathematical car models,
which yield negligible differences. Otherwise, we illustrate the idea of Nonlinear Model
Predictive Control (NMPC), compare Wirsching [38], in which we see a great oppor-
tunity to proceed with the results that have been achieved in this thesis. This final
chapter is closed with a short summary of the main contributions, achieved in the
context of this thesis.

8.1 Vanishing Constraints and Ill-Conditioning

This section should deliver an insight into the difficulties that could be seen in Chap-
ter 6, on the basis of the numerical results. Therefore, we discuss some technical and
numerical properties which appear by applying the Outer Convexification approach to
integer or binary control constraints of a NLP. The problem class of Mathematical Pro-
grams with Vanishing Constraints (MPVCs) includes such NLPs. Furthermore, the issue
of ill-conditioning often occurs with the linearized constraints by Outer Convexification
and is described in the following as well.

82

8.1. Vanishing Constraints and Ill-Conditioning 83

Definition 8.1. Nonlinear Program with Vanishing Constraints
The Nonlinear Program

min
x∈Rn

f(x) (8.1a)

s.t. gi(x) · hi(x) ≥ 0, i ∈ {1, . . . ,m} (8.1b)

h(x) ≥ 0, (8.1c)

with m ≥ 1 complementary inequality constraints, is called Mathematical Program with Van-
ishing Constraints (MPVC).

Furthermore, the following problem illustrates the specific case of a NLP, obtained
from discretization of an optimal control problem and additional linearization of the
integer controls by Outer Convexification.

The discretized system states are given by x, whereas u describes the discretized
continuous control parameters, and the relaxed binary controls are denoted by w:

min
x,u,w

f(x, u, w) (8.2a)

s.t. wi · (gi(x, u)− glo
i) ≥ 0, i ∈ {1, . . . ,m} (8.2b)

wi · (g
up
i − gi(x, u)) ≥ 0, i ∈ {1, . . . ,m} (8.2c)

wi ∈ [0, 1] ⊂ R i ∈ {1, . . . ,m} (8.2d)

The constraints gi may be two-sided with lower bounds glo
i and upper bounds gup

i , and
vanish if the associated relaxed binary control wi is zero. This happens at every gear
shift point from one gear to another, at the example of the optimal control problem
of a vehicle including gear shifts. However, the fact of ill-conditioning can trouble that.

Ill-conditioning can be explained at the following example. Consider the scalar con-
straint w1 · g(x2) ≥ 0 in combination with its associated simple bound w1 ≥ 0. The
possibly nonlinear constraint g on x2, given as the upper engine constraint for in-
stance, vanishes if the particular gear is inactive with w1 = 0. As w1 approaches zero,
the condition number of the problem approaches infinity.

Due to roundoff and truncation errors inevitably experienced by any numerical
algorithm applied to solve MPVCs, the bound x2 ≥ 0 may be only weakly active. For
example if w1 = 10−12 instead of w1 = 0, the condition number is at least 1

w1
= 1012

if the vanishing constraint g is active. Hence, it is remarked that in a neighborhood of
the area of violation, linearizations of constraints treated by Outer Convexification are
ill-conditioned.

Besides ill-conditioning, a phenomenon known as “zig-zagging” could appear in ac-
tive set methods for the solution of MPVCs. Here the angle between the constraints

84 8.2. Model Adjustment

approaches 0, which yields a spike-shaped form of the feasible set. This may result in
many tiny steps being made by an active set method if the stationary point is located
near the spike’s pinpoint.

Zig-zagging could possibly appear in the neighborhood of a gear shift point. The
optimal gear shift point at a specific vehicle velocity lies in a small feasible set. It is
mentioned that this could be one reason, why the solution for an optimal control on
the Hockenheimring with the Formula One car F1-02 caused considerably more trouble
compared to the Porsche CS, see Figure 2.11.

8.2 Model Adjustment

The main difference of the two mathematical car models of testdrive and VDrift can
be reduced to the engine. As described in Section 2.5, the engine’s clutch torque is
neglected in the testdrive model.

The clutch torque represents the friction whenever one side of the clutch is spinning
faster than the other side. As mentioned, within VDrift this is calculated with the
difference of the engine’s angular velocity and the clutch’s angular velocity and further
clutch parameters (compare Equation 2.8). At the engine, the angular velocity comes
with a numerical integration, by a “forward” calculation with an implemented Euler
method. On the other hand, the clutch’s angular velocity is calculated “backwards”,
out the actual wheel speed of the car. Hence, to model the clutch torque within the
extended testdrive version, it is necessary to introduce a new ODE state for the forward
calculation of the engine’s angular velocity.

The tire forces vary in longitudinal direction described in Equations 2.29, 2.30 to
VDrift’s longitudinal Pacejka tire model, which is described in Equation 2.14. Addi-
tionally, the aligning moment is modeled in VDrift compared to testdrive.

It would be interesting to see in which way these adjustments improve the in VDrift en-
tered solution. Although the two mathematical models would be close now, they
would still not match exactly. Therefore we suppose that those adjustments which are
possible to include to testdrive with a practicable effort, still would not have the ability
to compute a complete optimal controlled lap on a VDrift track.

Hence, we intend to use Nonlinear Model Predictive Control (NMPC), which is pre-
sented in the following section. Nevertheless, the model adjustments would be an
additional improvement, while doing NMPC.

8.3 Nonlinear Model Predictive Control

The idea of an offline calculated optimal control of a dynamic system, involves the
solution of the entire problem on a fixed time horizon [t0, tf], as seen in Chapter 6.

8.3. Nonlinear Model Predictive Control 85

Afterwards, the offline calculated control is applied to the dynamic system.
The problems appearing with this approach are illustrated at the example of

VDrift screenshots in this chapter, caused by a not exactly coincident mathemati-
cal model. Further problems could be subjected to disturbances appearing during the
process, for example to avoid hitting an obstacle while driving a car or countersteer
after a slight contact with an opponent vehicle.

Hence, we now want to describe the idea of a predictive control approach, which
operates in a way to control the system during the process. The main applications in
Model Predictive Control (MPC) are permanent processes, which are not stuck to a finite
time horizon. Most common examples are permanent heating or cooling processes or
chemical procedures.

A wide spread field of theory research as well as many industrial applications
can be found in Linear Model Predictive Control (LMPC), in which a linear model is
used to predict the system dynamics. However, many real world applications include
nonlinearities, which can be treated by a Nonlinear Model Predictive Control (NMPC).
NMPC is a much younger and less explored sector of MPC. This is mainly caused by
the computational challenge, which appears with nonlinear models and constraints.
To fasten up the solving process, so far the nonlinear systems often have been replaced
by linear differential equations and constraints. This works well for systems which
nonlinearity isn’t that drastic.

However, to solve nonlinear optimal control problems including a higher control
performance, the major difficulty lies in the real-time requirements of the solution.
Hence, faster nonlinear MPC algorithms have been developed recently, see Diehl [10].
Furthermore, the time horizon on which the optimal control problem is solved has to
be considered more precisely.

8.3.1 Moving Horizon

Ideally the control problem should be solved on the complete time horizon [t0, tf] or
for T = ∞ for permanent processes with a long time horizon [t0, T]. However, this
would lead to large-scale NLPs, which could not be solved in real-time. Therefore, the
concept of NMPC is generally formulated on a moving horizon. At this, the idea is to
solve one optimal control problem after another, each independently with the required
accuracy on a short real-time capable time horizon.

We now want to solve an optimal control problem, formulated as in 4.9, with the
system states xi, measured at the current time ti, for a predictive time horizon [ti, ti+T]
and based on the ODE model

ẋ(t) = f
(
t, x(t), u(t), p

)
. (8.3)

The following explanations are illustrated in Figure 8.1.
The first optimized control is applied to the system at time ti to control the first

segment [ti, ti + ε], ε < T of the time horizon [ti, ti + T]. The next system state is taken

86 8.3. Nonlinear Model Predictive Control

at latest at ti + ε. Now a new optimization problem is solved for the next time horizon
[ti+ ε, ti+ ε+T] and given back to the system to control the next segment [t+ ε, t+ 2ε].
This procedure can be continued any number of times.

past control horizon

t0 t0 + ε
. . .

t0 + T

current state

past controls

x0 optimized

predicted state trajectory x(t)

controls

u(t)

Figure 8.1 – Illustration of Model Predictive Control on a moving time horizon.

Obviously the computing time varies much, depending on the length of the time hori-
zon, the difficulty of the optimization problem, as well as the quality of the initial
values for the next iteration step. Hence, some ideas have been proposed by Diehl
in [10, 12, 11], to fasten up the algorithms for real-time calculation in combination
with a direct multiple shooting and SQP approach.

The basic difference in this approach in contrary to the conventional NMPC scheme,
is to use the already calculated solution of the first time horizon [ti, ti + T] as initial
value xi+1 of the next interval [ti + ε, ti + ε+ T]. Furthermore, the measured state x̂i+1

at the end of the first interval is added to the new optimization problem as constraint

x(ti+1)− x̂i+1 = 0. (8.4)

That means the solution algorithm is iterating continuously, while the problem data
is modified in every iteration step. In addition, the optimal control ui can be used as
initial control data for the next iteration step. This allows to reduce the number of
iterations to one iteration per sampling time, to calculate the optimal control of the
next time horizon.
While choosing the length of the time horizon T , two different options have to be
considered. If T is chosen too big, the solution will probably not be reached in real-
time, due to the fact that the difficulty increases with the problem progress. Otherwise,

8.4. Summary 87

if the time horizon is chosen too small, the calculate solution may no longer be optimal,
examining the global problem.

8.4 Summary

At first, we presented a historical overview of racing video games, different open
source racing simulations and the reasons why we actually chose the game VDrift for
coupling to an optimization software. Afterwards, we modified the existing optimal
control problem testdrive included in Muscod-II, using a transformation of the un-
derlying ODE system. In this context, we improved the mathematical model of test-
drive with certain car parts and more realistic parameters of VDrift.

The following transformation of the coordinate system allows to calculate the opti-
mal control of a vehicle in the testdrive problem, using optional tracks of VDrift which
are given as Bézier points. We gave an overview of the direct multiple shooting method
in combination with a SQP algorithm to solve general NLPs. Furthermore, we showed
the Outer Convexification approach with a relaxation of the binary control constraints,
to solve the MIOCPs, which are treated in this thesis.

The model extensions are illustrated at the explicit example of a smoothed test
course of the original testdrive track. These solutions are compared to the original
testdrive version results.

In Chapter 6 we applied the described improvements in car and track model to
optimize the control of a Porsche CS on a complete lap of the Hockenheimring. At
this, the difficulties are explained appearing due to the complexity of this problem, on
the one hand with the very high number of multiple shooting nodes, and otherwise
with the shifting decisions related to the engine constraints. Additionally the offline
calculated optimal control of the Formula One car F1-02 with seven gears is shown
on the first half of the Hockenheimring. Here, the complexity of the problem made
it impossible to solve it on a complete lap all at once, even with primarily partial
optimized initial values.

Further difficulties appear, when the offline calculated optimal solution is entered
into the control of VDrift’s AI driver. Additional implementations within VDrift’s
source code, allow input/output operations in the racing simulator. At several exem-
plary screenshots can be seen that even for the adjusted car models of testdrive and
VDrift, their mismatch is to big. Hence, the car crashes after the first curve.

Finally an outlook is given with further model adjustment as well as the idea of
NMPC that should solve the previously described problems.

Now, our intention is to focus on NMPC, to solve the optimal control problem of a
vehicle on a complete racing track not only as offline solution, but in real-time on a
moving horizon within the racing simulator VDrift.

Appendix A

Car Parameters of VDrift

This appendix describes parameters of two car models of VDrift, read in from the
car file (/VDrift/data/cars/carname/carname.car) and not yet listed in section 2.3.1. On the
one hand, there is the Porsche 911 Club Sport, a street car from the late 1980’s with
a racing engine under the hood. On the other hand, a Formula 1 car of the year 2002,
with realistic Formula One values according to the FIA Regulations.

• Front wheels must be between 305 and 355 mm wide, the rears between 365 and
380 mm

• With tyres fitted the wheels must be no more than 660 mm in diameter (670 mm
with wet-weather tyres)

• “Cars must weight at least 605 kg (including the driver) at all times” (total weight
673 kg at start)

• weight distribution front
rear = 44

56

These are the two main models, used in this thesis.

88

89

Parameter Value Porsche Value F1-02 Unit

torque-curve-00 1000, 189.81 1800, 90.00 1
min , Nm

... 2000, 196.59 2600, 110.59
2200, 196.59 3300, 135.59
2300, 203.37 3750, 160.21
2800, 196.59 4000, 190.47
3000, 203.37 4250, 202.15
3400, 212.86 4500, 211.56
3800, 203.37 5000, 218.78
4200, 221.0 5500, 225.23
4800, 237.27 6000, 237.37
5100, 238.62 6500, 238.89
5300, 242.69 7000, 242.69
5400, 239.98 7500, 243.43
5600, 235.91 8000, 244.91
5700, 237.27 8500, 246.27
5900, 237.95 9000, 248.95
6200, 221.0 9600, 250.20
6400, 207.44 10000, 259.65
6600, 196.59 10500, 269.78
6840, 184.39 11000, 295.51

12000, 320.00
13000, 330.00
14000, 347.00
15000, 330.00
16000, 320.00
17000, 310.00
18000, 300.00
19000, 290.00

torque-curve-21 20000, 280.00

Table A.1 – Torque-curve parameters (rpm, torque) used in the VDrift engine model.

90

Parameter Value Porsche Value F1-02 Unit Description

a0 1.4 1.39 – Shape factor
a1 −35 −90 1

MN Load infl. on lat. friction coeff
a2 1550 1900 1

1000 Lateral friction coefficient at load = 0

a3 2400 2900 N Maximum stiffness
a4 6.5 7.2 kN Load at maximum stiffness
a5 0.014 0.024 1

deg Camber influence on stiffness
a6 −0.24 −0.24 kN Curvature change with load
a7 1.0 1.0 – Curvature at load = 0

a8 −0.03 −0.03 – Horizontal shift because of camber
a9 −0.0013 −0.0013 deg

kN Load influence on horizontal shift
a10 −0.15 −0.15 deg Horizontal shift at load = 0

a111 −8.5 −8.5 1
MN·deg Camber influence on vertical shift

a112 −0.29 −0.29 1
kdeg Camber influence on vertical shift

a12 17.8 17.8 1
1000 Load influence on vertical shift

a13 −2.4 −2.4 N Vertical shift at load = 0

Table A.2 – Lateral Pacejka parameters used in the VDrift tire model acting at the front
wheels, units according to [14].

Parameter Value Porsche Value F1-02 Unit Description

a0 1.3 1.55 – Shape factor
a1 −45 −50 1

MN Load infl. on lat. friction coeff
a2 1700 2000 1

1000 Lateral friction coefficient at load = 0

a3 2500 2800 N Maximum stiffness
a4 6.5 10.0 kN Load at maximum stiffness
a5 0.014 0.024 1

deg Camber influence on stiffness
a6 −0.24 −0.24 kN Curvature change with load
a7 1.0 1.0 – Curvature at load = 0

a8 −0.03 −0.03 – Horizontal shift because of camber
a9 −0.0013 −0.0013 deg

kN Load influence on horizontal shift
a10 −0.15 −0.15 deg Horizontal shift at load = 0

a111 −8.5 −8.5 1
MN·deg Camber influence on vertical shift

a112 −0.29 −0.29 1
kdeg Camber influence on vertical shift

a12 17.8 17.8 1
1000 Load influence on vertical shift

a13 −2.4 −2.4 N Vertical shift at load = 0

Table A.3 – Lateral Pacejka parameters used in the VDrift tire model acting at the rear
wheels, units according to [14].

91

Parameter Value Porsche Value F1-02 Unit Description

b0 1.6 1.95 – Shape factor
b1 −70 −85 1

MN Load infl. on long. friction coeff
b2 1600 1950 1

1000 Longitudinal friction coefficient at load = 0

b3 23.3 24.3 1
MN Curvature factor of stiffness

b4 350 390 1
1000 Change of stiffness with load at load = 0

b5 0.05 0.07 1
kN Change of progressivity of stiffness/load

b6 0.0 0.0 1
kN2 Curvature change with load

b7 0.055 0.059 1
kN Curvature change with load

b8 −0.024 −0.024 – Curvature at load = 0

b9 0.014 0.014 1
kN Load influence on horizontal shift

b10 0.26 0.26 – Horizontal shift at load = 0

b11 0.0 0.0 N
kN Load influence on vertical shift

b12 0.0 0.0 N Vertical shift at load = 0

Table A.4 – Longitudinal Pacejka parameters used in the VDrift tire model acting at the
front wheels, units according to [14].

Parameter Value Porsche Value F1-02 Unit Description

b0 1.6 1.75 – Shape factor
b1 −90 −100 1

MN Load infl. on long. friction coeff
b2 1600 2200 1

1000 Longitudinal friction coefficient at load = 0

b3 23.3 23.3 1
MN Curvature factor of stiffness

b4 375 410 1
1000 Change of stiffness with load at load = 0

b5 0.05 0.075 1
kN Change of progressivity of stiffness/load

b6 0.0 0.0 1
kN2 Curvature change with load

b7 0.055 0.055 1
kN Curvature change with load

b8 −0.024 −0.024 – Curvature at load = 0

b9 0.014 0.014 1
kN Load influence on horizontal shift

b10 0.26 0.26 – Horizontal shift at load = 0

b11 0.0 0.0 N
kN Load influence on vertical shift

b12 0.0 0.0 N Vertical shift at load = 0

Table A.5 – Longitudinal Pacejka parameters used in the VDrift tire model acting at the
rear wheels, units according to [14].

92

Parameter Value Porsche Value F1-02 Unit Description

c0 2.2 2.2 – Shape factor
c1 −3.9 −2.3 Nm

kN2 Load influence of peak value
c2 −3.9 −2.4 Nm

kN Load influence of peak value
c3 −1.26 0.0 Nm

deg·kN2 Curvature factor of stiffness
c4 −8.2 −1.5 Nm

deg·kN Change of stiffness with load at load = 0

c5 0.025 0.0225 1
kN Change of progressivity of stiffness/load

c6 0.0 0.0 1
deg Camber influence on stiffness

c7 0.044 0.044 – Curvature change with load
c8 −0.58 −0.58 – Curvature change with load
c9 0.18 0.18 – Curvature at load = 0

c10 0.043 0.043 – Camber influence of stiffness
c11 0.048 0.048 – Camber influence on horizontal shift
c12 −0.0035 −0.0035 deg

kN Load influence on horizontal shift
c13 −0.18 −0.18 deg Horizontal shift at load = 0

c14 0.14 0.14 Nm
deg·kN2 Camber influence on vertical shift

c15 −1.029 −1.029 Nm
deg·kN Camber influence on vertical shift

c16 0.27 0.27 Nm
kN Load influence on vertical shift

c17 −1.1 −1.1 Nm Vertical shift at load = 0

Table A.6 – Aligning Pacejka parameters used in the VDrift tire model acting at the front
wheels, units according to VDrift’s Wiki Documentation [2]

93

Parameter Value Porsche Value F1-02 Unit Description

c0 2.2 2.2 – Shape factor
c1 −4.1 −4.3 Nm

kN2 Load influence of peak value
c2 −3.9 −4.4 Nm

kN Load influence of peak value
c3 −1.36 −1.9 Nm

deg·kN2 Curvature factor of stiffness
c4 −8.0 −9.6 Nm

deg·kN Change of stiffness with load at load = 0

c5 0.025 0.0225 1
kN Change of progressivity of stiffness/load

c6 0.0 0.0 1
deg Camber influence on stiffness

c7 0.044 0.044 – Curvature change with load
c8 −0.58 −0.58 – Curvature change with load
c9 0.18 0.18 – Curvature at load = 0

c10 0.043 0.043 – Camber influence of stiffness
c11 0.048 0.048 – Camber influence on horizontal shift
c12 −0.0035 −0.0035 deg

kN Load influence on horizontal shift
c13 −0.18 −0.18 deg Horizontal shift at load = 0

c14 0.14 0.14 Nm
deg·kN2 Camber influence on vertical shift

c15 −1.029 −1.029 Nm
deg·kN Camber influence on vertical shift

c16 0.27 0.27 Nm
kN Load influence on vertical shift

c17 −1.1 −1.1 Nm Vertical shift at load = 0

Table A.7 – Aligning Pacejka parameters used in the VDrift tire model acting at the rear
wheels, units according to VDrift’s Wiki Documentation [2]

Bibliography

[1] Picture of airplane from website. http://mtp.jpl.nasa.gov/notes/
pointing/Aircraft_Attitude2.png, March 2010.

[2] Various Authors. VDrift Documentation Wiki. http://wiki.vdrift.net/
Numerical_Integration, March 2010.

[3] Brian Beckman. The physics of racing, 1991-2008.

[4] R.E. Bellman. Dynamic Programming. University Press, Princeton, 1957.

[5] J.T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming.
SIAM, Philadelphia, 2001.

[6] T. Binder, L. Blank, H.G. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder,
W. Marquardt, J.P. Schlöder, and O.v. Stryk. Introduction to model based op-
timization of chemical processes on moving horizons. In M. Grötschel, S.O.
Krumke, and J. Rambau, editors, Online Optimization of Large Scale Systems: State
of the Art, pages 295–340. Springer, 2001.

[7] H.G. Bock and K.J. Plitt. A Multiple Shooting algorithm for direct solu-
tion of optimal control problems. In Proceedings 9th IFAC World Congress Bu-
dapest, pages 243–247. Pergamon Press, 1984. Available at http://www.iwr.uni-
heidelberg.de/groups/agbock/FILES/Bock1984.pdf.

[8] A. Buchner. Auf dynamischer programmierung basierende nichtlineare modell-
prädiktive regelung für LKW. Diploma thesis, Ruprecht–Karls–Universität Hei-
delberg, January 2010.

[9] Rémi Coulom. Reinforcement Learning Using Neural Networks, with Applications to
Motor Control. PhD thesis, Institut National Polytechnique de Grenoble, 2002.

[10] M. Diehl. Real-Time Optimization for Large Scale Nonlinear Processes. PhD thesis,
Universität Heidelberg, 2001.

[11] M. Diehl, H.G. Bock, and J.P. Schlöder. A real-time iteration scheme for nonlinear
optimization in optimal feedback control. SIAM Journal on Control and Optimiza-
tion, 43(5):1714–1736, 2005.

94

http://mtp.jpl.nasa.gov/notes/pointing/Aircraft_Attitude2.png
http://mtp.jpl.nasa.gov/notes/pointing/Aircraft_Attitude2.png
http://wiki.vdrift.net/Numerical_Integration
http://wiki.vdrift.net/Numerical_Integration

Bibliography 95

[12] M. Diehl, H.G. Bock, J.P. Schlöder, R. Findeisen, Z. Nagy, and F. Allgöwer. Real-
time optimization and nonlinear model predictive control of processes governed
by differential-algebraic equations. J. Proc. Contr., 12(4):577–585, 2002.

[13] M. Diehl, D.B. Leineweber, and A.A.S. Schäfer. MUSCOD-II Users’ Manual. IWR-
Preprint 2001-25, Universität Heidelberg, 2001.

[14] G. Genta. Motor Vehicle Dynamics - Modeling and Simulation. World Scientific
Publishing Co. Pte. Ltd., Singapore, 1997.

[15] M. Gerdts. Solving mixed-integer optimal control problems by Branch&Bound:
A case study from automobile test-driving with gear shift. Optimal Control Appli-
cations and Methods, 26:1–18, 2005.

[16] M. Gerdts. A variable time transformation method for mixed-integer optimal
control problems. Optimal Control Applications and Methods, 27(3):169–182, 2006.

[17] S.P. Han. Superlinearly convergent variable-metric algorithms for general nonlin-
ear programming problems. Mathematical Programming, 11:263–282, 1976.

[18] E. Hellström, M. Ivarsson, J. Aslund, and L. Nielsen. Look-ahead control for
heavy trucks to minimize trip time and fuel consumption. Control Engineering
Practice, 17:245–254, 2009.

[19] Aerial picture of the Hockenheimring from website. http://
archive2008.jimclark-revival.com/fileadmin/data/2008/img/
Luftbild-Hockenheimring.jpg, March 2010.

[20] Illustration of the Hockenheimring from website with advised gear shift-
ing for a BMW M3 CSL. http://www.sportauto-online.de/news/
grand-prix-strecke-hockenheim-3-1051082.html, March 2010.

[21] List of lap times driven by different cars on the Hockenheimring from website.
http://www.fastestlaps.com/index.php?page_id=track&track=
46&filter1=true&filter2=true&filter3=true&filter4=true, March
2010.

[22] C. Kirches, S. Sager, H.G. Bock, and J.P. Schlöder. Time-optimal control of auto-
mobile test drives with gear shifts. Optimal Control Applications and Methods, 30(5),
September/October 2009. DOI 10.1002/oca.892.

[23] D.B. Leineweber. Analyse und Restrukturierung eines Verfahrens zur direkten
Lösung von Optimal-Steuerungsproblemen. Master’s thesis, Universität Heidel-
berg, 1995.

[24] J. Nocedal and S.J. Wright. Numerical Optimization. Springer Verlag, Berlin Hei-
delberg New York, 2nd edition, 2006. ISBN 0-387-30303-0.

http://archive2008.jimclark-revival.com/fileadmin/data/2008/img/Luftbild-Hockenheimring.jpg
http://archive2008.jimclark-revival.com/fileadmin/data/2008/img/Luftbild-Hockenheimring.jpg
http://archive2008.jimclark-revival.com/fileadmin/data/2008/img/Luftbild-Hockenheimring.jpg
http://www.sportauto-online.de/news/grand-prix-strecke-hockenheim-3-1051082.html
http://www.sportauto-online.de/news/grand-prix-strecke-hockenheim-3-1051082.html
http://www.fastestlaps.com/index.php?page_id=track&track=46&filter1=true&filter2=true&filter3=true&filter4=true
http://www.fastestlaps.com/index.php?page_id=track&track=46&filter1=true&filter2=true&filter3=true&filter4=true

96 Bibliography

[25] Hans B. Pacejka. Tyre and Vehicle Dynamics. Elsevier Ltd., Oxford Burlington, 2nd
edition, 2006.

[26] K.J. Plitt. Ein superlinear konvergentes Mehrzielverfahren zur direkten Berech-
nung beschränkter optimaler Steuerungen. Diploma thesis, Universität Bonn,
1981.

[27] L.S. Pontryagin, V.G. Boltyanski, R.V. Gamkrelidze, and E.F. Miscenko. The Math-
ematical Theory of Optimal Processes. Wiley, Chichester, 1962.

[28] A. Potschka, H.G. Bock, and J.P. Schlöder. A minima tracking variant of semi-
infinite programming for the treatment of path constraints within direct solution
of optimal control problems. Optimization Methods and Software, 24(2):237–252,
2009.

[29] M.J.D. Powell. A fast algorithm for nonlinearly constrained optimization calcu-
lations. In G.A. Watson, editor, Numerical Analysis, Dundee 1977, volume 630 of
Lecture Notes in Mathematics, Berlin, 1978. Springer.

[30] S. Sager. Numerical methods for mixed–integer optimal control problems. Der an-
dere Verlag, Tönning, Lübeck, Marburg, 2005. ISBN 3-89959-416-9. Available at
http://sager1.de/sebastian/downloads/Sager2005.pdf.

[31] S. Sager. Reformulations and algorithms for the optimization of switching de-
cisions in nonlinear optimal control. Journal of Process Control, 19(8):1238–1247,
2009.

[32] S. Sager, C. Kirches, and H.G. Bock. Fast solution of periodic optimal control
problems in automobile test-driving with gear shifts. In Proceedings of the 47th
IEEE Conference on Decision and Control (CDC 2008), Cancun, Mexico, pages 1563–
1568, 2008. ISBN: 978-1-4244-3124-3.

[33] S. Sager, G. Reinelt, and Hans Georg Bock. Direct methods with maximal lower
bound for mixed-integer optimal control problems. Mathematical Programming,
118(1):109–149, 2009.

[34] J. Stoer and R. Bulirsch. Numerische Mathematik 1. Springer-Verlag, Berlin Heidel-
berg New York, 10th edition, 2007.

[35] S. Terwen, M. Back, and V. Krebs. Predictive powertrain control for heavy duty
trucks. In Proceedings of IFAC Symposium in Advances in Automotive Control, pages
451–457, Salerno, Italy, 2004.

[36] Joe Venzon. VDrift Website. http://vdrift.net, March 2010.

[37] R.B. Wilson. A simplicial algorithm for concave programming. PhD thesis, Harvard
University, 1963.

http://vdrift.net

Bibliography 97

[38] L. Wirsching, H.J. Ferreau, H.G. Bock, and M. Diehl. An online active set strategy
for fast adjoint based nonlinear model predictive control. In Proceedings of the 7th
Symposium on Nonlinear Control Systems (NOLCOS), Pretoria, 2007.

Erklärung

Hiermit versichere ich, dass ich meine Arbeit selbständig unter Anleitung verfasst ha-
be, dass ich keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe,
und dass ich alle Stellen, die dem Wortlaut oder Sinne nach anderen Werken entlehnt
sind, durch Angabe der Quellen als Entlehnungen kenntlich gemacht habe.

	Introduction
	Thesis Outline

	Racing Simulators
	Commercial Racing Video Games
	Open-Source Software
	Racer
	TORCS

	VDrift

	Mathematical Models of Car Driving
	Multibody Systems
	Pacejka's Magic Formula Tire Model
	VDrift
	VDrift Car Model

	Testdrive
	Testdrive Car Model

	Extended Testdrive Model
	Transformation of ODE System
	Modifications in Car Model

	Coordinate Systems
	Testdrive Track
	Bézier Patches in VDrift
	Transformations between Coordinate Systems
	Locate Car Position with Newton's Method

	Mixed-Integer Optimal Control Problems
	Problem Formulation
	The Direct Multiple Shooting Method
	Control Discretization
	State Parametrization
	Constraint Discretization
	Discrete Nonlinear Problem

	Sequential Quadratic Programming Method
	Outer Convexification
	Motivation
	Outer Convexification

	MUSCOD-II

	Comparison of Models on Test Track
	Modification of the Track Course
	Optimal Control Problems
	Original Testdrive Optimal Control Problem
	Extended Testdrive Optimal Control Problem

	Numerical Results
	Variable Initialization
	Comparison of the Solutions

	Optimal Control of Vehicles on a Race Track
	Hockenheimring - Track Information
	Initialization Approach
	Numerical Results
	Porsche Clubsport - Relaxed Solution
	Porsche Clubsport - Integer Solution
	2002 Formula One Car

	Integration of Numerical Results to Racing Simulator
	Input/Output Operations
	Preliminary Considerations
	Illustration of the Solution

	Conclusion and Outlook
	Vanishing Constraints and Ill-Conditioning
	Model Adjustment
	Nonlinear Model Predictive Control
	Moving Horizon

	Summary

	Appendices
	Car Parameters of VDrift
	Bibliography

