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Abstract We introduce a novel generic methodology to solve continuous finite-
horizon stochastic optimal control problems (SOCPs). We treat controlled stochas-
tic differential equations (SDEs) within the Wiener chaos framework by utilizing
Malliavin calculus and developing innovative ideas to preserve the feedback char-
acter of optimal Markov decision rules.

This allows a direct reformulation of SOCPs into deterministic ones. Hence,
it facilitates using Bock’s direct multiple shooting method for solving SOCPs and
pioneers the extension of sophisticated methods for deterministic control to the
broad context of SDEs.

Numerical examples validate this new framework with huge computational
advantages compared to standard ideas in SOC.
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1 Introduction

Solving continuous finite-horizon stochastic optimal control problems has attracted
increasing interest in the past decades. In economics and finance, and especially in
portfolio management, starting with classical questions of, e. g., Merton [9], such
problems driven by stochastic differential equations are usually used as the under-
lying modeling framework. Here the detection of optimal decision rules becomes a
crucial task.
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Basically, problems belonging to that class can be solved if we consider the
corresponding Hamilton-Jacobi-Bellman (HJB) equation [17,18,33]. In most cases,
however, this second-order partial differential equation is not analytically solvable
or does not even admit a global solution at all, which is why appropriate numerical
ideas have to be applied to obtain optimal decision rules.

Apart from discretizing the HJB equation, the common methods of choice
are direct numerical ideas. Often they are based on the application of Markov

chains, i. e., discretizing the continuous process in space and time. For example,
the approach of Kushner [20,21] uses finite-difference and finite-element ideas to
obtain the transition probabilities of the Markov chain from the HJB equation. In
contrast the work of Krawczyk [3,19] builds on weak approximation schemes [17] for
stochastic differential equations (SDE) to design a Markov decision chain from the
original problem. The resulting Bellman equation can then be solved using value
iteration. A third related idea introduced by Pagès [35] is based on the quantization

of stochastic processes [27,28,36]. There the original process is projected onto a
random vector taking values on a finite grid following a closest neighbor rule [35].
The resulting problem can, again, be solved by a dynamic programming procedure.

In this paper we propose an entirely different methodology to solve continuous
finite-horizon stochastic optimal control problems. We utilize the polynomial chaos

(PC) or Wiener chaos framework developed by Norbert Wiener [42] and generalized
by Cameron and Martin later on [8] to reformulate the original stochastic optimal
control problem as a (larger) deterministic optimal control problem.

By means of the chaos expansion we express the considered stochastic pro-
cesses in a Fourier-like fashion in terms of deterministic coefficient functions and
orthonormal basis polynomials spanning the underlying Wiener chaos space. Fol-
lowing this construction the driving force of the stochastic processes, i. e., the
Brownian motion, can be represented in terms of Gaussian random variables. This
is closely related to its Karhunen-Loève expansion [14,24].

However, in order to reformulate the appearing SDE as a system of ordinary
differential equations (ODEs), the stochastic integral characterizing the diffusion
has to be treated cautiously, because one has to integrate with respect to a function
that is nowhere differentiable. Thus it cannot be approximated straightforwardly.
In the context of this paper we utilize Malliavin calculus [30,31] to overcome this
difficulty. The resulting propagator, appearing in a related fashion in [25,26] for
solving a class of partial differential equations with random forcing, is enhanced
afterwards to controlled SDEs. It implicitly includes all randomness of the original
SDE, which is due to the underlying Hilbert space theory. But in doing so it is
crucial to implement feedback formulations of the control process to preserve the
non-anticipativity of optimal decision rules.

The emphasis of this paper is on one side on the idea of transforming a stochas-
tic optimal control problem into a deterministic one, which can be solved by sophis-
ticated methods of optimal control afterwards, e. g., Bock’s direct multiple shooting

approach [6], which is based on the general multiple shooting ideas of Osborne
and Bulirsch [34,7]. Additionally, the proposed transformation opens the possi-
bility to apply state-of-the-art methods for deterministic optimal control in the
broad context of random processes. On the other side, we illustrate the methodol-
ogy introduced here with numerical examples that yield very encouraging results,
establishing the potential for huge computational savings compared to standard
approaches in stochastic optimal control.
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The paper is organized as follows. In Section 2 we introduce the general chaos
expansion and give an overview on the important parts of Malliavin calculus we
need for our approach. In Section 3 we apply these ideas to stochastic differential
equations and in Section 4 to stochastic optimal control problems, resulting in
a transformation to deterministic ones. In that context we establish a method to
preserve the feedback character of the control policy. In Section 5 we shortly review
the direct multiple shooting method for convenience. In Section 6 two numerical
examples illustrate our novel approach to solve continuous finite-horizon stochastic
optimal control problems.

2 Notations and Mathematical Preliminaries

2.1 Statement of the Problem

Let {Xt}t∈[0,T ] be a nX -dimensional stochastic process within the probability space
(Ω,F ,P) and {Bt}t∈[0,T ] a nB-dimensional Brownian motion. Then in the further
course of this work we consider the finite-horizon stochastic optimal control prob-
lem

min
u∈A

E

[∫ T

0

L(t,Xt, ut) dt+G(T,XT )

]
(1a)

s.t. dXt = b(t,Xt, ut) dt+ σ(t,Xt, ut) dBt, (1b)

X0 = x0, (1c)

with cost functional (1a) and b and σ describing the drift and diffusion parts of the
random state process where Xt ∈ X ⊂ RnX for all t ∈ [0, T ]. For notational ease we
often write only X = {Xt}, whenever the time interval [0, T ] is obvious. Assuming
its existence in L2(Ω × [0, T ]) for the moment, this process {Xt} is driven by the
controlled Itō stochastic differential equation (1b) with initial condition (1c). We
assume to stop the process at the final time T rather than letting it evolve until
it leaves a predefined region G. The control ut ∈ U ⊂ Rnu that is chosen over a
set A of admissible controls to minimize the cost functional (1a) then has to be
a stochastic process {ut} = {u(t, ω)} as well. Moreover, it has to be at least Ft-
adapted since the decisions we take at time instant t ∈ [0, T ] can only be depending
on what already happened up to t. The most common choices of admissible control
functions [33] are

– deterministic controls u(t, ω) = u(t),
– open-loop controls u(t, ω) which are non-anticipative with respect to the Brow-

nian motion {Bt}, and
– Markov controls u(t, ω) = uM(t,Xt(ω)) with a non-random and Lebesgue-mea-

surable function uM. With such a control the process {Xt} becomes an Itō
diffusion. Furthermore, we assume uM to be sufficiently smooth.

In the following we restrict ourselves to Markov controls, writing simply ut =
u(t,Xt).

The goal of this work is to transform the stochastic optimal control problem
(1) into a deterministic optimal control problem that can be solved by existing
sophisticated methods like, e. g., the direct multiple shooting approach [6]. One
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important aspect is that we have to preserve the feedback character of the Markov
control.

2.2 The Wiener Chaos Expansion

The basic concept of the presented idea is the Wiener chaos expansion going back
to the work of Norbert Wiener [42] who introduced the homogeneous chaos, an
orthogonal development for nonlinear functionals based on a Gaussian measure.
Cameron and Martin [8] generalized this first idea as they used Fourier-Hermite
functionals to construct an orthogonal basis for nonlinear functions. The first at-
tempts of applying the idea to problems with random phenomena have again been
done by Wiener [43]. Based on [8], Wiener’s expansion of functionals can be gen-
eralized to hold for arbitrary random processes [32,40]. Especially in the past few
years, the concept of polynomial chaos has attracted much attention again, e. g.,
in technical applications like calculations of von Mises stress [1] or robustness in
shape optimization [39]. Further on, there is a deep connection between the poly-
nomial chaos and the general Hilbert space theory, [11] and [13] give a detailed
explanation and discussion on that topic.

Based on [42], we have the following theorem, cf. [8, Theorem 1] as well as [31,
Theorem 1.1.1]:

Theorem 1 (Cameron and Martin) Assume that the process {Xt} satisfies the

integrability condition E
[∫ T

0
|Xt|2 dt

]
<∞, i. e., {Xt} ∈ L2(Ω× [0, T ]). Then Xt can

be expanded in [0, T ] as

Xt =
∑
α

xα(t)Ψα(ξ) (2)

with (deterministic) coefficient functions xα(t) and {Ψα(ξ)}α being an orthonormal

basis of the Wiener chaos space L2(Ω × [0, T ]).

Within this theorem, α denotes a multi-index from the set

I =

{
α = (αi)i≥1

∣∣∣∣∣ αi ≥ 0, |α| =
∞∑
i=1

αi <∞

}
. (3)

For convenience, in the rest of this paper we shortly write

α = 0 if αi = 0 for all i,

α = ej if αi = δij .

To construct the basis polynomials Ψα(ξ) we first need [26, Chapter 2.3]

Lemma 1 Let {mi(t)} be an orthonormal basis of the Hilbert space L2([0, T ]). Then

the Itō integrals

ξi =

∫ T

0

mi(t) dBt (4)

define independent standard Gaussian random variables.
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Definition 1 With the one-dimensional Hermite polynomials

Hn(x) =
(−1)n

n!
ex

2/2 dn

dxn
e−x

2/2 (5)

the basis polynomials of the Wiener chaos space are defined by

Ψα(ξ) =
√
α!
∏
i

Hαi(ξi), (6)

where α! as the product of all component’s factorials.

From that definition and the properties of the Hermite polynomials one directly
shows the orthonormality of the basis polynomials, which are often referred to as
Wick polynomials.

Hence, the coefficient functions xα(t) can be interpreted as projections of the
process Xt onto the corresponding chaos basis as in a Fourier-related manner. It
holds

xα(t) = E [XtΨ
α] .

Particularly the coefficient function of order zero obtains a special meaning. It
coincides with the expectation of the process Xt, as the basis polynomial of order
zero is identically one.

x0(t) = E
[
XtΨ

0
]

= E [Xt] . (7)

In a similar fashion the variance of Xt and, consequently, all higher moments can
be expressed in terms of the coefficient functions xα(t) only, compare [1].

Lemma 1 additionally reveals a connection to the Karhunen-Loève expansion

(KLE) of the Brownian motion {Bt}. Due to the scaling property of this process
we can restrict the considerations to the time interval [0, 1]. Then the KLE is de-
termined from the eigenvalues and eigenvectors of the covariance between two time
points s, t [14,24]. In the special case of the Brownian motion with covariance func-
tion C(s, t) = min{s, t} one calculates the eigenvalues λi and their corresponding
eigenfunctions vi(t)

λi =
1(

i− 1
2

)2
π2
, vi(t) =

√
2 sin

((
i− 1

2

)
πt

)
, i = 1, . . . ,∞,

obtaining the KLE

B(t, ξ) =
∞∑
i=1

√
2 sin

((
i− 1

2

)
πt
)(

i− 1
2

)
π

ξi. (8)

For larger time horizons [0, T ] one has to modify the time variable as it is done,
e. g., in [4] or [26]. On the other hand, keeping (4) in mind, one can rewrite Bt by
its Fourier expansion [26]

B(t) =
∞∑
i=1

ξi

∫ t

0

mi(s) ds. (9)

This expansion converges in the mean square sense. Letting the orthonormal basis
{mi(t)} of L2([0, 1]) be given by

mi(t) =
√

2 cos

((
i− 1

2

)
πt

)
,

one obtains (8) again.
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2.3 Malliavin Calculus

The second major concept that we need for the transformation of the stochastic
problem (1) into a deterministic one is Malliavin calculus. Extensive introductions
to the topic can be found in, e. g., [30,31]. Here we only want to summarize the
essential ingredients needed for the presented method to solve problems of type
(1). Again, we use the Hermite polynomials (5) and the chaos basis functions Ψα

(6).
Let W = {W (h) | h ∈ H} denote an isonormal Gaussian process defined in

(Ω,F ,P) and associated with the Hilbert space H. (Compare Lemma 1, i. e., the
definition of the variables ξi depending on mi ∈ L2, ξi = W (mi).) Further on,
assume F to be a square-integrable, smooth random variable of the form

F = f(W (h1), . . . ,W (hn)) (10)

with f ∈ C∞p (Rn) and hi ∈ H, i = 1, . . . , n.

Definition 2 (Malliavin derivative D, [31]) The Malliavin derivative of a smooth
random variable of the form (10) with respect to the chance parameter ω ∈ Ω is
the H-valued random variable

DF =
n∑
i=1

∂if(W (h1), . . . ,W (hn)) · hi. (11)

By that definition, we interpret DF as a directional derivative. We denote the
domain of D in L2(Ω) by D1,2. This space is again a Hilbert space with the scalar
product

〈F,G〉1,2 = E [FG] + E [〈DF,DG〉H ] .

Additionally, the derivative of a random variable F ∈ D1,2 is a stochastic process
denoted by {DtF}t∈[0,T ].

To give an illustrating example, let us calculate the Malliavin derivative of the
basis polynomial Ψα(ξ), which is indeed a random variable in D1,2.

Example 1 Consider the basis polynomial Ψα(ξ) defined by (6) for fixed α ∈ I. We
deduce (exploiting the rules for differentiating Hermite polynomials of the form
(5) and the definition of the random variable ξi)

DsΨ
α(ξ) = Ds

(
√
α!
∏
i

Hαi(W (mi))

)

=
∞∑
j=1

√
α!
∏
i
i6=j

Hαi(ξi)Hαj−1(ξj)mj(s)

=
∞∑
j=1

√
αj mj(s)Ψ

α−(j)(ξ) (12)

with the diminished multi-index α−(j) defined as

α−i (j) =

{
αi, i 6= j

αi − 1, i = j
. (13)
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The next component we need is the divergence operator.

Definition 3 (Divergence δ, [31]) We denote by δ the adjoint of the operator
D. That is, δ is an unbounded operator on L2(Ω;H) with values in L2(Ω) such
that the domain Dom δ of the divergence is the set of H-valued square integrable
random variables u ∈ L2(Ω;H) that are bounded according to

|E [〈DF, u〉H ] | ≤ c‖F‖2

for all F ∈ D1,2 and a constant c depending on u.

If u ∈ Dom δ then δ(u) ∈ L2(Ω) is characterized for any F ∈ D1,2 by

E [Fδ(u)] = E [〈DF, u〉H ] . (14)

Equation (14) provides the important integration by parts formula we need later
on to transform the SDE determining the process {Xt} into a system of ODEs. In
the context of stochastic integrals we have:

Proposition 1 ([31]) Let {Bt}t∈[0,T ] be a d-dimensional Brownian motion and con-

sider by L2
a the closed subspace of adapted processes in L2([0, T ]d × Ω). Then L2

a ⊂
Dom δ and the divergence operator restricted to L2

a coincides with the Itō stochastic

integral, i. e.,

δ(u) =
d∑
i=1

∫ T

0

uit dBit.

Following from that proposition and (14) we obtain a customized integration
by parts formula restricted to the time interval [0, t].

Lemma 2 Let Xt be a square integrable and Ft-measurable random variable for all

t ∈ [0, T ]. Then for all F ∈ D1,2 we obtain the formula

E
[
F ·
∫ t

0

Xs dBs

]
= E

[∫ t

0

DsF ·Xs ds

]
. (15)

Proof We directly calculate

E
[
F ·
∫ t

0

Xs dBs

]
= E

[
F

∫ T

0

Xs 1{s≤t} dBs

]
= E

[
Fδ(X̂)

]
= E

[
〈DF, X̂〉H

]
= E

[∫ T

0

DsF ·Xs 1{s≤t} ds

]
= E

[∫ t

0

DsF ·Xs ds

]
,

where X̂ simply denotes the restriction of the process X to the interval [0, t].
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3 Stochastic Differential Equations and the Wiener Chaos

As only a small number of stochastic differential equations can be solved analyti-
cally, a very important issue is the numerical approximation of their solution. [17]
describes many different algorithms for that task, using adaptions of deterministic
numerical integration schemes to the stochastic necessities, e. g., stochastic Taylor
approximations. However, all of these algorithms make use of random numbers.
In this section we show how the aforementioned ideas of the Wiener chaos can be
used to transform a given Itō SDE into a system of ODEs which, thereafter, can
be solved by sophisticated methods for deterministic differential equations.

Let us start with an uncontrolled (one-dimensional) process {Xt} defined by
the autonomous SDE on the time interval [0, T ], i. e.,

dXt = f(Xt) dt+ φ(Xt) dBt, X0 = x0, (16a)

or, conveniently, written in its integral form

Xt = x0 +

∫ t

0

f(Xs) ds+

∫ t

0

φ(Xs) dBs. (16b)

The generalization to multi-dimensional processes {Xt} and {Bt} follows straight-
forwardly. Here we focus on the basic idea. We can apply the Wiener chaos ex-
pansion (2) from Theorem 1 if the SDE (16) has a square integrable solution in
[0, T ].

Theorem 2 Let {Xt} be given by (16) and assume that {Xt} ∈ L2([0, T ]×Ω). Then

Xt can be written in its Wiener chaos expansion

Xt =
∑
α∈I

xα(t)Ψα(ξ)

with the coefficients xα(t) determined by the following propagator on [0, T ]

ẋα(t) = f(Xt)α +
∞∑
j=1

√
αj mj(t)φ(Xt)α−(j), (17a)

xα(0) = 1{α=0} · x0. (17b)

Within this system of ODEs, fα and φα denote again the α-coefficients of the chaos

expansions of the functions f and φ (depending on Xt) and α−(j) the diminished

multi-index as defined in (13).

Proof Inserting the expansion (2) into (16b), multiplying with the basis polynomial
Ψβ(ξ), β ∈ I, and calculating expectations yields for all β ∈ I and t ∈ [0, T ]

xβ(t) = x0 · 1{β=0} +

∫ t

0

E
[
f(Xs)Ψ

β(ξ)
]

ds+ E
[
Ψβ(ξ) ·

∫ t

0

φ(Xs) dBs

]
.

While the first appearing integral is deterministic and the expectation within can
be represented by the corresponding coefficient function of the expansion of f(Xt),
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the second integral has to be treated with the integration by parts formula (15).
This yields

xβ(t) = x0 · 1{β=0} +

∫ t

0

f(Xs)β ds+ E
[∫ t

0

DsΨ
β(ξ)φ(Xs) ds

]
= x0 · 1{β=0} +

∫ t

0

f(Xs)β ds

+
∞∑
j=1

∫ t

0

√
βj mj(s)E

[
φ(Xs)Ψ

β−(j)(ξ)
]

ds

= x0 · 1{β=0} +

∫ t

0

f(Xs)β ds+
∞∑
j=1

∫ t

0

√
βj mj(s)φ(Xs)β−(j) ds. (18)

As for all β ∈ I there are only a finite number of non-zero components βi, i ≥ 1,
compare (3), the formally infinite sum on the right-hand side of (18) is in fact
finite. Hence, the assertion follows after differentiating with respect to t.

Remark 1 Keeping in mind the definition of the random variables ξi (4) and their
significance in constructing the Brownian motion (9), we see that all information
about the behavior of the stochastic process {Xt} is implicitly captured within the
deterministic ODE system (17).

In the context of a special class of stochastic partial differential equations driven
by Gaussian white noise, a similar propagator is derived in a somewhat related
fashion in [25], the references within, and, based on that, [26].

One major advantage of this approach of solving SDEs is that the expectation
of the process, E [Xt], is directly given by the zero-order coefficient x{α=0}(t).
Hence, it need not be calculated by, e. g., Monte Carlo methods, where a huge
amount of sample paths (computed by some standard stochastic integration meth-
od) is necessary. Here, if one is interested in special sample paths, they can be
determined by using different realizations of the random vector ξ after the system
has been solved. Similar to the expectation, the variance of the process and all
higher moments are completely specified by the deterministic coefficient functions
of the chaos expansion.

4 Stochastic Optimal Control

4.1 The Propagator of the Control Problem

Let us return to the stochastic optimal control problem (1). In particular, the cost
functional (given by (1a)) or value function

Φ(t, x) = min
u∈A

E

[∫ T

t

L(s,Xs, us) ds+G(T,XT )

∣∣∣∣∣Xt = x

]
(19)
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satisfies for each initial value (t, x) the Hamilton-Jacobi-Bellman partial differential
equation (PDE) [18,33]

0 = inf
u

{
L(t, x, u) +

∂Φ

∂t
(t, x) +

nX∑
i=1

bi(t, x, u)
∂Φ

∂xi
(t, x)

+
1

2

nX∑
i,j=1

(σσ>)ij(t, x, u)
∂2Φ

∂xi∂xj
(t, x)


(20)

with the final condition

Φ(T, x) = G(T, x) (21)

for each (initial) value (t, x).

The approaches of solving such kind of problems include tackling this PDE
directly [9,18]. However, one cannot guarantee the assumptions in all cases, as
the determination of appropriate boundaries is intricate in most applications, [33].
Therefore, we prefer the use of direct methods. Successful approaches based on
Markov chains can be found in, e. g., [20,21] or [3,19].

As an alternative, our novel methodology applies the ideas of the previous
section to the control problem (1). Therefore, we have to consider a controlled
SDE (compare especially Equation (1b)), where we proceed in a similar way as
above to obtain the propagator of the system. Besides the expansion of the state
process {Xt} we have to include a second chaos expansion determining the control
process {ut}, i. e.,

ut =
∑
α∈I

uα(t)Ψα(ξ). (22)

Remark 2 By incorporating expansion (22) directly in the propagator obtained for
a controlled SDE, we cannot guarantee the assumed feedback character of the
Markov control ut = u(t,Xt) anymore.
From a computational point of view, there is another disadvantage of directly
implementing the expansion (22) of the control process: The final deterministic

optimal control problem we want to deduce would contain the same number of
state and control functions uα(t) and xα(t). Hence the resulting problem would be
very hard to solve numerically.

The remedy to both problems lies in

Theorem 3 Assume that the Markov control ut = u(t,Xt) can be Taylor-expanded in

terms of Xt. Then by considering the q-th order polynomial

uq(t,Xt) =

q∑
i=0

ûi(t)X
i
t , (23)

the original control coefficients uα(t) of (22) are characterized completely by the q+ 1
new control functions ûi(t), i = 0, . . . , q, and the state coefficients xα(t). Furthermore,

the resulting control uqt is automatically non-anticipative and tends to ut for q →∞.
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Proof In contrast to expanding u(t,Xt) in t, for calculating the expansion in terms
of Xt we do not need a stochastic Taylor expansion. Thus, an (infinite) Taylor
expansion in Xt = a yields

ut =
∞∑
n=0

1

n!

∂

∂x
u(n)(t,Xt)

∣∣
Xt=a

(Xt − a)n

which can always be rewritten in powers of Xt. Hence, with defining new control
functions ûi(t) as the coefficient terms of these powers, one arrives at the infinite
version of (23). Similarly, a finite version up to order q can be defined with the q-th
term corresponding to the remaining error. The convergence to ut follows directly
and so does the non-anticipativity as we express ut through the state process which
fulfills the property by definition.

Now if we compare (22) and (23)∑
α∈I

uα(t)Ψα(ξ) =

q∑
i=0

ûi(t)X
i
t (24)

by inserting the chaos expansion (2) of Xt and projecting the resulting expression
onto the chaos bases, we obtain a system describing the original control coefficients
uα(t) by the new control functions ûi(t) and the state coefficients xα(t), while
having the feedback character of the Markov control included implicitly.

Example 2 Assume q = 2. Then the quadratic and non-anticipative expansion of
the control process {ut} is given by (22), where the coefficients uα(t) are defined
by the system

uα(t) = û0(t) · 1{α=0} + û1(t) · xα(t)

+ û2(t) ·
∑
β∈I

∑
0≤γ≤α

C(α, γ, β)xα−γ+β(t)xγ+β(t) (25)

for all α ∈ I and C(α, γ, β) given by (compare [26])

C(α, γ, β) =

√√√√(α
γ

)(
γ + β

β

)(
α− γ + β

β

)
. (26)

All multi-index operations are defined component-wise, including the binomial co-
efficient that is calculated as the product of the component’s binomial coefficients.
Note as well that by 0 ≤ γ ≤ α it holds α+ γ − β ∈ I and γ + β ∈ I.

Combining Theorems 2 and 3 we obtain a deterministic reformulation of the
controlled SDE (1b). Hence, the only missing part of our transformation method is
the objective function (1a) of the original stochastic optimal control problem. But
as this is already formulated as an expectation value, it can be rewritten directly
in terms of the deterministic coefficients xα(t) of the state process {Xt} and the
(new) control functions ûi(t). We give a detailed example in Section 6.

Remark 3 To reflect that optimal controls can be discontinuous, our preference for
solving the resulting deterministic control problem after applying expansion (23) is
Bock’s direct multiple shooting approach, cf. Section 5. Within this method controls
are identified on a discrete multiple shooting grid, see (30), allowing discontinuous
control profiles for each ûi(t), i = 0, . . . , q.
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4.2 Truncating the Propagator

For numerical applications the propagator certainly has to be truncated. Basically,
there are three major types of truncation:

– The order q of the corresponding expansion from the approximation (23) of
the Markov control.

– The number k of random variables ξi, i = 1, . . . , k that are used within the
construction of the basis polynomials Ψα(ξ), ξ = (ξi)i=1,...,k. Note that due to
their construction (4) via the basis polynomials mi(t) of L2([0, T ]), the random
variables ξi give less information for increasing index i.

– The maximum order p of the basis polynomials. Note that the coefficient func-
tions with corresponding basis polynomial Ψα with |α| = p give less information
for increasing p.

From the second and third type we obtain the (simply) truncated multi-index set

Ik,p =

{
α = (α1, . . . , αk)

∣∣∣∣∣ αi ≥ 0,
k∑
i=1

αi ≤ p

}
. (27)

Example 3 If we consider again the Brownian motion process {Bt} by its expansion
(8) or (9), the importance of the truncation number k is shown in Figure 1.
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Fig. 1 Example paths for the truncated Karhunen-Loève expansion of a Brownian Motion
Bt. The left figure shows sample paths for varying k on the time horizon t ∈ [0, 1], the right
one a zoomed part of that plot.

4.3 Sparse Truncation

As already stated in the previous section, the importance of the coefficients xα(t)
decays depending on the order p of the basis polynomials Ψα and the decaying rate
of the Gaussian expansion, i. e., the index of the random variables ξi, i ∈ {1, . . . , k},
used for the construction of Ψα(ξ). Especially if we consider coefficients with index
ᾱ, where |ᾱ| is large and ᾱ consists of a combination of random variables ξj with
large indices j, the information gained is very low.

Hence, we define a sparse index for truncating the index set I (compare [10,
26]).
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Definition 4 Let p be the maximum order of the index α. Then the sparse index
r = (r1, . . . , rk) fulfills p = r1 ≥ r2 ≥ · · · ≥ rk and we define the sparse index set

Irk,p = {(α1, . . . , αk) | |α| ≤ p, αi ≤ ri ∀i} . (28)

Example 4 Let k = 5 and p = 3. Then a possible choice of r is r = (3, 2, 2, 1, 1).
Figure 2 visualizes the sparse index set Irk,p. For constructing the first order poly-
nomials all five random variables (and the corresponding first-order Hermite poly-
nomials) can be used. The second order polynomials are comprised by all possible
combinations of first-order Hermite polynomials depending on ξ1, . . . , ξ5 and the
second order Hermite polynomials of ξ1, ξ2, ξ3. Analogously, the third order poly-
nomials are constructed.

k

p

ξ1 ξ2 ξ3 ξ4 ξ5

1

2

3

r−−−→

k

p

ξ1 ξ2 ξ3 ξ4 ξ5

1

2

3

Fig. 2 Schematic example of a sparse index r = (3, 2, 2, 1, 1) in comparison with the full
index set for k = 5 random variables and maximum order p = 3 of the chaos basis polynomials
Ψα(ξ).

Remark 4 By using this sparse index set Irk,p the number of coefficient functions
xα(t) appearing within the propagator can be reduced drastically without impair-
ing the solution much. In the above Example 4 the full index set Ik,p consists of
(k+p)!
k!p! = 56 terms [1,26], whereas the sparse truncated index set includes 42 terms

(compare Tables 1/3).

An even better reduction can be achieved if we use an adaptive index rp

that depends on the actual order of the polynomials Ψα with p = |α|, e. g.,
r1 = (1, 1, 1, 1, 1), r2 = (2, 2, 2, 1, 0), r3 = (3, 2, 0, 0, 0). That means, in constructing
basis polynomials of order |α| = 3 we can use all combinations of Hermite polyno-
mials depending on the first two random variables ξ1 and ξ2 up to orders 3 and
2, respectively. Thus, these are

√
6H3(ξ1),

√
2H2(ξ1)H1(ξ2), and

√
2H1(ξ1)H2(ξ2)

(see (6) and [26]).

In [26] there is an analysis of the errors made through truncating the propagator
for several examples of solving stochastic partial differential equations via a Wiener
chaos approach. In the context of stochastic optimal control this is a far more
complex task. In Section 6 we give an impression of the error performance by
numerical investigations.

While the usual sparse-grid ideas for polynomial chaos based on the Smolyak
scheme [41,16] cannot be deployed directly in our intrusive-type method, alterna-
tive schemes can be developed from the sparsity-of-effects principle and the least

angle regression or compressed sensing [5,29], which provides a more general trun-
cation than the heuristic approach introduced above.
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5 The Direct Multiple Shooting Approach

Before we take a closer look on numerical examples of solving stochastic optimal
control problems by the introduced chaos approach, we give a short introduction to
Bock’s direct multiple shooting approach [6], which is a progression of Bulirsch’s gen-
eral multiple shooting idea [7]. It provides a state-of-the-art simultaneous method
to solve optimization and simulation tasks at the same time. More information on
this technique can be found, e. g., in [23].

The following deterministic optimal control problem represents the class of
problems we want to solve in the following:

min
x,u

∫ tf

t0

L(t, x(t), u(t)) dt (29a)

s.t. ẋ(t) = f(t, x(t), u(t)), (29b)

x(t0) = x0, (29c)

0 = re(x(t0), x(tf)), (29d)

0 ≤ ri(x(t0), x(tf)), (29e)

0 ≤ g(t, x(t), u(t)), (29f)

for t ∈ [t0, tf ] almost everywhere, with differential states x : [t0, tf ] → Rnx , con-
trol functions u : [t0, tf ] → Rnu , and an objective function of Lagrange type. All
functions considered are assumed to be sufficiently smooth.

Let x and u be the vectors of states xi and controls ui, then equation (29b)
represents the ODE model with a right hand side f depending on time t ∈ [t0, tf ].
Initial values x0 are given in (29c), (29d) and (29e) summarize (optional) equality
respectively inequality boundary conditions, and (29f) contains optional state and
path constraints.

The direct multiple shooting methods is based on a first discretize, then optimize

approach to transform the control problem first to a nonlinear program (NLP),
before this finite-dimensional optimization problem is solved to optimality.

The continuous controls are discretized by replacing them with base functions
with local support, such as piecewise constant or piecewise linear functions. These
functions can be described by finitely many parameters, i. e., we select a time grid

t0 = τ0 < τ1 < · · · < τm = tf , m ∈ N

and with Ii := [τi, τi+1] ∀ i ∈ {0, . . . ,m− 1} set

u(t)
∣∣∣
Ii

= φi(t, wi), wi ∈ Rµi , (30)

where the φi are the used base functions. Now we have transformed the infinite-
dimensional control u into a finite vector w = (w0, . . . , wm−1).

The states x are discretized using multiple shooting. For efficiency and simplicity
we choose the same time grid as for the controls. In theory, this is no limitation
of generality, as we can refine the grids such that they match and add some con-
straints. We introduce m + 1 new variables s0, . . . , sm which represent the initial
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values of the ODE on each interval Ii, respectively the final value sm. Now we
solve m independent initial value problems ∀ i ∈ {0, . . . ,m− 1},

ẋ(t; τi, si) = f(t, xi(t), φi(t, wi)), (31a)

x(τi; τi, si) = si, (31b)

t ∈ [τi, τi+1]. (31c)

For the numerical results presented in this paper, a Runge-Kutta-Fehlberg method
has been used to solve the initial value problems.

To ensure equivalence to the original problem (29), we have to add matching

conditions, which are the equality constraints

si+1 = x(τi+1; τi, si) ∀ i ∈ {0, . . . ,m− 1}. (32)

As the objective function is separable, it can be computed separately on each
interval by ∫ tf

t0

L(t, x(t), φ(t, w)) dt =
m−1∑
i=0

Li(τi+1) (33)

with

Li(t) =

∫ t

τi

L(t′, x(t′; τi, si), φi(t
′, wi)) dt′

and φ(t, w) := φi(t, wi) for t ∈ Ii.
The optional continuous constraints g(t, x(t), u(t), p) ≥ 0 are evaluated point-

wise on the grid, i. e.,

g(τi, x(τi; τi, si), φi(τi, wi)) ≥ 0, ∀ i ∈ {0, . . . ,m}.

Note that due to this the equivalence of the discretized problem to (29) is limited.
However, [37] provides a possibility to check whether the path constraints (29f)
are satisfied over the complete interval and reiterate, if necessary. The transformed
boundary conditions and initial values read

r(s0, sm) = 0,

s0 = x0.

The infinite-dimensional optimal control problem (29) has been transformed
into a finite-dimensional NLP, which can be solved with a structure-exploiting
sequential quadratic programming (SQP) method [38,44].

6 Numerical Applications

6.1 A Linear Stochastic Regulator Problem

Our first example for solving optimal control problems driven by SDEs by the help
of the novel chaos approach developed in Sections 3 and 4 is the standard linear-
quadratic stochastic regulator problem [17,33]. The advantage of this academic
example is that we can solve the corresponding HJB equation, i. e., we have an
exact solution to compare our results with.
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We consider the one-dimensional stochastic regulator problem

min
u∈A

E
[

1

2

∫ 1

0

(
X2
t + u2t

)
dt+

1

2
X2

1

]
(34a)

s.t. dXt = (Xt + ut) dt+ σ dBt, (34b)

X0 = x0, (34c)

where the coefficient σ determining the diffusion term is merely a scalar. Then the
optimal Markov feedback rule can be calculated as

ut(ω) = u∗(t,Xt(ω)) =
(√

2 tanh
(√

2(t− 1)
)
− 1
)
·Xt(ω). (35)

Thereby we have to keep in mind that the feedback rule at each instant of time t
depends on the actual state of the system, as each such pair of time and state can
be interpreted as the initial point of a separate problem. The Markov control ut
depends linearly on the state Xt of the system and explicitly on the time t. The
optimal cost of the problem is

Φ∗(t0 = 0, x0) =
1

2

(
1 +
√

2 tanh
√

2
)
x20 +

1

2
σ2
(

1 + ln cosh
√

2
)

and the expectation and variance of the solution process can be calculated ana-
lytically as well.

Applying the propagator of Sections 3 and 4.1 to the SDE (34b) in its integral
form, we deduce

xα(t) = x0 · 1{α=0} +

∫ t

0

(xα(s) + uα(s)) ds

+
∞∑
j=1

∫ t

0

√
αj mj(s)E

[
σ Ψα

−(j)(ξ)
]

ds,

with the control coefficients uα(t) given by (23) up to some order q. The expec-
tation value within the last summand is only 6= 0 if α−(j) = 0 or, equivalently,
α = ej , j ≥ 1. Therefore, the resulting system of ordinary differential equations
reads

ẋα(t) = xα(t) + uα(t) + σmj(t) · 1{α=ej},

xα(0) = x0 · 1{α=0}.

As stated before, we can transform the objective function (34a) by directly
inserting the chaos expansions (2) and (23) of Xt and the Markov control ut.
However, our investigations showed that it is numerically beneficial to convert
Mayer-type objectives into their corresponding Lagrange form. Despite a slightly
better convergence behavior, the computational costs are reduced notably.

Hence, applying Itō’s formula [17] on z(Xt) = 1
2X

2
t yields

E
[

1

2
X2

1

]
=

1

2
x20 + E

[∫ 1

0

(
Xt (Xt + ut) +

1

2
σ2
)

dt

]
+ E

[∫ 1

0

σXt dBt

]
︸ ︷︷ ︸

=0

=
1

2
x20 +

1

2
σ2 + E

[∫ 1

0

Xt (Xt + ut) dt

]
.
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This changes the objective (34a) to

E
[

1

2

∫ 1

0

(
X2
t + u2t

)
dt+

1

2
X2

1

]
=

1

2
(x20 + σ2) + E

[
1

2

∫ 1

0

(
X2
t + u2t + 2Xt (Xt + ut)

)
dt

]
=

1

2
(x20 + σ2) + E

[
1

2

∫ 1

0

(
(Xt + ut)

2 + 2X2
t

)
dt

]
=

1

2
(x20 + σ2) +

1

2

∫ 1

0

∑
α∈I

(
(xα(t) + uα(t))

2 + 2x2α(t)
)

dt.

Finally, for numerical investigations we have to truncate the index set I appro-
priately. In the sequel we assume a quadratic approximation of the control rule,
i. e., q = 2. Remember that the exact control (35) is only linear in Xt. Additionally,
we use different choices of (simply and adaptively) truncated index sets Irk,p. We
obtain the deterministic optimal control problem

min
û0(·),û1(·),û2(·)

1

2
(x0

2 + σ2) +
1

2

∫ 1

0

∑
α∈Irk,p

(
(xα(t) + uα(t))

2 + 2x2α(t)
)

dt


(36a)

s.t. ẋα(t) = xα(t) + uα(t) + σmj(t) · 1{α=ej} (36b)

xα(0) = x0 · 1{α≡0} (36c)

with

uα(t) = û0(t) · 1{α≡0} + û1(t)xα(t)

+ û2(t) ·
∑

β∈Irk,p

∑
0≤γ≤α

C(α, γ, β)xα−γ+β(t)xγ+β(t) (36d)

as given in Example 2.
The resulting problem (36) can now be solved by sophisticated methods of

deterministic optimal control as it does not explicitly involve random components
anymore. All stochastic information is included within the system (36b). Our pre-
ferred choice is the software MUSCOD-II [22] based on Bock’s direct multiple
shooting approach [6], compare Section 5. The problem (36) includes |Irk,p| state
functions corresponding to the coefficients xα(t) of the chaos expansion and three
control functions as we use a quadratic approximation of the feedback rule. The fol-
lowing numerical experiments have been performed using the initial values x0 = 1

2

and x0 = 1, the diffusion parameter σ = 0.15, and different truncation numbers k
and approximation orders p of the chaos expansion.

Figures 3 and 4 illustrate the behavior of the new control functions ûi(t),
i = 0, . . . , p, that we introduce to preserve the feedback character of the Markov
control ut = u(t,Xt) of the original stochastic problem (34). Note that we use
a quadratic expansion (23) although the exact feedback rule is only linear in Xt
(compare (35)). The solutions shown in Figure 3 are computed by a Gaussian
approximation of the chaos space, i. e., by truncating the index set I with an
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Fig. 3 Optimal controls of the linear-quadratic stochastic regulator problem (34). The plots
depict solutions of the deterministic optimal control problem (36) resulting from the chaos
methodology, i. e., the new control functions ûi(t), i = 0, . . . , q introduced in the expansion
(23) with q = 2 to preserve the non-anticipativity of the Markov control in its chaos expansion.
In comparison the exact functions (compare (35)) are shown.
Here the new control functions are obtained from truncating the index set I of the chaos
expansion with k = 10 random variables and approximation order p = 1, resulting in eleven
basis polynomials that describe the stochastic system. Because of that simple Gaussian ap-
proximation the quadratic expansion of the Markov control collapses to a linear one, whereas
these apparently wrong solutions yield good results.
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Fig. 4 Optimal controls of the linear-quadratic stochastic regulator problem (34) as in Figure
3. Now the controls are computed for k = 10 random variables and approximation order p = 2.
Thus, we come very close to the desired results, including û2(t) ≈ 0 as supposed.

approximation order p = 1. Hence, the system of control coefficients uα(t) induced
by (23) as in Example 2 is not quadratic in the state coefficients xα(t) anymore.
To justify this, we calculate

u0(t) = û0(t) + û1(t)x0(t) + û2(t) ·
∑

β∈Ik,1

C(0,0, β)x2β(t),

where the last term can merely be seen as a multiple of the process’s variance plus
the quadratic expectation, and for α 6= 0

uα(t) = û1(t)xα(t)

+ û2(t) ·
∑

β∈Ik,1

(
C(α, 0, β)xα+β(t)xβ(t) + C(α, α, β)xβ(t)xα+β(t)

)
= û1(t)xα(t) + 2 û2(t)x0(t)xα(t),

as all appearing coefficients α, β, and α+ β have to be within the index set Ik,1.
This explains the differences of the exact solutions and the ones shown in the figure.
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Moreover, only k = 10 random variables ξi are included in the construction of the
basis polynomials Ψα used to obtain the plotted solutions. By increasing the order
p, the system of control coefficients becomes quadratic in the state coefficients,
which is why the solutions shown in Figure 4 (computed with k = 10 and p = 2)
come closer to the exact ones, including û2(t) ≈ 0 as anticipated.
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Fig. 5 Solution paths of the linear-quadratic stochastic regulator problem (34) with initial
value x0 = 0.5. All plots show again a comparison of exact solutions and the corresponding path
obtained by the introduced chaos approach, i. e., a solution to the transformed deterministic
optimal control problem (36) with k = 10 included random variables and an approximation
order p = 1.
The first plot depicts the control profile u(t,E [Xt]), the second one the expectation of the
state process E [Xt], and the third figure its variance Var[Xt].
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Fig. 6 Absolute errors of the solutions of the linear-quadratic stochastic regulator problem
(34) computed by the novel chaos approach for different numbers k of involved random variables
and orders p to construct the basis polynomials Ψα(ξ). The sequence of plots is as in Figure 5,
i. e., the first showing the errors within the control profile u(t,E [Xt]), the second errors in the
expectation E [Xt], and the third errors in the variance Var[Xt].

Figure 5 shows different solution paths of the transformed deterministic opti-
mal control problem (36) in comparison with the appropriate exact solutions of
the original stochastic problem (34) for given initial values x0. Again the results
of the chaos approach are obtained with the simple truncation (27) using k = 10
random variables and an approximation order p = 1 for constructing the basis
polynomials Ψα(ξ) with α ∈ Ik,p.

Within the figure the first plot depicts the optimal control profile depending on
the time t ∈ [0, 1] and the expectation of the process at that time, i. e., the control
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Table 1 Comparison of optimal values and numerical expenses for solving the deterministic
optimal control problem (36) for initial values x0 = 0.5 (columns 5–7) and x0 = 1 (columns
8–10) depending on the type and accuracy of truncating the index set I. We notice that the
accuracy of the objective function value mainly depends on the number k of incorporated ran-
dom variables ξi. Runtime increases with the dimension of the resulting deterministic problems
and the associated coupling of the state variables within the system.
The dagger symbol † denotes the adaptive index sets (depending on k and p) that are used in
Figure 6. The symbol “−” in the r-column indicates that the simple truncation (27) was used,
“sp” marks the use of a sparse and “ad” of an adaptive index (compare Remark 4 and Table
4 for a detailed description of the appropriate index denoted by the reference number).

k p r # coeff. objective time # SQP objective time # SQP
xα value in s value in s

x0 = 0.5 x0 = 1.0

10 1 − 11 0.301731 2.0 44 1.147880 2.7 52
10 2 − 66 0.301731 186.8 135 1.147879 360.5 300
10 2 sp2 61 0.301731 117.7 101 1.147880 103.1 111

20 1 − 21 0.301898 8.8 46 1.148046 14.4 70
20 2 − 231 0.301898 3341.1 103 1.148046 4948.7 150
20 2 ad2 71 0.301898 168.5 90 1.148046 240.1 124
20 3 ad3 125 0.301898 1053.3 119 1.148046 1020.7 103

40 1 − 41 0.301979 57.8 54 1.148127 85.3 76
40 2† ad4 91 0.301979 694.6 100 1.148127 1211.0 233

100 1 − 101 0.302027 585.6 48 1.148174 888.7 71
100 2† ad6 151 0.302026 3669.9 132 1.148175 3233.5 119

exact 0.302054 1.148191

u(t,E [Xt |X0 = x0]). By viewing this uncommon profile we get an impression of
the accuracy of the numerically obtained control at states where the process will be
most likely at time t. The remaining two plots of Figure 5 show the corresponding
expectation and variance of the process.

From purely visual comparison we see how well the introduced chaos method
works, even for very low approximations of the Wiener Chaos space and even as
the new control functions ûi(t), i = 0, . . . , q, deviate from their exact counterparts
as we saw in Figure 3. This holds especially if we are interested in calculating the
objective, expectations and possibly higher moments of the solution process for a
given initial value to the original problem because they are a direct byproduct of
the new methodology.

Figure 6 illustrates the absolute errors of u(t,E [Xt]), E [Xt], and Var[Xt] over
time for x0 = 0.5 and different choices of truncation. We notice that the error
decreases if the number of random variables k and the approximation order p

are increased. E. g., the absolute error of the expectation process E [Xt] in the
time interval [0, 1] is at most 1 · 10−4 for the low approximation (k, p) = (10, 1)
and decays to 2 · 10−5 for (k, p) = (40, 2), which is very astonishing. Particularly
the enhancement of the approximation order has a great influence on the error
performance, which is seen most clearly in the error plots of the control profile
u(t,E [Xt]) and the variance Var[Xt]. The jagged behavior of the graphs is due to
our choice of constant control base functions (30) for ûi(t), i = 0, . . . , q, on each
multiple shooting interval, which is carried over to all solution processes.
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Furthermore, Table 1 presents additional information about the performance
of the chaos approach for solving stochastic optimal control problems, depending
on the type and accuracy of the truncation of the index set. Therein we see that (at
least in this first example) the order p of the used basis polynomials Ψα and their
corresponding state coefficient functions xα is less important than the number of
incorporated random variables k if we desire a good result of the objective function.
Moreover, Table 1 gives the dimensions of the resulting deterministic optimal
control problems (36) and the computational effort to solve them numerically. Note
that by using sparse or adaptive index sets Irk,p the number of coefficient functions
within the deterministic system (and, therefore, computation time) can partly be
reduced drastically without impairing the solution. The most astonishing result is
that if we are interested in the objective value, the expectation of the resulting
state process, and its variance for a given initial value x0, we can obtain these
items with very little effort, the appearing relevant systems can be solved in a few
seconds.

However, if one is not only interested in the solution to the stochastic optimal
control problem for one certain initial value x0, but possibly for an environment
of x0, the low approximation of Figure 5 is too inaccurate, as Figure 8 illustrates.

From the left plot we see that using a low chaos approximation, e. g., Gaus-
sian (p = 1) with k = 10 random variables, the control obtained via solving the
resulting deterministic optimal control problem (36) is only accurate for the ini-
tial value x0 employed. When we move further in time the control is very precise
for states that the process will attain most likely (see again the left plots in Fig-
ure 5), but additionally there is a certain robustness against deviations from that
states. This is natural due to the randomness that is implicitly captured within
the deterministic system of differential equations (36b). Nevertheless, if we are in-
terested in applying one (optimal) control—that is obtained through one specified
initial value x0—for several control problems depending on a whole environment
of initial values around x0, a low chaos approximation is useless. In that case more
information of the stochastic behavior of the system is needed within the deter-
ministic transformation. In particular, the crucial factor of a better approximation
here is the order p rather than the number of incorporated random variables ξi,
i = 1, . . . , k. In this first example it is sufficient to apply the following truncation
with k = 40, p = 2, and an adaptive index r (compare Remark 4) to obtain the
desired robustness property of the optimal control.

Ir40,2 =
{
α = (α1, . . . , α40)

∣∣ 0 ≤ αi ≤ rli ∀i ∈ {1, . . . , k} ∀l ∈ {0, 1, 2}, |α| ≤ 2;

r0 = 0, r1 = (1, . . . , 1), r2 = (2, . . . , 2︸ ︷︷ ︸
5

, 1, . . . , 1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
30

)
}

(37)

Figure 7 validates this. In general, we notice a connection of the behavior of
the control profiles u(t, x), t fixed, shown in Figures 8 and 7 and the new control
functions ûi(t), i = 0, . . . , q, in Figures 3 and 4. The better those new control
functions coincide with their exact counterparts, the better the state dependent
profiles at fixed time instants fit and the more robust the solutions become.

Altogether, this simple example shows that up to this point the results of our
novel chaos reformulation of a continuous finite-horizon stochastic optimal control
problem as a deterministic optimal control problem are very promising. In the
next section we consider a problem that cannot be solved analytically anymore.
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Fig. 7 Control profiles as in Figure 8 but for an advanced chaos approximation (37).
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Fig. 8 Control profiles of the linear-quadratic stochastic regulator problem (34) computed by
the novel chaos approach in comparison with the exact solutions. Both plots show controls
u(t, x) for fixed time instants t depending on the state x. They are calculated with a quadratic
approximation of the Markov control and a low truncation of the index set I, i. e., k = 10 and
p = 1.
One notices that using this truncation the controls at time t = 0 are only accurate for the
initial value x0 of the solved deterministic problem. In the course of time this behavior gets
better, which is due to the implicit capture of Xt’s variance within the deterministic system.

In fact, the state process {Xt} is determined by a stochastic differential equation
with state dependent diffusion term and a drift that is a nonlinear combination of
Xt and the control.

6.2 A Nonlinear Example

Let us consider a stochastic optimal control problem with the same objective
function as for the stochastic regulator of the previous section, but with a nonlinear
diffusion driving the state process {Xt}t∈[0,1].

min
u∈A

E
[

1

2

∫ 1

0

(
X2
t + u2t

)
dt+

1

2
X2

1

]
(38a)

s.t. dXt = Xt ut dt+ σXt dBt, (38b)

X0 = x0. (38c)

Because of this enhancement, problem (38) cannot be solved analytically. Nev-
ertheless, in [12] it is shown that a solution to (38) exists, even in a more general
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formulation. Therefore we can apply our chaos methodology again to transform
this stochastic control problem into a deterministic one. Then the propagator of
the SDE (38b) reads as follows (with C(α, γ, β) and α−(j) defined as before and
{mi(t)} denoting the basis functions of L2([0, T ])):

xα(t) = x0 · 1{α≡0} +

∫ t

0

∑
β∈I

∑
0≤γ≤α

C(α, γ, β)xα−γ+β(s)uγ+β(s) ds

+ σ

∫ t

0

∞∑
j=1

√
αj mj(s)xα−(j)(s) ds. (39)

Therein, the control coefficients uα(·) are again defined via their feedback formu-
lation (23) depending on the new control functions ûi(·), i = 0, . . . , q. The first
integral in (39) follows from the chaos expansion of Xt ut.

To reformulate the objective function (38a) in terms of the deterministic coef-
ficient functions, we start again by converting the Mayer-type part using Itō’s
formula. Then inserting the chaos expansions of Xt and ut yields the desired
form. With Irk,p denoting the truncated index set as before and approximating
the Markov control by a quadratic expansion (compare (36d)), we obtain the de-
terministic optimal control problem corresponding to (38),

min
û0(·),û1(·),û2(·)

1

2
x20 +

1

2

∫ 1

0

∑
α∈Irk,p

(1 + σ2)x2α(t) + u2α(t) (40a)

+ 2
∑

β∈Irk,p

∑
0≤γ≤α

C(α, γ, β)xα−γ+β(t)xγ+β(t)uα(t)

 dt


s.t. ẋα(t) =

∑
β∈Irk,p

∑
0≤γ≤α

C(α, γ, β)xα−γ+β(t)uγ+β(t)

+ σ

∞∑
j=1

√
αj mj(t)xα−(j)(t) (40b)

xα(0) = x0 · 1{α≡0}. (40c)

As the solution of problem (38) cannot be deduced analytically, we have to
compare the results of our chaos approach with other numerical methods. It is in-
tricate to solve the partial differential HJB equation induced by (38) numerically
because we have no information about appropriate boundary conditions for the
region of interest. In financial problems this can often be overcome by economic
argumentation, however, in this case it is not possible. Therefore, we use the soft-
ware package SOCSol4L [3,19] for obtaining reference solutions. It transforms the
original continuous stochastic control problem into a Markov decision chain by
utilizing the weak Euler-Maruyama approximation scheme of the SDE on a prede-
fined time and space grid for the region G of interest. Afterwards, this Markov
decision chain problem can be solved by a dynamic programming technique. Ta-
ble 2 gives an overview of optimal values obtained with that software and the
computational effort needed therefor. Note that while our new chaos methodology
provides the expectation of the process {Xt} and the optimal cost automatically,
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within SOCSol4L these quantities have to be approximated by using a Monte
Carlo simulation.

Table 2 Optimal values of problem (38) calculated with the software package SOCSol4L. The
problem was solved in the state space G = [−0.7, 1.2] for different space and time discretizations
∆x and ∆t. After calculating optimal policies, the optimal values have been approximated by a
Monte Carlo simulation with 100 000 and 1 million sample paths and different simulation step
sizes ∆Sim for the weak approximation scheme of the SDE. Each simulation therefore gives a
different result. The runtimes (in min) include both solving the Markov decision process by
a dynamic programming technique and performing the Monte Carlo simulation to eventually
obtain the desired result.

discretization # simulations ∆Sim optimal value runtime in min

100 000
0.01

0.2113440
100

∆x = 0.005 0.2117336
∆t = 0.001

1 000 000
0.2115376

925
0.2115948

∆x = 0.002 100 000
0.001

0.2112635 1 000
∆t = 0.001 1 000 000 0.2114620 9 200
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Fig. 9 Solution paths of the stochastic optimal control problem (38) with initial value x0 =
0.5. All plots show a comparison of paths obtained by the introduced chaos approach, i. e., a
solution to the transformed deterministic optimal control problem (40) with k = 10 included
random variables and approximation order p = 1, and a reference solution obtained with
SOCSol4L (G = [−0.7, 1.2], ∆x = 0.002, ∆t = 0.001 and a Monte Carlo simulation with
300 000 samples).
The first plot depicts the control profile u(t,E [Xt]), the second one the expectation of the
state process E [Xt], and the third figure its variance Var[Xt].

The reference solution that is used within the following figures is obtained
with a state discretization step size ∆x = 0.002 and a time discretization step
∆t = 0.001. All expectations and variances are simulated with 300 000 sample
paths.

Figure 9 shows solution paths of the deterministic optimal control problem
(40) in comparison with this reference solution for the initial value x0 = 0.5 and
a diffusion parameter σ = 0.3. These solutions are again obtained with a simple
truncation and k = 10 random variables and order p = 1 for constructing the chaos
basis polynomials Ψα(ξ). The order of the plots within is as in Figures 5–6, i. e., the
left plot depicting the control u(t,E [Xt]), the middle one the expectation E [Xt]
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Fig. 10 Absolute errors of the solutions of the stochastic control problem (38) computed by
the novel chaos approach for different numbers k of involved random variables and orders p
to construct the basis polynomials Ψα(ξ) (in comparison to the reference solutions calculated
with SOCSol4L). The sequence of plots is as in Figure 5, i. e., the first showing the errors within
the control profile u(t,E [Xt]), the second errors in the expectation E [Xt], and the third errors
in the variance Var[Xt].

Table 3 Optimal values and numerical expenses for solving the stochastic optimal control
problem (38) with the chaos methodology, i. e., solving the deterministic problem (40) with
MUSCOD-II. We use the initial values x0 = 0.5 (columns 5–7) and x0 = 1 (columns 8–10),
the diffusion parameter σ = 0.3, and different types and accuracies of truncating the index
set I. The accuracy of the objective function values does not only depend on the number k of
incorporated random variables, but as well on the approximation order p.
The dagger symbol † denotes again the adaptive index sets that are used in Figure 10. The
symbol “−” in the r-column indicates that the simple truncation (27) was used, “sp” marks
the use of a sparse index (4), and “ad” of an adaptive index (compare Tables 1 and 4).

k p r # coeff. objective time # SQP objective time # SQP
xα value in s value in s

x0 = 0.5 x0 = 1.0

5 2 − 21 0.211509 42.2 234 0.620330 46.7 224
5 3 − 56 0.211502 476.0 215 0.620325 330.6 143
5 3 sp1 42 0.211503 170.2 156 0.620326 190.8 163

10 1 − 11 0.211733 6.9 90 0.620489 3.6 46
10 2 − 66 0.211458 759.6 212 0.619768 740.1 192
10 2 sp2 61 0.211458 631.2 202 0.619769 544.8 161
10 3 − 286 0.211451 27311.5 144 0.619761 25650.7 123
10 3 ad1 42 0.211462 233.3 165 0.619799 189.2 120

20 1 − 21 0.211714 14.0 42 0.620214 19.0 53
20 2 − 231 0.211432 18293.5 179 0.619469 11484.4 79
20 2 sp3 216 0.211432 13557.4 121 0.619470 22281.2 179
20 2 ad2 71 0.211439 1557.2 241 0.619498 1337.0 187
20 3 ad3 125 0.211433 7041.0 254 0.619493 5933.2 196

40 2† ad4 91 0.211430 2256.8 139 0.619359 2813.2 156
40 3 ad5 145 0.211423 9300.2 118 0.619353 13341.8 153

100 1 − 101 0.211698 1962.9 79 0.619986 3389.7 125
100 2† ad6 151 0.211424 12985.6 145 0.619273 14423.5 149

approx. (300 000 sim.) 0.211707 169159.0 0.619434 168315.7

and the right one the variance Var[Xt]. And again these paths show that by this low
approximation we obtain very good results if we are interested in the optimal value,
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expectation, and related quantities, even as the state equation (38b) is much more
complex than in the regulator problem and, hence, the deterministic system (40b)
much more coupled. This quality of the solution is confirmed by the corresponding
error plots in Figure 10 and the optimal values stated in Table 3. The very noisy
shape of the absolute errors is caused by the Monte Carlo approximation—even
with the large amount of 300 000 sample simulations the values deviate notably
(compare Table 2).

Like for the regulator problem we notice from Figure 10 that especially in-
creasing the approximation order p leads to a decrease of the absolute errors in
the control profile u(t,E [Xt]) and the variance Var[Xt], while the expectation is
already very accurately approximated with order p = 1. If we compare the optimal
objective values in Table 3 we see that for this nonlinear example it is not sufficient
to increase the number of incorporated random variables ξi, i = 1, . . . , k, to obtain
better results; here increasing the order p is important as well.

From a computational point of view Table 3 shows that the deterministic op-
timal control problem (40) is much more challenging than (36). While the number
of SQP iterations needed to solve the problems remains at a comparable level, the
runtime for (40) is notably higher. This results from a distinctive coupling of the
deterministic state functions xα within the ODE system (40b) and, therefore, a
higher expense for calculating their derivatives.

Finally, let us take a look on the control profiles for fixed times t depending on
the state. As in the previous section, the control obtained via the low truncation
(k = 10, p = 1) does not allow its application to initial values deviating from x0,
see Figure 11. If we want to guarantee a certain robustness of the validity of a
control u (calculated with initial value x0) for applying it to initial values in an
environment of x0, we have to enhance the accuracy of the chaos approximation.
Figure 12 shows the control profiles u(t, x) calculated for the adaptive truncation
(37), i. e., k = 40, p = 2, r given by ad4. However, in comparison to the quadratic
regulator problem the impact of this enhancement turns out lower. This might
originate from the fact that the variance of the process {Xt} in the actual example
is generally smaller than the variance of the regulator process, hence the process
will not deviate that heavily from its expectation. Nevertheless, qualitatively better
approximations can be obtained by increasing k and p or the order q of the Markov
control expansion further—at the cost of higher computation times.

7 Results

In this paper we developed a novel generic methodology to solve finite horizon
stochastic optimal control problems. Using Wiener’s chaos expansion and Malli-
avin calculus we are able to transform the underlying stochastic differential equa-
tions driving the state process into a system of ordinary differential equations.
Additionally, we ensure the feedback character of the Markov control process by
expanding it in a Taylor-like fashion. Hence, after reformulating the original objec-
tive function in terms of the chaos expansion coefficients, we obtain a deterministic
optimal control problem that implicitly contains all the random information of the
original stochastic problem. This resulting problem then can be solved efficiently
by sophisticated methods of deterministic control.
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Fig. 11 Control profiles of the control problem (38) computed by the novel chaos approach in
comparison with the reference solutions. Both plots show controls u(t, x) for fixed time instants
t depending on the state x. They are calculated with a quadratic approximation of the Markov
control and a low truncation of the index set I, i. e., k = 10 and p = 1.
One notices again that using this truncation the controls at time t = 0 are only accurate for
the initial value x0 of the solved deterministic problem.
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Fig. 12 Control profiles as in Figure 11 but for the advanced chaos approximation (37) with
k = 40 included random variables and approximation order p = 2, using an adaptive index r.

Two numerical examples show that our approach yields very promising results.
If one is mainly interested in the optimal objective value, the expectation of the
optimally controlled state process, and corresponding higher moments for only one
or a small number of initial values, one can obtain fast and reliable results with
quite low approximations of the chaos space. At that, making use of sparse and
adaptive truncation schemes is beneficial to reduce the overall computational effort
without impairing the obtained solution. If the optimizer instead emphasizes the
control profile calculated for a fixed initial value to be robust against deviations in
the initial values to some extent, he has to apply more accurate approximations
of the chaos with more incorporated random variables and a higher order.

However, for more general problems including higher non-linearities or long-
time integration intervals [0, T ], higher numerical effort may become necessary [2,
15]. Approaches to overcome this issue are, e. g., partitioning of the random space
or combinations of the Wiener chaos idea with targeted Monte Carlo corrections
[26].

A very important feature of the introduced chaos approach is that we obtain
the objective value, expectations, variances, and all higher moments as a byproduct
of solving the resulting deterministic control problem. Hence we do not need any
simulation to deduce these quantities.
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Therefore, we get an efficient alternative in solving this challenging class of
problems, apart from the Hamilton-Jacobi-Bellman theory and dynamic program-
ming approaches based on Markov chain approximations or quantization of the
stochastic processes. Furthermore, we open the field of applying state-of-the-art
methods of deterministic optimization and control in the broad context of random
processes and stochastic differential equations.
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A Sparse and Adaptive Indices

Table 4 List of (sp)arse and (ad)aptive indices used for the numerical examples in Section 6.
The reference numbers coincide with those in Tables 1 and 3, the dagger symbol † denotes the
combinations used in the figures.

symbol k p index r

sp1 5 3 r = (3, 3, 2, 1, 1)
sp2 10 2 r = (2, 2, 2, 2, 2, 1, 1, 1, 1, 1)
sp3 20 2 r = (2, 2, 2, 2, 2, 1, . . . , 1)

ad1 10 3 r1 = (1, . . . , 1)
r2 = (2, 2, 2, 2, 2, 2, 0, 0, 0, 0)
r3 = (3, 3, 3, 0, . . . , 0)

ad2 20 2 r1 = (1, . . . , 1)
r2 = (2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, . . . , 0)

ad3 20 3 r1 = (1, . . . , 1)
r2 = (2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, . . . , 0)
r3 = (3, 3, 3, 2, 2, 2, 0, . . . , 0)

ad4 40 2† r1 = (1, . . . , 1)
r2 = (2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, . . . , 0)

ad5 40 3 r1 = (1, . . . , 1)
r2 = (2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 0, . . . , 0)
r3 = (3, 3, 3, 2, 2, 2, 0, . . . , 0)

ad6 100 2† r1 = (1, . . . , 1)
r2 = (2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 0, . . . , 0)


