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Abstract
During intensive chemotherapy of acute myeloid leukemia (AML) and acute lym-
phoblastic leukemia (ALL), leukopenia and neutropenia are commonly arising ad-
verse events. These forms of white blood cell (WBC) suppression in the bone marrow
(myelosuppression) are responsible for a higher risk of infectious complications dur-
ing chemotherapy and consequently for delayed, dose-reduced or stopped treatments,
longer hospitalization periods, and overall higher mortality as the worst case.

The objective of the present thesis was to apply mathematical methods, meaning
mathematical modeling, simulation and optimiziation, to describe and predict myelo-
suppression during chemotherapy of adult AML and pediatric ALL patients and deter-
mine the interaction between different biomarkers and clinical outcome. Furthermore,
the developed mathematical models for myelosuppression were applied to investigate
adapted treatment schedules via simulation and optimization processes aiming at im-
proving clinically relevant outcomes.

More precisely, we developed population pharmacokinetic(s) (PK)/pharmacody-
namic(s) (PD) models describing the dynamics of WBCs, granulocyte-colony stimulat-
ing factor (G-CSF) and leukemic blasts during consolidation treatment using interme-
diate or high-dose cytarabine (Ara-C) and exogenous G-CSF (lenograstim) in AML. For
the maintenance therapy of childhood ALL patients with oral 6-mercaptopurine (6MP)
and methotrexate (MTX), we investigated population PK/PD models describing the
neutrophils over a treatment period of up to two years.

The models were developed from and evaluated on three different datasets contain-
ing measurements from 23 and 44 AML patients as well as 116 pediatric ALL patients.
Parameter estimations were performed using the first order conditional estimation ap-
proximation method for nonlinear mixed-effects models. After model calibration and
evaluation, we used the personalized models to simulate and analyze myelosuppres-
sion and short-term disease progression for different standard treatment schedules. To
date, even the standard treatments still envolve several decisions to be made by the
treating physician on a case-by-case basis (i.e. what dose to start with, when and how
to increase or decrease chemotherapy, when to start the next treatment cycle or what
impact does the co-medication have on therapy), for which no international consensus
exist. Therefore, the in silico studies are further steps along the path to support physi-
cians making model-informed decisions. In addition to treatment simulations, we also
formulated an optimal control problem to optimize treatment schedules with respect
to short-term disease progression, WBC nadirs, and the amount of Ara-C and G-CSF.
The results of the present work provide new insights into the timing and the number of
treatment cycles, the administration of lenograstim and its beneficial influence on the
eradication of leukemic blasts.

Regarding methodological investigations, we proposed a feedback optimal control
algorithm with optimal measurement time points from optimal experimental designs
and applied the algorithm to the Lotka-Volterra fishing example. Finally, we inves-
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tigated Fisher’s scoring method in the context of parameter estimation for nonlinear
mixed-effect models. For two examples, differing in their model complexity and num-
ber of measurements, we compared Fisher’s method with state-of-the-art methods.

Overall, the present thesis contributed to a better understanding of chemotherapy
and related myelosuppression during consolidation therapy of AML patients and main-
tenance therapy of childhood ALL patients. Future clinical studies are warranted to
investigate the proposed treatment schedules.
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Zusammenfassung
Leukopenie und Neutropenie sind zwei häufig auftretende unerwünschte Arzneimit-
telwirkungen während der intensiven Chemotherapie von akuter myeloischer und
lymphatischer Leukämie (AML/ALL). Diese Formen der Suppression von Leukozyten
(weiße Blutkörperchen) im Knochenmark (auch Myelosuppression genannt) sind ve-
rantwortlich für ein erhöhtes Risko an infektiösen Komplikationen während der
Chemotherapie und folglich für eine verzögerte, dosisreduzierte oder abgebrochene
Behandlung, längere Krankenhausaufenthalte und im äußersten Fall eine erhöhte
Sterblichkeit. Das Ziel dieser Arbeit war die Anwendung mathematischer Methoden,
darunter mathematische Modellierung, Simulation und Optimierung, zur Beschrei-
bung und Vorhersage von Myelosuppression während der Chemotherapie von AML
bei Erwachsenen und ALL bei Kindern und die gleichzeitige Untersuchung von Inter-
aktionen zwischen Biomarkern und Behandlungsergebnissen. Des Weiteren wurden
die entwickelten mathematischen Modelle zur Beschreibung von Myelosuppression
verwendet, um mittels Simulation und Optimierung angepasste Behandlungspläne auf
Verbesserungen in der Erzielung klinisch relevanter Ergebnisse zu untersuchen.

Präziser formuliert wurden populationsbasierte pharmakokinetische/pharmako-
dynamische (PK/PD) Modelle entwickelt, die die Dynamik von Leukozyten,
Granulozyten-Kolonie-stimulierenden Faktoren (G-CSF) und leukämischen Blasten
während der Konsolidierungstherapie bei AML unter Verwendung von mittel- und
hochdosiertem Cytarabin (Ara-C) beschreiben. Für die Erhaltungstherapie von ALL
bei Kindern mit oralem 6-Mercaptopurin (6MP) und Methotrexat (MTX) wurden ver-
schiedene populationsbasierte PK/PD Modelle untersucht, die die Dynamik von Neu-
trophilen über einen Behandlungszeitraum von bis zu zwei Jahren beschreiben.

Für die Entwicklung und Evaluation der Modelle wurden drei unterschiedliche
Datensätze verwendet. Die Datensätze enthalten Messinformationen von 23,
beziehungsweise 44 AML Patienten und 116 pädiatrischen ALL Patienten. Parame-
terschätzungen für nichtlineare Modelle mit gemischten Effekten wurden unter Ver-
wendung der first order conditional estimation Approximationsmethode durchgeführt.
Nach Modellkalibrierung und Auswertung wurden die personalisierten Modelle ver-
wendet, um Myelosuppression und das kurzzeitige Fortschreiten der Krankheit bei
verschiedenen etablierten Behandlungsplänen zu simulieren und zu analysieren. Bis
heute müssen auch bei den etablierten Therapien wichtige Entscheidungen von den
behandelnden Ärzten für jeden Patienten einzeln getroffen werden, für die es keine
internationalen Übereinstimmungen gibt. Wichtige Entscheidungen sind hierbei mit
welcher Dosis die Behandlung begonnen wird, wann und in welcher Menge die Dosis
erhöht oder verringert werden muss, wann mit dem nächsten Therapiezyklus begonnen
wird und welchen Einfluss eine Komedikation auf die Behandlung hat. Daher sind un-
sere in silico Studien weitere Schritte auf dem Weg zur Unterstützung der Ärzte bei
ihrer Entscheidungsfindung durch modellbasierte Ergebnisse. Neben der Simulation
von Behandlungsplänen wurde ein Optimalsteuerungsproblem formuliert, welches Be-
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handlungspläne hinsichtlich kurzzeitigem Krankheitsverlauf, Leukozyten-Nadir und
der zu verabreichenden Menge an Ara-C und G-CSF optimiert. Die Ergebnisse der
vorliegenden Arbeit liefern neue Einblicke über den Behandlungsstartpunkt und die
Anzahl an Behandlungszyklen, die Verabreichung von Lenograstim und sein vorteil-
hafter Einfluss auf die Abtötung von leukämischen Blasten.

In Bezug auf methodische Untersuchungen wurde ein Feedback-
Optimalsteuerungsalgorithmus mit optimalen Messzeitpunkten durch optimale
Versuchsplanung vorgeschlagen und auf das Lotka-Volterra fishing Problem angewen-
det. Schließlich haben wir Fisher’s Scoring Methode im Rahmen der Parameterschätzung
für nichtlineare Modelle mit gemischten Effekten untersucht. Für zwei Bespiele, welche
sich in ihrer Modellkomplexität und Anzahl an Messungen unterscheiden, wurde
Fisher’s Methode mit etablierten Standardmethoden verglichen. Insgesamt trägt
die vorliegende Arbeit zu einem besseren Verständnis der Chemotherapie und
resultierender Myelosuppression während der Konsolidierungstherapie bei AML
Patienten und der Erhaltungstherapie von ALL bei Kindern bei. Zukünftige klinische
Studien sind im nächsten Schritt notwendig, um die in dieser Arbeit vorgeschlagenen
Behandlungspläne weiter zu untersuchen.
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1 Introduction

1.1 Thematic classification

The present thesis is located at the intersection of mathematics, control theory, systems
biology, pharmacology, pharmacometrics and medicine. The principle objectives are
the description and prediction of healthy and cancer cells during chemotherapy of
acute leukemia and the simulation, optimization and analysis of individual treatment
schedules using tailored mathematical models.

Leukemias are a group of malignant disorders of the blood and bone marrow (BM)
[1]. In the UK, leukemia is the 13th most common cancer accounting for 3% of all new
cancer cases in 2016. The U.S. National Cancer Institute reports a similar estimated
number of 3.5% of all new cancer cases for 2019. In Germany, 2.7% of all diagnosed
cancers of women and 3.1% of men are leukemia. Although leukemia is a relatively
rare cancer disease in comparison to breast, lung or gut cancer, it is very heterogeneous
with a low 5-year survival rate and a high death rate [2].

Pharmacometrics, the science of developing and applying mathematical and statisti-
cal methods (including modeling, simulation and optimization) in the fields of biology,
pharmacology and diseases, is intended to help

• characterizing and understanding a drug’s behavior and response in terms of
its pharmacokinetic(s) (PK), pharmacodynamic(s) (PD) and biomarker/treatment
outcomes,

• interpreting the interaction between biomarkers and clinical effects,

• identifying and predicting critical periods during treatment,

• identifying subpopulations with varying PK of an administered drug,

• evaluating dosing strategies in silico before studies are conducted and

• developing more individualized treatment schedules based on models tailored to
the individual patient.

Based on the clinical questions and the available measurement information, specific
modeling concepts are used, differing in their detailedness and physiological foundation
of describing the dynamical processes.
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1.1. THEMATIC CLASSIFICATION

The sophisticated description of complex systems using mechanistic modeling is de-
fined as systems pharmacology which is emerged through the fusion of systems biology
and PK/PD [3–5]. These models are often multiscale, multilevel, and physiologically
based and are used to understand and analyze drug effects at whole-organism levels and
extrapolate PK and PD properties. A complementary modeling approach is reflected
by empirical models which describe the clinical data and dynamic processes through
one or more empirical compartments representing the body with limited physiological
interpretability and thus might not be suited for extrapolations or predictions. The
mechanistic approach results in the most advanced and reliable mathematical models
contributing to a better understanding of the biological process but often the available
data is not sufficient to inform all parts of the model. A good compromise between these
two categories are semi-mechanistic modeling approaches trying to find a balance be-
tween mechanistically modeling the most important dynamics supported by available
experimental data and the agglomeration of physiological properties through empirical
functions.

The mathematical models presented in this thesis contain values which character-
ize specific time profiles of biomarkers such as granulocyte-colony stimulating fac-
tor (G-CSF) and clinical outcomes like white blood cells (WBCs) and leukemic blasts.
The values are either known and can be fixed to constants or they are not exactly known
and defined as parameters whose values need to be identified via experiments. Ap-
propriate values for these parameters can be determined by fitting the model to exper-
imental/clinical data. Regarding an experimental study with several patients, different
parameter estimation approaches exist to identify the optimal set of parameter values for
each patient. The state-of-the art method nowadays is the population-based approach,
or (non)linear mixed-effects approach, providing a set of estimated parameters describ-
ing the population and individual sets of parameters for each subject together with
information of the interindividual variability (IIV) also called between-subject variabil-
ity [6]. Other possibilities to handle data from several patients are the so called two-step
and naïve pooling approach. The two-step method firstly estimates the parameters of
each patient individually and afterwards descriptive statistics for the population are
generated. In the naïve pooling approach, all individual datasets are pooled to one
large dataset and the mathematical model is fitted simultaneously without an assign-
ment of the measurements to the patients ignoring individual differences in exposure
and response. Both approaches have been shown to estimate biased parameter values
such that these methods are rarely used nowadays [7].

After model development and fitting, simulation and optimization methods can
be applied to analyze and answer clinically relevant questions and support physicians
in their decision making. Simulation studies with heuristically defined experimental
designs and strategies are widely used to generate what if scenarios and investigate
biological hypotheses. The heuristic part can be replaced with optimization-derived
experimental strategies based on the objective of interest. The experimental control
strategy as the solution of an optimization problem can highlight strategies which
are optimal for the current problem and might be non-intuitive for the corresponding
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1.2. MOTIVATION

experimenter.
The application of optimization methods becomes more and more a state-of-the art

method in the preparation and design of experimental or clinical studies. For example,
the US Food and Drug Administration suggests in their guidance document for industry
on Population Pharmacokinetics the usage of optimal experimental design (OED) methods
for the computation of the most informative measurement time points in clinical studies
[8]. Another example is the insulin administration derived by an adaptive optimiza-
tion algorithm for patients with type-1 diabetes via an artificial pancreas, mimicking a
patient’s glucose regulating function through an insulin pump and continuous glucose
monitor. The artificial pancreas was tested for six months in a randomized, multicenter
trial [9]. Within simulation studies, the heuristic scenarios already consider constraints
like limited amount of drug that can be administered (e.g. in oral dosing), practically
feasible administration and measurement times or dosing regimens (e.g. maximal du-
ration of infusions). Within the optimization problems all these aspects have to be
considered such that the obtained results are clinically relevant. Further, the simulation
and optimization results are grounded on the developed models. A profound model
analysis and evaluation using clinical data should be performed such that the inter- and
extrapolations of the model outcomes are reliable and applicable in real life.

1.2 Motivation

In this work we deal with adult acute myeloid leukemia (AML) and pediatric acute
lymphoblastic leukemia (ALL).

In 1994, Mayer et al. [10] established intermediate/high-dose instead of low dose
cytarabine (Ara-C) schedules to prevent relapses after complete remission (CR) of AML
patients. Since then, Mayer’s proposed treatment schedule is one of the most important
treatments during consolidation therapy (CT) of AML. Still, knowledge on the PK and
PD of Ara-C is limited and specific adverse events occur regularly after treatment. Novel
treatment schedules are analyzed in clinical studies achieving reduced adverse events
and higher survival rates [20]. Besides novel treatment schedules, co-medications such
as G-CSF can be administered seeking to overcome the occurance of adverse events. But
also in this case, it is not known what the best timing of G-CSF administration should
be and what impact G-CSF has on leukemic cells.

In pediatric acute lymphoblastic leukemia (ALL), 10-15% of the patients experience
a relapse and event-free survival of patients with first relapse is just around 35 to 50%
[11]. Thus, successful treatment requires initial high-intensity chemotherapy, followed
by low-intensity oral maintenance therapy (MT) with oral 6-mercaptopurine (6MP) and
methotrexate (MTX) until 2-3 years after disease onset. However, intra- and IIV in the
PK and PD of 6MP and MTX make it challenging to balance the desired antileukemic
effects with undesired excessive myelosuppression during MT.

We leverage pharmacometric approaches to investigate several aspects of the men-
tioned problems for the two types of leukemia. The investigated aspects are listed in the
next section. We concentrate on semi-mechanistic modeling approaches partly driven
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1.3. CONTRIBUTIONS

by the available data and applied different parameter estimation techniques (individual,
naïve pooling and population approach) to fit the developed models to clinical data.
With the developed models, we performed simulations and used direct optimal control
methods to derive individualized treatment schedules.

1.3 Contributions

The contributions of this interdisciplinary work are threefold. Firstly, we determine
several medical aspects which are of high clinical relevance and need further investiga-
tion:

• Recovery time of WBC counts after standard and dense Ara-C treatment schedules

• Relationship between timing of consolidation cycle (CC) start and WBC recovery
time

• Effect of G-CSF administrations on WBCs and leukemic cells

• Optimal schedules of Ara-C and G-CSF regarding relapse and adverse events

• Optimal number of CT cycles

• Stratification of AML patients for optimal treatment timing

• Heterogeneity in pediatric ALL treatment efficacy and toxicity

Their analysis and understanding can help physicians to propose more tailored treat-
ment schedules simultaneously reducing the occurance of adverse events. Secondly,
we investigate these questions with the development of mathematical models and their
use in simulation and optimization studies:

• PK model of Ara-C

• PK/PD model for the CT of AML considering secondary effects of Ara-C

• PK/PD model for the CT of AML with Ara-C and lenograstim

• PK/PD model for the MT of pediatric ALL with 6MP and MTX

As a third part, we investigate different numerical methods enhancing the popula-
tion approaches:

• Investigation of Fisher’s method in the context of parameter estimation for non-
linear mixed-effect models

• Feedback optimal control algorithm with a focus on measurement times derived
from OED

During the development of this thesis the following publications have been pub-
lished:
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1.4. THESIS OVERVIEW
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1.4 Thesis overview

The first part of the thesis gives an introduction to hematopoiesis and blood cancers,
especially acute myeloid and lymphoblastic leukemia, we are dealing with. After-
wards, we present different mathematical concepts to model, simulate and optimize
drug induced and reduced myelosuppression and dynamics of cancer cells. Several
mathematical models for myelosuppression and for the pharmacodynamics of various
drugs are described. The chapter concludes with the description of three different
datasets used for model fitting and cross-validation.
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The subsequent part comprises novel mathematical models and numerical methods
for drug induced myelosuppression. Next, we present the results of model fitting and
validation to clinical data and interesting outcomes from state-of-the-art and optimized
treatment schedules.

Finally, we summarize our findings in the last part and give an outlook for future
perspectives.

From the perspective of the four presented publications [A], [B], [C] and [E], in the
following we will describe in which sections the content of each publication can be
found.

Publication [A]

The PK/PD model is presented in section 6.1.4, the model fitting in section 7.1.2 and the
investigation of optimal treatment schedules in section 7.2.2.
Contributions: FJ developed the PK/PD models, proposed the study designs, per-
formed the numerical computations and wrote the first draft of the manuscript. SS, ES
and TF contributed to the model development, the study designs and the interpretation
of the results. ES, TF, DW and HD provided the clinical data. All authors contributed
to writing the final manuscript.

Publication [B]

The PK/PD model is presented in section 6.2, the model fitting in section 7.1.3 and the
analysis of different available treatment schedules in section 7.2.3.
Contributions: FJ developed the PK/PD models, performed the numerical computa-
tions and wrote the first draft of the manuscript. JZ, TTTL, TR, MR, MM, and SS
contributed to the model development, the study designs, and the interpretation of the
results. MSu and MSt provided clinical data. All authors contributed to writing the
final manuscript.

Publication [C]

The PK/PD modeling is presented in sections 6.1.1 to 6.1.3, the model fitting in section
7.1.1 and the analysis of the treatment start on nadir values in section 7.2.1.
Contributions: FJ extended and implemented the mathematical models and did all nu-
merical computations. ES and TF contributed to modeling, study design and provided
clinical data. KR contributed to data, mathematical modeling and developed the PK
model for Ara-C. SS contributed to mathematical modeling, numerical approaches, and
study design. All authors contributed to discussion of results and writing of the final
paper.
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1.4. THESIS OVERVIEW

Publication [D]

The feedback optimal control algorithm with optimal measurement time points is pre-
sented in section 6.3 and the related numerical results in section 7.3.
Contributions: FJ implemented the algorithm and did all numerical calculations and is
the corresponding author of the article. LTT and SS contributed to the general idea, to
the theoretical aspects, and to proof-reading of the manuscript.
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Part I

Background, concepts and data
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2 Background, concepts and data:

Medical background

In this chapter, we give an introduction to hematopoiesis, the hematopoietic disease
acute leukemia and review the state-of-the-art chemotherapy treatments. For further
information the interested reader is referred to [12] or [13].

2.1 Hematopoiesis

Hematopoiesis is defined as the formation of blood cells, specified in different cell
lineages, predominantly taking place in the BM. All mature cells originate from multi-
potent hematopoietic stem cells (HSCs) located in the BM with multilineage develop-
mental potential and are ultimately mandatory for the regeneration of hematopoiesis
after hematopoietic disorder caused by e.g. stem cell transplantation or chemotherapy.
Due to the limited lifespan of matured cells and the 10-fold lower amount of total HSCs
compared to the daily human need for homeostasis (maintaining steady-state blood
counts), HSCs perform regulated cell divisions. The stem cell division is intended to
maintain the stem cell pool (ability of self-renewal) and to produce daughter stem cells
which differentiate and mature until the cells are released from the BM to the circulating
blood to carry out their specific functions. During this process, the cells pass several
consecutive stages (compare figure 2.1) including the selection of a specific cell lineage at
one point. Two main cell lineages are defined, the myeloid lineage from which erythro-
cytes, thrombocytes, granulocytes and monocytes result and the lymphoid lineage from
which T- and B-lymphocytes and natural killer cells are formed. Figure 2.2 represents
the hierarchical process of hematopoiesis with its cell line specification. Hematopoiesis
and the release of matured cells from the BM into peripheral blood is controlled and
regulated by intrinsic and extrinsic factors, such as cell-cell interactions, hematopoietic
growth factors and cytokines. For example, the production of erythrocytes is mainly
controlled by the hormone erythropoietin whereas neutrophils, one type of granulo-
cytes, are mainly controlled by G-CSF [12]. Further differences exist regarding the mean
maturation time (MMT), half-life and lifespan of the different cell types. Neutrophils
have a MMT of a few days (3.9 days obtained by [14]) and a lifespan of several hours in
contrast to erythrocytes with a MMT of 20 days and mean life expectancy in the blood
stream of 120 days [12].
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2.2. ACUTE LEUKEMIA

Self-Renewal Stem Cell Pool Differentiation Lineage Selection Maturation Function
Cell Death
(Apoptosis)

Figure 2.1: Stages in hematopoiesis. Figure adapted from [12].
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Figure 2.2: Simplified representation of hematopoiesis. Schematic visualization is
adapted from [12, 15]. For a more detailed representation including additional stages
symbolized by the arrows and dots, the interested reader is referred to [12, 13]

2.2 Acute leukemia

Leukemia is a cancer of blood cells, mainly of WBCs (leukocytes), divided into four
subtypes, i.e. acute/chronic myeloid/lymphoblastic leukemia. A distinction between
myeloid and lymphoblastic is made according to the affected cell lineage. Further, the
disease is either defined as acute or chronic depending on its abrupt occurance and
short-lived outcome or its persistence. In the present thesis, we are focusing on acute
leukemia, especially AML and childhood ALL. As references and further information
see [12, 13, 16–18].

2.2.1 Acute myeloid leukemia

AML is a malignant clonal disorder of myeloid stem and progenitor cells (compare
figure 2.3) primarily occurring in older adults with a median age at diagnosis of 70
years [2, 12, 17]. In untreated AML, immature neoplastic myeloid blasts proliferate
rapidly and suppress the maturation of blood cells. Consequently, the disease is fatal
for the majority of patients (≈ 80%) with a 5-year survival of 40%, for patients younger
than 55 to 60 years and 5% to 10% for patients older than 60 years [2].
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Figure 2.3: Simplified representation of disorders in hematopoiesis arising from acute
myeloid leukemia. The immature neoplastic myeloid blasts occuring in acute myeloid
leukemia are represented by the numerous leukemic blast boxes arranged in a chaotic
manner. Schematic visualization is adapted from [17].

2.2.2 Treatment of acute myeloid leukemia

Chemotherapy treatment of AML is usually divided into an induction and a consol-
idation phase [19]. The goal of the induction phase is the eradication of blasts. By
blasts, we refer to a combination of aberrant/leukemic and physiological blasts that are
cytologically ≥ 20% in the BM at the time of AML diagnosis [19]. The standard treat-
ment consists of intensive chemotherapy with three days of anthracycline (idarubicin or
daunorubicin) and seven days of Ara-C [19]. To monitor the relative numbers of blasts
in each cycle, BM aspirations are collected and analyzed. After the induction phase, the
relative number of blasts should be below 5% in the BM (assessed by cytology) and not
measurable in the circulating blood.

In this work, we are focusing on the subsequent consolidation phase. Consolidation
treatment is given once patients achieve CR and is considered the most important part
of chemotherapy in preventing relapses. One standard AML consolidation treatment
consists of Ara-C 3 g/m2 (body surface area (BSA)-adjusted) intravenous infusion lasting
3 hours every 12 hours on days 1, 3 and 5 (D135) for patients aged 60 years and younger,
which was investigated by Mayer et al. in 1994 [10] (compare figure 2.4). Older patients
(> 60 years) receive an intermediate dosage of 1 g/m2 Ara-C infusions in the same
intervals (d135). In recent years, studies have proposed a dense treatment schedule at
which high-dose Ara-C is administered on days 1, 2 and 3 (D123) to reduce the WBC
recovery time and increase survival [20, 21].

While the goal to reduce the blasts as much as possible to prevent a relapse is identical
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2.2. ACUTE LEUKEMIA

between the two phases, the conflicting objective to avoid complicating infections plays
an important role in the consolidation phase. Neutropenia is characterized by decreased
counts of neutrophil granulocytes in the peripheral blood. Equivalent, an extremely
low WBC count is defined as leukopenia. These are serious and common adverse events
arising during the treatment with cytotoxic chemotherapy of AML. The two forms of
WBC suppression in the BM (myelosuppression) are responsible for a higher risk of
infections and consequently for delayed, dose-reduced or stopped treatments, longer
hospitalization periods, and mortality as the worst case [22].
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Figure 2.4: A typical progression of white blood cells after cytarabine administration
during consolidation therapy of acute myeloid leukemia patients. The values of
interest are the recovery time trec (time when white blood cells (WBCs) recover above 1
G/L after the start of the first cytarabine (Ara-C) administration), the myelosuppression
interval ∆t (the number of days with WBC count ≤ 1 G/L) and the minimal WBC
concentration defined as nadir.

In addition to new treatment schedules, the administration of G-CSF can reduce the
depth and duration of leukopenia [23]. Hematopoietic growth factors such as G-CSF
regulate blood cell production, including survival, proliferation, and differentiation
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of HSCs and stimulation of mature cell functions by activating signal transduction
pathways [12]. The impact of G-CSF was enhanced by the clinical development of a re-
combinant human G-CSF, called filgrastim, in 1986 for the prevention of leukopenia and
HSC mobilization before autologous or allogeneic HSC transplantation [24]. The Eu-
ropean Society for Medical Oncology suggests daily filgrastim administration after the
last day of chemotherapy until a sufficient postnadir absolute neutrophil count (ANC)
recovery, for approximately 10 days [25]. On top of chemotherapy, the additional bur-
den of daily filgrastim administration was reduced by the invention of pegfilgrastim,
a pegylated form of filgrastim. The inclusion of filgrastim into a polyethyleneglycol
polymer prolongs the half-life from 3.5 hours to 46-62 hours such that the permanence
of pegfilgrastim in blood circulation is up to 16 days after a single administration [26],
replacing the frequent filgrastim administrations. In addition to filgrastim, lenogras-
tim was developed, which is a physicochemically, immunologically and biologically
identical glycosylated recombinant G-CSF to human G-CSF [26].

Until 2017, no new drug beyond the previously mentioned treatment options had
been approved for the treatment of AML, although the disease is clinically and geneti-
cally heterogeneous with a poor survival prognosis [2]. In their publication, Watss and
Nimer together reviewed the latest advances in the understanding and treatment of
AML discussing therapeutic advances such as genetic heterogeneity, promising drug
targets, ongoing clinical trials (see also [27]) and four recently approved new drugs.

2.2.3 Childhood acute lymphoblastic leukemia

The most common cancer in children is ALL, comprising approximately 25% of all
childhood malignancies. ALL is characterized by the overproduction and accumulation
of immature, abnormal WBCs (lymphoblasts) and consecutive displacement of normal
hematopoiesis [28].

2.2.4 Treatment of childhood acute lymphoblastic leukemia

Current treatment schedules for childhood ALL are based on combination chemother-
apy and achieve long-term survival in >90% of children [28]. With some international
variation, all major treatment protocols start with intensive, high-dose treatment for
approximately 6 months (so-called induction and CT) followed by less-intensive, low-
dose treatment (so-called MT) until 2–3 years after disease onset. While severe therapy-
induced myelosuppression and frequent associated hospitalizations are acceptable up
to a certain level during lymphoblast elimination in intensive treatment periods, MT
aims to achieve sustained antileukemic activity against lymphoblasts below the limit of
detection, with minimal impact on quality of life due to adverse effects.

The MT includes daily oral 6MP and weekly oral MTX administration to achieve
WBC suppression without unintended myelotoxicity according to treatment protocol-
specific target ranges. The treatment protocol AIEOP-BFM 2009 specifies a WBC target
range of 1.5−3.0 G/L, ANC target range of 0.5−2.0 G/L, and recommends dose reduction
for WBC counts < 1.5 G/L, neutrophils < 0.5 G/L, lymphocytes < 0.3 G/L and platelets
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< 50 G/L [29, 30]. The starting dose of 6MP and MTX varies within the different protocols
and doses are adjusted by the physicians if the drug-induced ANC steady-state is not
within the target range due to high intra- and IIV in the PK and PD of 6MP and MTX
[30] and other unexplained circumstances as infections.
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3 Background, concepts and data:

Modeling of dynamic processes

In this work, we are examining mathematical models described by systems of ordinary
differential equations (ODEs). They give a good tradeoff between covering the funda-
mentals of the representing dynamic processes and being applicable for optimization
methods presented in later sections. Other modeling approaches as delay, stochastic or
partial differential equations are not part of this work.

3.1 Ordinary differential equations

We assume that a dynamic process can be described as an initial value problem (IVP),
consisting of a system of ODEs

ẋ(t) = f (x(t),u(t), θ), (3.1a)
x(t0;θ) = x0(θ) (3.1b)

on a time interval t ∈ [t0, t f ] = T with the differential state vector x(t) : T → Rnx ,
the time-constant process-specific parameters θ ∈ Rnθ and the control function u(t) :
T → U, U ∈ Rnu affecting the state dynamics. The initial condition (3.1b) may
depend on all or a subset of the parameters θ. The function f : Rnx × U × Rnθ → Rnx

is assumed to be Lipschitz continuous, such that (3.1) has an unique solution on T
for a given control function u and parameters θ. The solution of (3.1), also called
trajectory, is defined as x∗(t) : T → Rnx . Further, we assume that derivatives (also called
sensitivities) of x(·) with respect to the different variables exist. These sensitivities
are needed for the derivative-based optimization methods in the following sections.
Different approaches exist to derive sensitivities, as numeric (finite differences and i-
trick also called complex step derivative approximation or complex variable method),
symbolic or algorithmic differentiation [31–33]. In problem formulations as OEDs or
first order approximation methods for parameter estimation of nonlinear mixed-effects
(NLME) models, sensitivities of x(·) with respect to the model parameters θ appear in
the problem formulation. We are focusing on the computation of those sensitivities
G(·) =

dx(·)
dθ : T → Rnx×nθ as the solution of the variational differential equations

Ġ(t) = fx(x∗(t),u(t), θ)G(t) + fθ(x∗(t),u(t), θ), G(t0) =
dx0(θ)

dθ
(3.2)

15



3.2. SEMI-MECHANISTIC PHARMACOKINETIC/PHARMACODYNAMIC MODELING

with x∗(t) the solution of (3.1) and the partial derivatives fx(·) := ∂ f
∂x and fθ(·) := ∂ f

∂θ
often written in short form as subscripts within the work. Note that here and in the
following matrix equations are to be understood component-wise. Again, we assume
unique solutions for (3.2).

For the rest of this work, we define a function I

I : Rnx ×Rnu ×Rnθ → Rnx , (x(t0),u(t), θ)→ x(t f ), t ∈ [t0, t f ] (3.3)

which solves the IVP (3.1) on the time interval t ∈ [t0, t f ] with the end point x(t f ).
The software we use to solve the optimization problems internally calculate x(·) and its
sensitivities numerically by appropriate methods as described, e.g., in [34]. The function
I serves as a symbolic representation of a numerical method which solves the IVP.
Instead of the trajectory x∗(t), which describes the solution of the IVP (3.1), function I
will be used within the numerical methods for solving dynamic optimization problems
in section 4.3. In section 4.4 we will comment on the different numerical methods which
are used in this work.

The interested reader is referred to [35, 36] for a comprehensive overview of the
theory of ODEs, including existence, uniqueness and smoothness (existence and con-
tinuity of second derivatives) of its solution depending on properties of the function f
and input variables. See [4, 37–39] in the context of biological and medical applications.

3.2 Semi-mechanistic pharmacokinetic/pharmacodynamic
modeling

In this section, we give an introduction to semi-mechanistic PK/PD modeling. If the
reader is interested in complementing the presented methods, we recommend the two
textbooks [40, 41] giving a comprehensive overview and description of the fundamental
mathematical concepts in the PK and PD field. From these two references and addi-
tionally selected publications, we present a collection of general mathematical concepts
and formulas which are applicable to a wide range of drugs and biological processes
and serve as a basis to understand and develop semi-mechanistic PK/PD models in the
context of leukemia. Afterwards, in section 3.3 we introduce in detail the specific PK
and PD models which we use to describe the dynamics of several cell lineages during
cytotoxic treatment.

PK is the study of absorption, metabolism, distribution (through the whole
body and to the site of drug action) and excretion of a drug after administra-
tion by any route, e.g. orally, as (intravenous/subcutaneous) infusion, as (intra-
venous/subcutaneous/intramuscular) injection or transdermally (i.e. what the body
does to the drug). Whereas PD is defined as the study of the time course of the biologi-
cal effects of a drug and the mechanisms of drug action (i.e. what the drug does to the
body). The definition of and relation between PK and PD are illustrated in figure 3.1.

PK and PD models can be regarded as separate model blocks which are linked by
special functions presented in the next section. Thus, we start introducing basic concepts
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Figure 3.1: Schematic presentation of pharmacokinetic(s) and pharmacodynamic(s).
The figure is adapted from [42].

of PK modeling, afterwards we present the three most common PD functions which
are used to model the interaction between the PK models and arbitrary PD models, out
of which we present one special model type (transduction models) in the subsequent
section. In section 3.3, all presented PD model variations originate from this PD model
type.

3.2.1 Pharmacokinetic models

In compartmental modeling, the PK of a drug can be described in the simplest way by
a one-compartment model defined by the IVP

Ċ(t) = −K C(t) = −
CL
V

C(t), t ∈ T (3.4)

C(t0) = C0 =
D
V

(3.5)

or its analytical solution

C(t) =
D
V

exp(−K t), C0 =
D
V
, t ∈ T . (3.6)
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Here, the whole body is defined as one single compartment in which at time point t0 a
drug D is administered in form of an intravenous infusion or injection. C0 is the concen-
tration of the compartment at time of administration t0 governing by the drug amount
D and the volume of distribution V. In this scenario, absorption can be neglected, such
that the model captures only the disposition (distribution and elimination processes)
of the drug. Ċ(t) is the rate of change of the plasma concentration per unit time, C(t)
is the plasma concentration and K is the first order rate constant associated with the
drug’s elimination process. K can also be described by the clearance CL and the volume
of distribution V, defined as the space or volume into which a drug is distributed. If
the drug is administered by any other than the intravenous route, an absorption step is
contained to the PK which results in adding a second compartment to the mathemat-
ical model. The second compartment, defined as absorption compartment modeling
the absorption processes before the drug enters the central compartments, is connected
to the central compartment via a first-order process with the absorption rate constant
Ka. Now, the rate of drug change is controlled by the absorption and elimination rate.
Bioavailability F, multiplied to the administered dose, is defined as the fraction of the
dose that enters the central compartment. This parameter can only be determined if
two different types of administrations are compared and assuming that the clearance
is constant between the two occasions. Absolute bioavailability is observed when the
comparing type is an intravenous infusion, otherwise we determine relative bioavail-
ability. If the observed concentration-time profile shows more than one exponential
(mono-exponential) decline, a one-compartment model may not be sufficient to de-
scribe the concentration-time profile. Then, multi-compartmental models are necessary
to describe the distributional processes such as perfusion and diffusion into and out of
the peripheral compartments, visible in concentration-time curves as distinct declines
with different slopes. Either the compartments are characterized by means of a chain
with uni- or bi-directional transition rates (catenary model) or the peripheral compart-
ments are all connected to the central compartment with uni- or bidirectional transition
rates (mamillary model). In both cases, drug administration and elimination only occur
to and from the central compartment. Often, the central compartment represents blood
or plasma and other rapidly equilibrating tissues, whereas the peripheral compartments
symbolize more slowly equilibrating tissues as muscles or adipose tissue, which may
be poorly perfused or enclosed by difficult-to-pass membranes.

For simplicity, we assume a two-compartment model with a central and peripheral
compartment C1 and C2 parameterized by the transition rates k12, k21, the elimination
rate k10 and the volume of distribution of the central compartment V1. At time point
t0 a drug amount D is administered which defines together with V1 the initial drug
concentration C1(t0) in the central compartment C1. The peripheral compartment C2 is
set to zero at the start of treatment. The IVP for the two-compartment model is defined
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as

Ċ1(t) = −k12 C1 + k21 C2 − k10 C1 (3.7)

Ċ2(t) = k12 C1 − k21 C2 (3.8)
C1(t0) = D/V1 (3.9)
C2(t0) = 0 (3.10)

with the variables k12, k21, k10 and V1 defined as micro-constants. The two-compartment
model can additionally be parameterized with more physiologically meaningful param-
eters clearance CL, intercompartmental clearance Q and the volumes of distribution V1
and V2 which are nowadays more often used. The IVP (3.7) is then reformulated to

Ċ1(t) = −Q/V1 C1 + Q/V2 C2 − CL/V1 C1

Ċ2(t) = Q/V1 C1 −Q/V2 C2

C1(t0) = D/V1

C2(t0) = 0

with the relation

k12 = Q/V1 (3.11)
k21 = Q/V2 (3.12)
k10 = CL/V1 (3.13)

between the micro-constants and physiological parameters.
Not all drugs are already present in their activated form after entering the body

or the site of action. Drugs might have to be transformed or metabolized before they
become pharmacologically activate. If this is the case, additional compartments can
be introduced and linked via linear or nonlinear functions to the central compartment
representing the metabolized substrates (active metabolite). One possibility to describe
the process of metabolism is to use Michaelis-Menten (M-M) kinetics. This type of
function is presented in the next section as it is also used to describe the PD effects of
drugs.

During the treatment of leukemia, the patients not only receive one drug adminis-
tration but multiple administrations over a few days or also over 1-2 years. Depending
on the half life of the drug and the time intervals of administrations, the idea of multiple
dosing is the achievement of a constant concentration level over a longer time period
(steady state). In other treatment regimens, multiple doses are needed for a treatment
success but no accumulation of drug concentration is intended.

In this work, we use and discuss PK models of Ara-C, lenograstim, 6MP and MTX for
the treatment of acute myeloid and lymphoblastic leukemia administered by different
routes of administration:

• intravenous infusions (Ara-C),
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• subcutaneous injections (lenograstim),

• oral dosing (6MP, MTX).

The route of administration impacts the PK and PD of the drug including tissue distri-
butions, delays between administration and drug effect or first pass effects.

3.2.2 Pharmacodynamic functions

The content of the current and the following section is a summary of [7, 43].
The relationship between the concentration of the drug and the response of the

system is defined by a PD function. A commonly used function is the Emax model

E(t) = E0 ±
Emax C(t)h

EC50h + C(t)h
, (3.14)

formulated by a baseline effect E0 (if appropriate), the drug concentration C(t), the
maximum possible drug effect (Emax) and the drug concentration (potency) EC50
resulting in 50% of the maximal effect Emax. Here, we assume that h is equal to 1
but in the following we will also comment on h unequal to 1. The time-course of the
drug effect E(t) at the site of action is derived by drug-receptor interaction and several
assumptions, including the law of mass action, listed below:

◦ linear relationship between drug effect (response) and receptor occupancy at
a particular time

◦ one receptor has only one binding site forming binary complexes
◦ only occupied receptors have zero response→ E(C(t) = 0) = 0
◦ one receptor produces one type of response
◦ constant receptor number Emax

The sigmoidal Emax model, defined by a Hill exponent h , 1 yields variability in the
steepness of the concentration-effect relationship. Higher values of h describe all-or-
nothing effects whereas h < 1 results in flat concentration-effect curves.

If not the full range of concentration is obtained and only concentrations less than
the EC50 are available (less than 20% of maximum drug effect is observed), equation
(3.14) can be reduced to a linear PD function

E(t) = E0 ± slope C(t) (3.15)

representing a drug effect which is proportional to drug concentration with the param-
eter slope.

When concentration-time profiles between 20% and 80% of maximal drug effect are
available, the drug effect is proportionally related to the logarithmic drug concentration:

E(t) = E0 + slope log(1 + C(t)). (3.16)
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The PD functions (3.15) and (3.16) are not based on biological mechanism but have
been successfully applied and commonly used in PK/PD modeling and are good ap-
proximations when the range of concentrations limits the ability to predict Emax. Ex-
trapolations are not supposed to be done, since no information about Emax is available.

3.2.3 Transduction models

The PD functions from the previous section are one core element of the PD models
but still a variety of different PD models (direct effect, link effect (effect compartment),
indirect effect (turnover), tolerance compartment) describing drug-system interactions
exist [7, 40]. The differences occur from various physiological mechanisms which re-
sult in different PD models, e.g. different sites of action and observable drug effects,
leading to an immediate or delayed relationship between concentration and response.
In this work, we are confronted with transduction models, also called transit PD com-
partment models, in which the PD effect is observable at the last compartment (effect
compartment) whereas the site of action of the drug arises at the first transit compart-
ment. A schematic presentation of the PD model with an arbitrary PK model and PD
function is shown in figure 3.2. Between the first transit compartment and the effect
compartment, a chain of compartments are connected via own transfer functions (here
different first order rate constants ki

tr) accounting for the delay between drug admin-
istration and observed response. The transfer functions represent the time it takes for
the state entering and leaving the compartments. In our case, the transfer functions are
either different or the same first order transition rate constants k1

tr, . . . , k
n
tr. These models

are used when long delays between the drug administration and the observed effect
occur, e.g. in drug-induced myelosuppression [7] and ODEs are preferred to delay
differential equations. We refer the interested reader to [44] for the presentation and
discussion of two additional approaches (stochastic process and gamma distribution)
and their equivalence for modeling delays. Regarding delay differential equations, in
[45] a link between ODEs and gamma distributed discrete delay differential equations
models describing delays was shown.

PK model Transit 1 . . . Transit n Effect Compartment
PD function k1

tr kn−1
tr kn

tr

Figure 3.2: Pharmacodynamic transit compartment model with an arbitrary pharma-
cokinetic(s) model and pharmacodynamic(s) function.

3.3 Models in the context of acute leukemia

In this section, we present several published PK and PD models which we use, adapt,
extend or modify to fit our medical applications and purpose. The PD models represent
the dynamics of different biomarkers, especially leukocytes, neutrophils, leukemic cells
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and endogenous G-CSF, which play an important role in the understanding of disease
progression and adverse events of AML during CT and childhood ALL during MT.
They are all based on models representing the hematopoiesis via transduction models.

There are many different levels on which hematopoiesis [46–48], granulopoiesis
[49–51], myelosuppression [52–55] and dynamics of leukemic cells [48, 56–60] can be
modelled [61, 62]. Further, several hematopoiesis models combining endogenous and
exogenous G-CSF have been published for the prediction of myelosuppression of neu-
trophils [63–67] and leukocytes [68–70]. A comprehensive overview and summary of
the various models is given in the recently published reviews [71, 72]. Depending
on the medical question, the required outcome and the available biomarker informa-
tion in the different projects, we analyze models that capture only the most important
dynamics for (non-)leukemic cells and agglomerate different physiological effects into
simplified expressions. Higher levels of detail in more sophisticated models, covering
many physiological properties and thus providing a deeper understanding of biological
phenomena, come at the price of needing more observed biomarker data and model
parameters. Depending on the available information and desired research question,
more complex models can be reformulated into minimalistic models that concentrate
on the fundamental physiological mechanisms without a qualitative loss of the out-
come [45, 73]. The developed PK/PD models in section 6.1 and 6.2 are based on the PD
models from [48, 52, 53] and we will introduce these three models in the next sections.
Afterwards, we describe in detail the PK models of the appropriate drugs which will
be linked to the PD models.

3.3.1 Myelosuppression model

In 2002, Friberg et al. published a PK/PD model describing myelosuppression induced
by different chemotherapeutic agents (docetaxel, paclitaxel, and etoposide) [52]. The
well studied model showed a good trade-off between capturing the important aspects
of the dynamics, containing a moderate number of identifiable model parameters, and
being applicable for different cytostatic drugs. It has become the gold-standard model in
pharmacometrics [72] with different PK and population-based modifications to topote-
can [74], to daunorubicin [75], to a combination therapy of Ara-C (low-dose), etoposide
and daunorubicin in the induction treatment for AML [76], to a physiologically based
PK model for the induction therapy of AML patients with daunorubicin and Ara-C
(low-dose) [77], to a combination therapy of carboplatin, etoposide and thiotepa [78], to
paclitaxel [55], to an individual-based approach [79], and to drug specific optimizations
[57].

As previously presented, WBCs derive from differentiated, matured HSCs which
passed several intermediate stages during maturation (c.f. section 2.1). The chain of
maturation is reflected in the mathematical model as a clustering of cells in several
consecutive compartments with identical properties. Each compartment is described
as a differential state. The 3 + ntr differential states of the mathematical model are the
amount or concentration of an arbitrary drug x1, the amounts xpr of proliferating cells,
xtr,1, . . . , xtr,ntr of differentiating cells in ntr transient compartments, and xma of mature,
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circulating WBCs per liter.

Proliferating cells
xpr

Transit cells
xtr,1 . . . xtr,ntr

Mature WBC
xma

G(ktr, x1) G(ktr, x1) kma

F(x1, ktr, γ,B, slope)

PK
x1

PD function

Figure 3.3: Schematic presentation of chemotherapy induced myelosuppression of
white blood cells. The figure is adapted from [52].

The differential equations that correspond to figure 3.3 are

ẋ1(t) = fPK(·) (3.17a)
ẋpr(t) = −G(ktr, x1) xpr(t) + F(x1, ktr, γ,B, slope) xpr(t) (3.17b)

ẋtr,1(t) = G(ktr, x1) xpr(t) − G(ktr, x1) xtr,1(t) (3.17c)
ẋtr,2(t) = G(ktr, x1) (xtr,1(t) − xtr,2(t)) (3.17d)

. . .

ẋtr,ntr(t) = G(ktr, x1) (xtr,ntr−1(t) − xtr,ntr(t)) (3.17e)
ẋma(t) = G(ktr, x1) xtr,ntr(t) − kmaxma(t) (3.17f)

with a PK model fPK and the functions F and G which will be chosen differently in
section 6.1.2 and are defined as

G = ktr (3.18)
E = slope log(1 + x1(t)) (3.19)
F = (1 − E) ktr(B/xma)γ (3.20)

in the standard model.
For fixed transition rate ktr, the number of compartments can be used to model

the delay between the proliferating and circulating cells (due to the MMT [80]). As
there is no common consensus on the precise number of differentiation stages [47, 81]
we compare ntr = 6, as proposed by Nock [78], ntr = 3, as proposed by Friberg et al.
[52] and ntr = 1, proposed in this work in which we comprise the whole maturation
process into one transition compartment. The fusion of the differentiation steps into
one compartment is justified by the MMT from proliferating stem cells to circulating
mature WBCs, which we compare with published values and present in the section
7.1.1. Cells mature with a maturation rate constant G = ktr summarizing the fraction of
cells performing self-renewal and differentiation into one parameter. This is a simplified
assumption made by Friberg et al. providing homeostasis [45] and identifiability of the
estimated parameters. Mature cells xma are dying by the process of apoptosis with a
death rate constant kma.
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From Monte Carlo simulations it could be concluded that kma is not very sensitive
to the WBC dynamics during a CC, hence we fix kma to a constant value as previously
proposed [82].

The function F(x1, ktr, γ,B, slope) is a general description of the proliferation rate of
xpr and incorporates the PD effect E on the proliferating cells (c.f. section 3.2.2), as
discussed in Minami et al.[83], Derendorf et al.[84] and applied, e.g. in Hing et al.[85]
and the effect of G-CSF on the system. The basic structure of the function F derived in
[52], is (1−E) ktr(B/xma)γ in which the mature cells influence the proliferation rate ktr of
xpr with a feedback term (B/xma)γ that leads to higher rates if the number of circulating
cells xma is below the baseline WBC count B, and vice versa. It is motivated from studies
showing that the proliferation rate can be affected by endogenous growth factors and
cytokines [12] and that circulating neutrophil counts and the growth factor G-CSF
levels are inversely related [86]. Including this term allows a temporary overshoot of
WBC compared with the baseline value B. The proliferation exponent γ indicates the
strength of this feedback. The estimation parameters are B, slope, ktr, and γ plus a
varying number of additional parameters depending on the initial condition approach,
see section 6.1.3.

Apart from different PK models which are linked to the myelosuppression model,
modifications of the structural model are also proposed [54, 55]. Both models have a
more detailed description of the stem cell compartment. The model from Henrich et al.
covers a consecutive decrease of the leukocyte’s nadir in the treatment cycles achieved
by a prior additional compartment mimicking the slow replication of pluripotent stem
cells in the BM. Mangas-Sanjuan et al. describe a cell-cycle occurring in the BM
compartment covering quiescent cells which do not enter the proliferation process and
are not sensitive to the PD effect of the treatment.

3.3.2 Myelosuppression model with endogenous G-CSF

At the beginning of section 3.3 we reviewed several myelosuppression models con-
sidering endogenous G-CSF. Hemapoetic growth factors such as G-CSF regulate the
blood cell production including survival, proliferation, differentiation of stem cells and
stimulation of mature cell functions by activating signal transduction pathways [12].
Neutrophils, making up to 70% of the WBCs, and their precursor cells are predomi-
nantly regulated by G-CSF in an inverse manner [87–89]. In this work, we focus on
one specific model published in [53] which serves as a starting point for the model
development in section 6.1.4.

The PK/PD model by Quartino et al. [53] describes the proliferation and differentia-
tion of stem cells to mature neutrophils, and its regulation by endogenous G-CSF. The
model can be seen as an extended version of model (3.17) in which a further state xg(t) is
introduced. The feedback term F(·), which indirectly models the effect of G-CSF on the
proliferation, is replaced by the ratio of the current G-CSF concentration and its steady
state level with the proliferation strength exponent γ. Additionally, the transition rate
ktr is multiplied by (xg/Bg)β as G-CSF affects not only the proliferating cells but also
influences the whole maturation process. Thus, two effects of G-CSF, especially the
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control of the proliferation and the MMT with two separate parameters γ and β, are
introduced. The dynamic of endogenous G-CSF itself is described as a turnover model
[53] and we will use the estimated parameters of β,Bg, kANC, ke,g as constants listed in
table 6.4, as no G-CSF concentration measurements are available to reestimate the pa-
rameters. The model is visualized in figure 3.4 and the model equations can be found
in section 6.1.4.

Proliferating cells
xpr

Transit cells
xtr,1 . . . xtr,4

Mature WBC
xma

endogenous GCSF
xg

ke,g + kANC B

ke,g + kANC xma

ktr

ktr

kma

(
xg

Bg

)β
(

xg

Bg

)β

( x g/
B g
) γ

kprol = ktr

PK model

E

slope

Figure 3.4: Schematic model from [53] describing the hematopoietic process of white
blood cells (WBCs) and endogenous granulocyte-colony stimulating factor (G-CSF)
affected by an arbitrary drug.

3.3.3 Leukemic cells

For the mathematical description of leukemic cells, we focus on the compartment models
presented by Stiehl et al. in [48]. Therein, they present two models describing the pro-
liferation and dynamics of leukemic cells distinguishing between cytokine-dependent
and autonomous (cytokine-independent) leukemic cell proliferation. For simplicity and
the analysis of the effect of G-CSF administration on the growth of leukemic cells, we
concentrate on the cytokine-dependent proliferation model. The model is shown in fig-
ure 6.4 consisting of two compartments xl1 and xl2 which represent the leukemic blasts
in the BM and circulating blood, respectively. The leukemic blasts in the BM grow and
proliferate with the first order rate p1. During cell division, a leukemic blast divides
into two daughter cells, so that the outflux from mitosis is 2p1xl1 . The outflux is then
separated into the process of self-renewal by the rate 2p1a1kl with the fraction constant a1
determining the fraction of daughter cells staying at the current differentiation stage and
cell movement by the rate 2p1(1−a1) to the consecutive compartment. kl = 1

1+c2xl2
models

the cytokine-dependent proliferation of leukemic blasts. Leukemic cells are dying by
the first order rate d2. The term has been derived from a quasi-steady-state assumption
of the G-CSF dynamics [90]. The system of ODEs can be found in section 6.1.4.
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Leukemic blasts (bone marrow)
xl1

Leukemic blasts (blood)
xl2

2p1a1kl
kl = 1

1+c2xl2

2(1 − a1kl)p1

d2

p1

Figure 3.5: Schematic representation of the two-compartment model for leukemic
blasts with cytokine-dependent proliferation from [48].

3.3.4 Pharmacokinetic models of cytarabine

The PK of Ara-C, one of the most important component in CT [19, 91] having the
highest antileukemic efficacy of all currently used therapies in the treatment of AML
[42], have been investigated [42, 92, 93] from low to high dosage and one, respectively
two-compartment models have been developed describing concentration-time curves
[76, 92–94].

Pharmacology of Ara-C is particularly difficult, as its exact mechanisms of action
both on normal and leukemic cells are not fully understood. The main effect of Ara-C
on normal and leukemic proliferating cells is the active uptake into the target cells
and the subsequent inclusion of intracellular phosphorylated active metabolite arabi-
nofuranosylcytosine triphosphate (Ara-CTP) into deoxyribonucleic acid (DNA) and
ribonucleic acid (RNA) during the S phase of the cell cycle resulting in cell death [42].
A second effect mentioned in [95, 96] and references therein is the inhibition of DNA
polymerase, surprisingly not mentioned by recently published works [42, 97].

In vitro experiments showed that high-dose Ara-C infusions result in plasma Ara-C
concentrations that saturate the accumulation of Ara-CTP by circulating leukemic
cells [98] due to the rate-limiting metabolic step in the activation of Ara-C into the
monophosphorylated derivative Ara-C monophosphate by the enzyme deoxycytidine
kinase (dCK) [95]. Saturation is already achieved with Ara-C concentrations higher
than 10 µM (10 µmol/L = 2.43µg/mL) [95], whereas high dosage exceeds this value 5-
to 10 fold [98]. Thus, the clinical success of intermediate-/high-dose Ara-C is not well
explained and understood [10, 42, 98]. Additional effects are the subject of ongoing
research [42, 97].

One speculation could be that accumulated arabinofuranosyl-uracil (AraU) might
influence the WBC recovery, as it has been reported that the deaminated form may
delay cell progression through an increased activity of the anabolic key enzyme of
Ara-C, dCK, enhancing the cytotoxicity of Ara-C [93, 99]. However, Burk et al. stated
that they did not observe a dose- or concentration dependent cumulation of AraU after
repetitive applications although AraU has a half-life of about 3 to 4 hours and Ara-C
is administered twice daily by continuous 3 h infusions on day 1 to 3, respectively
1, 2, 8 and 9 during the high-dose cytarabine and mitoxantrone (HAM), respectively
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Figure 3.6: Schematic presentation of the pharmacokinetic(s) and pharmacody-
namic(s) of cytarabine. The figure is adapted from [42].

sequential high-dose cytarabine and mitoxantrone (S-HAM), protocol.
Comparing the compartment models derived by low (subcutaneous injection twice

daily [2 × 20 mg] on days 1–10 [94], 100 mg/m2 twice a day i.v. push over 5 min on
days 1-10 [76]) and intermediate/high-dose [92, 93] Ara-C administrations, it can be
seen that throughout one dosing group the published PK parameters are more or less
comparable. Comparing the derived values between the different dosing groups, a
roughly 50% decreased clearance is observable.

Simulations for high-dose Ara-C infusions lasting 3 hours are performed using
the compartment models derived by low dose Ara-C [76, 94]. Figure 3.7 compares
the simulations with concentration-time profiles of high-dose Ara-C administrations
collected from eight patients [92]. It is shown that the low-dose derived compartment
models are not able to reproduce the higher concentrations.

We do not use the PK models from Krogh et al. and Solans et al., because they are
fitted to low-dose treatment schedules. Although Ara-C is reported to have a linear
PK [92], simulations with these PK models do not coincide well with the concentration
measurements from high-dose treatment schedules published in [92] as shown in figure
3.7. Thus, we decide not to use the PK models from Krogh et al. and Solans et al., instead
using our own model derived in section 6.1.1.

3.3.5 Pharmacokinetic model of lenograstim

During the last years, several PK models for exogenous G-CSF (filgrastim [100–103],
pegfilgrastim [103–105] and lenograstim [106–109]) have been developed. Often G-CSF
is administered subcutaneously. A review about PK modeling of the subcutaneous
absorption of therapeutic proteins is given by Kagan [110].

In this work, we consider patients who are treated with subcutaneous lenogras-
tim. As no G-CSF measurements are available and lenograstim is a physicochemically,
immunologically and biologically identical glycosylated recombinant G-CSF to human
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Table 3.1: Comparison of a published one- and two-compartment pharmacokinetic(s)
model.

Solans2018 [94] Krogh2012 [76]
Compartments 1 2
CL [L/h] 208.73 272.0
Vp [L] - 75.4
Q [L/h] - 13.7
Vc [L] 209.25 62.8
k10 [1/h] 1.0 4.3
k12 [1/h] - 0.2
k21 [1/h] - 0.2

0 5 10 15 20

Time [h]

0

5

10

15

20

25

30

35

A
ra
C
co
n
ce
n
tr
a
ti
on

[µ
g/
m
L

]

2-compartment model from Krogh2012
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Figure 3.7: Plasma cytarabine measurements from figure 2 of [92] during high-dose
cytarabine therapy with 1 g/m2 or 3 g/m2 over 3 hours. Simulations with published
one- and two-compartment models using typical parameter values (see table 3.1) after
high-dose cytarabine therapy with 3 g/m2 over 3 hours from 0 h to 3 h and 12 h to 15 h
and an assumed body surface area of 1.78 m2.

G-CSF, we describe the subcutaneous administration of lenograstim entering the central
G-CSF compartment by transit compartments with varying number in section 6.1.4.
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3.3.6 Pharmacokinetic models of 6-mercaptopurine

In this work, we use and compare two published PK models for 6MP [111–113]. In the
following, we present both models.

Jayachandran2014

A simplified version of the compartment model in [112] is used to describe the PK of 6MP
and 6-thioguanine nucleotide (6TGN). A diagram of the model is depicted in figure 3.8.
In particular, 6MP is absorbed after oral intake at the rate ka gastrointestinal (GI) tract
into plasma. From plasma, it is partly excreted at the rate ke and partly uptaken by red
blood cells (RBCs). Here, it undergoes intracellular metabolism. 6MP is metabolized
by the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) and other
enzymes at the rates kpt and kpm, respectively. Finally, the metabolite 6TGN is assumed
to be eliminated from RBC at the rate kte. Since the 6MP concentrations in RBCs are
negligible [111], we assume that it is metabolized as soon as it enters RBC. Moreover,
only the metabolic pathway leading to 6TGN by HGPRT is considered since 6TGN
are the primary mediators of the cytotoxic effect of 6MP through their incorporation
as a false nucleotides into DNA [114]. The second metabolic pathway is controlled
by thiopurine methyltransferase (TPMT) competing with HGPRT and leading to the
formation of various methyl-mercaptopurines (MeMP). This pathway is ignored, as
we only consider the concentration of 6TGN within the PD function. Even so, the
conversion rate constant of 6MP to MeMP is considered, thus, no modification of the
published PK model in [112] is made.

intracellular

GI tract
x1

Plasma 6MP
x2

6TGN
x3

kaD6MP(t)

kHGPRT
pt kpm

ke

Figure 3.8: Schematic 6-mercaptopurine (6MP) and 6-thioguanine nucleotide (6TGN)
model from [112] without the compartment of various methyl-mercaptopurines.
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Table 3.2: State variables of the pharmacokinetic(s) model of 6-mercaptopurine (6MP)
and its metabolite 6-thioguanine nucleotide (6TGN) from [112].

Variables Units Description
x1 pmol Amount of 6MP in gastrointestinal tract
x2 pmol Amount of 6MP in plasma
x3 pmol/8 × 108 RBCs Concentration of 6TGN in red blood cells

The mathematical model is

ẋ1 = −kax1 +
α F D6MP(t)

Tdur
,

ẋ2 = kax1 − kex2 −
kpt(1 − erel)x2

Kt + x2
−

kpmerelx2

Km + x2
,

ẋ3 =
vptkpt(1 − erel)x2

Kt + x2
− ktex3

(3.21)

with initial values
x1(0) = x2(0) = x3(0) = 0. (3.22)

The 6MP control function D6MP(t) is defined as

D6MP(t) =

Di, t ∈ [ti, ti + Tdur] if an amount of 6-mercaptopurine dose Di was taken at time ti,

otherwise 0.

Notice that vpt is used only for unit consistency. Since our clinical data does not contain
concentration measurements of 6MP and 6TGN, most values of parameters appearing
in the 6MP and 6TGN model (3.21) are taken from [112] and are used for all patients.
Simulations show that Tdur does not have a strong effect on the concentration of 6TGN
in RBCs. Moreover, due to large IIV in bioavailability of 6MP reported in [29, 115, 116],
F and Tdur are assigned to 0.45 and 1/24, respectively. These values will be used for MTX
as well for the same reason. All state variables and parameters of (3.21) are summarized
in tables 3.2 and 3.3.

Hawwa2008

The compartment model from [111] has a comparable structure with the compartments
representing the absorption via the GI tract, 6MP and 6TGN. But the metabolic trans-
formations are described by first order instead of Michaelis-Menten kinetics and the
elimination is described by an BSA-dependent clearance term. Similar to (3.21), the
metabolite 6-methylmercaptopurine nucleotide is neglected without any model modi-
fication. Model constants are shown in table 3.4.
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Table 3.3: Model constants of the pharmacokinetic(s) model of 6-mercaptopurine
(6MP) and its metabolite 6-thioguanine nucleotide (6TGN) from [112].

Constant Value Unit Description
ka 4.8 1/day 6MP absorption rate from

gastrointestinal tract
ke 5.0 1/day 6MP elimination rate from plasma
kpt 29.8 pmol 6MP/day 6MP to 6TGN conversion rate
kpm 655.8 pmol 6MP/day 6MP to methyl-mercaptopurines

conversion rate
Kt 4.04 × 105 pmol Michaelis-Menten constant for 6TGN
kte 0.0714 1/day 6TGN elimination rate from

red blood cells
erel 0.5 thiopurine methyltransferase enzyme

activity constant

vpt 1
pmol 6TGN

pmol 6MP/8 × 108 RBCs
6TGN elimination rate from RBCs

F 0.45 Bioavailability factor
Tdur 1/24 day Time duration for drug absorption
D6MP(t) mg 6MP control function
α 1012/152177 pmol/mg Unit consistency constant

GI tract
xgut

6mp

6MP
x6mp

6TGN
x6tgn

kaF Dose

k20 CL6TGN

FM3 kme

Figure 3.9: Visualization of pharmacokinetic(s) model from [111] without 6-
methylmercaptopurine nucleotide compartment.

˙xgut
6mp(t) = −ka xgut

6mp(t) + F u(ti), (3.23a)

˙x6mp(t) = ka xgut
6mp(t) − k20 x6mp(t), (3.23b)

˙x6tgn(t) = FM3 kme x6mp(t) − CL6tgn(BSA) x6tgn(t) (3.23c)

with the BSA dependent clearance

CL6tgn = 0.00914 (BSA)1.16 (3.24)

and the patient-specific 6MP amount u(ti) administered at time point ti.
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Table 3.4: Model constants of the pharmacokinetic(s) model of 6-mercaptopurine
(6MP) and its metabolite 6-thioguanine nucleotide (6TGN) from [111].

Constant Value Unit Description
F 0.22 1/day Bioavailability factor
ka 31.2 1/day Absorption rate constant of 6MP
k20 12.72 1/day Elimination rate constant of 6MP
FM3 0.019 Fractional metabolic transformation into 6TGN
kme 9.9216 1/day Metabolic transformation rate constant of 6MP into

either 6TGN or 6-methylmercaptopurine nucleotides
CL6tgn(BSA) 0.219 (BSA)1.16 L/day body surface area dependent

clearance of metabolite 6TGN

3.3.7 Pharmacokinetic model of methotrexate

Several PK models for MTX [117–123] have been published, but not all have been
developed for ALL with low-dosage treatments and validated on pediatric populations.
Here, we use the mathematical model from Panetta et al. [117, 118], where its detailed
description and assumption can be found, describing the PK of MTX and its metabolites
methotrexate polyglutamate (MTXPG)i (i = 1, ..., 7 is the number of glutamates attached
to each MTX molecule). A schematic illustration of the model is displayed in figure
3.10. The extracellular PK of MTX after oral intake to the GI tract is described by a two-
compartment model in [117, 118]. In this work, it is simplified and comprehensively
incorporated by a one-compartment model with first order absorption, see the upper
part of figure 3.10 or mathematically the first two equations in (3.25). The mathematical
model is the system of ODEs

ẋ4 = −kax4 +
β F DMTX(t)

TdurBSA
,

ẋ5 = kax4 − kex5,

ẋ6 =
VmIx5/V

KmI + x5/V
+

kpx5

V
− Ke f f x6 −

Vm− f pgsx6

Km− f pgs + x6
+ Kgghx7,

ẋ7 =
Vm− f pgsx6

Km− f pgs + x6
− Kgghx7

(3.25)

with initial values
x4(0) = x5(0) = x6(0) = x7(0) = 0. (3.26)

The definition of the drug control function DMTX(t) is similar to that of D6MP(t) and
following [124], we calculate the BSA as BSA= W0.425H0.72571.84 with patients’ weight
W and height H. The last term in the first equation of (3.25) is divided by BSA for unit
consistency.

As in the 6MP case, measurements of MTX and MTXPG1−7 are not available. We set
most model parameters in (3.25) to values from the literature [118], (table 2). The values
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GI tract
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Figure 3.10: Schematic methotrexate (MTX) and methotrexate polyglutamate
(MTXPG) model.

of ka, ke are obtained via parameter estimation based on measurements of MTX concen-
tration reported in [125]. All state variables and parameters of (3.25) are summarized
in tables 3.6 and 3.5.
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Table 3.5: Model constants of the pharmacokinetic(s) model of methotrexate (MTX)
and methotrexate polyglutamate (MTXPG) from [118].

Constant Value Unit Description
ka 26.64 1/day MTX absorption rate from gastrointestinal tract
ke 5.76 1/day MTX elimination rate from plasma
kp 9.6 1/day Passive influx rate
V 11.606 L/m2 Systematic volume
VmI 2.3895 × 104 pmol/109cells/day Michaelis-Menten (M-M) parameter for

active (RFC) influx
KmI 2.898 µM M-M parameter for active (RFC) influx
Ke f f 179.76 1/day first order efflux parameter
Vm− f pgs 7.0119 × 103 pmol/109cells/day M-M parameter for FPGS activity
Km− f pgs 35.262 pmol/109cells M-M parameter for FPGS activity
Kggh 4.992 1/day first order GGH activity
F 0.45 Bioavailability factor
Tdur 1/24 day Time duration for drug absorption
BSA m2 Body surface area
DMTX(t) mg MTX control function
β 106/454440 µmol/mg Unit consistency constant

RFC: reduced folate carrier, GGH: gamma-glutamyl hydrolase, FPGS: folylpolyglutamate
synthetase

Table 3.6: State variables of the pharmacokinetic(s) model of methotrexate (MTX) and
methotrexate polyglutamate (MTXPG) from [118].

Variables Units Description
x4 µmol/m2 Amount of MTX in gastrointestinal tract
x5 µmol/m2 Amount of MTX in plasma
x6 pmol/109 cells Intracellular concentration of MTXPG1
x7 pmol/109 cells Intracellular concentration of MTXPG2−7

34



4 Background, concepts and data:

Optimization of dynamic processes

In this chapter, we give a brief introduction to the theory and concepts of nonlinear
optimization. We start to formulate general infinite-dimensional constrained nonlinear
optimization problems (NLPs) and review definitions and optimality conditions to char-
acterize their optimal solutions. Next, we present specific problem formulations which
we are confronted with throughout the medical applications. In the following section,
we describe different discretization techniques to reformulate the infinite-dimensional
problems to finite problems. Finally, we describe different algorithms to compute nu-
merical solutions of the various discretized NLPs. The following sections summarize
the content of [126, 127].

4.1 Theory

Let us consider NLPs

min
x∈Rnx

f (x) (4.1a)

s.t. hi(x) = 0, i ∈ E, |E| = neq (4.1b)
gi(x) ≥ 0, i ∈ I, |I| = nieq (4.1c)

with an objective function f (x) : Rnx → R, equality constraints h(x) : Rnx → Rneq and
inequality constraints g(x) : Rnx → Rnieq and E and I two finite sets of indices. In
our applications, the equality constraints hi(x) contain the dynamic process (3.1). The
functions f , hi and gi are assumed to be at least twice differentiable.

Definition 4.1.1. (Feasible set)
The set

X = {x ∈ Rnx : g(x) ≥ 0, h(x) = 0} (4.2)

is defined as the feasible set of the NLP (4.1) and x ∈ X is a feasible point.

Definition 4.1.2. (Local and global solution)
A vector x∗ is a local solution of the NLP (4.1), if x∗ is a feasible point and there exists an open
neighborhood U of x∗ (open set containing x∗) such that f (x) ≥ f (x∗) for x ∈ U ∩ X. A vector
x∗ is a global solution of (4.1), if x∗ is feasible and f (x) ≥ f (x∗) holds for x ∈ X.
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4.1. THEORY

Definition 4.1.3. (Active set)
For a feasible point x, we define the active set

A(x) = E ∪ { i ∈ I | gi(x) = 0 }. (4.3)

Definition 4.1.4. (Lagrangian function)
The function L : Rnx ×Rnλ ×Rnµ → R,

L(x, λ, µ) = f (x) − λ g(x) − µ h(x)

is called Lagrange-function of the NLP (4.1). The vectorsλ andµ are called Lagrange multipliers.

Definition 4.1.5. (Linear independence constraint qualification)
Given a feasible point x̄ with its active setA(x̄), we say that the linear independence constraint
qualification (LICQ) holds, if the set of active constraint gradients, i.e. the gradients ∇h(x̄) and
the gradients ∇gi(x̄) of all active inequality constraints i ∈ I ∩A(x̄), is linearly independent.

Remark 4.1.6. There exist several other constraint qualifications, e.g. Abadie-, Guignard-,
Mangasarian-Fromovitz-, and positive linear constraint qualifications to allow the formulation
of optimality conditions. Their definitions and relationship to each other are stated and discussed
e.g. in [126, 127].

4.1.1 Optimality conditions

Theorem 4.1.7. (First order necessary optimality conditions / Karush–Kuhn–Tucker conditions)
Let x∗ ∈ Rnx be a local solution of the NLP (4.1) and the LICQ holds at x∗. Then there exist
unique Lagrange multiplier λ∗ ∈ Rneq and µ∗ ∈ Rnieq such that the following conditions are
satisfied at (x∗, λ∗, µ∗)

1. ∇xL(x∗, λ∗, µ∗) = 0 (stationary condition)

2. h(x∗) = 0 , g(x∗) ≥ 0 (primal feasibility)

3. λ∗ ≥ 0 (dual feasibility)

4. λ∗T g(x∗) = 0 (complementary condition)

Then, (x∗, λ∗, µ∗) is called a Karush-Kuhn-Tucker (KKT) point.

Proof: See [126].

Definition 4.1.8. (Nullspace matrix of active constraint gradients)
Let A(x∗) ∈ Rm×nx with m = |A(x∗)| be the matrix whose rows are the active constraint gradients
of x∗, i.e. AT(x∗) = (∇h1, . . . ,∇hneq ,∇g1, . . . ,∇g|I∩A(x∗)|). Then, we define Z ∈ Rnx×(nx−m) as a
matrix whose columns are a basis for the null space of A(x∗):

Z ∈ Rnx×(nx−m), Z has full column rank, A(x∗)Z = 0. (4.4)
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4.1. THEORY

Definition 4.1.9. (Strict complementary)
Given the KKT point (x∗, λ∗, µ∗), strict complementary is defined if exactly one of λ∗i and gi(x∗)
is zero for each index i ∈ I, respectively, λ∗i > 0 for all i ∈ I ∩A(x∗).

Theorem 4.1.10. (Second-order necessary optimality conditions)
Let (x∗, λ∗, µ∗) be a KKT point of the NLP (4.1) that satisfies the LICQ condition. Further, strict
complementary is satisfied and let Z be a matrix whose columns form a basis of the null space of
the strictly active constraints A(x∗). Then, the Hessian of the Lagrangian is positive semidefinite
on the nullspace of the active constraints, i.e.,

ZT
∇

2
xxL(x∗, λ∗, µ∗)Z < 0. (4.5)

Proof: See [126].

Theorem 4.1.11. (Second-order sufficient optimality conditions)
Let (x∗, λ∗, µ∗) be a KKT point of (4.1) and the Hessian of the Lagrangian is positive definite on
the null space of active constraints, i.e.,

ZT
∇

2
xxL(x∗, λ∗, µ∗)Z � 0. (4.6)

Then x∗ is a strict local solution of the NLP (4.1).

Proof: See [126].

Remark 4.1.12. A QR factorization of AT can be applied to determine the null space Z of the
matrix of active constraint gradients [126].

4.1.2 Nonlinear dynamic optimization problems

In this work, we consider nonlinear dynamic optimization problems

min
u∈Rnu

ψ(x(t),u(t)) (4.7a)

s.t. ẋ(t) = f (x(t),u(t), θ), t ∈ [t0, tf] (4.7b)
x(t0;θ) = x0(θ) (4.7c)

which are constrained by a system of ODEs (3.1a) describing the dynamical system of
interest. Additionally, equality and inequality constraints comprising

• additional boundary conditions r(x(t0), x(tf)) = 0nr ,

• combined control and state constraints c(x(t),u(t)) ≤ 0nc ∀t ∈ [t0, tf],

• and state constraints s(x(t)) ≤ 0ns ∀t ∈ [t0, tf].

can be added, depending on the practical relevance.
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4.2. PROBLEM FORMULATIONS

4.2 Problem formulations

Within this work, different dynamic optimization problems are formulated which fit all
in the general nonlinear dynamic problem formulation (4.7). Depending on whether
the objective function in (4.7) is of control, experimental design or estimation nature, we
define the corresponding optimization problems as optimal control-, optimal experimental
design- or parameter estimation problem. In the following sections, we present the special
problem classes.

4.2.1 Optimal control

Mathematical models can be used to simulate scenarios before they are realized in
real experiments. Despite these simulations with heuristically chosen control settings,
the models can be used in the formulation of optimal control problems aiming for
an optimal control strategy of the dynamic process to minimize (maximize) a desired
performance index (quantitative measure of the performance), e.g. the amount of drug
administration, the number of cancer cells or a desired steady state the system should
target.

Here, we consider an optimal control problem of the following form

min
x(·),u(·)

∫ t f

t0

L(x(τ),u(τ)) dτ + M(x(t f ))

s.t. ẋ(t) = f (x(t),u(t), θ) ∀t ∈ [t0, tf]
x(t0) = x0

x(t) ∈ X ∀t ∈ [t0, tf]
u(t) ∈ U ∀t ∈ [t0, tf]

(4.8)

constrained by the IVP (3.1) and some bounded sets X and U for the states and
controls and a Bolza term, consisting of a Mayer term M(x(t f )) and Lagrange term∫ t f

t0
L(x(τ),u(τ)) dτ, as objective function.

4.2.2 Parameter estimation

In (3.1a) we described dynamic processes by systems of ODEs with time-constant
process-specific parameters θ. In section 3.2 we presented a variety of mathemati-
cal models from biology and pharmacometrics in which patient-specific parameters
like rate constants for drug absorption, distribution and elimination, cell proliferation,
differentiation and apoptosis and steady-state values for different biomarkers and clin-
ical effects were introduced. In real applications, those parameters θ might not exactly
be known and initial guesses by the modeler from previous experiments, literature
or other prior knowledge on the considered system are made. If experimental data
is available, another possibility is the estimation of the unknown model parameters
through model fitting (also called parameter identification or model calibration) as the
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4.2. PROBLEM FORMULATIONS

unknown parameters are one factor for a good match between model and real world
data. Measurement and state/model uncertainty are further factors influencing the
difference between model and experimental data [128]. Despite parameter and mea-
surement uncertainty, we assume that our models reflect the corresponding processes
correctly, thus we do not further discuss the consideration and handling of other er-
rors. Suppose that longitudinal measurements yi j ∈ R at time points j = 1, . . . ,ni from
i = 1, . . . ,N experiments are available with corresponding independently normally dis-
tributed additive measurement errors εi j ∼ N(0, σ2

i j) with the given variance σ2
i j and an

appropriate measurement function

hi j(x(ti j;θ);θ) ∈ R, i = 1, . . . ,N, j = 1, . . .ni. (4.9)

As we assume that the model has no structural errors and no process noise is present,
the following relation holds

yi j = h(x(ti j;θtrue);θtrue) + εi j (4.10)

with true but inaccessible parameter estimates θtrue. The difference between mea-
surement and model response is called residual ri j = yi j − h(·). Then, following the
assumptions above, we define the least-squares parameter estimation problem

min
x(t),θ

1
2

N∑
i

ni∑
j

ωi
j

(
yi j − hi j(x(ti j;θ);θ)

σi j

)2

(4.11a)

s.t. ẋ = f (x(t),u(t), θ) (4.11b)

xi(t0) = xi
0(θ) (4.11c)

θ ∈ [θlo, θup] (4.11d)

constrained by the ODE system (4.11b), initial conditions and lower and upper bounds
of the parameters θ. The least-squares criterion (4.11a) is solidly grounded in statistics,
e.g. for independent and identically normally distributed measurement errors εi j, the
maximum likelihood estimate is obtained by minimizing the sum of squares (4.11)
(compare for [126, 128]). The sampling decision variables (so called weights) ωi

j ∈ R

indicate whether measurement j of experiment i is performed or not. For the parameter
estimation problems, we fix all weights ωi

j to 1, thus at all time points ti j measurements
are considered with the same weight. In OED problems, the sampling decision variables
are part of the optimization variables determining the optimal measurement time points
(see section 4.2.3).

Parameter uncertainty, respectively the quality of the resulting parameter estimates
θ̂ from solving (4.11), can be approximated via the covariance matrix

C(θ̂) =
(
I 0

) (JT
1 J1 JT

2
J2 0

)−1 (
JT
1 J1 0
0 0

) (
JT
1 J1 JT

2
J2 0

)−T (
I
0

)
(4.12)
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with the Jacobian J1 = dF1
dθ and F1 := Σ−1(y − h) the compact, vectorized formulation

of the double sum of (4.11a) with Σ = diag(σ1,1, . . . , σN,ni). J2 is the Jacobian of the
constraints resulting from discretization (parameterization) of model dynamics (4.11b)
and possible additional constraints. A detailed description of the structure of the
Jacobians is presented in [129]. The square root of the i-th diagonal element of C (e.g.
√

cii) serves as an estimate of the standard error of the i-th parameter θi and
√

cii/|θ| is
the corresponding relative standard error. Derivation of the covariance matrix of the
parameters θ and its approximation through model linearization can be found in [128,
130].

Nonlinear mixed-effects modeling

This section gives an introduction to NLME modeling and the related parameter es-
timation problems. A detailed description is presented in the books [6, 131, 132] and
publications [133–138]. In this work, the N experiments from the previous section do
not result from the same dynamic process but correspond to experiments from N indi-
viduals for each we have ni measurements. For this scenario, the setting of nonlinear
least-squares problems from the previous section with the assumption that every indi-
vidual has the same set of parameters θ may not be appropriate. The assumption that
the mathematical model (3.1a) is the same for each individual still holds but we now
assume that every individual has its own set of parameters θi

θi = b(θ, ηi), i = 1, . . . ,N. (4.13)

The function b(·) describes the relation (e.g. additive: θi = θ + ηi or exponential:
θi = θ exp(ηi)) between the typical/population parameters (fixed effects) θ and the
IIV (between subject variability) represented by realizations (individual parameters)
ηi ∈ R

nη of the random effects η ∼ N(0,Ω) with mean zero and covariance matrix
Ω ∈ Rnη×nη . Function b(·) can be augmented with covariate ai (e.g. weight, sex, disease
stage, absorption type, renal disease, . . . ) explaining parts of the IIV [6]. In our analysis
no covariates were identified during model development such that we omit ai in the
rest of the thesis. The IVP (3.1) is now reformulated to

ẋ(t) = f (t, x(t), b(θ, ηi),ui(t)) ∀ i = 1, . . . ,N, (4.14a)
xi(t0,i;θi) = x0,i(b(θ, ηi)) ∀ i = 1, . . . ,N (4.14b)

where the structural model f is the same for every individual but with differing param-
eters θi, initial values x0,i(θi) and control function ui describing the drug administration
schedule.

Now, the ni measurements ηi j of subject i can be described with an appropriate (see
following paragraph) error model

yi j = Fi j( h( xi(ti j; b(θtrue, ηi(Ωtrue)), qi j) ), ε1, ε2, . . . , εS) (4.15)

with the measurement errors εs ∼ N(0, σ2
s

true), s = 1, . . . ,S, S ∈ N (often S = 1 or S = 2)
and the model response h(·) where qi j is the discretized control function ui(t) of subject
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4.2. PROBLEM FORMULATIONS

i at time point j. Here, we assume that model f has no structural errors, meaning that
the model contains all aspects of the dynamic process, and that the model response h(·)
with true, but unaccessible, parameters θtrue and Ωtrue is equivalent to the measurement
yi j despite some white measurement noise εs with true variance σ2

s true.
Despite the additive error model (4.10), other error models, representing the error

of measurement devices, exist for which equality holds with true but unaccessible
parameters:

• Proportional error (constant of variation error)

yi j = h(x(ti j), θtrue)(1 + ε1,i j)

• Combined additive and proportional error

yi j = h(x(ti j), θtrue)(1 + ε1,i j) + ε2,i j

• Exponential error

yi j = h(x(ti j), θtrue)exp(ε1,i j)

Further residual error models, also considering logarithmic transformed data, are pre-
sented in [139]. For simplicity, we assume an error model with one measurement error
ε1 and that one entry of the state vector x(t) is measured directly, which is often the
case in pharmacometric applications. All the results for scalar observations can be
generalized to multiple-output measurement situations.

Parameter estimation for NLME models (4.14) results in determining the parameters
(θ̂, Ω̂, σ̂) that maximize the marginal likelihood L(θ,Ω, σ2

|y) which is defined as the
product of the individual likelihoods

L(θ,Ω, σ2
|y) =

N∏
i=1

Li(θ,Ω, σ2
|yi) =

N∏
i=1

∫
P(yi, ηi|θ,Ω, σ

2)dηi (4.16a)

=

N∏
i=1

∫
P(yi|ηi, θ,Ω, σ

2) P(ηi|θ,Ω, σ
2)dηi (4.16b)

=

N∏
i=1

∫
P(yi|ηi, θ, σ

2) P(ηi|Ω)dηi (4.16c)

with P(yi|ηi, θ, σ2) the conditional density of yi given the random effect ηi, fixed effect
θ and variance σ2 and P(ηi|Ω) the density of ηi [135]. The last equation in (4.16) holds
since P(yi|ηi, θ, σ2) does not involve any parameters in Ω and P(ηi|Ω) does not involve
any parameters θ and σ2.

Analytical solutions of the marginal likelihood (4.16) are difficult to compute exactly
due to the nonlinear occurance of some, or all, fixed and random effects in the function
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f . Several approximation techniques can be applied to (4.16) divided into methods us-
ing the exact likelihood (expectation maximization (EM), Monte-Carlo-EM or stochastic
approximation expectation maximization (SAEM) algorithm) or likelihood approxima-
tions [6, 131, 140]. In the following, we focus on likelihood approximations derived by
the first order (FO) approximation and the first order conditional estimation (FOCE)
approximation with and without η-ε interaction. If no interaction is assumed (assum-
ing that η and ε are independent, COV(η, ε) = 0), applying Laplace approximation or
model linearization (Taylor approximation) results in the same approximated objective
functions of the FO and FOCE method (see [135]). If the interaction between η and
ε is assumed, both approximation methods result in different objective functions. We
present the objective functions with their resulting parameter estimation problems for
the FO and FOCE method derived by model linearizations and for the FOCE method
with interaction via the Laplace approximation. We refer the interested reader to [135]
for a comprehensive derivation in case of an additive or proportional error model and to
[138] for a generalization. Further information can be found in [133, 134, 136, 137]. The
approximation techniques are not applied to (4.16) but to the logarithmized likelihood
log(L(θ,Ω, σ2

|yi)).

First order approximation

A FO Taylor series approximation of (4.15) at η̃ = 0 and ε̃ = 0 is performed, yielding

F̄i j(xi(ti j; b(θ, 0)), 0) ≈

Fi j(xi(ti j; b(θ, 0)), 0) +
∂Fi j(·)
∂η

∣∣∣∣∣∣
η̃=0,ε̃=0

(η − 0) +
∂Fi j(·)
∂ε

∣∣∣∣∣∣
η̃=0,ε̃=0

(ε − 0)

with the mean

E(F̄i j(xi(ti j; b(θ, 0)), 0)) = Fi j(xi(ti j; b(θ, 0)), 0) = h( xi(ti j; g(θ, 0), qi j) ) (4.17)

and the covariance matrix

Vi j(F̄i j(xi(ti j; b(θ, 0)), 0)) =
∂Fi j(·)
∂η

Ω
∂FT

ij(·)

∂η
+ diag

∂Fi j(·)
∂ε

σ2
∂FT

ij(·)

∂ε

 (4.18)

resulting in

yi j = N( E
(

F̄i j(xi(ti j; b(θ, 0)), 0)
)
, Vi j

(
F̄i j(xi(ti j; b(θ, 0)), 0)

)
). (4.19)

Two times the negative log likelihood for (4.19) with respect to the parameters
λ = (θ, vec(Ω), σ2) is

L =

N∑
i=1

−2 log

 ni∏
j=1

1√
2πVi j(λ)

exp( −
1
2

V−1
i j (λ)(yi j − E(F̄i j(θ)))2 )

 (4.20)
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resulting in the parameter estimation problem

min
x(t),λ

L︷                                               ︸︸                                               ︷
N∑

i=1

Li︷                                          ︸︸                                          ︷
log(|Vi(λ)|) +

∥∥∥Vi(λ)−1/2(yi − hi(θ))
∥∥∥2

2

s.t. ẋi(t) = f (t, x(t, b(θ, 0),ui(t))) ∀t ∈ [t0, tf], ∀ i = 1, . . . ,N
λ ∈ [λl, λu]

ui(t) ∈ U ∀t ∈ [t0, tf], ∀ i = 1, . . . ,N

(4.21)

First order conditional estimation approximation

In the FOCE approximation the Taylor series of (4.15) is performed around (the mode
of the posterior distribution) η̃ = ηt, respectively η̃ = 0 and ε̃ = 0 resulting in

F̄i j(xi(ti j; b(θ, ηt), 0) = Fi j(xi(ti j; b(θ, ηt), 0) +
∂Fi j(·)
∂η

∣∣∣∣∣∣
η̃=ηt,ε̃=0

(η − ηt) +
∂Fi j(·)
∂ε

∣∣∣∣∣∣
η̃=0,ε̃=0

(ε − 0)

(4.22)

with the mean

E(F̄i j(xi(ti j; b(θ, ηt), 0)) = Fi j(xi(ti j; g(θ, ηt), 0) −
∂Fi j(·)
∂η

∣∣∣∣∣∣
η̃=ηt,ε̃=0

ηt (4.23)

and the covariance matrix (assuming COV(η, ε) = 0)

Vi j(F̄i j(xi(ti j; b(θ, ηt), 0)) =
∂Fi j(·)
∂η

∣∣∣∣∣∣
η̃=ηt,ε̃=0

Ω
∂FT

ij(·)

∂η

∣∣∣∣∣∣∣
η̃=ηt,ε̃=0

+ diag

 ∂Fi j(·)
∂ε

∣∣∣∣∣∣
η̃=0,ε̃=0

σ2
∂FT

ij(·)

∂ε

∣∣∣∣∣∣∣
η̃=0,ε̃=0


(4.24)

The approximated log likelihood function is then

LFOCE
outer =

N∑
i=1

−2 log

 ni∏
j=1

1√
2πVi j(λ)

exp( −
1
2

V−1
i j (λ)(yi j − E(F̄i j(θ)))2 )

 . (4.25)

Remark 4.2.1. For the FOCE method two different points are used around which the Taylor

series approximation of (4.15) is performed, either
∂Fi j(·)
∂ε

∣∣∣∣
η̃=0,ε̃=0

or
∂Fi j(·)
∂ε

∣∣∣∣
η̃=ηt,ε̃=0

. They are

presented and briefly discussed in [137].
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The likelihood for the maximum a posteriori (MAP) estimate of η for patient i is

LFOCE
MAP = log(|VMAP

i |) +
∥∥∥VMAP

i (λ)−1/2(yi − Fi(θ, η))
∥∥∥2

2 + ηtΩ
−1ηT

t (4.26)

with VMAP
ij = diag(

∂Fi j(·)
∂ε

∣∣∣∣
η̃=0,ε̃=0

σ2 ∂FT
ij(·)

∂ε

∣∣∣∣∣
η̃=0,ε̃=0

).

Parameter estimation for FOCE approximated error models results in two parameter
estimation problems (estimating λ = (θ, vec(Ω), σ2) with fixed η and vice versa) which
are iteratively solved until some convergence criterion is fulfilled.

min
x(t),λ

LFOCE
outer (x(t),u(t), (η∗1, · · · , η

∗

N), λ)

s.t. η∗i = argminηi
= LFOCE

MAP (x(t),u(t), θ∗i , vec(Ω∗), σ∗2) ∀i ∈ [1, . . . ,N]

s.t. ẋi(t) = f (t, xi(t),ui(t), θi) ∀t ∈ [t0, tf]
xi(t0,i;θi) = x0,i(θi) ∀ i = 1, . . . ,N

θi = g(θ, ηi) ∀ i = 1, . . . ,N

ui(t) ∈ U ∀t ∈ [t0, tf]

(4.27)

The optimization problem can be interpreted as a bilevel optimization problem
which is not further discussed in this work.

First order conditional estimation approximation with η-ε interaction

The two previous approximations assume COV(η, ε) = 0. Often, not an additive but
a proportional, combined or power function error model is more suitable and used
together with the FOCE method for parameter estimation [136]. In this scenario, the
consideration of the interaction COV(η, ε) , 0 between η and ε provides more accurate
parameter estimates. For the estimation of the unknown parameters in our derived
models, we also apply proportional error models and the first order conditional estima-
tion with interaction (FOCEi) algorithm. Thus, we want to conclude this section with
the FOCEi approximation also resulting in a bilevel optimization problem such as (4.27)
but with an altered objective function. For the derivation of the objective function for
the FOCEi approximation, the Laplace method is applied to (4.16c) resulting in

L
FOCEi
outer = log(2π) + log(

∂F(·)
∂ε

∣∣∣∣∣
η̃=ηt,ε̃=0

σ2 ∂FT(·)
∂ε

∣∣∣∣∣∣
η̃=ηt,ε̃=0

+
∂F(·)
∂η

∣∣∣∣∣
η̃=ηt,ε̃=0

Ω
∂FT(·)
∂η

∣∣∣∣∣∣
η̃=ηt,ε̃=0

(4.28)

+ 2σ2 ∂F(·)
∂η

∣∣∣∣∣
η̃=ηt,ε̃=0

Ω
∂FT(·)
∂η

∣∣∣∣∣∣
η̃=ηt,ε̃=0

) + (yi − f (η̂i, θ))( f (η̂i, θ)σ2 f (η̂i, θ)T)(yi − f (η̂i, θ))T + η̂iΩη̂
T
i

A derivative of the likelihood function can be found in [135].
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Comment on parameter uncertainty for nonlinear mixed-effects models

Different approaches exist approximating the parameter uncertainties via the covariance
matrix of the fixed effects θ, the variance of the measurement error σ2 and the entries
of the covariance matrix Ω. Similar to nonlinear least squares problems, the parameter
uncertainties can be quantified via the inverse of the Fisher information matrix (FIM)
of the maximum likelihood estimates. We comment on the computation of the FIM
for NLME models in the following section. Other possibilities, which are implemented
in the NLME modeling software NONMEM (ICON Plc., Dublin, Irland) [141], are the
computation of the inverse of the Hessian H of the log-likelihood functions from the
previous section, the sum of the cross products of the gradient vectors S of the individual
likelihoods or a combination of both matrices H−1 S H−1 (see NONMEM Users Guide,
Part IV and [142, 143]).

4.2.3 Optimal experimental design

We consider the OED problem as an optimal control problem with a particular structure,
as suggested in [144]. The degrees of freedom in experimental design are the control
functions u and the sampling decisions (or weights) w, which have been assumed
to be fixed in section 4.2.2. The control can be used to excite the system dynamics,
and hence also the sensitivities. The sampling chooses time points or intervals with
much information on the sensitivity of the model response with respect to the model
parameters. We assume u to be fixed on the level of the experimental design problem
for reasons to be discussed later, therefore we concentrate from now on on w as the only
degree of freedom.

For a self-contained presentation, we repeat the parameter estimation problem (4.11)
and complement a version with continuous measurements. Following a maximum-
likelihood approach, we estimate initial values and model parameters by solving the
state and parameter estimation problem in the form of a nonlinear weighted least
squares problem

min
x(t),θ

1
2

nω∑
ω=1

N∑
i=1

wω
i

(ηωi − hω(x(ti)))2

σ2
ω,i

s.t. (4.11b)-(4.11d) (4.29)

for given and fixed controls u : T 7→ U and weights wω
i ∈ W. As the measurement

times ti may be a priori unknown, we will in our analysis in section 6.3 also look at the
continuous analogue to (4.29). This is given by

min
x(t),θ

1
2

nω∑
ω=1

∫ tf

t0

wω(t)
(ηω(t) − hω(x(t)))2

σ2
ω(t)

dt s.t. (4.11b)-(4.11d)

By choosing the function space for wω : T 7→ W such that we allow Borel measures
ξω(T ) on T = [t0, tf] as solutions, we can define designs ξω via dξω = wω(t)dt and work
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with

min
x(t),θ

1
2

nω∑
ω=1

∫ tf

t0

(ηω(t) − hω(x(t)))2

σ2
ω(t)

dξω s.t. (4.11b)-(4.11d) (4.30)

The objective of experimental design is maximizing information gain. With the
sensitivities (3.2), we can define the FIM as

Fd(tf) =

nω∑
ω=1

N∑
i=1

wω
i (hωx (x(ti))G(ti))T(hωx (x(ti))G(ti)) ∈ Rnp×np (4.31)

for the discrete setting of (4.29) and as F(ξ) via the Borel measure

F(ξ) =

nω∑
ω=1

∫ tf

t0

(hωx (x(t))G(t))T(hωx (x(t))G(t)) dξω ∈ Rnp×np (4.32)

for the continuous measurement setting of (4.30).
Minimizing the uncertainty of state and parameter estimates, or maximizing infor-

mation gain, can now be quantified via a scalar function φ(·) of the FIM or its inverse,
the covariance matrix. A list of different objective functions (criteria), such as trace,
determinant or maximum eigenvalue of the respective matrix can be found, e.g., in
[145]. To limit the amount of measurements, either an economic penalty in the objective
as suggested in [144] can be used, or a normalization via constraints, e.g.,

1 =

N∑
i=1

wω
i (4.33)

for all ω and the discrete setting of (4.29) and as

1 =

∫ tf

t0

dξω (4.34)

for all ω and the continuous measurement setting of (4.30). Based on our assumptions
and considerations, we define the OED problem with fixed u as

min
x(t),G(t),Fd(tf),w∈WnωN

φ(Fd(tf)) s.t. (3.1,3.2,4.31,4.33) (4.35)

for the case of a discrete measurement grid and as

min
x(t),G(t),F(ξ),ξ

φ(F(ξ)) s.t. (3.1,3.2,4.32,4.34) (4.36)

for the continuous measurement flow. Problems (4.35) and (4.36) can be solved numeri-
cally with the same methods as general optimal control problems, and with specialized
ones that take the structure of the derivatives and sensitivities into account, [129]. Our
assumption of a fixed u and the specific way w enters the right hand side allow an
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Algorithm 1 OED

Input: Fixedθ and u, initial values x(t0),G(t0), possible measurement times {t1, . . . , tN} ⊂

[t0, tf]

1: Solve IVP (3.1,3.2) to obtain x(·) and G(·)

2: Solve min
Fd(t),w∈WnωN

φ(Fd(tf)) s.t. (4.31,4.33)

even more efficient approach, in which the expensive calculation of the states x and G
is decoupled from the optimization over x and Fd, see Algorithm 1. This decoupling is
not the main motivation for our approach to optimize sequentially over u and w, but it
should be exploited and might be an argument for time-critical processes.

Algorithm 1 operates with a (fine) time grid of possible time points that can be
chosen to take a measurement. If one wants to leave the exact timings ti ∈ R as degrees
of freedom, one can apply a time transformation (switching time optimization), as
suggested and discussed in the context of mixed-integer optimal control, e.g., in [146–
148] with stage lengths Ti := ti+1 − ti. The variables Ti become additional optimization
variables, integration of x and G is performed on the interval [0, 1] and the dynamics
(3.1 and 3.2) are scaled according to

ẋ(t) = Ti f (x(t),u(t), θ), x(t0) = x0(θ), (4.37)

Ġ(t) = Ti ( fx(x̂(t),u(t), θ)G(t) + fp(x̂(t),u(t), θ)), G(t0) =
dx0(p)

dθ
. (4.38)

Also continuity conditions at times ti need to be included, and a constraint like
∑N

i=0 Ti =
tf for fixed tf. The advantage of using (4.37-4.38) is the independence of an a priori grid.
However, this comes at the price of not being able to decouple the calculation of x and
G from w and F any more, of higher computational costs due to the extra variables, an
increased nonconvexity of the dynamics, and possibly not practically realizable (e.g.,
irrational) measurement times ti ∈ R. Therefore we prefer to use Algorithm 1 with a
fine grid of possible measurement times.

Comment on Fisher information matrix matrix and optimal experimental design
problems for nonlinear mixed-effects models

Computing population OEDs using the FIM was firstly elaborated by Mentré and Retout
[149] for a specific NLME setting and the FO method and sequentially generalized in
the last years [150–153]. An overview of existing software tools for optimal design
problems is given in [154]. Bayesian and robust population optimal designs can be
found in [155] and [156, 157]. Bazzoli et al. [152] showed that the uncertainty received
from the inverse of the FIM for the FO method is in the same range as the standard
errors computed by NONMEM’s FOCE method or Monolix’s SAEM algorithm. For the
numerical testing of parameter estimation methods based on the FO approximation of
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the likelihood function for NLME models, we also applied the Fisher’s scoring method
which can be understood as the counterpart of the Gauss-Newton (GN) method for
(non-)linear regressions but for NLME models. Meaning, that we approximate the
Hessian of parameter estimation problem (4.21) via the FIM

FIMFO =

N∑
i=1

E(
∂2

∂(θ,Ω, σ)2 LFO
i )

=

N∑
i=1

FIMi =

N∑
i=1

R
nλ×(ni+n2

i )︷         ︸︸         ︷(
M1i 0
M2i M3i

)T

R
(ni+n2

i )×(ni+n2
i )︷         ︸︸         ︷(

V−1
i 0
0 M−1

4i

) R
(ni+n2

i )×nλ︷       ︸︸       ︷(
M1i 0
M2i M3i

)

=

N∑
i=1

(
MT

1iV
−1
i M1i + MT

2iM
−1
4i M2i MT

2iM
−1
4i M3i

MT
3iM

−1
4i M2i MT

3iM
−1
4i M3i

)
︸                                                ︷︷                                                ︸

Rnλ×nλ

with

M1i =
∂ f (ti, xi(ti), g(θ, 0), qi)

∂θ
M2i =

∂vec(Vi)
∂θ

M3i =
(
∂vec(Vi)
∂vec(Ω) ,

∂vec(Vi)
∂σ2

)
M4i = 2 Vi ⊗ Vi

nλ = nθ + nvec(Ω) + nvec(Σ)

and Vi the approximated covariance matrix (4.18) from the FO approximation. For a
detailed description and more information we refer to [158].

4.3 Methods for solving dynamic optimization problems

In comparison to the general NLP (4.1), the dynamic optimization problem (4.7) is an
infinite-dimensional optimization problem as the differential state x(t) lives in function
space. Thus, there exist a variety of approaches for solving the problems, comprehend-
ing dynamic programming based on Bellman’s principle of optimality [159], indirect
methods related to Pontryagin’s maximum principle [160] or direct methods [161].
We focus on direct methods with a short comment on the indirect method based on
Pontryagin’s maximum principle which is useful for theoretical analysis of dynamical
optimization problems. Applying direct methods results in finite-dimensional opti-
mization problems of the form (4.1) for which different iterative procedures, tailored to
the particular type and structure of the problem, can be used to numerically calculate
optimal solutions.

Indirect method (Pontryagin’s maximum principle)

Indirect methods solving optimal control problems are based on Pontryagin’s maximum
principle. The idea of this concept (so called first optimize, then discretize) is to apply FO
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necessary conditions for optimality to the dynamic optimization formulation (4.7) in
function space. We start with defining the Hamiltonian, which is used in the subsequent
theorem.

Definition 4.3.1. (Hamiltonian)
For x ∈ Rnx ,u ∈ Rnu , λ0 ∈ R and λ ∈ Rnx the Hamiltonian of the dynamic optimization
problem (4.7) is given by

H(x(t),u(t), λ0, λ(t), θ) := −λ0ψ(x(t),u(t), θ) + λT f (x(t),u(t), θ)

with adjoint variables λ0 and λ.

Now, we can formulate the maximum principle in which the optimization problem
is reformulated into a boundary value problem which then can be solved by numerical
methods.

Theorem 4.3.2. (Maximum principle)
We assume problem (4.7) has a feasible optimal solution (x∗,u∗). Then there exist λ∗0 ∈ R and
adjoint variables λ∗(·), with (λ∗0, λ

∗(·)) , 0 such that

ẋ∗(t) =
∂H
∂λ

(x∗(t),u∗(t), λ∗0, λ
∗(t), θ) = f (x∗(t),u∗(t), θ), (4.39a)

λ̇∗T(t) = −
∂H
∂x

(x∗(t),u∗(t), λ∗0, λ
∗(t), θ), (4.39b)

x∗(t0;θ) = xt0(θ), (4.39c)
λ(tf) = 0, (4.39d)
u∗(t) ∈ arg min

u∈U
H(x∗(t),u, λ∗0, λ

∗(t), θ), (4.39e)

for t ∈ T almost everywhere.

For a proof of the maximum principle and a thorough introduction see [160, 162]
and the references in [163]. For the application of Pontryagin’s maximum principle
to delay differential equations we refer the interested reader to the recent publications
[164, 165].

Direct methods

In direct methods (first discretize, then optimize), the control function and states are
first discretized such that the infinite-dimensional dynamic NLP (4.7) becomes a finite-
dimensional NLP. Often, the discretized dynamic optimization problems have special
structures which can be exploited for efficient solving.

For a fixed end time t f = T, we partition the time interval [t0, t f ] into M smaller
intervals at time points

t0 < t1 < · · · < tM = T (4.40)
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and parameterize the control function u(t). For simplicity, we use M piecewise constant
controls:

u(t) := uk ∀t ∈ [tk, tk+1), k = 0, . . . ,M − 1. (4.41)

Introducing a further ODE ẋL(t) = L(x(t),u(t)) for the first term of the objective
function of (4.8), the state trajectories x(t) and xL(t) can be determined by integrating the
ODE system forward in time using function I (3.3) and time grid (4.40) resulting in

xk = I(xk−1,uk−1, θ) ∀k ∈ 1, . . . ,M

xL
k = I(xL

k−1,uk−1, θ) ∀k ∈ 1, . . . ,M.

Now, we can apply the so called single shooting method to problem (4.8) resulting in
a NLP of the form (4.1):

min
u0,...,uM−1

M∑
k=1

xL
k + M(xM)

s.t. x0 = xini
0

xL
0 = 0

xk ∈ [slo, sup] ∀ k ∈ 1, . . . ,M

uk ∈ [ulo,uup] ∀ k ∈ 1, . . . ,M

(4.42)

where the function and derivative evaluations are based on an integration of the ODE
system on the time horizon [t0, t f ] and xini

0 is a given initial condition. The recursive inte-
gration of the differential equations eliminates the state variables from the optimization
variables such that they become dependent variables of the objective and constraint
functions.

Another approach are collocation methods (simultaneous approach) in which the con-
trol function and the differential states are simultaneously discretized by low order
polynominals [166]. The resulting NLP is large scale due to the introduction of addi-
tional optimization variables and constraints, but highly structured.

The extension of the single shooting method, eliminating some drawbacks and
being a hybrid method between the previous two approaches, is defined as the multiple
shooting method. Similar to collocation methods, additional variables and constraints
are introduced but the differential states are not simultaneously discretized, instead,
the differential equations are solved via embedded ODE solvers represented by the
function I as in the single shooting scenario. The introduction of M new variables
sk, k = 1, . . . ,M allows a parallel instead of sequential integration of the ODEs on the
subintervals. If prior knowledge about the states at discretization time points 1, . . . ,M
is available, this information can be used to initialize the optimization problem. The
inclusion of continuity (matching) constraints

sk − I(sk−1,uk−1, θ) = 0, k = 1, . . . ,M
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guarantees a continuous state trajectory. Additionally, the solution of the differential
equations on smaller intervals tackles nonlinearity better, leading to a faster convergence
to the NLP solution due to a lifting effect [167].

The resulting NLP reads as follows

min
s1,...,sM,

u0,...,uM−1

M∑
k=1

sL
k + M(sM)

s.t. sk = I(sk−1,uk−1, θ) ∀k ∈ 1, . . . ,M

sL
k = I(sL

k−1,uk−1, θ) ∀k ∈ 1, . . . ,M

s0 = xini
0

sL
0 = 0

sk ∈ [xlo, xup] ∀ k ∈ 1, . . . ,M

uk ∈ [ulo,uup] ∀ k ∈ 1, . . . ,M

(4.43)

with a special structure, which should be exploited while problem solving.

4.3.1 Methods for solving nonlinear optimization problems

After applying one of the presented direct methods, the discretized dynamic optimiza-
tion problem can be solved with iterative procedures for NLPs, which are often tailored
to the particular type and structure of the problem. We start with introducing methods
for unconstrained optimization problems

min
x

f (x) (4.44a)

with x ∈ Rnx and f : Rnx → R being a smooth function, as constrained NLPs can be
solved with the same procedures if a reformulation to an unconstrained problem is
performed.

Beginning with an initial guess x0 of the optimal variable values, the algorithms
calculate a sequence {xk+1}

K
k=0 of improved estimates and terminate at the K-th iteration

when a stopping criterion is fulfilled, either identifying a solution or further progress
seems to be impossible. The algorithms differ in their strategy making progress to
the optimal solution of the optimization problem, i.e. moving from one iterate to the
next. A lot of algorithms are based on one of the two fundamental strategies line search
and trust region. In line search strategies, the consecutive iterate xk+1 is derived by the
previous iterate xk plus a search direction dk. The algorithm searches for a new iterate
with a lower function value along the search direction dk:

xk+1 = xk + αk dk. (4.45)

The distance αk can be determined by approximately solving the minimization problem
minα>0 f (xk + αdk). The appropriate choice of step length αk defined via different condi-
tions (e.g. (strong) Wolfe conditions, Armijo condition, Goldstein condition, sufficient
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decrease and backtracking) ensures that for any initial guess x0 the numerical method
globally converges to a stationary (KKT-) point [126]. The search direction is defined as

dk = −B−1
k ∇ f (xk) (4.46)

with the selected Hessian matrix

Bk =



I (Steepest descent method)
∇

2 f (xk) (Newton’s method)
Mk (Quasi-Newton’s method)
∂ fk
∂x

T ∂ fk
∂x (Gauss-Newton’s method)

FIMFO (Fisher’s method with FO approximation)

(4.47)

of function f (x) where I is the identity matrix with suitable dimension and Mk is an
approximation of the exact Hessian ∇2 f (xk) which is updated each iteration by means
of a low-rank formula. The choice of the matrix Bk is related to the choice of the solution
method, i.e. steepest descent, Newton’s, quasi-Newton’s or GN’s method [126]. The
fifth option will be used during the parameter estimation of NLME models applying
the FO method.

In comparison to line search strategies, the trust region method chooses the direction
and length of each step simultaneously. A region of the current iterate xk is defined
within we trust an approximated function mk (usually defined to be a quadratic function
of the form mk(xk + p) = fk + pT

∇ fk + 1
2 pTBkp) to be an adequate representation of f (xk).

Then, we choose a step with a descent direction within this region by solving

minp mk(xk + p) s.t.
∥∥∥ p

∥∥∥
2 ≤ ∆ (4.48)

with the trust-region radius ∆ > 0. The computation of the trust region ∆k in each
iterate and the description of methods for solving (4.48) (such as dogleg method, two-
dimensional subspace minimization or Steihaug’s approach) can be found in [126].

Comment on Gauss-Newton method

The GN method plays a major role in l2-norm optimization problems including pa-
rameter estimation problems. For these problems, the Hessian of the objective func-
tion f (xk) is approximated via neglecting the second derivative terms. In theory, the
Hessian is a good approximation close to the solution as it is assumed that the omitted
residual-dependent terms are considerable small [168]. The Hessian can also be derived
performing a linearization of F1 (not the objective function) such that (4.11) becomes
a linear least squares problem with respect to the parameters. The GN method has
several advantages related to parameter estimation problems:

• Hessian consists of gradient such that no computational expensive second deriva-
tives have to be computed
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• GN may has similar convergence speed as Newton’s method: if assumption of
small residuals is true, this leads to a quadratically (local) convergent rate while
only calculating first derivatives. If assumption is violated only linear rate of
convergence [166])

• GN direction is a descent direction (if Jacobian has full rank and gradient is
nonzero)

• GN only converges to local minima, not affected by residuals [129]

• Last Hessian of GN algorithm serves as approximation for parameter uncertainties

For a profound analysis see [168].

Fisher’s method

As already mentioned in the section about the FIM for NLME models, Fisher’s method
for NLME models is the counterpart of the GN method for (non-)linear least squares
problems. Here, the FIM of the FO approximation method is used as an approximated
Hessian Bk for the optimization procedures [169].

In the following, we give a brief summary of the most widespread numerical con-
cepts for solving constrained NLPs. A more thorough introduction, description and
analysis of nonlinear (dynamic) optimization and numerical algorithms can be found
in [126, 127, 161, 166, 170, 171].

Interior-point method

The idea of interior-point (barrier) methods is the reformulation of the original con-
strained problem to a sequence of unconstrained problems by a penalty function B(x;µ)
that consists of the original objective function of the constrained NLP (4.1) plus one ad-
ditional term for each constraint. The resulting log-barrier/quadratic penalty function
reads as

B(x;µ) = f (x) − µ
∑
i∈I

log(gi(x)) +
1

2µ

∑
i∈E

h2
i (x) (4.49)

combining the introduction of logarithmic barrier functions for the inequality con-
straints and quadratic penalty terms for equality constraints. Within the sequence of
solving the unconstrained problems, the coefficient µ is iteratively decreased bringing
the minimizer x(µ) of the penalty function (4.49) closer to the minimizer of the original
constrained problem (4.1) [126].
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Sequential quadratic programming

The second well-established method is sequential quadratic programming (SQP). In
contrast to interior-point methods, the constraints are not integrated into the objec-
tive function. Instead, the NLP (4.1) is approximated in each iteration by a quadratic
subproblem

min
d

1
2

dTBkd + ∇ f (xk)Td (4.50a)

s.t. gi(xk) + ∇gi(xk)Td = 0, i ∈ E (4.50b)

hi(xk) + ∇hi(xk)Td ≥ 0, i ∈ I (4.50c)

with linearized constraints and Bk being the exact Hessian or low rank approximations
of the Lagrange function. The solution d∗ of (4.50) at iteration k serves as search direction
along which the new iterate xk+1 is obtained decreasing a certain merit function [126].
Active set methods are most widely used and most effective for solving problem (4.50) in
which the set of inequalities is limited to the active ones in each iteration resulting in an
equality-constrained quadratic programming (QP). The KKT system of the constrained
QP can then be solved e.g. with a range space or null space method. The main
challenge in each iteration is the determination of the working set including all equality
constraints and a subset, but not necessarily all, of the active constraints. We refer the
interested reader to [126] for a more comprehensive discussion of SQP methods and
to two recent research papers dealing with non-smoothness [172] and combining SR1
and Broyden, Fletcher, Goldfarb, and Shanno (BFGS) updates in the context of optimal
control problems in which the Hessian has a special block-diagonal structure [173].

4.4 Software

In this section, we give an overview of the different software packages which were used
to numerically integrate the system of ODEs and solve the optimization problem.

The parameter estimation problems (4.11) were solved with a multiple shooting
based GN algorithm coded in the PAREMERA software and an adaptive, error–
controlled backward differentiation formula (BDF) method for integration coded in
the software DAESOL, both included in the experimental design package VPLAN [130]
developed at the Heidelberg University. The same integrator was used for all individual
predictions (simulations) in this paper.

The population parameter estimation problems (4.21) and (4.27) with either likeli-
hood (4.25) or likelihood (4.28) were solved with the gold-standard NLME modeling
tool NONMEM using a variable metric (BFGS) optimization method [169]. This variable
metric method, also called secant method, is a special form of the line search method
with αk = 1 and specific quasi-Newton updates for Bk. The ODE systems are solved by
CVODES, a solver for stiff and non-stiff ODEs using variable-order and variable-step
multistep methods (Adams-Moulton and BDF), implemented in Sundials [174]. The
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same ODE solvers are interfaced to CasADi which we also used for simulations and op-
timizations. Additionally, direct collocation with Lagrange polynomials with Legendre
collocation points of order 3 was used for ODE discretization. The discretized optimal
control (4.8) and experimental design problems (4.36) were formulated in CasADi and
solved with the interior point method IPOPT [175] and the SQP method blocksqp [173].

Comment on software for population parameter estimation

There exist several other software packages for parameter estimation of NLME mod-
els. Several algorithms are provided in R. The software Monolix and Diffmem
(see https://bitbucket.org/tomhaber/diffmem/src/master/, [176]) are based on
SAEM algorithms and the recently published package Pumas (based on Julia, see
https://pumas.ai/) contains several deterministic and stochastic algorithms.
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5 Background, concepts and data:

Clinical data

The developed mathematical PK/PD models, which we present in the next chapter, are
fitted and (cross-)validated to three clinical datasets provided by the university hospitals
in Magdeburg, Ulm and Erlangen.

5.1 Clinical data from the university hospital in Magdeburg

AML patients who had received induction therapy (commonly defined as anthracycline-
and Ara-C-based 7+3 regimen [19]) resulting in CR and who did not receive G-CSF during
the post-remission consolidation therapy were eligible for data analysis. We focused
on patients who did not receive growth factor support, as such effects were not yet
accounted for in our mathematical models. Almost daily WBC counts from 42 CCs with
Ara-C administrations of 23 AML patients (median 62 years, 14 male, mostly de novo
AML (19/23), mostly AML FAB-M2 (9/19), mostly intermediate cytogenetic risk (12/20))
from 2008 to 2015 were analyzed from clinical charts provided by the Department of
Hematology and Oncology, Magdeburg University Hospital, Magdeburg, Germany.
The data were retrospectively collected and pseudonymized from records of the clinical
routine. Interventions were not performed for this work. All clinical procedures were
performed in accordance with the general ethical principles outlined in the Declaration
of Helsinki. For this reason no patients’ agreements were required. The CCs were
partitioned in one, two, and three consecutive CCs from nine, nine, and five patients,
respectively. Four different schedules D135, d135, D123, or D12, in which the numbers
correspond to treatment days 1, 2, 3, and 5, respectively, d to intermediate-dose Ara-C
(i.e. 1 g/m2 per BSA twice a day over three hours) and D to high-dose Ara-C (i.e. 3 g/m2

twice a day), were administered 24, 14, two, and two times. Patient PD123 (62 years,
male) received two cycles of D123. Patient PD12 (64 years, female) received two cycles of
D12. The 21 other patients received 1-3 D135 cycles (median 57 years, 8 male, 4 female)
or d135 cycles (median 68 years, 5 male, 4 female). The cycle- and patientwise datasets
can be found in form of NONMEM-specific datasets under https://journals.plos.
org/plosone/article?id=10.1371/journal.pone.0204540#sec021.
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5.2. CLINICAL DATA FROM THE UNIVERSITY HOSPITAL IN ULM

5.2 Clinical data from the university hospital in Ulm

Data from the AMLSG 12-09 randomized controlled clinical phase II trial [21] were
provided by the Department of Internal Medicine III, University Hospital Ulm, Ulm,
Germany and used for model development, fitting, validation, and calibration. The
dataset included WBC count measurements (6-16 per cycle) from 86 Ara-C CCs, par-
titioned into one, two, and three consecutive CCs from 20, 6, and 18 AML patients
(median 65 years, 19 [43%] male), respectively, from 2010 and 2012, which were treated
with D123 (31 out of 86 CCs) or d123 (55 out of 86 CCs) schedules of Ara-C. Addition-
ally, in most cycles before Ara-C treatment (76 measurements), the relative number of
blasts in the BM and the category of BM cellularity (punctio sicca, hypo-, normo- or
hypercellular) were determined by cytology via BM aspiration. 13 BM measurements
were below the limit of quantification and consequently excluded from the analysis.
The treatment schedule included 263 µg of lenograstim administrations starting nine
days after the start of Ara-C treatment until hematological recovery, i.e., neutrophil
count > 0.5 G/L, was achieved. Nine of the patients (1 only in the first cycle and 7 CCs
each for d123 and D123) did not receive lenograstim.

For the analysis in Secondary pharmacodynamic effect of Ara-C of section 7.1.2, the
dataset, (denoted by MD in figure 7.18) presented in the previous section, is combined
with nine patients from the current dataset who did not receive lenograstim.

For the analysis in the consecutive section called Modeling exogenous G-CSF, the
patientwise cycles of the current dataset are treated independently (although several
cycles belong to the same patient) and combined with the cycles from the previous
section.

In the section titled Modeling leukemic blasts the current dataset is used for model
fitting. In the following section Model predictions and optimal treatment schedules, a subset
of 24 patients, for whom at least two CCs are available, are used to perform model
predictions. For the computation of optimized treatment schedules, this subset is
further reduced to 14 patients for whom relative blast counts are available in the last
CC. The different subsets used in each section are visualized as a diagram in figure 5.1.

5.3 Clinical data from the university hospital in Erlangen

The data used in this study were obtained retrospectively from 116 children who were
diagnosed with de novo ALL at university hospitals in Erlangen and Dresden and treated
according to the AIEOP-BFM 2000 and 2009 protocols. A subset of this data set (WBC
counts from 9 patients) was used and described similarly in a previous study [177]. Pa-
tients were eligible if they were diagnosed with precursor B-cell or T-cell ALL, negative
for the BCR-ABL- and MLL-AF4 translocations, and started MT (i.e., did not experience
relapse before the end of CT and did not undergo stem cell transplantation). During
MT administered according to the AIEOP-BFM 2000 and 2009 protocols, patients re-
ceived oral chemotherapy with daily 6MP and once-weekly MTX until 2 years after
ALL diagnosis. During MT, chemotherapy was applied to achieve antileukemic activ-
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Clinical phase II trial
(AMLSG-12-9), [5]

44 Patients∗
Leno yes no
D123 13 5
d123 23 4

Modeling
leukemic blasts

44 Patients∗
Leno yes no
D123 13 5
d123 23 4

Model predictions

24 Patients∗
Leno yes no
D123 6 2
d123 14 2

Optimal
treatment schedules

14 Patients
Leno yes no
D123 6 0
d123 7 1

Clinical data from [34]

23 Patients
Leno no
D135 12
d135 9
D123 1
D12 1

Modeling
exogenous G-CSF

128 CCs
Leno yes no
D135 0 24
d135 0 14
D123 24 9
d123 48 7
D12 0 2

Secondary PD effect
of Ara-C

32 Patients
Leno no
D123 12
d123 9
D123 6
d123 4
D12 1

all

more than 1 CC

with blast measurement in last CC

allall
no Leno

all

Figure 5.1: Diagram of the two datasets and their subsets used in the different sections
and for the pharmacodynamic(s) modeling. Choices of subsets were based upon data
availability, e.g., administration of lenograstim (Leno), granulocyte-colony stimulating
factor (G-CSF), and numbers of consolidation cycles (CCs). One patient ∗ received 1 CC
without and 2 CCs with Leno, the data were split.
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ity against lymphoblasts below the limit of detection. As a surrogate for antileukemic
activity, WBC and ANC were measured regularly, with ANC <2 G/L, being correlated
to a significantly better relapse-free survival [30], and ANC <0.5 G/L being an indicator
of excessive myelosuppression. The target range for the WBC count was 1.5–3 G/L.
The chemotherapeutic dose was reduced when cell counts fell below the lower limits
(WBC count <1.5 G/L, ANC <0.5 G/L, lymphocyte count <0.3 G/L, and platelet count
<0.05 G/L) or liver toxicity was suspected. For each patient included in the analysis,
data regarding the following variables were recorded: gender, age, weight, height, BSA,
prescribed 6MP and MTX dosages (absolute and per BSA), WBC count, platelet count,
lymphocyte and neutrophil counts, and therapy interruptions.

In this study, we focus on 5897 ANCs and 6640 WBC counts, disregarding mea-
surements of other cell types. We use both WBC counts and ANC separately and
compare the accuracy of the resulting mathematical models. In all, 1150 ANC and 1289
WBC count measurements are excluded due to corresponding high C-reactive protein
levels indicating periods in which patients probably suffered from an infection. More
precisely, we exclude measurements in the interval from two weeks before until two
weeks after C-reactive protein levels of >5 mg/L were recorded. Among the remain-
ing 4747 ANC measurements 56% are below the ANC threshold of 2 G/L, only 2% are
below 0.5 G/L, and 54% are in the ANC target range 0.5–2 G/L. The demographic and
clinical characteristics of the pediatric ALL population are shown in table 5.1. The
dataset which is used for the final model presented in section 7.1.3 can be found in form
of a NONMEM-specific dataset under https://www.frontiersin.org/articles/10.
3389/fphys.2020.00217/full#supplementary-material.

Table 5.1: Characteristics (median and range) of the pediatric acute lymphoblastic
leukemia population consisting of 116 (64 male and 52 female) patients. The body
surface area was calculated using the Mosteller formula.

Characteristic Unit Median Range
Age year 4.75 1.1–17.1
Weight kg 22 10–90
Height cm 112.45 80–182.7
Body surface area m2 0.82 0.47–1.98
6MP daily dose mg 40 5–150
MTX weekly dose mg 15 1.25–60
ANC G/L 1.8 0.0–19.9
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Part II

Developed models and numerical
methods for myelosuppression
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6
Developed models and numerical methods for

myelosuppression:

6.1 Mathematical models for consolidation therapies of AML
patients

In this section, we consecutively develop two PK/PD models for WBC count dynamics
during consolidation treatment using intermediate or high-dose Ara-C in AML.

Firstly, we extend a mathematical model of myelosuppression and a PK model of
Ara-C with different hypotheses of Ara-C’s PD effects resulting in 12 model variations
M1–M12. All model variations are based on the myelosuppression model developed
by Friberg et al. [52] (c.f. section 3.3.1) and are tailored to the special case of Ara-C
via a parameterized two-compartment PK model. The general modeling goals are the
inclusion of possible secondary effects of Ara-C and to obtain a good balance between
modeling detail, prediction accuracy, and the number of patient-specific parameters.

Secondly, we develop a population PK/PD model combining a myelosuppression
model considering endogenous G-CSF a PK model for Ara-C and exogenous G-CSF, and
a two-compartment model for leukemic blasts. We use the mathematical model to ex-
plore the impact of different treatment schedules and the administration of lenograstim
on WBCs and leukemic blasts.

6.1.1 Pharmacokinetic model of cytarabine

We develop a two-compartment PK model for intravenous high-dose Ara-C infusions,
which are administered in the consolidation phase, and compare it with two previously
published PK models [76, 94]. 86 Ara-C concentration measurements (µg/mL = mg/L)
from 11 patients are collected from figure 2 of Kern et al.[92] and presented in figure 6.2.

As figure 2 in [92] is our only source of data, no IIV analysis can be performed.
The patients received high-dose (3 g/m2) Ara-C infusions over 3 hours every 12 hours
on days 1, 2, 8 and 9. The measurements we are using have been collected at day 1
and 8 and we assume BSA = 1.78 m2. The resulting model with unknown parameters
k10, k12, k21 and Vc denoting the elimination rate, distribution rates and the volume of
the central compartment, is formulated as
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Figure 6.2: As figure 3.7, but with 500 simulations of our fitted two-compartment
pharmacokinetic(s) model with interindividual variability (IIV) on the clearance and
the central volume.

ẋ1(t) = −(k10 + k12) x1(t) + k21 x2(t) +
u(t)BSA

3
(6.1a)

ẋ2(t) = k12 x1(t) − k21 x2(t). (6.1b)

We estimate the unknown parameters using a naïve pooling approach with expo-

nential error model ηi j =
x1(ti j)

Vc
eεi j where εi j ∼ N(0, 1). The naïve pooling approach is

used as the collected Ara-C measurements can not be assigned to the corresponding

patients. The error model is transformed to log(ηi j) = log(
x1(ti j)

Vc
) + εi j and the following

parameter estimation problem
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min
k10,k12,k21,Vc,x

1
2

m∑
i=1

ni∑
j=1

( log(ηi j) − log(x1(ti j)/Vc) )2 (6.2a)

s.t. ẋ(t) = f (x(t),u(t), k10, k12, k21,V1), x(t0) = (0., 0.)T (6.2b)

is solved with a GN algorithm implemented in CasADi[178] with single shooting
(CVODES). The estimated parameters and their relative standard deviations are pre-
sented in Table 6.2 together with the parameter values from Solans et al. [94] and Krogh
et al. [76].

Table 6.2: Comparison of our derived pharmacokinetic(s) model with a published one-
and two-compartment model. Final parameter estimates and relative standard errors
(in brackets) are shown. Comparing our model with a published two-compartment
model for low-dose Ara-C [76], we have estimated a smaller central volume leading to
a reduced clearance activity derived from an almost equivalently estimated elimination
rate constant value. The distribution rate constants differ by a factor of 2 to 2.5 and
the peripheral volume by a factor of almost 10. The parameter values and the visual
assessment of the one-compartment model [94] in figure 7.12 indicate, that the one- and
two-compartment models describe Ara-C concentrations with qualitatively different
dynamics.

Solans2018 [94] Krogh2012 [76] Ours
CL [L/h] 208.73 272.0 154.225
Vp [L] - 75.4 7.7825
Q [L/h] - 13.7 4.1761
Vc [L] 209.25 62.8 37.6571 (21.30%)
k10 [1/h] 1.0 4.3 4.0955 (15.09%)
k12 [1/h] - 0.2 0.1109 (67.64%)
k21 [1/h] - 0.2 0.5366 (69.50%)

The two-compartment PK model representing a central and peripheral compart-
ment, see figure 6.3, adequately describes the concentration-time data and coincides
with the derived values for clearance and the elimination rate constant k10 from Table 6
in [92]. We use our derived two-compartment model with the given estimated parame-
ter values in all calculations. We do not use the PK models from Krogh et al. and Solans
et al., because they were fitted to low-dose treatment schedules. Although Ara-C is re-
ported to have a linear PK [92], simulations with these PK models do not coincide well
with the concentration measurements from high-dose treatment schedules published
in [92] as shown in figure 6.2.

During the model development process, we also have tested a kinetics-PD approach
[179] which resulted in non-identifiability of the elimination rate constant of the virtual
compartment during the individual parameter estimations.
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As stated above, the PK model is fixed in the consecutive model development process
of the PK/PD model. In one of the simulation studies we analyze the effect of the PK
variability on the different modeling hypotheses. We present and discuss the results in
figure 7.12.

6.1.2 Secondary pharmacodynamic effects of cytarabine

In this project with the underlying dataset, the current lack of clinical measurements
of endogenous G-CSF concentrations and leukemic cell counts (as no relapse events
occurred) leads to identifiability issues with the related dynamics. Due to these issues
and our main focus on myelosuppression and WBC recovery, we concentrate on ag-
glomerating effects of Ara-C on proliferation and maturation rates and do not consider
models including G-CSF or leukemic cell dynamics.

Proliferating cells
xpr

Transit cells
xtr,1 . . . xtr,ntr

Mature WBC
xma

G(ktr, x1) G(ktr, x1)

kmaF(x1, ktr, γ,B, slope)

Ara-C (peripheral)
x2

Ara-C (central)
x1

E

k12

k21

k10Ara-C

slope

Figure 6.3: Schematic model from which all mathematical models are derived. We
assume clustering of cells and Ara-C concentrations in compartments with identical
properties. The white blood cell (WBC) differentiation is represented by a proliferating
compartment xpr, a number ntr of transit compartments xtr with different levels of
maturation, and a compartment xma with mature, circulating WBCs. Cells mature with
a maturation rate G. Mature cells xma are dying by the process of apoptosis with a death
rate of kma. The pharmacodynamic effect of Ara-C is described as a log-linear function E
targeting the proliferating cells in the bone marrow. It depends on the concentration
x1 of Ara-C in an assumed central compartment including the circulating blood. The
proliferation rate F of xpr models the replication rate of proliferating progenitor cells.
Modelling assumptions are incorporated by choosing different functions F and G. The
estimated model parameters used for personalization are B, slope, ktr, γ, and initial
conditions.

Figure 6.3 illustrates the basic assumptions from which we derive twelve model vari-
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ations of the original Friberg model which we denote by M1–M12 from now on. They
differ concerning the number of transition compartments (M1–M3), initial conditions
for the differential equations (M3–M5), and model assumptions for the possible effects
of Ara-C on proliferation and maturation rates (M5–M12) (compare table 6.3). In this
designation, the original Friberg model is denoted by M2. The ordering of the first three
models is chosen with respect to the decending number of transition compartments.
Quartino et al. [82] propose a model with six instead of three transition compartments
and is thus denoted as M1. After intermediate evaluations of accuracies we concentrate
on the most promising choice of scaling, transition compartments, and initial condi-
tions, and include different modeling assumptions in the models M6–M12 which are
alternatives to M5, our reference myelosuppression model extended to Ara-C.

During the modeling and parameter estimation process we analyze a model con-
sidering separate parameters for the fraction of self-renewal and for differentiation in
each compartment. The model has a similarly high accuracy but more challenging
identifiability properties. Our findings are summarized in table 7.11.
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Table 6.3: Overview of all investigated mathematical models M1–M12. For each
mathematical model the number of transition compartments ntr, the initial condition
(IC) strategy, and the two functions F for proliferation rate and G for maturation rate
are specified, compare figure 6.3, respectively. The models M1–M5 are used mainly to
determine the best number of transition compartments and IC strategy, which are kept
fixed from M5 onward. Different modeling assumptions are incorporated via different
functions F and G in the models M5–M12.

Model ntr IC Proliferation rate F G Parameters
M1 6 I1 (1 − E) ktr(B/xma)γ ktr
Myelosuppression model with ntr = 6, proposed in [82]. B, ktr, γ, slope
M2 3 I1 (1 − E) ktr(B/xma)γ ktr
Original Friberg model [52] with ntr = 3 transition compartments. B, ktr, γ, slope
M3 1 I1 (1 − E) ktr(B/xma)γ ktr
As M1, with ntr = 1 transition compartments. B, ktr, γ, slope
M4 1 I2 (1 − E) ktr(B/xma)γ ktr B0
As M3, but with IC approach I2 resulting in 1 additional parameter. B, ktr, γ, slope
M5 1 I3 (1 − E) ktr(B/xma)γ ktr xpr(t0), xtr(t0),B0
As M3, but with IC approach I2 resulting in 3 additional parameters. B, ktr, γ, slope
M6 1 I3 ktr(B/xma)γ − E ktr xpr(t0), xtr(t0),B0
As M5, but assuming a direct killing effect of Ara-C on the prol. cells. B, ktr, γ, slope

M7 1 I3 (1 − E) ktr/S(x1)(B/xma)γ ktr
S(x1) xpr(t0), xtr(t0),B0

As M5, but replacing ktr by ktr/S(x1) throughout. B, ktr, γ, slope
M8 1 I3 (1 − E) ktr/S(x1)(B/xma)γ ktr xpr(t0), xtr(t0),B0
As M5, but replacing F by F/S(x1). B, ktr, γ, slope
M9 1 I3 (1 − E) ktr/S(x1)(B/xma)γS(x1) ktr xpr(t0), xtr(t0),B0
As M8, but also multiplying γ with S(x1). B, ktr, γ, slope
M10 1 I3 (1 − E) ktr(B/xma)γS(x1) ktr xpr(t0), xtr(t0),B0
As M5, but multiplying γ with S(x1) B, ktr, γ, slope
M11 1 I3 (1 − E) ktr(Bbm/(0.01 ∗ xpr + 0.99 ∗ xtr))γ ktr xpr(t0), xtr(t0),B0
As M5, but feedback depends on BM precursor WBC instead of WBC. B, ktr, γ, slope
M12 1 I3 (1 − E) ktr(Bbm/(0.01 ∗ xpr + 0.99 ∗ xtr))γS(x1) ktr xpr(t0), xtr(t0),B0
Combining both modeling assumptions of M10 and M11. B, ktr, γ, slope

M6: Modeling a direct killing effect of cytarabine on the proliferating cells. In the
model M6, we choose the proliferation rate as discussed in previous works [57, 77, 84]
as F = ktr(B/xma)γ − E. The main difference to all other models is that the PD effect
E is directly multiplied with xpr and not with ktr(B/xma)γxpr. Multiplying with xpr
can be seen as a direct (killing) impact of Ara-C on the amount of proliferating cells,
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whereas the more plausible mechanism-based rationale is the induced reduction of the
proliferation rate constant ktr used in all models except in M6.
M7–M12: Extending the effects of cytarabine. The root mean squared error (RMSE)
values indicate that model M5 with one transition compartment and initial condition
approach I3 (described in the next section) provides the highest accuracy after model
personalization compared to M1–M4.

The indirect effect of Ara-C with an impaired proliferation (M5) is more plausible
than a direct killing effect (M6), because Ara-CTP is incorporated into DNA and RNA
and impairs cell replication [180]. Therefore, M5 becomes the reference model for all
further analysis. We extend the proliferation rate F(·) and/or the transition rate G(·) in
M5 to capture potential secondary effects of Ara-C. To understand the implications of
the extensions, we observe that the proliferation rate F = (1 − E) ktr(B/xma)γ is negative
when 1 < E. This is the case for

cV x1 > eslope−1
− 1. (6.3)

This corresponds to more proliferating cells being in the process of apoptosis than being
in the process of cell division. It is important that the feedback term (B/xma)γ increases
the absolute value of F for B > xma, and decreases it for B < xma. Therefore, an analysis
of F always has to consider all four cases related to the signs of 1 − E and of B − xma.
Inspired by the log-linear behavior of the PD effect E, we choose

S(x1) := 1 + ln (1 + cV x1) .

This monotonously increasing function is applied to different expressions in M5.
In M7, we replace the transition rate ktr by ktr/S(x1) throughout M5. This results in

an Ara-C induced reduction of the transition rate.
In M8 we replace the complete feedback function F in M5 by F/S(x1). This models

an Ara-C induced decreased auto-feedback of the proliferating cells. For high values
of x1, i.e. when (6.3) holds, this results in a decreased killing of proliferative cells. For
values x1 > 0 below that boundary, we get a decreased positive proliferation rate.

In M9 we replace both the complete feedback function F by F/S(x1) and the pro-
liferation exponent γ by γ S(x1). Again, depending on x1 either the killing or the
proliferation rate of xpr are decreased by F/S(x1). In addition, the impact depends on
whether the WBC count is below or above the baseline: for xma < B we have an increased
killing/proliferation rate (B/xma)γ S(x1) > (B/xma)γ and vice versa.

In M10 we replace the proliferation exponent γ in M5 by γ S(x1). This is motivated
by the observation that the feedback term with exponent γ is related to the endogenous
G-CSF [52]. In contrast to M9, the function F itself is not scaled. Like in M9, the γ S(x1)
scaling results in an increase of killing/proliferation rates for WBC counts below the
baseline, and a decrease else.

In M11, we replace the quotient B/xma by a comparison between cells in the BM
and their baseline value. Based on the statement in [47] and the references therein, we
assume that about 1 % of the WBC precursor cells in the BM are in the proliferating
compartment xpr, and 99 % in the transition compartment xtr. In M12, we combine the
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extensions from M10 and M11. The parameter vector contains also initial values, which
we discuss next.

6.1.3 Initial conditions of the differential states

The initial values of the PK are chosen to be zero, x1(t0) = x2(t0) = 0, due to the fact
that the considered time horizons start before administration of chemotherapy. Further,
it is known that previous Ara-C treatments have no impact on the PK of subsequent
treatments [92] which is supported by simulation studies showing that the values of
x1(t) and x2(t) are below 10−6 after 16.35 days of the 1 Ara-C infusion. The remaining
initial conditions are chosen using one of the following three strategies.
Initial condition approach I1. The WBC count xma(t0) is set to the long term WBC
baseline (steady state) count B. With this particular choice all feedback terms simplify
to

ktr(B/xma(t0))γ = ktr.

Assuming x1 = 0, also E = 0, S(x1) = 1, and hence F = G = ktr for all models at time
t0, which simplifies the analysis. As initial conditions for the cell counts in the BM we
choose the BM baseline cell count Bbm := B kma

ktr
,

xpr(t0) = Bbm (6.4)
xtr,1(t0) = . . . = xtr,ntr(t0) = Bbm, (6.5)

which guarantees that inserting (6.4) into (3.17) leads to a right hand side of zero.
The advantage of this approach is the identifiability of the estimation problem, as no

additional degrees of freedom in the estimation problem need to be introduced for the
initial conditions. However, simulations show that both, the assumption of xma(t0) = B
and the steady state assumption, are typically violated at the beginning of a new CC.
Initial condition approach I2. One additional parameter B0 is introduced and esti-
mated, as suggested by Nock [78]. It is used for the initialization as

xma(t0) = B0, (6.6)

together with (6.5). The time derivative (3.17) at time t0 is given by

ẋpr(t0) =
(
ktr

(
B
B0

)γ
− G(ktr, x1)

)
Bbm, (6.7)

ẋtr,1(t0) = . . . = ẋtr,ntr(t0) = 0 (6.8)
ẋma(t0) = G(ktr, x1) B kma/ktr − kmaB0, (6.9)

which is not zero for B0 , B. The advantage of this approach is that also increasing or
decreasing WBC counts at t0 can be captured, depending on the sign of (6.9).
Initial condition approach I3. The initial conditions xpr(t0), xtr,1(t0), . . . , xtr,ntr(t0), and,
as in I2, also xma(t0) = B0 are introduced as additional estimation parameters. As this
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leads to unidentifiability of the estimation problem, a term penalizing deviations from
(6.4),

α
(
xpr(t0) − Bbm

)2
+ α

ntr∑
i=1

(
xtr,i(t0) − Bbm

)2

with α = 1/2500 is added to the objective function of the least squares estimation prob-
lem. The regularization parameter α is chosen with respect to the tradeoff between
identifiability of xpr(t0) and xtr,i(t0) and the violation degree of the steady state assump-
tion. Larger values of α result in similar parameter estimates compared to the initial
condition approach I1, as more attention is drawn to the penalizing terms guaranteeing a
solution close to the steady state assumption after parameter estimation. Smaller values
of αweaken the steady state assumption but also increase the uncertainty of parameter
estimates for xpr(t0) and xtr,i(t0) resulting in large standard deviations. A good tradeoff
is achieved with α = 1/2500. For more information about the regularization approach
see [130] and the references therein. Note that B − B0 is not penalized. This approach
is the most flexible with respect to the possibly transient initial dynamics resulting, e.g.
from previous treatments.
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6.1.4 Cytarabine-derived and lenograstim-reduced myelosuppression

Model development

The aim is to develop a population PK/PD model describing WBC counts and blasts of
AML patients treated with Ara-C and lenograstim during CT. The model development
is guided by previously published models and available WBC counts and blast mea-
surements. The PK/PD model by Quartino et al. [53] describes the proliferation and
differentiation of stem cells to mature neutrophils, and its regulation by endogenous
G-CSF is used as a starting point. In the first step, we adapt the myelosuppression
model to the PK of Ara-C and analyze the prediction accuracy of the model without
considering exogenous G-CSF administrations. In the previous study, it is shown that
the Ara-C version of the model from Friberg et al. [52] with one PD term on the prolif-
eration rate is not sufficient to describe the WBC recovery times after applying different
Ara-C treatment schedules for AML patients. Therefore, different assumptions and
combinations of secondary PD effects of Ara-C are analyzed by multiplying (1+Effect)
by the proliferation rate and strength. It is demonstrated that Ara-C has a further PD
effect on the proliferation strength, leading to a significant decrease in the recovery time
when dense schedules are applied. The dataset of the previous study only contains
one patient with two cycles in which the novel schedule D123 is administered. Here,
we try to underline the secondary PD effect by extending the previous study. We per-
form parameter estimations for three PK/PD models on a dataset including a variety
of Ara-C treatment schedules (D12, D123, d123, d135 and D135) for CT in which no
G-CSF is administered. Model Q14 is the Ara-C-induced version of the model from
Quartino and colleagues [53] with one transition compartment. In model Q14γAraC,
we add a PD effect on γ equivalent to our previous model [181]. Model Q14γ̂AraC
is the parameterized version of the previous model with one additional fixed effects
parameter slopeG.

In a next step, the Ara-C version of Quartino’s myelosuppression model is extended
through absorption models with varying transit compartments describing the subcuta-
neous administration of lenograstim [110] and a bioavailability of 30% determined in
[182]. The models are fitted to a variety of different CCs to determine the absorption
model which described the hematopoietic effects of lenograstim administration best.
The final model contains two absorption rate constants ka1 and ka2 and a bioavailability
of 100% similar to subcutaneous modeling approaches presented in [110]. A bioavail-
ability of 30% and one absorption rate constant resulted in non-identifiability issues.
As no concentration measurements of G-CSF are collected and the global sensitivity
analysis (compare for section 7.24) reveals that the G-CSF related constants do not sig-
nificantly contribute to the model outcomes, we move forward with the best possible
model. As two distinct absorption rate constants are not identifiable [110], we assume a
linear relation between ka1 and ka2 and test several factors until we defined the relation
ka2 = 10

3 ka1.
Finally, a cytokine-dependent two-compartment model describing the dynamics of

leukemic blasts is incorporated and the complete PK/PD model is fitted to the dataset of
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the Ara-C consolidation arm of the AMLSG 12-09 trial. We include the leukemic blasts
as a separate cell line. As the BM information consists of relative blast counts without
distinguishing by cytology between physiological and leukemic blasts, we test several
measurement functions as a fraction and combination of xl1, xpr and xtr. In comparison,
the WBC count measurements are directly matched to the state xma. As no endogenous
G-CSF measurements are available, several parameters are fixed to values from publica-
tions, and the modeling process, especially the endogenous G-CSF concentrations after
lenograstim administration, is guided by the observed G-CSF concentrations presented
in figures 1 and 2 of [106] and [53], respectively. For the analysis of the influence of
the leukemic blast lineage on the WBC lineage, we perform two parameter estimations
with and without consideration of leukemic blasts.

Final pharmacokinetic(s)/pharmacodynamic(s) model

The developed PK/PD model is shown in figure 6.4.
The two-compartment PK model (x1, x2) for Ara-C is taken from [181] as our clinical

data do not contain Ara-C measurements. The PK model describes the PK and biphasic
elimination of Ara-C after high-dose infusions [92]. The hematopoiesis of WBCs is mod-
eled by a chain of three compartments representing the proliferating stem cells xpr and
differentiating cells xtr in the BM released to the blood stream after maturation to WBCs.
Matured cells xma die by apoptosis with a death rate constant kma. Ara-C is incorporated
into the DNA leading to cell death, such that a log-linear PD term as a first order kinetics
negatively influences the proliferation of stem cells, equivalent to [181]. We assume that
the plasma concentration is an adequate surrogate for the PD effect of Ara-C in the BM,
as no PK model for high-dose Ara-C is available which considers the BM as an addi-
tional compartment. We take up this assumption in the discussion. Two modifications
of the myelosuppression model are implemented for our purposes. Instead of three,
we use one transit compartment xtr, still guaranteeing a reliable interpretation of the
MMT and no loss of model accuracy. A detailed discussion is given in [181]. Further-
more, the subcutaneous administration of lenograstim is modeled by a chain of three
compartments describing the effect of enhanced proliferation and maturation. The first
compartment is a depot compartment with the constant F representing the bioavail-
ability of subcutaneous administration of lenograstim which was determined to be 30%
[182]. As lenograstim has an equivalent chemical structure as endogenous G-CSF and
they bind to the same receptors [26], lenograstim is released to compartment xg via the
first order absorption rate constant ka positively affecting the production of WBCs. As
no endogenous G-CSF measurements are available, several parameters are fixed to val-
ues from publications (see table 6.4). The leukemic blasts are included as a separate cell
line. The sequential hierarchy [183, 184] of leukemic blasts (similar to WBC) is described
by the two compartments xl1 and xl2 which represent the leukemic blasts in the BM,
respectively circulating blood and was published in [48]. The leukemic blasts in the BM
grow and proliferate with the first order rate p1. During cell division a leukemic blast
divides into two daughter cells, so that the outflux from mitosis is 2p1xl1 . The outflux
is then separated into the process of self-renewal by the rate 2p1a1kl with the fraction
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Figure 6.4: Visualization of the final pharmacokinetic(s)/pharmacodynamic(s) model.
The hematopoiesis of white blood cells (WBCs) is described by two compartments rep-
resenting the proliferation and differentiation within the bone marrow. The third com-
partment describes the circulating matured WBCs. The sequential hierarchy (similar to
WBC) of leukemic blasts is described by a two-compartment model. Both linages inter-
act by the competition of endogenous granulocyte-colony stimulating factor (G-CSF).
Ara-C affects proliferation of leukemic blasts and WBCs. Lenograstim administration
was modeled by a single pathway absorption model with two transit compartments
[110].

constant a1 determining the fraction of daughter cells staying at the current differenti-
ation stage and cell movement by the rate 2p1(1 − a1) to the consecutive compartment.
Leukemic cells are dying by the first order rate d2. In contrast to the myelosuppression
model, which does not distinguish between self-renewal and differentiation into the
next compartment, the model of the leukemic blasts takes this separation into account.
As we concentrate on the cytokine-dependent version of leukemic blasts, we use the
term klc from [48, 90] in which the interaction between leukemic blasts and WBC counts
is modeled through the competition of endogenous G-CSF between the circulating cells
of both lineages. The term was derived from a quasi-steady-state assumption of the
G-CSF dynamics (see [90] for a detailed discussion). The WBC-regulated elimination of
G-CSF kout is extended with circulating leukemic blasts xl2 because both linages make
use of G-CSF. The interplay between the G-CSF induced proliferation of leukemic and
healthy cells drives the system into a purely leukemic or healthy steady state [90]. A
numerical steady state analysis is performed to determine the system behavior until
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one and a half years after the start of the first CC. For each patient, the validated model
drives into a purely leukemic steady state (xpr = xtr = xma = 0 and xl1, xl2 > 0) after five
months on average.

Values for a1 and d2 are taken from [48] and p1 is chosen as a half of the WBC
proliferation similar to [48] characterizing slow growing leukemic cells [185] resulting
in a duration of remission in the range of 4.1 to 8.1 months reported by [186].

To formulate the mathematical model as a system of ODEs in a compact form, we
use the following definitions, i.e., for the PD effect E on ktr, the zero-order production
rate kin and first order elimination rate kout of G-CSF, and the G-CSF quasi-steady-state
term klc for the leukemic blasts, we define

E = slope log(
x1

Vc MMAraC
+ 1)

kin = (ke,g + kANC B) Bg + ka2 xexo1

kout = (ke,g + kANC (xma + xl2))

klc =
1

1 + c1 xma + c2 xl2
.

All constants, control functions defining the administration of Ara-C and lenograstim,
parameters, and initial conditions are specified in table 6.4. The time derivatives of all
states are given by

ẋ1 = −(k10 + k12) x1 + k21 x2 +
uAraC(t) BSA

duration
(6.10a)

ẋ2 = k12 x1 − k21 x2 (6.10b)

ẋprol = −

(
xg

Bg

)β
ktr xpr +

(
xg/Bg

)γ
ktr(1 − E) xpr (6.10c)

ẋtr =

(
xg

Bg

)β
ktr xpr −

(
xg

Bg

)β
ktr xtr (6.10d)

ẋwbc =

(
xg

Bg

)β
ktr xtr − kma xma (6.10e)

ẋg = kin − kout xg (6.10f)

ẋD = −ka1 xD +
ul 1000
Vg durl

(6.10g)

ẋexo1 = ka1 xD − ka2 xexo1 (6.10h)
ẋexo2 = ka2 xexo1 − ka2 xexo2 (6.10i)

ẋl1 = (2a1klc − 1)p1 xl1 − p1E xl1 (6.10j)
ẋl2 = 2(1 − a1klc)p1 xl1 − d2 xl2. (6.10k)

73



6.1. MATHEMATICAL MODELS FOR CONSOLIDATION THERAPIES OF AML PATIENTS

Table 6.4: Model constants, patient-specific constants, model parameters, and initial
values with their units and descriptions.

Constant Unit Value Description
PK model of Ara-C
k10 1/day 98.2920 Elimination rate of Ara-C from [181]
k12 1/day 2.6616 Distribution rate of Ara-C from [181]
k21 1/day 12.8784 Distribution rate of Ara-C from [181]
Vc L 37.33 Volume of central compartment from [181]
MMAraC g/mol 243.217 Molecular mass of Ara-C
durc day 1/8 Infusion time
PD model of WBC and leukemic blasts
kma 1/day 2.3765 Death rate of circulating WBCs from [53]
Bg ng/L 24.4 Endogenous G-CSF steady state from [53]
ke,g 1/day 0.592×24 Non-specific elimination rate constant from [53]
kANC 1/day 5.64×24 Neutrophil-dependent elimination rate from [53]
β - 0.234 Feedback regulation of G-CSF on WBCs
a1 - 0.875 Probability of self-renewal from [48]
p1 1/day 0.1 Leukemic cell proliferation rate from [48]
d2 1/day 2.3 Leukemic cell death rate from [48]
c1 L/109 0.01 G-CSF quasi steady-state feedback scaling factor
c2 L/109 0.01 G-CSF quasi steady-state feedback scaling factor
PK model of lenograstim
ka2 - 10

3 ka1 2. absorption rate of lenograstim
Vg L 14.5 Volume of distribution from [106]
durl day 0.0007 Infusion time
BSA m2 [1.61, 2.07] Body surface area (patient-specific)
uc(t) g/m2 [1, 3] Ara-C dosage (patient-specific)
ul(t) µg {263, 324} Lenograstim dosage (patient-specific)
Parameter Unit Description
ka1 1/day 1. absorption rate of lenograstim
ktr 1/day Transition rate
γ – Feedback regulation of G-CSF on WBC proliferation
slope L/µmol PD effect of Ara-C on WBCs
B 109/L Baseline of WBC count
x0

blasts 109/L Relative number of blasts
at start of CT

State initial value Value State Value
x1, x2, xexo1, xexo2, xD 0 xg Bg
xpr, xtr (B kma)/ktr xl1 x0

blasts(DB CR) − 0.005(B kma)/ktr

xma B xl2 B/99

Measurement functions

The observed cell type measurements are WBC counts in the circulating blood and
relative blast counts in the BM. The WBC count measurements are directly matched to
the state xma resulting in the corresponding measurement function

hwbc(t) = xma(t). (6.11)

The measurement function of the relative blast count is used from previous publications
[57, 187]:

hblasts(t) = 100
xl1(t) + 0.005 xtr(t)

CRi j DB
(6.12)

74



6.2. MATHEMATICAL MODEL FOR MAINTENANCE THERAPY OF PEDIATRIC ALL PATIENTS

with the cellularity factor of patient i in the j-th CC

CRi j =


0.2 i f hypocellular
0.4 i f normocellular, years > 65
0.5 i f normocellular, years ≤ 65
0.95 i f hypercellular

(6.13)

and DB = 1012 being the approximated maximal tumor cell burden in acute leukemia
[13]. As the measurement method for determining the relative blast counts in the BM
does not differentiate between physiological and leukemic blasts, the original function
is extended with 0.5% cells of the transit compartment. Nombella and Manz [188]
examined the range of the relative number of common myeloid progenitors in the BM
to be 0.2-0.8% represented in the function by 0.5% cells of the transit compartment.

6.2 Mathematical model for maintenance therapy of pediatric
ALL patients

Nonlinear mixed-effects modeling and parameter estimation

The NLME modeling [6] is based on the PK/PD model of [177]. It describes the absorp-
tion of both drugs through the GI tract into the plasma after oral administration and
their metabolization to their active forms. The MTX metabolites MTXPG2 to MTXPG7
inhibit several enzymes responsible for DNA synthesis [117]. The active form of 6MP,
6TGNs, is incorporated into the DNA [111]. Thus, both drugs negatively affect the
hematopoiesis of neutrophils, which is described by a chain of five compartments. The
first compartment represents the proliferating stem cells. It is negatively affected by
6MP and MTX via a linear PD term with one joint PD parameter. The next three transit
compartments describe the maturation process until mature neutrophils are released
into the circulating blood (last compartment). Further details about this model have
been described [177].

During the model development, we have replaced the 6MP PK model of [112]
with the PK model described by [111] in hopes of obtaining a better response to 6MP
dosage. The model contains the BSA as a covariate in the clearance and thus provides
individualized PK profiles. The PK model of [112] is validated on concentration data of
8 patients (adults) from [189]. However, the simulated 6TGN concentrations coincide
with data from pediatric patients reported by [111]; hence, it is a priori unclear which
would give better results. We also test the influence of weekly MTX administration by
either ignoring or considering the administrations and their resulting concentrations
through the MTX PK model with a second PD parameter during model fitting. We also
test the myelosuppression model from [112], which contains a different feedback term
for ANC recovery, but the accuracy has decreased and this line of research has not been
further investigated.
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The steady state of neutrophils Base, the transition rate ktr, the feedback term γ,
and the PD effect slope are defined as parameters. IIV is assumed as log-normally
distributed for all four parameters, and the residual variability is estimated using a
proportional error model. A linear residual variability model is tested, but results in a
reduced model accuracy.

Population PK/PD analysis is performed with the NLME modeling program NON-
MEM 7.4 (ICON Plc., Dublin, Irland) [141]. The parameters are estimated using the first
order conditional estimation method with interaction. Standard errors are computed
with the $COVARIANCE step in NONMEM.

The final PK/PD model, which describes the clinical data best, is formulated by the
system of ODEs

˙xgut
6mp(t) = −ka xgut

6mp(t) + F u(t),

˙x6mp(t) = ka xgut
6mp(t) − k20 x6mp(t),

˙x6tgn(t) = FM3 kme x6mp(t) − CL6tgn(BSA) x6tgn(t)

˙xpr(t) = kprol xpr(t) (1 − Edrug)
(

Base
xma(t)

)γ
− ktr xpr(t),

˙xtr1(t) = ktr (xpr(t) − xtr1(t)),
˙xtr2(t) = ktr (xtr1(t) − xtr2(t)),
˙xtr3(t) = ktr (xtr2(t) − xtr3(t)),
˙xma(t) = ktr xtr3(t) − kma xma(t)

(6.14)

with the BSA-dependent clearance

CL6tgn = 0.00914 (BSA)1.16 (6.15)

and the linear PD effect

Edrug = slope x6tgn, (6.16)

and the patient-specific bioavailable 6MP amount F u(t) of 6MP (implemented as point
administration in NONMEM). The PK of 6MP is described by a three compartment
model altered from [111]. A fraction of the orally administered 6MP dosage enters the
GI tract where bioavailable 6MP is absorbed to the central compartment with the first
order rate ka. In the central compartment, 6MP is eliminated by k20. The elimination
also comprises metabolization of 6MP with the rate kme out of which a fraction FM3
is metabolized to the active form 6TGN. 6TGN is then cleared by the BSA-dependent
clearance term CL6tgn. The hematopoiesis of neutrophils is described via a chain of five
compartments with equivalent transition rates ktr representing the MMT of the neu-
trophils [45]. The proliferation rate of HSCs kprol is equivalent to the transition rate ktr
guaranteeing homeostasis [45]. Deviations from the neutrophil baseline B are compen-
sated by the feedback regulation (B/xma)γ reflecting the G-CSF controlled proliferation
of neutrophils [52, 55, 82, 181]. Negative deviations are induced by the MT modelled
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through the linear PD term Edrug. As the active forms of both drugs affect the prolif-
eration process, the PD effect is modelled via a linear term with one joint parameter
slope multiplied to the feedback-regulated first order proliferation rate constant. Other
modeling approaches for the incorporation of the PD effect previously showed worst
results in model fitting such that we focused on the described term which is addition-
ally more plausible regarding the PD effect, i.e. an impaired proliferation through the
incorporation of the metabolized drug into the DNA [181]. Matured neutrophils die by
the process of apoptosis with the rate kma. A schematic representation of the model is
shown in figure 3.9 and model constants are listed in table 6.5. As no PK biomarkers
have been measured in the examined dataset, we rely on published PK models and
individualized the PD models with respect to individual sets of PD parameters.

Prol. cells
xpr

Trans.
xtr1

Trans.
xtr2

Trans.
xtr3

Mature ANC
xma

ktr ktr ktr ktr

kma

kprol = ktr
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6mp

6MP
x6mp

6-TGN
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E

F Dose
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k20 CL6-TGN

FM3 kme

- slope x6tgn

Figure 6.5: Visualization of the final compartment model used for the population
pharmacokinetic(s)/pharmacodynamic(s) analysis. The pharmacokinetic(s) model
was published by [111] and the myelosuppression model by [177].
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Table 6.5: Model constants of the pharmacokinetic(s) model of 6-mercaptopurine
(6MP) and its metabolite 6-thioguanine nucleotide (6TGN) from [111], death rate
constant of matured neutrophils, and initial conditions of the model (6.14).

Constant Value Unit Description / Comment
F 0.22 Bioavailability factor
ka 31.2 1/day Absorption rate constant of 6MP
k20 12.72 1/day Elimination rate constant of 6MP
FM3 0.019 Fractional metabolic transformation into 6TGN
kme 9.9216 1/day Metabolic transformation rate constant of 6MP into

either 6TGN or 6-methylmercaptopurine nucleotides
CL6tgn(BSA) 0.219 (BSA)1.16 L/day BSA dependent clearance of

metabolite 6TGN
kma 2.3765 1/day Death rate of matured neutrophils/leukocytes
u(ti) mg 6MP amount at time point ti

xgut
6mp(0) 0 mg Same initial value for x6mp(0)

x6tgn(0) 0 mg/L
xpr(0) (Base kma)/ktr G/L Same initial value for xtr1(0) = xtr2(0) = xtr3(0)
xma Base G/L
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6.3 Feedback optimal control algorithm with optimal measure-
ment time points

We start by formulating the main algorithm, before we have a closer look at the role of
optimal measurement times and one possible extension, the consideration of robustness.

As an alternative to a dual control approach which incorporates the system excite-
ment, an optimizing control with respect to the control objective, and possibly also the
choice of optimal measurement times into one single optimization problem, we propose
a decoupled dual control approach. We formulate it for a shrinking horizon [τ, tf] with
respect to the control and experimental design tasks, and an expanding horizon [t0, τ]
with respect to state and parameter estimation, which can be easily adapted to a moving
horizon setting if appropriate.

Algorithm 2 FOCoed

Input: Initial guess p̂, initial values x(t0),G(t0), possible measurement times {t1, . . . , tN} ⊂

[t0, tf]

Initialize sampling counter i = 0, measurement grid counter k = 0 and “current
time” τ0 = t0

while stopping criterion not fulfilled do

1: Solve optimal control problem (4.8) on the horizon [τi, tf], obtain u∗(·), x̂∗(·)

2: Solve OED problem (4.35) on the horizon [τi, tf], obtain w∗ ∈ Wnω,N−k

3: Set i = i + 1, knew such that wω,∗
knew > 0 and wω,∗

j = 0 ∀ k < j < knew. Set k = knew and
τi = tk

4: Apply u∗ on [τi−1, τi], measure function ω at τi

5: Solve state and parameter estimation problem ((4.11) ) (4.29) on the horizon [t0, τi],
obtain p̂, x̂(t)

end while

6: Solve optimal control problem (4.8) on the horizon [τi, tf]

The algorithm iterates over time with a “current time” τi. It solves three subprob-
lems that have been introduced in section 4.2. The solution of the optimal control
problem (4.8) provides a control u∗(·) which optimizes with respect to the main control
objective. This control is applied until the next update at time τi+1. This time point τi+1
is calculated by means of an OED problem (4.35) as the first time point from a given fine
grid of possible measurement points on which the calculated measurement weight w∗knew

is strictly positive. At this time a new measurement is performed, with a subsequent
estimation of states and parameters. Based on the modified parameters, a new optimal
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(c) Step 3 - 5 in first loop.
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(d) Step 1 in second loop.

Figure 6.6: Visualization of algorithm 2 performing one loop applied to the Lotka-
Volterra fishing example. In figure 6.6a the first step, solving an optimal control
problem, of algorithm 2 is performed on the time interval [15, 30] with initial values
from a parameter and state estimation on the interval [0,15] with measurements from
an optimal experimental design (OED) problem. The uncertainty tubes are computed
from 100 simulations with parameter samples from a normal distribution with the
estimated parameters and uncertainties as mean and variance. In figure 6.6b an OED is
computed on t ∈ [15, 30] with the optimal control strategy. The strictly positive optimal
sampling weights are visualized as vertical lines. Next, the optimal control strategy is
performed until time point ti at which the first sampling weight is strictly positive and
a measurement is taken. Afterwards a state and parameter estimation is performed
(figure 6.6c). The loop starts again with solving an optimal control problem on [ti,30]
with the estimated values. The new optimal control strategy is shown in figure 6.6d with
uncertainty tubes computed from 100 simulations with updated mean and variance.
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control is calculated, based on the modified parameters and control, new measurement
weights are calculated and so forth. Naturally, previous solutions can and should be
used as initialization to speed up the calculations. Depending on the time scales of the
process and the calculation times, there usually is a small time gap in which the old
controls need to be applied. See, e.g., [190], for details on how to deal with this situation.

Figure 6.6 visualizes the start of one loop to the start of the next loop of algorithm 2
applied to the Lotka-Volterra fishing example which is described and discussed in detail
in Section 7.3. In figure 6.6a an optimal control problem is solved with the initial values
x̂(15) and p̂ on the interval [15, 30]. The initial values are obtained from a state and
parameter estimation performed on the interval [0,15] with measurement time points
derived from an OED problem. The uncertainty tubes around the two trajectories are
created by 100 simulations with parameter values randomly chosen from a normal
distribution with the estimated parameters and corresponding uncertainties as mean
and variance. Next, an OED problem is solved for the optimal control strategy u∗(t) and
the associated solution x̂∗(t) obtaining optimal measurement time points on the interval
[15, 30] (see figure 6.6b). From the optimal design w∗ the time point τ1 is chosen for
which the corresponding entry w∗j > 0 is the first strictly positive one. In figure 6.6c
the optimal control u∗ is applied to the real system until time point τ1 at which a
measurement is performed and the parameters and the initial states are re-estimated
with the additional measurements. With the updated values we are back at the start
of the algorithm’s loop and a new optimal control problem is solved with the updated
values on the receding time horizon [τ1, 30] shown in figure 6.6d. For the uncertainty
tubes again 100 simulations with parameter values sampled from a normal distribution
with updated values for the mean and the variance were used.

The stopping criterion is formulated in a general way as it usually depends on the
experimenter’s choice. Possible criteria are a minimum amount of uncertainty reduc-
tion, a fixed number of measurements, or an economic penalization term as proposed
in [144].

Finite support designs

We look at the role of finite support for OEDs in more detail, as this will allow us to
choose measurement points (and hence the sampling grid) in an optimal way. It is an
interesting question how optimal solutions of the discrete OED problem (4.35) and of the
continuous analogue (4.36) relate to one another. The answer is given by the following
theorem, which states that to every optimal design there is a discrete design with finitely
many measurement points resulting in the same FIM. This is obviously a justification
for our iterative approach in Algorithm 2, using a finite number of measurements.
Theorem 6.3.1 presents a property of optimal designs for the FIM.

Theorem 6.3.1. Let nω = 1. For any optimal design ξ of the OED problem (4.36) resulting in a
nonsingular FIM of the state and parameter estimation problem (4.30) there exist a finite number
N of measurement time points {t1, t2, . . . , tN} ⊂ T and positive real numbers w1,w2, . . . ,wN
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with
∑N

i=1 wi = 1 such that

F(ξ) = Fd(tf) =

N∑
i=1

wi (hx(x(ti))G(ti))
T hx(x(ti))G(ti)

with the bounds ⌊
np

nη

⌋
≤ N ≤

np(np + 1)
2

. (6.17)

np is the number of parameters and nη is the dimension of the model response h(x).

A proof can be found in [191, 192]. It is based on the set of all matrices of the
form (4.32) being a compact, convex set. The upper bound results from the Theorem
of Carathéodory [145, 193] and the solution of the dual problem which is located at the
boundary of the convex set [194]. The lower bound is based on the assumption of Fd(tf)
having full rank np, and every update wi (hx(x(ti))G(ti))

T hx(x(ti))G(ti) having rank nη.
Our setting is slightly more general, as we allow nω different measurement functions.
However, the result carries over.

Corollary 6.3.2. For any nω ≥ 1 Theorem 6.3.1 applies with nη =
∑nω
ω=1 nωη .

Proof. The Minkowski sum of convex, compact sets is again a convex, compact set,
and hence the argument for the representability due to the Theorem of Carathéodory
and the upper bound are still valid. The maximum rank of the matrix update∑nω
ω=1 wω

i
(
hωx (x(ti))G(ti)

)T hωx (x(ti))G(ti) at time ti is
∑nω
ω=1 nωη . The lower bound on N is

the quotient of the assumed full rank np and this sum. �

This corollary directly implies that to every optimal solution of the continuous OED
problem (4.36) there is an equivalent solution of the discrete OED problem (4.35).

We are further interested in (a posteriori) characterizing the optimal measurement
times ti with corresponding wω

i > 0. We make the following assumptions. Let an
optimal solution (x∗,G∗,w∗, µ∗) of the optimization problem (4.36) withW = [wmin,wmax]
be given. Here µω,∗ is the Lagrange multiplier of the constraint (4.33). Let F∗−1(tf) exist.
We call

Πω(t) := F∗−1(tf) (hωx (x(t))G(t))Thωx (x(t))G(t) F∗−1(tf) ∈ Rnp×np (6.18)

the global information gain matrix. Let φ(F(tf)−1) = trace(F−1(tf)) be the objective function
of the OED problem (4.36) (for other objectives similar expressions can be found in
[144]).

Under the above assumptions in [144] it is shown that

wω,∗(t) =

wmin if trace (Πω(t)) < µω,∗,
wmax if trace (Πω(t)) > µω,∗.

(6.19)
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The proof is based on the application of Pontryagin’s maximum principle, exploiting
constant adjoint variables, and matrix calculus.

We want to join theorem 6.3.1 with this insight, and look at the special case of
wmin = 0,wmax = 1. One particular case may arise when the lower bound on the number

of support points in theorem 6.3.1, i.e.,
⌊

np

nη

⌋
is equal to one. For one single measurement

it can happen that wω
i = 1 for one index, while otherwise the normalization constraint

(4.33) ensures that all wω
i ∈ [0, 1). For this particular case we define νω,∗ to be the

maximum of µω,∗ (the Lagrange multiplier of the normalization constraint) and of the
upper bound constraint wω

i ≤ 1. In most cases, however, ν∗ = µω,∗.

Lemma 6.3.3. For any optimal design ξ of the OED problem (4.36) resulting in a nonsingular
FIM of the state and parameter estimation problem (4.30) there exist a finite number N of
measurement time points {t1, t2, . . . , tN} ⊂ T and positive real numbers wω

1 ,w
ω
2 , . . . ,w

ω
N with∑N

i=1 wω
i = 1 for all ω ∈ 1, . . . ,nω such that

trace(Πω(t)) ≤ νω,∗ ∀ t ∈ [t0, tf]. (6.20)

Proof. Corollary 6.3.2 states the existence and optimality of such a design. Assuming
there exists ti ∈ T with trace(Πω(ti)) > νω,∗, it directly follows wω

i = wmax = 1 and with
the normalization (4.33) that wω

j = 0 ∀ j , i. The local impact on the optimal objective
value is given by trace(Πω(ti)), the assumption of this value being strictly larger than
both multipliers is hence a contradiction to optimization theory which states that the
Lagrange multiplier of the active constraints give a local estimate for the change in the
optimal objective function value. �

Robustification

As mentioned in the introduction, there are many possible extensions to algorithm 2.
Highlighting its flexibility, we exemplarily look at a possible robustification of the
optimal control and of the OED problem.

The optimization problems (4.8) and (4.36) depend on given values of the model
parameters and the computed control and measurement strategies are only optimal for
the specific parameter values. If the true parameter values are known or the estimated
parameter values are equal to the true values the optimal strategies can be applied to the
real process without loss of optimality. But, in most cases the true parameter values are
not exactly known. Then, the uncertainty of parameters in the spirit of confidence re-
gions should be included into the optimization formulations to robustify the computed
optimal control and measurement strategies. We apply a robustification approach sug-
gested in [195–197]. The idea is to formulate a min-max optimization problem in which
the maximal value of the objective function over the parameters’ confidence region is
minimized. Applying Taylor expansion with respect to the parameters, a computa-
tionally feasible approximation based on first derivatives is used. It aims at preferring
solutions with a “flat objective function”, i.e., which is not too sensitive with respect to
the parameter value p.
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Again, we assume that the parameters are normally distributed random variables
with mean p̂ and variance Σp̂. The confidence region of p̂ with confidence quantile γ is
defined as the set

{p : ‖p − p̂‖2,Σ−1 ≤ γ} (6.21)

where the positive definite matrix Σ−1 induces the norm ‖p‖2,Σ−1 := (pTΣ−1p)
1
2 . Now, the

OED objective function in (4.36) is augmented to

φ(F(ξ; p̂)) + γ

∥∥∥∥∥ d
dp
φ(F(ξ; p̂))

∥∥∥∥∥
2,Σ

(6.22)

and similarly the robust optimal control objective function is defined as

M(x(tf); p̂) + γ

∥∥∥∥∥ d
dp

M(x(tf); p̂)
∥∥∥∥∥

2,Σ
. (6.23)

No further modifications to algorithm 2 are necessary. Note that the norms are evaluated
pointwise, as Mayer term and the FIM in problems (4.8) and (4.36) are evaluated at time
tf. However, the analysis of section 6.3 can not be applied in a straightforward way
due to the derivative term in the objective function (6.22), as the weights may jump as p̂
changes locally. Intuition and numerical results hint into the direction that also for the
robust case discrete designs are optimal, probably with the same bounds on the number
of support points. But we only conjecture this and do not have a proof.
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Numerical results & discussions
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7 Numerical results & discussions:

7.1 Personalized mathematical models

In this section, we investigate the personalization and prediction accuracy of the math-
ematical models developed in the previous section. We cross-validate the 12 model
variations M1–M12 using dense WBC count measurements from 23 AML patients. Sur-
prisingly, the prediction accuracy remains satisfactory in each of the models despite
different modeling hypotheses. Therefore, we compare average clinical and calculated
WBC recovery times for different Ara-C schedules as a successful methodology for
model discrimination. As a result, a new hypothesis of a secondary PD effect on the
proliferation rate seems plausible.

Next, the Ara-C-derived and lenograstim-reduced PK/PD myelosuppression model
considering leukemic cells is fitted to data of 44 AML patients during CT with a novel
Ara-C plus G-CSF schedule from a phase II controlled clinical trial. The model provides
good prediction accuracy and an interpretation of the interaction between WBCs, G-CSF,
and leukemic blasts.

Finally, the developed PK/PD model for MT of childhood ALL is fitted to clinical
data from 116 pediatric patients.

7.1.1 PK/PD model with cytarabine (Data Magdeburg)

Personalization/Accuracy of PMs with fixed Ara-C schedule

We use all 42 CCs to personalize our mathematical models M1–M12 performing point
estimations (individual approach). The point estimates are used to analyze the different
modeling assumptions. Additionally, we personalize the most relevant models M3,
M10 (with I1), the model from Henrich et al.[55], the model from Mangas-Sanjuan
et al.[54] and the model from Stiehl et al.[48] applying NLME modeling (population
approach). The population approach is used on the one hand to qualitatively confirm
our proposed model variation based on the set of population parameters. On the
other hand, we want to compare our set of population parameter values with recently
published models and give a reason why the Friberg model serves as our basic model
and not recently published models which are similar to the Friberg model, but with
several extensions. Once the model parameters have particular values, the model is
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called personalized model (PM).
Table 7.6 shows statistics about the accuracies of the PMs describing the clinical data,

for a pure estimation (using all available WBC counts to personalize the model) and for
a cross-validation (using all but the last CC for personalization).

Table 7.6: Calculated root mean squared error values for the models M1–M12. Mea-
sured and calculated white blood cell counts are compared. The estimations and pre-
dictions use personalized models that are calculated based on the twelve different
mathematical models M1–M12. The first row refers to a personalization for all 42 con-
solidation cycles. The second row shows results for personalizations using all available
cycles per patient (Pat). For predictions (Pred) all but one cycle are used for person-
alization and the last cycle for cross-validation. Four more rows show the predictions
separated into the different schedules (D135, d135, D123 and D12). The root mean
squared error (RMSE) values decrease from cycles to patients and from personalization
towards prediction, as expected. Comparing the mathematical models, the accuracy
increases with a reduced number of compartments from M1 to M3. The initial condition
strategies I2 in M4 and I3 in M5 decrease RMSE valaues further. M5–M12 all use ntr = 1
and I3 and perform equally well, with the slight exception of M7. Note that in particular
there is no significant difference between the established gold-standard model M5 and
our newly proposed extended model M10.

RMSE M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

42 CCs 0.911 0.836 0.742 0.636 0.579 0.595 0.639 0.576 0.574 0.574 0.577 0.587

23 Pat 1.154 1.011 0.892 0.825 0.741 0.758 0.785 0.753 0.738 0.740 0.740 0.741

14 Pred 1.269 1.128 1.059 1.007 0.908 0.972 0.997 0.960 0.958 0.927 0.940 0.947

7 D135 1.108 0.912 0.834 0.778 0.750 0.753 0.781 0.750 0.767 0.765 0.731 0.768

5 d135 1.319 1.240 1.141 1.093 0.921 1.095 1.023 1.068 1.043 0.957 1.037 1.009

PD123 2.404 2.218 2.241 2.258 2.011 2.014 2.324 2.006 1.996 1.996 2.029 2.022

PD12 1.014 0.991 1.042 0.924 0.842 0.843 1.049 0.839 0.840 0.843 0.824 0.823

The accuracies depend strongly on the number of compartments and initial condition
strategy (M1–M5) , but do not differ much with respect to modeling assumptions of
possible effects of Ara-C considered in M6–M12. These values are even better when the
standard schedule D135 is applied in the estimated and predicted cycles. Regarding the
root mean squared errors for M1-M5, the results imply that one transition compartment
and initial approach I3 are the best choice for the structural model and hence serve
as a starting point to analyze different PD effects of Ara-C. As mentioned in the
previous section, the number of transition compartments determine the MMT of the
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differentiating progenitor cells. Comparing the MMTs resulting from the population
approach for M1 to M3, we achieve a slight decrease from 154 h to 144 h to 128 h by
using the corrected formula MMT= n/ktr [45] instead of the original formula MMT=
(n+1)/ktr [52]. During the administration of cytostatic drugs it is known that the cells are
encouraged to rapidly differentiate such that a MMT of 128 h is reasonable. Furthermore,
the MMT value from one transition compartment is closest to a previously published
corrected MMT value of 106.4 [45, 53]. Studies with healthy volunteers reported MMTs
of 153.6 h and 165.6 h [45]. But these values are difficult to compare as chemotherapy
can speed up proliferation and differentiation. With this knowledge and the accuracy
values of table 7.6 we decide to fix the number of transition compartments to one. The
original MMT formula from [52] would result in 180 h, 193 h and 256 h. By using
M5 as the reference model and analyzing different hypotheses of Ara-C’s PD effect in
M6-M12, all models can describe the clinical data equally well. Goodness-of-fit plots
in figure 7.8a–b and 7.13 visually support the good match between model predictions
and measured WBC counts (respectively observed vs. calculated trec values) around the
nadir and a wider spread of large WBC counts. To analyze the reliability of the PMs
to predict the WBC dynamics in subsequent CCs, Figures 7.8c–d indicate the involved
model uncertainty from parameter uncertainty by means of Monte Carlo simulations.
The model uncertainty is derived from 1000 randomly chosen parameter sets sampled
from the variance-covariance matrix resulting from the individual parameter estimation
problem (4.11). The information from one CC and no available prior knowledge leads to
a high uncertainty. The uncertainty reduces when more WBC counts are present, and the
prediction accuracy for consecutive CCs and myelosuppression increases. Examining
the accuracy of the PMs for each patient separately, the WBC counts around the nadir
are explained well by all models for fixed Ara-C schedules (either D135 or D123), as
shown in figures 7.7a–d for two exemplary patients and in figures 7.14 and 7.16 for the
other 12 patients with at least two consecutive CCs.
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Figure 7.7: Comparison of personalized models based on M1-M12 and white blood
cell data. Patient with three D135 cycles (left) and patient PD123 with two D123 cycles
(right), as indicated on the x-axis. The personalized models (PMs) exemplify repro-
ducibility (first row), predictability (second row) and simulation of a different schedule
in prediction than estimation (third row). (a) Reproducability: all 12 PMs based on
M1–M12 are able to explain the measured white blood cell (WBC) counts. (b) As in
(a), all PMs explain the measured WBC counts well, particularly around the nadirs. (c)
Cross-validated prediction: all PMs explain the WBC counts well, also in the predicted
third cycle. (d) As in (c), here with a slightly too slow predicted recovery time in the
second cycle for all models. (e) Varied Ara-C schedule: prediction of D123 in the third
cycle for a PM based on two D135 cycles shows faster WBC recovery for M9, M10, and
M12. (f) Prediction of D135 in the second cycle for a PM based on one D123 cycle shows
slower WBC recovery times for M9, M10, and M12.

Regarding the estimated parameter values, we only determine a slight change of
the estimated fixed-effects parameter values for B, ktr and slope, the inter-individual
variability for all four parameters and the residual error between models M3 and M10
whereas the estimated fixed-effects parameter value for slope significantly decreases
when a second PD term is introduced (see table 7.11).

Prediction & Cross-Validation/Accuracy of PMs with altered Ara-C schedule

The PMs are then used to predict (simulate) and cross-validate WBC counts for the last
CC of 14 patients for whom at least two consecutive CCs are available. Additionally,
we calculate predicted trec values from our 42 PMs applying D123 and D135 schedules
and compare the descriptive statistics with published average trec values from a subset
of data (367 CCs of 208 AML patients, no G-CSF support) of the AMLSG 07-04 trial in
which the schedules D123 and D135 after 7+3 regimen are analyzed [20]. The published
AMLSG 07-04 [20] trial does not provide WBC counts to obtain new PMs, therefore
we use the median of observed trec values for D123 and D135 Ara-C schedules. In the
interest of a fair comparison (i.e., to avoid comparison with the value 0) we exclude five
(d135: 1 and D135: 4) out of 42 PMs for which at least one out of the 42 predictions
(M1–M12 with either D123 or D135) result in no WBC counts below the threshold
value. This can occur as we personalize the models for a specific treatment plan, e.g.
D135. Afterwards we apply a different treatment plan to the PMs, i.e D123, which may
result in a reduced cytotoxic effect. Not each out of the 42 predictions result in a nadir
value below 1 G/L. Further, we predict trec values for two Ara-C schedules in which
a constant administration of Ara-C throughout days 1-5, with either 100 mg/m2 per
day or 400 mg/m2 per day was given. These schedules, together with D135, have been
clinically analyzed for 1088 AML patients (median 52, 568 male) by Mayer et al. [10],
and the superiority of D135 with respect to disease-free survival rates and remaining in
continuous CR after four years has been shown but no trec values were reported. Finally,
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Figure 7.8: Visualization of predictive accuracies of personalized models (PMs). (a)
Goodness-of-fit plot for M10. Shown are measured versus calculated white blood cell
(WBC) counts. Models were personalized using complete data sets of one to three cycles
from 23 patients. The measured counts around the nadir coincide well (RMSE=0.740)
with the calculated WBC counts. (b) As (a), but cross-validated: WBC counts from the
last cycle of patients were not used for personalization, but compared to predictions
(RMSE=0.927). The plot shows cross-validated WBC counts from the last cycle in red,
others in blue. The plots are prototypical for M1–M12. (c) PMs based on M10 and either
personalization with WBC counts from one or from all three cycles. 1000 Monte Carlo
simulations after personalization with WBC counts from one cycle were used to indicate
the propagated probability density function. (d) As (c), but using WBC counts from
the first two cycles for personalization. More measurements lead to higher prediction
accuracy. The uncertainty tube tightens and the predicted trajectory gets closer to the
solution that used all available WBC counts.
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we analyze the effect of the inter-individual PK variability on the trec values derived
by the models M3 and M10 (with I1). We apply schedules D123 and D135 with fixed
population parameter values for B, slope, ktr, and γ and perform 500 simulations each
with randomly chosen values from constructed IIV for the PK parameters clearance CL
and central volume VC.

All experiments are performed to analyze the 12 proposed models with respect to
WBC count and trec predictability.

As we are interested to differentiate between the distinctive model hypothesis, we
apply different chemotherapy schedules to the PMs and analyze their dynamical be-
havior, especially the WBC recovery. Figures 7.7e–f show two cases where D135 is
used for personalization and D123 for prediction (and vice versa). Here, M9, M10, and
M12 have a faster (slower) hematological recovery for D123 (D135). All three models
assume that the proliferation speed γ depends on the Ara-C concentration. This mod-
eling assumption is visualized in a different way for M5, M10 and M12 in figures 7.9 -
7.11.

In figures 7.9, for an exemplary patient, defined as I, the personalization results in
different model parameter values for M1–M12. Figure 7.10 shows another example. For
M5 and M10 shown above, the PMs are characterized by the following estimated model
parameters:

Model B ktr γ slope xpr(0) xtr(0) xma(0)
M5 3.32589 0.124924 1.19429 13.0743 67.1581 86.1515 6.63146
M10 3.33717 0.129158 1.16475 13.6057 66.0178 79.3855 6.66219

The values are quite close to another. Hence, the differences in figure 7.9a are mainly
due to different modeling assumptions. For the assumed impact of Ara-C concentration
on the proliferation rate exponent in M10, the death rate F is reduced on days 1 and
3, figure 7.9c. At day 5, Ara-C is administered when xma < B, indicated by a white
background in figure 7.9c. This leads to a higher absolute value of the feedback term
and hence to an increased death rate compared to M5. The increased death rate at day 5
compensates the decreased ones at day 1 and 3, leading to almost identical dynamics for
M5 D135 and M10 D135 in 7.9a. For the D123 schedule, figure 7.9d shows the reduced
death rate F on all (grey) treatment days 1,2 and 3. As a result, the PM based on M10
recovers faster than the PM based on M5.

Figure 7.10 is organized as figure 7.9, but the PMs were calculated for a different set
of WBC counts from an exemplary patient defined as II. Here, the initial WBC count
xma(t0) is below the baseline WBC count value B (hence and in contrast to figures 7.9c–d
we start in a white, not grey, area). Thus, for identical model parameters the death rates
of M10 would be increased for the D135 treatment and no compensation as in figure 7.9
would occur. The estimated model parameters are:

Model B ktr γ slope xpr(0) xtr(0) xma(0)
M5 4.33160 0.156974 0.482914 7.85156 47.5211 29.6839 3.83573
M10 4.35574 0.160689 0.471371 1.61711 37.9152 28.4292 3.81437
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Figure 7.9: Comparing personalized models M5 and M10 for D123 and D135 schedules
(exemplary patient I). (a) Exemplary prediction of D123 and D135 schedules based on
the gold-standard M5 and the promising extension M10. The D135 predictions are
similar, the D123 predictions differ. (b) As (a), but proliferating cells xpr are shown. The
proliferating cell count of the personalized model (PM) based on M10 D123 recovers
fastest, followed by M5 D123. For both D135 schedules the recovery takes longer. (c)
Proliferation rate F for (a). Grey indicates at what times the white blood cell (WBC) count
is above the baseline WBC count (xma ≥ B), resulting in reduced feedback. Compared
to M5, the death rate for M10 is decreased at days 1 and 3, and increased at day 5. (d) As
in (c), but for the D123 schedules. Compared to M5, the death rate for M10 is decreased
at days 1,2, and 3. This explains why M10 resulted in a faster WBC recovery compared
to M5.

Obviously, the model parameter slope is reduced significantly for M10. As can be
seen in figure 7.10c this leads to a similar situation as in figure 7.9c, with a reduced
death rate on day 1, and an increased death rate on days 3 and 5. As a result, M5 D135
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and M10 D135 in figure 7.10a are almost identical.
The death rates for the D123 schedule are reduced compared to the D135 schedule,

as shown in Figures 7.10c–d. As in Figures 7.9c–d, the reduction is more significant for
the M10 model, which leads to the faster recovery of proliferating cells in figure 7.10b
and hence faster recovery of WBC counts in figure 7.10a. Figures 7.9 and 7.10 show the
two possible scenarios for the start of a chemotherapy, either xma(t0) ≥ B or xma(t0) < B.
In both the WBC counts decrease after day 1 of the treatment. This decrease leads
to increased feedback terms (B/xma)γ and hence to increased death rates. Therefore,
administering Ara-C on days 1, 3, 5 instead of days 1, 2, 3 kills more healthy progenitor
WBC. In M10 this important effect is stronger than in the gold-standard model M5.
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Figure 7.10: Comparing personalized models M5 and M10 for D123 and D135 sched-
ules (exemplary patient II).

Figure 7.11 is organized as figure 7.9 and based on the same set of WBC counts, but
comparing M10 and M12. The estimated model parameters are
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Model B ktr γ slope xpr(0) xtr(0) xma(0)
M5 3.32589 0.124924 1.19429 13.0743 67.1581 86.1515 6.63146
M10 3.33717 0.129158 1.16475 13.6057 66.0178 79.3855 6.66219
M12 3.50825 0.127320 1.22611 10.0560 69.1946 80.0315 6.64934

Model M10 assumes a feedback term (B/xma)γS(x1) for the proliferation rate F, while M12
assumes (Bbm/(0.01 ∗ xpr + 0.99 ∗ xtr))γS(x1). Administration of Ara-C leads to a reduction
of WBC progenitor cells, compare figure 7.11b. With a time delay of a few days this
reduction then leads to a reduction of WBC counts as well, see figure 7.11a. Using WBC
progenitor cells in the feedback term in M12 thus magnifies the effect described in figures
7.9 and 7.10. For the D135 schedule this is compensated by a reduced estimated slope
value. For D123, the death rates of M12 are increased in the peaks, but the proliferation
rate is slightly higher. As can be seen in figure 7.11b, the M12 WBC progenitor cells
recover faster, although they are below the M10 cell count at day 5.

It is shown that the negative proliferation rate F of M10 and M12 compared to M5 has
an altered dynamical behavior during chemotherapy due to the increased γ value from
the PD effect achieving a faster WBC recovery for D123 schedules. For this accelerated
feedback relationship between WBCs and G-CSF biological interpretations are given in
the discussion.

In conclusion, the comparison of WBC recovery times between D123 and D135
treatments is a suitable criterium for model discrimination.

The next study is performed to compare the calculated trec values from M1-M12
with clinically collected values to figure out which of the models coincide with clinical
findings. We use 444 PMs (using M1–M12 and clinical data from 37 cycles with schedules
D135, d135, D123 and D12) to predict the outcome of D135 and D123 schedules. The
median values of the predicted trec are compared to the values from a subset of data (108
with D135 and 259 with D123 schedules) from the AMLSG 07-04 trial [20]. M9, M10,
and M12 result in roughly 4 days faster trec for D123 compared to D135, similar to the
clinical result from the literature and in contrast to the 1 day difference of M5 (compare
table 7.7).

The individual results are qualitatively confirmed by the predicted trec values from
the population approach (see table 7.11). The estimated parameters are approximately in
the same range as published values which considered neutrophils and not leukocytes
[55, 74]. This is true for B and its IIV. A comprehensive discussion of ktr and the
related MMT was already given previously. The parameter slope cannot be compared
as we present the first study with high-dose Ara-C. The estimated γ value is roughly
two to three times higher compared to published values for the reason that we only
use one transition compartment. The γ values for M2, containing three transition
compartments, are in the same range then published values. The models from Henrich
et al. and Mangas-Sanjuan et al. are not further considered, as both models simplified
to the Friberg model after parameter estimation. For the model from Henrich et al., the
estimated population parameter value ftr is 0.96, supporting the visual assessment that
the patients’ nadirs are not decreasing during the CCs and underlying the clinical finding
that single injections of Ara-C compared to treatments with carboplatinum, busulfan,
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Figure 7.11: Comparing personalized models M10 and M12 for D123 and D135 sched-
ules (exemplary patient I).

bis-chloronitrosourea and/or total body irradiation are less cytotoxic to HSCs leading
more rarely to long term BM injury [198]. The estimated parameter values kcycle = 0.0009
and Fprol = 0.941 of the model from Mangas-Sanjuan et al. yield a non-existing stem
cell cycle. A possible reason for the non-identifiability of the parameters might be the
limited schedule variation. The authors state that a vast variation of schedules has to
be available for parameter identification [54]. The model from Stiehl et al. provide the
highest model accuracy with respect to the final objective function value, but exhibit
disagreeing WBC recovery times and large relative standard errors (see 7.8). Therefore
we do not consider this model in our further studies.

We analyze the three compartment model from Stiehl et al. [48] in which, except
for the last compartment, each compartment contains parameters for the fraction of
self-renewal (a1, a2) and for differentiation (p1, p2). Similar to the general mathematical
model (3.17) the PD effect E is applied to the proliferating cells c1, complementing
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Table 7.7: Double cross-validation with clinical data from two independent clinical
trials. Shown are the median, standard deviation, minimum and maximum (in brackets)
of trec, the leukopenia time tleu (the number of days with white blood cell count ≤ 1 G/L)
and nadir for D123 and D135 schedules. The first two rows show values from two
independent clinical studies that serve as a comparison. The second part of the table
shows prediction results. Predictions were calculated with personalized models (PMs)
from our clinical data with underlying mathematical models M1–M12. Model M5
explained well the outcome of schedule D135, but showed a significant mismatch of
more than three days for schedule D123. The predictions using the extended model
M10 were better for schedule D123.

trec tD135−D123
rec tleu nadir

D123 D135 D123 D135 D123 D135
Clinical Data 19.3 ±1.0 23.1 ±2.9 – – 11.5 ±3.5 12.5 ±4.7 0.3 ±0.0 0.3 ±0.2
nD123= 2,nD135= 23 (18.6 20.1) (14.1 27.1) – – (9.1 14.0) (5.0 20.0 ) (0.24 0.27) (0.1 0.8)
Subdata 18.0 – 22.0 – – – – – – – – – – –
(AMLSG 07-04)
nD123= 259,nD135= 108
Model Group D123 D135 D123 D135 D123 D135

M1 37 PMs
21.9 ±3.7 22.6 ±3.7 0.7 ±0.2 13.3 ±4.5 13.3 ±4.6 0.2 ±0.2 0.2 ±0.2

(16.0 34.8) (17.0 35.6) (0.3 1.0) (7.5 28.3) (7.5 28.5) (0.0 0.6) (0.0 0.6)

M2 37 PMs
22.2 ±3.5 22.6 ±3.5 0.5 0.2 13.3 ±4.2 13.4 ±4.2 0.3 ±0.2 0.3 ±0.2

(16.4 33.3) (17.4 33.8) (0.2 1.0) (7.5 26.2) (7.6 26.4) (0.1 0.6) (0.1 0.6)

M3 37 PMs
22.3 ±2.7 23.2 ±2.7 0.9 0.1 13.2 ±3.7 14.1 ±3.6 0.4 ±0.2 0.4 ±0.2

(17.1 30.7) (18.2 31.7) (0.8 1.3) (7.2 23.3) (8.3 23.9) (0.1 0.8) (0.1 0.8)

M4 37 PMs
22.4 ±2.8 23.3 ±2.7 0.9 0.1 13.2 ±3.7 14.1 ±3.6 0.4 ±0.2 0.4 ±0.2

(17.0 30.9) (18.1 31.9) (0.8 1.2) (8.5 23.5) (9.4 24.1) (0.1 0.8) (0.1 0.7)

M5 37 PMs
22.4 ±3.1 23.3 ±3.0 0.9 0.2 12.7 ±4.0 13.5 ±4.0 0.3 ±0.2 0.4 ±0.2

(16.8 32.5) (18.0 33.5) (0.1 1.2) (6.6 25.5) (7.6 26.1) (0.1 0.9) (0.1 0.9)

M6 37 PMs
22.6 ±3.4 22.8 ±3.3 0.2 0.2 13.2 ±4.0 13.2 ±4.0 0.4 ±0.2 0.4 ±0.2

(14.5 32.0) (15.3 32.4) (0.0 0.8) (4.6 25.0) (4.7 24.9) (0.1 0.9) (0.1 0.9)

M7 37 PMs
22.5 ±2.7 23.0 ±2.7 0.5 0.2 12.8 ±4.3 13.2 ±4.7 0.3 ±0.4 0.3 ±0.4

(17.8 31.0) (18.4 31.8) (0.0 1.1) (0.0 23.6) (0.0 23.9) (0.1 2.7) (0.0 0.9)

M8 37 PMs
21.7 ±2.7 22.6 ±2.6 0.9 0.1 12.6 ±4.0 13.5 ±3.9 0.3 ±0.2 0.4 ±0.2

(16.7 29.4) (17.9 30.5) (0.6 1.3) (6.5 22.1) (7.3 22.7) (0.1 0.8) (0.1 0.7)

M9 37 PMs
20.1 ±2.7 23.7 ±2.6 3.1 0.9 10.5 ±4.0 14.7 ±3.6 0.4 ±0.2 0.3 ±0.2

(16.0 28.9) (18.6 31.6) (0.8 5.2) (3.4 21.7) (7.3 23.9) (0.1 0.9) (0.0 0.7)

M10 37 PMs
20.3 ±3.2 24.2 ±3.2 3.5 1.0 11.6 ±4.4 15.2 ±3.9 0.4 ±0.2 0.3 ±0.2

(15.4 32.4) (18.9 35.7) ( 0.9 5.8) (1.6 25.5) (7.6 28.4) (0.1 1.0) (0.0 0.7)

M11 37 PMs
22.3 ±3.0 23.2 ±2.9 0.9 0.1 12.7 ±4.1 13.5 ±4.0 0.3 ±0.2 0.4 ±0.2

(16.7 32.6) (17.9 33.7) (0.7 1.2) (6.5 25.6) (7.6 26.2) (0.1 0.8) (0.1 0.7)

M12 37 PMs
20.4 ±3.3 24.0 ±3.4 4.0 1.2 11.9 ±4.4 15.4 ±3.9 0.4 ±0.2 0.2 ±0.2

(15.6 32.9) (18.7 36.4) (2.0 8.2) (3.1 26.0) (8.4 29.1) (0.1 0.9) (0.0 0.6)
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Table 7.8: Objectives (final objective function values from FOCEi method (OBJ),
population predicted t123

rec and t135
rec values), parameter and coefficient of variation (CV)

estimates with relative standard errors (RSE) from nonlinear mixed-effects modeling
of model from Stiehl et al. [48].

Stiehl2018[48]
Objectives

t123
rec 25.16

t135
rec 25.68

Final OBJ -399.89
Fixed Effects (RSE%)

a1 0.5929(13)
a2 0.0003(89)
p1 1.9880(80)
p2 0.1971 (8)
k 0.0337(75)
slope 0.9270(74)

IIV CV%(RSE%)
a1 1.8 (176)
a2 32.4(47222)
p1 44.4 (195)
p2 28.7 (136)
k 32.1 (19)
slope 33.4 (60)

Residual Error (CV%)
Proportional 0.106(5)

98



7.1. PERSONALIZED MATHEMATICAL MODELS

the state equation of c1 by the term −Ea1s(t)p1c1. As it is not exactly known at which
maturation step the ability of self-renewal gets lost, the values of the fractions of self-
renewal ai, i = 1, . . . ,ntr can help specifying the step. As we only consider one transition
compartment it turns out that almost only the stem cells perform self-renewal as the
fixed effect parameter value of a2 is close to zero. After the chemotherapy, the cells in the
transition compartment draw their whole ability on differentiation such that the WBC
recovery is speeded up and homeostasis is reached again as soon as possible. Due to
the deviation of the recovery times with clinical findings and the large relative standard
errors, we do not use the model for further investigations.

The simulation study analyzing the effect of the PK variability on the resulting
recovery times of schedules D123 and D135 for models M3 and M10 (with I1) reveals
that model M10 is more sensitive to different high-dose Ara-C treatment schedules
compared to model M3 despite the high inter-individual PK variability. This is verified
in figure 7.12 presenting boxplots of 500 simulated trec values for both models and
schedules with constructed IIV on the PK.

Discussion

High-density WBC counts from 23 AML patients are collected and used to personalize
12 mathematical models and analyze their prediction accuracy with respect to different
modeling hypotheses and treatment schedules. The high prediction accuracies of the
PMs, especially around the nadir, confirm previous claims [199, 200] that the general
approach of in-silico studies can be used for clinical decision support. As clinical
decision support we understand tools which help physicians to monitor and predict
WBC dynamics and the duration and grade of myelosuppression. In combination with
clinical expertise on the impact of schedules on relapse probabilities and their small
scope determining the start of the next cycle due to subjective experience and the patients
fitness, this might have an important clinical impact via altered treatment schedules
which might eventually result in decreased depth and duration of myelosuppression.

Current drawbacks are the high model uncertainty, if insufficient information is
available. This makes precise and reliable predictions difficult (compare figures 7.8c–
d). Furthermore, the lack of leukemic cell dynamics and the validation of the PMs
based on one specific chemotherapy schedule might lead to not appropriate models
concerning an optimization of Ara-C dosage.

Comparing the estimated parameter values with published values, the estimated
baseline value for the WBCs is within the normal human WBC range of 4.5 − 10 G/L
but reduced by 2 G/L compared to published baseline values for the Friberg model
being in the range of 7 to 7.8 G/L [52]. The MMT of 128 h for M3 using the corrected
formula [45] is reasonable and fits into the range of previously published values [201].
The estimated γ values are roughly two to three times higher compared to published
values for the reason that we only use one transition compartment. The γ values for M2,
containing three transition compartments, are in the same range then published values.
The decrease of the slope parameter value from one to two PD effects occurs as the effect
of Ara-C is distributed on two different sites of action. During the parameter estimation,
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Figure 7.12: Simulation study analyzing the sensitivity of model M5 and M10 on
interindividual variability (IIV) of the pharmacokinetic(s) (PK) when schedules D123
and D135 are applied. (a) As figure 3.7, but with 500 simulations of our fitted two-
compartment PK model with interindividual variability on the clearance and the central
volume.
(b) Recovery times (trec) from 500 simulations each of models M3 and M10 (with I1)
applying schedules D123 and D135 with inter-individual variability given as coefficient
of variation (CV) on PK parameters clearance (45%) and central volume (70%). Red
lines within the boxes are the medians, the upper and lower box limits are the first
(Q1) and third quartiles (Q3) of the data. The lower whiskers will extend to the first
trec values greater than the first quartiles minus the 1.5-times the interquartile ranges
(IQR) (Q1 − 1.5 × IQR). Equivalently, the upper whiskers will extend to last trec values
less than Q3 + 1.5 × IQR. Beyond the whiskers, data are considered as outliers and are
plotted as individual points (+). The simulation study revealed that model M10 was
more sensitive to different high-dose Ara-C treatment schedules compared to model
M3 despite the high inter-individual PK variability.

we observed for some CCs correlations (> 0.9) between γ and ktr and between γ and
slope. But these correlations have no influence on the parameter identifiability. Further,
it is shown that under certain assumptions, which we fulfill (kprol = ktr), the Friberg
model is structurally globally identifiable [201]. In future studies, we propose to use
global design measures from [202] to provide treatment schedules reducing global
parameter sensitivity and undesired parameter correlation.

We show that an analysis based on a fixed chemotherapy schedule cannot discrim-
inate between different modeling hypotheses. The agglomerative nature of the mathe-
matical models leads to a choice of model parameters that is not only personalized to
the patient, but also to the applied schedule. Therefore, we use different schedules for
personalization and prediction to overcome this problem and to allow discrimination of
the models. This approach allows us to distinguish between the modeling hypotheses
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Table 7.9: Comparison of model predictions for low-dose treatment schedules. As in
table 7.7, predicted nadir values for different treatment schedules are shown, based on
underlying mathematical models M1–M12. Shown are the values of median, standard
deviation, minimum and maximum (in brackets) for two low-dose schedules. Both as-
sume a continuous infusion throughout days 1 to 5, with either 100 mg/m2 or 400 mg/m2

Ara-C per day. No clinical observations are available to compare these predictions, but
they give additional insight on the possibility to discriminate models M1–M12 and a
general trend showing that for 100 mg/m2 per day despite of M7-M9 almost all nadir
values are above 1 G/L. The nadir values for the low-dose infusion with 400 mg/m2

Ara-C per day are in the same range compared to the results of the high-dose schedules
(Two further personalized cycles were excluded because for some models no recovery
after chemotherapy was observed). The simulated nadirs above 1 G/L for the low-dose
schedule (100 mg/m2) reflect the lower toxic effects represented by required hospitaliza-
tion due to fever and neutropenia and platelet transfusions compared to the low-dose
(400 mg/m2) and high-dose schedules explored in [10]. As M7-M9 are not able to reflect
the lower toxic effects through higher nadir values, the simulation study serves as an
indicator that the secondary effect of Ara-C may not be an Ara-C induced reduction of
the transition rate.

nadir
Model Group D1-5 100 D1-5 400

M1 35 PMs 1.6 ±0.8 0.3 ±0.2
(0.0 3.6) (0.0 0.8)

M2 35 PMs 1.7 ±0.8 0.3 ±0.2
(0.5 3.7) (0.1 1.0)

M3 35 PMs 1.8 ±0.9 0.4 ±0.2
(0.8 4.3) (0.2 1.1)

M4 35 PMs 1.7 ±1.0 0.4 ±0.2
(0.8 4.9) (0.2 1.1)

M5 35 PMs 1.7 ±1.1 0.4 ±0.2
(0.7 5.5) (0.2 1.0)

M6 35 PMs 1.5 ±1.1 0.4 ±0.3
(0.9 5.9) (0.2 1.2)

M7 35 PMs 0.5 ±0.5 0.1 ±0.3
(0.1 3.4) (0.0 1.0)

M8 35 PMs 0.1 ±0.1 0.1 ±0.1
(0.0 0.4) (0.0 0.4)

M9 35 PMs 0.7 ±0.4 0.2 ±0.1
(0.1 1.6) (0.0 0.5)

M10 35 PMs 2.1 ±1.3 0.6 ±0.4
(0.6 5.8) (0.1 1.8)

M11 35 PMs 1.6 ±1.1 0.4 ±0.2
(0.9 5.5) (0.2 1.0)

M12 35 PMs 2.4 ±1.2 0.7 ±0.5
(0.8 5.8) (0.1 2.1)
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Table 7.10: Model constants, patient-specific constants, and units of model parame-
ters.

Constant Unit Value
Ara-C rate elimination k10 1/day 98.64
Ara-C rate distribution k12 1/day 2.69
Ara-C rate distribution k21 1/day 1.29
Molecular Mass MMAraC g/mol 243.217
Volume of central L 37.33
compartment Vc
Death rate kma 1/day 2.3765
Patient-Specific Unit Range
BSA m2 [1.61, 2.07]
Infusion duration day 3/24
Ara-C dosage g/m2 [1, 3]
Model parameter Unit
ktr Transition rate 1/day
γ Feedback exponent –
slope Pharmacodynamics L/µmol
B Baseline WBC count 109/L
xpr(0) Initial value 109/L
xtr(0) ntr initial values 109/L
xma(0) Initial value 109/L

The values are used to obtain personalized mathematical models. The constants are
determined from published data [92] and applied to all patients. To shorten notation
we also use cV = 1

Vc MMAraC
. The patient-specific infusion times and dosages that define

a treatment schedule are modified for simulation and optimization of different
schedules. The range shows minimum and maximum values of all considered data in
the clinical study.

implemented in models M5–M12 and enables us to find the suitable model assumption
considered in M9, M10, and M12. In our opinion this procedure should be routinely
applied, preferably using high density WBC counts for different schedules in the same
patients. As an alternative to such a tedious clinical study we suggest to use average
trec values as a discrimination criterion for competing models.

Comparing the trec values for D123 and D135 treatments from the PMs with our
clinical data and the AMLSG 07-04 trial in table 7.7 and 7.9 implies, that model M10
(based on Ockam’s razor in comparison to M9 and M12 ) is the best candidate among
M1–M12 for future work on the simulation and optimization of intermediate to high-
dose Ara-C treatment schedules.

The 1 day shift in trec values between our clinical data and the AMLSG 07-04 trial
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Figure 7.13: Goodness-of-fit plot for all but three (because of white blood cell counts
greater 1) measured and calculated trec values for M10 after model personalization
for each consolidation cycle. The 39 measured trec values are slightly higher due to the
coarser measurement grid.

can be explained by the age difference between patients in our clinical data (median 62
and 57 years for D123 and D135, respectively) and the subdata of the AMLSG 07-04 trial
(median of all patients in the trial 49 years) and a related statistical analysis: Jaramillo et
al. [20] found in a multivariable analysis a significantly longer WBC recovery for older
patients (hazard ratio of a 10-year age difference, 0.89; P = 0.001) [20] and a significantly
shorter WBC recovery for patients receiving D123 compared to the reference group
D135 (hazard ratio, 1.94; P < 0.0001) [20] which coincides well with our findings.

Regarding the PK model, no published compartment models for high-dose Ara-C
are available. Comparing our model with published low-dose Ara-C models, we show
that the published models do not reach the measured maximum Ara-C concentrations
from high-dose schedules (see figure 3.7) so that we rely on our derived model. As we
logarithmize the collected Ara-C concentrations, lower values become more important
during parameter estimation such that our fitted PK model slightly underpredicts the
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(f)

Figure 7.14: Cross-validation of predicted white blood cell (WBC) counts from per-
sonalized models M1-M12 and measured WBC counts for six patients treated with
D135.
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(f)

highest Ara-C concentrations (see figure 3.7). Nevertheless, our model achieves higher
values compared to the models from [76] and [94] providing a more reasonable PK
behavior of Ara-C. We estimate a smaller central volume leading to a reduced clearance
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Figure 7.16: Cross-validation of predicted white blood cell (WBC) counts from per-
sonalized models (PMs) M1-M12 and measured WBC counts for five patients (a)-(e)
treated with d135 and one patient (f) treated with D12. The PMs provide good predic-
tions for patient (a) and (f) but show mismatches in recovery times and nadir values for
patients (b)-(e).

Table 7.11: Objectives (final objective function values from FOCEi method (OBJ),
population predicted t123

rec and t135
rec values), parameter and coefficient of variation (CV)

estimates with relative standard errors (RSE) from nonlinear mixed-effects modeling
of models M3 and M10 with initial condition approach I1.

M3 M10 (with I1)
Objectives

t123
rec 22.09 20.35

t135
rec 22.98 23.96

Final OBJ -353.94 -348.49
Fixed Effects (RSE%)

B 5.3248 (6) 5.1939 (9)
ktr 0.18694(5) 0.19383(4)
γ 0.48587(9) 0.46885(5)
slope 8.5915 (9) 5.5101 (7)
inter–individual Variability CV%(RSE%)
B 35.2(11) 34.9(10)
ktr 21.0(17) 21.7(16)
γ 32.4(24) 36.6(23)
slope 38.9(16) 34.3(14)

Residual Error (CV%)
Proportional 0.109(9) 0.109(10)

activity derived from an almost equivalently estimated elimination rate constant value
(6.2). The distribution rate constants differ by a factor of 2 to 2.5 and the peripheral
volume by a factor of almost 10. Future PK studies for high-dose Ara-C can be used for
model verification or updating our model parameters. In a simulation study we analyze
the influence of constructed PK variability on the WBC recovery time for models M5
and M10. We show that model M10 is more sensitive to varied PK dynamics and reflects
clinical findings more accurately, i.e. that the standard and dense treatment plans result
in significantly different WBC recovery times. M5 is not able to match the clinical results.
A critical part of the study is the constructed IIV. In Krogh et al.[76] IIV was analyzed
for low-dose Ara-C schedules. We use the published values as exemplary IIV values
within our simulation study. Obviously, the results should be treated with care as IIV
is related to the underlying study, treatment, model and population and thus cannot be
applied to other studies in general. However, the IIV impacts only a small part of our
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Figure 7.17: Generated visual predictive checks, derived by 1000 simulations, for
leukocytes [G/L] versus time [days] starting with the first measurement before dosing
for model M3 (a) and M10 (with I1) (b). Blue circles are the measured white blood
cell (WBC) counts of 23 acute myeloid leukemia patients described in section 7.1.1. One
measurement was taken at timepoint 88.98 [days] with the value 7.18 [G/L] which is
not shown in the visual predictive checks (VPCs). Red lines show the median (solid)
and 5th and 95th percentiles (dashed) of measurements. The shaded areas represent
the 95% confidence intervals around the 5th (blue), 50th (red) and 95th (blue) simulated
percentiles of the model predictions. Regarding the VPCs, model M3 and M10 have an
almost equivalent prediction accuracy. The 50% percentiles of measurements and model
predictions perfectly overlap, thus supporting our individually based results from 7.6.
The same applies to the start of the 5% and 95% percentiles until the nadir. After the
nadir the 5% and 95% percentiles of the model predictions recover slightly faster/slower
compared to the measurements. At day 30 the percentiles of measurements and model
predictions coincide again.

sensitivity analysis and we do not expect qualitative changes for updated IIV values.
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7.1.2 PK/PD model with cytarabine and lenograstim (Data Ulm)

Secondary pharmacodynamic effect of Ara-C

To validate the proposed secondary PD effect of Ara-C on γ [181] for a larger variety of
Ara-C treatment schedules, we first concentrate on a subset of data without exogenous
G-CSF administration. We perform parameter estimations for three models (standard
Ara-C myelosuppression model and two extensions with a secondary PD effect). The
objective function values (least squares fitting term) and the estimated parameter values
are shown in table 7.12.

Table 7.12: Results of parameter estimations for three different pharmacoki-
netic(s)/pharmacodynamic(s) models without (Q14AraC) and with (Q14γAraC) a sec-
ondary pharmacodynamic(s) effect of Ara-C on the proliferation term γ and with an
additional parameter to estimate this effect (Q14γ̂AraC). Shown are final objective
function values, root mean squared error (RMSE), parameter estimates of fixed effects,
interindividual variability as a coefficient of variation (CV%) with relative standard
errors (RSEs) in brackets and proportional additive residual errors.

Model Q14AraC Q14γAraC Q14γ̂AraC
Objective value 102.313 74.417 27.751
RMSE 1.079467 - 1.074160

Fixed Effects (RSE%)
B 5.42(4) 5.05(6) 5.31(5)
ktr 0.177(3) 0.1768(3) 0.175(3)
slope 9.19(6) 6.16(7) 7.68(8)
γ 0.659(4) 0.689(4) 0.676(4)
slopeG 0 FIXED 1 FIXED 0.470(12)

Interindividual Variability CV% (RSE%)
B 32.7(15) 30.2(14) 31.8(16)
ktr 13.3(14) 13.7(20) 13.8(17)
slope 35.6(17) 31.8(11) 33.3(16)
γ 17.7(20) 15(29) 16.1(25)

Residual Error (RSE%)
Proportional additive error 0.171(11) 0.166(11) 0.162(11)

The estimated fixed-effects parameter values for B, ktr and γ and the IIV for all
parameters are in the same range for all models. The estimated fixed-effects parameter
value for slope significantly decrease when a second PD term is introduced. With slopeG
as a degree of freedom, its value is 0.47. IIV on slopeG is also tested with an objective
function reduction from 27.751 to 13.795, but with a high IIV and standard error, we
neglected IIV on slopeG. The model fit improves (the objective function decreased)
from the standard model to those with a secondary PD effect.
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Modeling exogenous G-CSF

The effect of lenograstim on WBC counts is visually assessed by the cyclewise WBC dy-
namics after CT. Figure 7.18 shows that patients who received lenograstim had a rapid
increase of WBC counts during WBC recovery. Figure 7.19 shows the VPCs derived
from the final model after parameter estimation highlighting that patients who received
lenograstim had a rapid increase of WBC counts during WBC recovery (compare the
measurements in (a) and (b) after nadir). Further, the figure underlines the good match
between model and clinical data capturing the rapid increase of WBC counts during
WBC recovery for patients receiving lenograstim. The model slightly overpredicts the
50th and 97.5th percentiles for patients who did not receive lenograstim. The evalu-
ation of model fitting via the medians of the individual mean absolute error (MAE)
and RMSE values in table 7.13 reveal that the extended myelosuppression model with
a subcutaneous absorption model and two transit compartments describe the clinical
data best. The first column in table 7.14 shows the estimated model parameters. During
model development we investigate the individual parameter estimates grouped by the
lenograstim administration. The boxplots of the four parameters in figure 7.20 highlight
that ktr and γ are significantly increased in the model without consideration of an ab-
sorption model for patients who received lenograstim administrations. After extending
the model with the subcutaneous absorption model and two transit compartments the
parameter values of γ are almost equal between the two groups whereas the ktr values
only approached to a small degree. Values of slope were higher and the WBC steady
state values were slightly lower in the group of lenograstim administrations. The VPCs
in figure 7.19 underline the good match between model and clinical data. Also the rapid
increase of WBC counts during WBC recovery is captured with a slight overprediction
of the 50% and 97.5% percentiles before reaching steady state.

Table 7.13: Medians of individual mean absolute error (MAE) and root mean squared
error (RMSE) with standard deviations in parenthesis for different myelosuppres-
sion models with and without consideration of lenograstim. The consideration of
lenograstim (Leno) describe via a single pathway absorption model iteratively increases
the model fits by the inclusion of additional transit compartments (Transit) until the best
fit is achieved with two transit compartments.

Model noLeno noTransit oneTransit twoTransit threeTransit
#Transit – 0 1 2 3
Leno no yes yes yes yes
MAE 0.842(3.22) 0.812(3.34) 0.802(3.31) 0.797(3.31) 0.806(3.30)
RMSE 0.918(0.84) 0.901(0.86) 0.896(0.86) 0.893(0.86) 0.898(0.86)

Modeling leukemic blasts

The PK/PD model is fitted to the clinical data with and without consideration of the
leukemic cell lineage. The estimated parameter values are presented in the second and
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Figure 7.18: Cyclewise measured white blood cell (WBC) counts from two datasets
with different colors for the datasets and lenograstim administration (blue: with
Leno (Ulm), green: no Leno (Ulm), black: no Leno (MD)). At time point 0 first Ara-C
infusion starts. Cycles in which lenograstim is administered show a rapid WBC increase
during WBC recovery.

third column of table 7.14. The leukemic blast lineage only has a minor effect on the
estimated parameter values with an increase of the slope parameter and the variance of
the exponential error model.

The model performance of describing the clinically observed circulating WBC counts
and relative blast counts in the BM is shown as VPCs in figure 7.21. The median of
observed WBC counts coincides with the median of calculated WBC counts and falls
within or close to its 95% prediction interval (blue area). The 2.5th percentile of the
model shows an underestimation in the first CC and the 97.5th model percentile shows
overestimations in all CCs. Considering the VPC of the blasts, the 95% prediction
intervals of the 50th and 97.5th percentiles indicate that the model assumes a faster
increase of blasts during the three CCs compared to the almost constant (2.5th and 50th
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Figure 7.19: Generated visual predictive checks stratified by lenograstim adminis-
tration and derived by 1000 simulations with the final parameter estimates from
the myelosuppression model with two transit compartments (fourth column of ta-
ble 7.13), for circulating white blood cells (WBCs) (G/L) versus time (day). Black dots
are the measured WBC counts. Black and blue lines show the median and 2.5th and
97.5th percentiles of measurements and model predictions, respectively. The shaded ar-
eas represent the 95% confidence intervals around the 2.5th, 50th and 97.5th percentiles
of the model predictions.

percentiles) and decreasing (97.5th percentile) dynamics observed within the patients.
Figure 7.22 shows the influence of G-CSF administrations (yes or no) and of varied

G-CSF steady states on the WBC recovery. Ara-C without lenograstim administration
results in a longer recovery time and a slightly lower WBC count before the start of the
second and third CC. As a further consequence, the number of leukemic blasts in the
BM was higher and increase more over time, than to the leukemic blast count when the
actual treatment schedule of lenograstim is conducted. A different G-CSF steady state
affects the recovery time, where lower steady-state values provoke an overproduction
of WBC counts, leading to a higher value than the WBC steady state.

We investigate the out-of-sample prediction performance of the final model with
its extension to lenograstim and leukemic blasts and analyze the potential of different
treatment schedules derived by mathematical optimization.

Parameter estimation results for the data subset (compared to figure 5.1) are shown
in table 7.14. Compared to the in-sample parameter estimates, the values of B, ktr, slope
and γ are almost equal to the values derived from the whole dataset and the values of
ka and x0

l1 are slightly decreased, respectively increased. The prediction performance is
visualized as a goodness-of-fit plot in figure 7.23. Both in-sample and out-of-sample,
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Table 7.14: Results of parameter estimations for different pharmacoki-
netic(s)/pharmacodynamic(s) models and datasets. Shown are residuals (objective
value), parameter estimates of fixed effects, interindividual variability as a coefficient of
variation (CV%) and exponential (exp.) residual errors as variance with relative stan-
dard errors (RSEs) in brackets for in-sample and out-of-sample (without measurements
of the last consolidation cycle).

in-sample out-of-sample
Dataset cyclewise patientwise patientwise patientwise
Blasts no no yes yes
# patients 67 44 44 24

Fixed Effects (RSE%)
B 4.67(6) 4.67(7) 4.85(8) 4.50(11)
ktr 0.196(10) 0.236(3) 0.218(6) 0.224(7)
slope 10.1(3) 7.94(11) 8.53(8) 8.95(7)
γ 0.701(4) 0.651(4) 0.680(6) 0.679(7)
ka 3.16(3) 3.15(26) 3.20(21) 2.828(31)
x0

l1 – – 0.029(28) 0.0434(19)
Interindividual Variability CV% (RSE%)

B 39.6(8) 40.9(12) 49.3(14) 47.2(16)
ktr 19.3(10) 14.3(22) 25.2(21) 25.4(20)
slope 42.1(13) 55.8(17) 11.8(24) 17.9(21)
γ 19.8(10) 19.7(16) 21.2(15) 23.3(26)
ka 103.3(16) 95.1(28) 58.6(34) 119.6(22)
x0

blasts – – 67.9(23) 24.0(101)
Residual Error (RSE%)

Exp. error 0.152(9) 0.284(8) 0.315(8) 0.250(10)

the values are centered around the line of identity. No systematic error is apparent, only
a slight overprediction of small WBC counts.

Global sensitivity analysis

A global sensitivity analysis is conducted to identify the impact of each parameter, re-
spectively constant, on the variability of two model outputs [203]. The model outputs
of interest are the leukemic cells in the BM (xl1) at the end of a CC and the nadir of cir-
culating WBCs similar to the two objective function terms in the optimization problem
(7.24). The sensitivity analysis is performed in R (version 3.6.1) using the packages mrg-
solve (version 0.10.0) for solving the ODE system (6.10) and sensitivity (version 1.17.0,
sobolmartinez function) for the global sensitivity analysis. The function sobolmartinez
implements the Monte Carlo estimation of the Sobol’ indices for both first order and
total indices for each parameter using correlation coefficient-based formulas. These are
called the Martinez estimators. The Sobol method is based on the decomposition of the
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Figure 7.20: Boxplots of final parameter values of ktr, γ, slope and B grouped by
lenograstim administrations for models noLeno and twoTransit (see table 7.13).

model output variance into fractional contributions from effects of single parameters
considering no interaction between parameters (first order/main effect) or an interaction
between two (second-order), more or all (total effect) parameters. The theoretical back-
ground can be found in the tutorial [203] and references therein. The experimental setup
is chosen as follows. One CC is defined with Ara-C schedule D123 for an exemplary
patient with a BSA of 1.8 m2 and six 263 µg daily subcutaneous lenograstim admin-
istrations starting at day 9. Two datasets with 3800 (2 times 19 [number of variables]
times 100) sets of parameters are generated with uniformly chosen parameter samples
from a 0.5-fold decrease to a 1.5 fold increase in the nominal parameter values. The
contribution of each parameter to the variability in the two model outputs is presented
in 7.24. The leukemic cells in the BM as well as the nadir of circulating WBCs are influ-
enced by the elimination constant k10, the volume of the central compartment V and the
pharmacodynamic effect slope. The leukemic cells in the BM are further influenced by
the fraction constant a1 determining the fraction of daughter cells staying at the current
differentiation stage and the stem cell proliferation p1. The nadir of circulating WBCs is
additionally affected by B (Base), ktr, γ and kma. The global sensitivity analysis reveals
that the WBC nadir is mostly influenced by the hematopoietic parameters which we
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(b) VPC of rel. blast count in the BM.

Figure 7.21: Generated visual predictive checks, derived by 1000 simulations, for
circulating white blood cells (WBCs) [G/L] and relative (rel.) blast counts in the
bone marrow (BM) [%] versus time [day]. Black dots are the measured WBC counts,
respectively rel. blast counts in the BM. Black and blue lines show the median and
2.5th and 97.5th percentiles of measurements and model predictions, respectively. The
shaded areas represent the 95% confidence intervals around the 2.5th, 50th and 97.5th
percentiles of the model predictions.

individually determined during parameter estimation and therefore we achieve good
accuracies in predicting the nadir of the last CCs (c.f. 7.23). We determine the dynamics
of the leukemic cells in the BM and circulating blood via the estimation of the initial
value of the leukemic cell count in the BM. The sensitivity analysis shows that a1 and p1
has a larger impact compared to the initial value but the current data availability does
not allow to estimate those parameters such that we fix them to published values.

Discussion

The development, fitting, validation, and analysis of the PK/PD model is performed in
an iterative way starting with the modification of the myelosuppression model provided
by Quartino and colleagues [53] to Ara-C and to the subcutaneous administration of
lenograstim and completed with the incorporation of the leukemic blast lineage. Several
parameter estimations are performed to fit and validate the models. An analysis of the
estimated model parameters in table 7.14 shows that the fixed effects and IIVs are in
the same ranges in all the numerical studies, indicating that the general model behavior
is maintained despite model extensions. Equivalent to the results in [53], our model
predictions reveal an overprediction of the 50th and 97.5th percentiles for patients who
do not receive lenograstim (c.f. figure 7.19). During model development, we examine
two other models [48, 112]. Both models also show discrepancies in predicting the
97.5th percentile for the model from [112] and the 50th percentile for the model from
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Figure 7.22: Simulated white blood cell (WBC) dynamics (solid black line) of the
final model fitted to observed WBC counts of the first two consolidation cycles (blue
dots), and the Ara-C and lenograstim treatment schedules of one exemplary patient
are shown. The last cycle is used for model prediction and out-of-sample compari-
son. Simulated WBC dynamics for no lenograstim (dotted black line) and for different
granulocyte-colony stimulating factor (G-CSF) steady state values (from 20% to 140% of
used value) are shown (solid gray lines). No lenograstim administration prolongs WBC
recovery time and lower/higher G-CSF steady state values shortens/prolongs WBC re-
covery. Moreover, no lenograstim administration results in a slightly larger leukemic
blast count (the red area indicates the difference when compared to the actual treatment
schedule shown in the third row).

[48]. This line of research is not further investigated. The values of B are within the
normal human WBC range of 4−10 G/L and coincide with the values estimated in [181]
and with the neutrophil base value from Quartino et al. [53], assuming that the relative
amount of neutrophils ranges between 60−70%. Compared to published WBC baseline
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Figure 7.23: Goodness-of-fit plot visualizing observed versus individually calculated
white blood cell (WBC) counts for 24 patients. Models are cross validated using out-
of-sample (from the last consolidation cycle (CC)) WBC measurements (blue circles).
Red cubes show in-sample WBC measurements from the remaining first CCs.

values for the model by Friberg et al. ranging between 7 and 7.8 G/L [52], our values
are 2 − 3 G/L lower. The MMTs of 102-122 hours are reasonable and fit into the range
of previously published values [201]. The value of γ is larger compared to the model of
Quartino et al. [53], which might be due to the dense treatment schedules. The residual
error doubles from the cyclewise to patientwise management of the data, assuming that
interoccasional variabilities, which are not the focus of this work and as a consequence
not modeled, might be one of the reasons for an increased model-reality mismatch. This
mismatch is further increased with the consideration of relative blast counts in the third
column of table 7.14 introducing an additional source of error.

We visualize the parameter estimates separately for cycles in which lenograstim is
administered or not to analyze the influence of lenograstim on the parameter estimates.
Figure 7.20 shows that the steady state value of WBC is lower for patients receiving
lenograstim, indicating that the demand of exogenous G-CSF might be related to the
patients’ WBC steady states. In comparison to the estimated values of γ which are
almost equal between the two groups after modeling the lenograstim administration,
the transport rate ktr is still increased for the patients who received lenograstim although
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Figure 7.24: Global sensitivity analysis for the constants and parameters listed in
table 6.4. Model outputs of interest were the amount of leukemic cells in the bone
marrow at day 40 after treatment start and the nadir of circulating white blood cells.

exogenous G-CSF already influenced proliferation and maturation via the feedback term
(xg/Bg). We suspect that the higher values agglomerate biological phenomena that are
not correctly described or fully covered by the current model. Nevertheless, the model
exhibits the same behavior as in clinical trials with pegfilgrastim [20], i.e., a prolonged
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WBC recovery time of several days without G-CSF, compared to figure 7.22.
The model has several constant parameters that are fixed to published values. As

only WBC and relative BM blast counts are observed, this is necessary to avoid overfit-
ting and obtain a good predictive accuracy. However, the interpretation of parameter
values can now be misleading, as incorrect constants and modeling are usually compen-
sated by parameter values. A better data situation with additional G-CSF and Ara-C
concentration measurements would allow to identify further parameters. In addition
to the global sensitivity analysis, in which we investigate the key parameters having the
largest impact on two clinically relevant model outputs, a structural sensitivity anal-
ysis [204–206] would help to systematically investigate identifiability of parameters
assuming additional biomarker measurements.

The VPC in figure 7.21 reveals that the model of leukemic blasts is able to describe
trends respectively overpredicts the measurements with its exponential behavior, lead-
ing to a purely leukemic steady state after 4.6 month being in the reported interval for
remission before relapses occurred [186]. This conservative model behavior is chosen to
study the impact of different treatment schedules on the increase of leukemic cells and
might not exactly represent the patients actual leukemic blast dynamics. Therefore, the
presented treatment optimization results have to be considered with care and further
investigations and efforts have to be undertaken to develop more advanced and reli-
able models for bringing optimized treatment schedules to clinics. As the number of
leukemic blasts in our model will eventually converge to a purely leukemic steady state,
we can only compare short-term impacts of treatment schedules on leukemic blasts and
hence relapse probabilities. In the future, additional modeling assumptions could be
considered, e.g., stable steady states of coexistence between leukemic and healthy cells
achieved via the inclusion of the leukemic blasts’ steady state value in the zero-order
production term of endogenous G-CSF or a threshold value of leukemic blasts below
which the immune system could avoid a relapse for good. Modeling minimal residual
disease (MRD), proposed by multiple recent studies as a strong prognostic marker for
relapse in AML [207–210] might also be a promising alternative to leukemic blasts.
In the current study, no MRD information is available such that we concentrate on a
model describing the relative blast count measurements. In the current study we fo-
cus on dynamic deterministic models but the low number of BM measurements might
force future model development to stochastic or survival analysis approaches as it was
previously done by [211] in their proposed stochastic MRD model.

In the previous section, secondary PD effect of Ara-C are analyzed and an empirical
model extension through a second PD effect on the feedback term γ is proposed. During
model development, we tested a parameterized PD effect. However, the evaluation
criteria (such as the RMSE or a cross-validation in which the model is fitted to standard
schedules and validated on dense schedules) shows only a minor benefit resulting from
the consideration of Ara-C’s possible secondary effects. For this reason and without
any concentration-time profiles of Ara-C we decide to neglect a secondary PD effect of
Ara-C. An additional simplification is made. We use the plasma concentration of Ara-C
for the PD effect although the side of action is within the BM and it is shown that Ara-C
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plasma concentration is not the best predictor for BM and intracellular Ara-C activity
[212, 213]. To obtain a physiologically-based PK and PD model of Ara-C including
secondary effects, further studies have to be performed to analyze the mechanisms and
metabolism of high-dosage Ara-C [42] and its impact on dense treatment schedules. A
first physiologically-based PK model is already presented in 1973 by Dedrick et al. and
serves as a starting point [214].

7.1.3 PK/PD model with 6MP and MTX (Data Erlangen)

Table 7.15 shows RMSE values, MAE values, and final objective function values for four
different parameter estimations. Here, we compare the usage of different PK/PD models
and estimation based on either WBC counts or ANCs. First, the explicit consideration
of MTX only has a minimal/non-significant effect on the model accuracy, so we fix it
to the ratio 2.5:1 between 6MP and MTX. Second, our results show that the use of the
PK model of [111] increases the sensitivity of the PD effect and the model accuracy
compared to the 6MP PK model of [112]. Third, ANC measurements result in higher
accuracy than do WBC measurements.

Table 7.15: Results of parameter estimations for different models. Shown are model
characteristics (data based on absolute neutrophil count (ANC) or white blood cell
(WBC) count and pharmacokinetic(s) (PK) models for 6-mercaptopurine (6MP) and
methotrexate (MTX)), median and standard deviation in parentheses of individual root
mean squared error (RMSE), mean absolute error (MAE), and final objective function
values (FinalOBJ). Medians and final objective function values are rounded off to four
and the standard deviations in parentheses to three significant figures.

Model 1 Model 2 Model 3 Model 3
Data ANC ANC ANC WBC
PK 6MP Jayachandra Jayachandra Hawwa Hawwa
PK MTX Panetta - - -
MAE 1.068 (1.65) 1.045 (1.92) 0.9571 (4.31) 1.315 (2.92)
RMSE 1.033 (0.492) 1.022 (0.539) 0.9783 (0.678) 1.147 (0.579)
FinalOBJ 7003 7094 6550 9746∗

∗Objective value is not comparable to first three values due to different dataset

Parameter estimation

Figure 7.26 shows the comparisons of observed clinical and simulated ANCs derived
from the final PK/PD model (6.14) after parameter estimation for three exemplary cho-
sen patients presented in rows 1,3 and 5. For each patient, the individual 6MP [mg]
dosing protocol is presented in rows 2, 4 and 6, indicating dose changes for efficacy ad-
justments. The model simulations represent the clinical ANCs quite well in the average
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Figure 7.25: Generated visual predictive check, derived by 1000 simulations with the
final parameter estimates from the first column of table 7.17, for circulating absolute
neutrophil counts (ANCs) (G/L) versus time (days). Black dots are the measured ANCs.
Black and blue lines show the median and 2.5th and 97.5th percentiles of measurements
and model predictions, respectively. The shaded areas represent the 95% confidence
intervals around the 2.5th, 50th and 97.5th percentiles of the model predictions. Two
ANC outliers (19.9 and 17.8) at time points 285.42 and 340.42 days are not shown.

and capture trends toward larger or smaller ANC values. However, they do not oscillate
as strongly as the measured values. Persistent oscillations of neutrophils often occur in
chemotherapy-treated hematopoietic diseases inducing cyclic myelosuppression (see
[215] and references therein). Several other reasons are responsible for the observed
ANC oscillations such as aberrant hematopoiesis, chemotherapeutic dose adaptations,
infections or measurement errors. This exemplary behavior is representative of the
entire data set of 116 patients. The VPC plot in figure 7.25 shows the good agreement
of model response and measurements for the median (solid line) and 97.5th percentile
(dashed line) with a slight underprediction of the model for low ANC values. The
95% confidence interval of the model simulation median is very thin, indicative of high
prediction accuracy. The fixed effect estimate for the ANC steady state is slightly higher
than the target range limit of 2 G/L. The estimated transition rate of 0.148 results in a
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Table 7.16: Results of parameter estimations of the final model using all (in-sample)
or 70% (out-of-sample) of the absolute neutrophil count (ANC) values. Shown are
parameter estimates of fixed effects, interindividual variability as coefficient of variation
(ω/100), proportional additive error as variance, and median errors of the parameter
estimations rounded off to three significant figures. For the mean absolute and root
mean squared errors all ANC measurements are used. Relative standard errors are
shown in parentheses rounded off to one significant figure.

Data In-sample Out-of-sample
Fixed effect parameters

B 2.34 (1) 2.06 (0.1)
ktr 0.148 (0.4) 0.146 (0.2)

slope 0.242 (0.2) 0.103 (0.2)
γ 0.769 (0.1) 0.866 (0.2)

Interindividual variability as coefficients of variation
B 23.1 (20) 27.5 (10)

ktr 16.5 (30) 7.19 (3)
slope 44.9 (5) 67.8 (1)

γ 10.7 (0.5) 16.5 (0.4)
Proportional additive error 0.226 (2) 0.226 (FIXED)

Parameter estimation errors
Mean absolute error 0.957 (4) 1.47 (500)

Root mean squared error 0.978 (0.7) 1.21 (7)

MMT (MMT = ntr/ktr) of 487 hours (20.3 days) [45]. The IIV and residual error are within
reasonable ranges.

Out-of-sample validation

The reliability of the final population PK/PD model is tested via out-of-sample cross-
validation. For each patient, the first 70% of ANC measurements are used for parameter
estimation and the final 30% are used to evaluate the model predictions. Model accuracy
and predictability were evaluated using the RMSE and the MAE.

The goodness-of-fit plot in figure 7.27 shows the results of out-of-sample cross-
validation. It reflects reasonable model accuracy for fitted and predicted ANC mea-
surements with spreading around the line of identity because the model is not able (and
not intended) to hit the lower and upper peaks of the measurements. The values of
estimated model parameters both for the in-sample and out-of-sample calculations are
shown in table 7.17. The values of all four parameters coincide well, with a slightly
reduced slope and increased ktr value for the estimates based on 70% of the ANC. The
IIV for the slope is significantly larger. To evaluate the model accuracy, we calculate the
median and standard deviation of the individual MAE and RMSE values, showing the
expected decrease in accuracy for out-of-sample predictions.
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Figure 7.26: Exemplary comparisons of observed (black) absolute neutrophil counts
(ANCs) and simulation results (blue), based on the newly proposed mathematical
model and a nonlinear mixed-effects parameter estimation. In addition to a visual
match between values and quite well captured trends (compared with the indicators in
table 7.15) one can clearly see oscillations of ANCs in both the observed and simulated
data.

Discussion

Mathematical model

We develop and fit a population PK/PD model to assess the ANC dynamics during
6MP/MTX treatment, get a better understanding of dose adjustments, and identify
solutions to the challenges that arise throughout MT. During the model development
process we also fit the model to WBC measurements. The resulting MAE and RMSE
values are worse compared to the values resulting from ANC measurements. This is
probably due to the fact that WBCs comprise different cell lineages, with additional
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Table 7.17: Results of parameter estimations of the final model using all (in-sample)
or 70% (out-of-sample) of the absolute neutrophil count values. Shown are parameter
estimates of fixed effects, interindividual variability, and median errors of the parameter
estimations. Relative standard errors are shown in parentheses.

Data In-sample Out-of-sample
Fixed effect parameters

Base 2.16 (0.1) 2.19 (2.0)
ktr 0.145 (0.2) 0.175 (0.4)

slope 0.0397 (0.7) 0.0282 (0.7)
γ 0.809 (0.5) 0.836 (0.1)

Interindividual variability as coefficients of variation
Base 30.3 (6.70) 27.3 (7.4)

ktr 12.5 (20.5) 9.9 (8.7)
slope 11.9 (11.4) 65.1 (6.5)

γ 12.8 (12.9) 10.7 (1.0)
Proportional additive error 0.245 (5.70) 0.245 (FIXED)

Parameter estimation errors
Mean absolute error 1.029 (5.21) 1.430 (401.33)

Root mean squared error 1.014 (0.75) 1.196 (6.51)

physiological effects that are not accounted for in the mathematical model. In future
studies, the current model might be extended to further cell lineages. The models
brought forth by [82, 216] might serve as a basis and drive the modeling process from a
semi-mechanistic approach toward a more mechanistic one.

In addition to using a population estimation approach and applying it to ANC
instead of WBC, two modifications brought forth by [177] have shown to yield better
results. First, the 6MP PK model of [112] is replaced by that of [111]. The first order
kinetics in the PK model of [111] compared to the Michaelis–Menten terms in the PK
model of [112] results in more significant concentration changes with altered drug
amounts consequently in a more sensitive PD effect. Second, the MTX PK model
is completely omitted as the constant ratio of administered 6MP and MTX prevents
a differentiation of separate PD effects. Further studies with measurements of drug
concentrations, metabolites and clinical effects as cell counts would push forward the
development of a mathematical model additionally including the PK of MTX to provide
two distinct PD effects and to account for varying ratios of 6MP to MTX. For the currently
available data, our new model, which indirectly agglomerates the effects of 6MP and
MTX, appears to be a good choice (compare for table 7.15).

Model parameter estimates

Looking at the resulting model parameter estimates listed in table 7.17, the question
arises as to how these values relate to known biological properties of hematopoiesis
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Figure 7.27: Goodness-of-fit plot depicting observed versus individually calculated
absolute neutrophil counts (ANCs) for 116 patients. Blue markers show in-sample
ANCs (first 70% of observed ANCs) used for parameter estimation. Models were
cross-validated using 30% out-of-sample observed ANCs (red).

and myelosuppression and to other values from the literature. The estimated ANC
steady state value B is below the normal ANC range for children, but still higher than
the desired ANC range of 0.5–2 G/L. Without treatment, the model-based ANCs would
increase to normal patient-specific steady states. Thus, low ANC values are induced
via MT or some of the aforementioned external events.

The estimated fixed-effects parameter value of the transition rate ktr = 0.148 is com-
parable with the published mean value (k̄tr = 0.1431) obtained from eight pediatric
ALL patients from Riley Hospital for Children in Indianapolis [112]. For better inter-
pretability, the transition rate parameter ktr can be transformed to the MMT (ntr/ktr)
of the neutrophils. The estimated MMT in our study, as well as the MMT from Jay-
achandran et al., are extremely high and do not coincide with biological findings of
3.9 days obtained by [14]. This mismatch is a large disadvantage of the model as it
fails to comply with biological properties, leading to falsely characterized physiological
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mechanisms and thus reduced model reliability. Jayachandran et al. did not discuss
this issue, but a similar observation was made by Craig and colleagues (2016) who
determined an estimated proliferation time of 26 days [51]. In their work, the authors
further presented model modifications to obtain a more realistic maturation time of 3.9
days. For this value we have performed two parameter estimations with either B as
a parameter or fixed to 5 resulting in promising dynamics but worse RMSE and MAE
values. In future studies, the falsely determined MMT and possible model limitations
for continuous low-dose treatments should be further investigated.

The feedback parameter (γ) is significantly higher compared with published values
[52], indicating a stronger feedback mechanism during the daily chemotherapy over a
long period. This is the first time estimated slope values of the linear PD function from
the PK model of [111] are presented; thus there are no available comparisons.

7.2 Optimal treatment schedules for acute leukemia

In the following we present optimal treatment schedules for the CT for AML and for
the MT for ALL. In the next three section, the three validated PK/PD models from the
previous sections are used to calculate the optimal schedules.

7.2.1 Influence of treatment starts on leukopenia

After verifying the predictability performance of the PMs in section 7.1.1, we perform a
simulation study in which we demonstrate a further possible application of the PMs in
planning the start of consecutive CCs. We analyze the impact of the treatment timing
on the individual nadir values. For each of the 14 patients, for whom at least two
consecutive CCs were available, the nadir of the last CC are compared to 20 simulated
nadirs. These nadirs result from simulations using the patient’s PMs (second row of
table 7.6) in which the timing of the last CC is varied daily with the maximal starting
variation of 10 days earlier or later. Similar to previous simulation studies dealing with
varying and shortening cycle duration and finding the optimal number and timing of
G-CSF administrations to reduce myelosuppression [64, 65, 68], we analyze the impact
of different treatment starts of the last CCs with respect to obtained nadir values.

Results

A comparison to the clinically observed nadir values indicate a large potential for clinical
improvement, i.e., a higher nadir value due to a shifted treatment start (see figure 7.28a).
7.28b exemplarily shows the WBC dynamics for different treatment timings. Earlier
(later) starts resulted in sequentially higher (lower) nadir values.

7.2.2 Consolidation therapy schedules for AML derived by optimizations

We use the individual models of 14 patients from section 7.1.2 for whom relative blast
counts are available in the last CC for a mathematical optimization of the treatment
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Figure 7.28: Analyzing the influence of treatment timing on nadir values. (a) Simula-
tion study in which 20 simulated nadirs were compared with the true nadir of the last
consolidation cycle (CC) for the 14 patients who have more than one CC. The simu-
lated nadirs were computed by using the patient’s personalized model (second row of
table 7.6) and varying the start of the last CC daily with the maximal starting variation
of 10 days earlier or later. (b) Exemplary variation of the CC start for one patient. An
earlier (later) start results in a larger (lower) nadir.

schedules of the last CC. We compare clinically important indicators such as nadir
values and relative blast counts in the BM to the measured values. Optimizing the
treatment schedule for patient i ∈ {1, . . . , 14} is formulated as a minimization problem

min
xi(t),ui

c(t),ui
l(t)

OBJi (7.24a)

s.t. ẋi(t) = f (x(t), θi,ui
c(t),u

i
l) (7.24b)

x(ti
0) = xi

0, (7.24c)

ui
c(t) ∈ [0, 2000] (7.24d)

ui
l(t) ∈ [0, 236] (7.24e)

on the individual time horizon ti
0 to ti

f with f (·) the mathematical model (6.10) from

the previous section, θi = (Bi, ki
tr, slopei, γi, pi

1) the empirical Bayes estimate resulting
from the model fit to the measurements from all but the last CC, xi

0 the initial values
of the ODE system at time point ti

0, ui
c(t) and ui

l(t) the control functions of Ara-C and
lenograstim determining the administration schedule after optimization and

OBJi = α1 xi
l1(ti

f ) + α2

∫ ti
f

ti
0

1

xi
ma

2(t)
dt + α3

∫ ti
f

ti
0

ui
c(t)dt + α4

∫ ti
f

ti
0
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l(t)dt
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the objective function consisting of four terms. The first term denotes the number of
leukemic cells in the BM at time ti

f representing the disease status at the end of the
consolidation treatment. The second term reflects the health condition of the patient
during treatment (heavily penalizing small WBC counts). The last two terms model the
costs via the amount of totally administered Ara-C and lenograstim, respectively. Scalar
weights α1, . . . , α4 allow the weighting of these terms according to personalized, clinical,
and ethical preferences. Values of the weights were chosen by initial guesses and α1
was iteratively adapted until the clinically relevant optimization outcomes, meaning
hblasts(ti

f ) < 5% and min(xma(t)) > 1, are met. The final values for the αi are presented in
table 7.18.

All optimization results are calculated for a time period starting 10 days before the
start of the actual Ara-C treatment of the last CC (ti

0) and ending with the time point
of the patient’s conducted BM puncture (ti

f ). This time horizon is chosen to compare
the optimized values with the measured relative blast counts in the BM. The initial
conditions x(ti

0) are derived from the individual models. We define a hourly time grid
for model evaluation and for Ara-C infusions in which Ara-C infusions can be opti-
mized within the first 20 days. The control grid for Ara-C is restricted to the first 20
days so that no Ara-C infusions are placed at the end of the time horizon. Lenograstim
administrations are defined as 0.0007 day injections on the hourly grid once a day at
8 a.m. The upper limit of hourly Ara-C infusions is chosen to be 2 g per hour, being
the recommended maximum amount of a high-dose treatment schedule for a patient
under 60 years with a BSA of 2 m2 which should not be exceeded [19]. As mentioned
in the introduction, intermediate Ara-C dosage is administered to elderly patients but
in our previous study [181] a 64 year old patient was treated with D12 such that we
decide to define the upper limit of 2 g per hour as a further degree of freedom during
optimization. The upper limit of lenograstim administrations is chosen to be 263 µg
equivalently to the actual daily administered dose amount. The infinite-dimensional
optimal control problem (7.24) is solved by a direct collocation approach (simultaneous
approach) in which the control functions and the differential states are simultaneously
discretized by low order polynomials [166]. The resulting finite-dimensional optimiza-
tion problem is large scale due to the introduction of additional optimization variables
and constraints, but highly structured such that tailored iterative procedures can be
applied to numerically calculate local optimal solutions.

Results

Using the final model and the individual parameter estimates for 14 patients from
above, we calculate optimized individual treatment schedules. Optimal refers to a
numerical local optimization of (7.24) in the last CC. From the solutions, we extract the
WBC nadir values and final time relative blast counts in the BM. A comparison to the
observed values in figure 7.30 shows that the optimized treatment schedules of Ara-C
and lenograstim achieve an increase in nadir values for each patient (in median 4.2-fold
higher values), although relative BM blast counts are comparable to the observed ones
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Table 7.18: Final values of the multiobjective optimization problem weights.

Patient α1 α2 α3 α4
1 .9 3. 0.001 0.007
2 .8 1. 0.0001 0.007
3 1.8 .8 0.0001 0.007
4 1. 2. 0.001 0.007
5 .35 1. 0.0001 0.007
6 1. 1. 0.0001 0.007
7 1.4 1. 0.0001 0.007
8 1. 1. 0.0001 0.007
9 1. 10. 0.0001 0.007
10 1.25 1. 0.001 0.007
11 1. 1. 0.001 0.007
12 .6 1. 0.0001 0.007
13 1. 1. 0.0001 0.007
14 .9 1. 0.001 0.007

and below the clinically important threshold of 5%. Not shown is that the median Ara-C
amount was lower by approximately 60%. Three exemplary optimization results with
detailed trajectories are shown in figure 7.29, and the results for all 14 patients can be
found in the supplement material of [217]. While optimal timing and dosages of Ara-C
and lenograstim are personalized and hence different for each considered patient, two
qualitative patterns can be observed. In pattern A, an additional Ara-C administration
period (and hence an additional CC) is introduced, and the administration order is
Ara-C, lenograstim, Ara-C, lenograstim. In pattern B, the nadir is increased compared
to the clinical treatment schedule with the administration order lenograstim, Ara-C,
lenograstim. The amount of Ara-C is usually considerably reduced. Figure 7.29 shows
examples for patterns A (middle, right) and B (left). Over all of the considered case
studies, pattern A arises 9 times and pattern B 5 times.

Discussion

The optimized individual treatments derived by solving problem (7.24) rely on the
mathematical model (6.10). Application of the results to the real world is thus always
under the assumption that the model and a personalized parameter estimation capture
reality sufficiently well. This model-reality mismatch is amplified when optimized
results are calculated. It is well known that optimization tends to exploit modeling
errors as the ones discussed above. Thus, all interpretations should be considered very
carefully and should be mainly seen as an incentive for clinical trials to validate the
conjectures derived from simulations.

On the positive side, the developed model showed a good prediction accuracy for
a variety of different treatment schedules despite the large number of constants and
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Figure 7.29: Detailed optimization results for Patients 1, 2, and 3, respectively (same
order as in figure 7.30). The treatment schedules of Ara-C and lenograstim in the last
consolidation cycle (CC) are optimized (black) and compared with the clinically applied
treatment schedules (red). Shown are white blood cell (WBC) counts and relative
blast counts in the bone marrow (BM) (dotted lines) resulting from individual models.
Personalization is performed using in-sample measurements (blue dots) and clinical
treatment schedules (blue lines) from all but the last CC. The optimized schedules and
the affected dynamics of WBC (solid black lines) qualitatively differ for each patient. In
(a), one later low-dose treatment and in (b), two intermediate-dose Ara-C treatments
result in higher nadir values compared to the measured values (red dots). In (c), the
daily lenograstim administrations before and after the postponed Ara-C treatment do
not prevent a fall of WBCs below 1 G/L. Discontinuities in the dynamics of the relative
(rel.) blast counts in the BM occur due to possible cyclewise cellularity changes in the
measurement function (6.12).
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Figure 7.30: Comparison between clinical (observed) and optimized treatments with
respect to white blood cell (WBC) count nadirs (left) and relative (rel.) blast counts in
the bone marrow (BM) (right) for 14 patients. The nadirs are significantly higher, often
even above the leukopenia threshold, while the corresponding relative BM blasts are
maintained in the same range as the observed values and below the clinically important
threshold of 5%.

missing concentration measurements of Ara-C and G-CSF. This could not only become
a basis for individual decision support, but allows for the first time to quantify the
potential of optimized treatment schedules in terms of nadir values, blast counts, and
overall chemotherapy usage. We see the value of a more than 4-times increased nadir
as a strong motivation to continue research in model-based treatment planning, even if
the current personalized mathematical models might not yet be a perfect match to the
situation of the patient for whom the data were observed.

Additionally, the approach allows to apply a variety of methods from mathematical
optimization to get closer to clinical practice. Our deterministic optimization approach
is very sensitive with respect to model parameters and the choice of scalar weights
within the objective function. Stochastic optimization techniques result in optimized
schedules that are more robust against modeling and parameter uncertainties [218]. The
consideration of combinatorial constraints restricting the administration of Ara-C and
lenograstim to plausible schedules would increase the applicability of the optimized
schedules in clinical practice. Multi-objective optimization can provide Pareto fronts
with respect to key performance indicators (high WBC, low blasts, low costs, low
treatment time, . . . ) as already indicated in this study. The optimized treatment
schedules demonstrated that a 60% (median) reduction in the amount of Ara-C and
daily administrations of lenograstim could lead to higher nadir values compared to the
clinical schedules (see figure 7.30a). The efficacy of the optimized treatment schedules
was evaluated by comparing the optimized and measured relative blast counts in the
BM at the end of the last CCs (c.f. figure 7.30b). The first clinical impact of the exploration
of the optimized treatment schedules was the proposed administration of lenograstim
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before the start of Ara-C treatments, similar to the FLAG protocol [219], as a prevention
to mitigate myelosuppression and increase leukemic blast death. For all 14 patients,
lenograstim accomplished an increase in WBC count before Ara-C treatment, leading
to moderate myelosuppression compared to the conducted treatment schedules (see
figure 7.30). In the clinical trial from which the dataset was provided [21], lenograstim
administration was started nine days after Ara-C treatment, reducing the WBC recovery
time but not necessarily achieving nadir values above 1 G/L. As we consider the
amount of lenograstim within the objective function, we assess the times that have the
smallest or largest impact either on WBC recovery or leukemic blast apoptosis. We
also performed calculations with a modified objective function without consideration
of WBC count and lenograstim costs (α2 = α4 = 0). The optimized treatment schedules
still result in the administration of lenograstim every day. This indicates that exogenous
G-CSF has a beneficial influence on the eradication of leukemic blasts. In our model
and setting, lenograstim administration not only reduced WBC recovery times but
also the leukemic blast counts (c.f. figure 7.22). This coincides with clinical findings
[220]. However, the contrary assumption also exists: exogenous G-CSF may lead to an
increased leukemic blast count. Until now, no evidence is given which claim holds, and
in general, no clinical trial with long-term follow-up has shown an increase in mortality
or relapse rate if G-CSF was administered [221, 222]. As the optimized treatment
schedules propose daily administration of lenograstim, the change from subcutaneous
injections to continuous intravenous infusions might be worth considering. However,
it was shown that the subcutaneous administration of G-CSF (filgrastim) results in
lower peaks but more prolonged and stable levels of G-CSF compared with intravenous
administration [23].

Considering short-term effects under the assumption of rapidly evolving leukemic
blasts, our results indicate that two CCs with reduced doses of Ara-C can achieve the
same outcome as that achieved by one CC, with the benefit of increased WBC nadir
values. This pattern emerged in 9 out of 12 cases and coincides with published results for
docetaxel-induced neutropenia [223]. This result gives a partial answer to the question
of Schlenk regarding whether four cycles of CT are the best treatment choice [224]. The
developed mathematical model and optimization approach might help in the future to
determine an optimal treatment schedule for the whole consolidation phase.

7.2.3 Maintenance therapy schedules for ALL derived by simulations

Method

We compare individual simulated minimal, median, and maximal ANCs resulting from
the application of different dosing protocols (MT dosage over time). The choice of the
different protocols described in table 7.19 are based on clinical procedures (AIEOP-
BFM 2009 with EudraCT number 2007-004270-43, NOPHO-ALL 2008-003235-20, and
UKALL 2010-020924-22). In particular, we seek to investigate the relationship between
an increased total amount of chemotherapy (higher dosage) and plausibly reduced ANC
in the in silico simulations. Throughout, we use the fitted models (estimated model
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parameters) from section 7.1.3 and only vary the chemotherapy dosage. The simulated
ANC values are obtained from the individual actual measurement time points.

Table 7.19: Different dosing protocols for our in silico simulation study. Iden-
tical protocols for the administration of 6-mercaptopurine (6MP) for ClinicalData
and FittedModels with a median of the patient-individual average daily dosages of
43.15±10.5 mg/m2 (minimum 15.8 mg/m2, maximum 72.9 mg/m2).

Nr Description Short
1 Collected clinical data (ClinicalData)
2 Fitted model based on patient’s actual dosing (FittedModels)
3 Daily 6MP administration of 25 mg/m2 (50% of AIEOP dosis) (25 mg/m2)
4 Daily 6MP administration of 50 mg/m2 (AIEOP dosis) (50 mg/m2)
5 Daily 6MP administration of 75 mg/m2 (NOPHO/UK dosis) (75 mg/m2)
6 Daily 6MP administration of 100 mg/m2 (200% of AIEOP dosis) (100 mg/m2)

Results

Figure 7.31 shows boxplot results for an in silico simulation study based on the 6 different
treatment protocols (including the real clinical data) from table 7.19. We want to stress
three main observations.

First, a comparison of the first two entries of the three boxplots confirms an already
known result. The PMs can reproduce the clinical ANC data on average quite well,
with the exception of extreme values quantitatively confirming the observation made in
figure 7.26. Given the similarity of simulated and observed median values, we continue
with an objective comparison only of the simulated results (protocols 2–6).

Second, a comparison of the protocols 3–6 (25, 50, 75, and 100 mg/m2 BSA 6MP)
shows a significant and linear dosage-effect relationship with respect to the total amount
of 6MP administered, which is, of course, proportional to the daily dose. All (minimal,
median and maximal) ANC values decrease linearly, when daily dosing is increased
linearly.

Third, a comparison of protocol 2 (the simulation of the real treatment) and proto-
cols 3 and 4 (which give lower and upper bounds on the total amount of administered
6MP in protocol 2, respectively) show that the median ANC value of protocol 2 is indeed
bounded by the two other values, however, for significantly lower minimal and higher
maximal ANC values. Figure 7.32 shows an exemplary comparison of protocols 2–6
for one patient, highlighting lower peak values and smaller drug-induced steady state
values when the dosing is linearly increased from 25 mg/m2 to 100 mg/m2. The actual
dosage administered to the patient (blue) ranges between the 25 mg/m2 and 50 mg/m2

protocols and resulted in similar ANC dynamics. At approximately day 240, the actual
dosing was stopped for a short period, inducing stronger ANC oscillations in the sub-
sequent treatment period and revealing a significant impact of the dosing regimen on
the ANCs. This observation is even stronger regarding the proliferating cells as well as
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Figure 7.31: Boxplots of minimal, median, and maximal (from left to right) individ-
ual ANCs for all 116 patients. Shown are values for the 6 different protocols from
table 7.19, observed for the first column and simulated for protocols 2–6. The target
range (0.5-2.0 G/L) of the NOPHO/UK treatment protocol is shown as the gray back-
ground. Horizontal lines within the boxes are the medians, the upper and lower box
limits are the first and third quartiles of the data, respectively. The whiskers indicate an
even larger confidence region of these quartiles plus/minus 1.5-times the interquartile
range. Beyond the whiskers, data are considered as outliers and are plotted as indi-
vidual points. For the columns representing 25 mg/m2 to 100 mg/m2, the total amount
of 6-mercaptopurine administered is increasing. The median average individual daily
doses actually administered for protocols 1 and 2 were 43.15 ± 10.5 mg/m2.

cells in the first transit compartment. Similar plots for all 116 patients are provided in
the supplemental data of [225].

Discussion

The newly developed mathematical model enables us to perform a virtual comparison
of different treatment protocols. The boxplots in figure 7.31 show several interesting
results.
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Figure 7.32: Simulated trajectories for 5 different protocols from table 7.19 and an
exemplary patient. Colors of the trajectories are identical to those used in figure 7.31.
The linear increase in dosing from 25 mg/m2 to 100 mg/m2 forces the absolute neutrophil
counts (ANCs) to lower peak values and a smaller drug-induced steady state value at
the end of treatment. The actual dosage administered to the patient (blue) ranged
between the 25 mg/m2 and 50 mg/m2 protocols and resulted in similar ANC dynamics.
At approximately day 240, the actual dosing was stopped for a short period, inducing
stronger ANC oscillations in the subsequent treatment period. This observation is even
stronger regarding the proliferating cells as well as cells in the first transit compartment.
Interestingly, these oscillations also continued for some time after the end of treatment.
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First, the median and standard deviation of actual ANC measurements are very accu-
rately matched by the simulation using the estimated parameters (compare the first two
entries in the middle boxplot of figure 7.31). Concerning the patientwise observed and
simulated minimal and maximal ANC values, the model demonstrates a correspond-
ing weakened chemotherapy-induced myelosuppression, respectively overproduction
of ANCs compared to the high measured variability. This variability is biologically
and clinically very plausible due to the aforementioned external events and uncertain-
ties, although periods of severe infections were already excluded. The reproducibility
of the median and avoidance of over-fitting of the extreme values are in our opinion
good properties of a mathematical model. Given this good correspondence between
cross-validated data and simulations, we feel encouraged to compare simulations of
different treatment protocols as specified in table 7.19. Note, however, that general-
izations of mathematical models personalized for data from one protocol to another
have to be considered with extreme care (compare the discussion for acute myeloid
leukemia models by [181]). Further, we want to highlight that the current model is not
intended to describe the ANC extrema such that the results of the simulation study have
to be treated with caution. The results shall serve as a preliminary assessment of the
dose-effect relationship which has to be confirmed in future studies. The relationship
might be stronger compared to the current model predictions and demonstrated by the
clinical data in figure 7.32. The impact of model variations on the outcome of simulation
studies is usually significant. We have tested the value of fixing the ktr parameter to
represent a biologically plausible MMT of 3.9 days. This decreases the model accuracy
(which is why the results are not included here), but still leads qualitatively to the same
subsequent effects.

Second, an approximately linear decrease in minimal, median and maximal values
can be observed as the dosage increased linearly from 25 mg/m2 to 100 mg/m2 with a
slightly reduced decrease of the maximal ANC values. Again, this linear dose-effect
relationship seems biologically plausible. For most of the simulations such as those
shown in figure 7.32, the maximal ANC value decreases. However, for other simulations
(see online supplement of [225]) stronger myelosuppression led to identical maximal
ANC values. This effect is due to a feedback mechanism that may lead to increased
proliferation for reduced ANC which leads to larger ANC values after some delay.

Third, a tendency for higher oscillations for treatments with pauses and changes in
dosage is seen in a comparison of the simulated actual treatment protocol 2 and the
constant administrations of protocols 3 and 4, which uses lower/higher total amounts of
6MP. Again, an example of this can be seen in figure 7.32. We believe that in the future
adapted dosing schedules might take advantage of the chemotherapy-induced oscilla-
tions for an optimized dosing regimen. In the CT of AML it is shown in silico that the
timing of the treatment start can have a beneficial influence on the reduction of myelo-
suppression [181]. However, high dose chemotherapy administered every three to four
weeks provokes stronger periodic oscillations compared to the daily oral dosing which
makes it more challenging to identify and capture the oscillations. For high dosage,
previously a multi-compartment hematopoietic model was analyzed regarding Hopf
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bifurcation and an explicit analytical expression for the bifurcation point was provided
depending on model parameters [215]. Oscillations of various blood cell populations
have been observed in clinical data and partly investigated for different hematological
disorders [226, 227]. The exact mechanisms and interaction between 1) stem cell cycling,
2) hematological disorder, and 3) drug exposure are still not fully understood. In our
case, for all 116 patients in silico simulations show that the oscillations are damped (in 84
cases into a steady state) once the chemotherapy is stopped, albeit with long time ranges
of up to one year (see supplemental data of [225] for examples). Therefore, we assume
that the oscillations in the ANCs observed in our simulations can be attributed to the
influence of chemotherapy on the nonlinear dynamics of hematopoiesis. The connec-
tion between model-intrinsic and chemotherapy-induced oscillations should be assessed in
detail in future studies. A stability analysis [37] of the steady state could be performed
(e.g., similar to [228] and [73]) to assess the theoretical properties of the model and relate
them to the physiological behavior of neutrophils.

7.3 Feedback optimal control algorithm for the Lotka-Volterra
fishing problem

In this section we apply algorithm 2 to the Lotka-Volterra fishing benchmark problem
demonstrating the performance of the algorithm and separately analyze optimal finite
support designs.

The Lotka-Volterra example is chosen as a well studied dynamic system representing
the relation between two competing populations. The model can be modified analyzing
disease spreading in an epidemiological context [229] or technological forecasting of
stock markets [230] such that the model combines medical, biological and economical
interests. The optimal control and OED problem of the Lotka-Volterra fishing example
are introduced and described in the following.

The goal of the optimal control problem is an optimal fishing strategy u∗(t) that brings
the prey x1(t) and predator x2(t) populations into a steady state (7.25d), by penalizing
deviations from the steady state over the whole time horizon [t0, tf]. The optimal control
problem of type (4.8) is

min
x(t),u(t)

x3(tf) (7.25a)

s.t. ẋ1(t) = p1 x1(t) − p2 x1(t) x2(t) − c0 x1(t) u(t), (7.25b)
ẋ2(t) = −p3 x2(t) + p4 x1(t) x2(t) − c1 x2(t) u(t), (7.25c)

ẋ3(t) = (x1(t) − 1)2 + (x2(t) − 1)2, (7.25d)
x(t0) = x0, (7.25e)
u(t) ∈ [0, 1]. (7.25f)
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The Lotka-Volterra OED problem is of type (4.35) and defined as

min
x(t),G(t),Fd(tf),w1,w2

trace(F−1
d (tf)) (7.26a)

s.t. ẋ1(t) = p1 x1(t) − p2 x1(t) x2(t), (7.26b)
ẋ2(t) = −p3 x2(t) + p4 x1(t) x2(t), (7.26c)

Ġ11(t) = fx11 G11(t) + fx12 G21(t) + fp11, (7.26d)

Ġ12(t) = fx11 G12(t) + fx12 G22(t) + fp12, (7.26e)

Ġ13(t) = fx11 G13(t) + fx12 G23(t), (7.26f)

Ġ14(t) = fx11 G14(t) + fx12 G24(t), (7.26g)

Ġ21(t) = fx21 G11(t) + fx22 G21(t), (7.26h)

Ġ22(t) = fx21 G12(t) + fx22 G22(t), (7.26i)

Ġ23(t) = fx21 G13(t) + fx22 G23(t) + fp23, (7.26j)

Ġ24(t) = fx21 G14(t) + fx22 G24(t) + fp24, (7.26k)

F11(ti) = F11(ti−1) + w1
i G2

11(ti) + w2
i G2

21(ti), (7.26l)

F12(ti) = F12(ti−1) + w1
i G11(ti) G12(ti) + w2

i G21(ti) G22(ti), (7.26m)

F13(ti) = F13(ti−1) + w1
i G11(ti) G13(ti) + w2

i G21(ti) G23(ti), (7.26n)

F14(ti) = F14(ti−1) + w1
i G11(ti) G14(ti) + w2

i G21(ti) G24(ti), (7.26o)

F22(ti) = F22(ti−1) + w1
i G2

12(ti) + w2
i G2

22(ti), (7.26p)

F23(ti) = F23(ti−1) + w1
i G12(ti) G13(ti) + w2

i G22(ti) G23(ti), (7.26q)

F24(ti) = F24(ti−1) + w1
i G12(ti) G14(ti) + w2

i G22(ti) G24(ti), (7.26r)

F33(ti) = F33(ti−1) + w1
i G2

13(ti) + w2
i G2

23(ti), (7.26s)

F34(ti) = F34(ti−1) + w1
i G13(ti) G14(ti) + w2

i G23(ti) G24(ti), (7.26t)

F44(ti) = F44(ti−1) + w1
i G2

14(ti) + w2
i G2

24(ti), (7.26u)
x(t0) = x0, (7.26v)
Fi j(t0) = 0 i, j ∈ {1, 2, 3, 4} and i ≤ j, (7.26w)
Gi j(t0) = 0 i ∈ {1, 2}, j ∈ {1, 2, 3, 4}, (7.26x)

N∑
i=0

wω
i ≤ 1 ω ∈ {1, 2}, (7.26y)

wω
i ∈ [0, 1] (7.26z)
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on the time grid t ∈ [t0, tf] with

fx11 = ∂ f1(t)/∂x1 = p1 − p2 x2, (7.27a)
fx12 = −p2 x1, (7.27b)
fx21 = p4 x2, (7.27c)
fx22 = p4 x1 − p3, (7.27d)

fp11 = ∂ f1(t)/∂p1 = x1, (7.27e)
fp12 = −x1 x2, (7.27f)
fp23 = −x2, (7.27g)
fp24 = x1 x2. (7.27h)

The solution of problem (7.26) provides an optimal sampling design minimizing the
uncertainties of the parameters p1, p2, p3 and p4. The right upper entries of the FIM
are considered as differential states in the optimization problem instead of all matrix
entries due to symmetry properties of the FIM. Explicit values of the time horizon, the
initial states, the parameters and the constants chosen for the numerical computations
are given in the next subsection.

Software and experimental settings

Algorithm 2 is implemented as a prototype in the open-source software tool CasADi
[178]. We used the version 3.1.0 together with Python 2.7.6. The finite-dimensional
nonlinear programs resulting from discretizing the optimal control problem (4.8) and
OEDs problem (4.35) are solved with IPOPT [231]. The parameter estimation problems
are solved by a GN algorithm using IPOPT. The derivatives needed for the optimization
problems and their robustifications are efficiently generated within CasADi using au-
tomatic differentiation, [178]. In subsection 7.3 the system of ODEs is solved using the
in-house fixed-step explicit Runge-Kutta integrator and a single shooting method with
a stepsize of 0.15. For the first state and parameter estimation problem on the time in-
terval [0,15] the initial guess is p = (p1, p2, p3, p4, x1(0), x2(0))T = (1.5, 1.5, 1.5, 1.5, 0.0, 0.0).
We assume that both states h1(ti) = x1(ti) and h2(ti) = x2(ti) can be measured and that
no fishing is permitted on t ∈ [0, 15]. The pseudo-measurements are derived from a
simulation with the true parameters plus a measurement error εi ∼ N(

(
0
0

)
,
(

0.032 0
0 0.032

)
)

according to equation (4.9). For the OED problems only the uncertainty of the parame-
ters is considered.

For the analysis of finite support designs in subsection 7.3 the ODE system is solved
with CVODES from the SUNDIALS suite [174] and a multiple shooting method with
stepsize h(= 12/500). The continuous version of the OED problem (7.26) is computed
on the time grid [0,12] with p = (p1, p2, p3, p4) = (1, 1, 1, 1). In both examples the dis-
cretization of the optimization variable u(t) coincides with the time grid of the ODE
problem.
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Three versions of Algorithm FOCoed applied to the Lotka-Volterra fishing
problem

We apply three versions of algorithm 2 to the control problem (7.25a) to stress the rele-
vance of optimal measurement time points and the influence of parameter uncertainty
during optimization.

• with_OED. This is algorithm 2, i.e., using measurement time points from non-
robust OED.

• without_OED. The OED problem in step 2 of algorithm 2 is omitted, and an
equidistant time grid is used for measurements.

• with_r_OED. The optimal control problem in step 1 and the OED problem in
step 2 of algorithm 2 are replaced with their robust counterparts as described in
section 6.3.

In the following, the experimental setting is described independently of the chosen
version of algorithm 2. The experiment is performed on the time interval [0,30]. From
0 to 15 a first state and parameter estimation with seven measurements, initial guesses
pini = (1.5, 1.5, 1.5, 1.5, 0.0., 0.0)T is performed. From time point t = 15, algorithm 2 is per-
formed with the estimated parameter values p̂, the state values x̂(15) = (x̂1(15), x̂2(15))T

and the objective function φ(·) = trace(F−1(tf)) of the optimization problem (4.35).
For a quantitative statement the three versions of algorithm 2 are repeated 50 times

with the normally distributed measurement error εi used for the generation of pseudo-
measurements. The averaged estimated parameter values and the corresponding uncer-
tainties after t = 15 and t = 30 are presented in table 7.20 for the three different algorithm
versions with_r_OED , with_OED and without_OED. The first column shows the objec-
tive function value of the optimal control problem (7.25) solved on t ∈ [15, 30] with the
true parameter values and the initial state values x(15) = (1.25847, 0.473369, 0)T as the
reference solution. The last row additionally presents the averaged objective function
values of the three algorithm versions and the last three columns contain the relative
uncertainty and objective function value improvements between the three algorithm
versions.

First of all, table 7.20 indicates that the three versions of algorithm 2 provide esti-
mated parameters next to the true parameter values but the results qualitatively differ by
means of the resulting parameter uncertainties and the optimal control objective func-
tion values. The use of measurement time points from OEDs (with_OED) compared to
equidistant time points (without_OED) improves the parameter uncertainty by 15 % af-
ter t = 15 and by 34 % after t = 30 on average. The robustification of the optimal control
and OED problems (with_r_OED) results in an improvement of the parameter uncer-
tainties compared to version without_OED of 15 % after t = 15 and of 36 % after t = 30 on
average and compared to the non-robust version with_OED of 0.26 % after t = 15 and of
2.52 % after t = 30 on average. The objective function of the optimal control problem is
reduced by approximately 8 %, respectively 10 %, using version with_r_OED or version

139



7.3. FEEDBACK OPTIMAL CONTROL ALGORITHM FOR THE LOTKA-VOLTERRA FISHING
PROBLEM

with_OED compared to version without_OED. The robustification of algorithm 2 has a
minor averaged improvement of 0.41 %.

at t = 15
OC with_r_OED (A) with_OED (B) without_OED (C)

value value σ2(×10−3) value σ2(×10−3) value σ2(×10−3) IAC IBC IAB

p1 1.000 1.0074 0.3377 0.9925 0.3300 1.0293 0.5090 33.65 35.17 -2.33
p2 1.000 1.0085 0.5540 0.9954 0.5404 1.0267 0.5313 -4.27 -1.71 -2.52
p3 1.000 0.9935 0.5861 1.0073 0.6063 0.9758 0.6139 4.53 1.24 3.33
p4 1.000 0.9959 0.6466 1.0053 0.6635 0.9762 0.8780 26.36 24.43 2.55

at t = 30
with_r_OED (A) with_OED (B) without_OED (C)
value σ2 value σ2 value σ2 IAC IBC IAB

p1 1.000 1.0066 0.2414 0.9974 0.2418 1.0082 0.4214 42.71 42.62 0.17
p2 1.000 1.0065 0.3639 1.0004 0.3706 1.0069 0.4624 21.30 19.85 1.81
p3 1.000 0.9936 0.3472 1.0029 0.3582 0.9924 0.5068 31.49 29.32 3.07
p4 1.000 0.9958 0.3575 1.0014 0.3764 0.9937 0.6837 47.71 44.95 5.02
MLV 0.714 0.724 0.727 0.790 9.62 7.97 0.41

Table 7.20: Averaged estimated parameter values with their uncertainties and the
objective function value (MLV = x3(30)) after 50 runs of the optimal control prob-
lem (7.25) solved with three versions of algorithm 2 ( with_r_OED (A) , with_OED (B)
, without_OED (C)). Ii j(%) is the relative uncertainty and objective value improvement
after t = 15 and t = 30 of column i compared to column j. Column OC contains the true
parameter values with which the optimal control problem (7.25) is solved on t ∈ [15, 30]
and the resulting objective function value.

Figure 7.33 shows exemplary the solution of the Lotka-Volterra fishing problem com-
puted with the three versions with_r_OED, with_OED and without_OED of algorithm 2.

Analyzing finite support designs of optimal experimental design problems

In this section, we demonstrate the theoretical result of lemma 6.3.3 on the Lotka-Volterra
optimal experimental design problem.

The optimal solution w1∗(t) and w2∗(t) of the OED problem are plotted in figure 7.34
together with the information gain matrices

Π1(t) = F−1(t)


G2

11 G11 G12 G11 G13 G11 G14
G11 G12 G2

12 G12 G13 G12 G14
G11 G13 G12 G13 G2

13 G13 G14
G11 G14 G12 G14 G13 G14 G2

14

 F−1(t)
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Figure 7.33: Visualization of three versions (with_r_OED, with_OED and with-
out_OED) of the feedback optimal control Algorithm 2 applied to the Lotka-Volterra
fishing example. The algorithm is performed on the time interval [15,30]. On the
time interval [0,15] seven measurements are taken for a state and parameter estima-
tion. The estimated parameters with the corresponding uncertainties and initial states
serve as input for the algorithm. In figure 7.33a the robust version and in figure 7.33b
the non-robust version of Algorithm 2 is used with measurement time points from
OEDs. Figure 7.33c presents the solution of algorithm 2 with measurements taken on an
equidistant time grid. After the last measurement time point uncertainty tubes are com-
puted by 100 simulations with parameter values sampled from a normal distribution
with the estimated parameters as mean p̂ = [0.982, 0.990, 1.015, 1.023] and variance Σp̂ =
diag(0.000214, 0.000321, 0.000347, 0.000351) in figure 7.33a, p̂ = [1.014, 0.998, 0.981, 0.977]
and variance Σp̂ = diag(0.000231, 0.000325, 0.000319, 0.000334) in figure 7.33b and
p̂ = [1.031, 1.047, 0.977, 0.978] and Σp̂ = diag(0.000413, 0.000470, 0.000463, 0.000636) in
figure 7.33c.

and

Π2(t) = F−1(t)


G2

21 G21 G22 G21 G23 G21 G24
G21 G22 G2

22 G22 G23 G22 G24
G21 G23 G22 G23 G2

23 G23 G24
G21 G24 G22 G24 G23 G24 G2

24

 F−1(t).

The Lagrange multipliers are also shown as horizontal lines in figure 7.34a and fig-
ure 7.34b. Both figures visualize the result of lemma 6.3.3 such that the touching of
the information gains’ maxima is equivalent to a singular arc of the sampling decisions
w1(t) and w2(t).

Discussion

The measurement time points have a large impact on the uncertainty of the model
parameters and consequently an impact on the optimal control solution, even if the
optimizing control does not excite the system dynamics. The quantitative study of
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Figure 7.34: Visual relation between the trace of the information gain matrices
Π1(t),Π2(t), the Lagrange multipliers µ∗

1
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2
and the optimized sampling decisions

w1∗(t),w1∗(t) of the Lotka-Volterra optimal experimental design problem.

subsection 7.3, which is summarized in table 7.20, significantly shows that the optimal
measurement time points taken from non-robust and robust OEDs lead to an aver-
aged uncertainty improvement of 34 %, respectively 36 %, compared to equidistantly
taken measurements. The qualitatively different measuring positions are visualized
in figure 7.33. The measurement time points of the OEDs are placed at the begin-
ning and at the end of the time interval [0,15] in which a first state and parameter
estimation is performed. During the optimal control phase starting from t = 15 the
non-robust and robust OEDs suggest measuring once, respectively twice, at the steep
descent/ascent of the populations on the interval [15,20] where a larger information
content is expected compared to the equidistant time points next to the trajectories’
steady state. The heterogeneity in the improvement of the parameters’ uncertainties
results in the used objective function trace(F−1(t f )) with which the averaged parameter
uncertainty is minimized and not each uncertainty separately. This leads to slightly
increased uncertainties of parameter p2 after t = 15 by the use of OED. A different
scalar function φ(·) such as the determinant or the largest eigenvalue of the information
matrix might prevent this problem but this analysis is not part of the work. Besides
this minor increase the estimated parameter values are closer to the true values using
OEDs in comparison to equidistant measurement time points. The uncertainty tubes
in figure 7.33 give an indication that the reduced uncertainty of the parameters from
Algorithm 2 has an indirect positive influence on the state uncertainty leading to tighter
uncertainty tubes. The visual indication is strengthened by the last row of table 7.20
presenting the optimal control objective function value of the reference solution and
the averaged values resulting from the three different versions (with_r_OED, with_OED
and without_OED) of algorithm 2. The reduced parameter uncertainties obtained from
non-robust and robust OEDs lead to a 8 %, respectively 10 %, objective function value
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compared to the version without_OED with measurements taken on equidistant time
points.

Lemma 6.3.3 is visualized for the Lotka-Volterra OED benchmark problem in fig-
ures 7.34a and 7.34b. Whenever the Lagrange multiplier µ∗ is equal to the value of the
information gain matrix, the sampling decision variable w∗(t) is between 0 and 1.

7.4 Fisher’s method for population parameter estimations

In this section, to our best knowledge, we apply for the first time Newton’s and Fisher’s
method to parameter estimation problems for two specific NLME models. We present
these results to highlight that it is worthwhile to use tailored optimization algorithms
for parameter estimation of NLME models, meaning Fisher’s method for the Hessian
approximation. This section serves as a starting point for further investigations in future
projects for this direction of research. We develop a prototype of the FO algorithm with
the Fisher’s method of scoring to compare the method with current standard solvers
such as NONMEM in which a BFGS method is implemented. In a first attempt, we
perform numerical tests and present objective function values per iteration but we
do not calculate and compare computational costs and do not present any theoretical
findings. Convergence rates of the different methods are known and can be found in
[169]. The aim is to test the performance of the Fisher’s method regarding objective
function value reductions per iteration for two examples to get a first impression on
the convergence rate of the Fisher’s method as the method highly depends on the
classification of the observed problem to a large or low residual problem [126, 169].
Additionally, we test a different quasi Newton’s method and Fisher’s method together
with the Levenberg-Marquardt (LM) method [232]. In the discussion, we will briefly
address some theoretical aspects which might be of interest for the consideration of
Fisher’s method in pharmacometric NLME parameter estimation problems.

Instead of using cheap update formulas as BFGS-updates for the Hessian of the
likelihood used in NONMEM, Pumas or nlmixr or the exact Hessian, which is in most
PK/PD analysis with large datasets computationally intractable, we believe in Gauss-
Newton for nonlinear regression and Fisher’s method of scoring [233] for mixed-effects
models.

The FIM is used in experimental design problems for NLME models but within
parameter estimation problems for these kind of models the FIM is not considered at
all. This is incomprehensible as the usage of the FIM as Hessian might have some
advantages with respect to a probably faster convergence compared to quasi-Newton
methods, better statistical properties (algorithm only converges to local minima with
identifiable parameters not affected by measurement error/variability), and in most
cases the FIM is used for quantifying parameter uncertainties after parameter estimation
anyway. Regarding a sequential/online approach for parameter estimation and optimal
experimental design, the usage of the FIM in both optimization problems reduces the
preparation phase of each OED problem and the parameter estimation problems might
converge faster compared to the usage of low-rank Hessian approximations.
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Methods

Theophylline example

For testing the different algorithmic methods, we use the theophylline dataset and the
proposed NLME model from [136]. The publicly available dataset consists of 120 con-
centration measurements, 10 each, from 12 subjects following an oral administration of
320 mg theophylline, a drug for respiratory diseases. The measurements are visualized
in figure 7.36(a). The concentration time profiles are modelled by an one compartment
PK model with first order absorption (see section 7.35).

u
t = 0

A0
ka

A
k

Figure 7.35: One compartment PK model with first order absorption.

The one compartment PK model with first order absorption is described as an IVP

Ȧ0(t) = −kaA0(t), A0(0) = 320,

Ȧ(t) = kaA0(t) − keA(t), A(0) = 0

with its analytical solution C(t) = 320
V

ka
ka−ke

(e−ke t
− e−ka t) and the measurement function

h(t) = C(t) =
A(t)
V . Parameters of interest are the volume of distribution V of the central

compartment and first order rate constants of the absorption ka and elimination ke. IIV
is described by not correlated normally distributed random effects η with mean zero
and covariance matrix Ω:

ka = θ1 eη1 , V = θ2 eη2 , k = θ3 eη3

η = (η1, η2, η3)T
∼ N(0,Ω) with Ω =


ω2

11 0 0
0 ω2

22 0
0 0 ω2

33

 .
A proportional error model

F = C(t) + C(t) ε

with ε ∼ N(0, σ2
1) was assumed. The starting values for parameter estimation are

θ = (1, 20, .1), ω2
ii = 0.1, i = 1, 2, 3 and σ2

1 = 0.1. For the computations we reimplement
the FO method as a prototype in CasADi. For the Fisher’s method we use the population
FIM presented in section 4.2.3 which is passed as the Hessian to IPOPT. We also test the
LM method in which we iteratively increase the influence of the diagonal matrix from
0.0 to 1. with a 0.01 stepsize. We design two parameter estimation scenarios with the
difference in either estimating or fixing σ2

1.
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AML example

We also apply the Fisher’s method to the AML example from section 7.1.1 with the
publicly available cyclewise dataset from section 5.1. We perform a parameter es-
timation using the first 21 CCs. Using the whole dataset results in numerical diffi-
culties during estimation such that we concentrate on the half dataset. We use an
additive error model, the PK/PD model M3 with the initial value approach I1 (steady
state approach). The steady state of leukocytes B, the transition rate ktr, the feedback
term γ, and the PD effect slope are defined as parameters and IIV is assumed as log-
normally distributed for all four parameters. The starting values for the parameters are
(B, γ, ktr, slope) = (10, 0.4, 0.17, 3.4), ω2

ii = 0.1, i = 1, 2, 3, 4 and σ2
1 = 0.1.

Results

Theophylline example

The figures 7.36(a) and (b) visually demonstrate that all algorithms converge to the same
minimum. In both scenarios, the Newton’s method needs the lowest number of itera-
tions for convergence. The Fisher’s method shows a smooth decrease in each iteration
compared to the mixture of flat and steep areas derived by the BFGS methods. Further,
the Fisher’s method behaves similar to the BFGS methods when σ2

1 is estimated, whereas
with fixed σ2

1 the Fisher’s method has a similar decrease in the first iterations compared
to the Newton method but after the third iteration Newton’s method outperforms the
other methods.

AML example

Figure 7.37 shows that the algorithms converge to the same minimum with respect to the
objective function value and the first Newton iteration underperforms compared to the
other methods. After the third iteration, the situation changes and the fast decreasing
of NONMEM’s algorithm becomes flatten and underperforms compared to the other
methods.

Discussion

We compare different methods for solving population parameter estimation problems
with FO approximation illustrated by two examples differing in their model complexity
(linear vs. nonlinear ODE system) and number of measurements. The two practice-
oriented examples demonstrate that Fisher’s method is an alternative to currently
used low rank Hessian approximation methods and the computationally expensive
Newton’s method. Similar or even steeper descent steps per iterations are achieved
by Fisher’s method compared to the BFGS approximations. Regarding convergence,
Fisher’s method needs several more iterations close to the solution revealing numeri-
cal difficulties which have to be analyzed in future studies. Additionally, it is known
that the performance of Fisher’s method strongly depends on the properties of the
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Figure 7.36: Dataset and objective function values per iteration. (a) Visualization of
the theophylline dataset with 120 (10 per subjects) theophylline concentration measure-
ments from 12 subjects.
(b) Objective function values per iteration for the example with estimating σ2

1 and ap-
plying Fisher’s method with and without Levenberg-Marquardt (LM) method, Newton
method and Broyden, Fletcher, Goldfarb, and Shanno (BFGS) methods. The number of
iterations until convergence were 7 (Newton), 32 (Fisher), 20 (NONMEM), 23 (SciPy)
and on average 47 (min:30, max:64) for Fisher with LM. The influence of the diagonal
matrix in the LM method increases iteratively from 0. to 1. with a 0.01 stepsize visually
represented via a reduced transparency of the line color.
(c) As (b) but without estimating σ2

1. The number of iterations until convergence are 9
(Newton), 36 (Fisher), 19 (NONMEM), 18 (SciPy) and on average 42 (min:36, max:49)
for Fisher with LM.

underlying parameter estimation problem being a zero/low or large residual problem.
We expect that population parameter estimation problems with FO approximation and
heterogeneous data fit into large residual problems as one set of parameters must ex-
plain the various time profiles. The situation changes and the large residual problem
might become a low residual problem as soon as the FOCE with and without interac-
tion approximations will be considered. The impact of the LM method is additionally
analyzed for both scenarios concluding that the method can result in steeper descent
steps (compare for figure 7.36(b)) but also in worst steps (see figure 7.36 (c)). In [169],
Theorem 10.2.5 states that "a LM algorithm may still be slowly locally convergent on
large residual or very nonlinear problems" which should be kept in mind for using the
method.

Summarizing, further numerical tests and theoretical analysis have to be performed
for evaluating if Fisher’s method is a good trade-of between additional computational
expense and a faster convergence rate with only converging to minima not effected by
measurement errors compared to low-rank Hessian approximations. Bock’s κ analysis
[168] might help to get a better understanding and an a priori classification of the
parameter estimation problem into a low or large residual problem.
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Figure 7.37: Objective function values per iteration derived by different optimization
methods for the parameter estimation problem using the half acute myeloid leukemia
dataset from section 7.1.1.
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Summary & future perspectives
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Summary

In this thesis, we have developed semi-mechanistic population PK/PD models for the
CT of AML patients and the MT of childhood ALL patients. We have fitted the models
to clinical data and we have used those models to investigate clinically relevant aspects
with simulation and optimization studies. In addition, we have proposed a framework
for feedback optimal control with measurement time points computed from OED prob-
lems and have evaluated the benefit of Fisher’s method for the first order approximated
parameter estimation problem for NLME models.

Summarizing, we extended the gold-standard model for myelosuppression in phar-
macometrics [52] to the most important component in AML CT [19, 91], Ara-C, and
showed that one modeling assumption was important for a faster WBC count recovery
for D123 schedules. In three extended models (M9, M10, and M12) we assumed that the
Ara-C concentration has a direct impact on the proliferation term γ. Independent from
the underlying physiological process, the dense treatment schedule D123 profits more
than the standard plan D135 from the induced dynamics with respect to WBC recovery
times. Future G-CSF concentration measurements for AML patients during consoli-
dation cycles of D123 and D135 treatments and a comparison of our extended models
with Quartino’s [53] integrated G-CSF-myelosuppression model or more sophisticated
models from quantitative systems pharmacology [65] may shed light on these generated
hypotheses.

Next, we developed a second PK/PD model for the consolidation phase of AML
patients treated with Ara-C and additionally lenograstim, based on Quartino’s myelo-
suppression model considering endogenous G-CSF. Similar to our previous work, no
G-CSF concentration measurements were available. In comparison to the firstly pre-
sented model, this model contains not only the dynamics of WBCs but also of leukemic
cells and G-CSF concentrations. The consideration of leukemic cells enables an im-
proved understanding of the interaction between WBCs and leukemic blasts and the
evaluation of different treatment schedules on remission and leukopenia. The devel-
oped model and the results from the computational approach to optimize the admin-
istration of Ara-C and lenograstim with respect to clinically important outcomes are
further steps toward providing personalized medicine and decision-support tools for
physicians [234].

In the context of pediatric ALL, we presented a novel population PK/PD model
describing myelosuppression for ALL maintenance therapy among children who re-
ceived 6MP and MTX. A comparison with alternative modeling approaches and using
WBC counts instead of ANCs showed the benefit of this model. We could show a
linear dose-effect relationship superimposed with fluctuations of varying magnitude.
Mathematical simulations and more mechanistic modeling approaches will allow to
improve the understanding of intrinsic and extrinsic influence factors on the aberrant
hematopoiesis and chemotherapy-induced myelosuppression of pediatric ALL patients.
Therefore, the monitoring of individual PK profiles and a subsequent analysis of the
PK/PD relationship are mandatory next steps for a better dose-effect correlation.
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Regarding algorithmic contributions, we present a novel framework for feedback
optimal control with measurement time points for parameter estimations computed
from OED problems. It is based on a decoupled approach to dual control. The algo-
rithm provides a reduction of parameter uncertainties while applying an optimal control
strategy when measurement time points are used from OEDs compared to heuristically
chosen equidistant measurement time points for parameter estimations. We also inves-
tigated a robustified version of the algorithm. Furthermore, a theoretical insight about
the solution of the OED problem is given. Therefore Pontryagin’s Maximum Principle
is applied to the OED problem when the sum of optimization variables is constrained
by one and a connection is drawn between the trace of the information gain matrix and
the Lagrange multipliers for a discrete optimal design. The algorithmic and theoretical
results are demonstrated on the Lotka-Volterra fishing benchmark problem.

Finally, we investigated Fisher’s method in the context of parameter estimation for
NLME models. For two numerical examples (theophylline and AML), differing in their
problem size and nonlinearity, we applied Fisher’s method to the FO approximated
parameter estimation problems and compared the method with other solving methods.
Similar or even steeper descent steps per iteration were achieved by Fisher’s method
compared to the BFGS approximations but further studies have to be performed to
analyze the method of choice for parameter estimation of NLME models.

Future perspectives

In the following, we give several future perspectives worthwhile to investigate in follow-
up studies.

In the context of AML, the models could be extended for the application in induction
therapy with its anthracycline- and Ara-C-based 7+3 schedule, such that individualized
schedules can be proposed at the start of chemotherapy treatment and not after induc-
tion therapy. Moreover, during induction therapy the increase of leukemic blasts and
their response to the treatment can be analyzed leading to identifiable and thus more
individualized mathematical models predicting the long term remission more precisely.
Based on a prospective study with adequate biomarker information, the development
of a mechanistic model for Ara-C, G-CSF, WBCs and leukemic cells might be a next
step to better understand the PD effects of standard and dense high-dose Ara-C treat-
ments. Modeling MRD, proposed by multiple recent studies as a strong prognostic
marker for relapse in AML [207–210], might also be a promising alternative to leukemic
blasts. Further, the deterministic optimization results could be extended with a compre-
hensive comparison of different optimization approaches and formulations addressing
robustification, stochasticity, multiple objective functions and mixed integer aspects in
constraints and controls (see [235]) for the actual application of the optimized schedules
in clinical practice.

Mathematical modeling in the field of childhood ALL is a very promising and
also a crucial field of research as there currently exist only four publications about
PK/PD models for the MT aiming at explaining the variability of the PK and PD and
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their related treatment efficacy and toxicity. Current daily oral administration and the
collection of blood samples from children are two factors which make the modeling
efforts demanding. In our work, we already addressed and highlighted important
clinical aspects which still need further investigation. Follow-up analysis and studies
are needed to investigate the

• impact of treatment breaks

• model-intrinsic and chemotherapy-induced oscillations

• impact of G-CSF administrations

• dynamics of leukemic blasts, respectively MRD

• differentiation of PD effect of 6MP and MTX

Our work also revealed different issues with regard to the mathematical model,
e.g. a high MMT which does not coincide with physiologically plausible values. For a
more mechanistic representation the PK models of 6MP and MTX should be extended
with an additional compartment representing the concentration within the BM as it
is the side of action for both drugs. The model and data show oscillations which
might be beneficial for advanced treatment, but the relation between PK/PD and the
chemotherapy-induced oscillations needs further investigation for a profound explana-
tion. An interesting modeling approach for short- and long-term PD effects might be
the introduction of two separate cell lines describing acute and chronic therapy-induced
myelosuppression. The interested reader is referred to [236] for such kind of a model
applied to oxaliplatin-induced peripheral neuropathy. Additionally, further cell lines
for other hematopoietic cells and leukemic blasts or MRD as surrogate could be in-
troduced. Based on our simulation study and further advanced models, optimization
problems can be formulated to compute individually optimized treatment schedules.

Regarding algorithmic and numerical investigations, we believe that real time opti-
mization might find its way to the computation of chemotherapy schedules for leukemia
patients as soon as fast measurement devices are available for updating the mathemat-
ical models. In this context, online methods such as Moving Horizon or Kalman Filter
have to be developed for the different NLME parameter estimation methods with ef-
ficient update formulas for real-time feasibility. Further investigations regarding the
application and benefits of the Fisher’s method might also be of great value for the
PK/PD community and ultimately the patients, as PK/PD models are primarily devel-
oped to continuously assess and improve their therapy and medical condition.
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