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Zusammenfassung

Die vorgelegte Arbeit befasst sich mit der Untersuchung und Entwicklung numerischer Metho-
den zur Lösung von Optimalsteuerungsproblemen, die durch stochastische Phänomene unter-
schiedlichster Art beeinflusst werden. Im ersten Teil werden dabei Problemstellungen bear-
beitet, die durch zufällig verteilte Parameter charakterisiert sind, während im anschließenden
zweiten Teil zeitabhängige stochastische Prozesse die Grundlage der Dynamik des zu unter-
suchenden Systems bilden. Das Ziel dieser Untersuchungen ist dabei jeweils, das ursprüngliche
Ausgangsproblem in eines zu transformieren, welches mittels existierender (direkter) Metho-
den der deterministischen optimalen Steuerung gelöst werden kann – hier ist dies BOCKs direkte
Mehrzielmethode.
Im Rahmen dieser Transformation werden im ersten Abschnitt Ansätze der stochastischen Pro-
grammierung sowie der robusten und wahrscheinlichkeitstheoretischen Optimierung benutzt.
Für ein spezifisches Anwendungsbeispiel aus der mathematischen Wirtschaftsforschung, wel-
ches die Preisermittlung von Geltungskonsumgütern in Rezessionen untersucht, werden unter
Berücksichtigung dieser Verfahren – insbesondere eines Entscheidungsbaum-Ansatzes sowie Ap-
proximationen robuster Worst-Case-Szenarien und finanzmathematischer Werkzeuge wie Value
at Risk und Conditional Value at Risk – neue numerische Lösungsmethoden entwickelt und
analysiert. Besonderes Augenmerk liegt dabei auf den notwendigen Reformulierungen der re-
sultierenden Optimalsteuerungsprobleme, speziell für Value at Risk und Conditional Value at
Risk, sowie der Diskussion und Interpretation der ermittelten Ergebnisse in Abhängigkeit von
der unsicheren Rezessionsdauer, der unsicheren Rezessionsstärke und Steuerungsverzögerun-
gen. Die gewonnenen neuen ökonomischen Erkenntnisse können dabei als wichtiger Schritt
auf dem Weg zu einem besseren Verständnis realer Preisfindungsstrategien aufgefasst werden.
Im zweiten Teil der Arbeit wird, basierend auf der WIENER Chaosentwicklung eines stochasti-
schen Prozesses und dem MALLIAVIN-Kalkül, ein System von gekoppelten gewöhnlichen Diffe-
rentialgleichungen entwickelt, welches die die Dynamik des Prozesses beschreibende stochasti-
sche Differentialgleichung vollständig charakterisiert. Da dieses System im Allgemeinen un-
endlich viele Gleichungen enthält, wird zur Gewährleistung der numerischen Anwendbarkeit
anschließend eine rigorose Fehlerschätzung in Abhängigkeit der Ordnung der Chaosentwick-
lung bewiesen. Um das generelle Vorgehen dieser Entwicklung auf stochastische Optimalsteu-
erungsprobleme übertragen zu können, wird weiterhin ein Ansatz gezeigt, der die Charak-
teristik der auftretenden Feedback-Steuerung bewahrt. Dies macht es möglich, eine neue di-
rekte Methode zur Lösung stochastischer Optimalsteuerungsprobleme auf endlichem Zeithorizont
herzuleiten. Die Anwendbarkeit und die Güte des entwickelten Verfahrens werden durch die
numerische Bearbeitung mehrerer Problemstellungen aufgezeigt. Zum Abschluss wird das öko-
nomische Beispiel aus dem ersten Teil erneut aufgegriffen und unter dem Gesichtspunkt einer
zeitabhängigen Rezessionsstärke, d.h. eines stochastischen Prozesses, untersucht. Insbeson-
dere wird durch die Anwendungsbeispiele deutlich, dass die existierenden numerischen Ver-
fahren für deterministische Optimalsteuerungsprobleme auf Aufgabenstellungen mit stochasti-

vii



schen Differentialgleichungen ausgeweitet werden können.

viii



Abstract

This thesis considers the investigation and development of numerical methods for optimal
control problems that are influenced by stochastic phenomena of various type. The first part
treats tasks characterized by random parameters, while in the subsequent second part time-
dependent stochastic processes are the basis of the dynamics describing the analyzed systems.
In each case the investigations aim to transform the original problem into one that can be
tackled by existing (direct) methods of deterministic optimal control—here we prefer BOCK’s
direct multiple shooting approach.
In the context of this transformation, in the first part approaches from stochastic programming
as well as robust and probabilistic optimization are used. Regarding a specific application from
mathematical economics, which considers pricing conspicuous consumption products in peri-
ods of recession, new numerical procedures are developed and analyzed with due regard to
those techniques—in particular, a scenario tree approach, approximations of robust worst-case
settings, and financial tools as the Value at Risk and Conditional Value at Risk. Furthermore,
necessary reformulations of the resulting optimal control problems, in particular for Value at
Risk and Conditional Value at Risk, as well as the discussion and interpretation of results de-
termined depending on an uncertain recession duration, an uncertain recession strength, and
control delays are in focus. The gained economic insight can be seen as an important step in
the direction of a better understanding of real-world pricing strategies.
In the second part of the thesis, based on the WIENER chaos expansion of a stochastic process
and on MALLIAVIN calculus, a system of coupled ordinary differential equations is developed
that completely characterizes the stochastic differential equation describing the dynamics of
the process. As in general this system includes infinitely many equations, a rigorous error esti-
mation depending on the order of the chaos decomposition is proven in order to guarantee the
numerical applicability. To transfer the generic procedure of the chaos expansion to stochastic
optimal control problems, a method to preserve the feedback character of the occurring con-
trol process is shown. This allows the derivation of a novel direct method to solve finite-horizon
stochastic optimal control problems. The appropriability and accuracy of this methodology are
demonstrated by treating several problem instances numerically. Finally, the economic applica-
tion of the first part is revisited under the viewpoint of dealing with a time-dependent recession
strength, i.e., a stochastic process. In particular, those applications illustrate that the existing
methods of deterministic optimal control can be extended to problems including stochastic
differential equations.
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0 Introduction

Preface

Making decisions is one of nature’s vital keys. And ever since an action or stance has been
selected from alternative possibilities, the task of decision-making has been studied.
Quite naturally it is performed in such a way that the choices resulting from weighting the ad-
vantages and disadvantages with the help of rational arguments or irrational preferences are in
some sense optimal. A mathematical translation leads us to optimization problems, where our
goal is to find decisions that minimize or maximize a certain performance criterion and that are
often influenced by additional side conditions. One subdiscipline of optimization—generally
referred to as optimal control—considers dynamic systems that are driven by differential equa-
tions. These dynamics mathematically describe how the system changes over time, depending
on the current state of the system and possible external control mechanisms.
The modeling, simulation, and optimization of Optimal Control Problems (OCPs) has attracted
growing attention in recent decades, with versatile applications in biology, chemistry, engineer-
ing, mechanics, transport, logistics, and economics. The enormous advances made through
that research allow for a treatment of more and more complex systems.
In practice, however, the specification of the dynamic behavior is not only affected by the state
and control, but as well by additional extrinsic influences. In some instances, e.g., the modeling
of groundwater flows or transport processes in porous media, the strict deterministic law of
the differential equation is disturbed by time-independent parameters characterizing material
properties. Often, they can only be provided with a specific uncertainty. In other problems,
e.g., systems determined by fluctuation and dissipation, or financial problems including stock
prices, there might not even by an underlying deterministic basic rule. Then additional noise
has to be taken into account as a source of the uncertainty. To differentiate systems that are
influenced by uncertain components from those determined by time-dependent noisy behavior,
we speak of Random Differential Equations (RDEs) and Stochastic Differential Equations (SDEs),
respectively.
This thesis aims for a better understanding of decision-making when uncertainty is present.
We regard OCPs determined by either RDEs and SDEs and study how far and under which pre-
liminaries it is possible to use the sophisticated numerical ideas and methodologies of optimal
control when investigating stochastic phenomena.
For solving deterministic OCPs numerically, the direct “first discretize, then optimize” approaches
have become the preferred method in practical applications. Among them, the collocation [20,
39, 40] and multiple shooting ideas [46, 162, 201] are the most prominent ones. They discretize
the infinite-dimensional control space and transform the original problem into a Nonlinear
Program (NLP), which can afterwards be solved by specially tailored Sequential Quadratic
Programming (SQP) [162] or interior point methods [41].
When random influences enter the considered problems, in uncertainty quantification one gen-
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erally differentiates the source of uncertainty into aleatoric and epistemic [180]. While aleatoric
uncertainty describes truly random effects through stochastic quantities and processes, epis-
temic uncertainty focuses on structural model uncertainties, model parameters, realization
and discretization errors. Research areas of uncertainty quantification in mathematical opti-
mization include model predictive control [137, 140], optimum experimental design [86, 145],
model discrimination [14, 112, 227], dual control [88, 89], and robustification techniques. Par-
ticularly these latter ideas, e.g., by linearization [74, 136] and sigmapoint approaches [207],
multiple set-point [209] or confidence ellipsoid optimization [114], have attracted much at-
tention. These robust methods reach beyond the classical worst-case analysis and characterize
probabilistic guarantees in terms of a budget of uncertainty [38]. Obtaining similar results from
a quite different viewpoint, probabilistic optimization techniques [211] including expectation
and variance-based approaches or typically financial instruments like Value at Risk (VaR) or
Conditional Value at Risk (CVaR) became very popular.
While the ideas mentioned up to now mostly apply to OCPs with RDEs, purely Stochastic
Optimal Control Problems (SOCPs) driven by SDEs require fundamentally different solution
methodologies. In economics and finance, particularly in portfolio management problems [92],
they are the usual modeling framework and have been analyzed extensively during the past
decades. Basically, problems belonging to the class of finite-horizon SOCPs can be solved
through the corresponding HAMILTON-JACOBI-BELLMAN (HJB) equation [141, 146, 195], by
applying the Stochastic Maximum Principle (SMP) [30, 43, 154], or using direct approaches.
However, these ideas differ essentially from the deterministic all-at-once approaches. They
comprise mainly discretizing MARKOV chain methods [148, 156, 157] or quantization tech-
niques [173, 174, 197, 198], which always require solving a resulting BELLMAN equation.
In recent years, the concept of Polynomial Chaos (PC) became more and more popular. Going
back to early considerations of WIENER [246], the (generalized) PC of a random variable is
an abstract FOURIER decomposition of the random variable in terms of orthogonal polynomi-
als depending on basis random variables spanning the underlying stochastic space. WIENER’s
original idea is based on GAUSSian random variables using HERMITE polynomials. In [56]
this concept has been generalized for (nearly) arbitrary distributions. Since then, stochastic
GALERKIN methods were developed and refined [66, 100, 159, 181, 193, 237, 244].
The traditional PC approaches are mainly used in the context of RDEs, but both in the con-
text of ordinary and partial differential ones. When regarding time-dependent stochastic pro-
cesses, progress has been made in the field of specific Stochastic Partial Differential Equations
(SPDEs). By using WIENER’s chaos expansion and MALLIAVIN calculus [177, 178, 192, 194]
these equations were simulated by transforming the original SPDE into a system of Partial
Differential Equations (PDEs) [113, 164, 169, 170, 172, 182, 245].
However, in the context of SOCPs, the application of WIENER chaos based ideas has not been
studied to our knowledge.

Aims and Contributions of the Thesis

The aim of this thesis is to support understanding of how to find optimal decisions for OCPs
that are influenced by uncertain effects. In the first part this is done by considering time-
independent uncertainty in the parameters, in the second part we regard problems that are
determined by time-dependent stochastic processes. The insights that are obtained in this work
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are explained in the following.

In Part I, particularly Chapters 2 and 3, we give an overview of different ideas of robust and
probabilistic optimization, compare them to each other and to the general concept of stochas-
tic optimization. In particular, we elaborately analyze the specific economic problem of pricing
conspicuous consumption products in periods of recession. This problem includes parameter
uncertainty in both the duration and the strength of the recession, as well as a delayed impact
of pricing decision on the system’s dynamics. Hence, we first develop a structure-exploiting
numerical approach that discretizes the uncertainty in the recession length by two tailored
settings of a scenario tree and tackles the delay by a slack control. Thus, we obtain a mathe-
matical model that can be compared to the approach of stochastic optimization. When the
recession strength enters our problem as an additional source of uncertainty, we extensively
investigate the effects of the robust and probabilistic optimization perspectives. Especially for
the probabilistic methods of VaR and CVaR, we describe and analyze the needed adaptations
for implementing these approaches in the optimal control context. Throughout Chapter 3 we
provide economic insight in the (partially unexpected) effects of adding the uncertainty and
delay effects to the conspicuous consumption model. Furthermore, for the first time we discuss
the strengths and weaknesses of four applied robust and probabilistic optimization approaches
from both the computational and the specific economic point of view. Therefore, our analysis
in Part I can be seen as a step in the direction of understanding real-world pricing strategies
better, particularly under the aspect of robustification techniques.

In Part II we focus on OCPs where the state process is driven by a SDE. Based on MALLIAVIN

calculus we construct an infinite-dimensional propagator system of coupled Ordinary Differen-
tial Equations (ODEs) that completely describe the original SDE in Chapter 6. After explaining
the different truncation steps that are necessary to use this propagator numerically, we prove
an error estimator for the truncated chaos expansion of a stochastic process driven by a SDE.
This is done first for the geometric BROWNian motion process, because we are able to solve the
propagator system for this process analytically. Afterwards we provide a more general error
analysis that is founded on multiple MALLIAVIN derivatives of the underlying stochastic pro-
cess. By treating controlled SDEs within this WIENER chaos framework and developing new
ideas to preserve the feedback character of the control process appearing within a SOCP, in
Chapter 7 we reformulate the original SOCP as a deterministic one. Thus, we deduce a novel
generic methodology for solving finite-horizon continuous SOCPs with the help of state-of-
the-art methods for deterministic optimal control. The numerical examples we investigate in
the first sections of Chapter 8 validate this new mathematical framework with huge compu-
tational advantages compared to standard ideas in stochastic optimal control. In the second
part we return to the conspicuous consumption problem of Chapter 3, regarding the recession
strength as a time-dependent stochastic process. Reformulating the customized problem leads
to a propagator Differential-Algebraic Equation (DAE) system, which can still be efficiently
tackled with deterministic optimal control methods. Therefore, this novel methodology pio-
neers the extension of sophisticated methods for deterministic control to the broad context of
random processes and SDEs.
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Contributions to Publications

During the work on this thesis, we contributed to one conference publication and three journal
articles. In the following, we describe the contents of these papers and the contributions of the
author of this thesis.

[118] T. Huschto, G. Feichtinger, P. M. Kort, R. F. Hartl, S. Sager, and A. Seidl. Numerical So-
lution of a Conspicuous Consumption Model with Constant Control Delay. Automatica,
47:1868–1877, 2011.

In this work we analyze the economic OCP of pricing conspicuous consumption products in
periods of recession. Based on [61, 63], we formulate and investigate this problem as a multi-
stage OCP that takes uncertainty of the recession length and an additional delay effect of the
pricing strategy into account. The new parts of this paper are the structure-exploiting, result-
driven numerical scenario tree approach to solve this non-standard problem as well as the
consideration of the delay effect.
The work evolved from a collaboration of mathematicians and economists from Vienna, Heidel-
berg, and Tilburg. While SEBASTIAN SAGER and TONY HUSCHTO focused on the mathematical
aspects of the project, PETER KORT and RICHARD HARTL provided various of the economic in-
terpretations of the obtained results. SAGER initiated the work on scenario trees to discretize
the uncertainty. HUSCHTO’s main contributions were the reformulated approach and the ana-
lytical results presented in the article. As the first author, he as well wrote the publication. He
implemented the problems in joined work with SAGER. The remaining authors contributed in
discussions and reviews of the paper before submission.

[117] T. Huschto and S. Sager. Pricing Conspicuous Consumption Products in Recession Peri-
ods with Uncertain Strength. EURO Journal on Decision Processes, 2, 2014. (to appear)

This article extends the work of [118] by considering the strength of the recession as an ad-
ditional source of uncertainty. To that end, we compare different approaches of robust opti-
mization and optimization under uncertainty in the context of optimally pricing conspicuous
consumption products. For the first time, we discuss the strengths and weaknesses of all applied
methods under the viewpoints of computational complexity and their economic implications.
As first and corresponding author, TONY HUSCHTO mainly wrote the article, developed the
necessary adaptations to apply the VaR and CVaR approach to the conspicuous consumption
setting, and implemented the models. SEBASTIAN SAGER contributed in the discussions and
structured and reviewed the article before submission.

[115] T. Huschto and S. Sager. Stochastic Optimal Control in the Perspective of the Wiener
Chaos. In Proceedings of the 12th European Control Conference, pages 3059–3064, 2013.

This conference proceedings paper is a summary of the WIENER chaos expansion method for
numerically solving SDEs and SOCPs. We describe the mathematical ideas of the WIENER chaos
and MALLIAVIN calculus briefly and apply them to deduce the propagator of a SDE. We adapt
this concept to SOCPs, generating the novel approach for solving such problems. We illustrate
the method by regarding the standard linear-quadratic stochastic regulator and compare the
numerical results of the chaos approach with the analytical solution of the problem.
TONY HUSCHTO constructed the propagator using MALLIAVIN calculus and developed the ma-
thematical ideas for solving SOCPs with the help of this approach. He implemented and an-
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alyzed the numerical problem and wrote the publication. SEBASTIAN SAGER contributed in
numerical discussions and the review process of the paper before submission.

[116] T. Huschto and S. Sager. Solving Stochastic Optimal Control Problems by a Wiener
Chaos Approach. Vietnam Journal of Mathematics, 42:83–113, 2014.

This journal article extends [115] by adding more mathematical depth to the provided ideas,
concepts, developments, and numerical implementations. We additionally investigate the non-
linear regulator problem and compare our novel methodology with an existing direct method
for stochastic control.
As first and corresponding author, TONY HUSCHTO developed and investigated the mathema-
tical concepts and implementations that finally lead to this publication. In the course of this,
he profited from the fruitful discussions with both MARK PODOLSKIJ and SEBASTIAN SAGER.
Before submission, the latter contributed as well to the review process of the paper.

Thesis Overview

The thesis consists of two major parts and altogether eight chapters. The first part treats de-
terministic OCPs influenced by random parameters. The second part focuses on SOCPs. The
chapters are structured as follows.
In Chapter 1 we introduce the classes of OCPs for dynamic processes described by deterministic
ODE or DAE systems that are the resulting products of all ideas presented in this thesis. We sur-
vey the three major solution methodologies for these classes, namely indirect approaches based
on PONTRYAGIN’s Maximum Principle (PMP), the dynamic programming and HJB principles,
and direct approaches. The latter idea is our method of choice for all numerical experiments
on OCPs and is introduced in detail in this chapter as well.
Chapter 2 regards OCPs that are influenced by parameter disturbances. We consider two dis-
tinct ideas for introducing the parameter uncertainty. The set-based approach of robust opti-
mization is compared to the stochastic viewpoint of probabilistic optimization. For both classes
we exemplarily describe methods to efficiently reformulate the original problems into numer-
ically solvable ones and address the important question of how to measure or budget the risk
that is included. This leads us to the connections between the robust and probabilistic view-
points and the differentiation to stochastic optimization.
In Chapter 3 we analyze the special economic problem of pricing conspicuous consumption
products in periods of recession. We introduce the underlying mathematical model that already
includes a source of uncertainty as the duration of the recession is not known beforehand. Af-
terwards, we focus on the numerical implementation of the problem, discretizing the recession
end by a general scenario tree approach and different arrangements of the tree, and a refor-
mulation of the time delay that is apparent within the problem. Then we enhance the model
by assuming the strength of the recession to be uncertain and apply the methods of Chapter
2 to the general scenario tree setting. We discuss the strengths and weaknesses of all used
ideas both from a computational and economical point of view. A major part of this chapter
is a discussion of the economic implications of the time delay and of the incorporation of an
uncertain recession strength in detail.
Chapter 4 introduces the general stochastic background needed in the further course of the
thesis. We describe stochastic processes upon a probability space and specifically focus on the
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BROWNian motion process, its properties, and a first expansion of it. Moreover, we introduce
stochastic integrals in comparison with their deterministic counterparts and present implica-
tions on differential equations.

In Chapter 5 we address the WIENER chaos expansion of a stochastic process. We start by
considering one-dimensional HERMITE polynomials and extend them stepwise to a basis of
the probability space in which the investigated processes live. This is done by defining multi-
dimensional GAUSSian random vectors using a basis of the HILBERT space L2. The first form of
chaos expansion results. In the second part of the chapter we give an overview of MALLIAVIN

calculus providing a stochastic counterpart of differential calculus that is essential in the sub-
sequent chapters. In particular, we introduce the MALLIAVIN derivative and an integration by
parts formula. With the help of this methodology, we additionally present the original form of
WIENER chaos expansion, which is based upon multiple WIENER integrals instead of HERMITE

polynomials.

In Chapter 6 we investigate how to solve SDEs numerically with the help of the WIENER

chaos expansion. Beforehand, we give a short impression on stochastic numerical integration
schemes originating from their deterministic equivalents. Then we adapt the WIENER chaos
expansion to SDEs with the help of MALLIAVIN calculus. This results in the propagator ODE
system completely describing the original SDE. In order to use this infinite-dimensional sys-
tem numerically, we present truncation methods. Finally, we develop an error analysis for the
chaos expansion of the stochastic process determined by a SDE, depending on the two dimen-
sions of truncation. Thereby, we exemplary investigate the geometric BROWNian motion before
we prove a more general error estimate.

Chapter 7 we analyze finite-horizon continuous OCPs that are determined by SDEs instead of
ODEs. We compare such problems to deterministic OCPs and, based on the differences, present
standard methodologies to solve SOCPs. These include again indirect methods based on the
SMP, the HJB approach, and direct methods. Thereafter, we apply the ideas of Chapters 5 and
6 to SOCPs. By deploying an expansion of the stochastic control process we obtain a refor-
mulation of the SOCP as a completely deterministic OCP that can be solved by sophisticated
methods of deterministic optimal control.

In the final Chapter 8 we investigate the performance of the novel approach to solve finite-
horizon continuous SOCPs. We start by considering the linear-quadratic stochastic regulator
problem and an extended nonlinear version of this problem to analyze the effects of different
truncation types and order on optimal controls, objective function values, and expectations
and variances of the resulting stochastic processes. Furthermore, we discuss the computational
complexity of the approach and the strengths and weaknesses of the proposed methodology,
also in comparison to standard approaches. We conclude with returning to the conspicuous
consumption problem of Chapter 3. We treat the recession strength as a stochastic process and
obtain a propagator system of DAEs.

Setup for Computational Experiments

The computational results presented throughout this thesis have been obtained on a 64-bit
Ubuntu® Linux™ 12.10 system running on a machine with an Intel® Core™ i7 920 CPU with
2.67 GHz and 18 GB main memory. Of the CPU’s four physical cores only one single core has
been used.
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To obtain the computational results and visualize them for this thesis, the following software
packages have been used:

• MATLAB® v.7.6.0 (R2008a) to generate the multi-indices used within the WIENER chaos
approach, to solve the propagator systems of the geometric BROWNian motion example,
to generate the MUSCOD-II application source and data files, and to create the plot data
files, particularly from the MUSCOD-II output,

• MUSCOD-II v.6.0 to discretize and solve all deterministic OCPs,
• SOCSol4L to compute the reference solutions of the nonlinear stochastic regulator prob-

lem in MATLAB®,
• gnuplot v.4.6 to visualize all computational results.
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1 The Direct Multiple Shooting Approach for
Optimal Control Problems

In this introductory chapter we start by considering the class of continuous Optimal Control
Problems (OCPs). These problems are the outcome of many reformulations proposed in this
thesis. We analyze different approaches to solve variants of the problems numerically and
discuss particularly the direct multiple shooting method, which is our method of choice for
the numerical applications presented in Chapters 3 and 8. The chapter is based on the very
detailed introduction to numerical methods for optimal control that can be found in [137].

1.1 Problem Formulation

Definition 1.1 (Continuous Optimal Control Problem)
A continuous OCP is a constrained infinite-dimensional optimization problem of the form

min
u(·)

J(x (·), vecz(·), u(·); p) (1.1a)

s.t. ẋ (t) = f (t, x (t), z(t), u(t); p) ∀t ∈ T , (1.1b)

0= g (t, x (t), z(t), u(t); p) ∀t ∈ T , (1.1c)

0¶ c(t, x (t), z(t), u(t); p) ∀t ∈ T , (1.1d)

0µ r ({x (t i), z(t i)}), {t i} ⊂ T . (1.1e)

Therein the dynamic process x : T → Rnx on the time horizon T def
= [t0, tf] ⊂ R and the algebraic

state z : T → Rnz are described by a system of Differential-Algebraic Equations (DAEs) (1.1b)–
(1.1c) with Ordinary Differential Equation (ODE) right hand side function f : T ×Rnx ×Rnz ×
Rnu → Rnx and algebraic equation g : T × Rnx × Rnz × Rnu → Rnz . It is affected by a control
u : T → Rnu to minimize a performance index J : X ×Z ×U → R and to satisfy path constraints
c : T ×Rnx ×Rnz×Rnu → Rnc and linearly separable point constraints r : (Rnx )m+1×(Rnz )m+1→
Rnr on a finite number m+ 1 of grid points {t i} ⊂ T , 0 ¶ i ¶ m. Moreover, the behavior of the
system is affected by model parameters p ∈R ⊂ Rnp . 4

The variable x (t) describes the system state of the dynamic process at any time instant t ∈ T .
We define X def

= {x : T → Rnx } to be the set of all dynamic state trajectories. The variable z(t)
describes the algebraic state at any time instant t ∈ T and we define Z def

= {z : T → Rnz} to be
the set of all algebraic state trajectories. The processes x (·) and z(·) can be affected by a control
input u(t) at any time t ∈ T . We assume the function u : T → Rnu to be measurable and define
U def
= {u : T → Rnu | u measurable} to be the set of all such control functions. Furthermore, the

system state is affected by the appearance of model parameters p ∈ R ⊂ Rnp in the system’s
dynamics (1.1b), path constraints (1.1d), and objective function (1.1a). In this chapter, the
model parameters p are fixed.

11
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To ensure existence and uniqueness of the DAE system’s solution, we assume f : T × Rnx ×
Rnu → Rnx to be piecewise LIPSCHITZ continuous. Furthermore, we assume the derivative
of the algebraic equation g with respect to the algebraic states z to be invertible. Then by
the Implicit Function Theorem we get a function z(t), x (t), u(t); p) which solves (1.1c). We
speak of an (differential) index one DAE, because in that case we derive an explicit ODE sys-
tem by differentiating one time. Hence, we obtain existence and uniqueness of solutions as
in the ODE case. The constraint function c : T × Rnx × Rnz × Rnu → Rnc restricts the set of
admissible state and control trajectories x (·), z(·), and u(·). It may contain mixed path and
control constraints, restrict the set of initial values x (t0), and contain boundary conditions for
the trajectories. Finally, the point constraint function r : (Rnx )m+1 × (Rnz )m+1 → Rnr imposes
point-wise constraints on the states in a finite number of grid points {t i} ⊂ T , 0 ¶ i ¶ m that
may be coupled in time. Possible uses are the specification of boundary conditions such as
initial and terminal states. They need to be linearly separable to ensure decoupling in the sub-
sequently resulting KARUSH-KUHN-TUCKER (KKT) matrix. The presented OCP of Definition 1.1
clearly is an infinite-dimensional optimization problem, the unknowns to be determined being
the control trajectory u(·) and the resulting dynamic and algebraic state trajectores x (·) and
z(·) of the process.

Problem (1.1) can be specialized to include a large number of additional characteristics. Defi-
nition 1.2 constitutes a first important extension.

Definition 1.2 (Multi-Stage OCP)
A multi-stage optimal control problem is a constrained infinite-dimensional optimization problem
of the form

min
ui(·)

M−1
∑

i=0

Ji(x i(·), zi(·), ui(·); p) (1.2a)

s.t. ẋ i(t) = fi(t, x i(t), zi(t), ui(t); p) ∀t ∈ Ti , 0¶ i ¶ M − 1, (1.2b)

0= gi(t, x i(t), zi(t), ui(t); p) ∀t ∈ Ti , 0¶ i ¶ M − 1, (1.2c)

x i+1(t i+1) = f tr
i (x i(t i+1), zi(t i+1)), 0¶ i ¶ M − 1, (1.2d)

0¶ ci(t, x i(t), zi(t), ui(t); p), ∀t ∈ Ti , 0¶ i ¶ M − 1, (1.2e)

0µ ri({x j(tk), z j(tk)}), {tk} ⊂ T , 0¶ i, j ¶ M − 1. (1.2f)

Here the time horizon T = [t0, tf] ⊂ R is divided into M stage intervals Ti
def
= [t i , t i+1] ⊂ R,

0¶ i ¶ M − 1, with t0 < t1 < · · ·< tM = tf. On each model stage the dynamic process x i : Ti →
Rnxi and the algebraic process zi : T → R

nzi are determined by a system of DAEs with ODE right
hand side function fi : Ti × R

nxi × Rnzi × Rnui → Rnxi and algebraic right hande side function
gi : Ti×R

nxi ×Rnzi ×Rnui → Rnzi and affected by a control ui : Ti → R
nui to minimize an objective

Ji : Xi×Zi×Ui → R and to satisfy path constraints ci : Ti×R
nxi ×Rnzi ×Rnui → Rnci and linearly

separable point constraints ri : (R
nx0 × · · · ×RnxM−1 )m+1 × (Rnz0 × · · · ×RnzM−1 )m+1→ Rnri on a

finite number of grid points {tk} ⊂ T , 0¶ k ¶ m. The M model stages of the optimization problem
(1.2) are coupled via explicit transitions f tr

i : Rnxi ×Rnzi → Rnxi+1 and the point constraints ri(·).
Again, the system’s behavior is affected by fixed model parameters p ∈R ⊂ Rnp . 4

12
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Objective Functions

The performance index J(x (·), z(·), u(·); p) of the OCP (1.1) evaluated on the time horizon
T usually is a general objective function that consists of an integral contribution, the LA-
GRANGE type objective with integrand L (t, x (t), z(t), u(t); p), and an end-point contribution,
the MAYER type objective M(tf, x (tf), z(tf); p). Hence,

J(x (·), z(·), u(·); p) =

∫ tf

t0

L (t, x (t), z(t), u(t); p) dt +M(t tf
, x (tf), z(tf); p). (1.3)

Analogously, the performance indices Ji(·) of (1.2) are defined on each model stage horizon Ti

for 0¶ i ¶ M−1. For certain instances, as in Chapter 7, it is beneficial to consider only objective
functions of either the LAGRANGE or MAYER type. In that case the necessary transformation can
be calculated straightforwardly.

Constraint Types

In the context of the constraint functions c(·) and r (·) we have to distinguish several types de-
pending on their incorporated structure. Decoupled constraints do not connect state or control
trajectories at different instants in time. They can act on the entire time horizon T or stage
horizon Ti , 0¶ i ¶ M − 1,

0¶ c(t, x (t), z(t), u(t); p) ∀t ∈ T (1.4)

or only on certain grid points

0¶ r ({x (t i), z(t i)}) {t i} ⊂ T , 0¶ i ¶ m. (1.5)

They inherit a separability property which is important in the context of efficient numerical
algorithms, compare [137].
Coupled constraints connect the state process in finitely many grid points t i ∈ T , 0¶ i ¶ m.,

0¶ r ({x (t i), z(t i)}) {t i} ⊂ T . (1.6)

Common coupled constraints are boundary or periodicity constraints that act only on the initial
and terminal point of the time horizon, t0 and tf. In multi-stage OCPs coupled point constraints
r (·) are often necessary to define transitions between state trajectories of different stages or
to initialize additional state process components [118].

Variable Time Horizons

Often OCPs are stated on a fixed time horizon T = [t0, tf] ⊂ R. But free initial or terminal
times lead to variable horizon lengths. Especially in multi-stage OCPs of the form (1.2) this
is a common property as switches between different model stages need not be fixed. Thus, a
time transformation t(·) is needed to restate the OCP on a normalized control horizon τ ∈
[0, 1] ⊂ R. We define

t(τ)
def
= t0 + hτ, h= tf − t0, (1.7)
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for the OCP (1.1) and

t(τ, hi)
def
= t0 +

i−1
∑

l=0

hl + hiτ, hi = t i+1 − t i , 0¶ i ¶ M − 1, (1.8)

for a multi-stage OCP (1.2).

1.2 Solution Methods for Optimal Control Problems

Methods for finding solutions to optimal control problems of type (1.1) are generally based
on very disparate ideas. Built upon BELLMAN’s Principle of Optimality is the dynamic program-
ming algorithm. Additionally, we mention indirect approaches emerging from PONTRYAGIN’s
Maximum Principle (PMP) and often referred to as “first optimize, then discretize” methods. In
contrast to these, we give a detailed view on direct or “first discretize, then optimize” ideas as
collocation and shooting methods. Combining the benefits of both direct approaches for optimal
control, our preferred choice is the direct multiple shooting method. All numerical applications
in this thesis focus on that framework.
For simplicity, in this section we assume that the OCP (1.1) does not include algebraic states
z.

1.2.1 Dynamic Programming

The basis of the dynamic programming technique arises directly from the principle of optimality
stated by BELLMAN [25].

“An optimal policy has the property that whatever the initial state and initial de-
cision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision.”

Theorem 1.1 (Principle of Optimality; [25])
Let (x ?(·), u?(·)) be the optimal solution of an OCP on the interval T = [t0, tf] ⊂ R and let t̄ ∈ T
be an intermediate point in that interval. Then (x ?(·), u?(·)) is an optimal solution on [ t̄, tf] ⊆ T
for the initial value x̄ = x ?( t̄). 4

Thus, BELLMAN’s principle says that if we have an optimal solution on the entire time horizon
T = [t0, tf], then any subarc of that solution restricted on the interval [ t̄, tf] with t0 ¶ t̄ ¶ tf

is optimal as well, compare Figure 1.1. In general, the reverse direction does not hold. A
concatenation of optimal solutions on a partition of the horizon T is not necessarily optimal
on the entire T . [33, 34, 76] give an extensive overview of BELLMAN’s principle of optimality,
the dynamic programming algorithm, and its applications in optimal control.
As we will return to the idea of dynamic programming in the context of stochastic optimal
control in Chapter 7, we briefly review its fundaments.

Definition 1.3 (Continuous Cost-to-go Function)
On the time interval [ t̄, tf] ⊂ T ⊂ R the cost-to-go function V (·) for problem (1.1) is defined as

V ( t̄, x̄ )
def
= min

u(·)
x ( t̄)=x̄

�∫ tf

t̄
L(t, x (t), u(t); p)dt +M(tf, x (tf); p)

�

(1.9)
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t0 t̄ tf

x ( t̄) = x̄

x0

State x (·)

Control u(·)

Figure 1.1: Illustration of BELLMAN’s principle of optimality for an optimal solution (x ?(·), u?(·)).

for feasible x (·) and u(·), where x (·) is defined through (1.1b). 4

We consider a time grid on the horizon T ,

t0 < t1 < . . .< tN = tf. (1.10)

Constructed on this grid we obtain a recursive formulation of the cost-to-go function V (·).

Theorem 1.2 (Recursive Cost-to-go Function; [33])
At the time instant t j , 0¶ j ¶ N − 1, the optimal cost-to-go function V (·) for problem (1.1) can
be expressed recursively as

V (t j , x j)
def
= V (t j+1, x j+1) + min

u(·)
x (t j)=x j

∫ t j+1

t j

L(t, x (t), u(t); p)dt (1.11)

with

x j+1 = x j +

∫ t j+1

t j

f (t, x (t), u(t); p)dt (1.12)

and feasible u(·). For j = N, i.e., tN = tf, it holds V (tN , xN )
def
= M(tN , xN ; p). 4

Following Theorem 1.2, we generate the dynamic programming recursion that is easily appli-
cable to numerical computations. Therefore, we discretize the state space X and start from the
terminal time point tf = tN with V (tN , xN ) = M(tN , xN ; p). By the help of the recursive cost-
to-go function (1.11) we compute the optimal objective value, the value of the optimal state
trajectory x ?(·), and the control trajectory u?(·) for each grid point t j in a backward iteration
from j = N − 1 to j = 0. Hence we need to calculate a solution to the short horizon problems
(1.11) for all feasible values x j and to tabulate the values of V (·) with corresponding u j and
x j .

Equation (1.11) often appears in its continuous form. We will return to this HAMILTON-JACOBI-
BELLMAN (HJB) equation in the stochastic context again.

Theorem 1.3 (HAMILTON-JACOBI-BELLMAN Equation; [33])
Let the optimal cost-to-go function V (·) of an OCP of the form (1.1) be sufficiently smooth and
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the terminal time point tf fixed. Then the HJB equation

−
∂ V
∂ t
(t, x ) =min

u(·)

§

L(t, x , u; p) +
∂ V
∂ x
(t, x ) f (t, x , u; p)

ª

(1.13)

V (tf, x ) = M(tf, x (tf); p)

holds for all t ∈ T and x given through (1.1b). 4

The advantage of dynamic programming is that it searches the entire state space—at least on
the chosen discrete grid—, yielding a global solution to the given optimal control problem on
that grid. The inclusion of constraints is straightforward as they merely restrict the state space.
Furthermore, the dynamic programming methodology provides a precomputable look-up table
for the optimal control values for all feasible states. This makes it highly suitable in the context
of closed-loop control, where the optimizer is interested in feedback laws, i.e., optimal control
trajectories u?(·) depending on the state x (·). Nevertheless, the described requirements of
discretizing the state and control space lead to the so-called “curse of dimensionality”. Even
for quite small problem instances the discretizations attain high dimensions and, followingly,
computation times.

1.2.2 Indirect Methods Based on the PMP

Indirect methods emerge from applying the PMP to the OCP (1.1) and optimizing in an infinite-
dimensional function space. Its basic idea lies in introducing adjoint variables that measure
how much the objective function deviates depending on changes in the state trajectory x (·)
or the constraint functions c(·), r (·). Then the PMP states necessary conditions of optimality
depending on the state, the control, the constraints, and the adjoint variables [120, 202].
For certain special examples these conditions can be solved analytically, however, often they
are used to transform the original OCP into a Boundary Value Problem (BVP) that can be
tackled numerically by shooting or collocation methods, cf. [53, 196]. Nevertheless, setting up
the appropriate BVP already includes the determination of the optimal control u?(·) and its
possibly existing switching structure.
In general, indirect methods are very useful to obtain structural information on the process
and the optimal solution, e.g., in economic applications by interpreting the adjoint variables as
taxes and analyzing their behavior in time. As the optimization problem is solved in an infinite
dimensional function space, the optimal control profiles are exact and no approximation is
needed, in contrast to the direct methods presented below. In the resulting BVP all degrees
of freedom for choosing the optimal control u?(·) vanish, whereas indirect methods appear
worthwhile for problems with a large number of controls. Furthermore, by the optimization
in function space feedback laws u?(x (·)) may be computed directly.
However, obtaining solutions to general OCPs is intricate in most cases. Several special cases
have to be treated separately, particularly if general path and control constraints are incor-
porated. Then the structure of the optimal solution is not known a priori as state dependent
switches may occur. The necessary conditions of optimality have to be derived analytically
for every problem instance, i.e., for varying initial data, parameters, or additional constraints.
Hence, indirect methods are a suitable choice for analyzing the general solution structure of
an OCP, especially in selected infinite horizon settings, but are not preferred for calculating
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fast numerical solutions to optimal control problems.

1.2.3 Direct Methods

In contrast to the indirect methods for optimal control that discretize the necessary optimality
conditions and solve the resulting BVP, direct methods transform the original infinite dimen-
sional OCP into one in finitely many degrees of freedom with finitely many constraints. In
that fashion, they are often referred to as “first discretize, then optimize” methods. One can
apply sophisticated and powerful ideas from nonlinear programming to finally solve the prob-
lem, i.e., the appearing KKT conditions, to optimality. Hence, direct methods are well suited
for practical large-scale problems as they do not suffer from the curse of dimensionality or
extensive analytical spadework.
One characteristic of these approaches is to discretize the controls u(·) on a finite time grid
of the considered horizon T . From an application point of view this is highly motivated as
often the space U of feasible decisions is restricted in such a way, e.g., that boilers for chemical
reactions provide only constant heating levels over prescribed time intervals, or that prices in
economic problems can be set only in certain intervals.
Let a finite time grid of N intervals be given as

t0 < t1 < . . .< tN = tf. (1.14)

We discretize the controls u(·) on this grid via

u(t) = ϕi(t,qi) ∀t ∈ [t i , t i+1], 0¶ i ¶ N − 1, (1.15)

with qi ∈ R
nqi and a function ϕi : [t i , t i+1] × R

nqi → Rnu with compact support. The most
common examples for these functions are

• piecewise constant, i.e., u(t) = qi ∀t ∈ [t i , t i+1],
• piecewise linear, i.e., u(t) = qi,1 + qi,2(t − t i) ∀t ∈ [t i , t i+1],
• piecewise cubic, trigonometric, or cyclometric.

Certainly one may select different discretization types ϕ·(·) for the control trajectory compo-
nents u j(·), 1¶ j ¶ Rnu .

Direct Single Shooting

In direct single shooting, going back to [111] and [219], we regard the differential state x (·)
as dependent variable of the control u(·) based on the discretization (1.15). We use numerical
integration techniques to obtain the state as a function x (t; x0,q) of finitely many controls q =
(q0, . . . ,qN−1) ∈ Rnq , nq = nq0

+. . .+nqN−1
, and the initial value x0, by solving the corresponding

Initial Value Problem (IVP). After this control discretization the OCP (1.1) becomes

min
q

N−1
∑

i=0

∫ t i+1

t i

L(t, x (t),ϕi(t,qi); p) +M(tf, x (tf); p) (1.16a)

s.t. ẋ (t) = f (t, x (t),ϕi(t,qi); p) ∀t ∈ [t i , t i+1], 0¶ i ¶ N − 1, (1.16b)

0¶ c(t, x (t),ϕi(t,qi); p) ∀t ∈ [t i , t i+1], 0¶ i ¶ N − 1, (1.16c)

0µ r ({x (t j)}), {t j} ⊂ T . (1.16d)
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Problem (1.16) can be summarized as a Nonlinear Program (NLP) in the unknowns (x0,q) ∈
Rnx+nq

and finally be solved by appropriate NLP methods like Sequential Quadratic Program-
ming (SQP) techniques [94, 191, 247].

t0 tf

x0

State x (·)

Control u(·)

t1 t3 tN−1. . .t2

q0
q1 q2 q3

qN−2

qN−1

0¶ c(x (t))
def
= x̂ − x (t)

Figure 1.2: Illustration of the direct single shooting approach applied to an optimal control problem.

As the constraints c(·) and r (·) are often discretized to hold only on the finite grid (1.14), in-
stead of the time intervals [t i , t i+1], solutions might be obtained that are feasible for the single
shooting problem (1.16) but not the original OCP (1.1) (compare Figure 1.2 as well). Hence,
a relaxation of the constraints, including them in the objective function via penalty terms, or
refining the time grid might become important. Besides this property of direct single shooting,
there are a number of additional drawbacks of the method. As the resulting NLP depends only
on the initial value x0 of the state and the control variables q , it is essential to use initial guesses
that are already close to the optimal solution. For certain chosen initializations the solution to
the induced IVP need not exist as the process might evolve into singularities over time. Aside
from that, error propagation of the integration procedure may thwart the numerical computa-
tion of the solution. Initial guesses within such a small convergence region are certainly hard
to detect in practice. Moreover, even if prior insight in the behavior of the process exists, it
cannot be used in the direct single shooting framework. From the NLP perspective the nonlin-
earities probably included in the ODE system of (1.1) are often challenging and small changes
in the initial data may cause large changes in the solution or severe constraint violations.
Nevertheless, direct single shooting is popular in practice due to its plain idea and implemen-
tation, with the resulting NLP inheriting a comparatively small number of unknowns.

Direct Collocation

The basic idea of collocation methods is to not regard the state x (·) as a dependent variable,
but to solve simulation and optimization tasks at the same time. Therefore, collocation is often
named a simultaneous—or all-at-once—approach. In the context of BVPs it has been intro-
duced in [214, 240], generalizations to OCPs go back to [20, 40, 239].
Again we define a (fine) grid

t0 < t1 < . . .< tN = tf

and denote hi = t i+1 − t i , 0 ¶ i ¶ N − 1. Then on each such interval [t i , t i+1] we consider
an additional partition into K subintervals, i.e., 0 = τ0 < τ1 < . . . < τK = 1, resulting in
t = t i + τhi with τ ∈ [0,1] and t ∈ [t i , t i+1]. The state x (·) is interpolated on [t i , t i+1] with
polynomials of degree K , e.g., LAGRANGE polynomials, yielding a discretization using K new
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optimization variables of dimension nx per interval [t i , t i+1], 0¶ i ¶ N −1. The controls may
be discretized in a different way, however, often this is performed on the same time grid by one
of the control discretizations (1.15) defined above. Note that the state trajectory x (·) needs to
be continuous, which is ensured by introducing continuity conditions, i.e., adding nonlinear
equality constraints at the time instants t i , 1 ¶ i ¶ N . General path and point constraints are
treated by enforcing their discretized counterparts on the collocation grid points.

Hence, the collocation approach results in a large but sparse NLP that again can be solved by
powerful methods like tailored SQP or sparse interior point methods [42, 242].

Compared to direct single shooting, in direct collocation a priori information of the system’s
behavior can be included in the resulting NLP by appropriate initialization of the state trajec-
tory variables. Further on, the spreading of perturbations in computing the state trajectory can
be reduced by allowing small violations of the introduced matching conditions in the course
of the NLP solution. The convergence region of direct collocation is thus highly enlarged.

A difficulty in collocation approaches is the use of adaptive solvers for the included ODE system.
For treating highly nonlinear or stiff systems this may be of particular importance in order to
obtain satisfying solutions. In collocation this can only be overcome by large numbers K of
subintervals.

1.3 BOCK’s Direct Multiple Shooting Method for Optimal Control

Like for the single shooting approach, the basis of multiple shooting can be found in solution
methods for BVPs, compare [45, 53, 196]. In the context of OCPs the direct multiple shooting
idea goes back to work of HANS GEORG BOCK [46, 201]. It is a hybrid method of the aforemen-
tioned approaches in the sense that it combines the advantages of collocation and direct single
shooting. I.e., discretizing the state trajectory allows the incorporation of a priori knowledge
of the process via state initialization, while still solving underlying IVPs and, therefore, being
able to rely on efficient adaptive solvers [5, 6, 22, 80, 200]. Furthermore, with direct multiple
shooting stability of the solution is heavily improved and the influences of nonlinearities are
compensated [8]. All numerical computations of OCPs within this thesis are performed using
the direct multiple shooting software MUSCOD-II. A detailed description of it can be found in
[160].

Let us consider the OCPs (1.1) or (1.2), assuming all appearing functions to be twice contin-
uously differentiable with respect to the unknowns of the problem. Again we discretize the
controls u(·) on a (coarse) time grid to obtain a computationally tractable representation of
our original problem. Therefore, let

t0 < t1 < . . .< tN = tf

be a (not necessarily equidistant) partition of T = [t0, tf] as in (1.14), that we will denote as
the shooting grid {t i} from now on. To keep notations simple, in the following we assume this
grid to coincide with the grid induced by the point constraints r (·) as introduced in (1.1e).
Of course, all methodological ideas presented now can be derestricted to hold for differing
shooting and constraint grids. On each interval [t i , t i+1], 0 ¶ i ¶ N − 1, we use a control
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discretization (1.15), i.e.,

ui(t) = ϕi(t,qi),

with base functions ϕi : [t i , t i+1]×R
nqi → R that need not be equal for each component of the

control trajectory. We require local support of the base functions to ensure separability of the
discretized problem. For certain discretization types, e.g., piecewise linear control base func-
tions, one may claim continuity of the control trajectory even after discretization. Therefore
one has to add continuity conditions on u(·) in all points of the shooting grid {t i}. Obviously,
the choice of control discretization type ϕ·(·) directly influences the quality of the approxi-
mated solution to the original OCP. More information on that can be found in, e.g., [138].

Additional to the control discretization that is equivalent to the direct single shooting approach
in Section 1.2.3, we use a parameterization of the dynamic and algebraic state trajectories x (·)
and z(·) on the shooting grid {t i}. To that end, we introduce auxiliary initial values s x

i ∈ R
nx ,

s z
i ∈ R

nz , 0¶ i ¶ N −1, with s x
0 = x0, s z

0 = z0 to obtain N separated IVPs on the time intervals
[t i , t i+1] ⊂ T , i.e.,

ẋ i(t) = f (t, x i(t), zi(t),ϕi(t,qi); p) ∀t ∈ [t i , t i+1], 0¶ i ¶ N − 1, (1.17a)

0= g (t, x i(t), zi(t),ϕi(t,qi); p) ∀t ∈ [t i , t i+1], 0¶ i ¶ N − 1, (1.17b)

x i(t) = s x
i , (1.17c)

zi(t) = s z
i . (1.17d)

As in direct single shooting, this allows to apply sophisticated integrators to obtain the solutions
on each time interval, see [5, 6, 23]. We have to assure consistency of the algebraic equations

0= g (t, x i(t), zi(t),ϕi(t,qi); p) ∀t ∈ [t i , t i+1], 0¶ i ¶ N − 1. (1.18)

Additionally, we have to insert matching conditions as in collocation to ensure continuity of
transitions between adjacent intervals, i.e., of the state trajectories x (·) over the entire horizon
T ,

0= x i(t i+1; t i , s x
i , s z

i ,qi)− s x
i+1, 0¶ i ¶ N − 1. (1.19)

Therein, the term x i(t i+1; t i , s x
i , s z

i ,qi) denotes the terminal value of the integrated trajectory,
i.e., the solution of the IVP (1.17), in the interval [t i , t i+1] when the initial values s x

i , s z
i and

control values qi are chosen.

The resulting vector of unknowns of the multiple shooting approach for the OCP (1.1) is given
by

w
def
=
�

s x
0 , s z

0 ,q0, . . . , s x
N−1, s z

N−1,qN−1, s x
N , s z

N

�

∈ R(N+1)nx+(N+1)nz+nq (1.20)

The number of unknowns in w can be reduced to the number of unknowns in the single
shooting approach by applying condensing techniques. An extensive introduction to that topic
can be found in [137, 160].

In the multi-stage case of OCP (1.2) with free transition times t j between adjacent stages an
additional time transformation as in (1.8) is necessary for constructing the final NLP. This
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t0 tf

s0

State x (·)

Control u(·)
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Figure 1.3: Illustration of the direct multiple shooting approach for OCPs. The top figure shows the
initial situation of the method. An initialization of the shooting nodes is chosen and the
matching conditions of the IVPs are possibly violated. The bottom figure then shows a con-
verged solution of the resulting NLP with satisfied matching conditions.

requires the reformulation of the DAE description of the state on model stage j, 0¶ j ¶ M−1,
following

dx j

dτ
(τ)

def
= h j f j(t(τ, h j), x j(τ), z j(τ),ϕ j(τ,q j); p), (1.21a)

0= g j(t(τ, h j), x j(τ), z j(τ),ϕ j(τ,q j); p). (1.21b)

The multiple shooting idea then is applicable to every model stage j using N j shooting nodes,
resulting in a vector of unknowns per stage that is given by

w j
def
=
�

s x
j,0, s z

j,0,q j,0, . . . , s x
j,N j−1, s z

j,N j−1,q j,N j−1, s x
j,N j

, s z
j,N j

, h j

�

, (1.22)

eventually yielding

w
def
=
�

w j

�

0¶ j¶M−1. (1.23)

In both cases (1.1) and (1.2) the objective function is separable, making it computable sep-
arately on each corresponding interval and model stage. The path constraint function c(·) is
discretized to hold only on the multiple shooting grid {t i}, i.e.,

0¶ ci(t i , s x
i , s z

i ,ϕi(t i ,qi); p), 0¶ i ¶ N , (1.24)

where N =
∑

j N j denotes the total number of shooting nodes for discretizing the time hori-
zon T . This discretization generally enlarges the feasible set of solutions to the discretized
OCP in comparison with the original continuous one. It certainly affects the optimal solution
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in a way such that there may occur constraint violations between grid points. In most appli-
cation instances those violations are negligible. If they have a severe influence on the solution
or if feasibility is necessary on the entire time horizon T , they might be overcome by choos-
ing adapted, finer multiple shooting grids or using semi-infinite programming techniques for
tracking constraint violations [203, 204].

The resulting NLP of the direct multiple shooting method after applying the presented ideas
reads

min
s x ,s z ,q

N
∑

i=0

Ei(t i , s x
i , s z

i ,qi; p) (1.25a)

s.t. 0= x i(t i+1; t i , s x
i , s z

i ,qi)− s x
i+1, 0¶ i ¶ N − 1, (1.25b)

0= gi(t i , s x
i , s z

i ,qi; p), 0¶ i ¶ N − 1, (1.25c)

0¶ ci(t i , s x
i , s z

i ,ϕi(t i ,qi); p), 0¶ i ¶ N , (1.25d)

0µ ri(t i , s x
i , s z

i ,ϕi(t i ,qi)), 0¶ i ¶ N , (1.25e)

where Ei(·) summarizes the separately computed objective function of each interval.

This NLP incorporates more variables than the direct single shooting NLP, but the special
structure of this program can be exploited efficiently. This is especially due to the separability
of the objective function and the constraints c(·) and r (·)with respect to the unknowns (si ,qi),
which follows from the control discretization (1.15). Only the matching conditions (1.19)
couple unknowns on adjacent shooting nodes.

Eventually, constrained NLP or specially tailored SQP techniques [162] are employed to solve
(1.25), including an efficient exploitation of structures in the NLP and the efficient treatment
of algebraic terms through relaxations [161]. Therein, the principle of Internal Numerical Dif-
ferentiation (IND) is used to derive the sensitivities of the ODE or DAE solution [5, 6] and a
condensing algorithm [46, 162] to obtain small dense Quadratic Programs (QPs) that are solved
within each SQP iteration to progress towards the NLP solution. For further details we refer to,
e.g., [5, 73, 84, 137, 160, 161, 162, 230]. Here, we would only like to mention one advantage
of the direct multiple shooting approach that will be beneficial for the computations of Chapter
3. Because control functions, constraints, and multiple shooting variables are—preferably—
discretized on a common grid, the HESSian of the LAGRANGian L(·) is block-structured for
linearly coupled point constraints (1.1e)/(1.2f). When i 6= j

∇2L(w1, . . . , wN )
∂ wi∂ w j

= 0

holds for the variable vectors w j , j = 0, . . . , M − 1. This allows applying BROYDEN-FLETCHER-
GOLDFARB-SHANNO (BFGS) updates to every single multiple shooting block [46]. These high-
rank updates typically lead to a fast accumulation of higher order information and, thus, to
fast convergence [191].

Alternative methods to the condensing approach include the use of structure-exploiting linear
algebra, complementary condensing [139], or nonsmooth NEWTON techniques [96]
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1.4 Summary

In this introductory chapter we defined the classes of OCPs that are crucial for the remain-
ing work in thesis. The underlying dynamic processes of the problems are modeled by ODE
systems. In particular, we addressed multi-stage OCPs that we will return to in the following
chapter.
We surveyed numerical approaches for solving this class of problems. Our method of choice for
the remainder of the thesis is the direct multiple shooting method, a state-of-the-art simultane-
ous approach for solving optimization and simulation tasks at the same time. Direct multiple
shooting combines the advantages of direct single shooting and collocation, creating highly
structured NLPs, allowing the use of sophisticated adaptive solvers for the included IVPs, and
thus yielding excellent convergence properties.
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2 Optimal Control Problems with Uncertain
Parameters

We start our work on Optimal Control Problems (OCPs) that are determined by uncertain
influences by investigating problems where the disturbances are modeled by parameters that
we do not have complete information about. We survey two distinct ideas on how to introduce
the uncertainty through those parameters and address the question on how we can measure
the risk that is involved by them. Exemplarily, we consider and discuss several approaches to
tackle OCPs including uncertain parameters, depending on the preferences of the optimizer
and the origin and implications of the problem to be solved.

This introduction is mainly based on [38, 211]. In a condensed form, focussing on the ap-
proaches and their discussion, it appears in [117].

2.1 Robust Optimization

In optimization we often have to deal with situations, where the problem is affected by external
disturbances or uncertainties in the parameters. In most cases the corresponding solutions are
very sensitive to even small perturbations in these influences, which may cause different or
even critical results when applying controls of the undisturbed problem in reality. Therefore,
appropriate controls have to be determined to guarantee a certain kind of robustness against
the uncertainties.

Starting with the traditional robust control theory [77, 254], which concentrates mainly on
stability and tractability assertions, there grew two basic approaches to incorporating param-
eter uncertainty into optimization problems, which appear quite disparate at first sight. While
in robust optimization the uncertainty model is basically deterministic and set-based, the sec-
ond perspective builds upon a probabilistic description of the uncertainty. We will take a closer
look on this second idea in the subsequent Section 2.2.

The fundaments of robust optimization lie in the development of decision theory and worst-case
analysis. In the context we are considering here, pioneering work has been done by AHARON

BEN-TAL and ARKADI NEMIROVSKI [26, 27] and LAURENT EL GHAOUI [81, 82]. As the decision-
makers look for solutions that are feasible for any realization of uncertainty in a given set,
important topics of robust optimization are tractability of the problems, conservativeness of the
obtained solutions, and predictions on probabilistic guarantees determined a priori depending
on the size and structure of the considered uncertainty set. In [38] this is referred to as the
budget of uncertainty, addressing the compromise the decision-maker has to make between
robustness or probabilistic protection and performance.
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Let us start by considering the OCP

min
x (·),u(·)

J(x (·), u(·); p) (2.1a)

s.t. ẋ (t) = f (x (t), u(t); p), t ∈ T , p ∈R, (2.1b)

0¾ c(x (t), u(t); p), t ∈ T , p ∈R, (2.1c)

x (t0) = x0 (2.1d)

with the state process x : T → Rnx defined on the time horizon T = [t0, tf], control u : T →
Rnu , and model parameters p ∈ R ⊂ Rnp . The smooth real valued functions J , f , c character-
ize the objective (2.1a), state dynamics defined by the Ordinary Differential Equation (ODE)
(2.1b) and path constraints (2.1c), respectively.

In optimization under uncertainty the interest focuses particularly on the constraints c(·), de-
pending on the parameters p. In the robust optimization approach those parameters are con-
sidered to originate from an uncertainty set R. Based on that classification, one searches to find
a solution that is independent of the de facto occurring data, i.e., feasible for all realizations
of p ∈R. Thus, the sets of all state and control trajectories (cf. Definition 1.1) depend on the
parameter p and we denote X (R) def

= {x : T → Rnx | p ∈R}, X (R) def
= {x : T → Rnx | p ∈R}.

In traditional worst-case analysis, the set R is the overall domain the parameters p can be
located in, but in modern robust optimization R is regarded much more differentiatedly. It is
used to express the decision-makers preferences. The bigger it is, the lower the objective will
be as we can relate the size of R to the number of constraints c(·) that have to be satisfied.
I.e., if we consider a continuous uncertainty set, we obtain an infinite number of constraints
c(·) that need to be satisfied. In the same way, the bigger the uncertainty set is, the smaller
we can expect the probability of failure to be. Hence, robust optimization has to deal with the
question of how to choose R in order to stipulate the extent of safety compared to the expected
return, while keeping the problem tractable at the same time.

As indicated in Equation (2.1a), the objective function J(·) can comprise a dependency on
the uncertain parameter p as well. In some problem instances it is beneficial to transfer the
uncertainty included in the objective to an additional constraint by introducing an auxiliary
state variable, cf. [211]. Then the resulting objective is left unaffected by uncertain parameters.
However, here we leave the cost function J(·) unchanged. Constraints, that are unaffected by
uncertainty are integrated in the framework of (2.1c) by assuming that the corresponding part
of the compounded entire uncertainty set R is only a singleton.

If we consider the OCP (2.1) depending on p within an abstract uncertainty set R, it is not
at all clear when we can efficiently solve this problem. In general, the robust counterpart to
an arbitrary convex optimization problem is often intractable [26, 38]. For linear problems a
lot of progress has been made, cf. [27, 28, 36, 37], but already robust quadratic optimization
leads to semi-definite problems. [38] gives many examples, ideas, and references on research
about these problems and how to at least efficiently approximate solutions to them.

[38] proposes several important types of uncertainty sets R, each one including a specific
possibility to control its size and, therefore, the adaptivity to the decision-maker’s preferences.
The most prominent example, which will as well be the center of attention when we come to
incorporating the ideas of robust optimization to the OCP (2.1), is the quadratic or ellipsoidal

26



O P T I M A L C O N T R O L W I T H U N C E R TA I N T I E S
�

� CHAPTER 2

uncertainty set

RQ($) =
�

p
�

� (p − p̄)T Σ−1 (p − p̄)¶$2
	

, (2.2)

which has been initiated in linear problems in [27, 81, 82]. Therein, we consider all parameters
p that are located within an ellipsoid around the mean vector p̄. This ellipsoid is characterized
by the confidence parameter$ and tilted by the covariance Σ of the parameters. By choosing
this type of uncertainty set, the main focus lies on the first two moments of the uncertainty and
no additional information about the specific underlying distribution is needed. By controlling
$ (or the covariance, if this is due to, e.g., educated guesses) the already designated budget
of uncertainty receives a more tangible meaning.

Apart from the ellipsoidal uncertainty set, [36] introduces cardinality constrained uncertainty
sets, where each component of the parameter has to lie in an interval around its nominal value.
Then the decision-maker has the possibility to control the total weight of deviation from this
nominal value within the corresponding intervals. By that means, the number of parameters
that are allowed to deviate imply the budget of desired uncertainty. Additionally, by that ap-
proach one is able to consider worst cases for a selected subset of parameter components.
Certainly, this idea makes the arising robustified problem much more conservative in compar-
ison to the other mentioned methods, but as a side effect it causes it to become insensitive
against model uncertainties as well. In general, analyzing cardinality constrained uncertainty
sets leads to nonconvex problems. But particularly in linear robust optimization it allows for a
tractable reformulation by taking the natural convex relaxation and a dual formulation of the
inner maximization problem (i.e., the one corresponding to the constraints) [36].
The norm uncertainty set provided in [37] describes the uncertainty by using general norms,
like `1-, `2,- or `∞-norms. This procedure has the advantage of obtaining a convex optimiza-
tion problem if the constraints have to be satisfied with respect to the appropriate dual norms.

Robust Control

Let us return to the ellipsoidal uncertainty set RQ($). The constraint c(x (·), u(·); p) ¶ 0 in
the OCP (2.1) is substituted by

0¾ max
‖p−p̄‖2,Σ−1¶$

c(x (t), u(t); p), t ∈ T , (2.3)

depending on the nominal (or mean return) vector p̄, the covariance matrixΣ, and the desired
confidence level$. This formulation clearly includes the traditional worst-case analysis, where
the goal is to eliminate all possible risk. However, even if the considered uncertainty set is
restricted by $, the resulting problem will be a semi-infinite for continuous RQ($). This
necessitates approximations of (2.3) to make the resulting optimization problem numerically
solvable.

Linearization

A first idea to approximate the robust problem with constraint (2.3) was proposed in [74, 175,
185]. If the constraint function is monotone within the parameter set and can be approximated
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by a suitable TAYLOR expansion, it follows that up to first order we have

max
‖p−p̄‖2,Σ−1¶$

c(x (·), u(·); p)≈ c(x (·), u(·); p̄) +$









d
dp

c(x (·), u(·); p̄)









2,Σ
(2.4)

with the notations as used before. Thus, we can reformulate the given OCP by replacing the
constraint (2.3) by the linearization (2.4).

The remaining question is how to deal with the uncertainty within the objective function J(·).
The most common variants are inserting the nominal value p̄, i.e.,

J̃(x (·), u(·); p) = J(x (·), u(·); p̄),

relying on an expectation

J̃(x (·), u(·); p) = E [J(x (·), u(·); p)] ,

or using the measure already applied to the constraint. The latter idea results in optimizing
over a (possibly different) uncertainty set depending on the characteristics of the random
parameter p to a confidence level $0.

Then we can finally reformulate the original OCP (2.1) as

min
x (·),u(·)

J̃(x , u; p)

s.t. ẋ (t) = f (x (t), u(t); p̄), t ∈ T ,

0¾ c(x (t), u(t); p̄) +$









d
dp

c(x (·), u(·); p̄)









2,Σ
, t ∈ T ,

x (t0) = x0,

(2.5)

depending on the choice of objective function J̃(·).

The Sigmapoint Approach

An alternative approach to solve robust OCPs was proposed in [207]. It is based on the Un-
scented Transformation technique [108, 128] for propagating distributed information through
given nonlinear models. This idea allows to combine a moderate computational effort of the
linearized worst-case formulation with the higher accuracy of, e.g. a high-order TAYLOR ap-
proximation of the constraint (2.3). The fundamental idea of the unscented transformation
is to choose modified constraints c̃(x (·), u(·); p) such that satisfying these new constraints
results in satisfying the original constraints c(x (·), u(·); p) for all parameters p within the
critical subspace for a given probability level ζ, i.e.,

c̃(x (·), u(·); p)¶ 0 ⇒ P [c(x (·), u(·); p)¶ 0]¾ ζ.

Possible choices of the modified constraints are the principal axis endpoints of the constraint
distribution. But in order to identify these endpoints, the mapping of the parameter distribution
onto the constraints has to be known, which is often difficult. A remedy to this is using so-
called sigmapoints with corresponding weights and propagate these through the underlying
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model. If the weighted sigmapoints approximate the distribution of the parameters p, one can
approximate the distribution of the constraints by that means, cf. [128]. As [129] showed, this
allows to match the first two moments of the constraint distribution exactly.

One choice for choosing the modified constraints c̃(·) (using parameters that are normally
distributed) is

c̃(x (·), u(·); pi) = c(x (·, u(·); p̄)+$‖c(x (·), u(·); p̄)−c(x (·), u(·); pi)‖2, i = 0, . . . , 2np,

(2.6a)

with the sigmapoints

p0 = p̄, (2.6b)

pi = p̄ +
p

Σi , i = 1, . . . , np, (2.6c)

pnp+i = p̄ −
p

Σi , i = 1, . . . , np, , (2.6d)

cf. [207]. Therein, p̄ is the nominal parameter of dimension np, Σi is the i-th row or column
of the covariance matrix Σ, and $ again some predefined confidence level.

For not normally distributed parameters the resulting approximation of the constraint distri-
bution may be erroneous, which can cause bad approximations of the robust solutions. Still,
industrial applications [207] have shown that using modified constraints

c̃(x (·), u(·); pi) = c(x (·), u(·); pi) (2.7)

instead of (2.6a), with the sigmapoints defined as in (2.6b)–(2.6d), leads to reasonable ap-
proximations, even if the parameters are not normally distributed.

Thus, the resulting robust OCP becomes

min
x (·),u(·)

J̃(x , u; p)

s.t. ẋ (t) = f (x (t), u(t); pi), t ∈ T , i = 0, . . . , np,

0¾ c̃(x (t), u(t); pi), t ∈ T , i = 0, . . . , np,

x (t0) = x0,

(2.8)

where the objective function J̃(·) is given as in the previous paragraph, including possible
formulations based on the introduced sigmapoints.

2.2 Coherence and Probabilistic Optimization

The second basic approach to optimization under uncertainty is premised on the assumption
that the decision-maker has certain knowledge about the probabilistic behavior of the uncer-
tain parameter p ∈ R. Instead of restricting this parameter set to fit specific perceptions and
desiring to obtain feasibility of the solution for all parameters p within the (possibly restricted
and size-controlled) uncertainty set, here we consider the entire set R, but adjust the expec-
tations on feasibility in a probability-based manner. Nevertheless, the decision-maker still has
to take his decision before all information is available. From that point of view, and by taking
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a look at the OCP (2.1) again, the forthcoming ideas can be complemented by considering the
constraints (2.1c) in terms of safeguards or, in other words, in terms of surrogates for potential
loss.
Reconsidering (2.1c), i.e., the constraints

c(x (t), u(t); p)¶ 0

for all p ∈R with R ⊂ Rnp , then choosing a control u(·) determines a function x (·; p) depend-
ing on p [211]. Now the idea of incorporating the concept of risk is based on the assumption
that R has the structure of a probability space; its elements p are random variables, cf. Appendix
A.
This description opens up the possibility to differentiate the likelihood of future states x de-
pending on the likelihood of p ∈R. In that way, the constraints c(·) become random variables
as well.
However, by replacing the original constraint (2.1c) by a random variable constraint, one has
to reconsider the way these constraints are treated within the problem: Equality constraints
are nearly impossible to meet at all and inequality constraints need an additional examination
on whether and when they are actually satisfied. If no such measure is used, the resulting
formulation coincides with the worst-case situation we have mentioned already in the previous
section.
In order to establish such a measure, the fundamental idea is to condense the random variable
constraint that we obtain by choosing a control u(·) back into a number [211]. Approaches
that are traditionally used for that purpose include guessing the future, i.e., fixing an estimate
of the unknown quantity, the worst-case analysis, relying on expectations values or standard
deviation units, or using chance constraints with specified confidence levels ζ, i.e., replacing
the original constraint by

P [c(x , u; p ¶ 0]¾ ζ.

Quantification of Risk

The quantification of risk addresses two disparate ideas, depending on people’s appraisal of
uncertainty and its possible consequences. [211] refers to the measures of deviation as those
treating the amount of risk in a random variable by its actual degree of uncertainty, i.e., its
deviation from being constant. In contrast the measures of the risk of loss quantify the appearing
risk in terms of a surrogate for the overall costs that may occur. This second idea—often named
the measures of risk for short—is the most commonly used one in the probability-based part of
optimization under uncertainty.
The quantification of risk into a single number that can be efficiently used in the optimization
context, is done by the introduction of an additional functional R to be applied to the com-
ponents of the constraints vector (but not necessarily the same one for each component). But
then the next important question arises: What properties have to be fulfilled to make such a
functional a good quantifier of risk? PHILIPPE ARTZNER and his co-workers provided an answer
to these considerations from a finance point of view by characterizing the coherent measures of
risk, cf. [12]. They introduced an axiomatic framework to decide, whether a risk measure can
be “used to effectively regulate or manage risk” [12]. It has proven that this notion is useful in
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a much wider context, whereas the original idea has been extended and refined by R. TYRELL

ROCKAFELLAR, leading to the following definition, cf. [211] and the references therein.

Definition 2.1 (Coherent Measure of Risk)
A functional R: L2→ (−∞,∞] is called a coherent measure of risk in the extended sense if it
satisfies

(i) R(C) = C for constants C,
(ii) R((1−λ)X +λY )¶ (1−λ)R(X ) +λR(Y ) for all X , Y ∈ L2 and λ ∈ [0, 1],

(iii) R(X )¶ R(Y ) for X ¶ Y ,
(iv) R(X ) ¶ 0 when R(X k) ¶ 0 for a sequence of random variables (Xk)k∈N converging to the

random variable X with respect to the norm ‖X‖2 =
p

E [X 2], i.e., if ‖Xk − X‖2 → 0 as
k→∞.

It is called a coherent measure of risk in the basic sense if it additionally satisfies

(v) R(λX ) = λR(X ) for any λ > 0 and all X ∈ L2.

Within Definition 2.1, the space L2 denotes the linear space of random variables X with finite
second moment, i.e., E

�

X 2
�

<∞, cf. [211].

Remark 2.1
A key property of the concept of coherence emphasized in [12] is the subadditivity

R(X + Y )¶ R(X ) + R(Y ).

It follows from the convexity (ii) and the positive homogeneity (v) properties of Definition 2.1.
In particular in financial applications this is crucial. If X and Y are loss variables for two
portfolios, then the total risk of loss should not be increased by combining these portfolios
into one. Often this is also called diversification.

Another important aspect that is closely related to coherence is the acceptability of the in-
cluded risk. Given a coherent risk measure R, we refer to the risk of a loss variable X as being
acceptable if R(X )¶ 0, otherwise it might be unacceptable if, e.g., the measure underestimates
the consequences of failure. By that means, there is a form of compromise established as the
concept allows constraint violations. The important notion is the extent of that violation.

From [211, Theorem 1] we find that if R is a coherent measure of risk, replacing c(·) ¶ 0
by R(c(·)) ¶ 0 maintains convexity, certainty of constraints, and the insensitivity to scaling.
Further on, we note that R(c(·)) ¶ 0 is equivalent to requiring the risk of c(·) being accept-
able. Therefore, we ensure that the incorporation of the measure R for replacing the original
constraint preserves the properties of the underlying problem.

From the technical perspective of Definition 2.1, guessing the future, the worst-case analysis,
and relying on expectations are coherent measures of risk in the basic sense, whereas the use
of standard deviation units or chance constraints does not give a coherent measure. In both
cases, the convexity property (ii) cannot be guaranteed, i.e., the diversification principle is not
satisfied in general.

Nevertheless, before introducing the most famous coherent measure of risk—the Conditional
Value at Risk (CVaR)—let us take a closer look on chance constraints.
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Chance Constraints or Value at Risk

One of the most popular approaches for safeguarding in financial mathematics, e.g., in port-
folio optimization, is the use of chance constraints. We require the constraints c(·) ¶ 0 to
be satisfied only with a given probability ζ. Such a formulation is identical to the Value at
Risk (VaR) [12, 127].
Definition 2.2 (Value At Risk/Quantile)
For a random variable X with cumulative distribution function FX : R→ [0,1] (cf. Definition A.6)
and a given probability level ζ ∈ [0,1] the Value at Risk of X is the mapping VaR: [0,1] → R
given by

VaRζ(X )
def
= qζ(X ) = inf

x∈R
{FX (x)¾ ζ}. (2.9)

Therein, qζ(X ) denotes the ζ-quantile of X , which is by definition equal to the VaR. 4

Hence, if we pass to a chance constraint for the original constraint c(·) ¶ 0, the following
relation holds true, cf. [211].

P [c(x , u; p)¶ 0]¾ ζ ⇔ qζ(c(x , u; p))¶ 0 ⇔ VaRζ(c(x , u; p))¶ 0. (2.10)

Incorporating this into our original OCP (2.1), we obtain the safeguarding problem with VaR
constraint

min
x (·),u(·)

J̃(x , u; p) (2.11a)

s.t. ẋ (t) = f (x (t), u(t); p), t ∈ T , (2.11b)

0¾ VaRζ(c(x (t), u(t); p)), t ∈ T , (2.11c)

x (t0) = x0, (2.11d)

where ζ denotes again the desired probability level. Certainly, one can use the VaR formulation
(with a different probability level ζ′) for the objective function as well rather than using the
nominal value or an expectation value.
The OCP (2.11) is a bilevel optimization problem. The implementation of the VaR constraint
(2.11c) requires knowing the distribution of the constraint c depending on the variable p,
which in most instances is not readily available. Furthermore, both the dynamic equation
(2.11b) and the constraint have to be evaluated for all possible realization of the parameter p
as they become random variables as well. If p is discretely distributed, this may include only
a finite number of events p1, . . . , pn with appropriate probability P1, . . . ,Pn, for continuously
distributed random parameters there are generally infinitely many realizations.
For constraints depending on only one uncertain parameter we obtain the following reformu-
lation, cf. [117], that we will use in the following Chapter 3.

Theorem 2.1
If the constraint function c(·) is a continuous function of the one-dimensional random variable p
and monotone in p, then

VaRζ(c(·; p))¶ 0¾ ζ ⇔ c(·; VaRζ(p))¶ 0. (2.12)

4
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Proof We define pmin def
= argmin{p | c(·; p) = 0} and calculate by using the relation (2.10)

P [c(·; p)¶ 0]¾ ζ ⇔ P
�

p ¶ pmin
�

¾ ζ

⇔ VaRζ(p)¶ pmin

⇔ c(·; VaRζ(p))¶ 0. �

By applying Theorem 2.1 to reformulate the VaR constraint (2.11c) the complexity of problem
(2.11) can be reduced. If the distribution of the random parameter p is known one can directly
determine its VaR given a specified probability level ζ.
For multi-dimensional parameters p Theorem 2.1 can only be used if the components of p are
independent and treated as individual VaR constraints.

Conditional Value at Risk

The VaR is not a coherent measure of risk, because of the violation of the diversification
principle. As an alternative, the Conditional Value at Risk (CVaR) has been introduced in
[1, 2, 212, 213]. Given a random variable X with respect to a probability level ζ, the CVaR is
described as the expectation of X in conditional distribution of its upper ζ-tail. This tail sum-
marizes all outcomes of X in the upper part of the range of X , its probability is then 1− ζ. In
general this tail would be the interval [qζ(X ),∞), but only if there does not appear a jump
at qζ(X ). The CVaR, setting it apart from the traditional VaR, regards not only the occurrence
of negative outcomes (or losses), but also their extent (or amount). Thus, the CVaR is a more
cautious risk measure than the VaR.

Definition 2.3 (Conditional Value At Risk (ACERBI))
The Conditional Value at Risk of a random variable X to the probability level ζ is given as

CVaRζ(X ) =
1

1− ζ

∫ 1

ζ

VaRz(X )dz. (2.13)

4

Definition 2.3, originating from [1], confirms the above statement directly. As a more application-
oriented version, in [212, 213] the following equivalent version is established.

Lemma 2.1 ([212, 213])
For a random variable X and probability level ζ we obtain the CVaR by the minimization formula

CVaRζ(X ) =min
ϑ∈R

§

ϑ+
1

1− ζ
E [max{0, X − ϑ}]

ª

. (2.14)

4

This term leads to an important connection to the VaR again (apart from the one given by
(2.13)), i.e., [211]

VaRζ(X ) = left endpoint of arg min
ϑ∈R

§

ϑ+
1

1− ζ
E [max{0, X − ϑ}]

ª

. (2.15)

Example 2.1 gives an impression of the connection between the VaR and the CVaR of a random
variable X to some specified probability level ζ by calculating and visualizing the terms.
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Example 2.1
Consider the exponentially distributed random variable X ∼ Exp(λ) with rate parameter λ. X
is supported on [0,∞) and has the cumulative distribution function (cdf)

FX (x) =







1− e−λx , x ¾ 0

0, x < 0.

The quantile function qζ(X ): [0,1]→ [0,∞) of X to a given probability level ζ is calculated
with the help of the inverse function of FX , yielding

qζ(X ) = −
ln(1− ζ)
λ

, 1¶ ζ < 1,

with the limit for ζ → 1 being ∞. Thus, if we fix λ = 1 and consider the probability level
ζ= 0.9, we obtain

VaRζ=0.9(X ) = qζ(X ) = − ln(0.1)≈ 2.303.

By (2.13) we get

CVaRζ=0.9(X ) =
1

1− ζ

∫ 1

ζ

− ln(1− z)dz

=
1

1− ζ
[z − (z − 1) ln(1− z)]1ζ

= 10 · (ζ− 1)(ln(1− ζ)− 1)≈ 3.303.

Figure 2.1 visualizes the connection.

x
0

1

Confidence level ζ= 0.9

FX

VaRζ(X ) CVaRζ(X )

Figure 2.1: Visualization of the VaR and CVaR of an exponentially distributed random variable X and
given probability level ζ.

For practical applications, another property of CVaR has shown to be important, cf. [211].

Theorem 2.2 ([211])
The CVaR of a random variable X ∈ L2 depends continuously on the probability level ζ ∈ (0, 1)
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and has the limits

lim
ζ→0

CVaRζ(X ) = E [X ] and lim
ζ→1

CVaRζ(X ) = sup X . (2.16)

4

Remark 2.2
Note that for ζ → 1 the VaRζ(X ) tends to sup X as well, but it does not tend to E [X ] for
ζ→ 0. To check this, we consider the quantiles of the normally distributed random variable
X ∼N (µ,σ). It holds limζ→0 qζ(X ) = −∞.

Safeguarding a robust OCP with CVaR constraints can be formalized analogous to the approach
before. We obtain the new problem

min
x (·),u(·)

J̃(x , u; p) (2.17a)

s.t. ẋ (t) = f (x (t), u(t); p), t ∈ T , (2.17b)

0¾ CVaRζ(c(x (t), u(t); p)), t ∈ T , (2.17c)

x (t0) = x0. (2.17d)

With the minimization rule (2.14) the constraint (2.17c) can be readily implemented into the
original problem, without extra care of the VaR. The distribution of the constraint function c(·)
depending on the parameter p, however, is still important for calculating the inner expectation
in the minimization rule. Additionally, the evaluation of that inner expectation is generally dif-
ficult for continuously distributed random variables or discretely distributed random variables
with infinitely many events.
The constraint CVaRζ(c(x , u; p)) ¶ 0 has to be fulfilled within the whole time interval T .
Thus, the control parameter ϑ of (2.14) has to be derived for every t ∈ T and we obtain an
additional control function ϑ(·) in that context.
Basically, the transition to a multi-dimensional parameter p can be done straightforwardly. If
the components of the random variable p are independent, each can be treated by a separate
CVaR constraint. In the case of a joint distribution, the focus lies on the evaluation of the inner
expectation. In each of the mentioned instances, the additional control function ϑ : T → Rnp

increases the complexity of the problem considerably.
Finally, due to Theorem 2.2 the analysis of expectation-based and worst-case approaches can
be performed in the context of CVaR as well. [11] investigated the performance of the CVaR
approach with a confidence level ζ close to one in comparison with the worst-case measure
in the context of portfolio optimization. By numerical analysis it is shown therein, that for
certain problem instances it can be beneficial to use a CVaR approximation even if one wishes
to optimize the worst-case behavior.

2.3 Connecting Robust, Probabilistic, and Stochastic Optimization

Using a measures of risk to describe uncertain constraints in optimization under uncertainty
gives us an immediate impression of how reliable the computed solutions are through the un-
derlying probabilistic description. The use of an uncertainty set in robust optimization does
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not provide such a probabilistic safeguard. Nevertheless, one of the key questions in robust
optimization is how the choice and adjustment of a specific uncertainty set R and the corre-
sponding robust feasibility work on the probability of feasibility [38]. I.e., if u(·) is a solution
to (2.1) and x (·) the appropriate state trajectory, what is the smallest probability ζ such that

x ∈ X (R), u ∈ U(R) ⇒ P [c(x , u; p)> 0]¶ ζ

under some assumptions on the distribution that the uncertain parameter p could underly?
The first such connection between an uncertainty set and the probability of a robust feasi-
ble solution has been developed in [28] for the ellipsoidal set. In a related fashion, [36, 37]
provided probabilistic guarantees for special cardinality constrained uncertainty sets in linear
problems. [186] went even further by inferring risk measures from uncertainty sets.

Starting from the opposite viewpoint, i.e., using (possibly very limited) distributional infor-
mation about the parameter p to choose an elaborate uncertainty set, has attracted attention
as well. In [188] chance constraints have been considered in traditional robust optimization
through convex approximations, [55, 85] incorporated them by using sampling techniques.
[35] focused on coherent risk management tools and the implications they have on the struc-
ture of an uncertainty set in robust linear optimization problems. One example, that is given in
[38], considers the CVaR. If the random variable (or, constraint) depending on the uncertain
parameter p is supposed to satisfy the CVaR condition given through (2.14) for a probabil-
ity level ζ, and p follows a discrete distribution with support {p1, . . . , pn} and corresponding
probabilities {P1, . . . ,Pn}, then the uncertainty set

RCVaR(ζ) = conv

�¨

1
ζ

∑

i∈J
piPi +

�

1−
1
ζ

∑

i∈J
Pi

�

p j

�

�

�

�

�

J ⊆ {1, . . . , n},

j ∈ {1, . . . , n} \J ,
∑

i∈J
Pi ¶ ζ

«�

belongs to that random variable, cf. [38].

Both of the mentioned methodologies tackle optimization or control problems in the single-
stage case. I.e., the decision-maker has to set his choice before any of the uncertainty is re-
alized. In contrast to this static approach [38], in the dynamic decision-making context this
restriction is relaxed. One allows decisions to be made successively to some extent in order
to use the additional information that enters into the problem when the realization of an
uncertain parameter takes place. Starting again with the work in traditional robust control,
robust adaptable optimization has developed. One form of it is the well-known open-loop feed-
back control. The static solution over all stages is computed and the first-stage decision is
implemented. Afterwards, the complete procedure is repeated for the next stage. In two-stage
stochastic optimization [205, 216, 224] the feasibility constraints of the single-stage optimiza-
tion problem are relaxed and shifted to the objective. This is done by assuming that after the
first-stage decisions are implemented and the realization of the uncertainty takes place, the
decision-maker has the opportunity to ensure that the constraints are satisfied by counter-
acting bad consequences or taking advantage of good outcomes. By that, the introduction of
recourse decision-making identifies an option of hedging. However, for this method to work,
again a probabilistic description of the uncertainty is needed. This approach can be extended
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to a multi-stage environment straightforwardly. Additional to stochastic programming, the dy-
namic programming idea can as well be extended to robust dynamic programming and robust
MARKOV decision process setting, cf. [33, 34, 206].

2.4 Summary

In this chapter we surveyed optimization problems that are affected by uncertainties in the
parameters. We gave an introduction to the two most prominent general strategies to regard
such problems—a probabilistic and a set-based view.
For the class of robust OCPs in the sense of BERTSIMAS [38], we described the linearization
and sigmapoint methods to efficiently reformulate the original problems into numerically solv-
able ones, regarding the implied budget of uncertainty. From the contrary viewpoint of the
probabilistic approach, including the concept of coherence introduced by ARTZNER and ROCK-
AFELLAR [12, 211], we analyzed the VaR and the CVaR ideas originating from the economic
sciences. In order to simplify the original VaR constraint leading to a bilevel optimization prob-
lem (2.11), we developed a reformulation of that constraint, which allows transferring the cal-
culation of the VaR from the random constraint to only the random parameter. Additionally,
we adapted the original definition of the CVaR to apply them in the optimal control context.
Finally, we regarded the connection between the robust and the probabilistic viewpoint. From
their specific perspectives, both ideas give the decision-maker an impression on the risk of
failure that remains and needs to be accepted after solving the problem. Additionally, we com-
pared them to stochastic optimization.
We will apply different methods from both approaches to an economic OCP in the following
chapter, where we also discuss the strengths and weaknesses of the considered approaches
from the economic and computational perspective.
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3 Numerical Application:
Conspicuous Consumption Products in
Periods of Recession

On the following pages we apply the results of the previous chapter to the economic problem
of pricing conspicuous consumption products in periods of recession. We introduce the under-
lying model and establish a strategy to solve this problem numerically with the help of the
direct multiple shooting approach. Already at this stage, uncertainty in form of the duration of
the recession enters. Afterwards, we consider the strength of the crisis as an additional source
of uncertainty and apply the presented methods of robustification and risk measuring to the
problem.
This chapter is based on [117, 118].

3.1 The Underlying Economic Model

Our general interest in this application chapter lies in finding optimal pricing strategies for
conspicuous consumption products in periods of recession. In particular, we focus on critical
economic situations like the credit crunch recession that started in 2007. Besides a reduction
in demand, which is quite usual for a recession, in the credit crunch recession capital markets
cease to function. Hence, firms cannot borrow or issue new shares to finance their operations.
They need to self-finance their investments [79]:

“ . . . the only option is to ride out the recession. But companies can do this only if they
have enough liquidity . . . ”

The characteristic of conspicuous goods is that demand does not only depend on price, but in
addition it depends on the good’s reputation, which increases in price. The product’s reputation
as being expensive allows people to signal their wealth to observers, which in turn increases
the reputation of the consumer [187]:

“Why are people so keen on wearing brand-labeled clothes and owning other luxury-
branded products to pay a premium for them?
The answer appears to be to gain social status.”

Examples of conspicuous goods are luxury hotels [236], expensive cars, or fashionable clothes.
The topic of how to price conspicuous goods is treated in, e.g., [9, 10, 61, 63, 147].
In that course, the firm’ manager has to face the following tradeoff: To keep the future demand
of his product at a high level, he wants to charge a high price for the conspicuous good.
However, during the recession demand as such is low and high prices deplete it even more.
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This, in turn, may cause negative cash levels that are tantamount to bankruptcy in situations,
where the firm has no possibility to obtain additional money from the capital markets.
The model we will analyze in the following extends the original one presented in [61, 63] by
introducing a delayed effect of the charged price on the reputation of the product. Starting with
the work of [130], the inclusion of time delays is a very popular and effective advancement in
economic—and especially capital accumulation—problems, cf. [13, 19, 49, 83]. In our setting
it means that a current price decrease has no immediate effect on the good’s reputation which
has been built up during the past. Only after a phase of accustoming price changes really start
to influence the consumers behavior and, therefore, the good’s reputation.

3.1.1 Model Formulation

We consider an economic setting with a recession period followed by a normal economic period.
For the rest of this chapter, the value τ will denote the endpoint of the crisis, compare Figure
3.1.

t0 = 0 τ tf

Stage 1: Stage 2:
Recession period Normal period

Figure 3.1: Stages [t0,τ] and [τ, tf] of the recession model.

The dynamics of our model includes two states. The brand image A(·) of the firm evolves in
both periods proportional to the price P(·), i.e., according to the differential equation

Ȧ(t) = κ(γP(t −σ)− A(t)). (3.1)

In the dynamics of the reputation A(·), the constant control delay σ ¾ 0 retards the connection
between changing the price P(·) and its consequence on the development of A(·). Equation
(3.1) covers that, as usual with conspicuous goods, the exclusiveness of the brand goes up
with the price, which works positively on demand. Compared to the literature, the delay is a
new feature, which captures the fact that consumers first have to get used to a new situation
before they adjust their purchase decisions. In particular, if a good is known to be exclusive,
a sudden price reduction at first instance does not change this perception. However, after a
while consumers “forget” the old situation, implying that they start recognizing that the good
is less exclusive, and reputation starts to decrease. Note that if the recession ends at time τ,
we still have the direct influence of the price set during the final time interval of length σ of
the recession. For a fixed price P̄ equation (3.1) yields a steady state of Ā= γ P̄.
The available cash B(·) becomes crucial when the capital markets cease to function and firms
have to budget with their reserves as they cannot borrow money or issue new shares. It depends
on the gains P(·) D(·), fixed costs C , and the short-time interest δ, leading to

Ḃ(t) = P(t)D(A(t), P(t))− C +δB(t). (3.2)

Therein the demand D(·) is driven by the brand image and the pricing strategy P(·), which
will be the control of our problem. It is essentially influenced by the economic stage, i.e., in
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the normal period (N) we have

DN(A(t), P(t)) = m−
P(t)
A(t)β

, (3.3a)

whereas in the recession phase (R) the demand is reduced to

DR(A(t), P(t)) = DN(A(t), P(t))− ς. (3.3b)

The positive constant ςmeasures the strength of the crisis, the adjustment parameter 0< β < 1
is given, and m corresponds to the potential market size.

The objective of the company is to maximize the expected value of profit over the finite or
infinite time horizon T = [0, tf] of interest. The profit is composed of two parts: the gains
JN(·) of the normal economic period (τ, tf] and an impulse dividend of the cash reserve at the
end of the recession phase, i.e., B(τ), resulting in the stage objective JR(·). This dividend is
included as the capital market is assumed to become functional again in the normal economic
period and firms can freely borrow and lend cash then. Thus, the firm does not need a positive
B(·) on (τ, tf]. For a fixed τ and given discount rate r and fixed costs C , the objective function
Jres(·) of this two-stage Optimal Control Problem (OCP) is calculated as

Jres(A(·), B(·), P(·); τ) def
= JR(A(·), B(·), P(·); τ, r) + JN(A(·), B(·), P(·); τ, r, C)

= e−rτB(τ) +

∫ tf

τ

e−r t (P(t)DN(A(t), P(t))− C) dt, (3.4)

being the sum of the two stage components.

However, typically the recession length τ separating the two stages is not known before-
hand to decision-makers. An individual firm also has no influence on when the recession
ends. Therefore, we assume that the length of the recession period τ is an exponentially
distributed random variable. Then the goal is to maximize the expectation value of the Net
Present Value (NPV) at time τ, i.e., the objective function (3.4) is weighted by the exponential
probability density function with rate parameter λ,

J(A(·), B(·), P(·); τ) def
= E [NPV(τ)] =

∫ tf

0

λe−λτ Jres(A(·), B(·), P(·); τ)dτ. (3.5)

This yields the OCP

max
P(·)

J(A(·), B(·), P(·); τ) (3.6a)

s.t. Ȧ(t) = κ(γP(t −σ)− A(t)), t ∈ T , (3.6b)

Ḃ(t) = P(t)DR(A(t), P(t))− C +δB(t), t ∈ [0,τ], (3.6c)

A(0) = A0, B(0) = B0, (3.6d)

P(t) = η(t), t ∈ [−σ, 0], (3.6e)

0¶ DR/N(A(t), P(t)), t ∈ T , (3.6f)

P(t)¾ 0, t ∈ T , (3.6g)

B(t)¾ 0, t ∈ [0,τ], (3.6h)
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with DR/N(A(t), P(t)) given as in (3.3) and B(t) negligible in the normal period (τ, tf].
This problem is a non-standard OCP in the sense that uncertainty and control delays are
present, making analytical investigations difficult. In [62] it is shown that an important class
of models with delays can be transformed into equivalent problems without delays. However,
the present model does not fit in this family. This is because the control P(·) appears with a
delay in one state equation and without in the other one. Hence, it is not possible to eliminate
the delay using a time transformation. Therefore, we propose a different approach in the next
section, leading us back to a form of stochastic optimization.

3.1.2 Numerical Implementation

We propose to use reformulations to transfer the OCP (3.6) with objective function (3.5) into a
more standard form that can be efficiently solved. In Chapter 1 we presented such a standard
multi-stage formulation, cf. (1.2), and gave an introduction to our preferred method to solve
such a problem, i.e., BOCK’s direct multiple shooting method. Thus, in the following paragraphs
we present a discretization of the uncertainty and a reformulation of the time delays.

Discretization of the Probability Density Function

Our starting point for approximating the considered OCP is to discretize the exponential dis-
tribution of the random variable τ by defining a time grid

0= τ0 < τ1 < . . .< τn < tf. (3.7)

In what follows, switches from the recession period to the normal stage will only be possible
at these times τi , i = 1, . . . , n. The recession ends at τi with a specified probability Pi . We use
an equidistant discretization of the grid (3.7), resulting in a geometric distribution

Pi =

∫ τi

τi−1

λe−λt dt = e−λτi−1 − e−λτi , i = 1, . . . , n− 1, (3.8a)

Pn = 1−
n−1
∑

j=1

P j . (3.8b)

The discretized distribution can be used to reformulate the maximization of the expected value
as a multi-stage OCP of type (1.2), by using a scenario tree. As a result of this, the emerging
problem can be viewed as a problem of stochastic optimization, cf. Chapter 2.3. However,
this formulation is not unique. One possibility is to use a staircase-like approach, increasing
the number of variables as the number of possible recession ends τi increases. This approach
is illustrated schematically in Figure 3.2 and results in M = n + 1 model stages, where n is
the number of discretizations of the probability density function as in (3.7). The dimensions
nx i
= 2 + i of differential states and nui

= 1 + i of control functions, i = 0, . . . , M − 1, are
different on the model stages. The transition functions (1.2d) are defined by

Ai, j(τi) = Ai−1, j(τi), 1¶ j ¶ i, (3.9a)

Ai,i+1(τi) = Ai−1,1(τi), (3.9b)

Bi,1(τi) = Bi−1,1(τi), (3.9c)
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Figure 3.2: Control and state variables in the multi-stage formulation of the OCP (3.6) with a period
indicator R for a recession and N for a normal economic stage. The additional tags S1–
Sn denote the possible normal stage scenarios, i.e., S1 characterizes the scenario of the
recession ending at τ1.
This reformulation was obtained by assuming that the recession ends at time instant τi with
probability Pi , i = 1, . . . , n, reducing the probability of the recession enduring and resulting
in the depicted scenario tree. In each stage, the overall probability of all scenarios equals
one.

t0

R
τ1

R
τ2

R
τ3 τn−1

R
τn

N
tf τ1

N
tf τ2

N
tf τn−1

N
tf

Stage 2n− 1Stage n+ 2Stage n+ 1Stage nStage n− 1Stage 2Stage 1Stage 0

t1 t2 t3 tn−1

. . . . . .
Sn S1 S2 Sn−1

Figure 3.3: Rearranged scheme for the discretization of the random end time τ of the recession. Again,
the symbols denote a recession (R), a normal stage (N), and the appropriate normal stage
scenario (S1–Sn). The time instants t1 to tn−1 indicate necessary transitions of the OCP, cf.
Equation (3.10).

for all model stages i = 1, . . . , n− 1, and

An,n+1(τn) = An−1,1(τn). (3.9d)

At each time instant τi one has to distinguish between transitions (3.9a), (3.9c) of the brand
image A and the cash B for the ongoing recession and the initialization (3.9b), (3.9d) of the
additional differential states Ai,i+1 that are necessary for the normal period beginning at τi ,
compare Figure 3.2.

The probability of a normal stage scenario Si starting at time instant τi remains constant until
the terminal time tf of the problem. Hence, at τi the probability of an enduring recession is
reduced by Pi and, accordingly, tends to zero for n→∞. Additionally, we note that in each
model stage the summarized probability of the recession and all normal stage scenarios equals
to one.

The second possibility is to use linearly coupled point constraints of type (1.2f) instead of tran-
sitions to initialize the new variables. All possible scenarios at τi are concatenated, resulting
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in M = 2n model stages. This flat arrangement of stages is shown in Figure 3.3.

In contrast to the first formulation, the model stage dimensions nx i
= 2 for i = 0, . . . , n−1 and

nx i
= 1 for i = n, . . . , M − 1 of differential states and nui

= 1 for i = 0, . . . , M − 1 of controls
are (almost) constant. The coupled point constraints (1.2f) are given by

Ai,1(t i−n) = Ai−n−1,1(τi−n), n+ 1¶ i ¶ 2n− 1. (3.10)

The first n stages are recession periods with continuous transitions of all states. They differ in
the objective function. The transition from the last recession stage n to the subsequent normal
period that starts at time t = τn is continuous, too. However, the model stage lengths of this
approach vary. While all n recession stages have the constant duration h = τi − τi−1, the n
normal period stages have a length of tf −τi , i = 1, . . . , n.

Then we obtain for the staircase-like approach to discretize the probability density function,
indexed by k = 1, the objective function

Φ1
i (Ai,·(t), Bi−1,1(τi), P(t); τi , Pi)

= Pi e−rτi Bi−1,1(τi) +
i
∑

j=1

P j

∫ τi+1

τi

e−r t
�

P(t)DN(Ai, j+1(t), P(t))− C
�

dt
(3.11a)

for i = 1, . . . , n, the transition functions (compare (1.2d) and (3.9))

Ai, j(τi) = f 1,tr A
i, j (Ai−1, j(τi)) =







Ai−1, j(τi), 1¶ i ¶ n− 1, 1¶ j ¶ i,

Ai−1,1(τi), 1¶ i ¶ n, j = i + 1,
(3.11b)

Bi,1(τi) = f 1,tr B
i (Bi−1,1(τi)) = Bi−1,1(τi), 1¶ i ¶ n− 1, (3.11c)

and the coupled point constraint functions

r1,eq
i ≡ 0, (3.11d)

where Pi = (P1,P2, . . . ,Pi).

The concatenated approach, indexed by k = 2, is defined by the functions

Φ2
i (An+i,1(t), Bi−1,1(τi), P(t); τi , Pi)

= Pi e−rτi Bi−1,1(τi) + Pi

∫ tf

τi

e−r t
�

P(t)DN(An+i,1(t), P(t))− C
�

dt,
(3.12a)

for i = 1, . . . , n,

Ai,1(τi) = f 2,tr A
i,1 (Ai−1,1(τi)) = Ai−1,1(τi), 1¶ i ¶ n, (3.12b)

Bi,1(τi) = f 2,tr B
i (Bi−1,1(τi)) = Bi−1,1(τi), 1¶ i ¶ n− 1,

(3.12c)

r2,eq
i (Ai,1(t i−n), Ai−n−1,1(τi−n))

= Ai,1(t i−n)− Ai−n−1,1(τi−n), n+ 1¶ i ¶ M − 1.
(3.12d)
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Reformulation of the Time Delay

In the context of optimization the methodological background for the treatment of the time de-
lay in (3.6) are functional differential equations. In [143] they are tackled by a modified version
of PONTRYAGIN’s Maximum Principle (PMP), whereas [67] uses a combination of the methods
of steps and a tailored shooting method to numerically solve economic problems including
delayed time arguments in both the state and control variables. A very general approach for
solving Initial Value Problems (IVPs) in delay differential equations can be found in [163].

[51] gives two possibilities to reformulate an OCP with delayed equation of motion as in (3.6)
into an instantaneous problem: In the first idea the time horizon tf is splitted into m parts of
length σ. Then, the system’s dynamics is formulated separately on each of the resulting inter-
vals. By interpreting them as independent and introducing new state and control variables, we
can formulate a system of m differential equations on the time horizon [0,σ]. This, in turn, can
be used to reformulate the original OCP. Furthermore, one has to introduce coupled boundary
conditions to ensure the continuity of the state variable. The approach may give additional
insight from an analytical point of view, cf. [51]. However, it requires the determination of
m−1 control paths in the interval [0,σ]. For small values of the delay σ this results in a large
number of state and control functions.

Therefore, we prefer a second reformulation. We introduce a second control function u2(t) =
P(t) that denotes the unretarded control at time t, whereas u1(t) = P(t−σ) characterizes the
delayed one. They are coupled via equalities u1(t) = u2(t−σ) for t ¾ σ and u1(t) = η(t−σ)
for 0¶ t ¶ σ.

Taking either the staircase (3.11) or flat (3.12) discretization of uncertainty presented in the
previous paragraph, k = 1, 2, we obtain the discretized OCP

max
u1(·),u2(·)

n
∑

i=1

Φk
i (τi , A(k−1)n+i,·(t), Bi−1,1(τi), u2(t), Pi) (3.13a)

s.t. Ȧi, j(t) = κ(γu1(t)− Ai, j(t)), t ∈ T , (3.13b)

0¶ i ¶ M − 1, j ∈ J k,

Ḃi,1(t) = u2(t)DR(Ai,1(t), u2(t))− C +δBi,1(t), t ∈ [0,τi], (3.13c)

0¶ i ¶ n− 1,

u1(t) = η(t −σ), t ∈ [0,σ], (3.13d)

u1(t) = u2(t −σ), t ∈ [σ, tf], (3.13e)

A0,1(0) = A0, B0,1(0) = B0, (3.13f)

0¶ DR/N(Ai, j(t), u2(t)), t ∈ T , (3.13g)

u1(t)¾ 0, u2(t)¾ 0, t ∈ T , (3.13h)

Bi,1(t)¾ 0, t ∈ [0,τi], (3.13i)

1¶ i ¶ n− 1,

Ai, j(τi) = f k,tr A
i, j (Ai−1, j(τi)), 1¶ i ¶ n, j ∈ J k, (3.13j)

Bi,1(τi) = f k,tr B
i (Bi−1,1(τi)), 1¶ i ¶ n− 1, (3.13k)

0= rk,eq
i (Ai,1(t i−n), Ai−n−1,1(τi−n)), n+ 1¶ i ¶ M − 1, (3.13l)
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where J 1 def
= { j | 1¶ j ¶ i + 1} and J 2 def

= { j | j = 1}.

This problem still contains a delayed term, but it is not apparent in the system’s dynamics
anymore. It has moved to a constraint (3.13e) on the controls. This can be efficiently dealt
with with BOCK’s multiple shooting method we introduced in Section 1.3 for the special case of
a constant delay. Note as well, that by treating the uncertainty in the duration of the recession
by a scenario tree approach, the resulting problem (3.13) is closely related to a stochastic
programming problem. We will discuss its consequences in the following sections.

3.2 Results of the Control Delay Case

3.2.1 Parametrical Setting

As suggested in [61, 63], we use the following set of parameters in our numerical treatment:

κ= 2.0, γ= 5.0, C = 7.5, δ = 0.05,

m= 3.0, β = 0.5, r = 0.1, λ= 0.5,

ς1 = 0.7, ς2 = 0.836, ς3 = 1.25.

(3.14a)

The choice for the parameters r, δ, and λ is based on the assumption that we measure time
in years and that the historically expected duration of the recession is two years. We set β
assuming that an increase in reputation will influence less and less customers. The more fash-
ionable the product is, the more specialized is its market niche. See [63] for a motivation of
the remaining parameters.

A key result of [63] was that the authors were able to distinguish three different types of
recessions corresponding to the severity of the demand reduction and the resulting optimal
strategy. Following their results, the values of the parameter ς indicate a mild (ς1 = 0.7),
intermediate (ς2 = 0.836), and severe (ς3 = 1.25) economic crisis.

Due to the discretization of τ we need to further specify the last possible endpoint of the
recession,

τn = 20. (3.14b)

This implies that in our setting the probability of the recession persisting longer than that is
low, i.e., P [τ > 20] = 4.54 · 10−5. For the control delay we choose

σ = 0.25. (3.14c)

To accomplish this, two equidistant discretization step lengths are applied, first with n1 = 20,
i.e., h= τi−τi−1 = 1.0, and n2 = 40, i.e., h= 0.5. Each of them is combined with four shooting
nodes per one time unit, i.e., per one year. Then condition (3.13e) can be implemented via
interior point constraints applied on the shooting nodes.

For convenience, the overall final time tf is chosen to be

tf = 21 (years), (3.14d)
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so that we definitely have a small normal period of one year in all possible stages, cf. Figures
3.2 and 3.3.
In the subsequent sections we provide some computational results. They are obtained with the
following combinations of number of discretization points n (cf. (3.7)), recession parameter
ς, initial values (A0, B0), and initial price paths η (constant on the time interval [−σ, 0]) for
the delayed model, cf. Table 3.1.
Before we investigate the economic consequences that the combination of an uncertain re-
cession length and the presence of a time delay have on decision-making for conspicuous
consumption product, let us briefly mention the computational performance of the proposed
reformulations.

3.2.2 Computational Performance

As discussed in Section 3.1.2, different mathematically equivalent reformulations of the OCP
(3.6) exist. However, they are by no means equivalent from a computational point of view.
Table 3.2 compares the computational performance of the two different approaches to dis-
cretize the uncertainty. With the staircase formulation (3.11) (cf. Figure 3.2) the overall time
horizon is quite small. However, the number of state variables is increased compared to the
concatenated arrangement of the second reformulation (3.12), leading to more steps of the
error-controlled, adaptive integrator. More significant, however, is the impact of more blocks
in the HESSian of the LAGRANGian. They are used for high-rank updates, compare Section 1.3.
This leads to a drastic increase in local convergence and hence to a decrease of the number
of Sequential Quadratic Programming (SQP) iterations [162] and overall computation time,
as can be seen in Table 3.2 for the undelayed case σ = 0. These results carry over to the case
with time lag σ > 0. Therefore, in the following we will concentrate on the formulation (3.12)
visualized in Figure 3.3. This includes Tables 3.3 and 3.4 as well.
As already observed in [51], the first approach to handle time lags σ (cf. Section 3.1.2) is
computationally inferior to the second one, although it might be interesting from an analytical
point of view. E.g., for Scenarios 4–12 the number of 1800 additional state and 1799 control
functions needs to be included. Therefore, we will use the second formulation in the following
for our calculations. Table 3.3 gives an overview of the moderate increase in the dimension of
the resulting Nonlinear Program (NLP).
Table 3.4 gives an indication of the computational expense for including delays. The main
part of the computational time is needed for the condensing algorithm, see [46, 161], which
is almost identical for both cases, as the state dimension is independent of σ. The main extra
cost is solving the Quadratic Programs (QPs), as the runtime depends crucially on the number
of control variables. Therefore, asymptotically for σ > 0 getting smaller and smaller, the QP
runtime will become more and more dominant.

3.2.3 Analytical Results

We deduce analytical results that help us to obtain a better insight into the qualitative changes
related to the introduction of the time lag σ. We investigate the steady state in the normal
period of our model (3.6) and compare it with the result of the undelayed case, i.e., σ = 0.
The integral term of the objective function J(·) in (3.4) corresponds to the normal economic
period, where the capital markets are working again and we are not using the cash state B(·)
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Table 3.1: Different scenarios used for computational performance tests and visualizations. Note that
some of these scenarios are used in both a delayed (σ = 0.25) and undelayed problem
(σ = 0), others in only one of them. In undelayed settings η is obsolete and denoted by “—”.

Scenario n ς A0 B0 η

1 20 0.7 10.0 5.0 —

2 20 0.836 20.0 5.0 —

3 20 1.25 100.0 100.0 —

4 40 0.7 10.0 5.0 7.406785

5 40 0.7 0.1 5.0 4.296460

6 40 0.7 10.0 2.0 7.088001

7 40 0.7 ĀN
d 5.0 P̄N

d

8 40 0.7 ĀN
d 1.0 P̄N

d

9 40 0.7 ĀN
d 0.1 P̄N

d

10 40 0.836 0.1 10.0 3.917962

11 40 0.836 0.1 10.0 3.5

12 40 0.836 0.1 10.0 3.0

13 40 0.836 0.1 10.0 2.5

14 40 0.836 20.0 5.0 8.153575

15 40 0.836 0.1 8.0 3.917948

16 40 0.836 25.0 3.5 8.671824

17 40 0.836 ĀN
d 1.0 P̄N

d

18 40 0.836 0.1 7.05 —

19 40 0.836 63.0 0.05 —

20 40 0.836 0.1 9.8 3.5

21 40 0.836 73.5 0.1 12.517549

22 40 1.25 100.0 100.0 10.751307

23 40 1.25 0.1 100.0 2.924618

24 40 1.25 40.0 80.0 7.855208

25 40 1.25 80.0 50.0 9.922934

26 40 1.25 0.1 60 2.924617

27 40 1.25 ĀN
d 50.0 P̄N

d

28 40 1.25 ĀN
d 70.0 —

29 40 1.25 0.1 76.0 —

30 40 1.25 ĀN
d 71.5 P̄N

d

31 40 1.25 0.1 79.5 2.924580
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Table 3.2: Comparison of the computational performance of the different schemes for discretizing the
duration of the recession τ, cf. (3.11), (3.12), and Figures 3.2, 3.3, respectively. The results
correspond to the undelayed case, i.e., σ = 0.
The faster convergence of (3.12) (recognizable in SQP iterations and runtime) is due to the
high-rank updates mentioned in Section 1.3. The scenarios are listed in Table 3.1.

Staircase scheme (3.11) Linear scheme (3.12)

Scenario item # of SQP time (in s) # of SQP time (in s)

1 846 5259 51 1341

2 829 1312 35 835

3 858 1411 102 2969

4 1254 67131 102 21443

14 1716 93773 48 9615

22 915 47285 102 24163

Table 3.3: Comparison of the size of the resulting NLP for the delayed and the undelayed recession
model. Note that these details refer to the concatenated reformulation of the scenario tree,
i.e., (3.12). Furthermore, n is again the number of discretization points of the recession
length.

Undelayed model Delayed model

n= 20 n= 40 n= 20 n= 40

discr. points 940 1840 940 1840

variables 3797 7437 4738 9278

eq. constraints 2855 5595 3797 7437

ineq. constraints 7594 14874 9476 18556

Table 3.4: Number of iterations and CPU runtime for undelayed and delayed scenarios, cf. Table 3.1.
Again, the information refers to the linear formulation of the recession length discretization.
The computational effort is moderately higher, when delays are taken into account.

Undelayed model Delayed Model

Scenario # of SQP time (in s) # of SQP time (in s)

6 71 14103 60 20238

7 102 24515 98 28422

16 70 12896 102 28787

17 69 14796 82 24466

24 81 18114 81 22166

27 101 24456 101 29404
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anymore. Let ĀN
d/nd and P̄N

d/nd denote the normal period’s steady state brand image and price
in the delayed (d) and the undelayed (nd) case, respectively.

Lemma 3.1
The normal period steady state brand image and price of the recession problem (3.6) are given by

ĀN
d =

�

γm(r + κ)erσ

2(r + κ)erσ − βκ

�
1

1−β
, P̄N

d =
ĀN

d

γ
. (3.15)

depending on the size of the time delay σ. 4

Proof By using the PMP [101, 120] we calculate

ĀN
nd =

�

γm(r +κ)
2(r +κ)− βκ

�
1

1−β
, P̄N

nd =
ĀN

nd

γ
. (3.16)

In the model’s delayed version the maximum principle is far more complex, cf. [83]. However,
in the normal period the stationary state of the corresponding one-dimensional problem can
be derived using the results in [248]. We substitute

F(t)
def
= F(A(t), P(t)) = P(t)

�

m−
P(t)
A(t)β

�

− C

and obtain the HAMILTONian

H = e−r t F(t) +µ(t +σ) ·κγP(t)−µ(t) ·κA(t)

with the co-state variable µ(t). This induces the system

Ȧ(t) = κ(γP(t −σ)− A(t))

Ṗ(t) =
1

∂ 2

∂ P2 F(t)

�

(r +κ)
∂

∂ P
F(t) + κγe−rσ ∂

∂ A
F(t +σ)−

∂ 2

∂ P∂ A
F(t)Ȧ(t)

�

that directly gives us the stationary price P̄N
d . Further on, it yields

(r + κ)erσ

κγ
= −

∂
∂ A F(t +σ)
∂
∂ P F(t)

and, therefore, the equality

(r +κ)erσ = −
βκ(ĀN

d)
1−β

γm− 2(ĀN
d)

1−β

that determines the stationary state of the brand image and the price

ĀN
d =

�

γm(r +κ)erσ

2(r +κ)erσ − βκ

�
1

1−β
, P̄N

d =
ĀN

d

γ
. �
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Figure 3.4: Exemplary optimal price paths of the recession problem (3.6).
The left plot depicts a recession period lasting until τn (using Scenario 22). During the
recession phase Pd > Pnd holds, but the difference in between depends on the size of the
rate parameter λ.
The right plot visualizes a normal economic stage, also for Scenario 22. By way of better
illustration this graphic shows price paths of a normal period beginning already at time τ1.
Note that neither λ nor the strength ς of the recession have any influence on these paths.

This latter result obviously includes the special case (3.16). The used parameters (3.14) de-
termine the values

ĀN
nd = 96.899414, P̄N

nd = 19.379883, (3.17a)

ĀN
d = 95.421259, P̄N

d = 19.084252. (3.17b)

They coincide with the numerical results we obtained. One can see the impact of the delay
very clearly. The benefit of keeping the price up is obtained later in the delayed world, while
the benefit of reducing it (with instantaneous profit) is still obtained immediately.

In the recession period the verification and calculation of steady states cannot be done this
straightforwardly. Further on, the so-called weak SKIBA curves play an important role. They
are also known as threshold or weak DNSS curves , cf. [71, 222, 223, 228]; see also [101].
Weak SKIBA characterizes the threshold property of this curve separating different long-term
solutions. Which strategy has to be applied is history-dependent and, thus, particularly de-
pends on the initial state values. While the authors of [61] were able to derive several results
of the non-delayed case analytically, for the delayed model this is much more difficult.

3.2.4 Numerical Results

In our approach to discretize the original recession problem (3.6) we assume a finite and
discrete grid of possible switching times τi , i = 1, . . . , n. We think that this transformation to
the finite-time case is well justified, as the influence of the errors caused by the discretization
are small. The intervals between the switching instants τi are short and the probability (3.8b)
for switching the stage at the last possible time τn is only marginally higher than it would be
in the infinite case.

In [61] possible pricing strategies in recession periods are explained depending on the value
of ς. Additionally, the impact of these pricing policies on the development of the reputation
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Figure 3.5: Evolution of optimal trajectories over time in a phase diagram with brand image A(·) and
capital B(·). They start in the initial value (A0, B0) according to Table 3.1 and evolve until
(A(τn), B(τn)). Optimal solutions of a delayed (σ = 0.25) and the undelayed (σ = 0) model
are shown for a mild recession, i.e., ς1 = 0.7.
Further on, the two figures differ in the assumptions on the economic phase prior to the
considered recession. The left plot is based on the assumption that for t ∈ [−σ, 0] the
recession has already been present (Scenarios 4–6 (from top to bottom)), the right plot
depicts the result if for t ∈ [−σ, 0] a steady state normal economic period existed, i.e.,
A0 = ĀN

d , η= P̄N
d (Scenarios 7–9).

Due to the introduction of the delay the recession’s steady state of the brand image ĀR
d (and

correspondingly P̄R
d ) is greater than in the undelayed case.

A(·) and the cash B(·) is characterized. In the delayed world the behavior of the firm is qualita-
tively similar. In a severe crisis, i.e., ς3 = 1.25, the brand image and/or cash required to avoid
bankruptcy are particularly large. The milder the crisis is, the less reputation/cash is needed.
In all cases the cash state diverges to infinity if the firm survives with certainty.
The main result of our analysis of problem (3.6) is the relation

Pd(t)> Pnd(t), 0¶ t ¶ τ,

Pd(t)< Pnd(t), τ¶ t ¶ tf,
(3.18)

which can be seen in Figure 3.4.
The optimal solution of the normal period follows the results of Section 3.2.3. Due to the delay
σ there is a less direct effect of the price Pd on the dynamics of the brand image A. This reduces
the incentive to set a high price, as a lower price raises revenues, which consequently raises
the value of the objective function immediately.
In the recession period, however, the opposite relation holds. A direct consequence of this is
visible in Figures 3.5 and 3.6: The vertical line indicating the divergence of the cash state
B in an infinite horizon setting is shifted to a value ĀR

d of reputation that is higher than the
respective value ĀR

nd in the non-delayed case.
While the negative effect of smaller revenues with higher prices (independent of the economic
period) is the same for both the delayed and the undelayed case, there are also two positive
aspects of increasing the price Pd.
The first effect is that the brand image A will increase as well during the recession, implying
that the bankruptcy probability reduces. This effect is stronger the less the delay σ is. Hence,
this first impact is the strongest in the non-delayed case.
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Figure 3.6: Phase diagram as in the left plot of Figure 3.5 for an intermediate and severe recession.
The left plot depicts Scenarios 10, 14–16, the right one Scenarios 22–26.
In analogy to weak SKIBA curves, the dotted lines based on Scenarios 18–21 (left) and 28–
31 (right) indicate the initial values which separate the state space into the ones (above)
that do not lead to bankruptcy and the ones (below) that do. After the introduction of the
time lag σ the bankruptcy region becomes larger. This results in an upwards-adjustment of
the weak SKIBA curve in the delayed case.

Given that the recession will be terminated somewhere during the next time interval of du-
ration σ, the second effect of increasing Pd is that the reputation goes up after the recession,
implying that the revenue of the normal period rises. This effect occurs with the probability
P [τ ∈ [t, t +σ]] that the recession will be over during the next interval of length σ, hence, it
is stronger the larger the delay is. But it is completely absent in the undelayed case.
According to the first effect, which is comparable to the impact in the normal period, it will
hold that Pd < Pnd then. The second effect will imply the opposite relation during the recession
stage. Note that this second impact only occurs with P [τ ∈ [t, t +σ]], i.e., it depends on the
size of σ and the probability density function.
In our case (with σ = 0.25) the second effect dominates, meaning that the mentioned proba-
bility is large enough. For the first effect to dominate we have to decrease this probability by
either reducing the time lag or end of recession probability parameter λ. The results of the
latter possibility can be seen in the right plot of Figure 3.4.
In a more vivid way we can interpret this second effect by assuming that the crisis ends at
time τ̂. In the undelayed case the firm can start building up their reputation A(·) immediately
after the realization of τ̂ by charging higher prices—supposing that it has survived recession.
The effect on A(·) comes directly. If σ > 0 the impact of rising prices after τ̂ only starts to
have a positive outcome from time τ̂+σ onwards. In the initial phase of the then apparent
normal period [τ̂, τ̂+σ] the demand is directly influenced by the price set in the last interval
of the recession. Hence, increasing prices in [τ̂−σ, τ̂] leads to a higher reputationσ time units
later. I.e., the demand is also higher in the period [τ̂, τ̂+σ], which generates higher revenues
during the first phase of the normal period. As the firm does not know beforehand when the
recession will be over, there is always a positive probability that the current time t is located
in the period [τ̂ − σ, τ̂]. Keeping this in mind, the firm has an additional incentive to keep
prices up in recession periods when a delay is apparent, avoiding to damage the reputation
too much. Otherwise their product will still perceived to be comparatively cheap for some time
period after the recession is over.
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Figure 3.7: Phase diagram as in the left plot of Figure 3.5 for Scenarios 10–13 (grey lines from top to
bottom). It is obvious that the initial control path η has a considerable influence on the
firm’s future situation.

Another important result can be observed in Figure 3.6. As observed already in [63], in cases
of an intermediate or severe recession there is a weak SKIBA curve separating the regions of
possible bankruptcy and certain survival. If σ > 0 this curve is adjusted upwards to some
extent. With the incorporation of the delay in our model it is less easy for the firm to survive
the crisis because the effect of changing the price P(·) on the brand image is less direct. This
explains why the bankruptcy region becomes larger.

At the end of this Section we want to remark that the condition (3.13d) causes two main
scenarios we have to distinguish in the delayed model. The economic stage that is apparent
in the time prior to the planning period [0, tf] can either be a normal or a recession stage. We
consider two slightly simplified cases.

In the first one we assume a steady state corresponding to the normal economic period in
the interval [−σ, 0], i.e., we have already one “switching” occurrence at the beginning of the
horizon. We initialize the retarded control with η = P̄N

d and the brand image with A0 = ĀN
d .

Then the system evolves as shown in the right plot of Figure 3.5. The non-smooth behavior of
the trajectories there is quite natural. At t = 0 the recession begins and the demand is reduced
immediately due to the influence of ς. Hence, prices will drop and the firm’s cash decreases.
However, the brand image in the time interval [0,σ] develops according to the high steady
state price P̄N

d , i.e., it remains at its level. Only thereafter the condition (3.13e) becomes active
and the reputation reacts to the lower prices.

The second case is more complicated. If we suppose a persisting recession stage, it is very
hard to find a satisfying initialization η for the retarded price in the interval [0,σ]. In our
calculations we started with the optimal price obtained in the first interval of the non-delayed
model. This causes the kink in the initial part of the trajectories in Figures 3.5 and 3.6. Experi-
ments of varying the value of η changed the amplitude of this deformation slightly, see Figure
3.7. In this special scenario the different initializations also had a qualitative influence on the
bankruptcy probability of the firm. If the combination of brand image and cash moves below
the weak SKIBA curve, the firm has to face bankruptcy in the long run. This happens for small
initial prices, whereas high ones lead to certain survival.
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3.3 Protection Against an Uncertain Recession Strength

Up to now only the duration of the crisis has been considered as a random variable, its strength
was assumed to be known. However, in real world economics firms cannot grasp the strength of
the recession beforehand, often they have to deal with this special situation while it is already
apparent. To make a step towards gaining more insight into those real world effects, in the
following we regard the recession strength ς as a random variable as well. Decision-makers
do not know the actual magnitude of the crisis before they really have to face it. Hence, they
have to apply pricing strategies that are in some sense robust against the real strength to avoid
bankruptcy of the firm or to ascertain that the risk of possible failures is acceptable.

Consequently, the bankruptcy constraint B(t; ς) ¾ 0 (cf. Equation (3.6h)) becomes uncertain
now and can be addressed by the approaches introduced in the previous Chapter 2. In this
sense we also have to adapt the objective function (3.5) to the new situation.

A reasonable choice from an economic point of view is to reduce prices at the beginning of the
crisis such that the company can cope with an average-heavy recession indicated by a certain
ς̂, i.e., using the objective function (cf. (3.4))

J1
res(A(·), B(·), P(·); τ, ς̂) = e−rτB(τ, ς̂) +

∫ tf

τ

e−r t (P(t)DN(A(t), P(t))− C) dt. (3.19a)

Then prices can be reduced further if the crisis turns out to be more severe than expected first.
The big disadvantage of that objective is that if the actual ς is smaller than anticipated, the
firm cannot increase profit by setting higher prices as those are not optimal for the selected
objective function (3.19a). Hence, to include the possibility of setting the highest possible
price, the objective should be based on the situation where we have no recession, i.e.,

J2
res(A(·), B(·), P(·); τ,ς= 0) = e−rτB(τ, 0)+

∫ tf

τ

e−r t (P(t)DN(A(t), P(t))− C) dt. (3.19b)

With that choice the reduction of prices during a recession of strength ς is only depending on
the uncertain constraint B(t; ς)¾ 0 being active.

In order to treat the end time τ of the recession as a exponentially distributed random variable
again, the final objective function is the expectation of the NPV at τ, yielding

J i(A(·), B(·), P(·); τ,ς)
def
=

∫ tf

0

λe−λτ J i
res(A(·), B(·), P(·); τ,ς)dτ (3.20)

for i = 1, 2.

For the following considerations we regard only non-delayed problems. A positive time lag
σ > 0 has no additional influence on the decision-making task.

3.3.1 The Resulting Control Problems

Linearization

The linearization approach (and the sigmapoint idea) introduced in the previous Chapter de-
pend on distributed parameters, preferably normally distributed ones. Let ς be a GAUSSian ran-
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dom variable truncated to the interval 0¶ ς¶ m with mean value ς̄ and variance Σ. The trun-
cation becomes necessary to guarantee that the constraint for the demand to be positive can
be satisfied for all realizations of ς. However, for our choices of mean-variance-combinations
(cf. Section 3.3.3) the differences to a standard normal distribution are neglectable.

The original bankruptcy constraint B(t)¾ 0 is replaced as in (2.5) to obtain

0¶ B(t; ς̄) +$









d
dς

B(t; ς̄)









2,Σ
. (3.21)

Thus, the constraint depends on the choices of the desired probability level$ and the variance
Σ. Still, if the variance of the random parameter is not given but object of our investigation, we
can fix the probability level to, say,$= 1 and consider only different values of Σ indicating a
combination of both notions.

The resulting problem reads

max
P(·)

J i(A(·), B(·), P(·); τ,ς)

s.t. Ȧ(t) = κ(γP(t)− A(t)), t ∈ T ,

Ḃ(t) = P(t)DR(A(t), P(t))− C +δB(t), t ∈ [0,τ],

A(0) = A0, B(0) = B0,

0¶ DR/N(A(t), P(t)), t ∈ T ,

P(t)¾ 0, t ∈ T ,

0¶ B(t; ς̄) +$









d
dς

B(t; ς̄)









2,Σ
, t ∈ [0,τ],

(3.22)

with DR/N(·) as in (3.3) and J i(·), i = 1, 2, denoting the objective function as proposed in
(3.19a) and (3.19b), respectively.

Sigmapoint Approach

For ς having a truncated normal distribution on the interval 0 ¶ ς ¶ m with mean ς̄ and
variance Σ, we use the sigmapoints

ς0 = ς̄ (3.23a)

ς1 = ς̄+
p
Σ (3.23b)

ς2 = ς̄−
p
Σ (3.23c)

and the modified constraint

B(t; ς j)¾ 0, j = 0,1, 2. (3.24)
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The emerging robust OCP becomes

max
P(·)

J i(A(·), B(·), P(·); τ,ς)

s.t. Ȧ(t) = κ(γP(t)− A(t)), t ∈ T ,

Ḃ(t) = P(t)DR(A(t), P(t))− C +δB(t), t ∈ [0,τ],

A(0) = A0, B(0) = B0,

0¶ DR/N(A(t), P(t)), t ∈ T ,

P(t)¾ 0, t ∈ T ,

0¶ B(t; ς j), t ∈ [0,τ], j = 0,1, 2,

(3.25)

with the notations as introduced before. The type of constraint function requires the imple-
mentation of the cash state dynamics for every sigmapoint ςi , i = 0,1, 2.

Value at Risk

We consider the chance constraint P [B(t; ς)¾ 0]¾ ζ for a given probability level ζ. As men-
tioned in Section 2.2, technically we have to include the distribution of the constraint B(·)¾ 0
depending on the uncertain recession strength ς to calculate the appropriate probabilities. To
overcome this difficulty, in the conspicuous consumption problem we can make use of Theorem
2.1.

Corollary 3.1
With the assumptions of the original recession model given by (3.6) and (3.5) we deduce for a
random parameter ς ∈ L2 that

P [B(t; ς)¾ 0]¾ ζ ⇔ B(t; VaRζ(ς))¾ 0. (3.26)

4

Proof The dynamics of the cash state B(·) are given by

Ḃ(t; ς) = P(t)DR(A(t), P(t))− C +δB(t; ς).

As

B(t; ς) = B(0; ς) +

∫ t

0

Ḃ(s; ς)ds,

we obtain the variational differential equation

Bς(t; ς) = Bς(0; ς) +

∫ t

0

�

Pς(s)DR(A(s), P(s)) + P(s)
∂

∂ ς
DR(A(s), P(s))

+δBς(s; ς)
�

ds.

(3.27)

From the results of [63, 118] we assume both the price P(·) and the demand in the recession
period DR(A(·), P(·)) to be monotonically decreasing in ς. Hence, as the initial cash state B(0; ς)
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is independent of the recession strength, δ > 0, and the price P(·) and demand DR(·) are non-
negative for all t, we conclude

Bς(t; ς)¶ 0 ∀t and ∀ς. (3.28)

Then we can apply Theorem 2.1 (for c(B) = −B) to deduce the result. �

Hence, we obtain the OCP

max
P(·)

J i(A(·), B(·), P(·); τ,ς)

s.t. Ȧ(t) = κ(γP(t)− A(t)), t ∈ T ,

Ḃ(t) = P(t)DR(A(t), P(t))− C +δB(t), t ∈ [0,τ],

A(0) = A0, B(0) = B0,

0¶ DR/N(A(t), P(t)), t ∈ T ,

P(t)¾ 0, t ∈ T ,

0¶ B(t; VaRζ(ς)), t ∈ [0,τ],

(3.29)

for some given probability level 0¶ ζ¶ 1 and the notations from before.

The evaluation of the reformulated Value at Risk (VaR) constraint 0 ¶ B(t; VaRζ(ς)) still re-
quires knowledge of the distribution of ς. With that information at hand, the implementation
of the constraint necessitates one additional state variable B(t; VaRζ(ς)) (apart from the one
needed for the evaluation of the objective function).

Conditional Value at Risk

Analogous to the procedure in Section 2.2 we incorporate the Conditional Value at Risk (CVaR)
constraint into our conspicuous consumption model. For fixed t the probabilistic constraint
becomes (remembering −B(t; ς)¶ 0)

0¾ CVaRζ(−B(t; ς)) =min
ϑ∈R

§

ϑ+
1

1− ζ
E [max{0,−B(t; ς)− ϑ}]

ª

. (3.30)

But as this constraint has to hold for all time instants t ∈ [0,τ], i.e., during the overall possible
recession period, the control parameter ϑ in the minimization rule (3.30) actually becomes a
control function ϑ(t). Thus, the resulting robust OCP reads

max
P(·),ϑ(·)

J i(A(·), B(·), P(·); τ,ς)

s.t. Ȧ(t) = κ(γP(t)− A(t)), t ∈ T ,

Ḃ(t) = P(t)DR(A(t), P(t))− C +δB(t), t ∈ [0,τ],

A(0) = A0, B(0) = B0,

0¶ DR/N(A(t), P(t)), t ∈ T ,

P(t)¾ 0, t ∈ T ,

0¾ ϑ(t) +
1

1− ζ
E [max{0,−B(t; ς)− ϑ(t)}] , t ∈ [0,τ],

(3.31)
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where the additional control function ϑ(·) is necessary only during the recession and becomes
redundant in a normal phase.
However, the evaluation of the CVaR constraint (3.30) requires calculating the inner expecta-
tion value. This in turn is derived with respect to the distribution of B(·; ς) depending on the
random recession strength. For a continuous distribution of ς, an appropriate approximation
to a discrete random variable—as we have used to treat the exponentially distributed ran-
dom recession end τ in Section 3.1.2—might be necessary. Then the calculation of the inner
expectation simplifies to a sum over cash states depending on the nς possible outcomes of ς
multiplied with the corresponding probabilities. Certainly, this demands the implementation
of nς auxiliary cash states.

3.3.2 Strengths and Weaknesses of the Approaches

Theoretical Aspects

As we have already mentioned in Section 2.2, the traditional approaches in optimization under
uncertainty, i.e., guessing the future, worst-case analysis, and relying on expectations, are
coherent measures of risk in the basic sense, cf. Definition 2.1 and [12, 211]. Nevertheless, they
inherit many disadvantages. Worst-case approaches take into account every possible outcome
of the uncertain parameters, no matter how unlikely it may be. While this characteristic of the
worst-case approaches becomes crucial in applications like safeguarding chemical processes
or to avoid irreversible reactions in runaway processes [150], in economic situations it is often
too conservative. In many such circumstances decision-makers accept a certain amount of risk
of failure in order to achieve greater gains.
Both the linearization and sigmapoint methods, compare Sections 2.1 and 3.3.1, allow the
investigation of desired confidence levels $ as proposed in [38] if the variance Σ is known.
Otherwise combinations of $ and σ have to be considered. From an economic point of view,
the sigmapoint approach has advantages over the linearization method as it allows deeper eco-
nomic insight in the behavior of the solution. This is induced by the auxiliary cash state vari-
ables that are needed to treat the constraints for all sigmapoints. In contrast to the worst-case
approaches the expectation-based ideas provide acceptable risks even if desirable outcomes
merely compensate the undesirable ones. Hence, they are often too optimistic to be applied in
questions of economics.
To overcome the general difficulties of worst-case and expectation based ideas, especially in
the field of finance, the VaR attracted much attention. Unfortunately, despite its broad usage,
it is generally not a coherent measure of risk [12, 211]. Thus, in the special case of portfo-
lio optimization, the VaR does not satisfy the diversification principle [12]. Moreover, it tends
towards optimistic estimations of uncertain situations as it does not provide a grasp on the
seriousness of constraint violations [211]. These properties are a severe disadvantage in risk
management or in an economic situation where the firm has the possibility to borrow money
at the market and the corresponding interest rates increase with the amount of needed cash.
In our considered conspicuous consumption model with malfunctioning capital markets, how-
ever, the extent of violating a constraint, namely the bankruptcy constraint B(·) ¾ 0, is less
important, as the firm has to face bankruptcy in any case where B(·) becomes negative. Thus,
the negative connotation of the VaR is unjustified in our special economic case.
As mentioned before, the CVaR provides a more cautious approach to safeguarding than the
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incorporation of pure chance constraints by the VaR, because it rates constraint violations
caused by decisions. Additionally, it has been proven under various assumptions that the CVaR
describes a coherent measure of risk [2, 213], which constitutes it to be a reliable quantifier
of risk. However, in our special economic situation the classification of constraint violations by
using the CVaR is a subordinate issue, which can cause the resulting pricing strategies to be
very risk-averse or even too conservative.

Numerical Effort

Besides the theoretical and economical aspects of using the presented robustification tech-
niques, there are as well broad differences from the numerical point of view.

The general formulation of an ellipsoidal robust constraint (2.3) leads to a semi-infinite OCP
that is very hard to solve numerically. Therefore, an approximation of (2.3) by either the lin-
earization or the sigmapoint approach is necessary. The resulting problems (3.22) and (3.25)
can be efficiently solved by existing methods like, e.g., BOCK’s direct multiple shooting ap-
proach, cf. Section 1.3. For highly nonlinear problems that linearization idea can cause ap-
proximation errors, whereas the robustness of solutions obtained by it cannot be guaranteed.
As a remedy higher order approximation schemes may become useful, compare the method
proposed in [109]. Another possibility [74, 75] is to replace the inner minimization term by its
sufficient optimality condition. All of the listed ideas result in a far more difficult problem as
additional equations have to be considered. Consequently, the computational effort increases
considerably. Within the sigmapoint approach, however, the computational complexity is ex-
tended by additional path constraints that require the implementation of cash state variables
depending on the propagated sigmapoints (3.23).

In general the VaR is difficult to work with numerically, e.g., if loss distributions feature “fat
tails” or jumps, cf. [213]. In our context and reasoned by the considerations above, particularly
Theorem 2.1 and Corollary 3.1, we only need the distribution of ς to calculate its VaR for a
given confidence level ζ. Thus, the incorporation of the VaR constraint in the conspicuous
consumption model can be done very efficiently as only one additional cash state variable and
one additional path constraint are needed.

By contrast, implementing the CVaR is far more complex. The minimization rule (3.30) induces
that besides the additional control variable ϑ(·) the calculation of the expectation within the
formula is needed. For a discrete distribution of the random recession strength ς—which might
be obtained by some appropriate approximation of a continuous distribution—, this can be
achieved by introducing nς auxiliary cash state variables depending on the values the random
variable attains with a corresponding probability. Thus, the computational effort increases with
the number nς of those auxiliary cash state variables.

To illustrate the differences in the costs of solving the multi-stage OCPs resulting from the
different robustification methods, Table 3.5 presents the overall dimensions of the NLPs ob-
tained by transforming those problems with the direct multiple shooting approach. Note that
we limited our investigations here to the—numerically superior—rearranged formulation of
the scenario tree to discretize the uncertain recession length, depicted in Figure 3.3.

Within Table 3.5 we can see that the smallest resulting problem we obtain when using the VaR
approach. As more additional state variables and/or constraints are needed for both robust ap-
proaches, those problems are slightly larger, whereas the CVaR is the largest one. This is mainly
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Table 3.5: Dimensions of the NLPs problems resulting from the conspicuous consumption problem (3.6)
with the presented robustification/probabilistic techniques (linearization and sigmapoint ap-
proach, VaR and CVaR and choosing between the objective functions (3.19a) determined by
ς= ς̄ and (3.19b) determined by ς= 0.
The smallest problem we obtain for the VaR approach, the largest one for the CVaR. This is
caused by the necessity of auxiliary cash state variables and, mainly, an additional control
function.

Linearization Sigmapoint VaR CVaR

(3.22) (3.25) (3.29) (3.31)

Objective function J1(·) (3.19a)

# discr. points 1840 1840 1840 1840

# variables 12957 11195 9316 18632

# eq. constr. 11112 9351 7473 14946

# ineq. constr. 27754 27910 18752 37384

Objective function J2(·) (3.19b)

# discr. points 1840 1840 1840 1840

# variables 16676 13074 9316 20511

# eq. constr. 14829 11229 7473 16824

# ineq. constr. 35192 31668 18752 41142

caused by the second control function that is required to implement the constraint. These vari-
ations are reflected in the Central Processing Unit (CPU) time behavior as well, compare Table
3.6. While the differences in the number of state functions of the linearization/sigmapoint/VaR
approach do not influence the average runtime (per SQP iteration) and its distribution among
the parts of the solving procedure much, the additional control function of the CVaR approach
does. The runtime of that robustification method is noticably higher, as the effort to solve the
QPs becoming more prominent.

3.3.3 Numerical Results of the Uncertain Strength Case

The following numerical results are again based on the parameters defined in (3.14) and the
assumption that the recession lasts at most 20 years, whereas the overall considered time
horizon is tf = 21 years. Additionally, we choose the initial reputation and cash to be

A1
0 = 20.0, B1

0 = 10.0,

A2
0 = 40.0, B2

0 = 50.0,
(3.32)

which both correspond to economic starting points, where the firm can cope with an interme-
diate (A1

0, B1
0) or severe (A2

0, B2
0) recession for a certain time period, but which does not hold

enough capital reserves to survive a continuing recession [63, 118]. Finally, the random vari-
able ς for the linearization and the sigmapoint approaches is characterized by its mean value
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Table 3.6: Exemplary computation times in h:min:s for solving the NLP problems of Table 3.5. Note that
solving the problem with CVaR constraint is most expensive, due to the additional control
function. The remaining approaches need comparable computation times.

Linearization (3.22) Sigmapoint (3.25) VaR (3.29) CVaR (3.31)

Objective function J1(·) (3.19a)

IND 1:19 (1.0%) 24 (0.3%) 11 (0.2%) 1:00 (0.3%)

state int. 15 (0.2%) 5 (0.1%) 3 (0.0%) 8 (0.0%)

condensing 1:59:04 (87.3%) 2:06:42 (84.6%) 1:34:02 (86.9%) 4:24:36 (67.9%)

solving QP 15:46 (11.5%) 22:27 (15.0%) 1359 (12.9%) 2:03:56 (31.8%)

rest 3 (0.0%) 2 (0.0%) 2 (0.0%) 4 (0.0%)

2:16:27 (39 SQP) 2:29:40 (43 SQP) 1:48:17 (34 SQP) 6:29:44 (62 SQP)

Objective function J2(·) (3.19b)

IND 2:26 (1.5%) 26 (0.4%) 13 (0.1%) 52 (0.3%)

state int. 21 (0.2%) 5 (0.1%) 4 (0.1%) 6 (0.0%)

condensing 2:17:26 (86.6%) :1:44:53 (86.2%) 2:20:47 (86.5%) 3:29:15 (70.0%)

solving QP 18:21 (11.6%) 16:12 (13.3%) 21:41 (13.3%) 1:28:49 (29.7%)

rest 4 (0.1%) 2 (0.0%) 2 (0.0%) 4 (0.0%)

2:38:38 (41 SQP) 2:01:38 (35 SQP) 2:42:47 (42 SQP) 4:59:06 (42 SQP)

ς̄= 0.836 (3.33)

and varying values of variance Σ. For analyzing the VaR and CVaR, we assume that we know a
certain distribution of the random variable, e.g., by historical data. Thus, we define ς of these
approaches through

P [ς= 0.5] = 0.1

P [ς= 0.7] = 0.3

P [ς= 0.836] = 0.4

P [ς= 0.9] = 0.15

P [ς= 1.25] = 0.05.

(3.34)

Linearization and Sigmapoint Approaches

Both methods to approximate the robust formulation (2.3) depend only on the variance Σ if
we fix the confidence level $ = 1, i.e., considering a combination of these two notions as we
assume the exact variance of the random recession strength to be unknown. Figures 3.8 and
3.9 depict the optimal price paths in the recession period [0,τ] of problems (3.22) and (3.25),
respectively, when the objective function is J1(A(·), B(·), P(·); τ,ς) and initial values A1

0, B1
0 are

used.
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Figure 3.8: Robust price paths of the recession phase (left plot) and exemplary phase diagram (right
plot) for problem (3.22) with objective function J1(·) obtained by using the linearization ap-
proach (3.21). The price paths depend on the variance Σ of the uncertain recession strength
if we fix the confidence level $ = 1. Then higher variances require decision-makers to de-
crease prices appropriately.
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Figure 3.9: Robust price paths of the recession phase (left) and exemplary phase diagram (right) for
problem (3.25) with objective function J1(·) obtained by using the sigmapoint approach.
The phase diagram depicts the connection of brand image state and the cash states depend-
ing on the sigmapoints ςi , i = 0,1, 2.
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We notice that both approaches yield equal optimal pricing strategies and objective values
(compare Table 3.7). For very low variances the prices during the recession phase do not have
to be reduced, as the objective function already includes some caution towards the realization
of ς and the initial cash B0 is enough to keep the cash state positive during the complete
recession even if the worst possible outcome of ς based on Σ takes place. For higher variances
the decision-maker has to decrease prices in order to survive the recession.
Only for the combination of objective function J2(·) and initial values (A1

0, B1
0) we notice

gaps between the optimal objective function values. This is caused by the differences in the
resulting constraints in interaction with the objective. E.g., let us consider the results for
Σ= 0.0/ζ= 0.0. Both robust approaches deal with the constraint B(t; ς̄= 0.836)¾ 0 (which
can be seen best by looking at the constraints of the sigmapoint approach), whereas the VaR
constraint becomes B(t; VaR0(ς) = 0.5) ¾ 0. The CVaR constraint tends to E [B(t; ς] ¾ 0,
cf. Theorem 2.2.
Additionally, Table 3.7 shows how much of the overall gains is lost, if decision-makers have to
reduce prices according to an uncertain recession strength with mean ς̄ and variance Σ. Note
that the actual profit is obtained during the normal economic stage, but is strongly depending
on the reputation level the firm can keep during the crisis.
In the phase diagrams of Figures 3.8 and 3.9 the implications of decreasing prices can be seen:
consistent with its dynamics, the firm’s brand image is damaged as well. The great economic
advantage of the sigmapoint approach here is that due to the additional cash state variables
needed to implement the modified constraints (3.24) based on the sigmapoints (3.23) (espe-
cially for ς2 = ς̄ +

p
Σ), we can see the actual reason of reducing prices. It is caused by the

decision-maker’s optimal strategy to balance prices in a way that the firm operates into a zero
cash-situation at time t = 20 (years) when the economic crisis will finally be over (due to
our assumption of τn = 20). Naturally, in an ever-lasting recession the firm finally has to face
bankruptcy, if its initial reputation and cash stock are not sufficiently high.
However, the decision-maker’s optimal strategy is based on another important principle. Prices
have to be kept as high as possible as long as possible in order to preserve the reputation of
the product, as this will guarantee the firms success once the crisis is over. Therefore, in the
beginning of the recession the optimal strategy is charging the optimal, i.e., highest possible
price for the chosen objective function assuming there is no chance of a stronger crisis. Only
when the recession persists longer, prices eventually have to be reduced according to the worst
possible realization of ς determined by the variance Σ and the firm’s incentive to keep cash
until τn. By this strategy the brand image remains at a high level in the first period of the
recession when it is very probable that τ is reached soon. In that situation the gains of the
normal economic stage are higher as if the decision-maker set a constant price during the
longest possible duration τn of the recession. The same behavior can often be observed at the
very end of the longest possible recession—rather than fixing the price at some constant level
P̃, it is more profitable reducing prices considerably at the last possible instance when this
measure is successful and concurrently being able to set a (slightly) higher price P > P̃ in the
period before. The general effect can be noticed in Figures 3.8 and 3.9 but more obviously
in Figure 3.10, which shows the optimal price paths of problem (3.22) with the objective
function J2(A(·), B(·), P(·); τ,ς) and both sets of initial values. Clearly, it is more apparent for
smaller variances. In general, this adaptive shape is closely related to optimal strategies from
stochastic optimization. Here, it is certainly induced by our scenario tree approach to discretize
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Table 3.7: Optimal objective values J∗ for the robust/probabilistic conspicuous consumption problems
(3.22), (3.25), (3.29), and (3.31). It is shown how much is lost if we regard the different
approaches with varying values of variance Σ (for the robust approaches (3.22) and (3.25))
or ζ-level (for the probabilistic problems (3.29) and (3.31)) in comparison with the nominal
solution (i.e., Σ = 0 or ζ = 0). Note that the major part of this objective value is obtained
during the normal economic phase depending on the performance during the recession.
We can see that both methods of robust approximation give equal results. Further on, the
relation between the ζ-levels in the VaR and CVaR approaches and the confidence levels in
the linearization and sigmapoint ideas (included indirectly in the variances) is observable,
as well as the differences in the cautiousness of VaR and CVaR. Note that the gaps in the
nominal objective values (regarding Σ = 0.0/ζ = 0.0, particularly for objective function
J2(·) and initial values (A1

0, B1
0)) are caused by differences in the resulting constraints.

Linearization (3.22) Sigmapoint (3.25) VaR (3.29) CVaR (3.31)

p
Σ J∗

p
Σ J∗ ζ J∗ ζ J∗

Objective function J1(·) (3.19a) and (A1
0, B1

0)

0.0 88.5342 0.0 88.5342 0.0 88.5344 0.0 88.5344

0.06 88.5055 0.06 88.5055 0.9 88.5344 0.4 88.5343

0.0616 88.4009 0.0616 88.4009 0.92 88.5343 0.45 88.5338

0.93 88.5338

0.94 88.5099

Objective function J2(·) (3.19b) and (A1
0, B1

0)

0.0 106.8768 0.0 106.8768 0.0 107.6456 0.0 107.2890

0.02 106.3943 0.02 106.3943 0.4 107.6321 0.3 106.2436

0.04 105.3583 0.04 105.3583 0.8 106.8768 0.4 104.3689

0.06 102.4368 0.06 102.4368 0.9 105.1500 0.45 103.6880

0.0616 101.4003 0.0616 101.4003 0.94 102.5151

Objective function J2(·) (3.19b) and (A2
0, B2

0)

0.0 146.5020 0.0 146.5020 0.0 146.5021 0.0 146.5019

0.06 146.5006 0.06 146.5006 0.4 146.5021 0.8 146.4537

0.2 146.4839 0.2 146.4839 0.9 146.5015 0.9 145.7950

0.3 145.5607 0.3 145.5607 0.96 146.4734 0.92 145.7755

0.4 143.0664 0.4 143.0664 0.99 144.7815 0.95 142.4378

0.414 142.4379 0.414 142.4379 1.0 142.4379
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Figure 3.10: Robust price paths of the recession phase as in Figure 3.8, but for the objective function
J2(·) and initial values A1

0, B1
0 (left plot) and A2

0, B2
0 (right). With higher initial values the

firm can cope with more serious situations.

the terminal time τ of the recession.

Moreover, in Figure 3.10 the connection between the variance and the reduction of prices is
observable more directly as if the objective of the firm depends on the no-recession situation.
Additionally, the right plot shows optimal prices if the firm starts with a higher initial reputation
and capital stock. Then it can even cope with situations where the variance of the random
recession strength is assumed to be relatively large, including the (worst possible) realization
of a severe recession characterized by ς= 1.25. This results because for the set of large initial
values (A2

0, B2
0) prices can be decreased further than for the set of small initial values. For the

latter set, we cannot calculate solutions corresponding to large variances of ς or even the worst
case, as this solution is infeasible.

Value at Risk

In order to calculate the VaR of the random recession strength we use the definition (3.34) of
ς. Therefore, the mean of the random variable defined by that distribution varies a little from
the value ς̄ we have used in the last paragraph. Nevertheless, for reasons of comparison, we
still implement the first alternative of the objective function J1(·) with ς̄. The actual quantiles
of the recession strength corresponding to a given probability level ζ can be obtained by linear
interpolation of the distribution given in (3.34).

Figures 3.11–3.13 depict solutions of Problem (3.29). As already noticed in the previous para-
graph for the robust approaches, when considering the objective function J1(·) including a
pre-assumption of an intermediate recession strength, prices have to be reduced only for rel-
atively large probability levels ζ. Therefore, economic challenges favor the second choice of
objective function J2(·) based on a no-recession scenario. Then the connection between the
desired confidence level ζ and the price reductions becomes more apparent.

From comparing the optimal objective values of the VaR and the robust linearization and
sigmapoint approaches in Table 3.7, we see a certain correspondence between the probability
levels ζ of VaR and the confidence level/variance-combination within the robust formulations,
even as they are based on very different assumptions on the random variable ς. In contrast to
the linearization and sigmapoint idea, the nominal solution of the VaR approach with objec-
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Figure 3.11: Robust price paths of the recession phase (left) and exemplary phase diagram (right) for
problem (3.29) with objective function J1(·) obtained by using the probability constraint
as in Corollary 3.1. In the phase diagram the brand image is plotted against the cash state
variable B(t; VaRζ(ς)) corresponding to the desired confidence level ζ.
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Figure 3.12: Robust price paths of the recession phase and phase diagram as in Figure 3.11, but for the
objective function J2(·) and initial values A1

0, B1
0 .

tive function J2(·) is obtained by the constraint P [B(t; ς)¾ 0] ¾ 0, i.e., by a constraint that
considers a no recession-scenario. Thus, the corresponding objective value is higher than for
the robust formulations.
Like in the sigmapoint approach, the additional state variable B(t, VaRζ(ς)) that is needed to
implement the chance constraint allows for more economic insight, as we can see how the
firm’s cash evolves into zero when the crisis lasts for the worst possible duration τn. Further-
more, in the phase diagrams of Figures 3.12 and 3.13—observe particularly the trajectories
corresponding to the probability level ζ = 0.4—we can see how the initial conditions im-
pinge on a long persisting recession: while it is not possible for the firm to survive a very long
(τ > 20 = τn) recession with initial conditions (A0, B0) = (20.0, 10.0) for the corresponding
recession strength as B(·) evolves towards zero, this is the case if the initial conditions are
(A0, B0) = (40.0,50.0), where B(·) evolves to infinity.
In general we can observe that applying the VaR as robustification measure leads to very rea-
sonable pricing strategies depending on the probability levels ζ and, therefore, the VaR of
the uncertain recession strength ς based on its definition (3.34). Due to the fact that a rating
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Figure 3.13: Robust price paths of the recession phase and phase diagram as in Figure 3.11, but for the
objective function J2(·) and initial values A2
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of violations of the constraint VaRζ(B(t; ς)) ¾ 0 plays a subordinate role in the conspicuous
consumption model, the results do not suffer from the VaR not being a coherent measure of
risk.

Conditional Value at Risk

Again, we use ς as defined in (3.34), but include ς̄ in the first objective function J1(·) again.
Furthermore, the expectation operator within the CVaR constraint (3.30) turns into a summa-
tion due to the discrete definition of ς. Therefor, we have to implement five auxiliary cash state
variables depending on the possible outcomes of the recession strength.
The solutions of Problem (3.31) for both variants of the objective function and both sets of
initial values can be seen in Figures 3.14 and 3.15. The price paths behave qualitatively equal
as in the aforementioned approaches, apart from the fact that prices obtained with a CVaR
constraint are more cautious than prices obtained with, e.g., a VaR constraint (compare the
objective values and corresponding ζ-levels in Table 3.7 as well). It means, that for a given
confidence level ζ the corresponding prices PCVaR(·) obtained with a CVaR constraint are lower
than the prices PVaR(·) obtained with one of the other approaches, e.g., the VaR. Compare, for
instance, the left plots in Figures 3.13 and 3.15.
Moreover, from Table 3.7 we notice that the nominal value of the CVaR approach is based on
the CVaR constraint corresponding to the expectation value E [B(t; ς)], compare Theorem 2.2.
This is again different from the robust methods and the VaR, where the nominal solution is
based on a constraint with ς̄ and ς = 0, respectively, compare Remark 2.2. The cautiousness
of this method is reflected in the optimal objective values of corresponding ζ-levels as well.
With linearized robustification, sigmapoints, and the VaR we obtain a cash state B(·) that cor-
responds directly to the robustified constraint. Hence, we can analyze the behavior of the
constraint in a phase diagram of reputation A and cash B. With the CVaR approach this is not
the case, as the constraint is realized via the minimization rule (2.14). Therefore, in both Fig-
ures 3.14 and 3.15 we depict cash state trajectories during the recession phase [0,τn] for a
specific realization of the random variable ς, i.e., ς = 0.9 which occurs with a probability of
15 percent. One notices, e.g., from Figure 3.14, that the cash state B(t,ς= 0.9) corresponding
to a recession with that particular strength can drop below zero, but still the desired confi-
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dence level (of, e.g., ζ = 0.45) is reached. If the confidence level is increased, then in order
to fulfill this level prices have to be adjusted in a way such that eventually the cash state for
ς = 0.9 remains positive for all possible durations of the recession and only the cash states
corresponding to the severe recession may become negative.

Furthermore, caused by the classification of constraint violations in the CVaR approach due
to the minimization formula (2.14), the approach tends to be a bit too conservative in the
context of the conspicuous consumption problem. Hence, the CVaR is a very risk-averse version
of safeguarding.

3.4 Summary

In this chapter we analyzed the pricing of conspicuous consumption products in economic crisis
periods. In order to gain a better insight in the development of strategies applicable in real-
world economics, we investigated different sources of uncertainty entering the deterministic
model—an uncertain recession duration and strength—and their implications to economic
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decision-making. Further on, we discussed the computational and economic implications as
well as strengths and weaknesses of the applied methods.
We started by tackling the uncertain recession duration by a specific scenario tree approach
leading to a problem related to stochastic optimization. As an additional step towards real-
world behavior, we considered a control delay influencing the pricing strategies and incorpo-
rated it into the OCP by introducing a slack control variable.
Economically, the introduction of the delay leads to enlarged bankruptcy regions. Depending
on the size of the delay and the probability distribution of the recession end, it is optimal to
set higher prices in the recession phase of the delayed case compared to the undelayed world,
and vice versa in the normal economic stage.
The treatment of the uncertain recession strength happened through selected approaches
known from optimization under uncertainty in combination with the general setting of the
scenario tree. Thus, the adjustment of prices in the recession stage is based on the desired
confidence level and optimally conducted adaptively depending on the uncertain duration of
the crisis period.
Representing the approach of set-based robust optimization, we applied the linearization and
sigmapoint ideas to reformulate the corresponding robust constraint. Both approaches yielded
similarly computationally complex problems; however, the enhanced economic insight of the
sigmapoint approach turned out to be very beneficial.
Further on, we considered the probability-based ideas of VaR and CVaR offering the decision-
makers a more direct way to balance their strategies between risking negative outcomes and
maximizing profit. While the VaR approach can be implemented with a slightly lower complex-
ity compared to the robust reformulations, the CVaR is computationally very expensive due to
the additional control function. In connection with coherent measures of risk, the VaR is of-
ten estimated negatively because of its lack of coherence, while the CVaR holds this property.
In the conspicuous consumption problem, however, the CVaR approach results in slightly too
conservative safeguarding policies as its classification of negative outcomes is not significant
here. The VaR, in contrast, leads to reliable strategies.
Nevertheless, all considered methods can produce infeasible results if the initial values are too
low for the desired confidence levels to be fulfilled.
In general, our numerical approach of applying structure-exploiting direct numerical methods
has proven to be an adequate means to solve the appearing non-standard OCPs and to collect
detailed insight into solution structures of complex economic systems. In that sense, it provides
a valuable aid to support economic decision-making tasks and analytical studies.
However, in respect of a real-world behavior of the proposed model and the deduced pricing
strategies, we need to consider a time-dependent recession strength. By this enhancement all
appearing processes become stochastic, whereas the mathematical concepts we have used up
to now cannot be used (directly) anymore. In the second part of this thesis, we investigate
Stochastic Optimal Control Problems (SOCPs) and present a novel idea to treat them in such
a way that we can solve them by the sophisticated methods of deterministic optimal control.
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4 Stochastic Processes

In this chapter we introduce the stochastic framework of the subsequently presented ideas of
this thesis. Thereby, we focus on the BROWNian motion or WIENER process, which will be the
driving force of all appearing stochastic processes, and discuss the implications of incorporating
these processes within integrals and differential equations.

4.1 Stochastic Processes

Definition 4.1 (Stochastic Process)
A stochastic process X = {Xt | t ∈ T } = {Xt}t∈T is a collection of random variables on a
probability space (Ω,F ,P). 4

Hence, the stochastic process can be represented as a function X : T × Ω → RnX with the
common notation X(t,ω) = Xt(ω). Xt(·) is a F -measurable random variable for fixed t ∈ T .
For fixed sample ω ∈ Ω the function X·(ω) is called a sample path, trajectory, or realization of
the process X . If T is a countable set, the process X is merely an indexed sequence of random
variables.
In the remainder of this thesis we always interpret the index t ∈ T as the time. Further on, we
consider T ⊆ R, in most cases it will be the interval T = [0, tf].

Definition 4.2 (Filtration, Adapted Process)
On a given probability space (Ω,F ,P), a non-decreasing family {Ft}t∈T of σ-algebras of F with
Ft ⊆ Fs ⊆ F for all 0¶ t < s <∞ is called filtration of F .
A stochastic process {Xt}t∈T is called adapted or non-anticipative to the filtration {Ft}t∈T if
Xt(·) is Ft -measurable for all t ∈ T . 4

The BROWNian Motion

With these definitions at hand, we introduce the most prominent stochastic process appearing
in this work.

Definition 4.3 (BROWNian Motion, WIENER Process)
The standard, one-dimensional BROWNian motion or WIENER process {Bt ,Ft}t∈T is an adapted
stochastic process defined on the probability space (Ω,F ,P) with the following properties:

(i) B0 = 0 with probability 1,
(ii) {Bt}t∈T is a process with independent increments, i.e., for all 0 ¶ t0 < t1 < . . . < tn the

increments Bt1
− Bt0

, . . . , Btn
− Btn−1

are independent,
(iii) {Bt}t∈T has stationary increments, i.e., for all t, s, v ¾ 0 it holds Bt − Bs ∼ Bt+v − Bs+v ,
(iv) Bt has a GAUSSian distribution, i.e., Bt ∼N (0, t) for all t ¾ 0.

4
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Remark 4.1
Note that the filtration {Ft}t∈T is an essential part of Definition 4.3. However, cf. [132], if
a process {Bt}t∈T is given without it, and the properties (ii)–(iv) hold, then

�

Bt ,FB
t

	

t∈T is
a BROWNian motion. Therein,

�

FB
t

	

t∈T is the filtration generated by the BROWNian motion
itself.

Corollary 4.1 ([195])
For the standard BROWNian motion {Bt}t∈T we obtain

(i) Bt − Bs ∼N (0, t − s),
(ii) Cov [Bt , Bs] =min{t, s}. 4

From its relationship to the GAUSSian distribution, the BROWNian motion inherits many addi-
tional properties. It is a GAUSSian process as well, meaning that for all time instants t1, . . . , tn,
n ∈ N, the random vectors (Bt1

, . . . , Btn
)T have a joint normal distribution. It is 1

2 -self similar,
i.e., for τ > 0 and t ∈ T we obtain Bτt ∼N (0,τt)∼

p
τBt , which is sometimes mentioned as

scaling property of {Bt}t∈T .

Furthermore, {Bt}t∈T is a martingale with respect to {Ft}t∈T . Thus, the conditional expecta-
tion E [Bt | Fs] = Bs for all 0 ¶ s ¶ t. That is, given a BROWNian motion up to time s, the
expectation of Bt for t ≥ s conditional on the information we accumulated up to time instant
s is the process at that time s.

The trajectories of the BROWNian motion are continuous with probability 1 and nowhere dif-
ferentiable, cf. [132]. Particularly in the context of stochastic integration in Section 4.2 this
becomes significant, together with the variation of the process {Bt}t∈T . Therefore, let Πn be a
partition of T = [t0, tf], i.e., Πn

def
= {t0 < t1 < . . .< tn = tf}, and the mesh of this partition be

‖Πn‖= max
1¶i¶n

(t i − t i−1).

Then the true k− th variation of a (one-dimensional) process {X t}t∈T is defined as

ϑk(X )
def
= sup
Πn

n
∑

i=1

�

�X t i
− X t i−1

�

�

k
. (4.1)

For the BROWNian motion it can be shown [235] that

ϑk(B)<∞ ⇔ k > 2. (4.2)

If we restrict our considerations to sequences of partitions Πn with ‖Πn‖2→ 0 for n→∞, we
find, cf. [132], that

n
∑

i=1

�

�Bt i
− Bt i−1

�

�

2→ tf in L2, (4.3)

that is

lim
n→∞
E





� n
∑

i=1

�

�Bt i
− Bt i−1

�

�

2 − tf

�2


= 0. (4.4)
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Hence, the BROWNian motion is said to be of quadratic variation on the interval T . However,
almost all of its paths are of unbounded (first) variation on every time interval. If Πn denotes
again a sequence of partitions of T with ‖Πn‖ → 0 for n→∞, then [132]

∞
∑

i=1

�

�Bt i
− Bt i−1

�

�→∞ with probability 1. (4.5)

The KARHUNEN-LOÈVE Expansion

The KARHUNEN-LOÈVE Expansion (KLE) [133, 168] characterizes a stochastic process {X t}t∈T
by representing it through an infinite sum of linear combinations of orthogonal functions.
Therefore, it can be compared to a function’s FOURIER series representation.
If the considered process {X t}t∈T is defined over the horizon T = [t0, tf], any orthonormal ba-
sis of the HILBERT space H= L2([t0, tf]) can be used to determine an expansion of the process,
cf. [56] or Chapter 5. The KLE in particular is based on the best possible basis, meaning that
it minimizes the mean-square error of the resulting expansion, which can be shown directly
with the help of MERCER’s theorem [210].

Theorem 4.1 (KARHUNEN-LOÈVE Theorem; [133, 168])
Let {X t}t∈T be a square-integrable random process (i.e., a process with finite second moment for all
t ∈ T ) over the probability space (Ω,F ,P) and defined for times t from the closed and bounded
interval T = [t0, tf]. Moreover, let its expectation be given by E [X t] = µ(t) with mean value
function µ: R→ R and its covariance by Cov [Xs, X t] = K(s, t) with symmetric, continuous, and
non-negative kernel function K : R×R→ R.
Then the KLE of X t is given as

X t(ω) = µ(t) +
∞
∑

i=1

Æ

λiϕi(t)ξi(ω), (4.6)

where {λi}i¾1 are the decreasingly ordered non-zero eigenvalues of the operatorAK : L2([t0, tf])→
L2([t0, tf]) defined by

AK(ψ(t))
def
=

∫ tf

t0

K(s, t)ψ(s)ds,

and {ϕi(·)}i¾1 the corresponding eigenfunctions. The ξi , i ¾ 1, are uncorrelated random variables
with zero mean and unit variance.
Moreover, the KLE minimizes the total mean-square error of any approximation of X t determined
in terms of an orthonormal basis of L2([t0, tf]) and truncated at order N ∈ N. 4

If the original process {X t}t∈T is a GAUSSian process, the random variables ξi , i ¾ 1, of the
KLE (4.6) have a joint GAUSSian distribution and are independent.
The KLE of the BROWNian motion {Bt}t∈[0,1] with E [Bt] = 0 and Cov [Bs, Bt] = min{s, t} is
determined through the eigenvalues and eigenfunctions

λi =
1

�

i − 1
2

�2
π2

, ϕi(t) =
p

2 sin
��

i −
1
2

�

πt
�

, i ¾ 1, (4.7)
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Figure 4.1: Example paths for the truncated KLE of a BROWNian motion Bt together with its expectation
function. The left figure (a) shows sample paths for varying truncation orders N on the time
horizon t ∈ [0, 1], the right one (b) a zoomed part of that plot.

of the covariance kernel, yielding the expansion

Bt =
∞
∑

i=1

p
2sin

��

i − 1
2

�

πt
�

�

i − 1
2

�

π
ξi (4.8)

with independent GAUSSian random variables ξi ∼ N (0,1) for all i ¾ 1. This representation
is only valid for t ∈ [0,1], on larger intervals the increments of the expansion are not inde-
pendent. This issue can be resolved by a time-scaling argument, cf. [172] or Chapter 5.2. Note
that (4.8) is still nowhere differentiable as the series is not absolutely convergent. Figure 4.1
depicts sample paths of the BROWNian motion’s KLE for different truncation orders N .

As the random variables ξi , i ¾ 1, of expansion (4.8) are independent, its convergence rate is
determined by

E
�
�

�Bt − BN
t

�

�

2�
=

∞
∑

i=N+1

2 sin
��

i − 1
2

�

πt
�2

�

i − 1
2

�2
π2

¶
∞
∑

i=N+1

2
�

i − 1
2

�2
π2
¶
∞
∑

i=N

2
i2π2
¶

1
πN

(4.9)

with BN
t denoting the BROWNian motion’s series expansion truncated at the N th summand,

i.e.,

BN
t =

N
∑

i=1

Æ

λiϕi(t)ξi .

We complete this section by proving a result that we will make use of later on.

Lemma 4.1
For t ∈ [0,1] the sum formula

∞
∑

i=1

2sin
��

i − 1
2

�

πt
�2

�

i − 1
2

�2
π2

= t (4.10)
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holds. 4

Proof From the BROWNian motion’s KLE and the fact that all ξi , i ∈ N, are independent,
standard GAUSSian random variables, we have

E
�

Bt
2
�

=
∞
∑

i=1

2 sin
��

i − 1
2

�

πt
�2

�

i − 1
2

�2
π2

,

on the other hand, its variance necessitates E
�

Bt
2
�

= t. �

4.2 The ITŌ Stochastic Integral

As we have seen so far, the BROWNian motion is a nowhere differentiable stochastic process
of unbounded variation on any interval T = [t0, tf]. Still, in order to study the evolution of
systems depending on that process in the context of differential equations, rigorous calculus
has to be set up. Therein, stochastic integrals play the crucial role, whereas differentials only
obtain a meaning when they appear in such an integral.
In general, stochastic integrals can be constructed based on any continuous, square-integrable
martingale Mt equipped with a filtration Ft [132, 152]. In this work we focus only on the
special case of the BROWNian motion as it has been done first by KIYOSHI ITŌ [122].
Due to the unbounded variation of the BROWNian motion an integral of the form

It(X ) =

∫ t

t0

Xs(ω)dBs(ω)

for a given stochastic process {X t}t∈T cannot be defined pathwise (depending on a fixed ω ∈
Ω). Furthermore, the integral It(B) does not exist as a RIEMANN-STIELTJES integral.
To define It(·) in an appropriate manner, let a BROWNian motion {Bt}t∈T be given together
with its natural filtration {Ft}t∈T (that is the smallest σ-algebra generated by the BROWNian
motion up to time t and the null sets of F). The integrand process {X t}t∈T be an Ft -adapted,
measurable, real-valued random process which is bounded uniformly in t and ω.

Definition 4.4 (Simple Stochastic Process)
A random process {St}t∈T over a probability space (Ω,F ,P) is called a simple process if a sequence
t0 < t1 < . . . < tn+1 = tf and a sequence of random variables (ξi(ω))0¶i¶n with supi |ξi(ω)| ¶
C ∈ R for all ω ∈ Ω exist, such that ξi is Ft i

-measurable and St can be written as

St(ω) =
n−1
∑

i=0

ξi(ω)1[t i ,t i+1)(t) + ξn(ω)1[tn,tn+1](t), t ∈ [t0, tf],ω ∈ Ω. (4.11)

4

Hence, the sample paths of a simple process {St}t∈T are piecewise constant and we obtain

Definition 4.5 (ITŌ Stochastic Integral for a Simple Process)
Given a simple process {St}t∈T as in Definition 4.4, its ITŌ stochastic integral is defined as

It(S) =

∫ t

t0

Ss dBs
def
=

j
∑

i=0

Ssi

�

Bsi+1
− Bsi

�

=
j
∑

i=0

ξi∆iB, (4.12)
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where 0 ¶ j ¶ n is the unique integer for which t ∈ [t j , t j+1) resp. t ∈ [tn, tn+1], and where ξi

and ∆iB are independent for all i. 4

Eventually, the following theorem can be proven, yielding the ITŌ integral.
Theorem 4.2 ([132, 141, 194])
Let {X t}t∈T over (Ω,F ,P) be an Ft -adapted, square-integrable stochastic process (with Ft being

the natural filtration of the BROWNian motion again). Then there is a sequence
�

X (m)t

�

m∈N of
simple processes for which

∫ tf

t0

E
�
�

�

�X t − X (m)t

�

�

�

2�

dt → 0 (4.13)

holds for m→∞. 4

Hence, the class of simple, adapted processes is dense in the space L2
A(T ×Ω) of Ft -adapted,

square-integrable random processes.
Followingly, as for any process X ∈ L2

A(T ×Ω), ε > 0, K > 0, we obtain

P

�

�

�

�

�

�

∫ tf

t0

X t dBt

�

�

�

�

�

> ε

�

¶ P

�

∫ tf

t0

X t
2 dt > K

�

+
K
ε2

,

cf. [194], we can extend the ITŌ integral (4.12) to all X t ∈ L2
A(T ×Ω). Its existence is proven

with the help of DOOB’s maximal inequality for martingales [208] and the BOREL-CANTELLI

Lemma [48, 57]. That is, if

I (m)t (X )
def
=

∫ t

t0

X (m)s dBs,

the limit of the so-defined sequence of stochastic integrals satisfies

E
�
�

�

�It(X )− I (m)t (X )
�

�

�

2� m→∞
−−−−→ 0. (4.14)

Definition 4.6 (General ITŌ Integral)
The random process {It(X )}t∈T that is defined uniquely with probability 1 through (4.14) is
called the ITŌ integral of the process {X t}t∈T ∈ L2

A(T ×Ω). We write

It(X )
def
=

∫ t

t0

Xs dBs, t ∈ T . (4.15)

4

Remark 4.2
While defining the ITŌ integral for simple processes as (compare (4.12))

j
∑

i=0

Ssi

�

Bsi+1
− Bsi

�

,

we have chosen the left end point of the interval [si , si+1) to evaluate the process F·. However,
in contrast to usual RIEMANN-STIELTJES integrals, the choice of that evaluation point is not

78



S T O C H A S T I C P R O C E S S E S
�

� CHAPTER 4

arbitrary in the context of stochastic integrals. It has an important effect on the result of the
summation.
Using the left end point si defines the ITŌ integral, which is the most famous variant and the
preferred choice in financial mathematics due to its property of being non-anticipative.
Choosing instead the midpoint 1

2(si + si+1) results in a stochastic integral that is anticipative
and often used in the physical sciences in connection with LANGEVIN equations [158]. It is
called the STRATONOVICH stochastic integral [231], formally denoted by

∫ tf

t0

X t ◦ dBt . (4.16)

A comparison of both types can be found, e.g., in [141, 195].

The ITŌ integral has the following important properties:

(i) For every t ∈ T It(X ) is a random variable with

E

�

∫ t

t0

Xs dBs

�

= 0, (4.17)

E





�

∫ t

t0

Xs dBs

�2


=

∫ t

t0

E
�

Xs
2
�

ds. (4.18)

(ii) The ITŌ integral is a linear operator.

(iii) It is a Ft -martingale, i.e., for all s ¶ t

E

�

∫ t

t0

Xu dBu

�

�

�

�

�

Fs

�

=

∫ s

t0

Xu dBu. (4.19)

4.3 ITŌ’s Formula

The ITŌ formula is the stochastic counterpart to the change of variable formula or chain rule in
deterministic differential calculus. It is the essential tool in working with Stochastic Differential
Equations (SDEs). Yet, as the stochastic integral (4.15) inherits the martingale property (4.19)
of the BROWNian motion, the known procedures of classical differential calculus cannot be
applied.

Definition 4.7 (One-dimensional ITŌ Process)
A one-dimensional ITŌ process on the probability space (Ω,F ,P) is a stochastic process {X t}t∈T
defined over T = [t0, tf] of the form

X t(ω) = X t0
(ω) +

∫ t

t0

b(s,ω)ds+

∫ t

t0

σ(s,ω)dBs. (4.20)

The first integral in (4.20) is a standard RIEMANN or LEBESGUE integral for ω ∈ Ω with the
integrand function b : T ×Ω→ R being jointly LEBESGUE and F -measurable, Ft -measurable for
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all t ∈ T , and

P

�

∫ t

t0

|b(s,ω)|ds <∞ ∀t ∈ T

�

= 1.

The second integral in (4.20) is the introduced ITŌ integral with σ : T × Ω → R being jointly
LEBESGUE and F -measurable and Ft -measurable for all t ∈ T as well, and

P

�

∫ t

t0

σ(s,ω)2 ds <∞ ∀t ∈ T

�

= 1.

4

Often (4.20) is written symbolically in differential form

dX t(ω) = b(t,ω)dt +σ(t,ω)dBt(ω), (4.21)

keeping in mind that in stochastic calculus every differential is only defined by its correspond-
ing integral.
Now we can state

Theorem 4.3 (One-dimensional ITŌ Formula; [132, 141])
Let {X t}t∈T be a one-dimensional ITŌ process given through (4.21). Furthermore, let f : T ×R→
R be a twice continuously differentiable function. Then Yt = f (t, X t) determines an ITŌ process
as well, and ITŌ’s formula in dimension one holds with probability 1, i.e.,

dYt =

�

∂ f
∂ t
(t, X t) + b(t)

∂ f
∂ x
(t, X t) +

1
2
σ(t)2

∂ 2 f
∂ x2

(t, X t)

�

dt+σ(t)
∂ f
∂ x
(t, X t)dBt , (4.22)

where we have suppressed the dependency on the chance parameter ω ∈ Ω to ease notation. 4

In the case of a nB-dimensional BROWNian motion B =
�

B1, . . . , BnB
�T

we state the multi-

dimensional ITŌ formula for a nX -dimensional stochastic process X =
�

X 1, . . . , X nX
�T

given
through

dX i
t = bi(t)dt +

nB
∑

j=1

σi j(t)dB j
t , 1¶ i ¶ nX , (4.23)

with each bi(·), σi j(·), 1¶ i ¶ nX , 1¶ j ¶ nB, satisfying the assumptions of Definition 4.7.

Theorem 4.4 (Multi-dimensional ITŌ Formula; [132, 141])
Let {Xt}t∈T be a nX -dimensional ITŌ process and f : T ×RnX → RnY be twice continuously differ-
entiable. Then Yt = f (t, Xt) determines a nY -dimensional ITŌ process with each component Y k

t ,
1¶ k ¶ nY , satisfying the ITŌ formula

dY k
t =

∂ f k

∂ t
(t, X t)dt +

nX
∑

i=1

∂ f k

∂ x i
(t, X t)dX i

t +
1
2

nX
∑

i=1

nX
∑

j=1

∂ 2 f k

∂ x i∂ x j
dX i

t dX j
t . (4.24)

4
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4.4 Stochastic Differential Equations

Considering differential equations with random effects leads to two very different types of
equations. As we have seen in Chapter 2, the first class appears when Ordinary Differential
Equations (ODEs) are analyzed for random coefficients, parameters, or random initial condi-
tions. These equations are often named Random Differential Equations (RDEs) [141] and can
be solved pathwise, with the solution process having differentiable sample paths.
The second class is determined by irregular stochastic processes, e.g., GAUSSian white noise.
They are called Stochastic Differential Equations (SDEs). Their solutions inherit the BROWNian
motion’s property of holding non-differentiable trajectories. The focus of the following chapters
will be on that second class of equations.
Let bounded measurable functions b : T ×RnX → RnX and σ : T ×RnX → RnX×nB be given and
consider the SDE

Xt = Xt0
+

∫ t

t0

b(s, Xs)ds+

∫ t

t0

σ(s, Xs)dBs, (4.25)

or, written again in (symbolic) differential form

dXt = b(t, Xt)dt +σ(t, X)dBt . (4.26)

Therein, b(·) is called the drift and S(·) = σ(·)σ(·)T the diffusion term of (4.25) or (4.26),
resp. Then we can define different notions of a solution to a SDE, cf. [157].

Definition 4.8 (Solution to a SDE)
Let {Bt}t∈T be a given BROWNian motion and the initial value Xt0

a given Ft0
-measurable random

vector. Then by a solution to the SDE (4.25) we mean a continuous Ft -adapted process {Xt}t∈T
satisfying (4.25) with probability 1. 4

Definition 4.9 (Strong and Weak Existence)
If, given a probability space (Ω,F ,P), a filtration {Ft}t∈T , a BROWNian motion {Bt}t∈T , and a
Ft0

-measurable initial condition Xt0
, a Ft -adapted process {Xt}t∈T exists which satisfies (4.25)

for all t ∈ T , we speak of strong existence.
If, given any probability measure ν, there exist a probability space (Ω,F ,P), a filtration {Ft}t∈T ,
a BROWNian motion {Bt}t∈T , and a Ft -adapted process {Xt}t∈T satisfying (4.25) for all t ∈ T ,
as well as P

�

Xt0
∈ Ft0

�

= ν(Ft0
), then we speak of weak existence. 4

Definition 4.10 (Strong and Weak Uniqueness)
For a given probability space (Ω,F ,P), a filtration {Ft}t∈T , and a BROWNian motion {Bt}t∈T ,
suppose

�

X1
t

	

t∈T and
�

X2
t

	

t∈T are strong solutions to (4.25). Then strong uniqueness holds if

P
�

X1
t0
= X2

t0

�

= 1 =⇒ P
�

X1
t = X2

t ∀t ∈ T
�

= 1.

Given weak sense solutions
�

(Ωi ,F i ,Pi),
�

F i
t

	

t∈T ,
�

Bi
t

	

t∈T ,
�

X i
t

	

t∈T

	

, i = 1, 2, to the SDE (4.25),
weak uniqueness holds if equality of the distributions induced on RnX by X i

t0
under Pi , i = 1,2,

implies the equality of the distributions on C(T ×RnX ) by X i
t under Pi , i = 1,2. 4

Similar to investigations in ODE theory [105], the natural way to show existence and unique-
ness results for SDEs is to assume local LIPSCHITZ conditions in the space variable of the in-
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tegrand functions b(·) and σ(·) and certain conditions of boundedness. Then the PICARD-
LINDELÖF iterations converge to a solution that is unique [123, 132].

Theorem 4.5 (Strong Uniqueness for (4.25); [132])
Suppose the coefficients b(·) and σ(·) of the SDE (4.25) are locally LIPSCHITZ continuous, i.e.,
for all n ∈ N there exists a constant Kn > 0 such that for all t ∈ T , ‖x‖2 ¶ n, ‖y‖2 ¶ n it holds

‖b(t, x )− b(t, y)‖2 + ‖σ(t, x )−σ(t, y)‖2 ¶ Kn‖x − y‖2.

Then strong uniqueness holds for (4.25). 4

Remark 4.3
In the previous and the following Theorems we use the notation ‖·‖2 to denote the (EUCLIDean)
norm of a (n×m)-matrix, i.e.,

‖Σ‖22 =
n
∑

i=1

m
∑

j=1

Σi j
2.

Remark 4.4
Following the lines of ODEs, the local LIPSCHITZ condition is not sufficient to guarantee global
existence of a solution. Therefor, additional assumption are necessary to prevent explosions at
times t ∈ T .

Theorem 4.6 (Existence and Uniqueness Theorem for SDEs; [132, 195])
Let T = [t0, tf] be a given time horizon and b : T × RnX → RnX , σ : T × RnX → RnX×nB be
measurable functions satisfying the global LIPSCHITZ and linear growth conditions

‖b(t, x )− b(t, y)‖2 + ‖σ(t, x )−σ(t, y)‖2 ¶ K‖x − y‖2, (4.27)

‖b(t, x )‖22 + ‖σ(t, x )‖22 ¶ K2(1+ ‖x‖22), (4.28)

for all x , y ∈ RnX , t ∈ T , and constant K > 0. Moreover, let ξ be a random variable independent
of the BROWNian motion {Bt}t∈T and such that

E
�

‖ξ‖22
�

<∞.

Then the SDE

dXt = b(t, Xt)dt +σ(t, Xt)dBt , Xt0
= ξ, t ∈ T , (4.29)

has a t-continuous strong solution Xt(ω) that is unique in the strong sense and adapted to the
filtration Fξt generated by ξ and Bs, s ¶ t. It is square-integrable, i.e., for every tf > 0 there exists
a constant C depending only on K and tf such that

E
�

‖Xt‖22
�

¶ C
�

1+E
�

‖ξ‖22
��

eC t <∞ t ∈ T . (4.30)

4

In the case of a one-dimensional SDE the LIPSCHITZ conditions of the coefficient can be weak-
ened.
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Theorem 4.7 ([251])
Let a one-dimensional SDE over T be given through

dX t = b(t, X t)dt +σ(t, X t)dBt (4.31)

with coefficients b(·) and σ(·) satisfying

|b(t, x)− b(t, y)|¶ k(|x − y|), (4.32)

|σ(t, x)−σ(t, y)|¶ h(|x − y|), (4.33)

for all t ∈ T , x , y ∈ R, and where k : R+→ R+ is a strictly increasing and concave function with
k(0) = 0 and

∫ ε

0 k(u)−1 du =∞∀ε > 0, and h: R+ → R+ is a strictly increasing function with
h(0) = 0 and

∫ ε

0 h(u)−2 du=∞∀ε > 0. Then strong uniqueness holds for (4.31). 4

More detailed investigations of existence and uniqueness theorems for SDEs, varying the as-
sumptions on the drift and diffusion coefficient functions can be found in, e.g., [65, 132].
One natural consideration to solve SDEs seems to utilize the KLE (4.8) of the BROWNian mo-
tion. As for every t ∈ [0,1] and ξi ∼N (0,1), 1¶ i ¶ N ,

BN
t =

N
∑

i=1

p
2 sin

��

i − 1
2

�

πt
�

�

i − 1
2

�

π
ξi

converges in L2 to Bt for N →∞, one might assume that the solution X N
t of the ODE

dX N
t = b(t, X N

t )dt +σ(t, X N
t )dBt , X N

t0
= x0,

converges to the solution X t of the original ITŌ SDE

dX t = b(t, X t)dt +σ(t, X t)dBt , X t0
= x0

as well. However, this is in general not the case, emphasizing the cautiousness that is necessary
in dealing with SDEs. In [249] and, in a related fashion in [233], it is shown that the sequence
�

X N
t

�

n∈N in fact converges in the mean to the solution of the STRATONOVICH type SDE

dX t = b(t, X t)dt +σ(t, X t) ◦ dBt (4.34)

=
�

b(t, X t) +
1
2
σ(t, X t)

∂

∂ t
σ(t, X t)

�

dt +σ(t, X t)dBt ,

where the second equation is the ITŌ type counterpart of (4.34), derived by the STRATONOVICH

transformation formula [231]. A comparable result is presented in [176] for approximating
only the BROWNian motion process by an appropriate polygon.

4.5 Summary

In this introductory chapter we presented the stochastic basis of the subsequent ideas of this
thesis. The dynamic processes of our considerations become stochastic processes defined upon
some probability space and descendent from the standard BROWNian motion process.
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We have seen that ordinary definitions of integrals, known from common differential calculus,
fail to hold and that this is overcome by considering stochastic integrals instead. Thus, the dy-
namics of our stochastic state processes have to be described by stochastic instead of ordinary
differential equations, by including ITŌ integrals.
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5 WIENER Chaos Expansion and MALLIAVIN

Calculus

In this chapter we survey the WIENER chaos expansion of a stochastic process. We introduce it
with the help of HERMITE polynomials first and develop its connection to multiple stochastic
integrals thereafter. To that end we give an overview on MALLIAVIN calculus, as it provides
the powerful principles for applying the WIENER chaos expansion to stochastic differential
equations in the following chapter.

5.1 HERMITE Polynomials

Definition 5.1 (HERMITE Polynomials)
The n-th normalized HERMITE polynomial Hn(x), x ∈ R, is defined through

H0(x) = 1, (5.1a)

Hn(x) =
(−1)n
p

n!
exp

�

x2

2

�

dn

dxn

�

exp

�

−
x2

2

��

, n¾ 1. (5.1b)

4

From Definition 5.1 one can directly deduce the following result, which is stated in [234] for
standard (non-normalized) HERMITE polynomials.

Lemma 5.1 ([234])
The normalized HERMITE polynomials Hn(·), n ∈ N0, have the following properties:

d
dx

Hn(x) =
p

nHn−1(x), (5.2)
p

n+ 1Hn+1(x) = xHn(x)−
p

nHn−1(x). (5.3)

4

Proof (adapted from [234]) The generating function of the HERMITE polynomials is given
via [221]

ϕH(t, x)
def
= exp

�

x2

2
−

1
2
(x − t)2

�

(5.4)

= exp

�

x2

2

� ∞
∑

i=0

di

dt i

�

exp
�

−
1
2
(x − t)2

��

�

�

�

�

t=0
·

t i

i!

=
∞
∑

i=0

t i

p
i!

Hi(x).
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As this series converges uniformly, (5.2) follows from ∂ ϕH
∂ x = t f , i.e.,

∞
∑

i=1

t i

p
i!

d
dx

Hi(x)
!
=
∞
∑

i=0

t i+1

p
i!

Hi(x) =
∞
∑

i=1

t i

p

(i − 1)!
Hi−1(x)

and (5.3) from ∂ ϕH
∂ t = (x − t) f , i.e.,

∞
∑

i=1

p
i

t i−1

p

(i − 1)!
Hi(x) =

∞
∑

i=0

p

i + 1
t i

p
i!

Hi+1(x)

!
=
∞
∑

i=0

t i

p
i!

xHi(x)−
∞
∑

i=0

t i+1

p
i!

Hi(x)

=
∞
∑

i=0

t i

p
i!

xHi(x)−
∞
∑

i=0

t i

p
i!

d
dx

Hi(x)

and using (5.2). �

Definition 5.2 (GAUSSian measure)
The GAUSSian measure µ is defined as

µ(dx) = %(x)dx , %(x) =
1
p

2π
exp

�

−
x2

2

�

, (5.5)

where dx is corresponding to the LEBESGUE measure as usual. Then L2(R,µ) is the space of
square-integrable functions with GAUSSian measure, i.e.,

L2(R,µ) =

�

f : R→ R
�

�

�

�

∫

R
f (x)2µ(dx)<∞

�

. (5.6)

The inner product of this space is defined as

〈 f , g〉L2(R,µ) =

∫

R
f (x)g(x)µ(dx) (5.7)

for all f , g ∈ L2(R,µ). 4

With these definitions at hand, we prove the starting point of all further developments.

Lemma 5.2 ([234])
The HERMITE polynomials {Hn(·) | n ∈ N0} form a complete orthonormal basis of the HILBERT

space L2(R,µ). 4

Remark 5.1
As H0 ≡ 1, for a standard GAUSSian random variable ξ∼ N(0,1), i.e., ξ ∈ R, we deduce

E [Hn(ξ)] = 〈Hn(ξ), H0(ξ)〉L2(R,µ) = 0 ∀n¾ 1.

Hence, the (normalized) HERMITE polynomial Hn(·), n ¾ 1 of a standard GAUSSian random
variable is again a random variable with zero mean and unit variance.
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Proof (of Lemma 5.2, adapted from [234]) To show the orthonormality of the HERMITE poly-
nomials Hn(·), n ∈ N0, we use the definition of the GAUSSian measure (5.5) to deduce

〈Hn(x), Hm(x)〉L2(R,µ) =

∫ ∞

−∞

1
p

2π

(−1)n
p

n!

dn

dxn

�

exp

�

−
x2

2

��

Hm(x)dx .

Without loss of generality we assume n > m first, the opposite relation gives an analogous
result. Integration by parts and property (5.2) of the HERMITE polynomials yield

〈Hn(x), Hm(x)〉L2(R,µ) =

∫ ∞

−∞

1
p

2π

(−1)n−1

p
n!

dn−1

dxn−1

�

exp

�

−
x2

2

��

p
mHm−1(x)dx ,

and, therefore, applying integration by parts n− 1 additional times, gives

〈Hn(x), Hm(x)〉L2(R,µ) = 0 ∀n 6= m.

For n= m we obtain

〈Hn(x), Hn(x)〉L2(R,µ) =

∫ ∞

−∞

1
p

2π

(−1)n−1

p

(n− 1)!

dn−1

dxn−1

�

exp

�

−
x2

2

��

Hn−1(x)dx ,

=

∫ ∞

−∞

1
p

2π
exp

�

−
x2

2

�

dx

= 1.

Completeness of the system we show by concluding that a function p ∈ L2(R,µ) has to be
identical to zero if 〈Hn(x), p(x)〉L2(R,µ) = 0 for all n ∈ N0. Therefor, we consider again the
generating function ϕH(t, x) of the HERMITE polynomials and, determined by it,

Θ(t) = 〈ϕH(t, x), p(x)〉L2(R,µ) =

∫ ∞

−∞
ϕH(t, x)p(x)%(x)dx .

Then

dn

dtn
Θ(t)

�

�

�

�

t=0
=

∫ ∞

−∞

∂ n

∂ tn
ϕH(t, x)

�

�

�

�

t=0
· p(x)%(x)dx

=

∫ ∞

−∞

∞
∑

i=n

n−1
∏

j=0

p

i − j
t i−n

p

(i − n)!
Hi(x)

�

�

�

�

�

t=0

· p(x)%(x)dx

=

∫ ∞

−∞

p
n!Hn(x)p(x)%(x)dx = 0 ∀n ∈ N0

by assumption, where we used the convention 00 = 1. Hence, Θ(t) has to be identical to zero,
giving

Θ(t) = exp

�

−
t2

2

� ∞
∑

i=0

t i

i!

∫ ∞

−∞
x i p(x)%(x)dx = 0.

We conclude that 〈x i , p(x)〉L2(R,µ) = 0 for all i ∈ N0 and, therefore, p ≡ 0 in L2(R,µ), as the
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monomials generate a dense subspace of L2(R,µ), cf. [192]. �

A product of two HERMITE polynomials is again a polynomial, which can be expressed as
a linear combination of HERMITE polynomials, due to the next important formula, compare
[59, 190] and, in particular, [172]. Extensions of it to more than two HERMITE polynomial
factors can be found in, e.g., [59, 90].

Lemma 5.3 ([172])
For any n, m> 0 it holds

Hn(x)Hm(x) =
∑

p¶min{n,m}

C̄(n, m, p)Hn+m−2p(x) (5.8)

with

C̄(n, m, p) =

√

√

�

n
p

��

m
p

��

n+m− 2p
n− p

�

. (5.9)

4

Proof ([172]) The definition of the generating function ϕH(·) of the HERMITE polynomials
Hn(·) directly yields

ϕH(t, x)ϕH(s, x) =
∞
∑

n=0

∞
∑

m=0

Hn(x)Hm(x)p
n!m!

tnsm. (5.10)

On the other hand, it gives as well

ϕH(t, x)ϕH(s, x) = exp

�

x2

2
−

1
2
(x − t)2 +

x2

2
−

1
2
(x − s)2

�

= exp (st)exp

�

x2

2
−

1
2
(x − (s+ t))2

�

=
∞
∑

p=0

(st)p

p!

∞
∑

i=0

Hi(x)p
i!
(s+ t)i

=
∞
∑

p=0

∞
∑

i=0

Hi(x)
p!

i
∑

j=0

�

i
j

�

1
p

i!
t p+ jsp+i− j .

Now let n = p + j and m = p + i − j. Because j ¶ i, we can reason from p = n− i ¾ 0 and
i − j = m− p ¾ 0 that p ¶min{n, m}. This in return gives (as i = m− p+ j = n+m− 2p)

ϕH(t, x)ϕH(s, x) =
∞
∑

n=0

∞
∑

m=0

∑

p¶min{n,m}

p

(n+m− 2p)!Hn+m−2p(x)

p!(n− p)!(m− p)!
tnsm. (5.11)

Comparing (5.10) and (5.11) finally yields

Hn(x)Hm(x) =
∑

p¶min{n,m}

√

√ n!
p!(n− p)!

m!
p!(m− p)!

(n+m− 2p)!
(n− p)!(m− p)!

Hn+m−2p(x). �

To finish this section, we extend Lemma 5.2.
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Theorem 5.1 ([194])
Let ξ,ζ∼N (0,1) be jointly GAUSSian distributed. Then for all n, m¾ 0 we obtain

E [Hn(ξ)Hm(ζ)] = (E [ξζ])
nδn,m. (5.12)

4

Proof (following [192]) The generating function ϕH(·) and the characteristic function of
joint GAUSSian random variables gives for all s, t ∈ R and ξ,ζ∼N (0,1)

E [ϕH(s,ξ)ϕH(t,ζ)] = E
�

exp

�

sξ−
s2

2

�

exp

�

tζ−
t2

2

��

= exp (stE [ξζ]) .

Now taking the (n+m)-th partial derivative at s = t = 0 yields

∂ n+m

∂ sn∂ tm
E [ϕH(s,ξ)ϕH(t,ζ)]

�

�

�

�s=0
t=0

= E
�

∂ n

∂ sn
ϕH(s,ξ)

�

�

�

�

s=0

∂ n

∂ tn
ϕH(t,ζ)

�

�

�

�

t=0

�

= E
�p

n!Hn(ξ)
p

m!Hm(ζ)
�

and

∂ n+m

∂ sn∂ tm
exp (stE [ξζ])

�

�

�

�s=0
t=0

=
∂ n

∂ sn
(exp (stE [ξζ]) (sE [ξζ])m)

�

�

�

�s=0
t=0

=







0, n 6= m,

n! (E [ξζ])n , n= m.

�

5.2 WIENER Chaos Expansion

In Section 4.1 we have already investigated the KARHUNEN-LOÈVE Expansion (KLE) of a stochas-
tic process {X t}t∈T . Now we will focus on a generalized setting leading to the WIENER chaos
expansion.
To start, let f ∈ L2(R,µ) be a function of a GAUSSian random variable ξ ∈ N (0,1). Then
E
�

f (ξ)2
�

<∞. Thus, the random variable f (ξ) has the FOURIER-HERMITE expansion

f (ξ) =
∞
∑

n=0

fnHn(ξ), (5.13)

since the HERMITE polynomials form an orthonormal basis of L2(R,µ). The coefficients { fn}n¾0

are defined in a FOURIER-like manner via

fn = E [ f (ξ)Hn(ξ)] . (5.14)

This expansion is the simplest form of the one proven by NORBERT WIENER [246]. It has been
generalized by ROBERT CAMERON and WILLIAM MARTIN [56] to hold for arbitrarily distributed
random variables ξ.
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Equation (5.14) directly gives

f0 = E [ f (ξ)]

and through the orthonormality of the HERMITE polynomials we get

V [ f (ξ)] = E
�

f (ξ)2
�

−E [ f (ξ)]2 = E

�∞
∑

n=0

∞
∑

m=0

fn fmHn(ξ)Hm(ξ)

�

− f0
2

=
∞
∑

n=1

fn
2.

Let the truncated series (5.13) be denoted as

f N (ξ) =
N
∑

n=0

fnHn(ξ). (5.15)

It converges fast if f (·) is a very smooth function. The decreasing rate is given through the
following result:

Lemma 5.4 ([172])
Assume f : R → R is a function being k times continuously differentiable. Then the FOURIER-
HERMITE coefficients fn of expansion (5.13) decay as

fn =







(−1)np
n!
E
�

f (n)(ξ)
�

, n¶ k,

(−1)kp
n·...·(n−k+1)

E
�

f (k)(ξ)
�

, n> k,
(5.16)

where the expectation is again with respect to the GAUSSian measure. If f is infinitely often con-
tinuously differentiable, fn decays exponentially

fn =O
�

e−cn
�

with constant c > 0. 4

Convergence results of the expansion (5.13) can be found, e.g., in [50]. Based on Lemma 5.4
one can show that the truncated expansion (5.15) converges in the mean.

An extension to the multi-dimensional case is straightforward. If ξ =
�

ξ1, . . . ,ξnX

�

is a stan-
dard GAUSSian random vector with independent components ξi , 1¶ i ¶ nX , α=

�

α1, . . . ,αnX

�

a finite index with non-negative subindices αi , 1¶ i ¶ nX , and µnX is the nX -multiple GAUSSian
measure, then {Hα}α¾0 is an orthonormal basis of L2(RnX ,µnX )with each Hα(·) defined through

Hα(ξ) =
nX
∏

i=1

Hαi
(ξi). (5.17)

If g : RnX → R, g(ξ) is a function of the random vector ξ with E
�

g(ξ)
�

<∞, then there exists
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a FOURIER-HERMITE expansion of g(ξ) with

g(ξ) =
∑

α

gαHα(ξ), gα = E
�

g(ξ)Hα(ξ)
�

. (5.18)

The expansions developed up to now are the starting point of the so-called Polynomial Chaos
(PC) approaches. Especially in recent years this field has attracted growing attention with
applications ranging from mechanical stress considerations [16] to robust shape optimization
[220, 226]. Introductions to PC and detailed discussions on its strengths and weaknesses can
be found in, e.g., [15, 16, 70, 100, 134, 250].
It also provides an alternative methodology to tackle Optimal Control Problems (OCPs) in-
fluenced by random parameters as we have discussed them in Chapters 2 and 3. However,
especially in the context of the economic recession model the resulting control problems grow
rapidly in the number of variables and, therefore, additional structure exploitations and nu-
merical procedures are indispensable to apply PC ideas to this particular problem.
But let us look upon such an expansion from a different angle. Consider the real, separable
HILBERT space H. Then we define:

Definition 5.3 (Isonormal GAUSSian Process)
A stochastic process W = {W (h) | h ∈ H} defined on a probability space (Ω,F ,P) and over
a HILBERT space H is an isonormal GAUSSian process if W is a centered GAUSSian family of
random variables such that E [W (h)W (g)] = 〈h, g〉H for h, g ∈ H. 4

Example 5.1
A very simple example is to suppose H = R and let ξ ∼ N (0,1) be a standard GAUSSian
random variable. Then {W (a) = aξ | a ∈ R} is an isonormal GAUSSian process over R.

Example 5.2
Let H = L2(T ) with T = [0, tf] and tf being either finite or infinite. Then for each h ∈ L2(T )
we define

W (h) =

∫

T
h(t)dBt

via the ITŌ integral and obtain an isonormal GAUSSian process. This is often also called WIENER

integral of h over T .

From now on we assume that the underlying HILBERT space H is set to be L2(T ). Furthermore,
F is supposed to be generated by the isonormal GAUSSian process W .

Definition 5.4 (n-th WIENER Chaos)
For each n ∈ N0 we denote by Hn the closed linear subspace of L2(Ω,F ,P) generated by the
random variables {Hn(W (h)) | h ∈ L2(T ), ‖h‖L2(T ) =

Æ

〈h, h〉L2(T ) = 1}. This space Hn is called
the n-th WIENER chaos. 4

From that definition we obtain that H0 is the set of constants, H1 coincides with the set of
random variables {W (h) | h ∈ L2(T ), and for n 6= m the spaces Hn and Hm are orthogonal for
the scalar product of L2(Ω,F ,P).
As the sum H0 ⊕H1 ⊕ . . . is direct in L2(Ω,F ,P), we obtain an equivalent statement to the
WIENER-ITŌ chaos expansion of [246] and [56].
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Theorem 5.2 ([113, 194])
The space L2(Ω,F ,P) can be decomposed into the infinite orthogonal sum of subspaces Hn, i.e.,

L2(Ω,F ,P) =
∞
⊕

n=0

Hn. (5.19)

4

As a direct consequence we get:

Corollary 5.1 ([192])
For every random variable X ∈ L2(Ω,F ,P) we obtain a unique expansion

X =
∞
∑

n=0

Xn (5.20)

with Xn ∈Hn. This series converges in L2(Ω,F ,P). 4

Suppose now {mi(·)}i∈N is a basis of our HILBERT space L2(T ). Further on, I be the set of all
multi-indices α= (α1,α2, . . .) defined via

I def
= {α= (αi)i∈N |αi ∈ N0∀i ∈ N} (5.21)

such that all components, except a finite number of them, are equal to zero. Let |α|=
∑∞

i=1αi

be the order of the multi-index α. Then for any α ∈ I we define

Ψα
def
=
∞
∏

i=1

Hαi
(W (mi)) (5.22)

and obtain that the family of random variables {Ψα | α ∈ I} is an orthonormal system, i.e.,

E
�

ΨαΨβ
�

= E

�∞
∏

i=1

Hαi
(W (mi))Hβi

(W (mi))

�

=
∞
∏

i=1

E
�

Hαi
(W (mi))Hβi

(W (mi))
�

=
∞
∏

i=1

δαi ,βi
= δα,β .

This yields the following statement:

Theorem 5.3 ([194])
For any n ∈ N the random variables {Ψα | α ∈ I, |α| = n} form a complete orthonormal system
in Hn. Hence, {Ψα | α ∈ I} is a complete orthonormal system in L2(Ω,F ,P). 4

Based on these constructions we obtain a WIENER chaos expansion of random processes {X t}t∈T
that are determined by the BROWNian motion {Bt}t∈T and, thus, itself GAUSSian processes. In
particular, we directly get a FOURIER-HERMITE expansion of the BROWNian motion itself again.

With the basis {mi(·)}i∈N of L2(T ) (with T = [0, tf]) we denote the independent, standard

92



W I E N E R C H A O S A N D M A L L I AV I N C A L C U L U S
�

� CHAPTER 5

GAUSSian random variables

ηi =W (mi) =

∫ tf

0

mi(t)dBt . (5.23)

and reason the following result.

Theorem 5.4 ([172])
The standard BROWNian motion {Bt}t∈T has for all t ∈ T the FOURIER-HERMITE expansion

Bt =
∞
∑

i=1

ηi

∫ t

0

mi(s)ds (5.24)

with independent ηi ∼N (0,1) for all i ∈ N. 4

Proof ([172]) Let 1[0,t](·) again be the characteristic function of the interval [0, t]. 1[0,t](·) ∈
L2(T ) and it has the expansion

1[0,t](s) =
∞
∑

i=1

〈1[0,t](·), mi(·)〉L2(T )mi(s) =
∞
∑

i=1

mi(s)

∫ t

0

mi(u)du,

yielding

Bt =

∫ t

0

dBs =

∫ tf

0

1[0,t](s)dBs =

∫ tf

0

∞
∑

i=1

mi(s)

∫ t

0

mi(u)du dBs

=
∞
∑

i=1

∫ t

0

mi(u)du

∫ tf

0

mi(s)dBs =
∞
∑

i=1

ηi

∫ t

0

mi(u)du. �

The expansion (5.24) converges in the mean-square sense. Furthermore, in comparison with
Definition 5.4 and (5.20) we note that it consists only of elements of the chaos space H1.
E.g., consider the basis {mi(·)}i∈N of the HILBERT space L2([0, 1]) given through the cosine
functions

mi(t) =
p

2cos
��

i −
1
2

�

πt
�

, t ∈ [0, 1], i ∈ N. (5.25)

Then (5.24) coincides with the KLE (4.8) of the BROWNian motion with convergence rate 1
πN ,

where N denotes the order of truncation.
To obtain a first basis family of the HILBERT space L2([0, tf]), we can generalize (5.25) by

mi(t) =

√

√ 2
tf

cos
��

i −
1
2

�

πt
tf

�

, t ∈ [0, tf], i ∈ N. (5.26)

A second choice are the shifted cosine functions

m1(t) =
1
p

tf
, m j(t) =

√

√ 2
tf

cos
�

( j − 1)
πt
tf

�

, j ¾ 2, t ∈ [0, tf]. (5.27)

Because [252] shows that the particular choice of the complete, orthonormal basis of the
underlying L2-space is unimportant in the construction of the BROWNian motion, another pos-

93



CHAPTER 5
�

� W I E N E R C H A O S A N D M A L L I AV I N C A L C U L U S

sibility are the HAAR wavelets [104, 132] in L2([0, 1]) given through

m(0)1 (t) = 1, t ∈ [0,1], (5.28a)

and

m(n)k (t) =



















2
n−1

2 , k−1
2n ¶ t < k

2n ,

−2
n−1

2 , k
2n ¶ t < k+1

2n ,

0, otherwise,

(5.28b)

for all n ¾ 1 and k ∈ I(n), where I(n) is the set of odd integers between 0 and 2n. Then the
BROWNian motion process {Bt}t∈[0,1] can be expanded [132, 167] as

Bt =
∞
∑

i=0

∑

j∈I(i)

η
(i)
j

∫ t

0

m(i)j (s)ds, t ∈ [0, 1], (5.29)

with independentη(i)j ∼N (0, 1) for all i, j. Often, the appearing integrals M (i)j (·)
def
=
∫ ·

0 m(i)j (s)ds
are referred to as SCHAUDER functions.
As a generalization of Equation (5.13) and following from Theorem 5.2 and Corollary 5.1 we
obtain the next result.

Theorem 5.5 ([56])
Assume that for any t ∈ T the random variable X t is a functional of the BROWNian motion and
X ∈ L2(Ω,F ,P). Then X t has the FOURIER-HERMITE expansion

X t =
∑

α∈I
xα(t)Ψ

α(η) (5.30)

with Ψα(η) defined via (5.22) and (5.23). 4

Remark 5.2
As for the simple expansion (5.13), we derive the moments of the process {X t}t∈T directly as

E [X t] = x0(t), V [X t] =
∑

α∈I
α6=0

xα
2(t). (5.31)

Analogously, all higher moments can be expressed only by means of the coefficients xα(·) as
well.

For computational reasons throughout the rest of this work, we add the following useful results,
cf. [172]. As a generalization of Lemma 5.3 we have:

Lemma 5.5 ([172])
The product of two basis polynomials Ψ · is given as

Ψα(η)Ψβ(η) =
∑

γ¶min{α,β}

C̄(α,β ,γ)Ψα+β−2γ(η) (5.32)

with C̄(·) determined as in (5.9). 4
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Therein, all multi-index operations are defined component-wise, i.e., min{α,β}= (min{αi ,βi})i∈N,
α!=

∏∞
i=1αi!, α+β = (αi + βi)i∈N, and α¶ β holds if αi ¶ βi for all i ∈ N.

Theorem 5.6 ([172])
Given the two chaos expansions

X t =
∑

α∈I
xα(t)Ψ

α(η), Yt =
∑

β∈I
yβ(t)Ψ

β(η),

and E
�

|X t Yt |2
�

<∞, the product X t Yt has the chaos expansion

X t Yt =
∑

α∈I

∑

γ∈I

∑

0¶β¶α

C(α,β ,γ)xα−β+γ(t)yβ+γ(t)Ψ
α(η). (5.33)

with the constant

C(α,β ,γ) =

√

√

�

α

β

��

β + γ
γ

��

α−β + γ
γ

�

. (5.34)

4

Remark 5.3
The following proof originates from [172]. We quote it as an introduction to the discussing
Remark 5.4, which considers possible difficulties with Equation (5.33).

Proof ([172]) From Lemma 5.5 we get

X t Yt =
∑

α∈I

∑

β∈I
xα(t)yβ(t)

∑

γ¶min{α,β}

C̄(α,β ,γ)Ψα+β−2γ(η).

Then let ϑ = α−γ and ν= β−γ, whereas the condition γ¶min{α,β} is equivalent to ϑ ¾ 0,
ν¾ 0. Hence, we can rewrite the above summation as

X t Yt =
∑

ϑ∈I

∑

ν∈I

∑

γ∈I
xϑ+γ(t)yν+γ(t)C̄(ϑ+ γ,ν+ γ,γ)Ψ

ϑ+ν(η).

In the next step, denote κ= ϑ+ ν, then ϑ = κ− ν¾ 0 and 0¶ ν¶ κ, yielding

X t Yt =
∑

κ∈I

∑

ϑ+ν=κ

∑

γ∈I
xϑ+γ(t)yν+γ(t)C̄(ϑ+ γ,ν+ γ,γ)Ψ

κ(η)

=
∑

κ∈I

∑

0¶ν¶κ

∑

γ∈I
xκ−ν+γ(t)yν+γ(t)C̄(κ− ν+ γ,ν+ γ,γ)Ψκ(η).

Defining C(κ,ν,γ)
def
= C̄(κ− ν+ γ,ν+ γ,γ) finishes the proof. �

Remark 5.4
In [184] the convergence behavior of products of one-dimensional chaos expansions is ana-
lyzed in detail. In particular, it is shown that given two random variables u(ξ), v(ξ) ∈ L2(Ω,F ,P)
depending on ξ ∈ L2(Ω,F ,P) and their corresponding chaos expansions, the chaos coefficients
of the product can not always be described by the product formula (5.33). To guarantee its
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applicability, certain additional conditions are necessary, i.e., one needs for all n ∈ N

‖u(ξ)Ψn(ξ)‖L2(Ω) <∞, ‖v(ξ)Ψn(ξ)‖L2(Ω) <∞,

and, in particular,

∞
∑

p=0

n
∑

j=0

�

�C(n, j, p)u j+pvn− j+p

�

�<∞, (5.35)

which is a more precise condition than E
�

|uv|2
�

<∞ from Theorem 5.6.
In other words, one has to ensure that the rearrangement of coefficients—which is an essential
step in the proof of Theorem 5.6—is allowed, i.e., one has to require absolute convergence.
In [184] it is furthermore shown that this condition is satisfied if the series u(pu)v(pv), that is
the series of the product of the chaos expansions of u and v truncated at the orders pu and pv ,
respectively, converges in the mean-square sense to uv for pu, pv →∞.
A vivid interpretation of this condition is that one has to ensure a sufficient decaying rate
of the chaos expansion coefficients. However, throughout our numerical computations in the
subsequent Chapters 6 and 8 we did not encounter any problems related to that issue in our
context of multi-variate GAUSSIAN random variables and the chaos expansions of stochastic
processes depending on them. In all instances, the chaos coefficients decreased very fast in
magnitude, which is why we always assume the additional condition on absolute convergence
to be fulfilled in the sequel.
An alternative formula to derive the product of the chaos expansions of random variables X t

and Yt , which does not necessitate condition (5.35), can be derived by using Lemmata 5.3 and
5.5.

5.3 MALLIAVIN Calculus

The field of MALLIAVIN calculus is a very broad infinite dimensional differential calculus, act-
ing on GAUSSian processes. Thus, it provides an analogue to common differential calculus in a
stochastic environment. Originating from the work of PAUL MALLIAVIN [177], exhaustive pre-
sentations of this topic can be found in [125, 153, 178, 192, 194]. Here, we restrict ourselves
only to those parts of MALLIAVIN calculus necessary throughout the rest of this work. In that
regard we focus again on the specific setting where we consider the underlying HILBERT space
H = L2(T ) for a given time set T = [0, tf]. Again, the filtration F we assume to be generated
by W . For notational ease by L2(Ω) we always mean L2(Ω,F ,P).

The Derivative Operator

The most important element of MALLIAVIN calculus we need is the derivative of a random
variable X ∈ L2(Ω). However, we cannot apply the classical ideas to differentiating X with
respect to ω ∈ Ω as usually the probability space does not hold the structure to define that
derivative. Moreover, random variables are in general defined only almost everywhere. The
remedy to that problem is considering a derivative with respect to the element h ∈ L2(T ), i.e.,
taking an isonormal GAUSSian process W over an HILBERT space as the basis.
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Definition 5.5 (Smooth Random Variable)
Let F be a random variable given through

F = f (W (h1), . . . , W (hn)) (5.36)

with n ∈ N, f : Rn → R being infinitely often continuously differentiable, such that f and its
partial derivatives ∂ f

∂ x i
have at most polynomial growth, and hi ∈ L2(T ) for all i = 1, . . . , n. Then

such a random variable F is said to be smooth. 4

Lemma 5.6 ([194])
The space S of smooth random variables is dense in L2(Ω). 4

Definition 5.6 (MALLIAVIN Derivative)
Let F be a smooth random variable defined by (5.36). The MALLIAVIN derivative of F (with respect
to W) is the L2(T )-valued random variable given through

DF =
n
∑

i=1

∂

∂ x i
f (W (h1), . . . , W (hn)) · hi . (5.37)

4

Example 5.3
From the definition of the MALLIAVIN derivative we directly obtain DW (h) = h and DBt =
DW (1[0,t]) = 1[0,t].

Furthermore, DF can be interpreted as a directional derivative in the following sense. For any
h ∈ L2(T ) we have

〈DF, h〉L2(T ) = lim
ε→0

1
ε

�

f
�

W (h1) + ε〈h1, h〉L2(T ), . . . , W (hn) + ε〈hn, h〉L2(T )
�

− f (W (h1), . . . , W (hn))
�

.

The iteration of the derivative operator D is defined via:

Definition 5.7 (k-th MALLIAVIN Derivative)
Let F be a smooth random variable and k ∈ N. Then the k-th MALLIAVIN derivative of F is a
random variable taking values from the space L2(T )⊗k = L2(T )⊗ · · · ⊗ L2(T )

︸ ︷︷ ︸

k times

, i.e.,

DkF =
n
∑

i1,...,ik=1

∂ k

∂ x i1 · · ·∂ x ik

f (W (h1), . . . , W (hn)) · hi1 ⊗ · · · ⊗ hik . (5.38)

4

Of great importance for the remainder of this work is the next result, which provides the basic
form of the integration by parts formula of MALLIAVIN calculus.

Lemma 5.7 ([194])
Suppose F is a smooth random variable and h ∈ L2(T ). Then the integration by parts formula

E
�

〈DF, h〉L2(T )
�

= E [FW (h)] (5.39)

holds. 4
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From Equation (5.39) we obtain the rule for calculating the derivative of a product of random
variables.

Lemma 5.8 ([194])
Let F, G ∈ S and h ∈ L2(T ). Then it holds

E
�

G〈DF, h〉L2(T )
�

= E
�

FGW (h)− F〈DG, h〉L2(T )
�

. (5.40)

4

Proof ([194]) From the definition of MALLIAVIN’s derivative and the product rule of classical
differential calculus we deduce D(FG) = F · DG + DF · G. Inserting this relation into (5.39)
yields the assertion. �

Theorem 5.7 ([194])
The operator D is closable from L2(Ω) to L2(T ×Ω). 4

We will denote the domain of the derivative operator D by D1,2. That is, D1,2 is the closure of
the class S of smooth random variables with respect to the norm ‖ · ‖1,2 defined through the
scalar product

〈F, G〉1,2 = E [FG] +E
�

〈DF, DG〉L2(T )
�

∀F, G ∈ D1,2.

Certainly, closability follows for the k-th MALLIAVIN derivative Dk as well, provided the norm
‖ · ‖k,2 defined by an analogous scalar product including all derivatives up to order k.

Remark 5.5
In the context of a general real-valued, separable HILBERT space H the derivative operator is
closable from L2(Ω) to L2(Ω; H), where L2(Ω; H) is the class of H-valued random elements Z
that are F -measurable and such that E

�

‖Z‖2H
�

<∞. In the case H = L2(T ) this class can be
identified with L2(T ×Ω), cf. [194].

As we consider the underlying HILBERT space L2(T ), the derivative of a random variable F ∈
D1,2 is again a stochastic process {Dt F}t∈T . Dt F is defined almost everywhere with respect to
the measure µ⊗P. Similarly, the k-th MALLIAVIN derivative of a random variable F ∈ Dk,2 is a
measurable function in the space L2(T k ×Ω). Hence, it is a k-parameter stochastic process

DkF =
¦

Dk
t1,...,tk

F
©

t i∈T , i=1,...,n

To complete the suite of instruments to use the MALLIAVIN derivative later on, we state the
chain rule.

Theorem 5.8 ([153, 194])
Let f = (F1, . . . , FnF

) be a vector of random variables with Fi ∈ D1,2, i = 1, . . . , nF , and g : RnF →
R be continuously differentiable with bounded partial derivatives. Then g( f ) ∈ D1,2 and the chain
rule

Dg( f ) =
nF
∑

i=1

∂

∂ x i
g( f )DFi (5.41)

for the MALLIAVIN derivative holds. 4
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Example 5.4
Consider the basis polynomials Ψα introduced in (5.22) for fixed α ∈ I. Exploiting the rule
(5.2) for differentiating HERMITE polynomials and the definition (5.23) of the standard GAUSSian
random variables ηi , i ∈ N, we deduce

DsΨ
α(η) = Ds

�

p
α!
∞
∏

i=1

Hαi
(W (mi))

�

=
∞
∑

j=1

p
α!
∞
∏

i=1
i 6= j

Hαi
(W (mi)) ·Hα j−1(W (m j)) ·m j(s)

=
∞
∑

j=1

p

α jm j(s)Ψ
α−( j)(η) (5.42)

with the diminished multi-index α−( j) defined through

α−i ( j) =







αi , i 6= j,

αi − 1, i = j.
(5.43)

Remark 5.6
Note that whenever the diminished multi-index α−( j) has a negative component, it is not a
valid element of the index set I anymore.

The Divergence Operator

While in classical calculus we have the well-known connection between differentiation and
integration, in the context of MALLIAVIN calculus the pendant to an integral is defined in the
following way, cf. [194]. Note, that we identify the underlying HILBERT space H= L2(T ).

Definition 5.8 (Divergence Operator)
By δ we denote the adjoint of the operator D. That is, δ is an unbounded operator on L2(T ×Ω)
with values in L2(Ω) such that

(i) the domain of δ, Domδ, is the set of L2(T )-valued, square-integrable random variables
v ∈ L2(T ×Ω) with

�

�E
�

〈DF, v〉L2(T )
��

�¶ c‖F‖2 for all F ∈ D1,2 and a constant c depending
only on v,

(ii) if v ∈ Domδ then δ(v) is the element of L2(Ω) with

E [Fδ(v)] = E
�

〈DF, v〉L2(T )
�

∀F ∈ D1,2. (5.44)

δ is also called divergence operator. As the adjoint of an unbounded and densely defined operator
it is closed as well. 4

Example 5.5
From taking F = 1 in (5.44) we see that E [δ(v)] = 0 for all v ∈ Domδ.
Consider v ∈ S(L2(T )) given by v = Xh with h ∈ L2(T ). Then X ∈ Domδ and for all Y ∈ D1,2

we get

E [Yδ(v)] = E
�

〈DY, v〉L2(T )
�

= E
�

X 〈DY, h〉L2(T )
�

= E
�

Y
�

XW (h)− 〈DX , h〉L2(T )
��
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by Equation (5.40).

Moreover, the divergence operator is linear and we can derive a commutativity relation be-
tween the derivative D and the divergence δ:

Theorem 5.9 ([153, 194])
Let v ∈ D1,2(L2(T )) ⊂ Domδ, 〈Dv, h〉L2(T ) ∈ Domδ, and h ∈ L2(T ). Then the HEISENBERG

commutativity relationship

〈D(δ(v)), h〉L2(T ) = 〈v, h〉L2(T ) +δ
�

〈Dv, h〉L2(T )
�

(5.45)

holds. 4

Another important property is given by the next result. It allows to factor out scalar random
variables from a divergence.

Theorem 5.10 ([192])
Let F ∈ D1,2 and v ∈ Domδ such that F v ∈ L2(T ×Ω). Then F v ∈ Domδ and the equality

δ(F v) = Fδ(v)− 〈DF, v〉L2(T ) (5.46)

is true if the right-hand side of (5.46) is square-integrable. 4

Proof ([192]) For any smooth random variable G with compact support we derive, using
Lemma 5.8,

E [Fδ(F v)] = E
�

〈DG, F v〉L2(T )
�

= E
�

〈D(FG), v〉L2(T ) − G〈DF, v〉L2(T )
�

= E
�

FGδ(v)− G〈DF, v〉L2(T )
�

= E
�

G
�

Fδ(v)− 〈DF, v〉L2(T )
��

. �

Due to our choice of underlying HILBERT space, we have Domδ ⊂ L2(T ×Ω) and its elements
are, thus, square-integrable processes. With this setting the divergence is often called SKORO-
HOD integral of v. In the case of v ∈ L2

A(T ×Ω), i.e., v being an adapted process, the SKOROHOD

integral and the ITŌ integral coincide [194], we have

δ(v) =

∫

T
vt dBt .

Hence, we obtain another version of the integration by parts formulae (5.39) and (5.44),
holding for restrictions to the time interval [t0, t] ⊆ T .

Lemma 5.9
Let {X t}t∈T be a square-integrable and Ft -measurable random variable. Then for all F ∈ D1,2 we
obtain the relation

E

�

F

∫ t

t0

Xs dBs

�

= E

�

∫ t

t0

DsFXs ds

�

. (5.47)

4
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Proof With {X̃ t}t∈T denoting the restriction of the original process X on the time interval
[t0, t] we calculate

E

�

F

∫ t

t0

Xs dBs

�

= E
�

F

∫

T
Xs ·1s∈[t0,t] dBs

�

= E
�

Fδ(X̃ )
�

= E
�

〈DF, X̃ 〉L2(T )
�

= E
�∫

T
DsF · Xs ·1s∈[t0,t] ds

�

= E

�

∫ t

t0

DsFXs ds

�

. �

Multiple WIENER Integrals

The original chaos expansion of a random variable F ∈ L2(Ω) introduced by NORBERT WIENER

[246] does not consist of HERMITE polynomials. Instead it is based on multiple stochastic
integrals:

Theorem 5.11 (WIENER Chaos Expansion; [246])
Any square-integrable random variable F ∈ L2(Ω,F ,P), where the filtration F is generated by
the BROWNian motion B, admits the expansion

F =
∞
∑

n=0

In( fn), (5.48)

where In(·) denotes the multiple stochastic integral

In( fn) =

∫

T
· · ·
∫

T
︸ ︷︷ ︸

n times

fn(t1, . . . , tn)dBt1
. . . dBtn

(5.49)

for fn ∈ L2(T n). Then it holds f0 = E [F] with the identity mapping I0(·). Additionally, we can
assume that the kernel functions fn ∈ L2(T n) are symmetric and uniquely determined by F. 4

Similar to the HERMITE polynomials, appropriate rules for multiplying multiple stochastic in-
tegrals can be deduced [125, 192, 194].
If F now is a square-integrable random variable with chaos expansion (5.48), its MALLIAVIN

derivative can be computed using the next results.

Theorem 5.12 ([192, 194])
Let F ∈ D1,2 be given through (5.48). Then we have

Dt F =
∞
∑

n=1

nIn−1( fn(·, t)). 4

Proof ([192]) We start by showing by induction that for all n ∈ N, h ∈ L2(T )⊗n, we have
δn(h) ∈ D1,2 and

Dδn(h) = nδn−1(h), (5.50)
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where δn is the adjoint of the operator Dn, i.e., the n-th divergence or SKOROHOD integral. For
n = 1 this is a direct consequence of the HEISENBERG commutativity relation (5.45). Now let
(5.50) be true. For any g ∈ L2(T )⊗(n+1) we deduce

Dδn+1(g) = Dδ(δn(g)) = δn(g) +δ(Dδn(g))

= δ(nδn−1(g)) +δn(g) = (n+ 1)δn(g).

With this result at hand, we obtain for any F = In( fn) that

DF = DIn( fn) = Dδn( fn) = nδn−1( fn) = nIn−1( fn),

yielding the assertion. �

With the help of these preliminary statements, we find that the necessary connection between
the HERMITE polynomials Hn(·) and the multiple stochastic integrals In(·) is given through the
next important result.

Theorem 5.13 ([124, 192, 194])
Let h ∈ L2(T ) with ‖h‖L2(T ) = 1 be given. Then for any n ∈ N the connection

p
n!Hn(W (h)) = In(h

⊗n) (5.51)

holds. Furthermore, the multiple integral In(·) maps L2(T n) onto the WIENER chaos Hn. 4

Proof ([192]) We show Equation (5.51) by induction on n. For n= 1

H1(W (h)) =W (h) =

∫

T
h dBt = I1(h).

Now assume the assertion holds for all orders 1, . . . , n. Then with the correspondence to the
divergence operator and using the integration by parts formula we calculate

In+1(h
⊗(n+1)) = δ(In(h

⊗n)h)

= In(h
⊗n)δ(h)− 〈DIn(h

⊗n), h〉L2(T )

= In(h
⊗n)W (h)− nIn−1(h

⊗(n−1)) · ‖h‖2L2(T )

=
p

n!Hn(W (h)) ·W (h)− n
Æ

(n− 1)!Hn−1(W (h))

=
p

n!
�

Hn(W (h)) ·W (h)−
p

nHn−1(W (h))
�

=
Æ

(n+ 1)!Hn+1(W (h)).

Then let L2
S(T

n) be the closed subspace of L2(T ) consisting of symmetric functions. On L2
S(T

n)
it holds E

�

In( f )2
�

= n!‖ f ‖2L2(T n). Thus, the image In(L2
S(T

n)) is closed and it contains the

random variables Hn(W (h)), h ∈ L2(T ), ‖h‖L2(T ) = 1. Therefore, the chaos Hn is a sub-
set of L2

S(T
n). As multiple integrals of different order are (as the corresponding HERMITE

polynomials) orthogonal, it holds that In(L2
S(T

n)) is orthogonal to Hm for n 6= m. Hence,
Hn = In(L2

S(T
n)). �

To finish this chapter we provide a useful connection between multiple integrals, MALLIAVIN

calculus, and the WIENER chaos expansion (5.30) of a stochastic process {X t}t∈T . From (5.51)
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we find that given a basis {mi(·)}i∈N of L2(T ), for any α ∈ I with |α|= p it holds [194]

Ψα(η) =
∞
∏

i=1

Hαi
(W (mi)) =

∞
∏

i=1

1
p

αi!
Iαi

�

m⊗αi
i

�

=
1
p
α!

Ip

�∞
⊗

i=1

m⊗αi
i

�

. (5.52)

By applying the integration-by-parts formula we then derive

xα(t) = E [X tΨ
α(η)] =

1
p
α!
E

�

�

DpX t ,
∞
⊗

i=1

m⊗αi
i

�

L2(T )⊗p

�

. (5.53)

Example 5.6
If {X t}t∈T = {Bt}t∈T we have DsBt = 1{s¶t}. Thus, the coefficients of the chaos expansion for
p = |α| are

p = 0 : x0(t) = E [Bt] = 0,

p = 1 : xei
(t) = E

�

〈DBt , mi〉L2(T )
�

=

∫ t

0

mi(s)ds
def
= Mi(t), i ∈ N,

p ¾ 2 : xα(t) = E
�




0,⊗m⊗αi
i

�

L2(T )⊗p

�

= 0.

Example 5.7
Consider the geometric BROWNian motion process {X t}t∈T on T = [0, tf] determined by the
Stochastic Differential Equation (SDE)

dX t = µX t dt +σX t dBt , X0 = x0.

This process has the analytical solution

X t = x0 exp

��

µ−
σ2

2

�

t +σBt

�

,

giving its MALLIAVIN derivative DsX t = σX t1[0,t](s). Hence, we derive the coefficients of the
chaos expansion for p = |α| as

p = 0 : x0(t) = E [X t] = x0 eµt ,

p = 1 : xei
(t) = E

�

〈σX t1[0,t](·), mi(·)〉L2(T )
�

= E
�

σX t

∫ t

0

mi(s)ds

�

= x0σ eµt Mi(t), i ∈ N,

p = 2 : xα(t) =
1
p
α!
E
�




σ2X t ·1[0,t](·)1[0,t](·),⊗m⊗αi
i (·)

�

L2(T )⊗2

�

=







1p
2
E
�




σ2X t1[0,t](·), m⊗2
i (·)

�

L2(T )⊗2

�

, α= 2ei , i ∈ N,

E
�




σ2X t1[0,t](·), mi(·)⊗m j(·)
�

L2(T )⊗2

�

, α= ei + e j , i 6= j ∈ N,

=







1p
2

x0σ
2 eµt (Mi(t))

2 , α= 2ei , i ∈ N,

x0σ
2 eµt Mi(t)M j(t), α= ei + e j , i 6= j ∈ N,
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p ¾ 3 : xα(t) =
1
p
α!
E
�




σpX t ·1[0,t](·),⊗m⊗αi
i (·)

�

L2(T )⊗p

�

=
1
p
α!

x0σ
p eµt

∞
∏

i=1

(Mi(t))
αi .

Finally, if X t ∈ L2(T ×Ω) is a random variable belonging to the domain spaceD∞,2 =
⋂

k¾1D
k,2

admitting a chaos expansion

X t =
∞
∑

n=0

In (ξn(t1, . . . , tn; t))

with symmetric kernel functions ξn(·), then for every n¾ 0 we have [194, 232]

ξn(·; t) =
1
n!
E
�

Dn
· X t

�

. (5.54)

5.4 Summary

In this chapter we discussed the two different notions of WIENER chaos expansion—the first
constructed in a FOURIER-like manner and based upon multi-dimensional HERMITE polynomi-
als of random basis functions, the second consisting of multiple stochastic integrals.
Moreover, we gave an introduction to MALLIAVIN calculus, a stochastic counterpart of differen-
tial calculus, providing the essential MALLIAVIN derivative. With the help of this methodology
we explored the connection of the two expansion types, constituting the fundaments of find-
ing chaos decompositions of stochastic processes that are determined by SDEs. This will be
considered in the following chapter.
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6 Numerical Solution to Stochastic
Differential Equations Using the WIENER

Chaos Approach

In this chapter we present methods to solve Stochastic Differential Equations (SDEs) numeri-
cally. As finding an analytical solution to those equations is in fact even more complicated than
in the deterministic context, the need for such numerical approximations is immense. We start
by exemplary discussing techniques that are related to deterministic numerical integration
schemes like the EULER method.
Afterwards we develop a connection between SDEs and systems of Ordinary Differential Equa-
tions (ODEs) by applying the ideas of the previous chapter. This leads us to the so-called
propagator method for solving SDEs. We present the truncations that are necessary to use the
propagator numerically and develop an error analysis of the truncated chaos expansion.

6.1 Numerical Integration of Stochastic Differential Equations

As we have noticed in Chapter 4 when defining the ITŌ stochastic integral, its integrand func-
tion has to be evaluated at the left-hand endpoint of the discretization interval. Hence, deriving
a numerical scheme to integrate a SDE needs much more care then in the deterministic case,
where the integrand of a RIEMANN integral can be evaluated at any point of the interval. To
remain consistent with ITŌ stochastic calculus, the numerical schemes for deducing approx-
imative solutions to SDEs are based on stochastic TAYLOR expansions. The underlying theory
can be found in, e.g., [126, 141, 142], here we only give a very brief overview to explain
the general approach. To begin, let us take a closer look at the easiest stochastic integration
method, analogous to the deterministic EULER scheme.

6.1.1 The EULER-MARUYAMA Scheme

We consider the one-dimensional ITŌ SDE

X t = X t0
+

∫ t

t0

b(s, Xs)ds+

∫ t

t0

σ(s, Xs)dBs (6.1)

in its integral from over the time horizon T = [t0, tf] for a given initial value X t0
. Then the

stochastic counterpart of the famous EULER method, the EULER-MARUYAMA scheme for the
SDE (6.1) is obtained as we discretize the time interval T by t0 < t1 < . . .< tN = tf and get a
time-discrete stochastic process {Yt}t∈T following the recursion

Yn+1 = Yn + b(tn, Yn)∆n +σ(tn, Yn)∆Bn (6.2)
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for n = 0, . . . , N − 1 and with initial value Y0 = X t0
, where Yn always denotes Y (tn), ∆n =

tn+1 − tn, and ∆Bn = Btn+1
− Btn

.

In numerical applications often equidistant time step sizes ∆n = h are used. Furthermore,
the scheme (6.2) and the subsequently presented ones are usually referred to as continuous,
although they virtually only define values at the discretization points. If necessary, the inter-
mediate instants are interpolated either piecewise constantly or linearly.

In comparison to the deterministic EULER scheme we would obtain for a vanishing diffusion co-
efficient σ(·), the recursion (6.2) is depending on the random increments∆Bn of the standard
BROWNian motion process {Bt}t∈T included through the ITŌ integral. However, from Defini-
tion 4.3 and Corollary 4.1 we know that ∆Bn are independent GAUSSian random variables
with

E [∆Bn] = 0, E
�

(∆Bn)
2�=∆n.

Thus, within the numerical integration scheme (6.2) one is dependent on using independent
GAUSSian random variables which are obtained, e.g., by pseudo-random number generators,
cf. [103, 142, 189]. The generalization to multi-dimensional stochastic process {Xt}t∈T is
straightforward.

To classify the integration schemes for solving SDEs we distinguish usually between strong
and weak convergence. Consequently, we also differentiate strong and weak approximation
schemes, depending on whether the obtained realizations of the stochastic process or only
their probability distributions are required to be of desired quality.

Definition 6.1 (Strong/Weak Convergence of Order p/q)
Let T = [t0, tf] be a given fixed time interval and Xt the exact nX -dimensional solution to a SDE
at time instant t ∈ T . Y∆t be the approximate solution obtained through a numerical integration
scheme with maximum step size ∆=maxn∆n for a given partition t0 < t1 < . . .< tN = tf of T .
Then the numerical scheme is said to converge with strong order p if, for sufficiently small ∆,

E
h
�

�

�Y∆tf
− Xtf

�

�

�

i

¶ C∆p ∆→∞−−−−→ 0 (6.3)

with constant C independent of ∆, and to converge with weak order q if
�

�

�E
�

ϕ(Y∆tf
)
�

−E
�

ϕ(Xtf
)
�

�

�

�¶ D∆q ∆→∞−−−−→ 0 (6.4)

for all test functions ϕ : RnX → R being sufficiently often continuously differentiable, having,
together with their partial derivatives, polynomial growth, and with constant D depending only
on the function ϕ and tf. 4

The EULER-MARUYAMA scheme (6.2) has strong order p = 1
2 . Under specific assumptions on

the diffusion term, e.g., for σ depending only on time, strong convergence of order p̃ = 1 is
achieved [141]. If drift and diffusion coefficients are four times continuously differentiable the
scheme converges with weak order q = 1 [141, 183].
However, for weak convergence to hold it is only necessary to approximate the measure in-
duced by the stochastic process {X t}t∈T , meaning that the increments ∆Bn can be replaced
by random variables ∆Wn with merely similar moments. Therefore, in the weak sense the
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EULER-MARUYAMA recursion (6.2) can be simplified to

Yn+1 = Yn + b(tn, Yn)∆n +σ(tn, Yn)∆Wn

with ∆Wn being independent, Ftn+1
-measurable random variables satisfying the moment con-

dition

|E [∆Wn]|+
�

�E
�

(∆Wn)
3
��

�+
�

�E
�

(∆Wn)
2 −∆n

��

�¶ C∆n
2.

E.g., one may choose ∆Wn to take only the values ±
p

∆n with probability 1
2 each.

To obtain higher order schemes more information about the behavior of the BROWNian mo-
tion is necessary than the simple approximation by∆Bn can provide. Hence, stochastic TAYLOR

expansions including multiple stochastic integrals need to be applied in order to remain con-
sistent with ITŌ calculus. The sole adaptation of sophisticated deterministic schemes in most
cases does not meet this stipulation.

6.1.2 Stochastic TAYLOR Expansions

Again, we consider the SDE (6.1) in integral form over t ∈ T = [t0, tf] with the drift and
diffusion coefficient function b and σ being sufficiently smooth. Applying ITŌ’s formula (4.22)
to the scalar function f (t, X t) yields

f (t, X t) = f (t0, X t0
) +

∫ t

t0

L0 f (s, Xs)ds+

∫ t

t0

L1 f (s, Xs)dBs,

where we have introduced differential operators L0 and L1 defined through

L0 =
∂

∂ t
+ b(·)

∂

∂ x
+

1
2
σ(·)2

∂ 2

∂ x2
, L1 = σ(·)

∂

∂ x
. (6.5)

Now the idea of a stochastic TAYLOR expansion is to apply ITŌ’s formula to the integrand
functions, i.e., f (t, x) = b(t, x) and f (t, x) = σ(t, x), and inserting the results in the original
SDE, giving

X t = X t0
+

∫ t

t0

�

b(t0, X t0
) +

∫ s

t0

L0 b(u, Xu)du+

∫ s

t0

L1 b(u, Xu)dBu

�

ds

+

∫ t

t0

�

σ(t0, X t0
) +

∫ s

t0

L0σ(u, Xu)du+

∫ s

t0

L1σ(u, Xu)dBu

�

dBs

= X t0
+ b(t0, X t0

)(t − t0) +σ(t0, X t0
)(Bt − Bt0

) + R1(t0, t) (6.6)

with the remainder term

R1(t0, t) =

∫ t

t0

∫ s

t0

L0 b(u, Xu)du ds+

∫ t

t0

∫ s

t0

L1 b(u, Xu)dBu ds

+

∫ t

t0

∫ s

t0

L0σ(u, Xu)du dBs +

∫ t

t0

∫ s

t0

L1σ(u, Xu)dBu dBs.
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If we neglect the remainder R1(t0, t) in (6.6) we obtain the previously introduced EULER-
MARUYAMA integration scheme. Higher order recursions are deduced by applying ITŌ’s formula
successively to the integrand function of the remainder term. As R1(t0, t) admits already four
possible starting points, the number of integration schemes obtainable by that approach is
enormous. A very prominent choice is using the integrand L1σ(·) of the double ITŌ integral,
resulting in the expansion

X t = X t0
+ b(t0, X t0

)(t − t0) +σ(t0, X t0
)(Bt − Bt0

)

+L1σ(t0, X t0
)

∫ t

t0

∫ s

t0

dBu dBs + R2(t0, t) (6.7)

with

R2(t0, t) =

∫ t

t0

∫ s

t0

L0 b(u, Xu)du ds+

∫ t

t0

∫ s

t0

L1 b(u, Xu)dBu ds

+

∫ t

t0

∫ s

t0

L0σ(u, Xu)du dBs +

∫ t

t0

∫ s

t0

∫ u

t0

L0L1σ(v, X v)dv dBu dBs

+

∫ t

t0

∫ s

t0

∫ u

t0

L1L1σ(v, X v)dBv dBu dBs.

This results in the MILSTEIN scheme, having both strong and weak convergence orders p = q =
1. I.e., with the discretization t0 < t1 < . . . tN = tf of T we get the approximating process
{Yt}t∈T following the MILSTEIN recursion

Yn+1 = Yn + b(tn, Yn)∆n +σ(tn, Xn)∆Bn +
1
2
σ(tn, Yn)

∂ σ

∂ x
(tn, Yn)

�

(∆Bn)
2 −∆n

�

(6.8)

for all n= 0, . . . , N − 1 and Y0 = X t0
, cf. [126].

Remark 6.1
When using strong or weak numerical integration schemes for SDEs in applications, it is of-
ten disadvantageous to have to evaluate the derivatives of the drift and diffusion coefficients,
especially as their orders grow depending on the order of the scheme. Therefore, explicit ap-
proximation recursions exist, related to deterministic RUNGE-KUTTA schemes but particularly
regarding the specific properties of ITŌ stochastic calculus.
Moreover, to ensure numerical stability there are implicit stochastic integration schemes as
well, tackling stiff SDEs.
An extensive description of explicit and implicit strong and weak methods together with de-
tailed examples can be found in, e.g., [141, 142, 183].

Remark 6.2
The proofs of convergence orders for the different stochastic integration schemes assume the
coefficients within the TAYLOR approximations to be uniformly bounded on the appropriate
domains, cf. [141, 183], which is in fact needed for the partial derivatives of the coefficient
functions b(·) and σ(·). However, in many applications those assumptions cannot be satisfied.
E.g., the SDE

dX t = −X t
3 dt + dBt
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has a globally pathwise asymptotically stable stochastic stationary solution [126]. On T =
[0,1] the solution for initial value X0 = 0 has finite first moment E [|X1|]<∞. Nevertheless,
the EULER-MARUYAMA approximation does neither converge strongly nor weakly as

lim
N→∞
E [|YN − X1|] =∞,

cf. [119].

6.2 The WIENER Chaos Approach for Solving Stochastic
Differential Equations

As we have seen in the previous section, there is a large variety of integration schemes available
to solve SDEs numerically. Still, all of these ideas depend on random numbers in each time
step, which in return have to be provided by pseudo-random number generators.

In the following Chapter 7 we want to consider SDEs in the context of optimal control prob-
lems. In particular, we want to make use of the direct multiple shooting approach introduced
in Section 1.3, but if the considered dynamic process is given by a SDE. Within that framework
the ideas presented above to integrate SDEs are not applicable as they always derive pathwise
solutions to the equations.

6.2.1 The Propagator System

To that end we present an entirely different methodology to solve SDEs that is founded on the
WIENER chaos expansion. Let us start again with a one-dimensional stochastic process {X t}t∈T
defined over the time horizon T = [t0, tf] by the SDE

dX t = b(t, X t)dt +σ(t, X t)dBt , X t0
= x0, (6.9)

or, conveniently, written in its integral form

X t = x0 +

∫ t

t0

b(s, Xs)ds+

∫ t

t0

σ(s, Xs)dBs. (6.10)

The idea behind the following theorem is motivated by the intrusive Polynomial Chaos (PC)
approach [16, 110], adapted to the field of SDEs [115, 116]. While, e.g., [121, 241] analyze
the original WIENER chaos expansion (5.48) based on multiple stochastic integrals in the con-
text of SDEs, we make use of the equivalent expansion (5.30) from Theorem 5.5 determined
by HERMITE polynomials. This expansion is valid if the considered SDE (6.10) has a square
integrable solution over T .

Remark 6.3
We focus on the one-dimensional case, the generalization to multi-dimensional processes {Xt}t∈T
and {Bt}t∈T follows straightforwardly, only the notation getting more cumbersome.

Theorem 6.1
Let {X t}t∈T be given through the SDE (6.10) and assume that X ∈ L2(T ×Ω). Then X t can be
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written in its WIENER chaos expansion

X t =
∑

α∈I
xα(t)Ψ

α(η)

with basis polynomials Ψα(η) as defined in (5.22), including the basis functions {mi(·)}i∈N of the
underlying HILBERT space L2(T ). The deterministic coefficients functions xα(t) are determined
by the following propagator on T :

ẋα(t) = bα(t, X t) +
∞
∑

j=1

p

α j m j(t)σα−( j)(t, X t), (6.11a)

xα(0) = 1{α=0} · x0. (6.11b)

Within this system of ODEs, bα(·) andσα(·) denote again theα-coefficients of the chaos expansions
of the functions b(·) and σ(·) (depending on t and X t) and α−( j) the diminished multi-index as
defined in (5.43). 4

Proof Inserting the chaos expansion of the process {X t}t∈T into (6.10), multiplying with the
basis polynomial Ψβ(η), β ∈ I, and calculating expectations yields for all β ∈ I and t ∈ T

xβ(t) = x0 ·1{β=0} +

∫ t

0

E
�

b(s, Xs)Ψ
β(η)

�

ds+E
�

Ψβ(η) ·
∫ t

0

σ(s, Xs)dBs

�

.

While the first appearing integral is a standard deterministic one and the expectation forming
the integrand can be represented by the corresponding coefficient function of the expansion
of b(t, X t), the second integral has to be treated with the integration by parts formula (5.47).
This yields

xβ(t) = x0 ·1{β=0} +

∫ t

0

bβ(s, Xs)ds+E
�∫ t

0

DsΨ
β(η)σ(s, Xs)ds

�

= x0 ·1{β=0} +

∫ t

0

bβ(s, Xs)ds

+
∞
∑

j=1

∫ t

0

q

β j m j(s)E
�

σ(s, Xs)Ψ
β−( j)(η)

�

ds

= x0 ·1{β=0} +

∫ t

0

bβ(s, Xs)ds+
∞
∑

j=1

∫ t

0

q

β j m j(s)σβ−( j)(s, Xs)ds. (6.12)

As for all β ∈ I there are only a finite number of non-zero components βi , i ∈ N, compare
(5.21), the formally infinite sum on the right-hand side of (6.12) is in fact finite. Hence, the
assertion follows after differentiating with respect to t. �

Remark 6.4
Keeping in mind the definition of the random variables ηi (5.23) depending on the basis
{mi(·)}i∈N of L2(T ) and their significance in constructing the BROWNian motion (5.24), we
see that all information about the behavior of the stochastic process {X t}t∈T is implicitly cap-
tured within the deterministic ODE system (6.11a).
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In the context of generalized solutions of Stochastic Partial Differential Equations (SPDEs)
driven by GAUSSian white noise, a similar propagator has been derived and initially used as
a numerical tool in nonlinear filtering problems, later on as a general modeling and simula-
tion methodology for elliptic SPDEs, cf. [169, 170, 172, 182, 245]. Furthermore, in [113, 164,
165, 166] a systematic approach to generalized processes and certain classes of SDEs based
on white noise in combination with MALLIAVIN calculus is presented.
One major advantage of this approach of solving SDEs is that the expectation of the desired
solution process, E [X t], is directly given by the zero-order coefficient x{α=0}(t). Hence, it
need not be calculated by, e.g., Monte Carlo methods, where a huge amount of sample paths
(computed by a standard stochastic integration recursion as presented in the previous section)
is necessary. Here, if one is interested in the behavior of sample paths, these can be determined
by using realizations of the random vector η after the system has been solved. Similar to the
expectation, the variance of the process and all higher moments are completely specified by
the deterministic coefficient functions of the chaos expansion, compare (5.31).

6.2.2 Truncation of the Propagator

In order to use the propagator numerically, we certainly have to truncate the chaos expansion
of {X t}t∈T and, therefore, the system (6.11a) of ODEs. There are basically two major aspects
that compose this truncation.

Truncating the Order of the Chaos Expansion

The first form of truncation arises as we limit the maximum order p of the chaos expansion.
When considering the original WIENER expansion (5.48) consisting of multiple ITŌ stochastic
integrals, this is equivalent to letting the final summand be Ip(·), i.e., using only the first p+1
chaos spaces H0, . . . , Hp to make the expansion.
In terms of HERMITE polynomials this form of truncation restricts the maximum order of the
basis polynomials Ψα(·) due to Theorem 5.13. We obtain the truncated index set Ip defined
as

Ip
def
=

¨

α ∈ I

�

�

�

�

�

|α|=
∞
∑

i=1

αi ¶ p

«

. (6.13)

Truncating the Length of the Multi-Index

The second type of truncation focusses on the maximum length k of the multi-indices α ∈ I. It
originates from the number k of basis functions of the underlying HILBERT space L2(T ) that we
use to construct the random variables ηi , i = 1, . . . , k, incorporated in the basis polynomials
Ψα(η). Hence, in the formalism of the HERMITE polynomial chaos expansion this results in the
truncated index set Ip,k (if we start directly from the index set Ip with truncated order):

Ip,k
def
=
�

α= (αi)i=1,...,k

�

� |α|¶ p
	

. (6.14)

Remark 6.5
If we think again of the KARHUNEN-LOÈVE Expansion (KLE) of the BROWNian motion (4.8) or,
equivalently, the FOURIER-HERMITE expansion (5.24), only the truncation due to the number
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−→
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3

Figure 6.1: Schematic example of a sparse index r = (3,2, 2,1, 1) in comparison with the full index set
Ip,k for k = 5 random variables and maximum order p = 3 of the chaos basis polynomials
Ψα(η).

k of entering random variables is important. Truncating the order of the expansion becomes
unnecessary as the coefficients corresponding to all basis polynomials Ψβ(·) with |β | ¾ 2
vanish.

Sparse Truncation

The importance of the coefficient functions xα(·) decays depending on the order p of the
basis polynomials Ψα(·) and the decaying rate of the GAUSSian expansion, i.e., the index of
the random variables ηi , i ∈ {1, . . . , k}, used for the construction of Ψα(η), compare, e.g.,
(4.9). Especially if we consider coefficients with index ᾱ, where |ᾱ| is large and ᾱ consists of
a combination of random variables η j with large indices j, the information gained is very low,
cf. [172].
Hence, we define a sparse index for truncating the index set I (compare [97, 172]).
Definition 6.2 (Sparse Truncation)
Let p be the maximum order of the index α ∈ Ip,k. Then the sparse index r = (r1, . . . , rk) satisfies
p = r1 ¾ r2 ¾ · · ·¾ rk and we define the sparse index set

I r
p,k =

�

α ∈ Ip,k

�

�αi ¶ ri ∀i ¶ k
	

. (6.15)

4

Example 6.1
Let k = 5 and p = 3. Then a possible choice of the sparse index is r = (3,2, 2,1, 1). Figure
6.1 visualizes the sparse index set I r

k,p. For constructing the first order polynomials all five
random variables (and the corresponding first order HERMITE polynomials) can be used. The
second order polynomials are comprised by all possible combinations of first order HERMITE

polynomials depending on η1, . . . ,η5 and the second order HERMITE polynomials of η1,η2,η3.
Analogously, the third order polynomials are constructed.

Remark 6.6
By using this sparse index set I r

k,p the number of coefficient functions xα(·) appearing within
the propagator system (6.11a) can be reduced drastically without impairing the solution much.
In the above Example 6.1 the full index set Ik,p consists of (k+p)!

k!p! = 56 terms [16, 172], whereas
the sparse truncated index set includes 42 terms.

Adaptive Truncation

An even better reduction in the number of coefficients included in the propagator system of
ODEs can be achieved if we use an adaptive index, i.e., a series of sparse indices

�

r j
�

j=0,...,p that
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depend on the actual order of the polynomials Ψα(·) with j = |α|, cf. [172]. By that approach
one is able to exclude crossing products of random variables ηi from the construction of higher
order basis polynomials Ψα(η) that add only negligible information to the system.

Definition 6.3 (Adaptive Truncation)
Let p be the maximum order of the index α ∈ Ip,k. Then the adaptive index (r ) =

�

r j
�

j¶p is a

series of sparse indices r j =
�

r j
1, . . . , r j

k

�

satisfying j = r j
1 ¾ r j

2 ¾ · · · ¾ r j
k for all j = |α| ¶ p and

we define the adaptive index set

I(r )p,k =
¦

α ∈ Ip,k

�

�

�αi ¶ r j
i ∀i ¶ k, ∀ j ¶ p

©

. (6.16)

4

Example 6.2
If we consider again the setting of Example 6.1 with k = 5 and p = 3, then one possible choice
of an adaptive index is given by r 1 = (1, 1,1, 1,1), r 2 = (2, 2,2,1, 0), r 3 = (3,2, 0,0, 0). That
means, in constructing basis polynomials of order |α| = 3 we can use all combinations of
HERMITE polynomials depending on the first two random variables η1 and η2 up to orders
3 and 2, respectively. Thus, these are

p
6H3(η1),

p
2H2(η1)H1(η2), and

p
2H1(η1)H2(η2),

compare (5.22) and [172].

Table 6.1 lists the sparse and adaptive indices that are used for the numerical examples in
Section 6.2.3 and Chapter 8 together with their number of coefficient functions.
However, the usual idea of adaptive truncation ideas comes from non-intrusive polynomial
chaos approaches, often used for differential equations with a (generally low) number of ran-
dom parameters included. In that framework, sparse-grid ideas based on the SMOLYAK scheme
[99, 135, 229] have proven to be very effective. Additionally, methods built on the decomposi-
tion of the underlying random space are applied [243]. In the intrusive-type environment that
the propagator represents, they cannot be deployed directly. Alternative schemes can be devel-
oped from the sparsity-of-effects principle and the least angle regression or compressed sensing
[44, 179], which provides a more general truncation than the heuristic approach introduced
above.

6.2.3 Error Analysis of the Propagator

In general, the derivation of an adequate error estimate for the propagator system (6.11a) is
intricate. For analyzing polynomial chaos based solutions to differential equations that include
random parameters, e.g., [54] gives an a posteriori error analysis. In [52] explicit bounds are
given for simulating Backward Stochastic Differential Equations (BSDEs) through a combina-
tion of the WIENER chaos expansion and PICARD iterations. The error analysis provided there
mainly builds upon the special choice of the HAAR wavelets (5.28) as basis of the underlying
HILBERT space L2(T ), leading to an error estimator that has the order O

�

k−1
�

for the trunca-
tion of the number k of basis elements of L2(T ).
In [172] there is an analysis of the errors made through truncating the propagator provided
for several examples of solving SPDEs via a WIENER chaos approach based on HERMITE poly-
nomials. Therein, it is made use of semi-analytic solutions to the considered equations in order
to derive error estimates for the full truncated index set as well as the consequences for the
sparse and adaptive ones.
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Table 6.1: List of (sp)arse and (ad)aptive indices used for the numerical examples together with their
number of resulting coefficient functions. The reference numbers coincide with those in Ta-
bles 6.2, 8.1, 8.3, and 8.4.

symbol p k index r/(r ) # coefficients

sp1 2 10 r = (2, 2,2, 2,2, 1, 1,1, 1,1) 61

sp2 2 20 r = (2, 2,2, 2,2,1, . . . , 1) 216

sp3 3 5 r = (3, 3,2, 1,1) 42

ad1 2 20 r 1 = (1, . . . , 1) 71

r 2 = (2, 2,2, 2,2, 1, 1,1, 1,1, 0, . . . , 0)

ad2 2 40 r 1 = (1, . . . , 1) 91

r 2 = (2, 2,2, 2,2, 1, 1,1, 1,1, 0, . . . , 0)

ad3 2 100 r 1 = (1, . . . , 1) 151

r 2 = (2, 2,2, 2,2, 1, 1,1, 1,1, 0, . . . , 0)

ad4 3 10 r 1 = (1, . . . , 1) 42

r 2 = (2, 2,2, 2,2, 2, 0,0, 0,0)

r 3 = (3, 3,3, 0, . . . , 0)

ad5 3 20 r 1 = (1, . . . , 1) 125

r 2 = (2, 2,2, 2,2, 2, 1,1, 1,1, 0, . . . , 0)

r 3 = (3, 3,3, 2,2, 2,0, . . . , 0)

ad6 3 40 r 1 = (1, . . . , 1) 145

r 2 = (2, 2,2, 2,2, 2, 1,1, 1,1, 0, . . . , 0)

r 3 = (3, 3,3, 2,2, 2,0, . . . , 0)

ad7 4 10 r 1 = (1, . . . , 1) 57

r 2 = (2, 2,2, 2,2, 2, 0, . . . , 0)

r 3 = (3, 3,3, 3,0, . . . , 0)

r 4 = (4, 4,0, . . . , 0)

ad8 4 20 r 1 = (1, . . . , 1) 131

r 2 = (2, 2,2, 2,2, 2, 1,1, 1,1, 0, . . . , 0)

r 3 = (3, 3,3, 3,2, 2,0, . . . , 0)

r 4 = (4, 4,0, . . . , 0)
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[31, 32, 58] develop a priori error estimates for truncated WIENER chaos expansion for elliptic
WICK SPDEs. In [18, 98, 245] this is done without employing the specific WICK framework.
[170] present error estimates in the context of nonlinear filtering, where both the signal and
the observation processes are diffusions and the optimal filter is obtained by applying the
WIENER chaos approach to the unnormalized filtering density which is the solution to the
(partial differential) ZAKAI equation [253]. The corresponding estimates are deduced by ex-
ploiting the semigroup generated by the differential operator of the ZAKAI equation and the
choice (5.27) of basis functions of L2(T ), giving an error of order O

�

((p + 1)!)−1
�

+O
�

k−1
�

depending on the order p of the chaos expansion and the number k of used basis functions.
Before deriving a generic error estimator for the truncated WIENER chaos solution of a SDE
6.9 obtained through the propagator system (6.11a), let us consider a special example—the
linear SDE generating the geometric BROWNian motion—and calculating the error made by
solving this equation via the propagator approach.

Error Estimator for the Geometric BROWNian Motion

Let the stochastic process {X t}t∈T be determined through the SDE

dX t = µX t dt +σX t dBt , X0 = x0 (6.17)

on the time horizon T = [0,1], where µ and σ are real, positive constants and x0 ∈ R. The
solution process is analytically given by

X t = x0 exp

��

µ−
σ2

2

�

t +σBt

�

. (6.18)

Now let X t be expressed in its WIENER chaos decomposition

X t =
∑

α∈I
xα(t)Ψ

α(η),

with I being the complete multi-index set as in (5.21) and Ψα(η) the multi-variate orthonor-
mal HERMITE polynomial (5.22). In the following we choose the basis functions of the under-
lying HILBERT space L2([0, 1]) again as

mi(t) =
p

2cos
��

i −
1
2

�

πt
�

, t ∈ [0,1]. (6.19)

Then by Theorem 6.1 the deterministic coefficient functions xα(·) of the WIENER chaos ex-
pansion of the geometric BROWNian motion that are defined in the FOURIER-like fashion as
xα(t) = E [X tΨ

α(η)] satisfy the following propagator equations:

ẋα(t) = µxα(t) +σ
∞
∑

j=1

p

α jm j(t)xα−( j)(t) (6.20a)

xα(0) = x0 ·1{α=0}, (6.20b)

where α−( j) denotes again the diminished multi-index defined in (5.43).
To give an impression of the structure of the ODE system (6.20), let us consider the resulting
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equations when |α|= 0,1, 2:

|α|= 0: This condition is only satisfied if α≡ 0. Hence, the differential equation determining
the zero-order coefficient reduces to

ẋ0(t) = µx0(t),

x0(0) = x0.

|α|= 1: In this case α takes the form α = ei for i ¾ 1, where ei denotes the i-th (infinite
dimensional) canonical unit vector. Thus, we obtain for all i ¾ 1

ẋei
(t) = µxei

(t) +σmi(t)x0(t),

xei
(0) = 0.

|α|= 2: Here, α can be either of the form α= 2ei for i ¾ 1 or α= ei + e j for i 6= j. In the first
case we deduce for i ¾ 1

ẋ2ei
(t) = µx2ei

(t) +
p

2σmi(t)xei
(t),

x2ei
(0) = 0,

and in the second case for i 6= j

ẋei+e j
(t) = µxei+e j

(t) +σmi(t)xe j
(t) +σm j(t)xei

(t),

xei+e j
(0) = 0.

Remark 6.7
From equation (6.20) we see that for a linear SDE the propagator equations of order |α| = p
depend only on the coefficient xα(t) itself and on coefficients of order p−1. Hence, this system
can be solved recursively.

Remembering Example 5.7 we reason the following result.

Theorem 6.2
For a general α ∈ I of order |α|= p the solution of the corresponding propagator equation (6.20)
is given by

xα(t) =
σp

p
α!

x0 eµt
∞
∏

i=1

(Mi(t))
αi , (6.21)

where Mi(t) =
∫ t

0 mi(s)ds. 4

Proof We show the assertion by differentiating the chaos coefficients (6.21) with respect to t,
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i.e.,

ẋα(t) = µxα(t) +
σp

p
α!

x0 eµt d
dt

�∞
∏

i=1

(Mi(t))
αi

�

= µxα(t) +
σp

p
α!

x0 eµt
∞
∑

j=1

∞
∏

i=1
i 6= j

(Mi(t))
αi ·α j

�

M j(t)
�α j−1

m j(t)

= µxα(t) +σ
∞
∑

j=1

p

α j m j(t)
σp−1

p

α−( j)!
x0 eµt

∞
∏

i=1

(Mi(t))
αi ·
�

M j(t)
�α j−1

= µxα(t) +σ
∞
∑

j=1

p

α j m j(t) xα−( j)(t).

Additionally, for the initial values of the propagator ODEs we obtain

xα(0) =
σp

p
α!

x0 eµ·0
∞
∏

i=1

(Mi(0))
αi =

σp

p
α!

x0 ·1{α=0} =







x0, α= 0,

0, otherwise,

where we used the convention 00 = 1 again. �

With this theorem at hand, we consider now the truncated version of the propagator (6.20).
Therefore, let the truncated index set Ip,k be given as in (6.14). Furthermore, let the actual
length of the multi-index α, denoted as d(α), identify the largest index i at which α has a
non-zero entry. Hence, for all α ∈ Ip,k we have d(α)¶ k.
Then we are interested in estimating the error one makes when truncating the propagator,
depending on the choices of p and k. Consequently, X p,k

t denotes the WIENER chaos decompo-
sition

X p,k
t =

∑

α∈Ip,k

xα(t)Ψ
α(η) (6.22)

for the truncated index set.
To obtain an impression on the behavior of the error, Figure 6.2 depicts the development
of the variance’s absolute error

�

�V [X t] − V
�

X p,k
t

�
�

� depending on the choices of p, k, and,
as appropriate, the type of sparse or adaptive index set used for the truncation. Table 6.2
lists the absolute errors

�

�V [X1] − V
�

X p,k
1

�
�

� at the final time of consideration tf = 1 and the
computation times which were necessary to solve the resulting ODE system. Note here, that
for the geometric BROWNian motion the propagator method always yield the exact expectation
E [X t] = x0 eµt .
Nevertheless, in Figure 6.2 we notice that the absolute error of the variance erraticly increases
at the end of the time interval T , particularly for the chaos expansion orders p = 3 and p = 4.
One reason for this behavior is the use of an adaptive index I(r )p,k . The principal cause, how-

ever, is the combination of using a truncated number k of L2(T ) basis functions and the same
integration and interpolation interval T . Both coincide as those cosine basis functions of the
underlying HILBERT space are defined on T . As the resulting coefficients xα(·) of higher orders
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Figure 6.2: Development of the absolute errors between the variance of the exact solution to the SDE
(6.17) determining the geometric BROWNian motion and the solution calculated by solving
the ODE system (6.20) of the propagator method. The figure depicts the errors over the
time horizon T = [0, 1] for different magnitudes and/or types of truncation. The sparse
and adaptive indices used correspond to those of Table 6.1.
We detect that the error decreases both with increasing the number k of basis functions
mi(·), i = 1, . . . , k, of the underlying HILBERT space L2(T ) and the maximum order p of the
chaos expansion used to generate the truncated propagator system. Therein, the influence
of the order p is more relevant.
Note that the error increases erraticly at the end of the time interval T , particularly for
chaos expansion orders p = 3 and p = 4. To a minor extent this is caused by the missing
coefficients omitted by using an adaptive index set. The major reason for this phenomenon
is the combination of truncating the number of L2(T ) basis functions and using the same
integration and interpolation horizon T . Due to the definition of mi(·) the absence of p-th
order coefficients depending on basis functions with index i > k is most obvious at the end
of the interval.
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Table 6.2: Absolute errors between the variance of the exact geometric BROWNian motion process and
the solution of the propagator method evaluated at the final time tf = 1 of the considered
time horizon for different magnitudes and/or types of truncation. The abbreviations of the
sparse and adaptive indices correspond to those of Table 6.1.
We notice that the error decreases with increasing number k of included basis functions of
the underlying HILBERT space L2(T ), but more intensely with increased maximum order p
of the chaos expansion.

p k r # coefficients
�

�

�V [X1]−V
�

X p,k
1

�

�

�

� time in s

1 10 - 11 5.4570 0.105

1 20 - 11 5.3823 0.167

1 40 - 11 5.3449 0.918

1 100 - 11 5.3224 11.963

2 10 - 66 1.9106 0.760

2 20 sp2 216 1.7626 15.070

2 40 ad2 91 1.7988 3.707

3 10 ad4 42 1.0069 0.252

3 20 ad5 125 0.7249 2.829

3 40 ad6 145 0.6875 7.350

4 10 ad7 57 0.7502 0.324

4 20 ad8 131 0.5223 2.918

oscillate to a greater extent, the absence of p-th order coefficients depending on basis func-
tions mi(·) with index i > k is most obvious at the end of the integration interval, even if the
overall error decreases in p.

Theorem 6.3
Suppose we are given the truncated WIENER chaos expansion (6.22) of the geometric BROWNian
motion. Then we deduce the mean-square error estimate of the truncation depending on the order
p and the number k of basis functions (6.19) of L2([0, 1]) as

E
�
�

�

�X1 − X p,k
1

�

�

�

2�

¶ 2 x0
2 e2µ

 
�

σ2
�p+1

(p+ 1)!
eσ

2
+

C(p)
πk

�

σ2
�p+1 − 1

σ2 − 1

!

(6.23)

with a constant C depending on p. 4

Remark 6.8
From Equation (6.23) we directly see that for fixed chaos order p we always obtain a specific
error bound, even for k→∞. This emphasizes the independence of the twofold truncation:
While p regulates the quality of the actual chaos expansion, the number k of used basis func-
tions characterizes the approximation within each chaos H·.

Proof Inserting the infinite and truncated WIENER chaos expansions and using the orthonor-
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mality of the basis polynomials Ψα(η) yields

E
�
�

�

�X1 − X p,k
1

�

�

�

2�

¶ 2E
�
�

�X1 − X p
1

�

�

2�
+ 2E

�
�

�

�X p
1 − X p,k

1

�

�

�

2�

= 2E





�

�

�

�

�

∞
∑

i=p+1

∑

|α|=i

xα(1)Ψ
α(η)

�

�

�

�

�

2


+ 2E









�

�

�

�

�

�

�

�

∞
∑

l=k+1

p
∑

i=0

∑

|α|=i
d(α)=l

xα(1)Ψ
α(η)

�

�

�

�

�

�

�

�

2







= 2
∞
∑

i=p+1

∑

|α|=i

xα
2(1)

︸ ︷︷ ︸

A1

+2
∞
∑

l=k+1

p
∑

i=0

∑

|α|=i
d(α)=l

xα
2(1)

︸ ︷︷ ︸

A2

. (6.24)

To calculate A1 let us consider the variance of the stochastic process defined by (6.17), i.e.,

V [X t] = x0
2 e2µt

�

eσ
2 t − 1

�

.

Replacing the last factor by its infinite TAYLOR expansion gives

V [X t] = x0
2 e2µt

∞
∑

i=1

σ2i t i

i!
.

On the other hand, from the WIENER chaos expansion, in particular Equation (5.31), and
Theorem 6.2 we know that

V [X t] =
∑

|α|¾1

xα
2(t) =

∑

|α|¾1

x0
2 e2µt σ

2p

α!

∞
∏

j=1

�

M j(t)
�2α j

=
∞
∑

i=1

x0
2 e2µt σ2i

∑

|α|=i

∞
∏

j=1

�

M j(t)
�2α j

α j!
.

By the definition of Mi(t) and Lemma 4.1 we infer that for every t ∈ T = [0,1] and |α|= q it
holds that

∑

|α|=q

∞
∏

j=1

�

M j
2(t)

�α j

α j!
=ψ(q)tq

with some function ψ: R→ R depending on the order q of the multi-index α. This allows us
to compare the coefficients of the two expansions of V [X t], resulting in

∑

|α|=q

∞
∏

j=1

�

M j
2(t)

�α j

α j!
=

tq

q!
. (6.25)
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Thus, the error estimate for truncating the order of the multi-index becomes

A1 = 2
∞
∑

i=p+1

∑

|α|=i

x0
2 e2µσ2i

∞
∏

j=1

�

M j
2(1)

�α j

α j!
= 2 x0

2 e2µ
∞
∑

i=p+1

σ2i 1
i!

¶ 2 x0
2 e2µ

�

σ2
�p+1

(p+ 1)!
eσ

2
. (6.26)

To determine A2 we first show by induction over p that

∞
∑

l=k+1

∑

|α|=p
d(α)=l

l
∏

j=1

�

M j
2(t)

�α j

α j!
¶

C(p)
πk

(6.27)

with a constant C depending on the order p of the multi-index α. For p = 1 we get

∞
∑

l=k+1

∑

|α|=1
d(α)=l

l
∏

j=1

�

M j
2(t)

�α j

α j!
=

∞
∑

l=k+1

Ml
2(t) =

∞
∑

l=k+1

2sin
��

l − 1
2

�

πt
�2

�

l − 1
2

�2
π2

¶
∞
∑

l=k+1

2
�

l − 1
2

�2
π2
¶
∞
∑

l=k

2
l2π2

¶
1
πk

,

corresponding to the error of truncating the BROWNian motion expansion (4.9). Now let us
assume (6.27) is valid for a given p. Then with α= α̃+ el we can write

∞
∑

l=k+1

∑

|α|=p+1
d(α)=l

l
∏

j=1

�

M j
2(t)

�α j

α j!
=

∞
∑

l=k+1

∑

|α̃|=p
d(α̃)¶l

Ml
2(t)

α̃l + 1
·

l
∏

j=1

�

M j
2(t)

�α̃ j

α̃ j!
.

As |α| = p + 1 it follows that |α̃| = p. However, because 1 ¶ αl ¶ p we have to distinguish
between d(α̃) = l and d(α̃)< l. Therefore,

∞
∑

l=k+1

∑

|α|=p+1
d(α)=l

l
∏

j=1

�

M j
2(t)

�α j

α j!

=
∞
∑

l=k+1

∑

|α̃|=p
d(α̃)=l

Ml
2(t)

α̃l + 1
·

l
∏

j=1

�

M j
2(t)

�α̃ j

α̃ j!
+

∞
∑

l=k+1

∑

|α̃|=p
d(α̃)<l

Ml
2(t) ·

d(α̃)
∏

j=1

�

M j
2(t)

�α̃ j

α̃ j!
.

Within the first summand we estimate (as then α̃l ¾ 1)

Ml
2(t)

α̃l + 1
=

2sin
��

l − 1
2

�

πt
�2

�

l − 1
2

�2
π2 (α̃l + 1)

¶
1

�

l − 1
2

�2
π2
¶

1
π2k2

∀l ¾ k+ 1
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and within the second summand

∑

|α̃|=p
d(α̃)<l

d(α̃)
∏

j=1

�

M j
2(t)

�α̃ j

α̃ j!
=

l−1
∑

i=1

∑

|α̃|=p
d(α̃)=i

i
∏

j=1

�

M j
2(t)

�α̃ j

α̃ j!
¶
∑

|α̃|=p

∞
∏

j=1

�

M j
2(t)

�α̃ j

α̃ j!
¶

t p

p!
.

Thus, we further deduce (using the induction basis and hypothesis)

∞
∑

l=k+1

∑

|α|=p+1
d(α)=l

l
∏

j=1

�

M j
2(t)

�α j

α j!

¶
∞
∑

l=k+1

1
π2k2

∑

|α̃|=p
d(α̃)=l

l
∏

j=1

�

M j
2(t)

�α̃ j

α̃ j!
+

∞
∑

l=k+1

Ml
2(t)

t p

p!

¶
1
π2k2

·
C(p)
πk

+
1
πk
·

t p

p!

¶
C(p+ 1)
πk

.

Finally, with

A2 = 2
∞
∑

l=k+1

p
∑

i=0

∑

|α|=i
d(α)=l

x0
2 e2µσ2i

∞
∏

j=1

�

M j
2(1)

�α j

α j!

¶ 2 x0
2 e2µ

p
∑

i=0

σ2i C(i)
πk

¶ 2 x0
2 e2µ

�

σ2
�p+1 − 1

σ2 − 1
·

C̃(p)
πk

, (6.28)

where C̃(p) =max{C(i) | 0¶ i ¶ p}, the proof is finished. �

General Error Estimator

With this exemplary error result at hand, we finally come to one of the main results of the
thesis. We derive a general error estimator for a truncated WIENER chaos solution of a SDE on
the time interval T = [0, tf].
Theorem 6.4
Let the random process X t ∈ L2(T ×Ω) be driven on the time interval T = [0, tf] by the SDE

dX t = b(t, X t)dt +σ(t, X t)dBt , X0 = x0. (6.29)

Suppose that the coefficient functions b(·),σ(·) satisfy the LIPSCHITZ and linear growth conditions

|b(t, x)− b(t, y)|+ |σ(t, x)−σ(t, y)|¶ K |x − y|, t ∈ T , (6.30)

|b(t, x)|2 + |σ(t, x)|2 ¶ K2
�

1+ |x |2
�

, t ∈ T . (6.31)

Moreover, suppose they are infinitely often differentiable in their second argument and at least once
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in their first argument and that the partial derivatives of all orders are LIPSCHITZ continuous and
bounded by K.
Let the basis {mi}i∈N0

of the underlying HILBERT space L2(T ) be given as in (5.26) and denote

X p,k
t =

∑

α∈Ip,k

xα(t)Ψ
α(η)

with coefficient functions xα(·) determined through the propagator system (6.11).
Then the mean-square error of the truncated WIENER chaos expansion at the terminal time X p,k

tf

depending on the order p and the maximum length k of the expansion, i.e., the number k of
included basis functions mi(·) can be estimated by

E
�
�

�

�X tf
− X p,k

tf

�

�

�

2�

¶ C1(1+ x0
2)e(C1+Ξ2)tf

�

Ξ2 tf

�p+1

(p+ 1)!
+ C2(1+ x0

2)eC2 tf
t4
f

k
, (6.32)

with constants C1, C2 depending on K and tf, and Ξ depending only on K. 4

Remark 6.9
The terms eC tf in Equation (6.32) can be compared with what we could expect from GRON-
WALL’s lemma [24, 102]. Moreover, we observe the same independence of the truncation of p
and k as in the error estimation of the geometric BROWNian motion, cf. Equation (6.23) and
Remark 6.8. Truncating the order p affects the quality of the chaos expansion, truncating the
number k of basis functions the approximation within each chaos H·.
As GRONWALL’s inequality generally overestimates the error and for practical purposes one
cannot draw on the used LIPSCHITZ constants, an adaptive approach might be beneficial. One
possibility would be to work with different magnitudes of truncation (for both p and k) and
to refine if necessary. However, due to the coupling of the propagator equations (6.11), each
refinement might require a new solution of the system.

Remark 6.10
The chain of proof of Theorem 6.4 follows basically [170, Proof of Theorem 2.2]. However,
the arguments therein are premised on the semigroup generated by the differential operator of
the ZAKAI equation. Here, we will make use of multiple MALLIAVIN derivatives of the process
X t . Besides, we use a different (and slightly more general) basis of the underlying HILBERT

space L2(T ).

Proof (of Theorem 6.4) From (6.24) we already know that

E
�
�

�

�X tf
− X p,k

tf

�

�

�

2�

¶ 2
∞
∑

n=p+1

∑

|α|=n

xα
2(tf)

︸ ︷︷ ︸

A1

+2
∞
∑

l=k+1

p
∑

n=0

∑

|α|=n
d(α)=l

xα
2(tf)

︸ ︷︷ ︸

A2

.

To determine A1, we use the chaos expansions (5.30) and (5.48) of X t , i.e.,

X t =
∞
∑

n=0

∑

|α|=n

xα(t)Ψ
α(η) =

∞
∑

n=0

In(ξn(t
n; t)),
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with t n = (t1, . . . , tn) and symmetric kernel functions ξn(t n; t) for all n ∈ N0, to reason that

∑

|α|=n

xα
2(t) = E





 

∑

|α|=n

xα(t)Ψ
α(η)

!2


= E
�

(In(ξn(t
n; t)))2

�

= n! 〈ξn(t
n; t),ξn(t

n; t)〉L2(T n)

= (n!)2
(n)∫ t

(ξn(t
n; t))2 dt n, (6.33)

where we abbreviate

(k)∫ t

f (·)dt k def
=

∫ t

0

. . .

∫ t2

0

f (·)dt1 . . . dtk.

Therefore, we deduce with the help of (5.54)

A1 =
∞
∑

n=p+1

(n!)2
(n)∫ tf

(ξn(t
n; tf))

2 dt n ¶
∞
∑

n=p+1

(n)∫ tf

E
h
�

Dn
t1,...,tn

X tf

�2i

dt n. (6.34)

To proceed further we need

Lemma 6.1
Under the assumptions of Theorem 6.4, i.e., especially under the LIPSCHITZ, linear growth, and
differentiability conditions on the coefficients functions b(·) and σ(·) of the SDE (6.29), we esti-
mate

E
�
�

�

�Dn
s1,...,sn

X t

�

�

�

2�

¶ CΞ2n(1+ x0
2)eC t , (6.35)

with the constant Ξ depending only on K, and C depending on K and tf. 4

Proof (of Lemma 6.1) We show the assertion by induction over n. For n = 0 it is true by
Theorem 4.6, in particular Equation (4.30), so let us consider the case n = 1 to start. As X t

is a solution of the SDE (6.29) with the coefficients being LIPSCHITZ continuous on T with
linear growth, we know from [194, Theorem 2.2.1] that X t ∈ D1,∞ for all t ∈ T . Moreover,
the MALLIAVIN derivative of X t is bounded. From its properties and by using the integration
by parts-formula, we calculate that for all s ¶ t it satisfies

DsX t = Ds x0 + Ds

�∫ t

0

b(u, Xu)du

�

+ Ds

�∫ t

0

σ(u, Xu)dBu

�

=

∫ t

0

Ds b(u, Xu)du+σ(s, Xs) +

∫ t

0

Dsσ(u, Xu)dBu,

=

∫ t

0

∂

∂ x
b(u, Xu) · DsXu ·1{s¶u} du+σ(s, Xs) +

∫ t

0

∂

∂ x
σ(u, Xu) · DsXu ·1{s¶u} dBu,

= σ(s, Xs) +

∫ t

s

∂

∂ x
b(u, Xu)DsXu du+

∫ t

s

∂

∂ x
σ(u, Xu)DsXu dBu. (6.36)

For s > t we directly obtain DsX t = 0.
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Then under our assumptions, the SDE system

X t = Xs +

∫ t

s
b(u, Xu)du+

∫ t

s
σ(u, Xu)dBu,

DsX t = σ(s, Xs) +

∫ t

s

∂

∂ x
b(u, Xu)DsXu du+

∫ t

s

∂

∂ x
σ(u, Xu)DsXu dBu,

for all s ¶ t ∈ T is again a diffusion process satisfying the conditions of Theorem 4.6 as
b(·), σ(·), and their partial derivatives (with respect to the second component) are LIPSCHITZ

continuous and bounded or of at most linear growth, respectively. Thus, with denoting Y (1)s; t =
(X t , DsX t)

T , we apply Equation (4.30) to obtain

E
�

|DsX t |
2�¶ E

�

|X t |
2�+E

�

|DsX t |
2�= E

�


Y (1)s; t





2�

¶ C
�

1+E
�


Y (1)s; s





2��
eC t

¶ C
�

1+E
�
�

�Xs

�

�

2�
+E

�
�

�σ(s, Xs)
�

�

2��
eC t

¶ C
�

1+E
�
�

�Xs

�

�

2�
+ K2

�

1+E
�
�

�Xs

�

�

2���
eC t

¶ CΞ2
�

1+E
�
�

�Xs

�

�

2��
eC t

¶ CΞ2
�

1+ Ĉ
�

1+ x0
2
�

eĈs
�

eC t

¶ C̃
�

1+ x0
2
�

Ξ2 eC̃ t . (6.37)

Note that the SDE describing the MALLIAVIN derivative DX t is in fact linear with the coefficients
being LIPSCHITZ continuous and of at most linear growth by the assumptions on b(·) and σ(·).
By [194, Lemma 2.2.2] the derivative process {DsX t} belongs to the space D1,∞ again and
its derivative in return satisfies a linear equation of a similar form. Hence (cf. [194, Theorem
2.2.2]), we can recursively apply the previous idea to determine a SDE describing the n-th
order MALLIAVIN derivative DnX t , which depends on the original process X t and all derivatives
up to order n, but only linearly on DnX t . By that means, we find that for each n the process
Y (n)s1,...,sn; t =

�

X t , . . . , Dn
s1,...,sn

X t

�T
is an ITŌ diffusion satisfying the conditions of Theorem 4.6.

To reason the induction step, assume that the assertion holds for all k = 1, . . . , n− 1. In order
to calculate the estimation, we have to apply the initial values of the SDE system that Y (n)s1,...,sn; t

satisfies. The formula to derive them is proven in [194, Theorem 2.2.2]; before we state it, we
need some additional notation. The stochastic process DmX t =

�

Dm
s1,...,sm

X t

�

� (s1, . . . , sm) ∈ T
	

depends on the m time instants s1, . . . , sm. For any subset J = { j1 < . . .< jη} of {1, . . . , m} with
|J |= η¶ m elements, denote s(J) = s j1 , . . . , s jη . Further on, we define

z(t, s1, . . . , sm) =
∑

Pm

∂ m

∂ xm
σ(t, X t) · D

|s(J1)|
s(J1)

X t · · ·D
|s(Jν)|
s(Jν)

X t , (6.38)

and

y(t, s1, . . . , sm) =
∑

Pm

∂ m

∂ xm
b(t, X t) · D

|s(J1)|
s(J1)

X t · · ·D
|s(Jν)|
s(Jν)

X t , (6.39)

where the sums run over the set Pm of all partitions J1 ∪ · · · ∪ Jν of {1, . . . , m}. We determine
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z(t) = σ(t, X t) as well. With these notations at hand, we find that the n-th order MALLIAVIN

derivative Dn
s1,...,sn

X t satisfies the linear SDE

Dn
s1,...,sn

X t =
n
∑

i=1

z(si , s1, . . . , si−1, si+1, . . . , sn)

+

∫ t

ŝ
y(u, s1, . . . , sn)du+

∫ t

ŝ
z(u, s1, . . . , sn)dBu (6.40)

for ŝ
def
=max{s1, . . . , sn}¶ t and Dn

s1,...,sn
X t = 0 else. Hence, its initial value is given by

n
∑

i=1

z(si , s1, . . . , si−1, si+1, . . . , sn),

where

z(s1, . . . , sn) =
∂ n

∂ xn
σ(s1, Xs1

)×

×
�

Ds2
Xs1
· · ·Dsn

Xs1
+ D2

s2,s3
Xs1
· Ds4

Xs1
· · ·Dsn

Xs1
+ . . .+ Dn−1

s2,...,Sn
Xs1

�

.

To give an illustrative example, if n = 2 we obtain the initial value of D2
s1,s2

X t with t ¾
max{s1, s2} as

z(s1, s2) + z(s2, s1) =
∂

∂ x
σ(s1, Xs1

) · Ds2
Xs1
+
∂

∂ x
σ(s2, Xs2

) · Ds1
Xs2

,

resulting in the following estimation of the initial value, depending on the relation of the time
instants s1 and s2:

s1 < s2 : E
�

|z(s1, s2) + z(s2, s1)|
2�= E

�
�

�

�

�

∂

∂ x
σ(s2, Xs2

) · Ds1
Xs2

�

�

�

�

2
�

¶ K2E
�
�

�Ds1
Xs2

�

�

2�¶ K2E
�


Y (1)s1; s2





2�

¶ CΞ4
�

1+ x0
2
�

eCs2 ,

s2 < s1 : E
�

|z(s1, s2) + z(s2, s1)|
2�= E

�
�

�

�

�

∂

∂ x
σ(s1, Xs1

) · Ds2
Xs1

�

�

�

�

2
�

¶ CΞ4
�

1+ x0
2
�

eCs1 ,

s1 = s2 : E
�

|z(s1, s2) + z(s2, s1)|
2�= E

�
�

�

�

�

2
∂

∂ x
σ(s1, Xs1

) · Ds1
Xs1

�

�

�

�

2
�

¶ 2K2E
�
�

�Ds1
Xs1

�

�

2�¶ 2K2E
�
�

�σ(s1, Xs1
)
�

�

2�

¶ CΞ4
�

1+ x0
2
�

eCs1 .
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For n= 3 the initial value of D3
s1,s2,s3

X t with t ¾max{s1, s2, s3} is

z(s1, s2, s3) + z(s2, s1, s3) + z(s3, s1, s2)

=
∂ 2

∂ x2
σ(s1, Xs1

) ·
�

Ds2
Xs1
· Ds3

Xs1
+ D2

s2,s3
Xs1

�

+
∂ 2

∂ x2
σ(s2, Xs2

) ·
�

Ds1
Xs2
· Ds3

Xs2
+ D2

s1,s3
Xs2

�

+
∂ 2

∂ x2
σ(s3, Xs3

) ·
�

Ds1
Xs3
· Ds2

Xs3
+ D2

s1,s2
Xs3

�

.

Now let us return to the induction step, i.e., the case k = n. We estimate the appropriate initial
value in the mean-square sense in exactly the same way as for the exemplary case n = 2 and
derive for constants ci , 0¶ i ¶ n, and by denoting ŝ =max{s1, . . . , sn} again, the estimate

E
�
�

�

�Dn
s1,...,sn

X t

�

�

�

2�

¶ E
�


Y (n)s1,...,sn; t





2�

¶ C



1+E
�
�

�X ŝ

�

�

2�
+ . . .+E





�

�

�

�

�

k
∑

i=1

z(si , s1, . . . si−1, si+1, . . . , sn)

�

�

�

�

�

2






 eC t

¶ C
�

c0

�

1+ x0
2
�

ec0 ŝ + c1Ξ
2
�

1+ x0
2
�

ec1 ŝ + . . .+ cnΞ
2n
�

1+ x0
2
�

ecn ŝ
�

eC t

¶ C̃
�

1+ x0
2
�

Ξ2n eC̃ t . �

With this result at hand, we obtain the estimate for A1 as

A1 ¶
∞
∑

n=p+1

(n)∫ tf

E
h
�

Dn
t1,...,tn

X tf

�2i

dt n

¶
∞
∑

n=p+1

(n)∫ tf

C
�

1+ x0
2
�

Ξ2n eC tf dt n

¶ C
�

1+ x0
2
�

eC tf

∞
∑

n=p+1

Ξ2n tf
n

n!

¶ C
�

1+ x0
2
�

�

Ξ2 tf

�p+1

(p+ 1)!
e(C+Ξ

2)tf . (6.41)

For the second part of the proof, i.e., the estimation of A2, we introduce further notation. Let α
be a multi-index of order |α|= n and length d(α) =maxi{αi > 0}= l. Then the characteristic
set (cf. [170]) of α is the vector (i1, . . . , in)with i1 ¶ i2 ¶ . . .¶ in, where i1 is the index number
of the first non-zero component of α. i2 is equal to i1 if αi1 > 1, otherwise it is the index of the
second non-zero component of α. In that fashion, the characteristic set is constructed further,
resulting in the observation that d(α) = l = in.

Additionally, for any α of order n and a basis {mi(·)}i∈N of L2(T ), by m̃α (t n) we denote a
symmetrized form of

⊗

m⊗αi
i defined via

m̃α (t
n)

def
=
∑

π∈Pn

mi1

�

tπ(1)
�

· · ·min

�

tπ(n)
�

, (6.42)
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where the sum runs over all permutations π within the permutation group Pn of {1, . . . , n}.

Then from the FOURIER connection xα(t) = E [X tΨ
α(η)], the chaos expansion (5.48), and the

definition of the basis polynomials Ψα(·), i.e.,

Ψα(η) =
1
p
α!

I|α|

�∞
⊗

i=1

m⊗αi
i

�

=
1
p
α!

I|α|

�

1
|α|!

m̃α

�

(cf. Equation (5.52) and [194]), we derive for any α ∈ I with |α|= n

xα(tf) =
n!
p
α!

(n)∫ tf

ξn(t
n; tf) m̃α(t

n)dt n. (6.43)

Note again, that each basis function mi(·) ∈ L2(T ) is defined through (5.26). As

m̃α(t
n) =

n
∑

j=1

min(t j) · m̃α−(in)(t
n
j ),

where t n
j is obtained from t n by omitting t j and α−(·) denotes the diminished multi-index as

in (5.43), we deduce

xα(tf) =
n!
p
α!

n
∑

j=1

(n−1)∫ tf
 

∫ t j+1

t j−1

ξn(t
n; tf)min(t j)dt j

!

m̃α−(in)(t
n
j ), (6.44)

with t0
def
= 0 and tn+1

def
= tf, by changing the order of integration. Then for any in = l ¾ 1 we

integrate by parts to deduce

∫ t j+1

t j−1

ξn(t
n; tf)ml(t j)dt j =

�

ξn(t
n; tf)Ml(t j)

�t j+1

t j−1
−
∫ t j+1

t j−1

∂

∂ t j
ξn(t

n; tf)Ml(t j)dt j . (6.45)

Notice that

Mi(s) =

∫ s

0

mi(u)du=

p

2tf
�

i − 1
2

�

π
sin
��

i −
1
2

�

πs
tf

�

.

Now we rename t n
j in the following way for each j: With si = t i for all i ¶ j − 1 and si = t i+1

for all i > j − 1, we have sn−1 def
= t n

j by setting s0 = 0 and sn = tf. Moreover, we denote with
sn−1,r , r = 1, . . . , n− 1, the set that is generated from sn−1 by taking sr twice. To finalize this
notation, we set sn−1,0 = (s0, s1, . . . , sn−1) and sn−1,n = (s1, . . . , sn−1, sn). Then

�

ξn(t
n; tf)Ml(t j)

�t j+1

t j−1
= ξn(s

n−1, j)Ml(s j)− ξn(s
n−1, j−1)Ml(s j−1), j = 1, . . . , n.

Because Ml(s0) = Ml(0) = 0 and Ml(tn) = Ml(tf), from (6.45) we see that by summing over j
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all terms except one cancel out. What remains can be collected to

ψl(s
n−1; tf)

def
= (−1)l−1

p

2tf
�

l − 1
2

�

π
· ξn(s

n−1,n; tf)

−
∫ s1

0

∂

∂ s1
ξn(τ, sn−1; tf)Ml(τ)dτ

−
n−1
∑

j=2

∫ s j

s j−1

∂

∂ s j
ξn(. . . , s j−1,τ, s j+1, . . . ; tf)Ml(τ)dτ

−
∫ sn

sn−1

∂

∂ sn
ξn(s

n−1,τ; tf)Ml(τ)dτ,

so from (6.44) we obtain

∑

|α|=n
in=d(α)=l

xα
2(tf) =

∑

|α|=n
in=d(α)=l

�

n!
p
α!

(n−1)∫ tf

ψl(s
n−1; tf) m̃α−(l)(s

n−1)dsn−1

�2

¶ n2
∑

|β |=n−1

�

(n− 1)!
p

β!

(n−1)∫ tf

ψl(s
n−1; tf) m̃β(s

n−1)dsn−1

�2

,

since
�

�α−(i|α|)
�

� = |α| − 1 and α! ¾ α−(i|α|)!. The last sum can be interpreted as the sum over
all squared chaos coefficients x̃β of a random variable X̃ tf

, whereas we can reason

∑

|α|=n
in=l

xα
2(tf)¶ (n!)2

(n−1)∫ tf
�

ψl(s
n−1; tf)

�2
dsn−1

similar to (6.33).

In the next step we estimate the new integrand function. By multiple usage of the CAUCHY-
SCHWARZ inequality we find

�

�ψl(s
n−1; tf)

�

�

2 ¶ (n+ 1)

 

2tf
�

l − 1
2

�2
π2
·
�

�ξn(s
k−1,k; tf)

�

�

2

+

�

�

�

�

∫ s1

0

∂

∂ s1
ξn(τ, s k−1; tf)Ml(τ)dτ

�

�

�

�

2

+ . . .+

�

�

�

�

�

∫ sn

sn−1

∂

∂ sn
ξn(s

k−1,τ; tf)Ml(τ)dτ

�

�

�

�

�

2!
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¶ (n+ 1)

 

2tf
�

l − 1
2

�2
π2
·
�

�ξn(s
k−1,k; tf)

�

�

2

+

∫ s1

0

�

�

�

�

∂

∂ s1
ξn(τ, s k−1; tf)

�

�

�

�

2

dτ ·
∫ tf

0

|Ml(τ)|
2 dτ

+ . . .+

∫ sn

sn−1

�

�

�

�

∂

∂ sn
ξn(s

k−1,τ; tf)

�

�

�

�

2

dτ ·
∫ tf

0

|Ml(τ)|
2 dτ

�

.

As we have already seen, the kernel functions ξn(·; t) can be estimated with the help of Lemma
6.1. However, from their connection to multiple MALLIAVIN derivatives via (5.54), the repre-
sentation of these derivatives as solutions of SDEs, and our assumptions on the boundedness
of the partial derivatives of the coefficient functions b(·) and σ(·) with respect to their first
argument, it follows that

�

�

�

�

∂

∂ t i
ξn(t1, . . . , tn; t)

�

�

�

�

2

¶
1
n!

Cn(1+ x0
2)eC t , i = 1, . . . , n,

with a constant C depending on tf and K again. Therefore, we calculate

�

�ψl(s
n−1; tf)

�

�

2 ¶ (n+ 1)

 

2tf
�

l − 1
2

�2
π2
· C1

�

1+ x0
2
� Ξ2n

(n!)2
eC1 tf

+
�

1+ x0
2
� C2

n

(n!)2
eC2 tf · s1 ·

2tf
2

�

l − 1
2

�2
π2

+ . . .+
�

1+ x0
2
� C2

n

(n!)2
eC2 tf · (sn − sn−1) ·

2tf
2

�

l − 1
2

�2
π2

!

¶
n+ 1
(n!)2

·

�

1+ x0
2
�

�

l − 1
2

�2
π2

�

C1 tfΞ
2n eC1 tf + C2

n tf
3 eC2 tf

�

¶
n+ 1
(n!)2

·

�

1+ x0
2
�

�

l − 1
2

�2
π2

CΞ
n tf

3 eC tf ,

where CΞ is a constant depending on Ξ, K , and tf, i.e., on K and tf. Hence, we finally obtain

∑

|α|=n
in=l

xα
2(tf)¶ (n!)2

(n−1)∫ tf
�

�ψl(s
n−1; tf)

�

�

2
dsn−1

¶ (n+ 1)

�

1+ x0
2
�

�

l − 1
2

�2
π2

CΞ
n tf

3 eC tf
tf

n−1

(n− 1)!
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and, therefore, the error estimate A2 as

A2 =
∞
∑

l=k+1

p
∑

n=1

∑

|α|=n
in=l

xα
2(tf)

¶ C̃Ξ
�

1+ x0
2
�

tf
3 eC tf

∞
∑

n=1

(n+ 1) (CΞ tf)
n−1

(n− 1)!
·
∞
∑

l=k

1
l2

¶ C̄Ξ
�

1+ x0
2
�

tf
3 eC tf · (CΞ tf + 2)eCΞ tf ·

1
k

¶ ĈΞ
�

1+ x0
2
� tf

4

k
eĈΞ tf . (6.46)

Then the proof is completed by combining A1 and A2. �

6.3 Summary

In this chapter we first presented the standard idea to solve SDEs numerically. With the help of
a time discretization specific integration schemes are established to find solutions in a recursive
manner. These approaches are similar to well-known deterministic ones, but suffer from the
need of random variables that have to be included within the schemes to handle the stochastic
integral part.
As an alternative method we developed an adaptation of the WIENER chaos expansion method
to SDEs. To that end, we particularly used the MALLIAVIN derivative and integration by parts
formula in order to transform a SDE into a system of ODEs. The resulting system—i.e., the
coupling of the components’ equations and the dependency on the underlying HILBERT space
basis functions—completely describes the stochasticity of the original equation, without being
dependent on the external generation of random numbers.
For the efficient numerical use of this idea, we showed different types of sparse and adaptive
truncation schemes of the infinite-dimensional ODE system that are beneficial to reduce the
overall computational effort without impairing the obtained solutions.
Additionally, we established an error analysis of the introduced propagator method depending
on the approximation order of the used chaos expansion and the number of basis functions
of the underlying HILBERT space. We started by considering the geometric BROWNian motion
process and afterwards proved a general error estimate of the WIENER chaos expansion for
SDEs. While related estimates exist for certain classes of SPDEs, where the exploitation of
specific structures is possible, here we built or investigations on multiple MALLIAVIN derivatives
of the stochastic process described by the considered SDE.
This eventually gives us the opportunity to use the WIENER chaos expansion in the context of
random processes describing the dynamics of a system to be controlled. We will describe this
approach in detail in the following chapter.
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7 Optimal Control Problems Determined By
Stochastic Differential Equations

In this chapter we analyze continuous Optimal Control Problems (OCPs) that are driven by
Stochastic Differential Equations (SDEs). We present how these problems differ from deter-
ministic OCPs, effecting the methodologies to solve them. To that end we introduce stan-
dard approaches to tackle continuous Stochastic Optimal Control Problems (SOCPs), including
the HAMILTON-JACOBI-BELLMAN (HJB) equation and the MARKOV Chain Approximation (MCA)
method.

Afterwards we adapt the propagator method for solving SDEs to the special case of SOCPs,
leading to a reformulation of the original stochastic problem as a purely deterministic OCP.

7.1 Problem Formulation

Definition 7.1 (Stochastic Optimal Control Problem)
A continuous stochastic optimal control problem over a probability space (Ω,F ,P) is an infinite-
dimensional optimization problem of the form

min
u·∈A

J(t0, x0, u(·)) (7.1a)

s.t. dXt = b(t, Xt , ut)dt +σ(t, Xt , ut)dBt ∀t ∈ T , (7.1b)

Xt0
= x0. (7.1c)

Therein the dynamic process is a nX -dimensional stochastic process {Xt}t∈T on (Ω,F ,P) with
X : T × Ω → RnX , driven by a SDE (7.1b) with respect to the initial condition (7.1c). It is de-
termined by the drift coefficient function b : T × RnX × Rnu → RnX and the diffusion coefficient
function σ : T ×RnX ×Rnu → RnX×nB , where {Bt}t∈T denotes a nB-dimensional BROWNian mo-
tion. The state process is affected by a control process u = {ut}t∈T to minimize a performance
index J : U → R. 4

For the state process {Xt}t∈T we have Xt ∈ X ⊂ RnX for all t ∈ T . It can be influenced by a
control input Ut ∈ U ⊂ Rnu at any time instant t ∈ T . Further on, it is chosen over a set A of
admissible controls to minimize the cost functional J(·). Then the control has to be a stochastic
process {ut}t∈T = {u(t,ω)}t∈T as well. Moreover, it has to be at least Ft -adapted for all t ∈ T ,
since the decisions taken at time instant t can only be depending on the history up to t.
The most common choices of admissible controls are [195]

• deterministic controls U(t,ω) = U(t),
• open-loop controls, which are non-anticipative with respect to the BROWNian motion
{Bt}t∈T , and
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• MARKOV controls U(t,ω) = UM(t, Xt(ω))with a non-random and LEBESGUE-measurable
function UM : T ×RnX → Rnu . With such a control the state process {Xt}t∈T becomes an
ITŌ diffusion.

For the existence of {Xt}t∈T as a L2-process, certain conditions on the drift and diffusion
coefficients b(·) andσ(·) need to be satisfied, compare Chapter 4.4. In the following we always
assume existence of {Xt}t∈T . Furthermore, we restrict ourselves to MARKOV controls UM(·),
writing Ut = U(t, Xt) for convenience. Additionally, we assume the MARKOV control U(·) to
be sufficiently smooth whenever necessary.

Objective Functions

The performance index J(·) of the SOCP (7.1) is usually very similar to the one for deterministic
OCPs, for one crucial difference: As we deal with stochastic processes, pathwise optimization
over single trajectories of the processes is in general not possible. Hence, the cost criterion
has to be given in a probabilistic fashion which is often accomplished by using the expectation
value, i.e.,

J(t, x , u(·)) = E
�∫ τ

t
L(s, Xs, us)ds+M(τ, Xτ) ·1τ<∞

�

�

�

�

Xt = x

�

. (7.2)

The time instant τ within (7.2) facilitates many possibilities for SOCPs. E.g.,
• if G ⊆ T ×RnX is a fixed domain, then τ can denote the first exit time after t0 from the

domain G for the state process {Xt}t∈T , i.e.,

τ= inf
ϑ>t0

{(ϑ, Xϑ(ω)) /∈ G}¶∞.

• As in the deterministic case, τ can characterize a variable end time that is free for op-
timization. In particular in the context of discounted performance criteria or optimal
stopping problems this is a common choice.

• Thirdly, we can assume to stop the process {Xt}t∈T at a terminal time τ= tf rather than
letting it evolve until it leaves the predefined region G.

This lastly mentioned possibility will be the choice of τ throughout the rest of this work.

7.2 Solution Methodologies for Optimal Control Problems Driven
by Stochastic Differential Equations

In the case of discrete time stochastic optimal control there are manifold methodologies to solve
the arising problems numerically. Most of them are based on stochastic programming tech-
niques [205, 215, 224] including scenario tree ideas. Recent approaches [60] mix approaches
from stochastic and dynamic programming creating particle methods.
However, in continuous time methods for solving problems of type (7.1) can roughly be clas-
sified as we have seen in the deterministic setting of Chapter 1. Applying BELLMAN’s Principle
of Optimality leads to the stochastic HJB equation which is related to the dynamic program-
ming idea. Indirect methods for stochastic optimal control build upon the Stochastic Maximum
Principle (SMP), whereas direct approaches approximate the original problem first and solve
the resulting optimization problem thereafter.
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For numerical applications there are basically two major standard methods for solving OCPs
driven by SDEs: Ideas that focus on solving the HJB equation and approaches that approximate
the original problem by one relying on MARKOV chains.

7.2.1 The HAMILTON-JACOBI-BELLMAN Equation

Let the stochastic process {Xt}t∈T be given through the controlled SDE (7.1b) with the MARKOV

control U(t, Xt) chosen so as to optimize the objective function given by (7.2). Then the min-
imum value of the cost functional

V (t, x ) =min
u(·)

J(t, x , u(·))

can be characterized by the principle of optimality, cf. Theorem 1.1, as in the deterministic
setting.

Theorem 7.1 (HAMILTON-JACOBI-BELLMAN Equation; [141])
Let the optimal cost-to-go function V (·) of the SOCP (7.1) be sufficiently smooth and the terminal
time tf fixed. Then in a viscosity sense it satisfies the HAMILTON-JACOBI-BELLMAN (HJB) Partial
Differential Equation (PDE)

0=min
u∈U

�

L(t, x , u) +
∂ V
∂ t
(t, x ) +

∂ V
∂ x
(t, x )b(t, x , u) +

1
2
∂ 2V
∂ x 2

(t, x )(σσT )(t, x , u)

�

(7.3a)

with the terminal condition

V (tf, x ) = M(tf, x ) (7.3b)

for all t ∈ T and all feasible x ∈ X . 4

If the minimum exists, it has to satisfy this necessary optimality condition. By adding certain
regularity assumptions, cf. [141] and, in particular, [195], both existence and sufficiency can
be proven. Hence, the problem of finding an optimal MARKOV control u(·) for the SOCP (7.1)
shifts to finding a solution to the PDE (7.3).
The main difference to the HJB equation (1.13) for deterministic OCPs lies in the additional
term

∂ 2V
∂ x 2

(t, x )(σσT )(t, x , u)

including second order partial derivatives of the cost functional. These summand is implied
by the diffusion part of the SDE (7.1b) determining the dynamics of the state process, as by
the ITŌ isometry (4.18) we reason that in expectation it holds (dBt)2 = dt, slightly abusing
notation.

Remark 7.1
If we assume the process {Xt}t∈T to evolve within a specified domain G until it exits from it,
the HJB equation (7.3a) is valid for all points (t, x ) ∈ G and the terminal condition (7.3b)
changes to a boundary condition that has to be satisfied for all (t, x ) ∈ ∂ G, cf. [195]. In SOCPs
with terminal conditions an approach including LAGRANGE multipliers for the constraints has
proven to be applicable [195].
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Remark 7.2
The HJB equation is closely related with the KOLMOGOROV backward equation [144]. If the
process {Xt}t∈T is given by a SDE with drift coefficient b(·) and diffusion coefficient σ(·),
where these are moderately regular functions, than the transition probability of the process
evolving from point (t, x ) to point (s, y) at time s > t has the density p(t, x ; s, y) satisfying
the KOLMOGOROV backward equation

∂

∂ t
p̄(t, x ) +

∂

∂ x
p̄(t, x )b(t, x ) +

1
2
∂ 2

∂ x 2
p̄(t, x )(σσT )(t, x ) = 0,

where p̄(t, x ) = p(t, x ; s, y) for fixed s and y , cf. [141].

In general, a solution to the HJB equation need not exist. Another impediment is that it often
has an only formal meaning, and for a number of problems one cannot even write it down
[157]. If there is a solution, it might be only piecewise continuous or measurable. For a detailed
study of SOCPs and their corresponding HJB PDEs we refer to, e.g., [78, 92, 93, 149].
If we can assure that there exists a solution to the HJB equation, in most practical cases it will
not be deducible analytically. Therefore, computational methods from numerical analysis for
PDEs have to be applied. E.g., [3, 91, 238] and [95] give an overview of different ideas set up
for problems and illustrations motivated by financial applications.

7.2.2 Indirect Methods Based on the SMP

In analogy to PONTRYAGIN’s Maximum Principle (PMP) for deterministic OCPs and starting with
the work of HAROLD KUSHNER [154], the Stochastic Maximum Principle (SMP) has been de-
veloped in [30, 43, 107] and generalized by [47, 199]. In a similar fashion as for the PMP,
it relies on introducing adjoint variables and then states necessary conditions of optimality
depending on the states, controls, adjoint states, and possibly appearing constraints. Thereby
a coupled system of forward-backward SDEs is obtained that—in combination with the appro-
priate conditions of optimality and adaptivity—can be used to solve the SOCP numerically.
The main difficulty therein is to preserve that the adjoint states, which are determined by
backward SDEs with given terminal conditions, are adapted to the natural filtration of the
BROWNian motion process. Recently, the development of special algorithms to solve these sys-
tems of forward-backward SDEs has been advanced, cf. [29, 72, 171]. However, often these
approaches depend on the repeated calculation of expectations which has to be performed
using, e.g., Monte Carlo approximations. Additionally, up to now the applicability of these al-
gorithms is ensured only for forward-backward systems of SDEs that are weakly coupled.

7.2.3 Direct Methods: The MARKOV Chain Approximation Method

While numerically solving the system obtained by applying the SMP is an indirect method for
SOCPs as seen for deterministic OCPs in Section 1.2.2 and tackling the HJB equation is related
to the idea of dynamic programming, the following second standard approach can be seen as
an analogue of a direct method.
Let the state process {Xt}t∈T again be given by the controlled ITŌ diffusion (7.1b) with initial
condition (7.1c). For the general method to be described now, it can as well be a jump diffusion
including a POISSON jump process, but we restrict ourselves on the case stated in (7.1). Then
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the basic idea of the MARKOV Chain Approximation (MCA) [155, 156, 157]method is to replace
the original SOCP by a simpler stochastic process model and an appropriate cost functional.
The first step is to approximate the original (controlled) state process by a (controlled) discrete
parameter MARKOV chain ξh =

�

ξh
n

�

� n ∈ N0

	

on the discretized state space Rh ∈ RnX , where
h > 0 is an approximation parameter. The stochastic evolution of the MARKOV chain process
ξh is determined by the transition probability function ph(x , y | u) with x , y ∈Rh and u ∈ U ,
denoting the probability of the state switching from point x to y in one time step when the
control action u is applied.
The necessary requirement for the MARKOV chain to be a good approximation of the original
process {Xt}t∈T is the local consistency criterion [157], which states from a local point of view
that the conditional mean and covariance of changes in the state of the MARKOV chain are
proportional to those of the original process. I.e., let an interpolation interval ∆th(x , u) > 0
be given. We define ∆th

n = ∆th(ξh
n, uh

n), where uh
n denotes the random variable that is the

actual control action at step n. Furthermore, we assume that supx ,u∆th(x , u)→ 0 for h→ 0
and infx ,u∆th(x , u)> 0 for each h> 0. Finally, let ∆ξh

n = ξ
h
n+1 − ξ

h
n.

Definition 7.2 (Local Consistency Criterion)
The MARKOV chain satisfies the local consistency conditions if

bh(t, x , u) ·∆th(x , u)
def
= Eh,n

x ,u

�

∆ξh
n

�

= b(t, x , u) ·∆th(x , u) + o(∆th(x , u)), (7.4a)

σ̂h(t, x , u) ·∆th(x , u)
def
= Eh,n

x ,u

�

�

∆ξh
n − bh(t, x , u) ·∆th(x , u)

�

·
�

∆ξh
n − bh(t, x , u) ·∆th(x , u)

�T�

=
�

σσT
�

(t, x , u) ·∆th(x , u) + o(∆th(x , u)) (7.4b)

with Eh,n
x ,u [·] = E

�

·
�

�ξh
i , uh

i , i ¶ n; ξh
n = x , uh

n = u
�

and suph,ω

�

�ξh
n+1 − ξ

h
n

�

�

h→0
−−→ 0. 4

By that condition, the approximating MARKOV chain has the local properties of mean and
variance of the process {Xt}t∈T . A continuous parameter interpolation of the chain is most
often obtained by setting ξh(t) = ξh

n and uh(t) = uh
n for all t ∈ [th

n+1, th
n).

The second step of the MCA method is to replace the original cost functional J(·) by one
that is appropriate for the considered MARKOV chain. Therefor, let Nh denote the number of
discretization steps of the time horizon [t, tf], i.e., th

Nh = tf. Then we approximate J(·) by

Jh(t, x , uh(·)) = E





Nh−1
∑

i=0

L(th
i ,ξh

i , uh
i )∆th

i +M(th
Nh ,ξh

Nh)

�

�

�

�

�

th
0 = t,ξh

0 = x



 , (7.5)

where the control policy uh =
�

uh
n | n ∈ N0

	

for the chain is admissible, i.e., it satisfies the
MARKOV property

P
�

ξh
n+1 = y

�

�ξh
i , uh

i , i ¶ n
�

= ph(ξh
n, y | uh

n).

If

V h(t, x ) = inf
uh

Jh(t, x , uh(·)),
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then the dynamic programming equation for the cost functional (7.5) becomes

V h(th
n, x ) =min

u∈U

(

∑

y∈Rh

ph(x , y | u) · V (th
n+1, y) + L(th

n, x , u) ·∆th(x , u)

)

, (7.6a)

for all n= 0, . . . , Nh − 1, all x , y ∈Rh, and with terminal condition

V h(th
Nh , x ) = M(th

Nh , x ). (7.6b)

Eventually, this can be solved by, e.g., descent methods in the space of control policies, by
JACOBI or GAUSS-SEIDEL iterations, cf. [157] or [106].
Typical examples for a numerical scheme to build the approximating MARKOV chain are finite
difference methods with nearest neighbor transitions [157]. An alternative idea introduced by
JACEK KRAWCZYK in [148] is based on the application of weak approximations of SDEs to derive
the MARKOV chain. By that, the transitions probabilities ph(· | ·) are only necessary for certain
transitions which reduces the overall computational effort to solve the dynamic programming
recursion (7.6). Figure 7.1 depicts the difference between the original MCA idea and the one
based on a weak EULER-MARUYAMA approximation, where the noise increments∆Bt take only
two values.

Remark 7.3
The MCA method is applicable to more kinds of problems that fit into the wide class of stochastic
control, including stopped and absorbed controlled processes, ones that are reflected at bound-
aries of the state space; discounted cost functionals, optimal stopping and infinite horizon prob-
lems, etc. [157] gives a very extensive overview of those topics.

From a computational point of view both the discretization of the HJB equations and the MCA
method depend on a fixed lattice regardless of the structure of the approximating MARKOV

chain. Further on, the size of the grid is growing exponentially with the dimension of the state
space, which certainly limits the size of the problems to be considered.

7.2.4 Alternative Approaches

Despite the previously mentioned methods are the most important and influential tools for
solving SOCPs, there are more, partially relatively restrictive, ideas.
A first idea presented in [151] addresses the optimal control of nonlinear stochastic systems by
considering the corresponding FOKKER-PLANCK-KOLMOGOROV equation. It provides a computa-
tional method based on policy iterations in the original infinite dimensional function space and
on finite dimensional approximations of the controlled diffusion operator. Hence, low order
approximations of this operator allow for significant reductions of the dimensionality.
Related to the MCA method the approach of [68, 69] approximates the diffusion process by a
finite-dimensional MARKOV chain through the application of generalized cell to cell mappings.
Unfortunately, the idea suffers from the curse of dimensionality as well.
As both the HJB and MCA methods do not work well for problems that are linear in the control
and include stopping the process optimally, [64] provides an approximation of the solution by
polynomial interpolation and solves for the optimal strategy switching between a maximum
and a minimum mode by a collocation method with quadratic spline functions.
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Figure 7.1: Visualization of the MARKOV chain approximation method. The left Figure (a) depicts two
sample trajectories of a (controlled) stochastic process together with a chain approximat-
ing them. The right Figure (b) shows the difference between the original MARKOV chain
approximation of HAROLD KUSHNER [156, 157] and the weak approximation idea of JACEK

KRAWCZYK [148]: While in the original method in one time step transitions to each state
y ∈Rh of the lattice are possible with a positive probability ph(x , y | u)¾ 0—visualized by
the solid and dashed arrows—, with the weak approximation approach—depicted by only
the dashed arrows—only a specific small number of grid points are reachable from x , de-
pending on the chosen weak scheme. Hence, the transition probabilities are only positive for
those grid points that are neighbored to the state points, where the weakly approximated
process moves to under decision u.
Note that in this illustration these grid points of the weak approximation are chosen as to
match with the sample trajectories of the process. In general this will not be the case: The
appropriate grid points are determined by the weak scheme and the decision u depending
on the actual time t and state point x .

Especially for high-dimensional biological systems [225] presents an idea of approximating
the solution to the continuous problem by using continuous function approximators includ-
ing a state augmentation. However, this method is very sensitive to the choice of parameters
adjusting the function approximation.

[131] considers a special class of nonlinear, non-quadratic control problems where the non-
linear HJB equation can be transformed into a linear equation. Then, the usual backward in-
tegration of the dynamic programming recursion can be replaced by computing expectations
and a forward diffusion process. This requires stochastic integration over trajectories that can
be described by a path integral.

Another alternative is based on the optimal quantization of stochastic processes, cf. [173, 174,
197], which analyzes the optimal approximation of random vectors by quantized vectors taking
only a finite number of values. In financial applications of stochastic control where the under-
lying state process can be split into a (multi-dimensional) uncontrolled process {Yt}t∈T and
a—usually one-dimensional—controlled process {Zt}t∈T , [198] describes a method in which
the original process is firstly approximated by the EULER-MARUYAMA scheme. Afterwards, the
discretized parts {Ỹt}t∈T and {Z̃t}t∈T are quantized by an optimal grid making use of the
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quantization of the BROWNian motion (for {Ỹt}t∈T ), and using an orthogonal lattice and a
simple closest neighbor projection onto it (for {Z̃t}t∈T ), respectively. This procedure allows to
preserve the MARKOV structure of the considered original process to be able to apply general
control theory, in particular dynamic programming, but with largely reduced dimensions.

7.3 Finite Horizon Stochastic Optimal Control and the WIENER

Chaos Approach

In this section we apply the WIENER chaos approach that we have introduced in Chapter 5 and
applied to numerically solve SDEs in the previous one to finite horizon OCPs (7.1) that are
driven by controlled stochastic processes. To keep notations clear, we restrict ourselves again
to the one-dimensional case nX = nB = 1. Generalizations to multi-dimensionality can be done
straightforwardly.
We consider the SDE (7.1b), where we proceed in a similar way as before to obtain the prop-
agator of the system. Besides the expansion of the state process {X t}t∈T we have to include a
second chaos expansion determining the control process {ut}t∈T , i.e., (with the basis polyno-
mials Ψα(η) defined as before), i.e.,

ut =
∑

α∈I
uα(t)Ψ

α(η). (7.7)

Remark 7.4
By incorporating expansion (7.7) directly in the propagator obtained for a controlled SDE,
we cannot guarantee the assumed feedback character of the MARKOV control ut = u(t, X t)
anymore.
From a computational point of view, there is another disadvantage of directly implementing
the expansion (7.7) of the control process: The final deterministic optimal control problem we
want to deduce would contain the same number of state and control functions xα(t) and uα(t)
in that case. Hence, the resulting problem would be very hard to solve numerically.

The remedy to both problems lies in the following theorem, cf. [116].

Theorem 7.2
Assume that the MARKOV control ut = u(t, X t) can be TAYLOR-expanded in terms of X t . Then by
considering the q-th order polynomial

uq(t, X t) =
q
∑

i=0

ûi(t)X t
i , (7.8)

the original control coefficients uα(t) of (7.7) are characterized completely by the q+1 new control
functions ûi(t), i = 0, . . . , q, and the state coefficients xα(t). Furthermore, the resulting control
uq

t is automatically non-anticipative and tends to ut for q→∞. 4

Proof In contrast to expanding u(t, X t) in t, for calculating the expansion in terms of X t

we do not need a stochastic TAYLOR expansion as introduced in Section 6.1.2 to derive high
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order numerical integration schemes for SDEs. It suffices to apply a standard (infinite) TAYLOR

expansion in X t = ξ, yielding

ut =
∞
∑

n=0

1
n!
∂ nu
∂ xn

(t, X t)
�

�

X t=ξ
(X t − ξ)n

which can always be rewritten in powers of X t . Hence, with defining new control functions
ûi(t), i ∈ N, as the coefficient terms of these powers, one arrives at the infinite version of (7.8).
Similarly, a finite version up to order q can be defined with the q-th term corresponding to the
remaining error. The convergence to ut follows directly and so does the non-anticipativity as
we express ut through the state process which fulfills the property by definition.
Now if we compare (7.7) and (7.8)

∑

α∈I
uα(t)Ψ

α(η) =
q
∑

i=0

ûi(t)X t
i (7.9)

by inserting the chaos expansion (5.30) of X t and projecting the resulting expression onto the
chaos bases, we obtain a system describing the original control coefficients uα(t) by the new
control functions ûi(t) and the state coefficients xα(t), while having the feedback character of
the MARKOV control included implicitly. �

Example 7.1
Assume q = 2. Then the quadratic and non-anticipative expansion of the control process
{ut}t∈T is given by (7.7), where the coefficients uα(t) are defined by the system

uα(t) = û0(t) ·1{α=0} + û1(t) · xα(t)

+ û2(t) ·
∑

β∈I

∑

0¶γ¶α
C(α,γ,β) xα−γ+β(t) xγ+β(t) (7.10)

for all α ∈ I and C(α,γ,β) given by (compare Theorem 5.6, in particular Equation (5.34),
[172])

C(α,γ,β) =

√

√

�

α

γ

��

γ+β
β

��

α− γ+β
β

�

.

All multi-index operations are defined component-wise again, including the binomial coeffi-
cient that is calculated as the product of the component’s binomial coefficients. Note as well
that by 0¶ γ¶ α it holds α+ γ−β ∈ I and γ+β ∈ I.

Combining Theorems 6.1 and 7.2 we obtain a deterministic reformulation of the controlled
SDE (7.1b). Hence, the only missing part of our transformation method is the objective func-
tion (7.1a) of the original SOCP. But as this is already formulated as an expectation value, it
can be rewritten directly in terms of the deterministic coefficients xα(t) of the state process
{X t}t∈T and the (new) control functions ûi(t). Hence, confining again to the one-dimensional
case for notational reasons, we obtain a deterministic OCP that fully captures the original
stochastic problem if we do not apply any form of truncation, i.e., if we do not restrict p, k, or
q.
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Corollary 7.1
The deterministic OCP

min
{ûi(·)}i∈N

J (t0, x0, {ûi(·)}i∈N) (7.11a)

s.t. ẋα(t) = bα

�

t, X t ,
∞
∑

i=1

ûi(t)X t
i

�

+
∞
∑

j=1

p

α jm j(t)σα−( j)

�

t, X t ,
∞
∑

i=1

ûi(t)X t
i

�

∀t ∈ T , ∀α ∈ I, (7.11b)

xα(t0) = 1{α=0}x0. (7.11c)

is equivalent to the original SOCP (7.1). Having deduced the set of optimal control coefficient
functions {ûi(t)}t∈T ,i∈N, the optimal MARKOV control policy u(t, X t) is obtainable immediately
through Theorem 7.2. 4

In applications, the controlled SDE (7.1b) generally includes nonlinear drift or diffusion terms—
e.g., square roots or fractions of stochastic processes—that cannot be treated by the multipli-
cation formula (5.33) of chaos expansions and a basic comparison of coefficients. In the field
of general Polynomial Chaos (PC), [70] describes an idea to reformulate those nonlineari-
ties as complex equation systems. This requires the introduction of auxiliary algebraic states
and results in a propagator Differential-Algebraic Equation (DAE) system instead of the Ordi-
nary Differential Equation (ODE) system (7.11b). However, this DAE system can be efficiently
solved in the context of direct optimal control. Additionally, this allows the consideration of
algebraic equations in the original SOCP (7.1) as well. We will illustrate this procedure in the
following Chapter 8.3.
The following Algorithm 7.1 summarizes the steps to solve a SOCP by the introduced WIENER

chaos method.

Algorithm 7.1: Necessary steps for solving a finite-horizon SOCP (7.1) by the proposed
WIENER chaos method.
input : Order p of the chaos expansions and number k of included random variables,

adaptivity vector (r ), order q of the control expansion.
output: Optimal control coefficients ûi(t), i = 0, . . . , q, and optimal chaos coefficients

xα(t), α ∈ I (r )k,p for all t ∈ T , optimal objective function value.

1 Prepare the index set I (r )k,p of multi-indices α.

2 Calculate the control expansion (7.8), i.e., the control chaos coefficients uα(·) depending
on the new control functions ûi(·) and the state chaos coefficients xα(·).

3 Derive the propagator system of the controlled SDE (7.1b). This might require the
introduction of (auxiliary) algebraic state coefficients for nonlinear dynamics or general
algebraic terms.

4 Transform the objective function (7.1a) depending on the chaos expansions of state and
control.

5 Solve the resulting deterministic OCP.

Remark 7.5
Choosing p and k adaptively to satisfy given error bounds (cf. Theorems 6.3 and 6.4) might be
profitable. However, refining the used truncation orders would generally require calculating
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new control chaos coefficients and deriving and solving a new propagator system of state chaos
coefficients. This is caused by the associated extension of the multi-index set and the coupling
of the propagator equations.

If, for numerical applicability, we use any form of truncation, the resulting deterministic OCP is
an approximation of the original one. Its solution tends to the solution of (7.1) for p, k, q→∞.
We give detailed examples for solving SOCPs by applying Corollary 7.1 and different magni-
tudes of truncation in Chapter 8.

Remark 7.6
To reflect that optimal controls can be discontinuous, our preference for solving the resulting
deterministic OCP after applying expansion (7.8) is BOCK’s direct multiple shooting approach,
compare Section 1.3. Within this method controls are identified on a discrete multiple shooting
grid, see (1.15), allowing discontinuous control profiles for each ûi(t), i = 0, . . . , q.
Moreover, through the introduced methodology we can as well consider SOCPs with integer
control functions v(t) ∈ V = {v1, . . . , vnv}, t ∈ T . Efficient approaches to treat these controls
can be found in, e.g., [217, 218].

7.4 Summary

In this chapter we defined a class of OCPs that are modeled by making use of SDEs. We surveyed
standard numerical approaches for solving problems of this class and showed connections to
related methods of deterministic optimal control.
Thereafter, we applied the ideas of the previous chapter, i.e., the propagator method based on
the WIENER chaos expansion, to SOCPs. This idea results in a generic approach to solve finite
horizon SOCPs.
To ensure the feedback character of the appearing control process, we utilized a suited ex-
pansion of the MARKOV control. Together with the numerically necessary truncations we have
already presented, we obtained a tractable deterministic counterpart of the original SOCP that
can be efficiently solved by the direct multiple shooting method of deterministic optimal con-
trol. Consequently, this new methodology facilitates the application of state-of-the-art methods
of deterministic optimization and control to the broad context of random processes and SDEs.
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8 Numerical Application:
Stochastic Optimal Control and the
WIENER Chaos Approach

In this chapter we finally apply all the results of Part II to numerically solve Stochastic Opti-
mal Control Problems (SOCPs) by using their deterministic WIENER chaos reformulations and
appropriate methods of deterministic optimal control. First we consider a standard problem of
stochastic optimal control—the linear-quadratic stochastic regulator problem—where we have
the opportunity to compare the computational results of the propagator method to the ana-
lytical solution of the problem. Afterwards we analyze a more advanced regulator problem
where a nonlinear Stochastic Differential Equation (SDE) determines the dynamics of the sys-
tem and which does not exhibit such an analytical solution. These results appeared mostly in
[115, 116].
We finish the chapter by returning to the conspicuous consumption problem of Chapter 3 and
considering the recession strength as a random process.

8.1 A Linear-Quadratic Stochastic Regulator Problem

Our first example for solving optimal control problems driven by SDEs with the help of the
novel chaos approach developed in Chapters 6 and 7 is the standard linear-quadratic stochastic
regulator problem [141, 195]. The advantage of this academic example is that we can solve
the corresponding HAMILTON-JACOBI-BELLMAN (HJB) partial differential equation analytically,
i.e., we have an exact solution to compare our numerical results with.
On the time horizon T = [0, 1] we consider the one-dimensional stochastic regulator problem

min
u·∈A
E

�

1
2

∫ 1

0

�

X t
2 + ut

2
�

dt +
1
2

X 2
1

�

(8.1a)

s.t. dX t = (X t + ut)dt +σdBt , (8.1b)

X0 = x0, (8.1c)

where the coefficientσ ∈ R determining the diffusion term of the controlled stochastic process
{X t}t∈[0,1] is merely a scalar. Then the optimal MARKOV feedback rule solving the SOCP (8.1)
can be calculated as

ut(ω) = u∗(t, X t(ω)) =
�p

2 tanh
�p

2(t − 1)
�

− 1
�

· X t(ω) ∀t ∈ [0, 1]. (8.2)

We have to keep in mind that the feedback rule (8.2) at each instant of time t ∈ [0, 1] depends
linearly on the actual state X t of the system, as each such pair of time and state can be inter-
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preted as the initial point of a separate problem. Further on, the MARKOV control ut depends
explicitly on the time t. The optimal cost of the problem is

J∗(t0 = 0, x0) =
1
2

�

1+
p

2 tanh
�p

2
��

x0
2 +

1
2
σ2
�

1+ ln
�

cosh
�p

2
���

and the expectation and variance of the solution process can be calculated analytically as well,
using the properties of the stochastic integral and ITŌ’s formula, giving

E [X t] = x0

cosh
�p

2(t − 1)
�

cosh
�p

2
� ,

V [X t] =
σ2

2
p

2

�

2 tanh
�p

2
�

cosh2
�p

2(t − 1)
�

+ sinh
�

2
p

2(t − 1)
��

.

Applying the propagator method of Sections 6.2 and 7.3 to the SDE (8.1b) in its integral form,
we deduce

xα(t) = x0 ·1{α=0} +

∫ t

0

(xα(s) + uα(s)) ds+
∞
∑

j=1

∫ t

0

p

α j m j(s)E
�

σΨα
−( j)(η)

�

ds,

with the basis functions mi(·) of L2(T ), i ∈ N, defined as in (5.25) and the control coefficients
uα(t) given by (7.8) and (7.9)—for preparing a system to be used numerically this will be
up to some order q. The expectation value within the last summand is not equal to zero only
if α−( j) = 0 or, equivalently, α = e j , j ∈ N. Therefore, the resulting system of Ordinary
Differential Equations (ODEs) reads for all α ∈ I and uα(t) expanded as explained

ẋα(t) = xα(t) + uα(t) +σm j(t) ·1{α=e j , j∈N},

xα(0) = x0 ·1{α=0}.

As stated before, we can transform the objective function (8.1a) by directly inserting the chaos
expansions (5.22) and (7.8) of X t and the MARKOV control ut . However, our numerical expe-
riences showed that it is beneficial to convert MAYER-type objectives into their corresponding
LAGRANGE form. Despite a slightly better convergence behavior, the computational costs are
reduced notably.

Hence, applying ITŌ’s formula (4.22) to the function f (X t) =
1
2 X t

2 yields

E
�

1
2

X1
2
�

=
1
2

x0
2 +E

�

∫ 1

0

�

X t(X t + ut) +
1
2
σ2
�

dt

�

+E

�

∫ 1

0

σX t dBt

�

︸ ︷︷ ︸

=0

=
1
2

x0
2 +

1
2
σ2 +E

�

∫ 1

0

X t(X t + ut)dt

�

.

This changes the objective function (8.1a) to

E

�

1
2

∫ 1

0

�

X t
2 + ut

2
�

dt +
1
2

X1
2

�
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=
1
2
(x0

2 +σ2) +E

�

1
2

∫ 1

0

�

X t
2 + ut

2 + 2 X t(X t + ut)
�

dt

�

=
1
2
(x0

2 +σ2) +E

�

1
2

∫ 1

0

�

(X t + ut)
2 + 2 X t

2
�

dt

�

=
1
2
(x0

2 +σ2) +
1
2

∫ 1

0

∑

α∈I

�

(xα(t) + uα(t))
2 + 2 xα

2(t)
�

dt.

Finally, for numerical investigations we have to truncate the index set I and the control ex-
pansion (7.8) appropriately. In the sequel we assume a quadratic approximation of the control
rule, i.e., q = 2. Remember that the exact control (8.2) is only linear in X t . Additionally, we
use different choices of (simply and adaptively) truncated index sets I(r )k,p , compare Section
6.2.2 and, in particular, Table 6.1. We deduce the deterministic optimal control problem

min
û0(·),û1(·),û2(·)







1
2
(x0

2 +σ2) +
1
2

∫ 1

0

∑

α∈I(r )k,p

�

(xα(t) + uα(t))
2 + 2 xα

2(t)
�

dt







(8.3a)

s.t. ẋα(t) = xα(t) + uα(t) +σm j(t) ·1{α=e j} (8.3b)

xα(0) = x0 ·1{α=0} (8.3c)

with

uα(t) = û0(t) ·1{α=0} + û1(t) xα(t)

+ û2(t) ·
∑

β∈I(r )k,p

∑

0¶γ¶α
C(α,γ,β) xα−γ+β(t) xγ+β(t) (8.3d)

as given in Example 7.1.
The resulting problem (8.3) can now be solved by sophisticated methods of deterministic opti-
mal control as it does not explicitly involve random components anymore. All stochastic infor-
mation is included within the ODE system (8.3b). The problem includes |I(r )k,p | state functions
corresponding to the coefficients xα(t) of the chaos expansion and three control functions as
we use a quadratic approximation of the feedback rule.
Our method of choice for obtaining the numerical results presented now is the software pack-
age MUSCOD-II [160] built upon BOCK’s direct multiple shooting approach. The corresponding
numerical experiments have been performed using the initial values x0 =

1
2 and x0 = 1, the

diffusion parameter σ = 0.15, and different truncation numbers k and approximation or-
ders p of the chaos expansion. Furthermore, we computed the solutions of all problems using
Nshoot = 40 multiple shooting nodes, a constant control discretization (1.15), and the RUNGE-
KUTTA-FEHLBERG scheme RKF45 [87] to integrate the ODE system on each multiple shooting
interval. The derivatives and sensitivities have been calculated by a Internal Numerical Differ-
entiation (IND) procedure. By the use of the relatively large number of 40 shooting nodes (on
the comparatively small time horizon T = [0, 1]) we still achieve a very good variability of the
obtained control functions ûi(·), i = 0, . . . , q.

Remark 8.1
The deterministic Optimal Control Problem (OCP) (8.3) cannot be implemented straightfor-
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Figure 8.1: Optimal controls of the linear-quadratic stochastic regulator problem (8.1). The plots de-
pict solutions of the deterministic optimal control problem (8.3) resulting from applying
the WIENER chaos methodology of Chapters 6 and 7, i.e., the new control functions ûi(t),
i = 0, . . . , q introduced in the expansion (7.8) with q = 2 to preserve the non-anticipativity
of the MARKOV control in its chaos expansion. In comparison the exact functions (compare
(8.2)) are shown.
Here the new control functions are obtained from truncating the index set I of the chaos
expansion with k = 10 basis functions mi(·) of the underlying HILBERT space L2([0,1])
(which corresponds to k = 10 random variables) and approximation order p = 1, result-
ing in eleven basis polynomials that describe the stochastic system. Because of that simple
GAUSSian approximation the quadratic expansion of the MARKOV control collapses to a lin-
ear one, whereas these apparently wrong solutions yield good results, compare Figure 8.3.
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û0(t)
p = 2, k = 10

-3

-2.5

-2

-1.5

-1

-0.5

0

0 0.2 0.4 0.6 0.8 1

State x

Control profile û1(t)
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Figure 8.2: Optimal controls of the linear-quadratic stochastic regulator problem (8.1) as in Figure 8.1.
Now the controls are computed for k = 10 random variables and approximation order
p = 2. Thus, we come very close to the desired results, including û2(t)≈ 0 as supposed.

wardly in MUSCOD-II as the software does not support multi-indexing of the appearing vari-
ables, i.e., the state and control coefficients xα(·) and uα(·) depending on the multi-indices
α ∈ I(r )k,p . To overcome this issue, we use MATLAB’s functionality to generate the set I(r )k,p , perform
the problem-specific calculations of multi-indices, deduce the objective function and the prop-
agator system depending on the multi-indices, and export the resulting OCP to a MUSCOD-II

problem source file by a tailored script. Within this script the multi-index α is transformed into
a one-dimensional index with the help of a search algorithm.

Figures 8.1 and 8.2 illustrate the behavior of the new control functions ûi(t), i = 0, . . . , q = 2,
that we introduce to preserve the feedback character of the MARKOV control ut = u(t, X t) of
the original stochastic problem (8.1). Note that we use a quadratic expansion (7.8) although
the exact feedback rule is only linear in X t (compare (8.2)). The solutions shown in Figure
8.1 are computed by a purely GAUSSian approximation of the chaos space, i.e., by truncating
the index set I with an approximation order p = 1. This leaves only first order chaos basis
polynomials Ψα=ei (η) = ηi for i ∈ N within the construction (apart from the zero-order one),
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Figure 8.3: Solution paths of the linear-quadratic stochastic regulator problem (8.1) with initial value
x0 = 0.5. All plots show again a comparison of exact solutions and the corresponding path
obtained by the introduced WIENER chaos approach, i.e., a solution to the transformed
deterministic optimal control problem (8.3) with k = 10 included basis functions/random
variables and an approximation order p = 1.
The first plot depicts the control profile u(t; E [X t]), the second one the expectation of the
state process E [X t], and the third figure its variance V [X t].

which are standard GAUSSian random variables. Hence, the system of control coefficients uα(t)
induced by (7.8) as in Example 7.1 is not quadratic in the state coefficients xα(t) anymore. To
justify this, we calculate

u0(t) = û0(t) + û1(t) x0(t) + û2(t) ·
∑

β∈I1,k

C(0,0,β)
︸ ︷︷ ︸

=1

xβ
2(t),

where the last term can merely be seen as a multiple of the process’s variance plus the quadratic
expectation, and for α 6= 0

uα(t) = û1(t) xα(t)+

+ û2(t) ·
∑

β∈I1,k

�

C(α,0,β) xα+β(t) xβ(t) + C(α,α,β) xβ(t) xα+β(t)
�

= û1(t) xα(t) + 2 û2(t) x0(t) xα(t),

as all appearing coefficients α, β , and α+β have to be within the index set Ik,1. This explains
the differences of the exact solutions and the ones shown in Figure 8.1. Moreover, only k = 10
random variables, i.e., basis functions, ηi =W (mi), i = 1, . . . , k, are included in the construc-
tion of the basis polynomials Ψα(η) used to obtain the plotted solutions. By increasing the
order p, the system of control coefficients becomes quadratic in the state coefficients, which is
why the solutions shown in Figure 8.2 (computed with k = 10 and p = 2) come closer to the
exact ones, including û2(t)≈ 0 as anticipated.

Figure 8.3 shows different solution paths of the transformed deterministic OCP (8.3) in com-
parison with the appropriate exact solutions of the original stochastic problem (8.1) for given
initial values x0. Again the results of the chaos approach are obtained with the simple trun-
cation (6.14) using k = 10 basis functions mi(·) of the space L2(T ) giving k = 10 random
variables and an approximation order p = 1 for constructing the basis polynomials Ψα(η)
with α ∈ Ip,k.

Within the figure the first plot depicts the optimal control profile depending on the time
t ∈ T = [0, 1] and the expectation of the process at that time, i.e., the control function
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Figure 8.4: Absolute errors of the solutions of the linear-quadratic stochastic regulator problem (8.1)
computed by the novel chaos approach for different numbers k of involved random variables
and orders p to construct the basis polynomials Ψα(η). The sequence of plots is as in Figure
8.3, i.e., the first one showing the errors within the control profile u(t; E [X t]), the second
one errors in the expectation E [X t], and the third plot errors in the variance V [X t].

u(t; E [X t |X0 = x0]). By viewing this uncommon profile we get an impression of the accuracy
of the numerically obtained control at states where the process will be most likely or better to
say, in expectation, at time t. The remaining two plots of Figure 8.3 show the corresponding
expectation and variance of the process.

From purely visual comparison we see how well the introduced chaos method works, even
for very low approximations of the WIENER chaos space and even as the new control functions
ûi(t), i = 0, . . . , q = 2, deviate from their exact counterparts as we saw in Figure 8.1. This holds
especially if we are interested in calculating the objective, expectations and possibly higher
moments of the solution process for a given initial value to the original problem because they
are a direct byproduct of the new methodology.

Figure 8.4 illustrates the absolute errors of u(t; E [X t]), E [X t], and V [X t] over time for
x0 = 0.5 and different choices of truncation. We notice that the error decreases if the number
of random variables k and the approximation order p are increased. E.g., the absolute error
of the expectation process E [X t] in the time interval [0, 1] is at most 1 · 10−4 for the low
approximation (p, k) = (1,10) and decays to 2 · 10−5 for (p, k) = (2, 40), which is very aston-
ishing. Particularly the enhancement of the approximation order has a great influence on the
error performance as we have already experienced while simulating SDEs by the propagator
method in Section 6.2.3 and in view of the error estimates given in Theorems 6.3 and 6.4. Here
it can be seen most clearly in the error plots of the control profile u(t; E [X t]) and the variance
V [X t]. The jagged behavior of the graphs is due to our choice of constant control base func-
tions (1.15) for ûi(t), i = 0, . . . , q, on each multiple shooting interval, which is carried over to
all solution processes.

In general, we should note that the absolute errors in the variance appear much smaller in the
control context than the errors we have observed when simulating the geometric BROWNian
motion process by the chaos methodology in Chapter 6.2, cf. 6.2. This is mainly caused by
the type of objective function of our considered SOCP (8.1). This objective function can be
interpreted as being of energy-minimizing type which is related to a variance-reduction term.

Furthermore, Table 8.1 presents additional information about the performance of the chaos
approach for solving this SOCP, depending on the type and accuracy of the truncation of the
index set. Therein, we see that at least in this first example the order p of the used basis
polynomials Ψα(η) and their corresponding state coefficient functions xα is less important
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Table 8.1: Comparison of optimal values and numerical expenses for solving the deterministic OCP
(8.3) for initial values x0 = 0.5 (columns 5–7) and x0 = 1 (columns 8–10) depending on the
type and accuracy of truncating the index set I. We notice that the accuracy of the objective
function value mainly depends on the number k of incorporated basis functions mi(·) of
L2([0,1]), i.e., random variables ηi =W (mi). Runtime increases with the dimension of the
resulting deterministic problems and the associated coupling of the state variables within the
system. The major part of the computational effort is required by calculating the derivatives
of the state variables.
The symbol “−” in the r-column indicates that the simple truncation (6.14) was used, “sp”
marks the use of a sparse (6.15) and “ad” of an adaptive index set (6.16). Compare Table
6.1 for a detailed description of the appropriate index denoted by the reference symbol and
number.

k p r # coeff. objective time # SQP objective time # SQP

xα value in s value in s

x0 = 0.5 x0 = 1.0

10 1 − 11 0.301731 2.0 44 1.147880 2.7 52

10 2 − 66 0.301731 186.8 135 1.147879 360.5 300

10 2 sp1 61 0.301731 117.7 101 1.147880 103.1 111

20 1 − 21 0.301898 8.8 46 1.148046 14.4 70

20 2 − 231 0.301898 3341.1 103 1.148046 4948.7 150

20 2 ad1 71 0.301898 168.5 90 1.148046 240.1 124

20 3 ad5 125 0.301898 1053.3 119 1.148046 1020.7 103

40 1 − 41 0.301979 57.8 54 1.148127 85.3 76

40 2† ad2 91 0.301979 694.6 100 1.148127 1211.0 233

100 1 − 101 0.302027 585.6 48 1.148174 888.7 71

100 2† ad3 151 0.302026 3669.9 132 1.148175 3233.5 119

exact 0.302054 1.148191
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Figure 8.5: Control profiles of the linear-quadratic stochastic regulator problem (8.1) computed by
the novel chaos approach in comparison with the exact solutions. Both plots show con-
trol profiles u(t, x) for fixed time instants t depending on the state x of the solution process
{X t}t∈[0,1]. They are calculated with a quadratic approximation of the MARKOV control and
a low (full) truncation of the index set I, i.e., k = 10 and p = 1.
One notices that using this truncation the controls at time t = 0 are only adequate for the
initial value x0 of the solved deterministic problem. In the course of time they become more
accurate for varying states, which is caused by the implicit capture of the process’s variance
within the deterministic system.

than the number of incorporated basis functions and, thus, random variables k if we desire a
good result of the objective function. This is mainly due to the fact that the BROWNian motion
enters the SDE (8.1b) in a purely additive way.

Moreover, Table 8.1 gives the dimensions of the resulting deterministic OCPs (8.3) and the
computational effort to solve them numerically. Note that by using sparse or adaptive index
sets I r

k,p and I(r )k,p the number of coefficient functions within the deterministic system (and,
therefore, computation time) can partly be reduced drastically without impairing the solution.
The most astonishing result is that if we are interested in the objective value, the expectation
of the resulting state process, and its variance for a given initial value x0, we can obtain these
items with very little effort, the appearing relevant systems can be solved in a few seconds.
In general, the largest part of the computation time, i.e., about 90%, is necessary to calculate
derivatives and sensitivities by IND. Thus, there is a great potential to reduce the computational
expenses through parallelization.

However, if one is not only interested in the solution to the SOCP for one certain initial value x0,
but possibly for an environment of x0, the low approximation of Figure 8.3 is too inaccurate,
as Figure 8.5 illustrates.

From the left plot we see that using a low chaos approximation, e.g., a GAUSSian one (p = 1)
with k = 10 random variables ηi = W (mi), the control obtained via solving the resulting
deterministic optimal control problem (8.3) is only accurate for the initial value x0 employed.
When we move further in time the control is very precise for states that the process will attain
in expectation (see again the left plots in Figure 8.3 for comparison), but additionally there is
a certain robustness against deviations from that states. This is natural due to the randomness
that is implicitly captured within the deterministic system of ODEs (8.3b). Nevertheless, if
we are interested in applying one (optimal) control—that is obtained through one specified
initial value x0—for several control problems depending on a whole environment of initial
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Figure 8.6: Control profiles as in Figure 8.5 but for an advanced chaos approximation (8.4) with p = 2,
k = 40, and an adaptively truncated index set I(r )p,k (compare Tables 6.1 and 8.1, in particular

Item ad2).

values around x0, a low chaos approximation is useless. In that case more information of
the stochastic behavior of the system is needed within the deterministic transformation. In
particular, the crucial factor of a better approximation here is the order p rather than the
number of incorporated basis function mi(·), i.e., random variables ηi , i = 1, . . . , k. In this
first example it is sufficient to apply the following truncation with p = 2, k = 40, and an
adaptive index

�

r j
�

j=1,2 (compare (6.16)) to obtain the desired robustness property of the
optimal control profile:

I(r )2,40 =
¦

α= (α1, . . . ,α40)
�

�

�0¶ αi ¶ r j
i ∀i ∈ {1, . . . , k}, ∀ j = 1,2, |α|¶ 2;

r 1 = (1, . . . , 1), r 2 = (2, . . . , 2
︸ ︷︷ ︸

5

, 1, . . . , 1
︸ ︷︷ ︸

5

, 0, . . . , 0
︸ ︷︷ ︸

30

)
©

. (8.4)

Figure 8.6 validates this. In general, we notice a connection of the behavior of the control
profiles u(t, x), t fixed, shown in Figures 8.5 and 8.6 and the new control functions ûi(t),
i = 0, . . . , q, in Figures 8.1 and 8.2. The better those new control functions coincide with their
exact counterparts, the better the state dependent profiles at fixed time instants fit and the
more robust the solutions become.

Altogether, this simple example shows that up to this point the results of our novel chaos
reformulation of a continuous finite-horizon SOCP as a deterministic OCP are very promising.
In the next section we consider a problem that cannot be solved analytically anymore. In fact,
the state process {X t}t∈T is determined by a SDE with state dependent diffusion term and a
drift that is a nonlinear combination of the state and the control processes.

8.2 A Nonlinear Stochastic Regulator Problem

Let us consider a stochastic optimal control problem with the same objective function as for
the linear-quadratic stochastic regulator of the previous section, but with a nonlinear diffusion
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driving the state process {X t}t∈T within the time interval T = [0, 1].

min
u·∈A
E

�

1
2

∫ 1

0

�

X t
2 + ut

2
�

dt +
1
2

X1
2

�

(8.5a)

s.t. dX t = X t ut dt +σX t dBt , (8.5b)

X0 = x0. (8.5c)

Because of this enhancement, problem (8.5) cannot be solved analytically. Nevertheless, in
[106] it is shown that a solution to (8.5) exists, even in a more general formulation. Therefore,
we can apply our WIENER chaos methodology of Chapters 6 and 7 again to transform this
stochastic control problem into a deterministic one. The propagator of the SDE (8.5b) can be
derived straightforwardly as it includes only a product of two chaos expansions. It reads as
follows (with the constant C(α,γ,β) and the diminished multi-index α−( j) defined as before
in (5.34) and (5.43), and {mi(·)}i∈N denoting the basis functions (5.25) of L2([0, 1])):

xα(t) = x0 ·1{α=0} +

∫ t

0

∑

β∈I

∑

0¶γ¶α
C(α,γ,β) xα−γ+β(s)uγ+β(s)ds

+σ

∫ t

0

∞
∑

j=1

p

α j m j(s) xα−( j)(s)ds. (8.6)

Therein, the control coefficients uα(·) are again defined via comparing the formal chaos expan-
sion (7.7) of ut and the TAYLOR expansion (7.8), i.e., depending on the new control functions
ûi(·), i = 0, . . . , q. The first integral in (8.6) follows from the chaos expansion of the product
X t · ut .

To reformulate the objective function (8.5a) in terms of the deterministic coefficient functions,
we start again by converting the MAYER-type part using ITŌ’s formula (4.22). Then inserting the
chaos expansions of X t and ut yields the desired form. With I(r )k,p denoting the (simply, sparsely,
or adaptively) truncated index set as before and approximating the MARKOV control by (7.9),
e.g., with a quadratic expansion as in (8.3), we obtain the deterministic OCP corresponding
to (8.1),

min
ûi(·),i=0,...,q







1
2

x0
2 +

1
2

∫ 1

0

∑

α∈I(r )k,p



(1+σ2) xα
2(t) + uα

2(t)

+2
∑

β∈I(r )k,p

∑

0¶γ¶α
C(α,γ,β) xα−γ+β(t) xγ+β(t)uα(t)



 dt







(8.7a)

s.t. ẋα(t) =
∑

β∈I(r )k,p

∑

0¶γ¶α
C(α,γ,β) xα−γ+β(t)uγ+β(t)

+σ
∞
∑

j=1

p

α j m j(t) xα−( j)(t) (8.7b)

xα(0) = x0 ·1{α=0}. (8.7c)
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Table 8.2: Optimal values of problem (8.5) calculated with the software package SOCSol4L. The prob-
lem was solved in the predefined state space G = [−0.7, 1.2] for different space and time
discretizations ∆x and ∆t . After calculating optimal control policies, the optimal cost func-
tion values have been approximated by a Monte Carlo simulation with 100 000 and 1 million
sample paths and different simulation step sizes ∆Sim for the weak approximation scheme
of the SDE. Each simulation therefore gives a different result. The runtimes (in min) in-
clude both solving the MARKOV decision process by a dynamic programming technique and
performing the Monte Carlo simulation to eventually obtain the desired result.

discretization # simulations ∆Sim optimal value runtime in min

100 000

0.01

0.2113440
100

∆x = 0.005 0.2117336

∆t = 0.001
1 000 000

0.2115376
925

0.2115948

∆x = 0.002 100 000
0.001

0.2112635 1 000

∆t = 0.001 1 000 000 0.2114620 9 200

As the solution of problem (8.5) cannot be deduced analytically, we have to compare the results
of our chaos approach with other numerical methods. It is intricate to solve the HJB Partial
Differential Equation (PDE) induced by (8.5) numerically because we have no information
about appropriate boundary conditions for the region of interest. In financial problems this
can often be overcome by economic argumentation, however, in this case it is not possible.
Therefore, we use the software package SOCSol4L [17, 148] for obtaining reference solutions.
It transforms the original continuous stochastic control problem into a MARKOV decision chain
by utilizing the MARKOV Chain Approximation (MCA) method combined with a weak EULER-
MARUYAMA integration procedure of the SDE on a chosen time and space grid for a predefined
region G of interest, compare Section 7.2.3. Afterwards, this MARKOV decision chain problem
is solved by a dynamic programming technique. Table 8.2 gives an overview of optimal values
obtained with that software and the computational effort needed therefor. Note that while our
new chaos methodology provides the expectation of the process {X t}t∈T and the optimal cost
automatically, within SOCSol4L these quantities have to be approximated by using a Monte
Carlo simulation.

The reference solution that is used within the following figures is obtained with a state dis-
cretization step size ∆x = 0.002 and a time discretization step ∆t = 0.001. All expectations
and variances are simulated with 300 000 sample paths.

Figure 8.7 shows solution paths of the deterministic OCP (8.7) with a quadratic TAYLOR expan-
sion (7.8) of the control function in comparison with the SOCSol4L-reference solution for the
initial value x0 = 0.5 and a diffusion parameter σ = 0.3. The settings of the software package
MUSCOD-II have been the same as for the computations in the previous section. These solu-
tions are again obtained with a simple truncation (6.14) and k = 10 basis functions mi(·) of
L2([0, 1]), i.e., k = 10 random variables ηi = W (mi) and order p = 1 for constructing the
chaos basis polynomials Ψα(η). The order of the plots within is as in Figures 8.3 and 8.4, i.e.,
the left plot depicting the control function u(t; E [X t]), the middle one the expectation E [X t],
and the right one the variance V [X t] of the solution process. And again these paths show that
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Table 8.3: Optimal values and numerical expenses for solving the SOCP (8.5) with the chaos method-
ology, i.e., solving the deterministic problem (8.7) with MUSCOD-II. We use the initial values
x0 = 0.5 (columns 5–7) and x0 = 1 (columns 8–10), the diffusion parameter σ = 0.3, a qua-
dratic expansion of the control function (q = 2) and different types and accuracies of trun-
cating the index set I. The accuracy of the objective function values does not only depend
on the number k of incorporated basis function of the underlying HILBERT space L2([0,1]),
i.e., random variables, but as well on the approximation order p. Runtime increases again
with the dimension of the resulting deterministic problems and the associated coupling of
the state variables within the system.
The symbol “−” in the r-column indicates that the simple truncation (6.14) was used, “sp”
marks the use of a sparse (6.15) and “ad” of an adaptive index set (6.16). Compare Table
6.1 for a detailed description of the appropriate index denoted by the reference symbol and
number.

k p r # coeff. objective time # SQP objective time # SQP

xα value in s value in s

x0 = 0.5 x0 = 1.0

5 2 − 21 0.211509 42.2 234 0.620330 46.7 224

5 3 − 56 0.211502 476.0 215 0.620325 330.6 143

5 3 sp3 42 0.211503 170.2 156 0.620326 190.8 163

10 1 − 11 0.211733 3.8 46 0.620489 3.6 46

10 2 − 66 0.211458 713.6 178 0.619768 740.1 192

10 2 sp1 61 0.211458 631.2 202 0.619769 544.8 161

10 3 − 286 0.211451 27311.5 144 0.619761 25650.7 123

10 3 ad4 42 0.211462 233.3 165 0.619799 189.2 120

10 4 ad7 57 0.211462 510.6 198 0.619798 558.7 195

20 1 − 21 0.211714 14.0 42 0.620214 19.0 53

20 2 − 231 0.211432 18293.5 179 0.619469 11484.4 79

20 2 sp2 216 0.211432 13557.4 121 0.619470 22281.2 179

20 2 ad1 71 0.211439 1557.2 241 0.619498 1337.0 187

20 3 ad5 125 0.211433 7041.0 254 0.619493 5933.2 196

20 4 ad8 131 0.211433 6679.2 213 0.619492 3744.5 110

40 2 ad2 91 0.211430 2256.8 139 0.619359 2813.2 156

40 3 ad6 145 0.211423 9300.2 118 0.619353 13341.8 153

100 1 − 101 0.211698 1962.9 79 0.619986 3389.7 125

100 2 ad3 151 0.211424 12985.6 145 0.619273 14423.5 149

SOCSol4L (300 000 sim.) 0.211707 169159.0 0.619434 168315.7
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Figure 8.7: Solution paths of the SOCP (8.5) with initial value x0 = 0.5. All plots show a comparison of
paths obtained by the introduced chaos approach, i.e., a solution to the transformed deter-
ministic OCP (8.7) with k = 10 included basis function/random variables, approximation
order p = 1, a quadratic expansion of the control (q = 2), and a reference solution obtained
with SOCSol4L (G = [−0.7,1.2], ∆x = 0.002, ∆t = 0.001 and a Monte Carlo simulation
with 300000 sample paths).
The first plot depicts the control profile u(t; E [X t]), the second one the expectation of the
state process E [X t], and the third figure its variance V [X t]. The star symbol ∗ in the key of
each plot denotes that the reference solution has been calculated by SOCSol4L.
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Figure 8.8: Absolute errors of the solutions of the stochastic control problem (8.5) computed by the
novel chaos approach for different chaos approximation orders p and numbers k of involved
basis function/random variables to construct the basis polynomials Ψα(η) (in comparison
to the reference solutions calculated with SOCSol4L). For all shown results a quadratic ex-
pansion (7.8) has been used.
The sequence of plots is as in Figure 8.7, i.e., the first showing the errors within the control
profile u(t; E [X t]), the second one errors in the expectation E [X t], and the third plot errors
in the variance V [X t].

by this low approximation we obtain very good results if we are interested in the optimal value,
expectation, and related quantities, even as the state SDE (8.5b) is much more complex than
in the linear-quadratic stochastic regulator problem (8.1) and, hence, the deterministic system
(8.7) much more coupled. This quality of the solution is confirmed by the corresponding error
plots in Figure 8.8 and the optimal values stated in Table 8.3. The very noisy shape of the
absolute errors is caused by the Monte Carlo approximation—even with the large amount of
300 000 sample simulations the values deviate notably (compare Table 8.2).

Like for the linear-quadratic regulator problem we notice from Figure 8.8 that especially in-
creasing the approximation order p leads to a decrease of the absolute errors in the control
profile u(t; E [X t]) and the variance V [X t], while the expectation is already very accurately
approximated with order p = 1. If we compare the optimal objective values in Table 8.3 we
see that for this nonlinear example it is not sufficient to increase the number of incorporated
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Figure 8.9: Control profiles of the nonlinear control problem (8.5) computed by the novel chaos ap-
proach in comparison with the reference solutions obtained by SOCSol4L. Both plots show
control functions u(t, x) for fixed time instants t depending on the state x of the process.
They are calculated with a quadratic approximation of the MARKOV control and a low trun-
cation of the index set I, i.e., with p = 1 and k = 10.
One notices again that using this truncation the controls at time t = 0 are only accurate for
the initial value x0 of the solved deterministic problem.

random variables ηi =W (mi), i = 1, . . . , k, to obtain better results; here increasing the order
p is important as well.

From a computational point of view Table 8.3 shows that the deterministic OCP (8.7) is much
more challenging than (8.3). While the number of Sequential Quadratic Programming (SQP)
iterations needed to solve the problems remains at a comparable level, the runtimes for solving
(8.7) are notably higher. This results from a distinctive coupling of the deterministic state
functions xα within the ODE system (8.7b) and, therefore, a higher expense for calculating
their derivatives by IND, which requires about 95% of the overall computational effort.

Now let us take a look on the control profiles u(t, x) for fixed times t ∈ [0, 1] depending on the
state x of the process {X t}t∈[0,1]. As in the previous section, the control obtained via the low
truncation (p = 1, k = 10) does not encourage its application to initial values deviating from
x0, see Figure 8.9. If we want to guarantee a certain robustness of the validity of a control
u(·) (calculated with initial value x0) for applying it to initial values in an environment of x0,
we have to enhance the accuracy of the WIENER chaos approximation. Figure 8.10 shows the
control profiles u(t, x) calculated for the adaptive truncation (8.4), i.e., p = 2, k = 40, and
(r ) given by Item ad2, cf. Table 6.1. However, in comparison to the linear-quadratic regulator
problem the impact of this enhancement turns out lower. This might originate from the fact
that the variance of the process {X t}t∈[0,1] in the actual example is generally smaller than
the variance of the regulator process, hence the process will not deviate that heavily from its
expectation. Nevertheless, qualitatively better approximations can be obtained by increasing
the truncation characteristics p and k or the order q of the MARKOV control expansion further—
at the cost of higher computation times.

We complete the examination of this nonlinear example by giving an impression on the conse-
quences of applying a cubic control expansion (7.8). In combination with formula (5.33), we
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Figure 8.10: Control profiles as in Figure 8.9 but for the advanced chaos approximation (8.4) with an
approximation order p = 2 and k = 40 included random variables, using an adaptive index
(r ).

calculate for all α ∈ I, new control coefficient functions ûi(·), i = 0, . . . , 3, and t ∈ T

uα(t) = û0(t) ·1{α=0} + û1(t) · xα(t) + û2(t) ·
∑

γ∈I

∑

0¶β¶α

C(α,β ,γ)xα−β+γ(t)xβ+γ(t)

+ û3(t) ·
∑

ν∈I

∑

0¶µ¶α
C(α,µ,ν)×

×
∑

γ∈I

∑

0¶β¶α−µ+ν
C(α−µ+ ν,β ,γ)xα−µ+ν−β+γ(t)xβ+γ(t)xµ+ν(t), (8.8)

with the constant C(·) defined as in (5.34). Truncation of the index set I to I(r )k,p then gives the
control coefficients to be used within the deterministic OCP (8.7).

Table 8.4 states the differences in the objective function value and the computation times of
solving the deterministic OCP with control approximations of orders q = 1, 2,3 and varying
truncations of the index set I. One notices that increasing the order of the control expansion
(7.8) from linear to quadratic improves the result clearly, whereas the step from a quadratic
to a cubic expansion leads to only marginal improvements of the objective function values.
Nevertheless, the cost of increasing the control expansion order q are (considerably) higher
computation times. This is particularly caused by the increasingly coupled structure of the
ODE system (8.7b), wherefore the computation of sensitivities by IND becomes much more
challenging and time consuming. Nevertheless, by using parallelized numerical methods this
drawback can be qualified.

From Figure 8.11 we see that in general increasing the order of the control expansion has a
positive effect on the robustness of applying control profiles u(·) computed for a certain initial
value x0 to initial values deviating from it. This influence is most apparent when comparing
a quadratic expansion against a linear one; the step to a cubic expansion is less prominent
here as well; additionally it is more apparent in the case of solving the problem for the initial
value x0 = 1.0. Certainly, to see this behavior we need to consider a problem with an index set
truncated with a chaos expansion order p ¾ q; in Figure 8.11 the exemplary case with k = 10,
p = 4, and (r ) given by Item ad7 is depicted. That means, at least in this nonlinear example,
the application of a cubic control expansion (7.8) is not beneficial, comparing the impact of the

159



CHAPTER 8
�

� A P P L I C AT I O N : S O C A N D W I E N E R C H A O S

Table 8.4: Optimal values and numerical expenses for solving the SOCP (8.5) with the chaos method-
ology as in Table 8.3, but with the focus on the order q of the control expansion (7.8). Again
we use the initial values x0 = 0.5 (columns 4–12) and x0 = 1 (columns 13–21), the diffusion
parameter σ = 0.3, and different types and accuracies of truncating the index set I.
Wee observe that increasing the order of the expansion from a linear to a quadratic one
improves the objective function value much, whereas the improvement of passing from a
quadratic to a cubic expansion is only marginal. However, higher control expansions are ac-
companied by notably higher computation times, caused by a significantly stronger coupling
of the ODE system (8.7b) and, therefore, the increased effort to calculate derivatives and
sensitivities.
Note that by the dash “—” we mean that the corresponding problem has not been solved due
to an unreasonable computation time.

k p r objective time # SQP objective time # SQP objective time # SQP

value in s value in s value in s

x0 = 0.5

10 1 − 0.211733 2.7 54 0.211733 3.8 46 0.211732 7.3 71

10 2 − 0.211479 135.5 59 0.211458 713.6 178 0.211458 5743.3 155

10 3 ad4 0.211483 49.5 59 0.211462 233.3 165 0.211462 1807.1 137

10 4 ad7 0.211482 11.7 61 0.211462 510.6 198 0.211462 14490.1 199

20 2 ad1 0.211460 199.2 46 0.211439 1557.2 241 0.211439 7408.7 110

20 3 ad5 0.211454 1121.6 57 0.211433 7041.0 254 0.211433 315875.2 133

20 4 ad8 0.211454 1184.3 54 0.211433 6679.2 213 —

40 2 ad2 0.211451 633.3 57 0.211430 2256.8 139 0.211430 24635.3 137

40 3 ad6 0.211445 1876.9 45 0.211423 9300.2 118 —

x0 = 1.0

10 1 − 0.620489 3.1 57 0.620489 3.6 46 0.620450 11.0 89

10 2 − 0.619799 144.6 58 0.619768 740.1 192 0.619759 5323.0 133

10 3 ad4 0.619830 63.9 70 0.619799 189.2 120 0.619798 2382.6 166

10 4 ad7 0.619829 114.4 58 0.619798 558.7 195 0.619797 13601.0 176

20 2 ad1 0.619528 241.5 53 0.619498 1337.0 187 0.619498 9476.9 128

20 3 ad5 0.619522 835.9 39 0.619493 5933.2 196 0.619491 659281.3 239

20 4 ad8 0.619522 1388.1 58 0.619492 3744.5 110 —

40 2 ad2 0.619388 639.4 54 0.619359 2813.2 156 0.619359 25397.9 131

40 3 ad6 0.619382 2574.2 56 0.619353 13341.8 153 —
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Figure 8.11: Control profiles of the nonlinear control problem (8.5) computed by the chaos approach
for different orders q of the control expansion as in Figure 8.9 but for the time instants
t = 0.5 and t = 0.9 and a truncation with k = 10 L2([0, 1])-basis functions and order
p = 4.
One notices that the step from a linear to a quadratic expansion improves the solution,
whereas the difference between the quadratic and the cubic expansion is only marginal,
at least in this example.

extension on objective function values, robustness of the solution control profiles with respect
to deviations of the initial value, and the increased computational effort caused by the higher
expansion.

8.3 The Stochastic Conspicuous Consumption Problem

In our final example we return to the conspicuous consumption problem of Chapter 3 and
enhance it by a time-dependent recession strength process. Thus, the duration of the crisis
does not have to be considered as a separate random variable, but can be connected with the
strength. One does not assume the crisis to be finished at some specific time instant τ. Instead,
the evolution of the strength process over time determines when the recession is mild, severe,
or merely not existent at all. However, this implies that the additional cash state variable B(·)
that we needed in Chapter 3 can be neglected completely now.

Let the recession strength be given as the (one-dimensional) stochastic process ςt . It may be
defined as, e.g., a geometric BROWNian motion (6.17) or through ςt = c0 + c1Bt , where Bt

denotes again a standard BROWNian motion and c0, c1 are positive adjustment parameters.
The demand function D(·) (cf. Equation (3.3)) depending on the brand image A and the price
P of the product becomes

Dt(At , Pt) = m−
Pt

At
β
− ςt , (8.9)

where m denotes again the potential market size and 0 < β < 1. Hence, the demand is a
stochastic process. In the most general case this means, that the brand image A· and the price
P· are stochastic processes as well, where the price is assumed to be a MARKOV control (cf.
Section 7.1) again.
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On the time horizon T = [0, tf] we obtain the conspicuous consumption SOCP

max
P·∈A
E
�∫ tf

0

e−r t (Pt · Dt(At , Pt)− C) dt

�

(8.10a)

s.t. dAt = κ(γPt − At)dt, t ∈ T , (8.10b)

A0 = a0, (8.10c)

Dt(At , Pt) = m−
Pt

At
β
− ςt , t ∈ T , (8.10d)

E [Dt(At , Pt)]¾ 0, t ∈ T . (8.10e)

The only remaining constraint of Problem (8.10) is to require a positive demand on T .

The construction of the propagator system describing the stochastic brand image and de-
mand in terms of their chaos coefficients is more difficult than in the problem instances of
Sections 8.1 and 8.2. The reason for this is the presence of the fraction and the non-integer
power in (8.9). As briefly described in Section 7.3, we reformulate those nonlinearities as a
Differential-Algebraic Equation (DAE) system, which we can efficiently deal with in the context
of BOCK’s direct multiple shooting approach.

We fix β = 0.5 as in Chapter 3. Let the chaos expansions of the brand image process {At}t∈T
and the demand {Dt}t∈T be given through

At =
∑

α∈I
aα(t)Ψ

α(η), Dt =
∑

α∈I
dα(t)Ψ

α(η).

Reasoned by the observations in Chapter 3, we assume a linear expansion of the MARKOV

control process {Pt}t∈T depending on the reputation process, i.e., for all t ∈ T we have

Pt = P̂0(t) + P̂1(t)At .

The propagator equation of the brand image is for all α ∈ I and all t ∈ T given through

ȧα(t) = κγP̂0(t) + κ
�

γP̂1(t)− 1
�

aα(t),

aα(0) = 1{α≡0} · A0.

To calculate the algebraic equations for the demand process, we first need a representation of
p

At in terms of the chaos coefficients aα(t), α ∈ I. Let the auxiliary process Zt =
p

At have
the WIENER chaos expansion

Zt =
∑

α∈I
zα(t)Ψ

α(η).

As At = Zt
2, with the product formula (5.33) we obtain the algebraic equation system

0= aα(t)−
∑

β∈I

∑

0¶γ¶α
C(α,γ,β)zα−γ+β(t)zγ+β(t)

for all α ∈ I. Finally, to derive the chaos coefficients dα(·), α ∈ I, of the demand process, let
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the strength process {ςt}t∈T be given as a translated BROWNian motion

ςt = c0 + c1Bt

with constants c0, c1 > 0 and the standard BROWNian motion process {Bt}t∈T , which has the
FOURIER-HERMITE expansion

Bt =
∞
∑

i=1

ηi

∫ t

0

mi(s)ds.

The coefficients {mi(·)}i∈N are a basis of the underlying HILBERT space L2(T ) as before, cf. The-
orem 5.4. For notational convenience, we introduce for all t ∈ T the integrated basis functions

Mα(t)
def
=







∫ t
0 mi(s)ds, α= ei , i ∈ N,

0, else.
(8.11)

This gives

Bt =
∑

α∈I
Mα(t)Ψ

α(η). (8.12)

Equation (8.9) yields

(m− c0 − c1Bt − Dt) · Zt = P̂0(t) + P̂1(t)At .

Then by inserting the chaos expansions of the demand, the auxiliary process, the brand im-
age, and the BROWNian motion (8.12), and projecting the resulting equation onto each basis
component, we obtain

0= P̂0(t) + P̂1(t)aα(t)− (m− c0)zα(t) + c1

∑

β∈I

∑

0¶γ¶α
C(α,γ,β)Mα−γ+β(t)zγ+β(t)

+
∑

β∈I

∑

0¶γ¶α
C(α,γ,β)dα−γ+β(t)zγ+β(t)

for all α ∈ I and t ∈ T .

Because the objective function (8.10a) is again an expectation value, it turns into a determin-
istic integral depending on the chaos coefficients of the demand and the brand image.

E
�∫ tf

0

e−r t (Pt Dt(At , Pt)− C) dt

�

= E

�

∫ tf

0

e−r t

��

P̂0(t) + P̂1(t)
∑

α∈I
aα(t)Ψ

α(η)

�

·
∑

α∈I
dα(t)Ψ

α(η)− C

�

dt

�

=

∫ tf

0

e−r t

�

P̂0(t)d0(t) + P̂1(t)
∑

α∈I
aα(t)dα(t)− C

�

dt.
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Hence, with I(r )k,p denoting again a truncated index set, the resulting deterministic OCP is

max
P̂0(·),P̂1(·)

∫ tf

0

e−r t



P̂0(t)d0(t) + P̂1(t)
∑

α∈I(r )k,p

aα(t)dα(t)− C



 dt (8.13a)

s.t. ȧα(t) = κγP̂0(t) +κ
�

γP̂1(t)− 1
�

aα(t), α ∈ I(r )k,p , t ∈ T , (8.13b)

0= aα(t)−
∑

β∈I(r )k,p

∑

0¶γ¶α
C(α,γ,β)zα−γ+β(t)zγ+β(t),

α ∈ I(r )k,p , t ∈ T , (8.13c)

0= P̂0(t) + P̂1(t)aα(t)− (m− c0)zα(t)

+c1

∑

β∈I(r )k,p

∑

0¶γ¶α
C(α,γ,β)Mα−γ+β(t)zγ+β(t)

+
∑

β∈I(r )k,p

∑

0¶γ¶α
C(α,γ,β)dα−γ+β(t)zγ+β(t),

α ∈ I(r )k,p , t ∈ T , (8.13d)

aα(0) = 1{α≡0} · A0, α ∈ I(r )k,p , (8.13e)

d0(t)¾ 0, t ∈ T . (8.13f)

We solve this deterministic problem with the direct multiple shooting software MUSCOD-II

again. For integrating the DAE system (8.13b)–(8.13e), however, the RUNGE-KUTTA-FEHLBERG

scheme RKF45 is not applicable anymore. Instead, we use the variable order and variable
step-size Backward Differentiation Formula (BDF) method DAESOL-II [4, 6, 7].
For the numerical evaluation of the problem, we used the following parameters, mostly coin-
ciding with (3.14):

κ= 2.0, γ= 5.0, C = 7.5, m= 3.0,

β = 0.5, r = 0.1, tf = 20.

Figures 8.12–8.14 depict optimal solutions of the OCP (8.13), i.e., the price coefficients P̂0(t),
P̂1(t) and a selection of brand image coefficients aα(t) and demand coefficients dα(t), calcu-
lated by using the truncated index set I10,1 of multi-indices α with k = 10 random variables
and a first order (p = 1) approximation of the chaos space. Additionally, the initial brand
image A0 = 50 and the recession strength constants c0 = 0.5 and c1 = 0.1 are used.
From Figure 8.12 we see that the price coefficient P̂0(·) is equal to zero over the entire time
horizon T , whereas the first order coefficient P̂1(·) is approximately 0.2 = 1

γ . Comparing this
to the steady state prices (3.15) and (3.16) of the deterministic conspicuous consumption
problem, we see a direct connection between the stochastic price process and those steady
state prices. Only in the initial and terminal phase of the considered time horizon there are
small deviations from P̂1(·) being constant. They are due to building up the largest possible
reputation depending on the strength process ςt in the beginning and the usual finite horizon
artefacts in the end, respectively.
Figure 8.13 shows some chaos coefficients of the optimal solution of Problem (8.13). We clearly
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Figure 8.12: Optimal solution of the stochastic conspicuous consumption problem (8.10). The plots
show the optimal price coefficients P̂0(·) and P̂1(·) resulting from the first order expansion
of the original MARKOV control Pt . They are calculated by solving the deterministic OCP
(8.13) with the truncated index set I10,1 of multi-indices α, initial brand image A0, and
the recession strength parameters c0 = 0.5 and c1 = 0.1.
We see that the zero-order coefficients vanishes and the first order coefficient nearly coin-
cides with the constant 1

γ . Therefore, the connection between the optimal MARKOV control

Pt = P̂0(t)+ P̂1(t) ·At and the steady state price of the deterministic consumption problem
(cf. (3.15) and (3.16)) becomes obvious.

see that only the zero-order coefficient a0(·) does not vanish. Hence, the reputation process
{At}t∈T is in fact deterministic again. The demand process, however, is truly stochastic, as we
see from the non-vanishing coefficients in Figure 8.14. This behavior is caused by the structure
of the SOCP (8.10). The stochastic demand process enters only the objective function in a direct
fashion, which in turn is an expectation over all trajectories.

Solving the deterministic OCP (8.13) with more advanced approximations of the chaos space,
i.e., higher orders p > 1 and more random variables k > 10, does not affect the solution
depicted in Figures 8.12–8.14. The brand image chaos coefficients aα(t) ≡ 0 for all α 6= 0,
which yields that even the optimal objective values do not change, cf. Table 8.5.

For varying recession strength parameters c0 and c1 the optimal objective function values
change, cf. Table 8.6 and Figure 8.15. The higher the principal market reduction parame-
ter c0, the lower the objective function value. Additionally, the steady state reputation and
the expected demand d0(·) decrease. Note that—especially in the case of a principally severe
recession, i.e., c0 = 1.0—the initial brand image A0 needs to be larger. For our numerical tests
we use A0 = 90. In the cases of c0 = 0.836 and c0 = 1.0, i.e., for principally intermediate and
severe recessions, the LAGRANGE type objective function (8.13a) is not positive over the entire
time horizon T = [0, tf]. For c0 = 0.836 it is only marginally negative in the beginning phase
of the horizon and at the terminal time tf we obtain a positive value. For c0 = 1.0 instead, the
cost function is negative most of the time, including tf. Hence, it would not be possible for the
firm to survive this specific recession if there where no possibility to borrow money from the
market or to issue new shares.

When comparing the results of the stochastic conspicuous consumption problem with those
of Chapter 3, we notice that due to the missing constraint of requiring the cash being positive
throughout the complete recession phase there is no obvious adaptivity in the optimal pricing
strategy over time. Hence, it is difficult to qualitatively compare the solutions of the stochastic
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Figure 8.13: Selection of optimal chaos coefficients aα(·) of the brand image process. They have been
derived by solving (8.13) with the a first order (p = 1) chaos expansion with k = 10
random variables.
We notice that—apart from the zero-order coefficient a0(·) representing the expectation
of the brand image process—all coefficients are identically zero. Hence, the reputation is
in fact deterministic.
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Figure 8.14: Selection of optimal chaos coefficients dα(·) of the algebraic demand process.

Table 8.5: Optimal values and numerical expenses for solving the SOCP (8.10) with the chaos method-
ology, i.e., solving the deterministic OCP (8.13) with MUSCOD-II. Based on the observations
in Chapter 3, we use a linear expansion of the control process (q = 1) and different types
and accuracies of truncating the index set I.
The optimal objective function values do not depend on the number k of incorporated basis
functions of the underlying HILBERT space L2(T ) or on the approximation order p. Never-
theless, runtime increases for higher p and k, because the dimension of the resulting deter-
ministic problems and the associated coupling of the state variables of the system increases.
The symbol “−” in the r-column indicates that the simple truncation (6.14) was used, “ad”
denotes the use of an adaptive index set (6.16). Compare Table 6.1 for a detailed description
of the appropriate index denoted by the reference symbol and number.

k p r # differential coeff. # algebraic coeff. objective time # SQP

aα zα & dα value in s

10 1 − 11 22 33.78136 31.1 18

10 2 − 66 132 33.78136 136.6 22

20 1 − 21 42 33.78136 1734.4 23

20 2 ad1 71 142 33.78136 1930.3 16

40 2 ad2 91 182 33.78136 1725.1 19
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Table 8.6: Comparison of the optimal objective values of the stochastic conspicuous consumption prob-
lem (8.10) depending on the strength parameters c0 and c1.
We observe that the higher c0, i.e., the principal market reduction, the lower is the objective
function value. In the last example, the objective function values is negative. Hence, the firm
would not survive the recession without the possibility to borrow money from the market!

k p r A0 c0 c1 objective time # SQP

value in s

10 1 − 50 0.5 0.1 33.78136 31.1 18

10 1 − 50 0.836 0.2 0.02621 19.2 15

10 1 − 90 1.0 0.2 -11.17930 24.7 15
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Figure 8.15: Comparison of selected solution trajectories of the stochastic conspicuous consumption
problem (8.10) depending on the recession strength parameters c0 and c1.
We notice that the price coefficient P̂1(·) remains (mainly) unchanged, showing only mild
adjustments in the beginning phase of the horizon. The brand image coefficient a0(·) and
the expected demand d0(·) decrease with increasing c0.
The optimal objective function value decreases as well if c0 increases. Additionally, in the
cases of c0 = 0.836 and c0 = 1.0 we notice, that the LAGRANGE type objective function
(8.13a) is not positive over the entire time horizon T . In the latter case the terminal value,
i.e., the optimal objective function value, is negative, too. Hence, the firm would not sur-
vive the recession without the possibility to borrow money from the market.
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and the robust OCP. However, in the stochastic problem the steady state brand image of the
recession phase is lower than in the original problem with fixed recession strength ς. This can
be seen best if we consider the intermediate recession case (ς= c0 = 0.836) and compare the
corresponding phase diagram in Figure 3.6 and the plot of the brand image coefficient a0(t)
in Figure 8.13.

8.4 Summary

In this final chapter we applied the propagator method based on the WIENER chaos approach
to SOCPs of type (7.1). We considered the prominent linear-quadratic stochastic regulator
problem, a nonlinear extension of this example, and a stochastic adaptation of the conspicuous
consumption problem that we introduced in Chapter 3. We regarded the structural properties
of the completely deterministic reformulations of the original problems and solved them via
the direct multiple shooting approach. Therein, the reformulated problems contained ODE
systems describing the dynamic state processes as well as DAE for appearing algebraic states.
We analyzed the quality of the solutions depending on both the orders of the different chaos
decomposition truncation types and the order of the control expansion. Additionally, we high-
lighted the strengths and weaknesses of the developed method for its practical purposes and
from a computational point of view.
Our analysis yielded very promising results. In particular, if one is interested mainly in the
optimal objective value of the problem, the expectations of the optimally controlled states pro-
cess(es), and variances for only one or a small number of initial values, then the methodology
gives fast and reliable results for very basic approximations of the chaos space, i.e., truncations
of the propagator. Transferred from it, the expectation of the considered state process and the
objective value of the problem are obtained as a side product, which is a huge computational
advantage compared to the standard approaches of SOCP that are dependent on simulations
of the process.
If the emphasis is more on the control profiles to be robust against deviations in the initial
value, more advanced approximations created by using more basis functions of the underlying
HILBERT space and a higher order chaos expansion are necessary in general. The stochastic
conspicuous consumption problem constitutes an exception to that rule as the considered dy-
namic state process is in fact deterministic and only the demand function—represented as an
algebraic state process—is truly stochastic, but merely enters the objective function.
For more general problems including higher nonlinearities or long-time integration intervals
T higher numerical effort is required [15, 134]. Alternatively, approaches to overcome this
issue need to applied, e.g., partitioning of the random space or combinations of the WIENER

chaos idea and targeted Monte Carlo corrections [172].
In general, the introduced propagator method constitutes an efficient alternative for solving the
challenging class of finite horizon SOCPs apart from the HJB theory and dynamic programming
techniques based on MARKOV chain approximations. Due to the use of BOCK’s direct multiple
shooting approach the method is even applicable for problems including algebraic stochastic
states.
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A Stochastic Basics

In this supplementary chapter we introduce the necessary stochastic and measure-theoretical
terms and definitions that we need throughout this thesis. For a detailed overview see [21,
195].

Definition A.1 (σ-Algebra)
Let a sample space Ω 6= ; be given. A σ-algebra F on Ω is a family of subsets of Ω with the
following properties:

(i) Ω ∈ F ,
(ii) A∈ F ⇒ Ā∈ F , where Ā

def
= Ω \ A is the complement of A in Ω,

(iii) Ai ∈ F , ∈ N ⇒ A
def
=
∞
⋃

i=1
Ai ∈ F .

The elements of F are called measurable sets, (Ω,F) is referred to as a measurable space. 4

Definition A.2 (Generated σ-Algebra)
Let G be any family of subsets of a sample space Ω. The smallest σ-algebra σ(G) containing G,
i.e.,

σ(G) def
=
⋂

{F | F is σ-algebra of Ω,G ⊂ F}, (A.1)

is called the σ-algebra generated by G. 4

Definition A.3 (Probability Measure)
A probability measure P on a measurable space (Ω,F) is a function P: F → [0, 1] such that

(i) P [;] = 0, P [Ω] = 1,
(ii) if Ai ∈ F , i ∈ N, and Ai ∪ A j = ; for i 6= j, then

P
�∞
⋃

i=1

Ai

�

=
∞
∑

i=1

P [Ai] .

The triple (Ω,F ,P) is called a probability space. It is named a complete probability space if F
contains all subsets G ∈ Ω with P-outer measure zero, i.e., with

P∗[G] def
= inf{P [F] | F ∈ F , G ⊂ F}= 0. 4

Any probability space (Ω,F ,P) can be completed by extending the σ-algebra F by the sets of
outer measure zero and appropriately extending the probability measure P, cf. [195]. In this
work we assume all appearing probability spaces to be complete.

Definition A.4 (Measurable Function)
Let (Ω,F ,P) be a given probability space. A function X : Ω→ RnX is called F -measurable if

X−1(Q)
def
= {ω ∈ Ω | X(ω) ∈Q} ∈ F (A.2)
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for all open sets Q ∈ RnX or, equivalently, for all BOREL sets Q ⊂ RnX . 4

If the function X : Ω → RnX is given, the σ-algebra σ(X) generated by X is the smallest σ-
algebra on Ω containing all sets X−1(Q) with open Q ⊂ RnX .

Definition A.5 (Random Variable)
Let (Ω,F ,P) be given again. A random variable X is a F -measurable function X : Ω→ RnX . Every
random variable X induces a probability measure µX on RnX through

µX (Q)
def
= P

�

X−1(Q)
�

. (A.3)

Then µX is called the distribution of X . 4

Definition A.6 (Cumulative Distribution Function)
On the probability space (Ω,F ,P), let X : Ω→ RnX be a random variable. The induced probability
distribution on RnX has the cumulative distribution function FX : RnX → [0,1] defined via

FX (x )
def
= P [ω ∈ Ω |X(ω)¶ x ] , (A.4)

where X(ω)¶ x is only true if the relation holds for every component X i , 1¶ i ¶ nX , of X . 4

Definition A.7 (Expectation)
If
∫

Ω
|X(ω)|dP [ω]<∞, the expectation of X with respect to P is defined as

E [X] def
=

∫

Ω

X(ω)dP [ω] =
∫

RnX

x dµX (x ). (A.5)

If f : RnX → R is BOREL measurable and
∫

Ω
| f (X(ω))|dP [ω]<∞, we have

E [ f (X)] def
=

∫

Ω

f (X(ω))dP [ω] =
∫

RnX

f (x )dµX (x ). (A.6)

4

Definition A.8 (Variance)
If
∫

Ω
|X(ω)|2 dP [ω]<∞, the variance of X with respect to P is defined as

V [X] def
=

∫

Ω

(X(ω)−E [X(ω)])2 dP [ω]. (A.7)

4
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[165] T. Levajković and D. Seleši. Chaos Expansion Methods for Stochastic Differential Equa-
tions Involving the Malliavin Derivative–Part I. Publications de l’Institute Mathématique,
90:65–84, 2011.
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Nomenclature

Throughout this thesis, we use roman and greek letters in boldface (x , X , p, Σ, α) to denote
multidimensionality. This includes, e.g., deterministic processes (x , u), multidimensional pa-
rameters (p), stochastic processes (X , B), matrices (Σ), and multi-indices (α). Scalars are
denoted by roman and greek letters in normal print ( f , g, λ, µ), while sets use uppercase
calligraphic style (I, G, T ). Finally, number spaces are denoted in uppercase blackboard style
(N, R).
The following list states frequently used symbols and notations. They are grouped thematically
to avoid confusion as they can be used differently depending on the context.

List of Symbols

General Symbols

4 End of a definition, lemma, theorem, or corollary
� End of a proof
def
= Defined to be equal

N, N0 Set of natural numbers (including zero)
R Set of real numbers

(·) Wildcard notation for the omitted list of function arguments
|·| Component-wise mapping of a real number to its absolute value
〈·, ·〉C Inner product of the space C
‖ · ‖C Norm of the space C
‖ · ‖2 The (EUCLIDean) norm of a matrix or vector

1A(·), 1[a,b](·) Chracteristic function of a set A (an interval [a, b])
δn,m KRONECKER delta of n and m
{ } Set delimiters
( ) Sequence delimiters

⊆,⊂ Subset of a set (“is a (proper) subset of”)
∈, 6∈ Set membership (“is (not) an element of”)
× Cartesian product of sets, multiplication in literal numbers
⊕ Direct sum

∀ Universal quantifier (“for all”)
∃ Existential quantifier (“there exists”)
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NOMENCLATURE

v T , AT Transpose of a vector or matrix
A−1 Inverse of regular matrix A
fx Gradient of the scalar function f (·) with respect to the unknown x

Specific Symbols in Optimal Control Context

t Time instant
t0 Initial time
tf Terminal time
T Time interval, usually T = [t0, tf]

x (·) Trajectory of system states
z(·) Trajectory of algebraic states
u(·) Trajectory of controls
f ODE system right hand side function
g DAE system right hand side function
f tr Transition function between model stages
c Path constraint function
r Point constraint function
p Model parameters

J(·) Objective function
V (·) Cost-to-go function

Specific Symbols in Stochastic Context

Ω Sample space, set of all possibles outcomes
F σ-algebra, collection of subsets of Ω which can be assigned proba-

bilities
P Probability measure
µ, %(·) GAUSSian probability measure; density of the GAUSSian measure
N (0,1) Standard normal/GAUSSian distribution with zero mean and vari-

ance one
ξ, ξi Standard GAUSSian random variable

E [X ] Expectation of a random variable X
V [X ] Variance of a random variable X
Cov [X , Y ] Covariance of two random variables X and Y
P [A] Probability of an event A
qζ(X ) Quantile of the random variable X corresponding to the probability

level ζ
$ Confidence level

X , Xt Stochastic process (at time instant t)
B, Bt BROWNian motion (at time instant t)
S, St Simple stochastic process (at time instant t)
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NOMENCLATURE

F Smooth random variable
{Ft}t∈T ,

�

FB
t

	

t∈T Filtration of F ; filtration generated by the BROWNian motion

I(X), It(X) ITŌ integral of a stochastic process X , X (up to time t)

α Multi-index with a finite number of positive, non-zero entries
α−( j) Diminished multi-index with decremented j-th entry
|α| Order of the multi-index α; |α|=

∑

i αi

d(α) Length of the multi-index α; d(α) =max{i ∈ N | αi > 0}
r Sparse index for truncation of a multi-index α
(r ) Adaptive index for truncation of a multi-index α
I, Ip, Ip,k Index set of multi-indices α (with |α|¶ p [and d(α)¶ k])
I r

p,k, I(r )p,k Sparsely (adaptively) truncated index set of multi-indices α

Hi(·) i-th normalized HERMITE polynomial
H HILBERT space
h Element of the HILBERT space H

W (h) Isonormal GAUSSian process over h ∈ H

Ψα Orthonormal basis function of the chaos space L2(Ω,F ,P)
Hi i-th WIENER chaos space
mi(·) Basis element of the HILBERT space L2([0,1])/L2([0, tf])
Mi(·) Integrated basis element

L2(Ω) Space of square-integrable random variables
L2(R,µ) Space of square-integrable functions with GAUSSian measure µ
L2(T ×Ω) Space of square-integrable random processes
L2

A(T ×Ω) Space of adapted square-integrable random processes

DkX k-th MALLIAVIN derivative of the random variable X
Dk,2 Domain of the k-th MALLIAVIN derivative
‖ · ‖k,2 The corresponding norm
δk(X ) k-th divergence/SKOROHOD integral of X
Domδk Domain of the k-th divergence

Symbols with Special Meaning in the Recession Problem

τ Endpoint of the recession period
A(·) Trajectory of the brand image state function
B(·) Trajectory of the cash state function
P(·) Trajectory of the price function
D(·), DR(·), DN(·) Demand function (of the recession/normal stage)
σ Constant control delay
η(·) Initialization of the control function p(·) due to the delay

κ Scaling parameter of the brand image’s response to price changes
γ Scaling parameter
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NOMENCLATURE

C Fixed costs
δ Short-time interest rate
β Adjustment parameter for demand
m Potential market size
r Discount rate

ς Recession strength
ς̄ Mean value of recession strength
Σ Variance of recession strength
λ Rate parameter for exponential distribution of τ
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8.2 Optimal controls ûi(·) of the linear-quadratic stochastic regulator problem with
second order chaos expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.3 Solution paths of the linear-quadratic stochastic regulator problem (8.1) . . . . 149
8.4 Absolute errors of the solutions of the linear-quadratic stochastic regulator prob-

lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.5 Control profiles u(t, x) of the linear-quadratic stochastic regulator . . . . . . . . 152
8.6 Control profiles as in Figure 8.5 for an advanced chaos approximation . . . . . 153
8.7 Solution paths of the Stochastic Optimal Control Problem (SOCP) (8.5) . . . . 157
8.8 Absolute errors of the solutions of the stochastic control problem (8.5) . . . . . 157
8.9 Control profiles u(t, x) of the nonlinear control problem (8.5) . . . . . . . . . . 158
8.10 Control profiles as in Figure 8.9 for the advanced chaos approximation . . . . . 159
8.11 Control profiles u(t, x) of the nonlinear control problem (8.5) for different con-

trol expansion (7.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.12 Optimal prices P̂i(·) of the stochastic recession problem . . . . . . . . . . . . . . 165
8.13 Selection of optimal chaos coefficients aα(·) of the brand image process . . . . 166
8.14 Selection of optimal chaos coefficients dα(·) of the algebraic demand process . 167
8.15 Comparison of selected solution trajectories of the stochastic recession problem

(8.10) for varying recession strength parameters . . . . . . . . . . . . . . . . . . . 168

196



List of Tables

3.1 Scenarios of the original recession problem with delays . . . . . . . . . . . . . . . 48
3.2 Computational performance of the staircase and linear discretization of the re-

cession length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Comparison of the size of the resulting NLP for the delayed and the undelayed

recession model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Number of iterations and CPU time for undelayed and delayed scenarios. . . . 49
3.5 Dimension of the robust/probabilistic conspicuous consumption NLPs . . . . . . 61
3.6 Computation times for solving the NLP problems of Table 3.5 . . . . . . . . . . . 62
3.7 Optimal values of the robust/probabilistic conspicuous consumption problem . 65

6.1 List of sparse and adaptive indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Absolute errors of the propagator method for simulating the geometric BROWN-

ian motion process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.1 Comparison of optimal values and numerical expenses of solving the linear-
quadratic regulator problem by the WIENER chaos approach . . . . . . . . . . . . 151

8.2 Optimal values of the nonlinear problem (8.5) calculated with the software
package SOCSol4L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.3 Comparison of optimal values and numerical expenses of solving the nonlinear
control problem (8.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.4 Comparison of optimal values and numerical expenses of solving the nonlinear
control problem (8.5) for different control expansions (7.8) . . . . . . . . . . . . 160

8.5 Comparison of optimal values and numerical expenses of solving the stochastic
recession problem (8.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.6 Comparison of optimal values of the stochastic recession problem (8.10) de-
pending on the strength parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

197



List of Acronyms

BDF Backward Differentiation Formula
BFGS BROYDEN-FLETCHER-GOLDFARB-SHANNO

BSDE Backward Stochastic Differential Equation
BVP Boundary Value Problem
cdf cumulative distribution function
CPU Central Processing Unit
CVaR Conditional Value at Risk
DAE Differential-Algebraic Equation
HJB HAMILTON-JACOBI-BELLMAN

IND Internal Numerical Differentiation
IVP Initial Value Problem
KKT KARUSH-KUHN-TUCKER

KLE KARHUNEN-LOÈVE Expansion
MCA MARKOV Chain Approximation
NLP Nonlinear Program
NPV Net Present Value
OCP Optimal Control Problem
ODE Ordinary Differential Equation
PC Polynomial Chaos
PDE Partial Differential Equation
QP Quadratic Program
PMP PONTRYAGIN’s Maximum Principle
RDE Random Differential Equation
SDE Stochastic Differential Equation
SMP Stochastic Maximum Principle
SOCP Stochastic Optimal Control Problem
SPDE Stochastic Partial Differential Equation
SQP Sequential Quadratic Programming
VaR Value at Risk

198


	Dedication
	Zusammenfassung
	Abstract
	Danksagung
	Contents
	0 Introduction
	I Random Parameter Optimal Control
	1 The Direct Multiple Shooting Approach for Optimal Control Problems
	1.1 Problem Formulation
	1.2 Solution Methods for Optimal Control Problems
	1.2.1 Dynamic Programming
	1.2.2 Indirect Methods Based on the PMP
	1.2.3 Direct Methods

	1.3 Bock's Direct Multiple Shooting Method for Optimal Control
	1.4 Summary

	2 Optimal Control Problems with Uncertain Parameters
	2.1 Robust Optimization
	2.2 Coherence and Probabilistic Optimization
	2.3 Connecting Robust, Probabilistic, and Stochastic Optimization
	2.4 Summary

	3 Numerical Application: Conspicuous Consumption Products in Periods of Recession
	3.1 The Underlying Economic Model
	3.1.1 Model Formulation
	3.1.2 Numerical Implementation

	3.2 Results of the Control Delay Case
	3.2.1 Parametrical Setting
	3.2.2 Computational Performance
	3.2.3 Analytical Results
	3.2.4 Numerical Results

	3.3 Protection Against an Uncertain Recession Strength
	3.3.1 The Resulting Control Problems
	3.3.2 Strengths and Weaknesses of the Approaches
	3.3.3 Numerical Results of the Uncertain Strength Case

	3.4 Summary


	II Stochastic Optimal Control
	4 Stochastic Processes
	4.1 Stochastic Processes
	4.2 The Ito Stochastic Integral
	4.3 Ito's Formula
	4.4 Stochastic Differential Equations
	4.5 Summary

	5 Wiener Chaos Expansion and Malliavin Calculus
	5.1 Hermite Polynomials
	5.2 Wiener Chaos Expansion
	5.3 Malliavin Calculus
	5.4 Summary

	6 Numerical Solution to Stochastic Differential Equations Using the Wiener Chaos Approach
	6.1 Numerical Integration of Stochastic Differential Equations
	6.1.1 The Euler-Maruyama Scheme
	6.1.2 Stochastic Taylor Expansions

	6.2 The Wiener Chaos Approach for Solving Stochastic Differential Equations
	6.2.1 The Propagator System
	6.2.2 Truncation of the Propagator
	6.2.3 Error Analysis of the Propagator

	6.3 Summary

	7 Optimal Control Problems Determined By Stochastic Differential Equations
	7.1 Problem Formulation
	7.2 Solution Methodologies for Optimal Control Problems Driven by Stochastic Differential Equations
	7.2.1 The Hamilton-Jacobi-Bellman Equation
	7.2.2 Indirect Methods Based on the SMP
	7.2.3 Direct Methods: The Markov Chain Approximation Method
	7.2.4 Alternative Approaches

	7.3 Finite Horizon Stochastic Optimal Control and the Wiener Chaos Approach
	7.4 Summary

	8 Numerical Application: Stochastic Optimal Control and the Wiener Chaos Approach
	8.1 A Linear-Quadratic Stochastic Regulator Problem
	8.2 A Nonlinear Stochastic Regulator Problem
	8.3 The Stochastic Conspicuous Consumption Problem
	8.4 Summary

	A Stochastic Basics
	Bibliography
	Nomenclature
	Figures, Tables, Acronyms


