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Abstract

We derive optimal pricing strategies for conspicuous consumption products in periods of recession. To that end, we formulate
and investigate a two-stage economic optimal control problem that takes uncertainty of the recession period length and delay
effects of the pricing strategy into account.

This non-standard optimal control problem is difficult to solve analytically, and solutions depend on the variable model
parameters. Therefore, we use a numerical result-driven approach. We propose a structure-exploiting direct method for optimal
control to solve this challenging optimization problem. In particular, we discretize the uncertainties in the model formulation
by using scenario trees and target the control delays by introduction of slack control functions.

Numerical results illustrate the validity of our approach and show the impact of uncertainties and delay effects on optimal
economic strategies. During the recession, delayed optimal prices are higher than the non-delayed ones. In the normal economic
period, however, this effect is reversed and optimal prices with a delayed impact are smaller compared to the non-delayed case.
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1 Introduction

We are interested in optimal pricing strategies for con-
spicuous consumption products in periods of recession,
such as the credit crunch recession that started in 2007.
Besides a reduction in demand, which is quite usual for
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a recession, in the credit crunch recession capital mar-
kets cease to function. Hence firms cannot borrow or is-
sue new shares to finance their operations. They need to
self-finance their investments (Economist, 2008):

”...the only option is to try to ride out the recession. But
companies can do this only if they have enough liquid-
ity...”.

For conspicuous goods demand does not only depend on
price, but in addition it depends on the good’s reputa-
tion, which increases in price. The product’s reputation
as being expensive allows people to signal their wealth
to observers, which in turn increases the reputation of
the consumer. Examples of conspicuous goods are lux-

Preprint submitted to Automatica 31 October 2011



ury hotels (Times, 2008), expensive cars, or fashionable
clothes. The topic of how to price conspicuous goods is
treated in Amaldoss & Jain (2005a,b); Kort, Caulkins,
Hartl & Feichtinger (2006).

This paper treats the management of conspicuous goods
during the credit crunch recession. The conspicuous
goods’ manager faces the following trade off. To keep
future demand at a high level the manager likes to keep
the price of its conspicuous good high. However, during
the recession demand as such is low and pricing the good
high makes demand even lower. This has detrimental
effects for the firm’s cash flow, which can bring it into
bankruptcy problems, because during the recession cap-
ital markets do not function so that the firm needs to
have a positive cash level in order to prevent bankruptcy.
In Caulkins, Feichtinger, Grass, Hartl, Kort & Seidl
(2010a, 2011) this problem was extensively analyzed.

The present paper extends Caulkins et al. (2010a, 2011)
by establishing a new numerical methodology and by
considering a delayed effect of the current price on the
firm’s reputation. This implies that the good’s reputa-
tion, which has been built up in the past, is not imme-
diately affected by a price decrease. It takes some time
for consumers to get used to the new situation, before a
price change really starts to have an effect on the good’s
reputation.

The very first paper including a delay in an economic
model was Kalecki (1935) treating a descriptive busi-
ness cycle model. Much later, El-Hodiri, Loehman &
Whinston (1972) analyzed an optimal growth model
with time lags. Starting with the nineties several so-
called time-to-build (investment gestation lag) models
have been dealt with. Continuous-time deterministic
optimal growth models have been enriched by assuming
that production occurs with a delay while new capital
is installed; see Asea & Zak (1999); Boucekkine, Li-
candro, Puch & del Rio (2005); Bambi (2008); Bambi,
Fabbri & Gozzi (2009); Collard, Licandro & Puch
(2008). The methodological background are functional
differential equations; for a modified version of Pon-
tryagin’s Maximum Principle compare Kolmanovskii &
Myshkis (1992). Additionally, in Winkler (2004); Win-
kler, Brandt-Pollmann, Moslener & Schlöder (2005)
some related results are presented. In Collard et al.
(2008) economic models characterized by advanced or
delayed time arguments in both the states and con-
trols are discussed. The authors present an algorithm
combining the method of steps and a specially tailored
shooting method.

It turns out that introducing this delayed effect has con-
siderable qualitative implications for pricing the conspic-
uous good. In particular, the delayed consumer reaction
makes that it is optimal for the firm to set a higher price
during the recession and a lower one during the normal
period.

We formulate and investigate a two-stage economic op-
timal control problem that takes uncertainty of the re-
cession period length and delay effects of the pricing
strategy into account. This non-standard optimal con-
trol problem is difficult to solve analytically, and solu-
tions depend on the variable model parameters. There-
fore we use a numerical result-driven approach. We pro-
pose a structure-exploiting direct method for optimal
control to solve this challenging optimization problem.
In particular, we discretize the uncertainties in the model
formulation by using scenario trees and target the con-
trol delays by introduction of slack control functions.

The paper is organized as follows: In Section 2 we take
a closer look upon the model. We specify the underlying
dynamics for each of the economic stages and deduce the
objective function. In Section 3 we first collect the algo-
rithmic approaches used to solve a standard multi-stage
optimal control problem numerically. Then we reformu-
late the model using a scenario tree approach and rear-
range the emerging scheme to improve performance and
simplify the incorporation of the delay via slack control
functions. Section 4 treats analytical and numerical re-
sults and their economic interpretations in detail.

2 Model Formulation

We consider an economic setting with a recession period
followed by a normal economic period. In the following,
the value τ will denote the endpoint of the crisis, compare
Figure 1.

t0 = 0 τ tf

Stage 1: Stage 2:
Recession period Normal period

Fig. 1. Stages [t0, τ ] and [τ, tf ] of the recession model.

The dynamics of our model includes two states. The
brand image A of the firm evolves in both periods ac-
cording to the differential equation

Ȧ(t) = κ(γp(t− σ)−A(t)) (1)

with a possible constant control delay σ ≥ 0 in the
dynamics of the reputation A(·), retarding the connec-
tion between changing the price p(·) and its consequence
on the development of A(·). Equation (1) covers that,
as usual with conspicuous goods, the reputation of the
brand goes up with the price, which works positively
on demand. Compared to the literature, the delay is
a new feature, which captures the fact that consumers
first have to get used to a new situation before they ad-
just their purchase decisions. In particular, if a good is
known to be exclusive, a sudden price reduction at first
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instance does not change this perception. However, af-
ter a while consumers “forget” the old situation, imply-
ing that they start recognizing that the good is less ex-
clusive, and reputation starts to decrease. Note that if
the recession ends at time τ , we still have the direct in-
fluence of the price set during the final time interval of
length σ of the recession. For a fixed price p̄ equation
(1) yields a steady state of Ā = γ p̄. The available cash
B(·) depends on the gains p(·) D(·), fixed costs C, and
the short-time interest δ, leading to

Ḃ(t) = p(t)D(A(t), p(t))− C + δB(t).

Therein the demand D is driven by the brand image
and the pricing strategy p(·), which is the control of
our problem. It is essentially influenced by the economic
stage, i.e., in the normal period (N) we have

DN(A(t), p(t)) = m− p(t)

A(t)β
, (2a)

whereas in the recession (R) demand is reduced to

DR(A(t), p(t)) = DN(A(t), p(t))− α. (2b)

The positive constant α measures the strength of the
crisis, the parameter 0 < β < 1 is given, and m corre-
sponds to the potential market size.

The objective of the company is to maximize the ex-
pected value of profit over the finite or infinite time hori-
zon [0, tf ] of interest. The profit is composed of two parts:
the gains of the normal economic period (τ, tf ] and an
impulse dividend of the cash reserve at the end of the
recession phase, B(τ). This dividend is included as the
capital market is assumed to become functional again in
the normal economic period and firms can freely borrow
and lend cash there. Thus, the firm does not need a pos-
itive B(·) on (τ, tf ]. For a fixed τ and a given discount
rate r, the objective function is calculated as

Φ(τ) := e−rτB(τ)

+

∫ tf

τ

e−rt (p(t)DN(A(t), p(t))− C) dt, (3)

being the sum of these two components, resulting in the

optimal control problem

max
p(·)

Φ(τ)

s.t. Ȧ(t) = κ(γp(t− σ)−A(t)), t ∈ [0, tf ],

p(t) = η(t), t ∈ [−σ, 0],

Ḃ(t) = p(t)DR(A(t), p(t))

− C + δB(t), t ∈ [0, τ ],

A(0) = A0, B(0) = B0,

0 ≤ DR/N(A(t), p(t)), t ∈ [0, tf ],

p(t) ≥ 0, t ∈ [0, tf ],

B(t) ≥ 0, t ∈ [0, τ ]

(4)

with DR/N(A(t), p(t)) given as in (2) and B(t) negligi-
ble in the normal period (τ, tf ]. However, typically the
recession length τ is not known beforehand to decision
makers. An individual firm also has no influence on when
the recession ends. Therefore, we assume that the length
of the recession period τ is an exponentially distributed
random variable. The goal is to maximize the expecta-
tion value of the net present value (NPV) at time τ , i.e.,
the objective function Φ weighted by the exponential
probability density function with rate parameter λ,

max
p(·)

E [NPV(τ)] := max
p(·)

∫ tf

0

λ e−λτ Φ(τ) dτ (5)

subject to the constraints given in (4) for all 0 ≤ τ ≤ tf .

This problem is a non-standard optimal control prob-
lem in the sense that uncertainty and control delays
are present, making analytical investigations difficult. 1

Therefore, we propose a different approach in the next
section.

3 Numerical treatment

We propose to use reformulations to transfer the optimal
control problem (5) into a more standard form that can
be efficiently solved. In Section 3.1 we present such a
standard multi-stage formulation and give references to
Bock’s direct multiple shooting method. In Section 3.2
we present a discretization of the uncertainty, and in
Section 3.3 a reformulation of the time delays. In both
cases alternatives are discussed.

1 In Caulkins, Hartl & Kort (2010b) it is shown that an im-
portant class of models with delays can be transformed into
equivalent problems without delays. However, the present
model does not fit in this family. This is because the control
p appears with a delay in one state equation and without
in the other one. Hence, it is not possible to eliminate the
delay using a time transformation.
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3.1 The Direct Multiple Shooting Approach

Efficient numerical methods have been developed to
solve multi-stage, nonlinear optimal control problems
of the following form

max
xi(·),ui(·),q,ti

M−1∑
i=0

{∫ ti+1

ti

Li(xi(t), ui(t), q) dt

+ Ei(x(ti+1), q)

}
(6a)

s.t. ẋi(t) = fi(xi(t), ui(t), q), (6b)

xi+1(ti+1) = ftr,i(xi(ti+1), q), (6c)

0 ≤ ci(xi(t), ui(t), q) (6d)

0 = req(x0(t0), x1(t1), . . . , q), (6e)

0 ≤ rineq(x0(t0), x1(t1), . . . , q), (6f)

with t ∈ [ti, ti+1] and i = 0, . . . ,M − 1. The optimiza-
tion problem (6) couples M model stages via explicit
transitions (6c) and interior point constraints (6e-6f).
The differential states xi : [t0, tM ] 7→ Rnxi and the con-
trol functions ui : [t0, tM ] 7→ Rnui and control values
q ∈ Rnq need to be feasible for the path- and control
constraints (6d) and the ordinary differential equations
(ODEs) (6b).

An overview over different methods can be found, e.g.,
in Binder, Blank, Bock, Bulirsch, Dahmen, Diehl, Kro-
nseder, Marquardt, Schlöder & Stryk (2001). We pro-
pose to use Bock’s direct multiple shooting method to
solve problems of type (6). It transforms the optimal
control problem into a Nonlinear Program (NLP) by dis-
cretizing the space of admissible control functions u(·)
and the path constraints (6d). The solutions of the ODEs
(6b) are obtained by a decoupled integration on a mul-
tiple shooting grid, starting from artificial intermediate
variables. Continuity of the differential states is assured
by means of an inclusion of matching conditions into the
NLP.

For details on this method we refer to Bock & Plitt
(1984); Leineweber (1999); Leineweber, Bauer, Bock &
Schlöder (2003). At this place we would only like to re-
mind the reader of one of the advantages of the direct
multiple shooting method. As control functions, con-
straints and multiple shooting variables are discretized
on a common time grid, the Hessian of the Lagrangian
is block structured for linearly coupled point constraints
r·(·). For i 6= j we have

∇2L(w1, . . . , wN )

∂wi ∂wj
= 0 (7)

for variable vectors wi that subsume all variables of the
i-th multiple shooting interval. This allows applying
Broyden–Fletcher–Goldfarb–Shanno (BFGS) updates
to every single one of the N multiple shooting blocks

(Bock & Plitt, 1984). These high-rank updates typically
lead to a fast accumulation of higher order information
and thus to fast convergence (Nocedal & Wright, 2006).
This feature will become important in the context of
the following reformulations of problem (5).

3.2 Discretizing the probability density function

To solve problem (5) at least approximatively, we need
to reformulate it. We discretize the exponential distri-
bution of the random variable τ by defining a time grid

0 = τ0 < τ1 < . . . < τn < tf .

In the following, switches from recession period to nor-
mal stage will only be possible at these times τi with
i = 1 . . . n. The recession ends at τi with probability Pi.
We use an equidistant discretization, resulting in a geo-
metric distribution

Pi =

∫ τi

τi−1

λ e−λt dt = e−λτi−1 − e−λτi , (8a)

for i = 1, . . . , n− 1, and

Pn = 1−
n−1∑
j=1

Pj . (8b)

The discretized distribution can be used to reformulate
the maximization of the expected value as a multi-stage
optimal control problem of type (6), by using a scenario
tree. However, this formulation is not unique. One pos-
sibility is to use a staircase-like approach, increasing the
number of variables as the number of possible recession
ends τi increases. This approach is illustrated schemati-
cally in Figure 2 and results in M = n+ 1 model stages,
where n is the number of discretizations of the proba-
bility density function. The dimensions nxi = 2 + i of
differential states and nui = 1 + i of control functions,
i = 0, . . . ,M − 1, are different on the model stages. The
transition functions (6c) are defined by

Ai,j(τi) = Ai−1,j(τi), 1 ≤ j ≤ i, (9a)

Ai,i+1(τi) = Ai−1,1(τi), (9b)

Bi,1(τi) = Bi−1,1(τi), (9c)

for all model stages i = 1 . . . n− 1, and

An,n+1(τn) = An−1,1(τn). (9d)

At each τi one has to distinguish between transitions
(9a), (9c) of the brand image A and the cash B for the
ongoing recession and the initialization (9b), (9d) of the
additional differential statesAi,i+1 for the normal period
beginning at τi, compare Figure 2.
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N pn(t)

Pn−1

An−1,n(t)

t0 = 0 τ1 τ2 τ3 τn−1 τn tf0 1 2 n− 1 n

...
...

. . .

. . .

Fig. 2. Controls and variables in the multi-stage formulation of problem (4) with associated probabilities and in a (R)ecession
or a (N)ormal period.

R R R R N N N N
. . . . . .

t0

0

τ1

1

τ2

2

τ3 τn−1

n− 1

τn

n

tf

t1

τ1

n+ 1

tf

t2

τ2

n+ 2

tf

tn−1

τn−1

2n− 1

tf

1 1 − P1 1 − P1 − P2 1 −
n−1∑
i=1

Pi 1 −
n−1∑
i=1

Pi P1 P2 Pn−1

Fig. 3. Rearranged scheme for the discretization of the random end time τ of the recession. Again, the symbols denote the
(R)ecession and (N)ormal stage, as well as the appropriate probabilities.

The second possibility is to use linearly coupled point
constraints of type (6e) instead of transitions to initial-
ize the new variables. All possible scenarios at τi are
concatenated, resulting in M = 2n model stages. This
“flat” arrangement of stages is shown in Figure 3.

In contrast to the first formulation, the model stage di-
mensions nxi = 2 for i = 0, . . . , n − 1 and nxi = 1 for
i = n, . . . ,M − 1 of differential states and nui = 1 for
i = 0, . . . ,M − 1 of controls are (almost) constant. The
coupled point constraints (6e) are given by

Ai,1(ti−n) = Ai−n−1,1(τi−n), n+ 1 ≤ i ≤ 2n− 1.
(10a)

The first n stages are recession periods with continu-
ous transitions of all states. They differ in the objective
function. The transition from the last recession stage n
to the subsequent normal period that starts at t = τn
is continuous, too. However, the model stage lengths of
this approach vary. While all n recession stages have the
constant duration h = τi − τi−1, the n normal period
stages have a length of tf − τi, i = 1, . . . , n.

Then we obtain for the staircase-like approach to dis-
cretize the probability density function, k = 1, the ob-

jective function

Φ1
i (τi, Ai,·(t), Bi−1,1(τi), p(t), P̄i)
= Pi e−rτiBi−1,1(τi) (11a)

+

i∑
j=1

Pj
∫ τi+1

τi

e−rt (p(t)DN(Ai,j+1(t), p(t))− C) dt

for i = 1, . . . , n, the transition (tr) functions

f1trA,i(Ai−1,j(τi))

=

{
Ai−1,j(τi); 1 ≤ i ≤ n− 1, 1 ≤ j ≤ i,
Ai−1,1(τi); 1 ≤ i ≤ n, j = i+ 1,

(11b)

f1trB,i(Bi−1,1(τi)) = Bi−1,1(τi), 1 ≤ i ≤ n− 1, (11c)

and the coupled point constraints functions

r1eq,i ≡ 0, (11d)

where P̄i = (P1,P2, . . . ,Pi).

The concatenated approach, k = 2, is defined by the
respective functions

Φ2
i (τi, An+i,1(t), Bi−1,1(τi), p(t),Pi)
= Pi e−rτiBi−1,1(τi) (12a)

+ Pi
∫ tf

τi

e−rt (p(t)DN(An+i,1(t), p(t))− C) dt,
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for i = 1, . . . , n,

f2trA,i(Ai−1,1(τi)) = Ai−1,1(τi), 1 ≤ i ≤ n, (12b)

f2trB,i(Bi−1,1(τi)) = Bi−1,1(τi), 1 ≤ i ≤ n− 1, (12c)

r2eq,i(Ai,1(ti−n), Ai−n−1,1(τi−n))

= Ai,1(ti−n)−Ai−n−1,1(τi−n), n+ 1 ≤ i ≤M − 1.
(12d)

3.3 Reformulation of the time delays

In Brandt-Pollmann, Winkler, Sager, Moslener &
Schlöder (2008) two possibilities are given to reformu-
late an optimal control problem with delayed equation
of motion as in (4) into an instantaneous problem.

The first approach splits the time horizon tf intom parts
of length σ and formulates the system dynamics sepa-
rately on each of the resulting intervals. By interpreting
them as independent and introducing new state and con-
trol variables we can formulate a system ofm differential
equations on the time horizon [0, σ]. This can be used to
reformulate the original optimal control problem. Fur-
thermore, one has to introduce coupled boundary condi-
tions to ensure the continuity of the state variable. The
approach may give additional insight from an analytical
point of view, compare Brandt-Pollmann et al. (2008).
However, it requires the determination of m− 1 control
paths in the interval [0, σ]. For small values of the de-
lay σ this results in a large number of state and control
functions.

Therefore, we prefer a different reformulation. We in-
troduce a second control function u2(t) = p(t) that de-
notes the unretarded control at time t, whereas u1(t) =
p(t − σ) characterizes the delayed one. They are cou-
pled via equalities u1(t) = u2(t − σ) for t ≥ σ and
u1(t) = η(t− σ) for 0 ≤ t ≤ σ.

Taking either staircase (11) or flat (12) discretization of
uncertainty presented in the previous Section, k = 1, 2,
we obtain

max
u1(·),u2(·)

n∑
i=1

Φki (τi, Aχk(i),·(t), Bi−1,1(τi), u2(t), P̄i)

(13a)

s.t. Ȧi,j(t) = κ(γu1(t)−Ai,j(t)), t ∈ [0, tf ], (13b)

0 ≤ i ≤M − 1, j ∈ Jk,
Ḃi,1(t) = u2(t)DR(Ai,1(t), u2(t)) (13c)

− C + δBi,1(t), t ∈ [0, τi],

0 ≤ i ≤ n− 1,

u1(t) = η(t− σ), t ∈ [0, σ], (13d)

u1(t) = u2(t− σ), t ∈ [σ, tf ], (13e)

A0,1(0) = A0, B0,1(0) = B0,

0 ≤ DR,N(Ai,j(t), u2(t)), t ∈ [0, tf ], (13f)

u1(t) ≥ 0, u2(t) ≥ 0, t ∈ [0, tf ], (13g)

Bi,1(t) ≥ 0, t ∈ [0, τi], (13h)

1 ≤ i ≤ n− 1,

Ai,j(τi) = fktrA,i(Ai−1,j(τi)), (13i)

1 ≤ i ≤ n, j ∈ Jk,
Bi,1(τi) = fktrB,i(Bi−1,1(τi)), (13j)

1 ≤ i ≤ n− 1,

0 = rkeq,i(Ai,1(ti−n), Ai−n−1 ,1(τi−n)), (13k)

n+ 1 ≤ i ≤M − 1,

where χ1(i) := i, χ2(i) := n+i, J1 := {j | 1 ≤ j ≤ i+1},
J2 := {j | j = 1}.

This problem still contains a delayed term, but it is not
apparent in the system dynamics anymore. It has moved
to a constraint (13e) on the controls. This can be effi-
ciently dealt with the multiple shooting method we in-
troduced in Section 3.1 for the special case of a constant
delay.

4 Results

As suggested in Caulkins et al. (2010a, 2011), we use the
following set of parameters in our numerical treatment:

κ = 2.0, γ = 5.0, C = 7.5, δ = 0.05,

m = 3.0, β = 0.5, r = 0.1, λ = 0.5, (14a)

α1 = 0.7, α2 = 0.836, α3 = 1.25.

The choice for parameters r, δ, and λ is based on the
assumption that we measure time in years and that the
expected duration of the recession is two years. We set
β assuming that an increase in reputation will influ-
ence less and less customers. The more fashionable the
product is, the more specialized is its market niche. See
Caulkins et al. (2011) for a motivation of the remaining
parameters.

A key result of Caulkins et al. (2011) was that the au-
thors were able to distinguish three different types of
recessions corresponding to the severity of the demand
reduction and the resulting optimal strategy. Following
their results, the values of the parameter α indicate a
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mild (α1 = 0.7), intermediate (α2 = 0.836), and severe
(α3 = 1.25) economic crisis.

Due to the discretization of τ we need to further specify
the last possible endpoint of the recession,

τn = 20. (14b)

This implies that in this context the probability that
the recession persists longer than that is low, i.e., P[τ >
20] = 4.54 · 10−5. For the control delay we choose

σ = 0.25. (14c)

To accomplish this, two equidistant discretization
step lengths are applied, first with n1 = 20, i.e.,
h = τi − τi−1 = 1.0, and n2 = 40, i.e., h = 0.5. Each
of them is combined with four shooting nodes per one
time unit, i.e., per one year. Then condition (13e) can
be implemented via interior point constraints applied
on the shooting nodes.

For convenience, the overall final time tf is chosen to be

tf = 21 (years), (14d)

so that we definitely have a small normal period of one
year in all possible stages.

Finally, in the subsequent sections we provide some com-
putational results. They are obtained with the following
combinations of number of discretization points n, re-
cession parameter α, initial values (A0, B0), and initial
price paths η for the delayed model, cf. Table 1.

In Section 4.1 we analyze the computational perfor-
mance of the various reformulations presented in the
previous section. In Section 4.2 we derive some analyt-
ical insight into the problem structure. More economic
insight can be gained from the computational results in
Section 4.3.

4.1 Computational performance

As discussed in Sections 3.2 and 3.3 different mathemat-
ically equivalent reformulations of the optimal control
problem (4) exist. However, they are by no means equiv-
alent from a computational point of view.

Table 2 compares the computational performance of the
two different approaches to discretize the uncertainty.
With the staircase formulation (11) (Figure 2) the over-
all time horizon is quite small. However, the number
of state variables is increased compared to the concate-
nated arrangement, leading to more steps of the error-
controled, adaptive integrator. More significant, how-
ever, is the impact of more blocks in the Hessian of the

Scenario n α A0 B0 η

1 20 0.7 10.0 5.0 -

2 20 0.836 20.0 5.0 -

3 20 1.25 100.0 100.0 -

4 40 0.7 10.0 5.0 7.406785

5 40 0.7 0.1 5.0 4.296460

6 40 0.7 10.0 2.0 7.088001

7 40 0.7 ĀN
d 5.0 p̄Nd

8 40 0.7 ĀN
d 1.0 p̄Nd

9 40 0.7 ĀN
d 0.1 p̄Nd

10 40 0.836 0.1 10.0 3.917962

11 40 0.836 0.1 10.0 3.5

12 40 0.836 0.1 10.0 3.0

13 40 0.836 0.1 10.0 2.5

14 40 0.836 20.0 5.0 8.153575

15 40 0.836 0.1 8.0 3.917948

16 40 0.836 25.0 3.5 8.671824

17 40 0.836 ĀN
d 1.0 p̄Nd

18 40 0.836 0.1 7.05 -

19 40 0.836 63.0 0.05 -

20 40 0.836 0.1 9.8 3.5

21 40 0.836 73.5 0.1 12.517549

22 40 1.25 100.0 100.0 10.751307

23 40 1.25 0.1 100.0 2.924618

24 40 1.25 40.0 80.0 7.855208

25 40 1.25 80.0 50.0 9.922934

26 40 1.25 0.1 60 2.924617

27 40 1.25 ĀN
d 50.0 p̄Nd

28 40 1.25 ĀN
d 70.0 -

29 40 1.25 0.1 76.0 -

30 40 1.25 ĀN
d 71.5 p̄Nd

31 40 1.25 0.1 79.5 2.924580

Table 1. Different scenarios used for computational perfor-
mance tests and visualizations. Note that some of these sce-
narios are used in both a delayed (σ = 0.25) and undelayed
model (σ = 0), others in only one of them. In undelayed
settings η is obsolete and denoted by “-”.

Lagrangian. They are used for high-rank updates, com-
pare Section 3.1. This leads to a drastic increase in lo-
cal convergence and hence to a decrease of the number
of sequential quadratic programming (SQP) iterations
(Leineweber et al., 2003) and overall computation time,
as can be seen in Table 2 for the case σ = 0. These results
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Scheme (11) Scheme (12)

Scenario # of SQP t (sec.) # of SQP t (sec.)

1 846 5259 51 1341

2 829 1312 35 835

3 858 1411 102 2969

4 1254 67131 102 21443

14 1716 93773 48 9615

22 915 47285 102 24163

Table 2. Comparison of the different schemes for discretiz-
ing τ , see (11), (12), and Figures 2, 3, respectively. The
results correspond to the undelayed case, i.e., σ = 0. The
faster convergence of (12) (recognizable in SQP iterations
and runtime) is due to the high-rank updates mentioned in
Section 3.1. The scenarios are listed in Table 1.

Undelayed model Delayed model

n = 20 n = 40 n = 20 n = 40

discr. points 940 1840 940 1840

variables 3797 7437 4738 9278

eq. constraints 2855 5595 3797 7437

ineq. constraints 7594 14874 9476 18556

Table 3. Comparison of the size of the resulting NLP for the
delayed and the undelayed model.

carry over to the case with σ > 0, therefore we will con-
centrate on the formulation (12) visualized in Figure 3.

As already observed in Brandt-Pollmann et al. (2008),
the first approach suggested in Section 3.3 to handle
time lags σ is computationally inferior to the second
one, although it might be interesting from an analytical
point of view. E.g., for scenarios 4–12 the number of 1800
additional state and 1799 control functions needs to be
included. Therefore, we will use the second formulation
in the following for our calculations. Table 3 gives an
overview over the moderate increase in the dimension of
the resulting nonlinear program.

Table 4 gives an indication of the computational expense
for including delays. The main part of the computation
is needed for the condensing algorithm, see Bock & Plitt
(1984); Leineweber (1999), which is almost identical for
both cases, as the state dimension is independent of σ.
The main extra cost is solving the quadratic programs, as
the runtime depends crucially on the number of control
variables. Therefore, asymptotically for σ > 0 getting
smaller and smaller, the quadratic programming (QP)
runtime will become more and more dominant.

Undelayed model Delayed Model

Scenario # of SQP t (sec.) # of SQP t (sec.)

6 71 14103 60 20238

7 102 24515 98 28422

16 70 12896 102 28787

17 69 14796 82 24466

24 81 18114 81 22166

27 101 24456 101 29404

Table 4. Number of iterations and CPU time for undelayed
and delayed scenarios. The computational effort is moder-
ately higher, when delays are taken into account.

4.2 Analytical results

We deduce analytical results that help us to obtain a
better insight into the qualitative changes related to the
introduction of the time lag σ. We investigate the steady
state in the normal period of our model (4) and compare
it with the result of the undelayed case, i.e., σ = 0.

The integral term of Φ(·) in (3) corresponds to the
normal economic period, where the capital markets are
working again and we are not using the cash stateB any-
more. Let ĀN

d/nd and p̄Nd/nd denote the normal period’s

steady state brand image and price in the (d)elayed and
the u(nd)elayed case, respectively.

By using Pontryagin’s Maximum Principle (Grass,
Caulkins, Feichtinger, Tragler & Behrens, 2008) we
calculate

ĀN
nd =

(
γm(r + κ)

2(r + κ)− βκ

) 1
1−β

, p̄Nnd =
ĀN

nd

γ
. (15a)

In the model’s delayed version the maximum principle is
far more complex, see El-Hodiri et al. (1972). However,
in the normal period the stationary state of the corre-
sponding one-dimensional problem can be derived using
the results in Winkler, Brandt-Pollmann, Moslener &
Schlöder (2003). We substitute

F (t) := F (A(t), p(t)) = p(t)

(
m− p(t)

A(t)β

)
− C

and obtain the Hamiltonian

H = e−rtF (t) + µ(t+ σ) · κγp(t)− µ(t) · κA(t)
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with the co-state variable µ(t). This induces the system

Ȧ(t) = κ(γp(t− σ)−A(t))

ṗ(t) =
1

Fpp(t)

(
(r + κ)Fp(t) + κγ e−rσFA(t+ σ)

− FpA(t)Ȧ(t)
)

that directly gives us the stationary price p̄Nd . Further
on, it yields

(r + κ) erσ

κγ
= −FA(t+ σ)

Fp(t)

and, therefore, the equality

(r + κ) erσ = − βκ(ĀN
d )1−β

γm− 2(ĀN
d )1−β

that determines the stationary state of the brand image

ĀN
d =

(
γm(r + κ) erσ

2(r + κ) erσ − βκ

) 1
1−β

, p̄Nd =
ĀN

d

γ
. (15b)

The latter result obviously includes the special case
(15a). Our parameters (14) determine the values

ĀN
nd = 96.899414, p̄Nnd = 19.379883, (16a)

ĀN
d = 95.421259, p̄Nd = 19.084252. (16b)

Those coincide with the numerical results we obtained.
One can see the impact of the delay very clearly. The
benefit of keeping the price up is obtained later in the
delayed world, while the benefit of reducing it (with in-
stantaneous profit) is still obtained immediately.

In the recession period the verification and calculation
of steady states cannot be done this straightforwardly.
Further on, the so-called weak Skiba curves 2 play an im-
portant role. While the authors of Caulkins et al. (2010a)
were able to derive several results of the non-delayed
case analytically, for the delayed model this is impeded
much more.

4.3 Computational results

In our approach to discretize problem (4) we assume a
finite and discrete grid of possible switching times τi. We

2 Also known as threshold or weak DNSS curve referring
to early contributions of Dechert & Nishimura (1983), Sethi
(1977, 1979), and Skiba (1978); see also Grass et al. (2008).
Weak Skiba refers to the threshold property of this curve
separating different long-term solutions. Which strategy has
to be applied is history-dependent and, thus, particularly
depends on the initial state values.

think that this transformation to the finite-time case is
well justified, as the influence of the errors caused by
the discretization are small. The intervals between τi are
short and the probability (8b) for switching the stage at
the last possible time τn is only marginally higher than
it would be in the infinite case.

In Caulkins et al. (2010a) possible pricing strategies in
recession periods are explained depending on the value
of α. Additionally, the impact of these pricing policies
on the development of the reputation A and the cash B
is depicted. In the delayed world the behavior of the firm
is qualitatively similar. In a severe crisis (α3 = 1.25) the
brand image and/or cash required to avoid bankruptcy
are particularly large. The milder the crisis is the less
reputation/cash is needed. In all cases the cash state
diverges to infinity if the firm survives with certainty.

The main result of our analysis of problem (4) is the
relation

pd(t) > pnd(t), 0 ≤ t ≤ τ, pd(t) < pnd(t), τ ≤ t ≤ tf ,
(17)

which can be seen in Figure 4.

The optimal solution of the normal period follows the
results of Section 4.2. Due to the delay σ there is a less
direct effect of the price pd on the dynamics of the brand
image Ȧ. This reduces the incentive to set a high price, as
a lower price raises revenues, which consequently raises
the value of the objective function immediately.

In the recession period, however, the opposite relation
holds. A direct consequence of this is visible in Figures 5
and 6: The vertical line indicating the divergence of the
cash state B in an infinite horizon setting is shifted to a
value ĀR

d of reputation that is higher than the respective
value ĀR

nd in the non-delayed case.

While the negative effect of smaller revenues with higher
prices (independent of the economic period) is the same
for both the delayed and the undelayed case, there are
also two positive aspects of increasing the price pd.

The first effect is that the brand image A will increase as
well during the recession, implying that the bankruptcy
probability reduces. This effect is stronger the less the
delay σ is. Hence, this first impact is the strongest in the
non-delayed case.

Given that the recession will be terminated somewhere
during the next time interval of duration σ, the second
effect of increasing pd is that the reputation goes up after
the recession, implying that the revenue of the normal
period rises. This effect occurs with the probability P[τ ∈
[t, t+ σ]] that the recession will be over during the next
interval of length σ, hence, it is stronger the larger the
delay is. But it is completely absent in the undelayed
case.
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Fig. 4. Exemplary price paths of
(a) a recession period lasting until τn (using Scenario 22). During the recession pd > pnd holds, but the difference in between
depends on the size of the rate parameter λ.
(b) a normal economic stage for the same scenario setting. By way of better illustration this figure shows price paths of a normal
period beginning already at time τ1. Note that neither λ nor the strength α of the recession have any influence on these paths.
For comparison, ps shows the static optimization price.
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Fig. 5. Evolution of optimal trajectories over time in a phase diagram with brand image A(·) and capital B(·). They start in
(A0, B0) according to Table 1 and evolve until (A(τn), B(τn)). Optimal solutions of a delayed (σ = 0.25) and the undelayed
(σ = 0) model are shown for a mild recession (α1 = 0.7), if we assume that for t ∈ [−σ, 0]
(a) the recession has been present (Scenarios 4–6 (from top to bottom)),
(b) a steady state normal economic period existed, i.e., A0 = ĀN

d , η = p̄Nd (Scenarios 7–9).
Due to the introduction of the delay the recession’s steady state of the brand image ĀR

d (and correspondingly p̄Rd ) is greater
than in the undelayed case.

According to the first effect, which is comparable to the
impact in the normal period, it will hold that pd < pnd
then. The second effect will imply the opposite relation
during the recession stage. Note that this second impact
only occurs with P[τ ∈ [t, t+ σ]], i.e., it depends on the
size of σ and the probability density function.

In our case (with σ = 0.25) the second effect dominates,
meaning that the mentioned probability is large enough.
For the first effect to dominate we have to decrease this
probability by either reducing the time lag or end of re-

cession probability parameter λ. The results of the latter
possibility can be seen in Figure 4a.

In a more vivid way we can interpret this second effect
by assuming that the crisis ends at time τ̂ . In the unde-
layed case the firm can start building up their reputa-
tion immediately after the realization of τ̂ by charging
higher prices (supposing that it has survived). The effect
on A comes directly. If σ > 0 the impact of rising prices
after τ̂ only starts to have a positive outcome from time
τ̂ + σ onwards. In the initial phase of the normal period

10



 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50  60  70  80

B

A

Undelayed model
Delayed model

(a) α2 = 0.836

 0

 20

 40

 60

 80

 100

 120

 140

 0  20  40  60  80  100

B

A

Undelayed model
Delayed model

(b) α3 = 1.25

Fig. 6. Phase diagram as in Figure 5a for an intermediate and severe recession.
(a) Scenarios 10, 14–16, (b) Scenarios 22–26.
In analogy to weak Skiba curves, the dotted lines based on Scenarios (a) 18–21, (b) 28–31 indicate the initial values which
separate the state space into the ones (above) that do not lead to bankruptcy and the ones (below) that do. After the
introduction of the time lag σ the bankruptcy region becomes larger. This results in an upwards-adjustment of the weak Skiba
curve in the delayed case.

[τ̂ , τ̂ + σ] the demand is directly influenced by the price
set in the last interval of the recession. Hence, increasing
prices in [τ̂ − σ, τ̂ ] leads to a higher reputation σ time
units later. I.e., the demand is also higher in the period
[τ̂ , τ̂ + σ], which generates higher revenues during the
first phase of the normal period. As the firm does not
know beforehand when the recession will be over, there
is always a positive probability that the current time t
is located in the period [τ̂ − σ, τ̂ ]. Keeping this in mind,
the firm has an additional incentive to keep prices up in
recession periods when a delay is apparent, avoiding to
damage the reputation too much. Otherwise their prod-
uct will still perceived to be comparatively cheap for
some time period after the recession is over.

Another important result can be observed in Figure 6.
As observed in Caulkins et al. (2011), in cases of an
intermediate or severe recession there is a weak Skiba
curve separating the regions of possible bankruptcy and
certain survival. If σ > 0 this curve is adjusted upwards
to some extent. With the incorporation of the delay in
our model it is less easy for the firm to survive the crisis
because the effect of changing the price p on the brand
image is less direct. This explains why the bankruptcy
region becomes larger.

At the end of this Section we want to remark that the
condition (13d) causes two main scenarios we have to
distinguish in the delayed model. The economic stage
that is apparent in the time prior to the planning period
[0, tf ] can either be a normal or a recession stage. We
consider two slightly simplified cases.

In the first one we assume a steady state corresponding
to the normal economic period in the interval [−σ, 0],

i.e., we have already one “switching” occurrence at the
beginning of the horizon. We initialize the retarded con-
trol with η = p̄Nd and the brand image with A0 = ĀN

d .
Then the system evolves as shown in Figure 5b. The
non-smooth behavior of the trajectories there is quite
natural. At t = 0 the recession begins and the demand
is reduced immediately due to the influence of α. Hence,
prices will drop and the firm’s cash decreases. However,
the brand image in the time interval [0, σ] develops ac-
cording to the high steady state price p̄Nd , i.e., it remains
at its level. Only thereafter the condition (13e) becomes
active and the reputation reacts to the lower prices.

The second case is more complicated. If we suppose a
persisting recession stage, it is very hard to find a satis-
fying initialization η for the retarded price in the inter-
val [0, σ]. In our calculations we started with the optimal
price obtained in the first interval of the non-delayed
model. This causes the kink in the initial part of the tra-
jectories in Figures 5 and 6. Experiments of varying the
value of η changed the amplitude of this deformation
slightly, see Figure 7. In this special scenario the differ-
ent initializations also had a qualitative influence on the
bankruptcy probability of the firm. If the combination
of brand image and cash moves below the weak Skiba
curve, the firm has to face bankruptcy in the long run.
This happens for small initial prices, whereas high ones
lead to certain survival.

5 Summary

We showed that a constant control delay in a two-stage
model of a firm selling conspicuous consumption goods
has a qualitative influence on the optimal pricing strat-
egy the firm should apply in periods of economic uncer-

11



 0

 2

 4

 6

 8

 10

 0  10  20  30  40  50  60  70

B

A

Undelayed model
Delayed model

Fig. 7. Phase diagram as in Figure 5a for Scenarios 10–13
(grey lines from top to bottom). It is obvious that the initial
control path η has a considerable influence on the firm’s
future situation.

tainties. In the recession stage of the delayed case the
firm should use higher prices than in the corresponding
scenario in the undelayed world, whereas in the normal
economic stage after the recession is over the pricing
policy is optimal if the reversed relation is true. This
behavior is strongly depending on the probability that
the recession will end during the next σ periods, i.e., on
the size of the delay and the rate parameter λ. We also
showed that the bankruptcy region is larger if σ > 0.

Our approach to solve this non-standard optimal con-
trol problem by a scenario tree approach deduced from
the discretization of the random variable τ as the end
point of the crisis and combining this with the intro-
duction of a slack control function to incorporate price
delays has proven to be successful. The application of
structure-exploiting direct numerical methods is an ad-
equate means to gain insight into solution structures of
complex economical systems, also and especially if ad-
ditional analytical studies are required.

Possible extensions of our model can include state equa-
tions with delays in both the control and the state (Col-
lard et al., 2008), the inclusion of quality as additional
control, or an reversion of the order of stages, i.e., be-
ginning with a normal period followed by a recession.
Another variant can be obtained by a redefinition of the
brand image

A(t) =

∫ t

t−σ
p(z) dz,

yielding Ȧ(t) = p(t)− p(t− σ) = p(t)− δ(t)A(t), where
the depreciation rate δ(t) depends on the delayed price
(Boucekkine et al., 2005; Collard et al., 2008). Further
on, the recession parameter α might be regarded as a
random variable as well, possibly even as a random pro-
cess.
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