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Abstract

Modern model-based control strategies are fundamental components when
dealing with process engineering systems. They ensure stable, safe, and
economically profitable operations. Especially when considering changing feed
qualities, electric energy availability, or prices, these control strategies are needed
to adapt the process operation. Among these hierarchically structured control
strategies, real-time optimization is responsible for a frequent recalculation of
the operating points according to an economic assessment. Since production
systems consist of strongly interlinked units, storage elements are used to
buffer fluctuations in the supply of materials and energy of particular processes.
These fluctuations occur, among other things, when the operating points of the
production system are changed within defined load ranges or are shut down
completely. For a given storage capacity, the control system architecture must
ensure that the storage is used optimally, providing sufficient reserve for future
operational adaptation. At the same time, it is essential to avoid oversizing of
storage capacity.
This thesis treats the two tasks of developing an optimization-based operational
strategy as part of the control architecture and designing storage elements
based on this strategy. In particular, the operational strategy addresses the real-
time optimization (RTO) layer, which has to consider the unsteady production
system operation due to frequent charging and discharging storage elements
when determining the economically optimal operating points.
We propose an RTO scheme where information from the closed-loop control of the
production system is used to predict the dynamic behavior of the storage levels.
This RTO formulation is a bilevel problem. To solve this problem efficiently,
we present techniques to reformulate it into a static RTO and an optimal
control problem (OCP). The task of the OCP is to guarantee a fast transition
between two operating points, where the RTO determines the economically
optimal operating point exploiting the results of the OCP. To solve the OCP,
we introduce a coordinate transformation of the system states and propose
a novel setup function for the output trajectory. This function guarantees
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a smooth transition between two stationary operating production levels and
allows adapting the output trajectory by a finite number of parameters. In this
way, the OCP is transformed into a parameter estimation problem that can
be solved in the presence of additional system-related constraints. Thus, the
proposed RTO scheme provides a time-dependent trajectory for the input and
output in addition to the operating points.
Based on this operational strategy, we investigate its relation to storage levels.
For this purpose, we analyze the effect of changes in economic factors on the
RTO result. It allows us to assess the storage behavior of the production
system. Furthermore, we show how this information is employed to estimate the
minimum storage size. By utilizing stochastic scenarios for the economic factors,
we propose a method to expand the storage capacity beyond the minimum size,
achieving the best economic operation without storage-based restrictions. A
chemical process example will exemplify the theoretical derived techniques and
algorithms of the operational strategy and storage size estimation.
The main intention of this work is twofold: Firstly, we demonstrate that the
classic concept of a static RTO can be extended by closed-loop information
without using a complete dynamic model. This way, economical optimal
production system operation, including time-optimal transition, is achieved
while considering the storage level evolution predictions. Secondly, we link the
evolution of storage levels with the economic uncertainties affecting the RTO.
It allows estimating storage capacities decoupled from the economic assessment
of the investment costs of the storage elements. Hence, a combined design
of storage tanks and optimal operation of the production system using these
storage elements is achieved.



Deutsche Kurzfassung

Der Einsatz moderner modellbasierter Regelungsstrategien spielt für den
Betrieb verfahrenstechnischer Produktionssysteme oder Anlagen eine wesentliche
Rolle. Sie gewährleisten sowohl einen sicheren und stabilen als auch einen
wirtschaftlich rentablen Betrieb. Insbesondere bei schwankenden Qualitäten der
Eingangsströme, der Verfügbarkeit der elektrischen Energie oder den Einkauf-
spreisen werden diese Regelungsstrategien benötigt, um den Prozessbetrieb
anzupassen. Innerhalb dieser hierarchisch aufgebauten Regelstrategien sorgt
die Echtzeitoptimierung für eine stete Neuberechnung der Betriebspunkte
gemäß einer wirtschaftlichen Bewertung. Da verfahrenstechnische Anlagen
häufig aus miteinander verketteten Prozessen oder Prozesselementen bestehen,
werden Speicherelemente zur Pufferung von Fluktuationen in der Material- und
Energieversorgung der einzelnen Prozesse eingesetzt. Diese Schwankungen treten
u.a. auf, wenn die Betriebspunkte der Anlage innerhalb definierter Lastbereiche
verändert werden oder Teilprozesse vollständig abgeschaltet werden. Bei
einer gegebenen Speicherkapazität muss die Regelungsarchitektur sicherstellen,
dass der Speicher optimal genutzt wird und genügend Reserve für zukünftige
Anpassungen des Anlagenbetriebs bietet. Gleichzeitig ist es wichtig, eine
Überdimensionierung der Speicherkapazität zu vermeiden.
Die vorliegende Arbeit beschäftigt sich mit zwei Aufgaben, nämlich eine
optimierungsbasierte Betriebsstrategie als Teil der Regelungsarchitektur zu
entwickeln und die Speicherelemente auf Basis dieser Strategie zu entwerfen.
Die Betriebsstrategie adressiert insbesondere die Ebene der Echtzeitoptimierung
(engl. Real Time Optimization, RTO), die bei der Ermittlung der wirtschaftlich
optimalen Betriebspunkte den instationären Anlagenbetrieb aufgrund der
häufigen Be- und Entladung von Speicherelementen berücksichtigen muss.
Wir schlagen ein RTO-Verfahren vor, bei dem Informationen aus der
Regelung der Anlage verwendet werden, um das dynamische Verhalten der
Speicherstände vorherzusagen. Bei dieser Formulierung der RTO handelt
es sich um ein Bilevel-Optimierungsproblem. Um das Problem effizient
zu lösen, werden Techniken vorgestellt, um es in eine statische RTO und
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ein Optimalsteuerungsproblem (engl. Optimal Control Problem, OCP)
umzuformulieren. Die Aufgabe des OCP besteht darin, einen schnellen
Übergang zwischen zwei Betriebspunkten zu gewährleisten, wobei die RTO
den wirtschaftlich optimalen Betriebspunkt unter Ausnutzung der Ergebnisse
des OCP ermittelt. Um das OCP zu lösen, wird eine Koordinatentransformation
der Systemzustände eingeführt und eine neuartige Setup-Funktion für die
Trajektorie der Produktionsniveaus vorgeschlagen. Diese Funktion garantiert
einen glatten Übergang zwischen zwei stationären Produktionsniveaus und
ermöglicht außerdem die Anpassung der Trajektorie durch eine endliche Anzahl
von Parametern. Das OCP wird so in ein Parameterschätzproblem umgewandelt,
das unter Berücksichtigung zusätzlicher anlagenspezifischer Nebenbedingungen
gelöst werden kann. Das vorgeschlagene RTO-Verfahren erzeugt somit zusätzlich
zu den Arbeitspunkten eine zeitabhängige Trajektorie für den Systemeingang
und die Produktionsniveaus.
Basierend auf dieser Betriebsstrategie wird in dieser Arbeit auch die Beziehung
zu den Speicherständen näher untersucht. Hierzu wird der Einfluss von
Änderungen der wirtschaftlichen Faktoren auf das Ergebnis der RTO betrachtet.
Dies ermöglicht es, das Speicherverhalten der Anlage zu bewerten. In
diesem Zusammenhang wird gezeigt, wie die Informationen genutzt werden
können, um die erforderliche minimale Speichergröße abzuschätzen. Durch
die Einführung stochastischer Szenarien für die wirtschaftlichen Faktoren
schlagen wir eine Methode zur Erweiterung der Speicherkapazität über die
Mindestgröße hinaus vor, um einen wirtschaftlich optimalen Betrieb ohne
speicherbedingte Restriktionen zu gewährleisten. Anhand eines chemischen
Prozessbeispiels werden die theoretisch abgeleiteten Techniken und Algorithmen
der Betriebsstrategie und der Speichergrößenabschätzung erprobt.
Die Ziele dieser Arbeit können in zwei Punkten zusammengefasst werden: Zum
einen wird dargestellt, dass das klassische Konzept einer statischen RTO um
Informationen des geschlossenen Regelkreises erweitert werden kann, ohne das
vollständige dynamische Modell zu verwenden. Hierdurch wird ein wirtschaftlich
optimaler Anlagenbetrieb einschließlich der zeitoptimalen Übergänge unter
Berücksichtigung der Entwicklung der Speicherstände erreicht. Zum anderen
werden die ökonomischen Unsicherheiten, die die RTO beeinflussen, mit der
Entwicklung der Speicherniveaus verknüpft. Dies entkoppelt die Auslegung der
Speicherkapazitäten von der ökonomischen Bewertung der Investitionskosten
der Speicherelemente. Auf diese Weise wird die Auslegung der Speicher mit
dem Design einer optimalen Betriebsstrategie der Anlage verknüpft.



Symbols

Abbreviations and Acronyms

AD anaerobic digestion
cl closed-loop
LQR linear quadratic regulator
MPC model predictive control
NLP nonlinear programming problem
OCP optimal control problem
ODE ordinary differential equation
pdf probability density function
PI proportional–integral
RSR reactor-separation-recycle
RTO real-time optimization
D/S-RTO dynamic/static real-time optimization
w.l.o.g. without loss of generality

Mathematical Notation

Production system components.

B α
i storage element (α-th element of the i-th process)

Dp downstream process constraints
P production system (or system)
Si process

g
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Sets and Spaces.

AF subset of D denoting the attractive region of the storage level
Ci/C product space of the i-th process/production system
Ce extension of Co by ∆c

Co operating area of the product space
D space of the storage level
H α
j terminal constraints for the storage level of B α

i

IH/SH/T H initial/seasonal/total hypercube
Q set of the product quality functions
R[∆pt,`]

α
j

space of feasible storage rates of B α
i

T n
θ k season for a constant mean value of the feed parameter θ
Tθk, T r

θ kl time interval for constant feed parameter θ
Ui/U input space of the i-th process/production system
Xi/X state space of the i-th process/production system
Xe extension of X by ∆c

X s
e extension of X s

o by ∆c

Xo operating area within the state space
X s

o subset of Xo containing steady states
X s

o,δc subset of X s
o with feasible production levels due to δc

Xq subset of X with no reduction in product quality
Xω subset of X feasible for downstream process constraints
∆c set of admissible production level changes from c

Θ space of the feed parameter
Θ set of possible scenarios of the feed parameter

Variables.

ci/c
α product/production level of the i-th process/production system

cn nominal product/production level of the production system
D α
j storage size of B α

i

D α
j minimum storage size of B α

i

D̂ α
j additional storage size of B α

i

` αi storage level (α-th element of the i-th storage system)
ui/u

α input or feed coordinate of the i-th process/production system
x α
i /x

α state coordinate of the i-th process/production system
δc change of the production level
∆θt lower bound for the time until the feed parameter changes
∆θt time until the feed parameter changes
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∆θt upper bound for the time until the feed parameter changes
∆d length of the design horizon for the storage size
∆pt maximum production phase
∆s minimum time for the production phase
∆st production phase
ζ α
j safety boundary of B α

i

θ/θn feed parameter/nominal feed parameter
θ̂k, θ̂

n
k , θ̂

r
kl feed parameter value defining a scenario

%s
α
j storage rate of B α

i

Maps and Functions.

c trajectory of the production level
f vectorfield for the process dynamics
F economic objective function
F deviation of the optimal profit
h map for the primary product
idX identity map on X
k,K,Kex control law
l length of a time interval
l trajectory of the storage level
Pe

c map for the optimal stationary production level
Pe

f map for the optimal profit value
Pr

α
j map for the optimal storage rates of B α

i

Pe
u map for the optimal stationary feed level

q map for the secondary feed
qs product quality
r map for the primary product and byproduct
s map for input and state constraints of the production system
Tt reduced transition-time map
T̃t,c surrogate model of the transition-time map
Te

t transition-time map
Te

x transition-state map
Te

x,δc parametric form of the transition-state map
x trajectory of the state variable
θ scenario of the feed parameter
ΛT setup function for the production level
ρ α
j storage rate of B α

i

ω map for downstream process constraints
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Chapter 1

Introduction

The optimal and safe operation of chemical production networks is a pervasive
goal related to the maximization of economic benefits while considering system
limitations. Optimal control schemes can address this task. To design such
control strategies, a deep understanding of the underlying process structures
and inherent connections is necessary.

Chemical production networks are characterized by a hierarchical and complex
structure consisting of many interconnected processes and process elements.
Thus a production system is a combination of several processes, where each
process converts a finite number of educts into a finite number of products.
The educts are either provided from external suppliers or delivered within the
production system from other processes, where the products are distributed to
downstream processes or sold to other customers. The exchange of material
and energy flows between the processes is usually supported by storage devices,
which perform several tasks [53, 54]:

(i) Attenuation of disturbances: The propagation of disturbances
between the two connected elements is damped. Here, one can
distinguish between disturbances regarding the quality (e.g., composition,
temperature, or pH) or the rate (i.e., amount per time) of the flow.

(ii) Decoupling of process operations: The downstream process element
can temporarily be operated independently of the upstream element. This
allows for coupling batch and continuous processes or partially shutting
down production system parts.
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2 INTRODUCTION

Storages perform essential tasks and need to be carefully selected concerning
their location, capacity, and dynamic properties. The processes themselves
are composed of a large number of elements that are necessary to convert the
educts. In particular, there are elements for mixing, reacting, and separating
the individual chemical components. Heat exchangers, compressors, and others
are used to change the temperature or pressure level.

Mathematical models to describe the processes stem from balance equations
for material and energy flows and constitutive equations, i.e., thermodynamic
relationships and kinetic information, of the individual elements. However, the
focus of this thesis is not on the modeling of processes because we assume that
such a nonlinear dynamic model already exists.

In general, the structure of production systems, consisting of processes and
process elements, and thus the modeling is performed hierarchically. This
structure is also reflected in the control levels, which are responsible for stable,
feasible, and safe operation and economically optimal production levels [68, 244].
The decisions made at different levels are embedded in different time horizons.
At the planning and scheduling layer, decisions are made about the sources of
raw materials or the manufactured products and their schedules and quantities.
This layer includes actions that extend over several days or weeks. Production
specifications based on hours or days refer to low-frequency economic criteria
and are implemented in the real-time optimization layer. Below that layer is
the supervisory level, which determines the control policy to implement the
load changes. At the bottom level, the regulatory layer (e.g., consisting of PI-
controllers) is responsible for the compensation of high-frequency disturbances.
The load changes determined by the real-time optimization layer occur around a
nominal operating point for which the production system is designed. However,
frequently changing economic conditions, e.g., raw material and product prices,
quantity, and quality of raw materials or demand, require that the process
outputs have to be adjusted. For instance, frequent load changes occur in
processes fed with renewable energies, as these are subject to short- or medium
frequency fluctuations. Especially the storage of short-term surplus of energy
has received much attention in the literature [208].

A challenging issue arises when these fluctuations are process-specific, and
the processes are connected via storages. In such cases, the interaction of
the operating strategy with the restrictions set by the storages is a decisive
factor. It determines both the control performance and thus the realization of
production changes, and the economic quality of the production system. In
terms of the design of the control strategies and the production system, there
are two different types of approaches [157, 48, 230].
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(i) Sequential approach for design and control: The classical approach
designs the control system after the processes are fixed. This includes
the selection of the control structure in combination with the controlled
and manipulated variables, type of control law, and its tuning. Once the
process structure is defined, the degrees of freedom of the controller are
limited, which might narrow its performance. Another drawback is that a
sequential approach can lead to conflicts between the original objectives
of the process and the desired control objective. In general, methods for a
sequential approach consider only parts of the design process and neglect
the interaction between them.

(ii) Integrated approach for design and control: Here, design and
control tasks are performed simultaneously in an iterative fashion, which
increases both economic efficiency and control performance. This allows
integration of the interaction between process and control structure but
also increases the complexity of the problems. In many cases, this is
accompanied by the evaluation of controllability, flexibility, or operability,
and multi-objective optimization problems. Some methods use steady-
state models or model reduction techniques to reduce the numerical
complexity. Moreover, the number or type of controllers used is often
limited, so that the resulting mathematical formulation of the problems
can be solved numerically or analytically.

In this thesis, we consider generic production system topologies that consist
of two processes that exchange material and energy via storages. Thereby the
storages ensure a temporary decoupling of the processes so that the identification
of new operating points for both processes can be performed independently.
In this way, each process operates at an economic optimum. Besides, we
assume that the two processes are already designed, and their raw material
requirements and production outputs are of the same order of magnitude.
Designing the processes, including the regulatory layer, can be done either
by an integrated or sequential approach, which is not the focus of this thesis.
However, we address the design of the operational strategy and the design of
the storage capacity according to this strategy. Specifically, we focus on the
real-time optimization layer considering the behavior of the storage levels when
identifying economically optimal operating points. The next section gives some
examples of the production systems, which are covered in this thesis.
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1.1 Examples of Process Networks

As mentioned in the previous section, this work focuses on production systems
consisting of two processes connected via storages. More precisely, each process
converts a primary feed into its primary product, while exchanging additional
byproducts, which can be both chemicals and energy. These system structures
result either from sub-networks within larger production systems or they can
be formed from individual, mutually supporting processes.
In the following, we present five process examples to illustrate that the considered
process topology is widespread among chemical production systems.

1. Methane production. The production system consists of two methane-
producing processes, as shown in Figure 1.1. The first process is biological
methanation, which takes place inside a biogas plant by anaerobic decomposition
of organic waste. After several conversion steps, biogas is formed, which contains
the main product methane as well as the byproduct carbon dioxide. Once the
biogas has been purified, the carbon dioxide is stored in an intermediate storage
element before it is fed into the second process as secondary feed.
In the second process, electrical energy is used to produce hydrogen first via
water electrolysis. Subsequently, hydrogen is converted to methane utilizing the
carbon dioxide of the storage element. The heat generated by the exothermic
reaction is transferred to the biogas plant via a second storage element in order
to ensure the optimal temperature level for the microorganisms.
This procedure is also known as biogas upgrading as the yield of methane will
increase by additional hydrogen, see [120, 264]. An alternative approach to
raise the amount of methane and thus to reduce carbon dioxide emissions is
discussed by Bensmann et al. [16]. Thereby, hydrogen is fed directly into the
fermenter of the biogas plant in order to raise the methane output.

According to the quality of the organic substrates, the amount of methane and
carbon dioxide can vary, which can influence the operational costs of the plant.
This, in turn, should result in an adaptation of the system operation. The same
applies to the catalytic methanation process, which depends on hydrogen as
raw material and on the electricity price.

organic waste biogas plant methane

electricity electrolyzer + catalytic methanation methane

carbon dioxide
heat

Figure 1.1: Production system consisting of a biological and a catalytic
methanation process for upgrading biogas.
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2. Syngas and hydrogen production. The production system consists
of two processes, where the first one forms primarily syngas (mixture of
carbon monoxide and hydrogen) and the second one hydrogen, as illustrated in
Figure 1.2. The syngas is formed from methane employing a partial oxidation
process (POX) through under-stoichiometric combustion with oxygen. This
highly exothermic reaction produces sufficient heat, which can be supplied
to high-temperature water electrolysis via a storage element. Based on the
higher temperature level at which the electrolysis operates, less voltage and
thus less power are required for the decomposition of water. The raw material
for this second process is again electricity, and the byproduct is oxygen, which
is conducted to a storage element and finally to the POX.
In this example, fluctuations of the electricity or methane price could cause a
change in the optimal production output and, thus, the storage level dynamics.

A combined approach, where the conversion of both processes occurs in one
electrolysis process, is discussed in [261, 155, 143]. Thereby, partial oxidation
takes place on the anode side and hydrogen production on the cathode side.

methane POX syngas

electricity water electrolysis hydrogen

oxygen
heat

Figure 1.2: Production system consisting of a POX and water electrolysis
coupled by two storage elements.

3. Hydrogen cyanide and methane production. An essential raw material
in the industry for many other processes is hydrogen cyanide (HCN), as its
derivatives, such as cyanogen chloride, cyanogen fluoride, or cyanogen halide,
etc., are used for the production of pesticides, dyes, plastics, and pharmaceuticals
[75]. A standard process is the BMA process, in which ammonia as the primary
feed material is converted into HCN utilizing methane at high temperatures and
in an endothermic reaction [149, 150]. Methane, as well as part of the required
heat energy, can be obtained from catalytic methanation that consumes syngas
as primary feed. If the process is sufficiently dimensioned, the produced methane
can support the production of hydrogen cyanide and forms the main product of
the second process. Figure 1.3 illustrates the entire production system, whose
economic characteristics are sensitive to the price of ammonia and syngas. It
is also feasible for syngas that the gas composition, i.e., the ratio of hydrogen
and carbon monoxide, influences the process operation. Compared to the two
previous examples, the processes are only coupled in a mono-directional way.
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ammonia BMA process hydrogen
cyanide

syngas catalytic methanation methane

preheat methane

Figure 1.3: Production system consisting of a BMA and a catalytic methanation
process coupled by two storage elements.

4. Solvay process. This classic process is an example of how the structure
described previously can be identified even in a traditional production system.
The Solvay process is primarily used for the production of sodium carbonate
[49, 22]. However, the resulting waste product calcium chloride can also be
considered as the main product in this framework, as it has several industrial
uses. For example, it is used for deicing in road traffic, for the production of
cooling baths, or dust control, see [124].
The feed for this process is brine (NaCl + H2O) and calcium carbonate.
Figure 1.4 shows a simplified process scheme, in which the individual process
elements are combined so that two sub-processes are formed. The first process
involves the reaction of brine with carbon dioxide and ammonia to form sodium
hydrogen carbonate, which is then further converted to sodium carbonate by
calcination. The byproduct ammonium chloride is fed via a storage element to
the second process, where it reacts with calcium oxide from the lime burning
to recycle the ammonia and produce calcium chloride as the main product.
Besides ammonia, carbon dioxide, produced by converting calcium carbonate
into calcium oxide, is transported via storages to the first process. For a detailed
description of the individual parts, see [111].

brine
1st process

Absorption, Precipitation, Calcination
sodium

carbonate

calcium
carbonate

2nd process
Lime burning, Lime slaking, NH3-recovery

calcium
chloride

ammoniaCO2 +H2O
ammonium chloride

Figure 1.4: Solvay process devided into two sub-processes.

5. Hydrodesulfurization (HDS) and Claus process. In our last example,
we consider a production system whose first process is often used in refineries to
remove organosulfur from petroleum products and natural gas. This is the HDS
process, where hydrogen is applied to purify crude oil at higher temperatures
and pressures by catalytic reaction. For more details about the reaction steps
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and process conditions see [10, 12, 111]. The byproduct of this process is
hydrogen sulfide, which is supplied to the Claus process by a storage element
[198]. In this second process, oxygen is used as a feed to purify the hydrogen
sulfide to pure sulfur. The entire process has a mono-directional process flow,
as can be seen in the scheme shown in Figure 1.5.
The factors determining the economic efficiency and, thus, possibly the process
operation are either the raw material price or the proportion of sulfur compounds
in the crude oil. This means that the oxygen may have to be produced beforehand
by air separation with high energy consumption. Considering the HDS process,
the sulfur fraction of the feed to be desulphurized might vary over time, which
is indicated by fluctuating raw material qualities, as mentioned in the first
example.

sulfur-containing
feed

HDS process desulfurized
feed

oxygen feed Claus process sulfur

hydrogen sulfide

Figure 1.5: Production system consisting of a HDS and a Claus process coupled
by one storage elements.

This thesis considers a generalized and mathematically abstract description,
covering all the previously mentioned production system examples.

1.2 Contributions

This thesis presents several contributions in three fields: The first field concerns
a generic description of the production system, including the dynamic processes
and the economic model. The second topic refers to designing an operational
strategy for a production system consisting of two processes connected by
storages. In the third field, the design of the storages in the presence of this
operational strategy is addressed. In order to illustrate the contributions in
detail, this thesis introduces an example process through which the results of
each chapter are discussed. The contributions presented in Chapters 2-5 are
structured as follows.
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Part I – Description of the Production System

We develop a systematic mathematical description for a generic production
system composed of two processes connected by storages. For this purpose, we
define the production system as a tuple of the dynamic process and storage
systems, the constraints due to downstream processes, and economic criteria for
evaluation. Thus, the system description is generally valid and independent of
a concrete example process. Based on these production system components, we
state properties to characterize the system structure. To assess the production
system profit, we introduce the notion of the feed parameter and propose
feed-parameter-dependent economic objective functions in the form of a hybrid
approach. The benefits of this approach are twofold:

(i) According to their meaning, the individual terms of the function are
economically interpretable: sales, revenue, and operating costs.

(ii) The training of the function is based on uncertain data from rigorous
economic models or the experience of the operators.

Finally, we discuss the dynamic properties of the production system and their
relation to time-dependent scenarios of the feed parameter. This allows us to
evaluate which operational strategy can be employed, and thus, which approach
for the storage design must be chosen in the following chapters.

Part II – Design of the Operational Strategy

We propose the closed-loop static real-time optimization (RTO) with integrated
trajectory generation as an operational strategy for the production system. In
this way, the control law acting on the production system can be considered
during the optimization of the operational points. This approach follows a
similar idea as used by Jamaludin and Swartz [106] for the closed-loop dynamic
RTO. In contrast, here, a static optimization is applied for determining the
operating points. Generally, the concept relies on two assumptions:

(i) static RTO: The economic conditions change with a lower frequency
than the system would need for a load change. Hence one distinguishes
between the transition phase and the stationary production phase in the
processes operation.

(ii) closed-loop behavior: The storages never operate in stationary mode,
which implies constant charging or discharging. Therefore, it is essential
to predict their behavior during load changes.
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The operational strategy follows a two-layer architecture, which is common for
process systems [52, 41]. Contrary to many other approaches [270, 246, 122],
we do not use a model predictive controller to steer the system to the new
operating point or to generate the control signal for it. Instead, we focus on
an inversion-based approach, where the trajectory of the production level is
parameterized, similar to [81].

In its original form, closed-loop static RTO is a bilevel optimization, since the
control system driving the processes has to be integrated during solving. We
show how this optimization can be decoupled into a static RTO and a dynamic
optimal control problem (OCP). This step allows reducing the computational
complexity of the problem and the related calculation times. The decoupling is
based on two aspects.
Firstly, two types of storage constraints are introduced. In the static RTO,
the regulation of the storage rates ensures a restriction on the slope of the
storage level dynamics within the production phase. In the dynamic OCP, the
terminal storage level is constrained to ensure the feasibility of the static RTO
solution. Secondly, the generation of a transition-time map allows transferring
information from the OCP to the static RTO. In this way, the static RTO can
determine the possible length of the transition phase in advance.

The dynamic OCP steers the system to the new operating point in minimum
time by generating a manipulating trajectory. This allows an economically
optimal operation while considering constraints. Since the production phase
requires a stationary production level, we apply a coordinate change of the
process states to formulate the dynamic OCP based on a partially inversed
process model. The generation of an inversed model is often used in control
engineering, see, e.g. [1,2,3], and is related to the concept of differential flatness
[104]. Similar to work [82], we propose a novel setup function to parameterize
the trajectory of the production level. The benefit of this setup function results
from the use of two parameter-dependent terms. Here, each of the individual
terms has a different task, which is given as follows:

(i) 1st term: it guarantees a smooth transition between the two production
levels, whereby the parameters are determined by the relative degree

(ii) 2nd term: it allows adapting the trajectory between these two points,
where the parameters are a degree of freedom for the dynamic OCP

The setup function acts directly on the control law. Thus, the free parameters
must be chosen to satisfy process constraints, e.g., for the inputs and states,
and system constraints, e.g., for economic aspects and downstream processes.
A general advantage of this approach is that the degree of freedom of the setup
function is independent of the discretization accuracy.
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The main contribution in this part is developing a novel static RTO formulation
considering the closed-loop behavior of the production system and unsteady
operating storages.

Part III – Design of the Storage Elements

A common approach in dealing with storages is to control their levels via an
averaging level controller directly, see [99, 168, 209]. Even if this might reduce
the required storage size, it leads to strongly coupled processes. The RTO needs
to consider that coupling, which restricts the choice of operating points and thus
the economic efficiency. Therefore, our approach does not further restrict the
RTO by additional equality constraints requiring a particular level. Instead, we
focus on identifying the required capacities to obtain the best possible results.
For this, we extend the existing concepts of the operational strategy and the
description of the feed parameter by a

(i) relaxed problem of the static RTO as a reference, which neglects the
storage constraints as they are never active if the storages are large enough,

(ii) stochastical-based feed parameter scenarios to describe the change
of economic conditions.

Finally, we propose an approach that uses the relaxed problem to analyze
the feed parameter space and design the storage capacities. The works of
[185, 186, 187] consider a similar case, where two processes are connected by
intermediate storage. Depending on the probability distribution for the input
flow, the probability of an overflow or underflow of the strorages is deduced.
Similarly, we present a method to analyze the evolution of storage levels based on
probability densities for the storage rates. In contrast, here, the densities of the
rates result from the probability density of the feed parameter scenarios. These
are described by piecewise valid Gaussian distributions, which are transferred
via the unscented transformation and the RTO. The storage size is defined as
the confidence interval that contains the storage levels for a given probability
and over a design horizon. The proposed storage design allows us to find suitable
minimum storage sizes to obtain economically optimal dynamic production with
coupled systems.
The main contribution of this part is developing a design strategy for estimating
the average storage capacities for dynamically operated storages.
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1.3 Outline and Structure

This thesis is divided into three parts. Part I Chapter 2 introduces the production
system structure and some notations needed for Part II and III. In Section 2.1,
the system topology is composed of two processes, each forming its main product
while exchanging material and energy flows via storage systems. A general
mathematical framework to define the production system in an abstract way is
introduced in Section 2.2. In this context, we introduce the feed parameter that
characterizes the economic properties of the production system. Furthermore,
we show how the evolution of the storage levels can be derived from the process
variables by calculating the storage rates. One essential component of the
production system is the economic objective function, which depends on the
feed parameter. We provide a method to formulate this function, which is
needed for the operational control strategy and the estimation of the storage
capacities. The time behavior of the feed parameter and the time structure of
the production system, in general, is illustrated in Section 2.3.

Part II Chapters 3 and 4 deal with the proposed operational strategy to
determine the optimal economic production level and generate a trajectory that
steers the system to this level in minimum time. Based on the hierarchical
structure of the system control, this operational strategy addresses the real-
time optimization layer, which is evaluated when feed parameters or selling
prices change. In Section 3.1, we start with a brief overview of the overall
production-system control structure focusing on the real-time optimization
approaches. Since the storage system is directly included in the control policy
of the production system, we introduce in Section 3.2 storage constraints
utilizing the storage rates. We present an optimization problem to determine
the operating point by production levels for each process in Section 3.3. Here,
the transition time, which results for the corresponding level, must be taken
into account. A brief overview of appropriate control strategies is presented in
Section 4.1 to identify a suitable approach for reaching the new operating point.
In Section 4.2, we consider a dynamic optimization problem to parameterize the
control law that steers the system to the new level. A surrogate map provides
the transition time required to optimize the operating point. This map is
generated by an algorithm shown in Section 4.3, which calculates the transition
time for specific changes in the production level and creates a Gaussian process
based on this. Moreover, we discuss the concept of a globally and locally valid
map depending on the production levels and additionally on the system states.

Finally, Part III Chapter 5 focuses on the analysis of storage capacity concerning
the feed parameter. We begin again with a brief review of storages in general
and some design concepts in Section 5.1. Since the design method is based on
real-time optimization for identifying new operating points, in Section 5.2, we
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reformulate this optimization to a relaxed problem, which does not consider
storage rates. Based on the relaxed problem, we show in Section 5.3 how to
estimate the minimum storage capacities. Employing a stochastic description of
the feed parameter scenarios, we present in Section 5.4 a method for estimating
the average storage capacities in addition to the minimum size.

Mathematical Notation

In this thesis we use concepts from differential geometry to describe the
mathematical structure of the system and the control strategy. This includes, in
particular, the terminology of manifolds and bundles and their coordinate-free
representation or their local coordinates. Moreover, we use tensor notation
and the Einstein summation convention throughout this thesis. More precisely,
one writes simplified ωαX

α =
∑n
α=1 ωαX

α. Appendix A.1 gives a detailed
introduction into this topic.
Let B, dim (B) = nb a manifold with local coordinates

(
x1, . . . , xnb

)
or shortly

xα. In general, we assume that B is a bounded subset of Rnb , which allows the
simplified formulation x = x(p) ∈ B for a point p ∈ B. A bundle M π→ B is
given by a total manifoldM, a base manifold B, and surjective projection π.
The map f : B →M is called section if π ◦ f = idB, where idB is the identify
on B. The set of all sections intoM is denoted by Γ (M).
To describe dynamic systems and control techniques, the tangent bundle
T B π→ B and the cotangent bundle T ∗B π→ B are useful concepts, which are the
disjoint unions of tangent spaces TxB and the cotangent spaces T ∗x B over all
x ∈ B. The local coordinates of T B and T ∗B are

(
x1, . . . , xnb , ẋ1, . . . , ẋnb

)
and(

x1, . . . , xnb , ẋ1, . . . , ẋnb

)
respectively. A section f ∈ Γ (T B) is called vector

field. Given a vector field f ∈ Γ (T B), the local representation of a vector
X ∈ TxB is given by X = fα(x) ∂

∂xα , where f
α(x) are the vector components

and ∂
∂xα are the basis vectors. Similary, for a covector field g ∈ Γ (T ∗B), the

local representation of a covector ω ∈ T ∗x B is given by ω = gα(x)dxα, where
gα(x) are the covector components and dxα are the basis vectors.

Remark 1.1. To simplify and reduce the number of variables, we denote
the coordinate function and the point obtained by evaluating the function
synonomously. The meaning should be evident in terms of the application
of the expression. Thus the variable denotes a tuple of real numbers if a function
has to be evaluated at a certain point (e.g. t, x). In the case of a composition
with other functions, the coordinate function is implied (e.g. t, x). This is
illustrated in the diagram in Figure 1.6.
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I

R R

X

Rn Rn

σ

τ t x z

σ(x,t) := x ◦ σ ◦ t−1

σ(z,τ) := z ◦ σ ◦ τ−1

for p ∈ I :

t = t(p),

τ = τ(p),

for q ∈ X :

x = x(q),

z = z(q),

Figure 1.6: Scheme of coordinate functions and coordinate changes.

Furthermore, we will omit the explicit notation of the underlying coordinates,
used to represent a function, if these are the standard coordinates. For instance,
we write simply σ for σ(x,t) such that

σ(t) := σ(x,t)(t) :=
(
x ◦ σ ◦ t−1) (t(p))

The explicit notation of the underlying coordinates are important, when we
consider coordinate changes in Chapter 4.
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Description of the Production
System
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Chapter 2

Production System: Topology,
Model and Objective

2.1 Topology of the Production System

process S1

process S2

B α
1 B β

2

v α
1

w α
1|2

w α
1|1

v β
2

w β
2|1

w β
2|2

u1 c1

u2 c2

Figure 2.1: General topology of the production system.

In general, we consider an entire production system with a structure, as shown
in Figure 2.1. This system consists of two different processes {Si}i=1,2 in which
specific primary feeds ui ∈ R+ are converted into the products ci ∈ R+, i = 1, 2.
The two products of the system serve as a raw material in the downstream
process. The process itself can be composed of different process elements, which
are coupled sequentially or also by recycles. In addition to the products ci, each

16
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S1

S2

B α
1 B β

2

v α
1

w α
1|1

w α
1|2 v β

2

w β
2|1

w β
2|2

Figure 2.2: General graph representation of the production system topology.

process may also generate byproducts v αi ∈ R+, i = 1, 2, α = 1, . . . , ni. The
subscript describes the process the byproduct comes from and the superscript
denotes the number of the byproduct. These byproducts are stored in the
storage systems {Bi}i=1,2 and can be recycled via secondary feeds w α

i|j ∈ R+,
i = 1, 2, j = 1, 2, α = 1, . . . , ni to the individual processes. Here, the subscripts
i and j denotes the process the byproduct comes from and the process where the
stored byproduct is transferred to. The number of storages filled by S1 is n1 and
the number of storages filled by S2 is n2. For a more compact representation of
the process topology, we use a graph as represented in Figure 2.2 [161, 113, 241].

We can summarize the structure of the production system by the adjacency
matrix

A2,1

A1,1 A1,2

A2,2

A =



0 0 v 1
1 . . . v n1

1 0 . . . 0
0 0 0 . . . 0 v 1

2 . . . v n2
2

w 1
1|1 w 1

1|2 0 . . . 0 0 . . . 0
...

... 0 . . . 0 0 . . . 0
w n1

1|1 w n1
1|2 0 . . . 0 0 . . . 0

w 1
2|1 w 1

2|2 0 . . . 0 0 . . . 0
...

... 0 . . . 0 0 . . . 0
w n2

2|1 w n2
2|2 0 . . . 0 0 . . . 0


. (2.1)
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Example 2.1 (Adjacency matrix for two coupled reactors). We consider two
reactor models linked by three storage elements see Figure 2.3. The structure is
given by the adjecency matrix

A =


0 0 v 1

1 v 2
1 0

0 0 0 0 v 1
2

0 w 1
1|2 0 0 0

w 2
1|1 w 2

1|2 0 0 0
w 1

2|1 0 0 0 0


Storage element B 1

1 is charged via a molar flow of process S1 and only discharged
by process S2. Storage element B 2

1 is charged via a heat flow from process S1,
which is supplied to both processes. A molar flow from process S2 charges storage
element B 1

2 and is fed to process S1.

process S1 with feed parameter θ1

process S2 with feed parameter θ2

B11 B12 B21

v 1
1 w 1

1|1 = 0

w 1
1|2

v 2
1 w 2

1|1

w 2
1|2 v 1

2

w 1
2|1

w 1
2|1 = 0

S1

S2

B 1
1 B 2

1 B 1
2

v 1
1

w 1
1|2

v 2
1

w 2
1|1

w 2
1|2

v 1
2

w 1
2|1

graph representation of
the production system

Figure 2.3: Two reactors coupled via three storage elements.

This system topology occurs when two processes complement each other to
increase overall efficiency or yield. However, an important question that arises
is how changes within one process affect the other. This concerns the operating
points of the system and hence the production level and economic efficiency
determined by its profit. In general, two different types of effects on the system
profit can be distinguished. Firstly, the available feed quantity can differ, so
that the corresponding process has to produce less or more product. Secondly,
the price or the quality of the feed may vary so that the corresponding process
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generates the same amount of product, but at higher or lower operational costs.
The following assumption states that we will restrict to the latter case.

Assumption 2.1. The size of the feed reservoir is sufficiently large so that the
required feed quantity can always be guaranteed.

The profit of the system or more precisely its operational costs are subject
to time-dependent fluctuations described by the feed parameter θ ∈ Θ ⊂ R2.
We assume that θ1 is related to the first process and θ2 to the second process,
respectively.

It is required that the entire system always operates at the economic optimum.
This means when θα changes, the operating condition of Sα change, and thus,
the product level cα needs to be adapted. However, since the two processes
are connected via the storage systems B1 and B2, the process operation cannot
be modified independently of each other. Any process modification leads to
variations of the byproducts or the secondary feeds so that the accumulation
within the storage tanks changes. One way to avoid extensive modifications can
be achieved by using intermediate storage tanks before or within the processes
that are used for buffering. At times when the feed parameter has beneficial
properties, the storage tanks are charged or discharged when this results in
higher operating costs. In this way, the quantity of the secondary feed, primary
product and byproduct can be kept bounded.
Another strategy relates to the specific system topology. It is assumed that
each process can be operated in a defined load range, where ci can be set so
that Si operates in the economic optimum according to its feed parameter. In
this context, any change of the storage rate describing the accumulation within
the storage element has to be considered. Since the sizes of B α

i are limited due
to investment costs, accurate planning of the new production level by predicting
the future storage level is crucial. This way, we want to ensure that {Bi}i=1,2
does not impose an additional dynamic on the system apart from changing θ.

2.2 Model of the Production System

So far, we discussed the topology of the system as a combination of the processes
and storage elements. This section deals with the internal mathematical
structure of the production system and thus with the process and storage
models. We rely on a differential geometric representation of the dynamic
system model, similar to the works [223, 224, 222, 133] or [76]. A more general
introduction to this topic can be found in Frankel [72] or Lee [141].
First, we start with the process model, which describes the processing, separation
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pr∗1 (T X i) T X i

Xi × Ui Xi Ci × Vi

W1|i ×W2|i Ci

pr1 ri

pr1

πx,ipr∗1 (πx,i) fi

qi
hi

Figure 2.4: Commutative diagram of the mathematical structure of Si.

and the variation of temperature and pressure levels for certain substances.
Next, we discuss the storage model that allows for the intermediate exchange
of the byproducts. The third part deals with the entire system model that
combines the two process and the storage models and the constraints resulting
from downstream processes. Finally, the economic system objective is presented
to describe the economic framework and to derive an integrated operating
strategy.

2.2.1 Process Model

Each process is considered as a dynamic process on a smooth state manifold
Xi ⊂ Rnx,i , with coordinates x α

i , together with the input manifold Ui ⊂ R,
with coordinate ui called manipulating variable. The vector field fi : Xi ×Ui →
pr∗1 (T X i) is defined as a map into the pullback bundle pr∗1 (T X i)

pr∗1(πx,i)−−−−−−→
Xi ×Ui induced by the projection pr1 : Xi ×Ui → Xi. Figure 2.4 illustrates the
individual spaces by a commutative diagram. The general form of a process
models is given by

ẋ α
i = f α

i (xi, ui) , xi(0) = xi0 (2.2a)

(ci, vi) = ri (xi) , (2.2b)(
w1|i, w2|i

)
= qi (xi, ui) , (2.2c)

0 ≥ si (xi, ui) , (2.2d)

cn,i ∈ Co,i. (2.2e)

Si :
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By fi the process dynamics are described in (2.2a) and we denote the set of all
possible functions fi by Γ

(
pr∗1 (T X i)

)
. In (2.2b) the relation between the state

coordinate xi and the primary product ci and the byproduct vi is described by
a map ri : Xi → Ci × Vi. It maps into the total product space Ci × Vi of the
bundle Ci × Vi

pr1−−→ Ci. The spaces Ci ⊂ R and Vi ⊂ Rni denote the set of all
possible production levels of the primary product and byproducts. In addition,
we can define a map hi : Xi → Ci by hi := pr1 ◦ ri describing the production
level.
The relation between (xi, ui) and the secondary feeds

(
w1|i, w2|i

)
is given by

a map qi : Xi × Ui → W1|i ×W2|i ⊂ Rn1 × Rn2 as presented in (2.2c). The
space W1|i ×W2|i of secondary feeds is of the dimension n1 + n2. From (2.2c)
it follows that the secondary feeds cannot be chosen arbitrarily because they
result from defined production standards. Besides, we consider the map si :
Xi×Ui → Rns,i in the inequality condition (2.2d), such that we restrict Xi×Ui
by a feasible region. Finally, the condition in (2.2e) requires that there is a
nominal production level cn,i ∈ Co,i of the primary product encoded by the
constraints. The set Co,i is the operating area.

Definition 2.1 (Operating Area). Let Si be a process with product manifold
Ci. The submanifold

Co,i := {ξ ∈ Ci | ci ≤ ξ ≤ ci} ⊂ Ci, (2.3)

is called operating area and ci ∈ R and ci ∈ R are the lower and upper production
level.

Furthermore, we introduce a subset of the state manifold Xi that yields operable
production levels by the following definition.

Definition 2.2 (Operating State Area). Let Si be a process with manifolds Xi
and Ci of state variables and the primary product. Moreover, let hi : Xi → Ci be
a map and Co,i be the operating area. The submanifold

Xo,i := preim
hi

(Co,i) , (2.4)

is called operating state area.

Remark 2.1. To make working with indices easier, we use Latin letters (i, j,
etc.) to indicate the process element and Greek letters (α, β, etc.) to indicate
the component of a variable. For instance, xiα describes the coordinate α of the
process i.
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2.2.2 Storage Model

The storage elements are used for the intermediate storage of a certain byproduct
and the supply of a secondary feed stream. For modelling, we do not focus
on specific storage technologies, but instead use a general approach see e.g.
[216, 209]. In order to describe the storage element, we consider the system

˙̀ α
j = v α

j − w α
j|1 − w

α
j|2 , (2.5a)

` αj ∈
[
ζ α
j , D α

j − ζ α
j

]
, (2.5b)

B α
j :


where ` αj is called the storage level. The maximum capacity of the storage B α

j

is given by D α
j ∈ R+

0 and a lower safety boundary by ζ α
j ∈ R+

0 , ζ α
j < D α

j .
While the first index j = 1, 2 describes whether the process S1 or S2 fills the
storage, the second index α = 1, . . . , nj specifies the number of the storage
element.

Remark 2.2. For the sake of simplicity, it is assumed that the minimum
storage level ζ α

j is equal to the minimum distance from the maximum capacity,
as stated in (2.5b).

Considering the storage capacity, we can classify the connection of these
processes by the following definition.

Definition 2.3 (Topological Process Connection). Consider the processes
{Si}i=1,2 and the storage systems {Bj}j=1,2. The processes are called
topologically

(i) disconnected, if D α
j →∞ and ` αj � ζ α

j ,

(ii) weakly connected, if D α
j > ζ α

j and ` αj ∈
[
ζ α
j , D α

j − ζ α
j

]
or

(iii) strongly connected, if D α
j = ζ α

j = 0,

for all elements B α
j .

If the storages are infinitely large and sufficiently filled, changes that occur in
one process do not affect the other, cf. Definition 2.3 (i). The contrary case is if
the storage capacity is zero, i.e., no storage is available, cf. Definition 2.3 (iii).
Any change of the process operation of Si is immediately transferred to the
other process. This is undesirable in many processes, as it causes additional
fluctuations and inefficient operation. Therefore we will not consider the case
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(iii) in this thesis. From Definition 2.3 follows that the storage level should not
be controlled at a constant level since the effect of a constant level is similar to
the case (iii).

2.2.3 Coupling the Models to form the Production System

For a description of the entire system, we have to combine the single processes
S1 and S2 and storage systems B1 and B2 . In addition to the individual models,
we need further structures in order to describe the system from an economic
point of view in a production network. For notational simplicity, we introduce
U := U1 × U2, dimU = 2, X := X1 ×X2, dimX = nx,1 + nx,2 and C := C1 × C2,
dim C = 2 as smooth input, state and primary product manifold of the system.
It is clear from the definition, that the first nx,1 coordinates of X correspond to
the states of S1, where the last nx,2 coordinates belong to S2. The same applies
to the coordinates of U and C. The operating area in (2.3) and the operating
state area in (2.4) can also be extended to C and X by Co := Co,1 × Co,2 and
Xo := preim

h
(Co) where h : X → C, (x) 7→ h(x) :=

(
h1(x1), h2(x2)

)
. For the

nominal production level, it applies that cn := (cn,1, cn,2) ∈ Co. In the same
way, the vector fields for describing the system dynamics can be summarized
by f (x, u) :=

(
f1 (x1, u1) , f2 (x2, u2)

)
. To describe the feasible region of

bothe processes, we define s (x, u) :=
(
s1 (x1, u1) , s2 (x2, u2)

)
. For the sake of

simplicity, we will use u, x and c for the coordinates of U , X and C, respectively.

Considering the primary product c of the system, which is transferred to
downstream processes, the question of its quality arises. This product quality
plays a crucial role in the economic evaluation of the system, as the proceeds
from the sale can be better quantified.

Definition 2.4 (Product Quality). Let X be a state manifold. A map qs :
Xo → (0, 1] is called product quality, if there exist ξ ∈ Xo such that qs(ξ) = 1,
i.e., no quality reduction occurs at this point.

For a given x0 ∈ X with the production level c0 = h(x0), qs(x0) describes how
the sales price has changed compared to other production levels c1 = h(x1) ∈ Co
with c0 6= c1.
In general, two different products are generated by the system, so that the
product quality is usually related to the product of one of the processes {Si}i=1,2.
Furthermore, it is possible to define more than one function qs for a process
to describe the quality of c completely. It should be noted that it is not
excluded that the system can produce a joint product. From this follows that a
downstream process gets c1 + c2 and qs is determined by both processes.
We will denote Q :=

{
qs,1, . . . qs,nq

}
as the set of all quality functions that are
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used to describe the system. Later on, the economic objective for the evaluation
of the system is determined using Q.

In addition to the evaluation of the product quality, it is important to satisfy
constraints resulting from downstream processes. For this purpose we introduce
a function ω : X → Rnω such that the set

Xω :=
{
ξ ∈ X | 0 ≥ ω (ξ)

}
, (2.6)Dp :

{
is a submanifold of X containing all feasible states that yield a primary product
that is admissible for downstream processes. Typical specifications could
be restrictions on the total quantity or composition of the product and the
requirement that the products have to be provided at specific pressures and
temperatures level. In particular, compliance with particular quality standards
prevents excessive fluctuations in the sales price. Contrary to the map s, which
concerns the individual processes, ω describes additional conditions, which
result from the combination of the processes to a production system. Finally,
we can combine the individual parts into one production-system model.

Definition 2.5 (Production System). A production-system model (or short
system) is defined by a 6-tuple P := (S1, S2,B1,B2, Q,Dp) that contains the
process models (2.2), the storage models (2.5), the set Q and the downstream
process constraints (2.6). The augmented system is given by

ẋα = fα (x, u) , (2.7a)

˙̀ α
j = ρ α

j (x, u) , (2.7b)

c = h (x) , (2.7c)

0 ≥ s (x, u) , (2.7d)

0 ≥ ω (x) , (2.7e)

u ∈ U , x ∈ X , ` ∈ D, (2.7f)

c ∈ C, cn ∈ Co (2.7g)

P :


where the storage rates from (2.5a) are

ρ α
j (x, u) =

(
pr2 ◦ rj (xj)

)α
−
(
prj ◦ q1 (x1, u1)

)α − (prj ◦ q2 (x2, u2)
)α (2.8)
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and describe how the storage levels ` αj change over time. The set

D :=
n1∏
α=1

[ζ α
1 , D α

1 − ζ α
1 ]×

n2∏
α=1

[ζ α
2 , D α

2 − ζ α
2 ] . (2.9)

denote the feasible space of the storage levels. Furthermore, we denote the
state and the storage level trajectory by x : R → X and l : R → D. Similarly
c : R→ C denotes the trajectory of the production level.

Based on the nominal production level cn ∈ Co of the production system, we
specify the systems addressed in this thesis by the following definition.

Definition 2.6 (Well Designed Production System). A production system
P with nominal production level cn ∈ Co is well designed if there exists a
ξ ∈ preim

h
(cn) ∩ Xω with qs(ξ) = 1 for all qs ∈ Q.

To ensure that in the following, we only consider systems that do not show
a reduction of the sales price in nominal operation, we pose the following
assumption.

Assumption 2.2. The system P is well designed according to Definition 2.6.

It should be emphasized that the secondary feeds w α
i|j and the byproducts v αi

are not explicitly listed anymore, as they act indirectly on the storage dynamics.
The set D depends on the safety boundary and the capacity of the storage
elements that can be individually defined or estimated, as shown later. In the
following, we can assume w.l.o.g. that ζ αi = 0, as the corresponding safety
margin, is added as an offset to the designed storage capacity.
After defining the system model, we can introduce and discuss some properties
of P that are necessary to assess whether P is suitable for dynamic operation.
By using Definition 2.4, we can analyze the state space in terms of its economic
properties for the system.

Definition 2.7 (Economically Attractive Area). Let P be a production system
with state space X and a set Q of quality functions. The level set Xq :=
{ξ ∈ X | qs(ξ) = 1, ∀qs ∈ Q}, dimXq = nx − nq is denoted as economically
attractive area.

Definition 2.8 (Economically Operable). Let P be a production system with
state space X , operating area Co and a set Q of quality functions. The production
system is called

(i) locally economically operable (lEO), if cn ∈ h (Xq ∩ Xo).

(ii) globally economically operable (gEO), if Co = h (Xq ∩ Xo).
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Definition 2.9 (Economic Process Connection). Let P be a production system
with the two processes {Si}i=1,2 and a set Q of quality functions. The two
processes are called economically disconnected if

∂hα

∂xβ
6= 0 ⇒ ∂qs

∂xβ
= 0, ∀qs ∈ Q,

i.e., product quality and production level, have no joint states, on which they
depend. Conversely, the processes are called economically connected if this is
not the case.

By means of the downstream process constraints Dp in (2.6), we can introduce
further terms.

Definition 2.10 (Compatibility with Downstream Processes). Let P be a
production system with the operating area Co and the set Xω admissible
for downstream process constraints. The production system is called locally
compatible with downstream processes, if Xo ∩ Xω 6= ∅ and globally compatible
with downstream processes, if h (Xo ∩ Xω) = Co .

Definition 2.11 (Economically Compatible). Let P be a production system
with operating area Co, a set Xω and a set Q of quality functions such that the
system is compatible with downstream processes. The production system is called

(i) locally economically compatible (lEC), if cn ∈ h (Xq ∩ Xo ∩ Xω).

(ii) globally economically compatible (gEC), if Co = h (Xq ∩ Xo ∩ Xω).

From Assumption 2.2, it can be concluded that we only consider production
systems that are at least lEC and thus lEO. Figure 2.5 shows various Venn
diagrams to illustrate the concepts of the above definitions. The difference
between the ideas in Definition 2.9 and 2.11 is the consideration of possible
restrictions resulting from downstream processes. This separation results from
the fact that the system can operate as an independent unit or as part of a
more extensive network. However, it should be mentioned that these properties
only apply to the state and product spaces and exclude the input space. Also,
the dynamical properties of P are not addressed. This may result in two
consequences for a change between two production levels where its states lie in
Xq ∩ Xo ∩ Xω. On the one hand, the transition might not be realizable due to
the dynamic system model or the manipulated variables. On the other hand,
the corresponding subset of X is not invariant to the system dynamics. The
previous definitions are purely static properties and neglect dynamic aspects, so
they primarily characterize the phases where the production levels are stationary.
The following example will help us to understand the concept introduced above.
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(a) production system is lEO (b) production system is not lEO

(c) production system is gEO (d) production system is not gEO

(e) production system is lEC (f) production system is not lEC but compatible

(g) production system is gEC (h) production system is not gEC

Figure 2.5: Illustration of the system properties using Venn diagrams, whereby
Xn := preim

h
(cn).
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Example 2.2 (Simple Process). Consider two processes with one storage
element. Within the first process a feed stream is converted to D and E using C as
secondary feed. The primary product of S1 is given by a mixture of D and E. In a
second process, a feedstream is decomposed into F and C, where F is the primary
product of S2 and C is the byproduct that is sent to S1 via a storage element.
The coordinates of the state space X are given by x =

(
p,GD, GE, T,GF, GC),

where the first three coordinates belong to S1 and denote the pressure p and the
molar flow GD and GE of D and E. The last three coordinates belong to S2 and
specify the temperature T and molar flow GF and GC of F and C.
Figure 2.6 illustrates the state and the product space. For better representation,
X has been divided into two parts given by the state spaces of the individual
processes, cf. Figure 2.6 bottom left and right. We start with an operating area
Co defined by the box constraints [c, c] and a nominal production level cn ∈ Co,
see Figure 2.6 top. From that we can determine Xo and the preimage of cn
presented by the blue area and the black line(s), see Figure 2.6 bottom.
In addition, three different product quality functions are formulated. For S1 it is
preferred that the composition S(x) :=

(
GD −GE) (GD)−1 as well as a pressure

level p are set to a certain value so that no reduction of the selling price occurs.
The product qualities can be defined by

qs,1(x) := −a1
(
S(x)− Sd

)2 + 1 and qs,2(x) := −a2
(
p− p2

)2 + 1.

Here, a1, a2 ∈ R+ describes the decline in quality/price and Sd is the composition
number that should be kept constant. In the bottom left part of Figure 2.6, the
subsets with qs,1(x) = 1 and qs,2(x) = 1 are represented by the red vertical plane
and the horizontal plane at p2.
The primary product of S2 has the maximum selling price at the temperature
level T3, such that qs,3(x) := −a3

(
T −T2

)2 + 1, a3 ∈ R+. The subset qs,3(x) = 1
is shown by the red plane in the bottom right part of Figure 2.6. The space Xq
is obtained from the intersection

⋂3
i=1 preim

qs,i

(1).

Since the P is part of a larger production network, downstream processes impose
additional requirements on the primary product c. For instance, the mixture
supplied by S1 should not contain too much D. Processes, which subsequently
use F, further reduce the operating range of S2 by allowing less variation in
production quantity. The yellow area illustrates this subset Xω in the left and
right part in the bottom of Figure 2.6.
The states in Xq ∩ Xω ∩ Xo do not cover the entire operating area Co under the
map h so that the system is not gEC. Nevertheless, the nominal production level
is included in Xq ∩ Xω ∩ Xo so that the system is at least lEC. However, that
only the local property applies results from Xω, so P is gEO.
The three product qualities are determined by the states

(
p,GD, GE, T

)
. The

map h that yields the primary product depends on
(
GD, GE, GF). Using
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c1 := GD +GE

c2 := GF

c 1
n

c 2
n

c1 c1
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c2 Co
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GD

GE
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p

Xq ∩ Xω ∩ Xo

Xω

Xq

Xo

preim
h

(cn)

C

X

×state space of S1 state space of S2

h

Figure 2.6: Illustration of the state and product space of Example 2.2.

Definition 2.9, we can conclude that the two processes are economically connected.
Responsible for this is the composition of the product c1. In case there is
no specification regarding the product composition of S1, the processes are
economically disconnected, which implies a higher degree of freedom when
changing the production levels.
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Example 2.3 (Production System Formed by an AD- and RSR-Process). We
consider a production system consisting of two processes to form the substance
M. Within the process S1, an anaerobic digestion reaction takes place, resulting
in the decomposition of an organic substrate S1 to C and M. The process S2
illustrates a classical reactor-separator-recycle (RSR) process using H from an
upstream process element and C from S1 to form M, too. The C is temporarily
stored in the storage element B 1

1 . The energy generated by the exothermic
reaction is intermediately stored in a second storage element B 1

2 to ensure that
the decomposition in S1 can always proceed in the optimal temperature range.
The feed parameter of S1 describes the quality of the organic substrate and relates
with the production of M. In general, a higher quality causes a higher production
of M while using the same amount of feed. For the RSR-process, we use the
electricity price to parametrize the operating costs, since H is produced via an
upstream process element, the electricity price correlates directly with the price
of input stream of H. A detailed description of the model equations can be found
in Appendix B.1.

Before discussing the dynamic behavior of the production system, we will analyze
some properties of the system where the dynamics and the input are not necessary.
It only concerns the relationship between the states and the production levels, the
product quality and the requirements by downstream processes. These properties
are therefore independent of the specific dynamic model of the system.
First, we analyze the system with respect to its local or global economically
operable, cf. Definition 2.8. In other words, we analyze whether there exists
a state value for all production levels, that makes the product quality equal to
one (gEO) or if this only applies to the nominal level (lEO). We discretized
Co by an equidistant grid with 100 times 100 points, and for each point, we
determined a state employing a feasibility analysis. In this way, the result can
only be approximated, but it can be verified that the system is gEO. Considering
the production level and quality, it is obvious that the processes are economically
connected, see Definition 2.9. This can be seen from the fact that the functions
for the production level and quality have common states on which they depend.
By adding the downstream process constraints in our analysis, it shows that
the system is locally compatible according to Definition 2.10 since the total
production amount is restricted. It follows that the system is only lEC as
described in Definition 2.11 .

Below, we examine how the system behaves during changes in operation resulting
from changing feed parameters. However, no precise operational strategy was
used. Of course, this affects the entire system, both the temporarily intended
stationary operation and the transition between the production levels. In Part
II, we will propose an operational strategy and examine how it performs for the
given scenario.
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Figure 2.7: Illustration of the input-output behavior of the two processes.
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Figure 2.7 shows the input-output behavior of the system, based on the feed
parameter change depicted in the first row left column. Thereby, the feed and
production levels are normalized to the nominal operating point. In general, the
red shaded area in Figure 2.7 indicate the constraints of the system. The change
of the quality factors is displayed in Figure 2.7 first row left column. Starting
from θn, the H price decreases to 80% of its nominal value and the feed quality
increase by 20% due to reduced raw material prices. Before the nominal point
is reached again, the price of H increase to 20% of its nominal value, while the
quality decreases by 15%.
Based on this scenario, the feed signal is modified according to the principle that
higher feed prices (or lower feed qualities) lead to a reduction in process operation
or vice versa. For S1, the feed signal and the corresponding production level
is depicted in Figure 2.7 second row left and right column . The input-output
behavior of S2 is shown in Figure 2.7 fourth row left and right column. The
total production of the coupled process is displayed in Figure 2.7 fifth row left
column, which changes according to the production levels. In the fifth row right
column of Figure 2.7, the evolution of the production quality qs is illustrated. It
is evident that this was not considered for both the production and the transition
phase, as they are violated for certain time spans. For instance, after the second
transition, the stationary product quality violates the constraints (indicated by
the red shaded area).
The processes are connected via the storage system, whose storage level is
displayed in Figure 2.7 third row. This coupling of processes and storages is
illustrated via the black vertical arrows showing byproducts and secondary feeds.
Considering the evolution of storage levels, it can be concluded that the storage
capacity of B 1

1 and B 1
2 are too small, and a minor increase in capacity achieve

an improvement in only one cycle. The storage levels are related to the selected
storage size D0 = (3 kmol, 3 kJ), assuming that the initial level is given by half
of the storage size. In this way, we dispense with modelling the start-up of the
system and consider only the regular operation.
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Figure 2.8: Illustration of the temperature behavior of the two processes.
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Besides the input-output behavior, the process states are also important. In
particular, we look at the reactor temperatures here, since their feasible region is
relatively small compared to the other states, as the red shaded areas in Figure 2.8
show. Due to underlying regulatory systems, which were indirectly included in
the modelling, the reactor temperatures are kept constant during steady-state
operation. During the production transition, temperature changes can occur
if the transitions are implemented too quickly, as can be seen in Figure 2.8
during all process transitions. To avoid these violations, an operational strategy
is required that has to consider the entire system model (process and storage
properties) with its dynamic characteristics. Another essential aspect is the
design of the storage system based on this strategy, as the behavior of the storage
levels is directly influenced from the decisions of a control instance.

2.2.4 Economic Model of the Production System

The need for an economic model of the production system is based on the central
requirement that the system P should always be operated in the economic
optimum, i.e., at maximum profit. For this purpose, we introduce in this section
the profit function F and describe how it can be derived from a data set. We use
the profit as economic criteria for two reasons. Firstly, it connects the system
input, resulting in costs, with the system output resulting in income. The costs
are described by the feed parameter and the income by the production level
and their price. Secondly, it represents a time-varying factor when the feed
parameter and the price are fluctuating over time. Specifically, the profit F of
P is defined as the difference between the proceeds from selling the products c
and the operational costs. Moreover, it depends on the state x ∈ X of the two
processes, the selling price p ∈ R2 and the feed parameter θ ∈ Θ describing the
operational costs.
A standard method to describe the economical objective function, e.g. the
profit, is via a parametric function, see [229, 47, 156, 267]. Depending on the
application and task, different aspects such as yield, sales revenue, energy and
material costs, total annual cost or a combination of these aspects are taken into
account. Pintarič and Kravanja [196] address the problem of which economic
optimization criteria are suitable. As mentioned above, we focus on the profit
of the production system, using the most generic formulation. Even though
revenues are easy to model, operational costs cover various aspects that are more
challenging to represent because they are highly process-specific. A detailed
modelling of operational costs requires a high level of specific knowledge of
the process, cf. [79, 164, 232]. Thus, we will abstain from a purely parametric
approach, since a generic formulation might be too restricted by the choice of
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setup functions. This is especially true if these setup function shall only depend
on the feed parameter θ.

For this reason, we propose a hybrid approach for the objective function
consisting of a parametric and a non-parametric part. The parametric part
describes the proceeds by the selling price, product quality and production level.
The operational costs are modelled by a non-parametric function utilizing a
set F of training data. Thus, the part of the objective function to be learned
can be defined on a smaller subspace (i.e., lower dimension) of the domain
and requires less training points. Specifically, we assume that the operational
cost functions depend only on the production level c and the feed parameter
θ. Instead, the parametric model allows us to extend the domain of F , which
yields a clear benefit.

Various techniques are available for a learning-based approach to operational
costs. For instance, artificial neural networks are a well established technique
to build surrogate models, see [86, 18, 249, 142]. An alternative approach is
the description of the cost by a Gaussian process, see [203]. Both techniques
are based on training data consisting of input values and their corresponding
output values.

Generally, the use of learning-based approaches in the context of optimization
problems mostly concerns the system modeling [131, 151, 129, 160, 189]. Either
the whole model is trained, or a simple first principle model is combined with
an additional term that is trained by learning-based techniques. The resulting
model structure of the latter one is similar to the hybrid approach for the
economic objective function considered in the following. Nevertheless, there are
also works in which the objective function or parts of it are learned directly,
although those do not deal with economic issues. So, in [243], the stage costs
are repeatedly updated with data from another MPC using a more detailed
model and a longer planning horizon to ensure better control performance. In
[14], the stage costs are defined via machine learning techniques. In [210, 25]
the terminal cost are updated in each iteration.
Contrary to the approaches mentioned above, we will use the derived economic
objective function within a static optimization. Besides, it is only trained before
the system is commissioned and then updated at varying times (i.e., when new
data is available). Since we are considering two processes and thus, two different
operational costs, an additional condition will be required besides the set F of
profit data to guarantee a unique economic function. Here, we will exploit the
nominal operating point and clarify how the data needs to be provided. Before
we take a closer look at the training part, the profit function is introduced by
the following definition.
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Definition 2.12 (Profit Function). Let P be a production system with the set
Q of quality functions. Furthermore, let F be a training set. From Q, the
subset Qα is derived, which elements are those quality functions that describe the
product cα of Sα. If there is no quality function related to cα, the subset contains
only the function qs(x) := 1, for all x ∈ X . Let Θ :=

{
ξ ∈ R2 | θ ≤ ξ ≤ θ

}
be

a set of all possible feed parameters of the system. The profit function is defined
by

F :R2 × Co ×Θ×X → R, (p, c, θ, x) 7→ F (p, c, θ, x) ,

where

F (p, c, θ, x) :=
2∑

α=1

(
Pα (pα, cα, x)−Oα (θα, cα)

)
. (2.10)

Here, Pα denotes the proceeds from the sale of the product cα, given by the
parametric approach

Pα (pα, cα, x) := pαcα
∏

qs,i∈Qα

qs,i(x).

The operational costs Oα : Co × Θ → R+, α = 1, 2 will be expressed by an
nonparametric approach specified by F .

The system P is considered as one element in a larger network, so we assume
that the profit information is provided for the entire production system and
not for each process. From Definition 2.12, it can be deduced that only the
operational costs have to be determined from F . These are dependent on
the particular production level c and the feed parameter θ, so that F has to
contain this information as training inputs. The training outputs are given
by the corresponding profit values to be provided at the corresponding inputs
(c, θ). However, it is recommended to choose only those training inputs whose
states x obtain a product quality value of one, as it simplifies. The reason for
this is that we need to derive training points for operating costs Oα from F ,
whereby the value of the product quality must be known. If P is gEO according
to Definition 2.8 there is at least one x ∈ X for each c ∈ Co, which simplifies
the selection of the training inputs and thus the economic analysis. For the
design of F in the sense of Definition 2.12, we rely on the following assumption.

Assumption 2.3. The system P is gEO according to Definition 2.8.

To determine the operational costs of a non-parametric approach using P ,
we propose Gaussian processes (GPs) for Oα that are trained separately.
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Appendix A.2 gives a brief introduction to this topic and describes besides the
application also some properties.
A cruical aspect is to show how the training outputs, i.e., the function values
of F at different points in Co ×Θ, can be used to obtain {Oα}α=1,2. For this
purpose, we assume that there exists a unique point in Co ×Θ where accurate
economic information is available. This leads to the following assumption.
Assumption 2.4. For the system P , with the nominal production level cn ∈ Co,
the nominal profit value F n ∈ R+ is known for a nominal selling price pn ∈ R+.
Furthermore, for P a ratio

rn :=
O1
(
θ 1

n , c 1
n
)

O2
(
θ 2

n , c 2
n
) ∈ R+,

is given, where θn ∈ Θ is called nominal feed parameter.

Besides the nominal point, as indicated in Assumption 2.4, we also need a series
of training inputs u := {u1, . . .} and its corresponding profit values as training
outputs F := {F 1, . . .} from the economic analysis. Since such an analysis may
be subject to uncertainties, this should be considered in F and thus for the
determination of {Oα}α=1,2.
Before describing the structure of the training set, we briefly review the profit
function F . Considering Assumption 2.3 and 2.4, for a given nominal selling
price pn and xq ∈ Xo ∩ Xq, we define a reduced profit function

Fr : Co ×Θ→ R, (c, θ) 7→ Fr (c, θ) := F (pn, c, θ, xq) , (2.11)

which is evaluated for the fixed nominal price pn and state xq ∈ Xq.
Remark 2.3. From Assumption 2.3 it is clear that there exists an x ∈ Xo ∩Xq
for all c ∈ Co. However, it should be noted that the set Xo ∩ Xq does not have
to be invariant with respect to system dynamics.

In order to use F as an economic objective, which allows to achieve an optimal
operational management, the following assumption is made.
Assumption 2.5. Any reduced profit function Fr (·, θ) is concave over Co for
all θ ∈ Θ.

Finally, the set F is defined by specifying its elements.
Definition 2.13 (A Suitable Training Set F ). Let I1 := {1, . . . , nθ,1} and
I2 := {nθ,1 + 1, . . . , nθ,1 + nθ,2} denote two index sets. The set

F :=
{

(u1,F 1) , . . . ,
(
u3nθ,1 ,F 3nθ,1

)
,(

u3nθ,1+1,F 3nθ,1+1
)
, . . . ,

(
u3(nθ,1+nθ,2),F 3(nθ,1+nθ,2)

) }
,
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of training points for the operational costs {Oα}α=1,2 is said to be suitable if
it satisfies the input and output consistency properties. The input consistency
specifies the structure of the training points and is defined by the following
properties:

(i) The training inputs ui ∈ Co ×Θ× R+
0 are given by

u3(i−1)+1 :=
(
c1, c 2

n , θ 1
i , θ

2
n , 0

)
, i ∈ I1, (2.12a)

u3(i−1)+2 :=
(
c 1
i , c

2
n , θ 1

i , θ
2

n , εi
)
, i ∈ I1, (2.12b)

u3(i−1)+3 :=
(
c1, c 2

n , θ 1
i , θ

2
n , 0

)
, i ∈ I1, (2.12c)

for the first 3nθ,1 input points that are related to S1 and

u3(i−1)+1 :=
(
c 1
n , c2, θ 1

n , θ 2
i , 0

)
, i ∈ I2, (2.13a)

u3(i−1)+2 :=
(
c 1
n , c 2

i , θ
2

n , θ 1
i , εi

)
, i ∈ I2, (2.13b)

u3(i−1)+3 :=
(
c 1
n , c2, θ 1

n , θ 2
i , 0

)
, i ∈ I2, (2.13c)

for the last 3nθ,2 input points that are related to S2.

(ii) The training outputs F i ∈ R+ × R+
0 are given by

F 3(i−1)+1 :=
(
F̂ 3(i−1)+1, δ3(i−1)+1

)
, i ∈ I1 ∪ I2,

F 3(i−1)+2 :=
(
F̂ 3(i−1)+2, δ3(i−1)+2

)
, i ∈ I1 ∪ I2,

F 3(i−1)+3 :=
(
F̂ 3(i−1)+3, δ3(i−1)+3

)
, i ∈ I1 ∪ I2.

Here, εi ∈ R+
0 and δi ∈ R+

0 describe the uncertainties of the optimal production
level and the measurements of the profit values F̂ ∈ R+ at the corresponding
production level. Let prc : Co × Θ × R+

0 → Co, (ui) 7→ prc(ui) :=
(
u 1
i ,u

2
i

)
be a projection on the production level. Moreover, let prθ : Co × Θ × R+

0 →
Θ, (ui) 7→ prθ(ui) :=

(
u 3
i ,u

4
i

)
be a projection on the feed parameter. The

output consistency characterize the properties of the objective function at the
training points and is defined by

(i) For cl := prc(ul) and θl := prθ(ul), the function Fr has to satisfy

−F 2
l ≤ Fr (cl, θl)− F 1

l ≤ F
2
l , l = 3(i− 1) + j, i ∈ I1 ∪ I2, j = 1, 3 (2.14)
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(ii) For θl := prθ(ul), the function Fr has to satisfy

−
(
u 5
l , 0

)
≤ arg max

c∈C0

Fr (c, θl)− u 1
l ≤

(
u 5
l , 0

)
, l = 3i− 1, i ∈ I1 (2.15a)

−
(
0,u 5

l

)
≤ arg max

c∈C0

Fr (c, θl)− u 2
l ≤

(
0,u 5

l

)
, l = 3i− 1, i ∈ I2. (2.15b)

(iii) For θl := prθ(ul), the function Fr has to satisfy

−F 2
l ≤ maximize

c∈C0
Fr (c, θl)− F 1

l ≤ F
2
l , l = 3i− 1, i ∈ I1 ∪ I2. (2.16)

Remark 2.4. The training set F includes the nominal points introduced in
Assumption 2.4.

In the following we will discuss the individual aspects of Definition 2.13 to
clarify their importance. The conceptual idea concerns three points:

(i) The two operational costs are independent of from each other, as they
belong to different processes.

(ii) The training outputs refer to the reduced profit function in (2.11) and
thus to the profit values. Hence, the process-specific operational costs
need to be extracted from the overall profit values.

(iii) We assume that the economic analysis be uncertain, so that the profit
values and the optimal production level can only be indicated by safety
ranges.

Figure 2.9 illustrates the different domains, such as Θ and Co and is helpful
to understand the requirements from Definition 2.13. The operating costs of
the individual processes only depend on their production level cα and feed
paramter θα, so the corresponding functions {Oα}α=1,2 can also be trained
individually. To this end we have to choose a fixed and suitable point (i.e., c
and θ coordinates) for one of the processes to train the other. For this purpose,
the nominal operating point is used, as described in Assumption 2.4. Figure 2.9
a) shows the set Θ and the positions of the different training points for the feed
parameter by the green dots. In Figure 2.9 b) the level sets of Fr (·, θn) are
presented by thin black lines, where the optimal production level agrees with
cn. If a change in the feed parameter θα occurs for one of the processes, the
optimal production level shifts due to changing operational costs. This can be
achieved in two ways. Either θα only influences the optimal production level of
Sα, as shown by the green arrow in Figure 2.9 b). Or the optimal production
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Figure 2.9: Principal of the training set F for the profit function.

levels of both processes might be changed, as the red arrow indicates. The latter
situation occurs when the storage levels reach their boundaries or a common
product is produced and the processes are economically connected.
According to (2.12) and (2.13), the three training inputs

{
u3(i−1)+j

}
j=1,2,3,

i ∈ I1 ∪ I2, describe one point in Θ. For one representative point θ1 =(
θ 1

1 , θ 2
n
)
∈ Θ, Figure 2.9 c) and d) illustrate the idea of three training points

{uj}j=1,2,3. Furthermore, Figure 2.9 c) shows the possible level sets of Fr(·, θ1).
However, these are uncertain, as shown in Figure 2.9 d) by the profit curve
over the production level. The uncertainties are expressed by box constraints
at boundaries c1 and c1 as well as for the possible position of the optimum.

To train {Oα}α=1,2, the profit values have to be converted into values for the
operational costs, whereby the defined structure of F is well suited, as we will
show next. In addition, the information about the uncertainties also has to be
included to the operational costs. However, we start with deriving an initial set
for the training process to obtain primary functions

{
O0
α

}
α=1,2. Subsequently,
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we will modify
{
O0
α

}
α=1.2 by iteratively solving an optimization problem to

meet the specifications of the profit function Fr, considering the uncertainties.

The initial training sets
{
O0
α

}
α=1,2 for the operational costs are generated from

F using Assumption 2.4. Algorithm 2.1 describes the procedure to obtain both
sets and also describes the structure of the training inputs and outputs.

Algorithm 2.1: Initial sets to train the Operational Costs
Input: the ratio rn, the nominal selling price pn,
the nominal profit value F n and the set F

1initialize the sets {vi}i=1,2 = ∅, {Oi}i=1,2 = ∅; compute for both processes
2the nominal costs K1 := rnK2 and K2 :=

(∑2
α=1 p

α
n c α

n − F n

)
(1 + rn)−1

3for i ∈ I1 do
4for j = 1, 2, 3 do
5determine the index l← 3(i− 1) + j

6set up the training inputs v1 ←
{
v1,

(
u 1
l ,u

3
l

) }
7and the training outputs O1 ←

{
O1, p

1
n u

1
l + p 2

n c 2
n − F

1
l −K2

}
8end
9end

10for i ∈ I2 do
11for j = 1, 2, 3 do
12determine the index l← 3(i− 1) + j

13set up the training inputs v2 ←
{
v2,

(
u 2
l ,u

4
l

) }
14and the training outputs O2 ←

{
O2, p

2
n u

2
l + p 1

n c 1
n − F

1
l −K1

}
15end
16end

Result: training sets O0
1 :=

{(
v1,1,O1,1

)
, . . . ,

(
v1,3nθ,1 ,O1,3nθ,1

)}
and O0

2 :=
{(
v2,1,O2,1

)
, . . . ,

(
v2,3nθ,2 ,O2,3nθ,2

)}

As mentioned before, the operational costs are obtained by two GPs, where no
prior knowledge about the costs are assumed so that the prior mean function is
set to be zero. A more detailed introduction about GPs is given in Appendix A.2.
Using the training set

{
Ok
α

}
α=1,2 and the hyperparameter hkα := (lα, σf,α, σy,α),

α = 1, 2 we can define the k-th operational cost function

Okα : Co ×Θ→ R+, (c, θ) 7→ Okα (c, θ) := (aα)β (ηvα)β
(
cα, θα

)
, (2.17)
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of the process Sα, where the terms (aα)β := (Lα)βι (Oα)ι and (ηvα)β are specified
in more detail in Appendix A.2. It should be emphazised that the index k
denotes that Okα are obtained by the training set Ok

α and the hyperparameter
hkα. In general, the profit function generated from O0

α and h0
α does not satisfies

the output consistency formulated in Definition 2.13. In particular, the optimal
production levels are not necessarily within the predefined box constraints for
a fixed feed parameter prθ(ul). Hence, it is important to modify O0

α and h0
α

iteratively for both processes. In this context, the reduced k-th profit function

F kr : Co ×Θ→ R,

(c, θ) 7→ F kr (c, θ) := p 1
n c1 + p 2

n c2 −Ok1
(
c1, θ1)−Ok2 (c2, θ2) ,

formed with Ok
α and hkα is used to check whether the output consistency is met

after a finite number of iterations. Considering (2.17), it is easy to see that
there are three ways to adapt the operational costs and thus the profit function.
First, the hyperparameter can be changed, which effects the entire GP and thus
also those areas that already fulfill the output consistency. Second, it is possible
to add virtual training points to the set Ok

α. This additional training data will
cause a local deformation of the cost function. The third option combines the
two ways mentioned before and is proposed here.
To add new virtual training points, it is crucial to know at which feed parameters
they should be located. Therefore, we define the ordered set

Θk
f := {θ ∈ prθ(u) ⊂ Θ | (2.15) and (2.16) are not satified

using F kr and without repetition
}
,

of all feed parameters for which the output consistency is violated. In the same
way, the index sets

{
Ikf,α ⊆ Iα

}
α=1,2 can be generated containing those indices

of the feed parameters, which are elements of Θk
f , related to the individual

process. If Θk
f = ∅, the operating costs are consistent with the requirements of

the profit function. The update of the training set is given by

Ok
α := Ok−1

α ∪ Ôk
α, (2.18)

where

Ôk
α :=

⋃
θl ∈ Θkf ,

θ β 6=α
l

= θ β 6=α
n

(
ĉkα l,θ

α
l , Ô

k

α l

)
.

This means that the training set for deriving Okα consists of points that are
already known and new virtual points summarized in Ôk

α. Based on Ôk
α, the sets
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of the virtual training inputs ĉkα :=
{
ĉkα 1, ĉ

k
α 2, . . .

}
and the corresponding virtual

training outputs Ô
k

α :=
{
Ô
k

α 1, Ô
k

α 2, . . .
}
can be derived. The identification of

these points in combination with suitable hyperparameter hkα can be done by
solving a feasibility problem. However, before we address this problem, it is
useful to discuss some basic aspects.
The conditions (2.15) and (2.16) imply the solving of an optimization problem.
To reduce the complexity of the feasibility problem, this optimization problem
can be reformulated by its first-order optimality conditions. As both processes
are separated, the operational costs and thus the update of Ok

α and hkα will be
done individually, which reduces the complexity of the calculation. In order to
write the feasibility problem in a more compact form, we introduce a further
reduced form of profit function for each process as follows:

1. For a given feed parameter ϑ ∈
[
θ1, θ

1] of S1, let

F kr,1,ϑ :
[
c1, c1

]
→ R, (c) 7→ F kr,1,ϑ (c) := F kr

( (
c, c 2

n
)
,
(
ϑ, θ 2

n
) )
.

2. For a given feed parameter ϑ ∈
[
θ2, θ

2] of S2, let

F kr,2,ϑ :
[
c2, c2

]
→ R, (c) 7→ F kr,2,ϑ (c) := F kr

( (
c 1
n , c

)
,
(
θ 1

n , ϑ
) )
.

These functions describe the profit depending on the production level cα of Sα
trained by Ok

α and hkα. In addition, we define for both processes the ordered
sets

Ciα,< :=
{
cα,
(
ciα,<

)
1 ,
(
ciα,<

)
2 , . . . , c̃α i

}
, i = 1, . . . , nθ,α,

with cα <
(
ciα,<

)
1 < . . . < c̃α i to characterize the ascending branch and

Ciα,> :=
{
c̃α i,

(
ciα,>

)
1 ,
(
ciα,>

)
2 , . . . , c

α
}
, i = 1, . . . , nθ,α,

with c̃α i <
(
ciα,>

)
1 < . . . < cα to characterize the descending branch of the

profit function, cf. Figure 2.9 d). These sets describe a discretization of the
operating area depending on the feed parameter of Sα. Here, c̃α i denotes the
optimal production level of Sα for a given feed parameter ϑi based on F kr,α,ϑi .
Definition 2.13 states a number of criteria for those optimal production levels
that have to be fulfilled by the final profit function. The set of all optimal
production levels for Sα is denoted by c̃α :=

{
c̃α 1, . . . , c̃αnθ,α

}
. Finally, the

feasibility problem for each process in the k-th iteration reads as
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find ĉkα, Ô
k

α, h
k
α, c̃α (2.19a)

subject to

hk
α
≤ hkα ≤ h

k

α (2.19b)

0 = ϑi − prα ◦ prθ (u3i) , ∀i ∈ Ikα, (2.19c)

−F 2
3i−2 ≤ F kr,α,ϑi

(
u α

3i−2
)
− F 1

3i−2 ≤ F
2

3i−2 , ∀i ∈ Ikα, (2.19d)

−F 2
3i ≤ F kr,α,ϑi (u α

3i )− F 1
3i ≤ F

2
3i , ∀i ∈ Ikα, (2.19e)

−F 2
3i−1 ≤ F kr,α,ϑi (c̃α i)− F 1

3i−1 ≤ F
2

3i−1 , ∀i ∈ Ikα (2.19f)

−u 5
3i−1 ≤ c̃α i − u α

3i−1 ≤ u 5
3i−1 , ∀i ∈ Ikα, (2.19g)

0 = ∂1F
k
r,α,ϑi (c̃α i) , ∀i ∈ Ikα, (2.19h)

0 ≤ F kr,α,ϑi
(
cj+1

)
− F kr,α,ϑi

(
cj
)
, ∀i ∈ Ikα,

∀cj , cj+1 ∈ Ciα,<, (2.19i)

0 ≤ F kr,α,ϑi
(
cj
)
− F kr,α,ϑi

(
cj+1

)
, ∀i ∈ Ikα,

∀cj , cj+1 ∈ Ciα,>, (2.19j)

where Ikα ⊆ Iα is an index set of those feed parameters used for the update. The
objective (2.19a) of this problem is to identify feasible virtual training points and
hyperparameter, so that the profit function satisfies the output consistency. In
this context, suitable optimal production levels have also to be determined. The
constraint (2.19b) is used to keep the hyperparameter in a predefined area given
by a lower and upper bound. Using (2.19c), the corresponding feed parameter
ϑi is extracted, which describes the cross-sectional plane of the profit function,
which is further specified by the additional constraints. The constraints (2.19d)
and (2.19e) describe the output consistency (2.14) at the lower and the upper
bound of the operating area of Sα. To ensure that the optimal production level
and its profit value lies within the predefined area, we use (2.19f) and (2.19g).
Moreover, the derivative at the optimal production level has to be zero, which
is guaranteed by (2.19h). Finally, the monotony of F kr,α,· is included by (2.19i)
and (2.19j).

The feasibility problem (2.19) for updating the cost function has to be solved
iteratively. For this it is necessary to determine which subset Ikα is used and
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hence which feed parameters are considered in each iteration step. If the entire
index set Iα is used and the problem is feasible, the algorithm terminates after
one step. However, if the problem is not feasible, we propose to restrict Ikα only
to those feed parameters that violate the output consistency. This means in
particular Ikα := Ikf,α. In this way, the problem usually has to be solved several
times, but improves the feasibility of the solution. A suitable termination criteria
results from the set Θk

f and the requirement that this has to be empty. The
following algorithm summarizes the individual points and allows to determine
the final profit function.

Algorithm 2.2: Final profit function
Input: the initial hyperparameter h0

α and training set
{
Ok
α

}
α=1,2

1for α = 1, 2 do
2set index k := 1 and generate the sets Θk

f and Ikf,α
3while Ikf,α 6= ∅ do
4update the set Ok

α according to (2.18) and build F kr using hkα
5initialize s := 1
6while Ikf,α 6= ∅ and s < 10 do
7determine boundaries hk

α
← h0

α − 0.1s h0
α; h

k

α ← h0
α + 0.1s h0

α

8solve feasibility Problem (2.19) and generate Θk
f and Ikf,α

9update s← s+ 1
10end
11set the index k ← k + 1
12end
13end

Result: the final training set O∞α := Ok
α and

hyperparameter h∞α := hkα for both processes

The result of Algorithm 2.2 are the final training set and hyperparameter that
are used to generate the final operational cost functions {Oα}α=1,2 and the
final profit function F . It should be noted that in the Algorithm 2.2 we first
propose a stepwise increase of the hyperparameter range before adding new
virtual training points. This avoids redundant local deformations of the GPs.

Example 2.4 (Economy of a Coupled AD- and RSR-Process (2.3 continued)).
After we have discussed the production system and their dynamic behavior, we
introduce the economic objective function, which combines the feed parameters
with the economic aspects of the system. As described in Appendix B.1, the
two feed parameters represent the raw material prices, where for S1, we express
this by the substrate quality. In general, the modelling of the profit function of
the system follows the principle that a higher feed price (or lower feed quality)
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causes an increase in operating costs. This means that the maximum possible
profit can only be achieved at a lower production level or vice versa for lower
feed prices.
Based on a given economic analysis of the production system, areas for each
process are identified through which the profit function passes for five different
feed parameter values.
In Figure 2.10 these areas are represented by the green rectangle for optimal
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Figure 2.10: Illustration of the cutting planes for that we have economic
information.
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profit and at the boundaries by the green intervals. These areas indicate that the
information on the profit function is described by uncertain data. However, the
nominal feed parameter value is an exception to this rule, since the maximum
profit value and the corresponding production level are known precisely. It should
be noted that the data shown are normalized to the nominal profit value, which
allows a better initial guess of the hyperparameter values for the training of the
function. Due to the specifications of the feed parameters used for training, the
domain of the economic objective around the nominal operating point is also
defined. For process S1, the admissible feed parameters (substrate quality) are
given by θ1 ∈ [1.5, 2.5], see Figure 2.10 left side. Based on the data on the right
side in Figure 2.10, the admissible feed parameters (price for H) for S2 are
given by θ2 ∈ [0.75, 1.25]. Hence, the space of the feed parameters is defined by
Θ :=

{
ξ ∈ R2 | (1.5, 0.75) ≤ ξ ≤ (2.5, 1.25)

}
.

It is easy to see that with increasing quality, the profit rises and also the aspired
production level. Conversely, a lower price for H causes a higher production
level and a higher profit value. The data is given in a way that if one parameter
value is changed, the other one will remain at the nominal point. This procedure
is admissible since, for the corresponding data points, states can be identified,
which would not reduce the product quality to less than 1.
Figure 2.10 also shows the curve of the trained profit function within these
cutting-planes. It can be seen that the optimal production levels (blue rectangles)
are always within the specified admissible regions. Furthermore, the individual
curves are increasing from the lower production bound to the optimum and
decreasing up to the upper production bound. For the final objective function,
we additionally include the weighting of the sales price by the product quality qs
introduced in Appendix B.1.

2.3 Time Horizon and Time-Dependent Feed Pa-
rameter

In the last section we discussed in detail the model structure and the interaction
of the process and storage elements from an economic point of view. From the
fact that the feed parameter θ and thus the operational costs can change
arbitrarily and the system should be operated constantly in an economic
optimum, it can be concluded that the production level c needs to be adapted as
well. This adaptation is caused by a variation of the primary feed u realized by
an integrated operational strategy. In this context, the system P and the profit
function F play an important role. Moreover, it is important to ensure that the
unsteady operated storage systems are not charged or discharged beyond their
boundaries. In order to derive such an operational strategy and also to use this
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strategy to estimate the storage size, it is essential to structure the time horizon
more precisely.

As mentioned above, a trigger for modifying the production level is a change
of θ due to its effect on operational costs as introduced in Section 2.2.4. For
this reason, we characterize the time dependency of the feed parameter by the
following definition.

Definition 2.14 (Scenarios and Time-Dependent Feed Parameter). Let Θ be the
space of all feed parameter. For a finite nθ ∈ N, we introduce a feed-parameter
scenrio as a piecewise constant function

θ : R+
0 → Θ, (t) 7→ θ(t) :=

nθ∑
k=0

θ̂k 1Tθk(t). (2.20)

Here, θ̂k ∈ Θ denotes a realization of the feed parameter and

1Tθk(t) :=
{

1 if t ∈ Tθk
0 if t /∈ Tθk

is the indicator function, where the time horizon Tθk := [tk, tk+1) describes a
time period in which the feed parameter is constant. The set of all scenarios is
denoted with Θ.

It follows from the definition that a scenario is uniquely defined by the tuples θ̂
and Tθ of the feed parameter values and its corresponding time horizons. For the
components of Tθ it applies that they are pairwise disjoint Tθk∩Tθl = ∅, for k 6= l.
Furthermore, we introduce the function l : (Tθk) 7→ l (Tθk) := tk+1 − tk =: ∆θtk
to measure the length of the time horizons Tθk, which motivates for definition
of the following operators

mint (θ) := min l (Tθk) and maxt (θ) := max l (Tθk) ,

to determine the lower and upper bound of the time length. Of particular
importance for our further studies are those scenarios which are restricted by a
lower and an upper time length ∆θt ∈ R+ and ∆θt ∈ R+. This means we only
consider those θ ∈ Θ where the following holds:

mint (θ) ≥ ∆θt and maxt (θ) ≤ ∆θt. (2.21)

The aim is to identify ∆θt and ∆θt based on the operational strategy and the
storage size estimation that are yet to be developed.

Using the definition of the scenario θ and the dynamic properties of the system
P , the time horizons Tθk can be more structured. To illustrate the following
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Figure 2.11: Structure of the time horizon and connection between time-related
parameters.

statements about the structure of the time horizon, Figure 2.11 is used. The
time horizons Tθk can be split into the

transition phase: [tk, tk + Tk) ,
and the production phase: [tk + Tk, tk+1) ,

where Tk denote the length of the time span that is required to realize the
transition of the production level as illustrated by the blue area in Figure 2.11.
The duration of the production phase results naturally from ∆stk := ∆θtk − Tk,
cf. the grey area in Figure 2.11. This structure is based on the following idea. If
we assume that the feed parameter θ changes at any time during the production
phase, a new production level has to be determined first by an operation strategy.
Subsequently, a suitable control signal needs to be implemented to achieve the
production change.
The length Tk of the transition phase depends directly on the production level
change δc of the system P and thus on the transition times of the individual
processes Si. The following definitions introduce the concept of the transition
time for an admissible change of the production level.

Definition 2.15 (Admissible Change of the Production Level). Given is the
operating area Co. A production level change δc ∈ ∆c is called admissible, if for
a given c ∈ Co it holds that c + δc ∈ Co. The set of all admissible changes is
denoted by ∆c :=

{
ξ ∈ R2 | c+ ξ ∈ Co

}
.
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Definition 2.16 (Transition Time). Let P be a production system and δc ∈
∆h(x0) an admissible change of the production level from an initial state x0 ∈ Xo.
The transition time T ∗ for a given (x0, δc) defined by

T ∗ := arg min
tf ,k

tf (2.22a)

subject to ẋ α(t) = fα
(

x (t),k
(

x (t), t
))
, (2.22b)

0 = x (0)− x0, (2.22c)

0 = fα
(

x (tf),k
(

x (tf), tf
))
, (2.22d)

0 = h (x0) + δc− h
(

x (tf)
)
, (2.22e)

0 ≥ s
(

x (t),k
(

x (t), t
))
, (2.22f)

0 ≥ ω
(

x (t)
)
, (2.22g)

where x is the state trajectory achieved by the control law k : [0, tf ]×X → U .

The motivation of Definition 2.16 results from the fact that P works in an
economic optimum only in the production phase, where the production level
correlates with the feed parameter. Hence, the new production level h (x0) + δc
has to be reached as fast as possible and then remain constant, which is specified
by (2.22d) and (2.22e). In addition, a stationary operation is also preferred for
safety reasons, and in fact, any transition is an expensive intervention in the
production system operation and should be carefully examined. This leads to
the proposition that a transition should only occur if the production phase is
maintained for at least the time ∆s, see also Figure 2.11. Using Definition 2.16,
we can define a map that yields the transition time for a given configuration
of the system state. Definition 2.16 allows a more precise description of the
restriction of the scenario space Θ by a lower bound ∆θt. For this purpose we
introduce the concept of the transition-time map by

Te
t : Xe → R+, (x) 7→ Te

t(x) := T ∗, (2.23)

where T ∗ is given by the solution of Problem (2.22) and

Xe :=
{

(ξ, ς) ∈ Xo ×∆h(ξ)
}
.

It should be noted that the components of Xe are not independent as the
planned change δc of the production level has to be valid for the particular
state x, from which a change in production occurs.
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Assumption 2.6. For all x ∈ Xe there exists a unique solution of
Problem (2.22), which guarantees the well-definedness of Te

t .

Considering the definition of Te
t , it is clear that a dynamic optimization problem

has to be solved, where the state coordinates at the beginning of the transition
have to be priori known. This might be a drawback if the transition time is
applied within a static optimization. Furthermore, in Section 3.3 we will use a
local surrogate model of Te

t , since the change in production is based on a fixed
initial production level from which the transition occurs. Consequently, only
admissible changes are considered, so that we introduce for a given x0 ∈ Xo the
local surrogate transition-time map

T̃t,h(x0) : ∆h(x0) → R+, (2.24)

which is derived from (2.23) and yields the transition time. Section 4.3 describes
in more detail how Te

t and thus T̃t,· are generated using a certain control law.
Moreover, we discuss a condition which allows to formulate the transition-
time map for the whole operating area, whereby the states are only used as
parameters.
The map Te

t can be used for an explicit description of the lower bound ∆θt and
thus a restriction of the scenario space Θ. In this way, the set Θ of admissible
scenarios for the economic description of P is related to the underlying control
concept.

The upper bound ∆θt (see Figure 2.11) is related to the storage size and will
be analyzed in more detail in Section 5.4. The reason for this connection is
the unsteady behavior of the storage elements caused by frequent charging and
discharging. For instance, if θ does not change in the time span ∆tk, it follows
that the storage elements will be either empty or full at a certain time point.
If this time is reached before θ has changed, the process conditions have to be
reevaluated so that a less optimal production level has to be set.

Assumption 2.7. A change of the production level is only triggered by a change
of the feed parameter θ.

To satisfy Assumption 2.7, we have to predict the storage level ` for the transition
and production phase, while determining the new production level. Here, the
upper bound ∆θt has to be considered as well as the storage size D. Therefore,
it would be useful to relate both variables.

Example 2.5 (Scenario for a coupled AD- and RSR-process (2.4 continued)).
For a detailed analysis of the operational strategy to be developed, we consider
a random scenario. From the economic analysis, we have already specified Θ.
Besides, we state that the length of the time horizons has to lie within the
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interval [500, 1800] min. That means, if a change of θ occurs, it is necessary
to ensure that the corresponding value is maintained for at least 500min and
not longer than 1800min. The minimum length guarantees that the transition
phase will be completed, and the subsequent production phase will continue for
a specific time period. To determine the lower bound, the dynamic properties of
the system need to be analyzed using a concrete control law.
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Figure 2.12: Scenario for the production system.

Figure 2.12 shows a concrete scenario based on the one used in Example 2.3.
The tuple of the feed parameter values to be realized and the corresponding time
horizons are defined as follows

θ̂ =
(
(2.4, 0.8) , (1.7, 1.2) , (2.0, 1.0)

)
, (2.25a)

Tθ =
(
[0, 600) , [600, 1100) , [1100, 2000)

)
. (2.25b)

The scenario is closed, i.e., the individual feed parameters are repeated after
particular time intervals. It should be noted that this is only a snapshot
of the scenario and that the feed parameters may change further beyond the
considered time horizon. The scenario presented here is revisited and extended
in Section 5.4.

2.4 Summary of Part I and Motivation for an
Operational Strategy

In this chapter, we discussed the topology, model, and structure of the time
horizon of the considered production system. Accordingly, we consider two
processes that produce different primary products from different raw materials.
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These processes are weakly connected according to Definition 2.3 via storage
systems, which allows an exchange of material and energy flows. The storage
elements are always operated unsteadily over the entire time. This gives us
certain flexibility in modifying the production levels, but at the same time,
the change in the storage levels has to be considered as part of an integrated
operational strategy. In addition to the system model, we also discussed the
economic model to describe the system’s profit based on changing operational
costs due to a time-dependent feed parameter.

Using this information, we can tackle the objective of developing an integrated
operational strategy from Chapter 1. This strategy aims to control production
levels based on economic aspects. In this context, the operational strategy
follows a twofold objective. Firstly, if the feed parameter changes, the production
level needs to be changed to ensure that the system operates at the economic
optimum. Here, a variety of constraints have to be considered, e.g. the unsteady
operation of the storage elements and their size. The result of this part directly
influences the production phase. Secondly, a control signal needs to be derived
that allows the system to move to the new production level as fast as possible.
Here it is essential to know precisely where the new production levels are located.
This part of the operational strategy relates to the transition phase.

Problem 2.1 (Integrated Operational Strategy). Let P be a production system
and F be a profit function that describes the economics of the system. An
integrated operational strategy is divided into two sections:

(i) Production Level Optimization: Design a map

Pe
c : Xo ×Θ×D → Co

that determines the new setpoint cs for the production level for the next
production phase, such that the profit F is maximized.

(ii) Production Level Transition: Design a control law

Kex : R×X → U

that steers the production level of the system P to the new setpoint cs.

Remark 2.5. From Problem 2.1, the production phase can be defined as the time
horizon where the setpoint cs is constant. The transition phase is characterized
by a time-dependent reference to cs.
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Chapter 3

Production Level
Optimization

In the previous chapter, we introduced the structure of the production system
and all crucial components. Furthermore, the problem of the operation strategy
was introduced formally. This chapter addresses the problem of identification
of new production levels defined in Problem 2.1 (i). Section 3.1 gives a brief
overview about the hierarchical structure of the production system control. In
Section 3.2, we introduce the storage constraints that allow us to predict and
evaluate the unsteady behavior during the production phase. We describe the
S-RTO problem in Section 3.3 and define some maps used in Chapter 5 to
address the storage design.

Remark 3.1. The problem of determining an optimal production level discussed
in this chapter must be valid for all time horizons [tk, tk+1). Therefore, w.l.o.g.,
it is assumed in this section that tk = 0. In addition, we also omit the explicit
notation of the k-th time horizon.

3.1 Brief Review of Hierarchical Production Sys-
tem Control

Modern chemical production systems and process networks are characterized by
a hierarchical structure of their operational and control management, which is
made up of different layers, cf. [68, 202, 235, 41]. These individual layers address
different tasks on different time horizons. Figure 3.1 shows a typical layout

54
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production system + regulatory control
(seconds)

supervisory control layer
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upper layer: S-RTO
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manipulating
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Figure 3.1: Schematic sketch of the hierarchical control structure of a production
system.

for such an operational management system. On the planning layer, long-term
decisions are made regarding the questions of what should be produced and how.
These human-based considerations include economic forecasts regarding future
trends in the development of feedstocks and the markets for products. The
scheduling layer takes into account optimal times at which particular products
are to be produced. It considers logistical aspects regarding the distribution
of raw materials and intermediate products, including storage capacities and
changes in operation mode over extended periods, see [41]. In the following, we
assume that the feedstock, the production system, and the target products are
specified and that the system has to operate continuously.
This thesis focuses on the real-time optimization (RTO) layer, which provides
economic decisions about setpoints of current production levels over hours or
a few days. An underlying supervisory control layer executes these setpoints,
typically employing a model predictive control (MPC). The main idea of an MPC
is that for a given objective, an optimal control problem is repeatedly solved on
a moving horizon. Thereby the input of the system is continuously updated by
comparing current measurements with the predicted system behavior to ensure
different kinds of constraints. For general information regarding MPC, we refer
to [174, 87, 171].
The production system itself has another regulatory layer (such as PI-controllers),
which directly implements decisions of the supervisory layer on the process
elements within seconds. Moreover, this layer provides stability and the rejection
of high-frequency disturbances. However, communication is not only directed
from top to bottom layers. Using measurements and their evaluation, the layers
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above also receive information about the current states and parameters, allowing
them to update the individual models (e.g., system model, secondary conditions,
or economic objectives). For reviews on the hierarchical control structure of
process system, we recommend Tatjewski [245] and Scattolini [217].

From the previous chapter, we can deduce that the RTO regularly receives
updated information on the parameters θ that influence the system economy.
Thus, it is necessary to set new production levels that lead to maximum profit
continuously. Furthermore, we consider an unsteadily operating system, where
the processes are steady-state from a specific point in time, but the storage
systems are not.

A common standard in industry practice is the utilization, as mentioned above,
of an RTO and a supervisory control layer, also known as the two-layer approach,
cf. [42, 52]. The RTO is a nonlinear programming problem (NLP) with an
economic objective function (system profit or operational costs), subject to
a nonlinear steady-state system model and other constraints. The decision
variables are the setpoints for the production levels and their corresponding
states and input variables. In this way, the RTO provides an optimal operating
point for the production system, which needs to be attained by the supervisory
controller. Since production level optimization is a regularly executed static
problem, we will call it Static-RTO (S-RTO) in the following. Engell [52] stated
that a clear advantage of this two-layer structure is separating the two tasks of
identifying the optimal operating point and control towards this point. This
gives reliability and also safety, especially when dealing with large-scale systems,
see [265]. Nevertheless, there are some disadvantages to this approach. For
instance, different system models are valid for the two layers, which can lead
to inconsistencies and, thus, to feasibility and stability problems [265]. In
other words, the nonlinear steady-state model of the S-RTO might conflict
with the dynamic model of the MPC of the supervisory layer, which is often
linear [271, 202, 40]. A further disadvantage in the context of S-RTO is the
requirement that a new operating point can only be determined if the system
has reached the steady-state of the previous point. This might lead to dead
times, in which economically beneficial points cannot be addressed.

In order to solve these challenges, Helbig et al. [97] and Backx et al. [11] proposed
to combine the two optimization problems (S-RTO and MPC) in a single layer
architecture. The control problem is characterized by an economic objective that
has to be solved repeatedly with respect to the nonlinear dynamic system model
and other constraints. In literature, these integrated control structures are
also referred to as economic MPC. These controllers have been investigated in
numerous theoretical studies on performance and stability properties, cf. [95, 2].
In particular, the effects of various constraints, e.g., terminal constraints, are
addressed, and it is examined how they can be modified to obtain specific
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convergence properties, such as in the Lyapunov-based economic MPC. An
overview of economic MPC can be found in Ellis et al. [51] or Faulwasser et al.
[60]. Several applications on process systems have been achieved in recent years
by [218, 148, 80]. Typical applications for economic MPC are processes for which
no optimal steady-state exists that must be maintained for a certain time after
achieving it. Among others, these are batch processes or cyclic processes (e.g.
pressure swing adsorption). The ratio between sampling times has a significant
influence on computational complexity and real-time-feasibility. The former
should be as short as possible for fast disturbance rejection, while the latter
should be as long as possible in order to assess the economic effects, cf. [106, 52].
Since fast sampling and long horizons result in extensive online calculations, a
tradeoff must be found to allow for online implementation. Moreover, Findeisen
and Allgöwer [67] pointed out that for large-scale nonlinear systems with fast
dynamics, the loss of control performance and possibly instability can appear
due to delays caused by long calculation times.

An alternative way to address the drawbacks of S-RTO is the Dynamic RTO
(D-RTO). The main idea here is to reformulate the S-RTO into an economic
MPC but to retain the two-layer architecture. The D-RTO outcome is a
reference trajectory for the production levels and eventually, the manipulating
variables. A tracking MPC subsequently follows these reference trajectories,
cf. [246, 122, 121]. The D-RTO operates at a lower sampling rate than the
controller on the supervisory layer, ensuring a clear separation of tasks on
different time scales, see [270]. Therefore, the D-RTO can follow dynamic
fluctuations over longer time horizons while the tracking MPC can react to
high-frequency disturbances.

Remark 3.2. The two-layer D-RTO structure can be interpreted as a cascade
of an economic MPC and a tracking MPC, see [106]. In the literature, the
exact distinction between D-RTO and economic MPC is not always clear and is
sometimes used synonymously, cf. [59, 204, 60]. In our perspective, the term
D-RTO is valid instead of economic MPC if the following conditions hold:

(i) an economic objective is evaluated,

(ii) a dynamic system model is used for the constraints,

(iii) a reference trajectory is generated for controlled and/or manipulating
variables and

(iv) the reference is applied to the system using a supervisory control layer
(two-layer architecture).
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For the implementation of the D-RTO, Jamaludin and Swartz [106] distinguish
between two more cases. Typically, the D-RTO model has no information about
the control law utilized in the lower supervisory layer. Thus the trajectory
generated in the D-RTO represents an open-loop prediction of the system, see
[270, 182]. In contrast, the approach proposed in Jamaludin and Swartz [106]
considers this controller during the economic optimization process, which means
that the closed-loop behavior is included. More precisely, it is an MPC with
a different prediction horizon than the D-RTO, and as usual with MPC, the
input of the first time step is applied to the production system. In this way, for
each time step of the prediction horizon of the D-RTO, a separate optimization
problem of the MPC has to be solved, which leads to a multilevel dynamic
optimization problem. This problem is reformulated to a single-level MPC
using the KKT optimality conditions. Jamaludin and Swartz [107] continue this
approach and discuss different techniques of reformulation to reduce complexity.
Among other things, a bilevel approach is presented that uses only a single
MPC optimization. Further applications for closed-loop D-RTO are given by
Li and Swartz [145] for distributed MPC systems and by Remigio and Swartz
[206], where it is included in production scheduling decisions.
Using the closed-loop behavior of the system to achieve other goals in terms of
optimization-based problems is quite common, especially for robust control, see
[147]. However, there are also approaches for integrated planning and control
tasks, for example, in Zhuge and Ierapetritou [278], where a multi-parametric
MPC is used.

For a suitable choice of the operational strategy, it is essential to know the
time scales of the disturbances affecting the economy and the transitions of the
system, cf. [97]. We assume that the frequency of the feed parameter change
is lower than the frequeny of transitions between production levels within Co.
Besides, the behavior of the production system at the end of the transition is
necessary to determine the new operating points. This is due to the unsteady
operation of the storage systems, whose behavior needs to be predicted and
taken into account when changing production levels.

Based on these aspects, we propose the closed-loop S-RTO (cl S-RTO) with
integrated trajectory generation. Figure 3.2 illustrates the general setup of this
problem and the decomposition strategy to solve it efficiently. This approach is
a two-layer architecture where the upper layer identifies the optimal operating
point and generates a time-optimal reference trajectories u and c towards the
new production level, cf. Figure 3.2. Thus, the cl S-RTO meets conditions (i),
(iii) and (iv) of Remark 3.2.
Decisive for choosing a new stationary production level by the steady-state
optimization of the S-RTO is the endpoint of the trajectory. It contains
information about the transition time and the position of the storage levels. To
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Figure 3.2: Concept of the closed-loop S-RTO with integrated trajectory
generation.

solve the cl S-RTO, it is necessary to design the controller as an underlying
problem, which requires the integration of the dynamic system model. Hence the
cl S-RTO is a bilevel optimization problem, where the upper-level optimization
is an NLP and the lower-level optimization an OCP, see the left side in the
light blue area of Figure 3.2. This bilevel problem can be decomposed into a
static S-RTO and a dynamic problem for trajectory generation assuming the
following conditions:

(i) The terminal region for the storage levels at the end of the transition is
located around the initial storage levels l α

i (tk),

(ii) The transition time needed for the S-RTO is approximated using a
surrogate model T̃t,· of the transition-time map Te

t .

The right-hand side of Figure 3.2 shows this in the light blue area. We discuss
the trajectory generation in more detail in Chapter 4 so that in the following,
we assume that a surrogate model T̃t,· is available. In the introduction to
Chapter 4, we will also examine the supervisory control layer that implements
the generated trajectory.

Regardless of the specific method used to determine economic operating
points, the RTO layer operates in a two-step approach. This means that
in addition to optimizing the production system, the underlying models are
updated using measurements for accounting for system-model mismatch and
process disturbances, cf. [31, 169]. Chachuat et al. [29] provides an overview of
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adaptation strategies for RTO by discussing and comparing them. We want to
mention only two of these strategies briefly. The first one is the model-parameter
adaptation, where the parameters of the models are usually determined by
the least-squares estimation considering the error between measurements and
predicted outputs, cf. [31, 272, 41]. The second is the modifier adaptation, where
additional terms are used to adjust the constraints and possibly the objective
function. In literature, several examples are presented for such applications, see
[77, 64] or [167].

However, it is a common standard in model adaptation for the S-RTO that
the measurement data must be obtained in steady-state operation to be valid
for stationary models. For this reason, additional mathematical tools are used
to verify if the system is in a steady-state with a specific tolerance utilizing
the measurement data. Many of these are based on statistical methods or the
application of filters, cf. [28, 19]. The approach proposed by [207] is based on
the estimation of rate signals, and the assumption of a certain model structure
consists of states with slow and fast dynamics.
In recent years, an increasing research effort has been made to use also dynamic
data, allowing to minimize delay times while reacting faster to economic changes.
These approaches are usually based on the implementation of observers as in
[170, 135], or on linear ARX system models as presented in [77]. In this context,
Krishnamoorthy et al. [135] propose a hybrid RTO concept, while using an
extended Kalman filter.
In general, observers provide an excellent way to estimate states and parameters
based on noisy and dynamic measurement data. For an excellent overview of
different observer techniques and their properties, see Simon [233]. Without
going into further detail, we suggest an extended or an unscented Kalman filter
[117] for the estimation step of the cl S-RTO, to implement a time-optimal
trajectory.

3.2 Storage Constraints

Following, we derive the storage constraints that are used to separate the two
subproblems of production level optimization and transition in Problem 2.1.
Figure 3.3 shows the evolution of the storage levels ` αi in the transition and
production phase by a thick black solid line. During the transition phase, the
inlet streams v αi and the two outlet streams w α

i|1 and w α
i|2 may vary over

time due to the changing feed u. We assume that the storage level at the end
of the transition satisfies the condition

l α
i (T ∗) ∈ H α

j := [l α
i (0)− δ αi , l α

i (0) + δ αi ] . (3.1)
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Figure 3.3: Illustration of the storage constraints.

These constraints are illustrated in Figure 3.3 via a double headed black arrow
at time T ∗. The storage reserve δ αi of the transition phase indicates the degree
of freedom that the solver of the transition problem has. We will call H the
terminal region of the later discussed transition problem. The length T ∗ of the
transition is obtained from the surrogate model T̃t,· of the transition-time map
Te

t defined in (2.24). Furthermore, we rely on the following assumption.

Assumption 3.1. For given storage elements B α
j , the byproduct streams

v α
j , and the secondary feed streams w α

j|1 and w α
j|2 are constant within the

production phase.

For a given setpoint cs ∈ Co, we can determine the steady state rates %s
α
j ∈ R

of B α
j during the production phase by solving

0 = fα (xs, us) , (3.2a)

0 = h (xs)− cs, (3.2b)

%s
α
j = ρ α

j (xs, us) , (3.2c)

using (2.7b-c) and the steady-state condition of (2.7a). Here, xs denotes the
steady-state achieved by the feed us.

Remark 3.3. It should be noted that (3.2) might have multiple solutions.
However, we consider only a solution that is reachable from the initial production
level by a control law Kex.

Based on Assumption 3.1, we can derive an analytical solution to the storage
level for the production phase using the storage model (2.5). The trajectories
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of the storage levels at time t ∈ [T ∗, t1) are given by

l α
j (t) = l α

j (T ∗) + %s
α
j (t− T ∗), (3.3)

where at time t1 ∈ R the feed parameter changes. The evolution of the storage
level is based on constant rates %s

α
j , as shown in Figure 3.3 from time T ∗.

We can easily determine the time t until the storage levels would reach their
boundaries (red area in Figure 3.3) by using D α

j − ζ α
j or ζ α

j for left hand-
side of (3.3). This time has to be greater than the maximal length ∆θt of a
constant feed parameter to prevent the storage system from causing a change
in the production level, which leads to an economically suboptimal operating
point. This results in a further constraint for optimizing the new production
level, which needs to be satisfied. The main disadvantage here is that a case
distinction has to be made to calculate the time. Depending on whether %s

α
j is

less or greater than zero, the lower or upper bound has to be used. For this
reason, we will avoid a time-based formulation of the storage constraints.

An alternative way to describe this type of constraints is to analyze the storage
rates directly. For this purpose, we consider the rates % α

j ∈ R of the elements
B α
j as real numbers. The stationary rates % α

j for the production phase depend
on the level ` at the end of the transition and the length

∆pt := ∆θt− T ∗ = ∆θt− T̃t,c(0) (δc) ,

of the maximum production phase. They need to be in a closed interval
R[∆pt,`]

α
j
⊂ R. For a given storage sizes D α

j ∈ R+ and level boundaries
ζ α
j ∈ R+ of B α

j , we define the set of all admissible storage rates by

R[∆pt,`]
α
j

:=
{
ξ ∈ R

∣∣∣ % α
j
≤ ξ ≤ % α

j

}
. (3.4)

Here, the lower and upper bounds are defined by

% α
j

:=
ζ α
j − ` αj

∆pt
, and % α

j :=
D α
j − ζ α

j − ` αj
∆pt

. (3.5)

At the end of the transition phase, the storage levels have to be within specified
intervals H α

j according to (3.1). For the set of the rates, it applies that
% α
j ∈ R[∆pt,H]

α
j

where

R[∆pt,H]
α
j

:= R[∆pt,l α
j

(0)+δ α
j ]

α

j
∩ R[∆pt,l α

j
(0)−δ α

j ]
α

j
.

It is easy to see that this set can be rewritten utilizing (3.4) to

R[∆pt,H]
α
j

=
{
ξ ∈ R

∣∣∣ % α
j
≤ ξ ≤ % α

j

}
, (3.6)
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where % α
j

:= ζ α
j −l α

j (0)+δ αj
∆pt

and % α
j := D α

j −ζ
α
j −l α

j (0)−δ αj
∆pt

. In this way, the
storage constraints can be expressed by the rates given by

ρ α
j (x, u) ∈ R[∆pt,H]

α
j
, (3.7)

The concept of storage constraints is motivated by the specification of how the
storage levels will behave during the production phase, where the prediction
horizon determines by the properties of the scenario set Θ. Storage rates or
maximum charging and discharging times can be used to describe the production
level evolution. However, the formulation employing storage rates allows using
the constraints in an RTO framework because the time-based formulation is
not continuously differentiable through the required case distinction. Hence,
we prefer the formulation of the storage constraints by using R[∆pt,`]

α
j

in the
following.

3.3 Static Real-Time Optimization

In the last sections, we discussed the storage constraints utilizing the storage
rates resulting from unsteady operation. For this, we assumed that the map
T̃t,h(x0) is given for the current state x0 ∈ Xo that provides the transition time
for the production system P as stated in Definition 2.16. The storage constraints
allow to predict the behavior of the storage system. Responsible for the storage
level change is the secondary feed and byproduct streams, which are directly
related to the production level. The production levels have to be chosen so that
the economic objective function (2.10) is maximized and the system P always
yields the maximum profit.
In the following, we present the production level optimization as an S-RTO
formulated via a parametric NLP. This NLP has to be solved, whenever the
feed parameter θ causes an economic change.

As mentioned above, the objective F should be at maximum during the
production phase. Throughout the production phase, the two processes operate
in a steady-state, and the storage rates are constant, so the optimization problem
of the production levels is static. For a given state x0 ∈ Xo, feed parameter
θ ∈ Θ and storage level ` ∈ D, the optimization problem to determine the new
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production level reads

Sopl := arg max
c, u, x

F (p, c, θ, x) (3.8a)

subject to 0 = f (x, u) , (3.8b)

0 = c− h(x), (3.8c)

0 ≥ s (x, u) , (3.8d)

0 ≥ ω (x) , (3.8e)

x ∈ X , c ∈ Co, u ∈ U , (3.8f)

ρ α
j (x, u) ∈ R[∆pt,H]

α
j
, (3.8g)

∆pt = ∆θt− T̃t,h(x0)
(
c− h(x0)

)
, (3.8h)

and we call this the S-RTO. In addition to maximizing the profit, it is also
crucial that the solution is stationary since the S-RTO (3.8) determines the
production phase. For this reason, the steady condition (3.8b) is included.
Moreover, we have to ensure the feasibility of the processes by (3.8d) as well as
the downstream process constraints through (3.8e). In (3.8g), H indicates that
the rates also depend on the initial storage level as given in (3.6).
The solution of the S-RTO (3.8) determines the set Sopl :=

{
(cs, us, xs) ∈ Co ×

U × Xo
}
of operating points. For further discussions, the following assumption

is posed.

Assumption 3.2. For all (x0, θ, `) ∈ Xo ×Θ×D, the solution set Sopl is not
empty, which means there always exists a solution of the S-RTO (3.8).

In general, however, the uniqueness of the solution is not guaranteed, as the
system may have several stationary operating points, which might maximize
the profit. To identify a specific operating point o ∈ Sopl and thus a production
level, one has to pick one solution. This choice also depends on the control law
governing the transition. A detailed discussion is provided in Section 4.2, where
the transition time for each feasible solution point is used as a criterion for the
choice.

Figure 3.4 illustrates the result of (3.8) on the operating area Xo within the
state space. Assume that the system is in the state x0 ∈ Xo (see Figure 3.4
middle green branch) during a production phase with the production level
c0 ∈ Co. Solving (3.8) yields the set Sopl, where red circles in Figure 3.4
represent the states of the operating points contained in Sopl. At these states
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pr3 (Sopl), the profit is maximal. The steady states for three production levels
are depicted as white circles in Figure 3.4. The set of all steady states is denoted
by X s

o :=
{
ξ ∈ Xo | ∃u ∈ U , 0 = fα(ξ, u)

}
⊂ Xo and illustrated by the

red and green curves on Xo, where the color represents the different stability
properties. Due to (3.8b) it is clear that for all operating points o ∈ Sopl follows
that pr3(o) ∈ X s

o .

preim
h

(c0)

preim
h

(c1)

preim
h

(c2)

x0

Xo

X s
o

. . . states of Sopl of Problem (3.8)

. . . initial state x0 ∈ Xo

. . . steady state for a given production level c ∈ Co

Figure 3.4: Operating area Xo of the state space and the solution set Sopl.

It is possible to interpret the S-RTO (3.8) as a parametric NLP, where (x0, θ, `) ∈
Xo×Θ×D is a parameter for which the optimization problem has to be solved,
see [13]. After an operating point o ∈ Sopl is chosen, we can define two maps.
The first one is given by

Pe
c : Xo ×Θ×D → Co, (x0, θ, `) 7→ Pe

c (x0, θ, `) := cs (3.9)

and yields the new setpoint of the production level that has to be used for the
next production phase. The second map

Pe
u : Xo ×Θ×D → U , (x0, θ, `) 7→ Pe

u (x0, θ, `) := us (3.10)

allows determining the feed input to this new production value. In addition to
the production level, and the corresponding feed input, the economic profit of
the system is also essential. Therefore we define the additional function

Pe
f : Xo ×Θ×D → R, (x0, θ, `) 7→ Pe

f (x0, θ, `) := F (p, cs, θ, xs) .

Based on Assumption 3.2, it can be concluded that the optimal profit value
is also unique. Utilizing the fact whether the storage constraints are active or
not, the loss of profit can be evaluated with Pe

f , which is used in Chapter 5 for
dimensioning the storage.
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Example 3.1 (S-RTO of a Coupled AD- and RSR-Process (2.5 continued)).
In the following, we will analyze the S-RTO based on the scenario introduced
in Example 2.5 and the economic objective derived in Example 2.4. Compared
to Example 2.3, the S-RTO now ensures that the production levels satisfy the
economic specifications and that all constraints are fulfilled during the stationary
case. We maintain the capacity of the two storage elements from Example 2.3, as
we want to analyze how the same system behaves under an operational strategy
adapted to their conditions. However, to compare if an increase of the capacity
can achieve even better results, we consider a second case. In this relaxed case,
we assume that the storage systems are infinitely large and sufficiently well filled,
as stated in Definition 2.3 (i). In summary, we analyze the cases:

(i) bounded storage capcity: D1 := (3 kmol, 3 kJ) ,

(ii) unbounded storage capcity: D∞ � D1.

It should be noted that the transition-time map used for this simulation is
trained using the control law in Section 4.2 and introduced in Section 4.3.
However, as we have not yet discussed a concrete control law to realize these
transitions, we hide the areas with nonconstant states, inputs, and outputs, in
Figures 3.5 and 3.6. We also abstain from illustrating the temperature evolution,
as this is kept constant at the stationary setpoint during the production phases
by underlying regulatory systems. The transitions of the temperature are not
considered here, as they are only crucial during the transition. We will discuss
these states in Section 4.2.

Figure 3.5 illustrates the input-output behavior of the production system, based
on the scenario of Example 2.5. The feed parameter trajectory in the Θ space is
shown in Figure 3.5 first row left column and the time evolution of the profit
influenced by θ in the first row right column. Additionally, Figure 3.5 shows
the inputs u1 and u2 and production levels c1 and c2 of the two processes in
the second and fourth row. The storage levels ` for the storages connecting the
processes are presented in the third row. In the fifth row of Figure 3.5, the
downstream process constraints (total production and production quality) are
depicted.
As the operating conditions differ in the time span [0, 600] min for the cases (i)
and (ii), this section is analyzed separately in Figure 3.6. The blue area in
Figure 3.5 indicates this. In the diagrams, case (i) is represented by solid grey
lines and case (ii) green dashed lines.

Until t = 0 min, the system is at the nominal operating point. At time t = 0 min,
the feed parameter changes from θn to θ̂1 specified in (2.25a). Subsequently,
the profit value increases due to better conditions, see economic objective in
Figure 3.5 first row right column. However, as there can a better production
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Figure 3.5: Illustration of the input-output behavior of the two processes (grey
solid line for D1) (green dashed line for D∞).
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Figure 3.6: Transition and production phase of a segment of the two processes
(grey solid line for D1) (green dashed line for D∞).
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level at this θ value, the S-RTO needs to redetermine the operating point. This
new point has a profit value close to the previous one, as shown in Figure 3.6
first row right column. Nevertheless, 5 to 7 % of economic improvement can be
achieved. Considering Figure 3.6, one can see a difference between the cases (i)
and (ii) indicated by the solid black and dashed green lines, respectively. The
reason for this is described in more detail using Figure 3.7.

1. transition:

transition phase maximum production phase

0 1800

T ∗ = 63.96 min ∆pt = 1737.21 min

⇓
B 1

1 :

B 1
2 :

H 1
1 := [1000, 2000]

H 1
2 := [1000, 2000]

⇒ R[∆pt,H]
1

1
= [−0.52, 0.52] 3 0.41 6= 1.02 = %∞ 1

1

⇒ R[∆pt,H]
1

2
= [−0.52, 0.52] 3 −0.52 6= −1.11 = %∞ 1

2

Figure 3.7: Storage constraints during the first transition of the production
system.

We start at a storage level that corresponds to half of its capacity. At the end of
the transition phase, the storage levels have to be within H 1

1 and H 1
2 , so the

admissible reserve during the production phase is given by ±900 mol or kJ due
to the safety boundaries ζ α

j of 100 mol or kJ.
If the storage system is infinitely large (case (ii)), the desired production level
yields the rates %∞ α

j as stated in Figure 3.7. The transition time necessary
to reach the new operation point can be calculated using the transition-time
map and is T ∗ = 95.34 min. From this, the time for the maximum production
phase is determined. It follows that the rates for both elements have to be
within [−0.528, 0.528]. However, since the storage capacities are essential in
a real application (case (i)), this production level cannot be achieved. The
operating point, which is finally approached after the first transition, has the
rates % 1

1 = 0.41 and % 1
2 = −0.52 as indicated in Figure 3.7. Thus, the storage

constraints specified by R[∆pt,H]
α
j

in Figure 3.7, and which are imposed by the
corresponding transition time T ∗ = 95.91 min, are fulfilled.
The higher absolute value of the rates for case (ii) can be seen in Figure 3.6
third row by the slope of the storage level (green dashed lines). In general, the
result of the S-RTO behaves as one might expect. Thus a better feed quality(
θ1 > 2

)
and a lower price

(
θ2 < 1

)
yield a higher production level for the first

and the second process.
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2. transition:

transition phase maximum production phase

0 1800

T ∗ = 95.91 min ∆pt = 1701.83 min

⇓
B 1

1 :

B 1
2 :

H 1
1 := [1171, 2171]

H 1
2 := [508, 1508]

⇒ R[∆pt,H]
1

1
= [−0.64, 0.42] 3 −0.64 = −0.67 = %∞ 1

1

⇒ R[∆pt,H]
1

2
= [−0.23, 0.82] 3 0.70 = 0.73 = %∞ 1

2

Figure 3.8: Storage constraints during the second transition of the production
system.

At time t = 600 min the economic circumstances change because of the feed
quality for S1 decreases, and the price for S2 increases. In both cases, this change
goes beyond the nominal feed parameter value. The profit value of the system
falls significantly, as can be seen in Figures 3.5 and 3.6 first row right column.
However, it falls to a different value for cases (i) and (ii) as the production
levels are different at t = 600 min. The S-RTO evaluation shows that profit
can be increased again to a certain extent by modifying the production levels.
This new operating point of the production system leads to a reduced production
output in both processes, as otherwise, the operational costs would be too high.
In Figure 3.8 the details of the second transition are presented. Based on the
evolution of the storage level, the terminal region for this level is also different
at the end of the second transition. For instance, the level of the first element at
t = 600 min is ` 1

1 = 1671 mol. The requirement that the level at the end of the
second transition has to be within H 1

1 := [1171, 2171] yields again restrictions
for the steady-state rate related to the necessary transition time. However, the
operating points for the real and relaxed case deviate only minimal from each
other.
Figure 3.6 illustrates that the storage levels between 800 and 1000 min move
in the opposite direction than before. The first storage element, which was
previously charged, is now discharged, cf. Figure 3.6 third row left column.
The same applies to the second storage element, which was discharged and is
now filled. It is easy to see that the initial storage levels for cases (i) and (ii)
are different at the beginning of the second production phase. There are two
different reasons for this. Firstly, the different rates in the first production phase
are responsible for this effect. Secondly, the different operating points, i.e., the
production levels, lead to a different transition behavior concerning transition
time and storage dynamics. We will discuss the latter in more detail in the next
chapter.
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Finally, at time t = 1100 min, the feed parameter changes again back to the
nominal value. This directly results in a profit benefit illustrated by the vertical
line at t = 1100 min in the objective function shown in Figure 3.6. However,
this benefit can be further improved by the S-RTO. The new production levels c1
and c2 (Figure 3.6 second and fourth row, right column) are the nominal ones,
where the storage rates are close to zero. By examining all state coordinates
xα of the system, we can conclude that these have also returned to their initial
values. If it is generally true that reaching the same production level means
that the system moves to the same point in the state space X , the surrogate
transition-time maps, generated at the individual operating points, can be reused.
We will discuss this aspect in more detail in Section 4.3.

It should be noted that after the first transition phase (indicated by the striped
area enumerated with 1 in Figures 3.5 and 3.6), the operational points for
cases (i) and (ii) are different, but their optimal profit values are close to
each other. For the second and third transition (indicated by the striped area
enumerated with 2 and 3), the operational points for cases (i) and (ii) are almost
identical. This allows the conclusion that the selected scenario storage capacity
is already well-chosen and might need to be increased only marginally. The
classification of the two considered cases motivates an approach to the storage
size estimation discussed in Chapter 5.

So far, we have focused on which level to produce after the feed parameters
change. It is not yet clear whether such a change should also occur. Considering
the first and the third transition, the benefit of a change is only small. The
higher profit might not recoup the transition costs to the new operating point.
To analyze this, we need to know whether the economic objective function is also
valid for the transition.
A further aspect is the unsteady operated storage system. However, if the
transition is not profitable, the storage levels need to be monitored, and it has to
be ensured that they can be operated at current rates.





Chapter 4

Production Level Transition

In the last chapter we introduced the cl S-RTO, which is a bilevel optimization
problem. To solve the problem efficiently, we separated it into a static S-RTO
and a dynamic transition problem. The S-RTO provides a new production level
to which the production system must be steered.
This chapter addresses the problem of the transition to these production levels,
which was defined in Problem 2.1 (ii). Section 4.1 presents a brief overview
about control strategies to steer a system from one operating point to a final
one. In Section 4.2, we derive the trajectory generation based on an inverted
system model using optimization techniques and a particular setup function
to ensure stationarity of the production level. We conclude this section by
discussing the framework of the supervisory control layer. Further, we describe
in Section 4.3 an algorithm to generate the transition-time map that the cl
S-RTO needs in Section 3.3.

Remark 4.1. The transition problem to steer the system to a new production
level discussed in this chapter must be valid for all time horizons [tk, tk+1).
Therefore, w.l.o.g., it is assumed in this section that tk = 0. In addition, we
also omit the explicit notation of the k-th time horizon.

4.1 Brief Review of Setpoint Transition

Following our discussion of the new production level identification in the last
chapter, we will focus on implementing the transition between the old and the
new production level. Specifically, this refers to Problem 2.1 (ii) and to the
trajectory generation part within the cl S-RTO. In Section 3.2 we specified

73
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that the storage levels have to be within H α
j at the end of the transition, as

given by (3.1). It was one of the conditions to decompose the original bilevel
problem of cl S-RTO into two separate problems. This requirement occurs as
an additional constraint, given by a terminal region for the storage level, for the
optimal control problem (OCP) within the trajectory generation. Afterward,
the resulting trajectory can be utilized as a reference for a setpoint tracking
problem, cf. [205].
As mentioned before, the OCP objective is equal to the transition time, which
refers to the classical time-optimal setpoint transition problem, see [8, 188].
The trajectory generation obtains a new setpoint ĉ ∈ Co for the production level
given by the map Pe

c in (3.9) which must be reached in minimal time. Besides
this, we also have information about the feed û ∈ U and the state x̂ ∈ Xo at
this point.

The transition problem is a typical task in control engineering, as it occurs in
many applications, such as robotics, aerospace, or process systems engineering,
as presented by Devasia [43]. For instance, Santos et al. [215] use an offline
planned reference and an MPC framework to track a pilot plant reactor towards
steady state setpoints. In general, we can separate between optimal state and
output transition, see [191, 43, 44]. In the former, the state coordinate is moved
from an initial value x0 ∈ Xo to a final value x (T ) ∈ Xo, where T ∈ R+ is the
transition time. The latter refers to the transition of the output from the initial
value c0 ∈ Co to the final value c(tf) ∈ Co. The two problems are connected since
state transition approaches can be used to achieve output transition. Devasia
[43] stated that if only the output and not the complete state of the system is
considered, the transition time can be reduced.
A particular focus is often on integrating different types of constraints during
the transition process to meet safety regulations or to ensure proper operating
conditions. This is particularly important when minimum transition times are
required, as it can lead to bang-bang solutions, cf. [138, 226]. The associated
abrupt changes in the input signal can lead to higher wear of certain process
elements [276].

In the following, we want to give a brief overview of strategies that can be
exploited to address the trajectory generation in the sense of Problem 2.1 (ii).
We primarily refer to the generation of a trajectory for the production level
and a corresponding signal for the manipulating variable, which provides this
output behavior. In this context, the optimization-based trajectory generation
can be categorized into two different fields. For the first case, the manipulation
variables are the decision variables of an OCP. While solving the OCP, these
variables are modified to meet production-level requirements and other input
and state constraints. The second case considers the time-dependent curve of
the production level as a decision variable, which allows determining the system
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input. To achieve this, we need an inversion of the system model and a suitable
control law.

Path following Before we discuss the individual approaches in more detail,
an alternative method is briefly described. Besides specifying the transition
by a time-dependent curve in Co, it can also be defined by a geometric path,
cf. [231, 94, 56]. This path can be planned under various aspects, such as
low operational costs, low energy consumption, or high energy integration
of individual elements during the production transition. The timing is not
necessarily optimal, determined online by the controller, and independent of
the planning phase. The supervisory layer controller has to ensure that the
path is traversed accurately and as fast as possible, with speed itself being a
degree of freedom. Because no further specifications are made for the transition,
time optimality cannot be guaranteed in general if a path is chosen arbitrarily.
A different path may be traversed faster than another. Hence, we exclude
path planning and following as a method for describing the transition for two
reasons. Firstly, it requires an additional planning step, where a state-dependent
criterion, e.g., the economic objective of the S-RTO, is needed to assess the
transition. Secondly, the path has no information about the transition time
required by the S-RTO, since the minimum transition time specification can only
be considered online by the controller. Typical applications for path following
can be found in robotics, see [256, 252], or for the motion of vehicles, see [154].
Faulwasser et al. [57] discusses this concept also for a fast setpoint change of
a van de Vusse continuous stirred tank reactor (CSTR) in the field of process
engineering.

Without coordinate transformation Let us return to the trajectory generation,
where the information of the transition time is directly included. First of all,
the basic idea is to discretize the continuous system model and parameterize
the manipulating signal, e.g., by a piecewise constant function. The objective
function is the transition time, and the setpoint to be reached is considered by
a constraint for the terminal region for the production level. Consequently, we
consider a fixed time horizon to describe the evolution of the dynamic process.
One classical technique to address this aspect is time scaling, where the unknown
interval [0, T ] is transformed to [0, 1], and the transition time T becomes a
parameter of the system, cf. [173].
Two alternative approaches arise if [0, T ] becomes the time horizon during
discretization, consisting of N ∈ N subintervals with an interval length of
∆tl ∈ R+. In this way, the transition time T = N∆tl can be adjusted either by
the number or the length of the intervals.
Considering a fixed length ∆tl the number N is typically reduced by a bisection
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algorithm, see Van den Broeck [250], Janssens et al. [109]. For this purpose,
a two-layer framework is used, whereby the horizon length described by N is
reduced in the upper layer, while an NLP is solved in the lower layer. The
algorithm reaches a minimal time if the NLP can not guarantee a feasible solution.
Van den Broeck [250] proposes this approach as an online application where
the settling time N is to be minimized from a given current state xnow ∈ Xo
to a reference (x̂, û). The minimization of the number N of time steps to
reach the steady-state of a time-discrete linear time-invariant system with linear
constraints is also discussed in Janssens et al. [110], using a Newton-Raphson
instead of a bisection method.
Another strategy is not to reduce the number N but to minimize the interval
length ∆tl and thus the time to reach the states or production levels at the
intermediate stages. Rösmann et al. [212] uses an approach where the nonlinear
dynamic equation of the system is discretized by an explicit Euler method.
The objective is to minimize ∆tl by modifying the state and input variables
describing the trajectory from the initial to the final value. Using the step size
as a further decision variable allows for contraction and expansion of the control
and state sequence. Rösmann et al. [213] presents an extension of this approach.
Therein, among other things, the lengths of the time intervals between the
discrete points of the trajectory can differ. Verschueren et al. [257] discusses
two different approaches focusing on both the minimization of N and ∆tl. The
first one uses a time-scaled system model, which is discretized using different
length parameters ∆tl,k for each subinterval, and its sum must be minimized.
The second problem considers the minimization of N for time-discrete system
models. It is shown how this mixed-integer optimization can be approximated
by another problem with a fixed horizon N . The objective function of this new
problem considers the weighted sum of the absolute values of the errors between
the final state and the state at the intermediate stages.
A characteristic of these methods is that the original state coordinates of the
system are used resulting from the modeling. Further examples for generating
the trajectory of the manipulating variable while maintaining the coordinates
can be found in [165, 103].

With coordinate transformation An alternative way is to use the inversion
of the system model for trajectory generation. By a specific type of coordinate
transformation, the states are reformulated considering the output and its time
derivatives. A vital system property that we have to account for is differential
flatness. For a general introduction to this topic, we refer to Fliess et al.
[70] or Lévine [144]. In a differentially flat system model, the evolution of
the states and manipulating variables are determined algebraically through
the trajectory of output and their time derivatives. This allows converting
the differential equations of the OCP into a finite-dimensional NLP with an
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appropriate parameterization of c̃ [58]. Moreover, it offers a natural way to
introduce stationarity for the final output value.
Early works where flatness is directly employed are [254, 55, 90]. Flatness
in trajectory generation can be exploited when describing the trajectory of
the production level with setup functions whose parameters are determined
by optimization. For this, the system model and the constraints need to be
expressed by the new coordinates, i.e., by the flat output and its derivatives, cf.
[102]. Several setup functions are proposed in the literature. Van Loock et al.
[253] uses B-Spline to ensure constraint satisfaction not only at the grid points,
where the optimization is performed. Examples for polynomial functions to
describe the flat output are given in [98, 176].

In literature, there are numerous approaches on how such flat outputs can be
determined or constructed. For instance, a possible way to distinguish between
the approaches relates to the duality of input and output variables. Waldherr
and Zeitz [258] determine a new input for a given output, where in [221] or
[225] an algorithm is presented to construct a flat output. For a semi-batch
reactor, Oldenburg and Marquardt [184] has converted the non-flat model to a
differentially flat by manipulating the input structure.

Nevertheless, a large class of process models is either not flat, or a flat output
cannot be identified. In particular, for chemical industrial processes where
large-scale models, with many states and few inputs, are used, flatness is usually
not guaranteed, cf. [184]. Consequently, some state evolution cannot be derived
directly from the evolutions of the output and its time derivatives. This means
that the so-called internal states have to be determined additionally by solving
their differential equations, as discussed in detail in Graichen [81].

Hence, in the following, we assume that the system is not differentially flat.
According to the stability property of their zero dynamics, one can distinguish
between two different classes of systems, see [104, 242, 105]. If these zero
dynamics are unstable at the final steady-state x̂ ∈ Xo during the production
phase, we have to consider this for the controller design.

Remark 4.2. A common term used in this context in the control engineering
literature is minimum-phase or nonminimum-phase systems. However, Zeitz
[275] pointed out that one has to be careful with this distinction, so we will
refrain from using this term.

One of the first approaches for a system inversion with unstable zero dynamics
is presented by Devasia et al. [45] utilizing the input–output normal form and a
predefined reference c̃. However, the disadvantage of this approach is that it
causes a non-causal feedforward control signal because it is defined on [−∞, ∞]
while c̃ is defined on [0, T ], T < ∞. Non-causality is caused by splitting the
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internal dynamics into its stable and unstable parts, which are iteratively solved
forward and backward in time. For linear time-invariant systems, Benosman
and Le Vey [15] proposes to plan the reference c̃, which guarantees a causal
signal by the additional degree of freedom. More precisely, no pre-actuation on
[−∞, 0] is required for the control signal.
The planning of the trajectory c̃ also offers the possibility to consider input
and output constraints. A minimal-time transition problem is addressed in
[194, 195], where single input single output linear systems with stable and
unstable internal dynamics are considered. Here the time required for the
transition is iteratively reduced until the input and/or output constraints
become active for a predefined c̃. Further works on inversion-based control,
especially in the field of linear systems with unstable internal dynamics, can be
found, e.g., in [193, 36, 279, 259, 260, 112, 37]. For nonlinear systems, Graichen
and Zeitz [82] proposed a method to satisfy input and output constraints during
the feedforward design. For this purpose, a system in input–output normal
form is transformed utilizing saturation functions to account for constraints
of the output c̃ and their time derivatives. The transition problem becomes
a two-point boundary value problem where the dimension of the state space
determines the number of parameters of c̃. In this way, the output trajectory is
planned at the same time when designing the feedforward signal. An application
of this strategy to multiple inputs and multiple output systems is discussed in
[81]. This strategy is also successfully implemented on a discretized model of
a tubular reactor with input constraints, see [263]. Furthermore, Käpernick
and Graichen [123] apply the coordinate transformation from [82] to obtain
an unconstrained optimal control problem for a class of nonlinear systems. In
general, the application of a suitable coordinate transformation is a common
technique to solve transition problems, cf. [66] and the reference therein.

Regardless of the coordinate transformation rule to achieve an inversion-based
control design, the setup function is used for the output trajectory. In literature,
several types of functions are listed, which are parameterized by a finite number
of parameters and are determined considering system constraints. While in
[82] or [195] polynomial or cosine-series are used as reference, in [71] Gevrey
functions and in [247] splines are applied to avoid oscillations during setpoint
changes.
The next section will introduce the most important notions to define and solve
the transition problem formally. We focus mainly on coordination change and
provide a control law to determine the feed signal. In particular, we introduce a
new setup function for c̃, which ensures a smooth transition and allows adjusting
the trajectory to the system constraints.
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Xt × U ρ∗(T X t)

C Xt T X t

I T I

h := h ◦ pr2

π x π∗

πXt

πI

pr1 =: ρ k pr2

pr1

f

ΛT ẋ

Figure 4.1: Commutative diagram of the process model.

4.2 Transition Problem for the Production Level

In this section, we address the transition of production levels. In this context,
we use differential geometry to formulate this task mathematically. Furthermore,
the problem of finding a controller to steer the system from an initial production
level to a level desired by the S-RTO is specified. For this, several properties,
including stability, reachability and stationarity, are introduced in a differential
geometric context.

4.2.1 Mathematical Formulation of Transition

Subsequently, we consider the dynamic system (2.7a) and the output
equation (2.7c). For the sake of simplicity, we temporarily ignore all additional
equations in (2.7) and conditions that define the system. This also includes
the dynamical system (2.7b) of the storage system. For the production level
transition, we generate a trajectory by designing a control law that implements
the transition. The following description refers to a differential geometric
representation of the dynamic system model, similar to [223, 224, 222, 133] or
[76]. General information about this topic can be found in the work of Frankel
[72] and Lee [141].

To describe the transition problem and the associated concepts, we use the
geometric structure of the process model shown by the commutative diagram
in Figure 4.1. First, we consider an open subset I ⊂ R of the real numbers
and denote this as time manifold with local coordinate (t). In combination
with the extended state space Xt := I ×X , I forms the bundle (Xt, π, I). Note
that the local coordinates of Xt are given by xt := (t, x) where (t) comes from
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the time manifold and (x) is the standard chart introduced in Section 2.2. A
section x ∈ Γ (Xt) is called extended state trajectory. In addition, the tangential
bundle (T X t, πXt ,Xt) can be constructed for the extended state space Xt. Since
the system is not autonomous, the input manifold U has to be included for a
complete description. For this purpose we introduce the bundles (Xt × U , ρ,Xt)
and the pullback bundle

(
ρ∗ (T X t) ,pr1,Xt × U

)
constructed from it. Similar

as before, the local coordinates of Xt × U are given by ut := (t, x, u). By
definition of a pullback bundle, the total space ρ∗ (T X t) can be expressed as
tangent spaces of Xt attached on Xt × U . Finally, we will denote the sections
k ∈ Γ (Xt × U) and f ∈ Γ

(
ρ∗ (T X t)

)
as state controller and vector field of a

system. Indeed, a map k yields for a given (t, x) an input value u = k(t, x).
The vector field is given by a first-principle model of our system.
Because the considered manifolds I, X and U are equivalent to R, Rnx and R2

the identity map determines coordinate functions. We call these coordinates
the original coordinates to distinguish them from the output coordinates that
are introduced later.

Remark 4.3. To distinguish the chart representation of the trajectory and
controller, we use corresponding indices. For instance, if the original coordinates
are used, we write x(xt,t) or f(ut) . However, to simplify the notation, we omit an
explicit representation when using the original coordinates for the corresponding
functions. Only the expression in the new coordinates is displayed.

Remark 4.4. To simplify the notation of the indices, we agree that t = xt
0 and

xα = xt
α, α = 1, . . . , nx or t = ut

0, xα = ut
α, α = 1, . . . , nx and uβ = ut

nx+β,
β = 1, 2 respectively. In this way, the state trajectory introduced in Section 2.2
can be denoted by x α := xα, α = 1, . . . , nx.

However, it has to be ensured that the introduced objects x, k and f are
compatible, so that the diagram in Figure 4.1 commutes. Thus it has to be
ensured that a vector field f ∈ Γ

(
ρ∗ (T X t)

)
is projectable, which means that

π∗ ◦ pr2 (f) ∈ Γ (T I). In the following, we consider only vector fields that, in
adapted coordinates (ue), have the form

f = ∂t + fα (x, u) ∂xα ,

where fα are given by the dynamical system (2.7a) of the system P . It is easy to
see that f is projectable, as the component of ∂t is one and thus independent of
the state coordinates. Furthermore, a trajectory is valid if its velocity coincides
with the vector field f , where the components of the velocity at time t are given
by ẋα(t) := ∂txα(t). The dynamical system of P is obtained in local coordinates
by

ẋα(t) = (fα ◦ k ◦ x) (t) (4.1)
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Remark 4.5. A trajectory x is also called integral curve, cf. [104].

Remark 4.6. Note that the dynamical system (4.1) on Xt×U is a reformulation
of the System (2.7) of P . This is true as the expanded space Xt×U is constructed
from the original spaces X and U of the system. Also f is generated by using
the vector field in (2.7a). The description given here is only an alternative
formulation.

Before presenting the control concept and the associated transformation rules
used to solve the transition problem, some terminology is introduced, following
Isidori [104] and Sontag [238]. In the following, the concept of reachability is
defined for P .

Definition 4.1 (Reachability). Let P be a production system and let I be a time
interval on which a dynamical system (4.1) is formulated. The equations are
expressed, w.l.o.g., in original coordinates. A state (t0 + T, x2) ∈ Xt, T ∈ R+,
is called reachable on I from the state (t0, x1) ∈ Xt, if there exist a control law
k ∈ Γ (Xt × U) that solves

ẋα(t) = (fα ◦ k ◦ x) (t), (4.2a)

l̇ α
j (t) =

(
ρ α
j ◦ k ◦ x

)
(t), (4.2b)

(t0, x1) = x(t0), (4.2c)

(t0 + T, x2) = x(t0 + T ), (4.2d)

0 = l α
j (t0), (4.2e)

l α
j (t0 + T ) ∈

[
−δ α

j , δ α
j

]
, (4.2f)

0 ≥ (s ◦ k ◦ x) (t), (4.2g)

0 ≥ (ω ◦ x) (t). (4.2h)

This gives rise to a further definition, where the reachability is extended to the
operating area.
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Definition 4.2 (Dynamically Operable). Let P be a production system. The
system is called

(i) locally dynamically operable, if for all c ∈ C̃ ⊂ Co there exists a state
xt ∈ preim

h
(c) ⊆ Xt, that is reachable from all states within Xo and

cn ∈ C̃.

(ii) globally dynamically operable, if for all c ∈ Co there exists a state xt ∈
preim

h
(c) ⊆ Xt, that is reachable from all states within Xo.

Assumption 4.1. The system P is at least local dynamically operable.

Assumption 4.1 guarantees that the result of the S-RTO by (3.9) can be achieved
by a suitable control law. The subset C̃ from Definition 4.2 represents the feasible
production levels of (3.9).
It should be emphasized that Definition 4.1 was formulated for the extended
state space Xt, where time is an explicit state coordinate. In this way, the time
until reaching the new state can be directly included in the definition. For
instance, if x2 ∈ X remains constant, but T is changed, the new state may not
be reachable even if the same point in X should be set.
An additional important concept is asymptotic stability, which is defined below.

Definition 4.3 (Asymptotic Stability). Let P be a production system with vector
field f . For a given control law k ∈ Γ (Xt × U) let xs ∈ X be a steady-state
that solves 0 = (fα ◦ k) (t, xs), α = 1, . . . , nx, ∀t ∈ I. The system is called
asymptotically stable at xs ∈ X if for the trajectory x obtained by solving (4.1)
it holds that

(i) for all ε ∈ R+ there exists a δ ∈ R+ such that x (t0) ∈ Bδ (xs) implies
x (t) ∈ Bε (xs) for all t ≥ t0,

(ii) there exists a ζ ∈ R+ such that for x (t0) ∈ Bζ (xs) follows lim
t→∞

x (t) = xs.

Assumption 4.2. Let P be a production system. For each production level
c ∈ Co, there exist a state x ∈ X that is asymptotically stable.

Assumption 4.2 is valid, as it can be assumed that there exist stabilizing
regulatory controllers at the production system layer, cf. [41] and Figure 3.2 in
Section 3.1.

Remark 4.7. It should be noted that Definition 4.1 and 4.3 are formulated in
original coordinates, but it can be shown that this property is invariant under
a coordinate transformation, see [1]. However, both stability and reachability
depend on the choice of the control law k ∈ Γ (Xt × U).



TRANSITION PROBLEM FOR THE PRODUCTION LEVEL 83

As the system operates at its economic optimum during the production phase,
the production level should be constant at the end of the transition phase. We
will call this a stationary production level, which is introduced in the following
definition.

Definition 4.4 (Stationary Production Level). Let x ∈ Γ (Xt) be a state
trajectory and h ∈ C∞ (Xt × U). A production level cs ∈ C is called stationary
at time T ∈ R+, if it holds that

ẋx(t) (h) = 0, for t ≥ T, (4.3a)

(h ◦ x) (t) = cs, for t ≥ T. (4.3b)

where ẋx(t) ∈ ρ∗ (T X t) is the velocity vector of the trajectory x at time t.

A stationary production level is characterized by a constant system output, even
if the states of the system may vary. This stationarity is formulated by (4.3a),
which describes the time-dependent change of the production level along the
state trajectory as a solution of (4.1).
To conclude this section, we intend to address the transition of production level
the following problem.

Problem 4.1 (Transition problem). Given is a production system P and
two setpoints cs,1, cs,2 ∈ Co within the operating area. Design a control law
k ∈ Γ (Xt × U) that achieves:

(i) The production levels are connected through a smooth curve h ◦ x such
that cs,1 = (h ◦ x) (0) and cs,2 = (h ◦ x) (T ).

(ii) The state x(T ) has to be reachable according to Definition 4.1 from x(0).

(iii) The production level cs,2 has to be stationary according to Definition 4.4
at time T .

(iv) The transition time T ∗ ∈ R+ has to be minimal.

4.2.2 Principle of Coordinate Transformation

Next, we discuss the coordinate change and its effect on the process dynamics.
This allows deriving a method to solve Problem 4.1 efficiently. First, we deal
with the coordinate change in general, before we discuss a specific transformation
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law. For this purpose consider a coordinate transformation of the form

on I : τ = ϕ (t) ,
on Xt : zt := (τ, z) = χ (t, x) =

(
ϕ (t) , ϕ1 (t, x)

)
,

on Xt × U : vt := (τ, z, v) = ψ (t, x, u) =
(
ϕ (t) , ϕ1 (t, x) , ϕ2 (t, x, u)

)
.

In order to express the velocity components in terms of the new coordinates (τ)
and (zt), one can derive the following transformation rule

ẋ α
(zt,τ) = ∂1

(
zt
α ◦ x ◦ τ−1) = ∂1

(
zt
α ◦ xt

−1 ◦ xt ◦ x ◦ t−1 ◦ t ◦ τ−1)
= ∂β

(
zt
α ◦ xt

−1) ∂1
(
xt
β ◦ x ◦ t−1) ∂1

(
t ◦ τ−1)

= ∂xtβχ
α ẋβ ∂τϕ−1 = ∂xtβχ

α ∂τϕ
−1 ẋβ

Remark 4.8. It is important to note that the coordinate function is used in
the equation above and not the coordinate (point within the considered space) as
indicated in Remark 1.1.

The factor ∂xtβχ
α corresponds to the standard transformation rule of vector

components within the tangent space. Whereas, ∂τϕ
−1 results from a

reparametrization of the time manifold and determines the speed at which
x is passed through.

Assumption 4.3. The transformation maps ϕ1 and ϕ2 of the state and input
coordinates are time-independent. Moreover, ϕ2 is also independent of the state
variables.

The motivation of Assumption 4.3 is twofold. First, it ensures that the
new input variables have no dynamical component. Second, one can use
∂xtβχ

α to transform the components of the vector field in the same way
as for the velocity. Finally, we can express (4.1) in new coordinates by
multiplying ∂xtβχ

α and ∂τϕ
−1 on both sides of the equation, which yields

ẋ α
(zt,τ) (τ) =

(
∂xtβχ

α ∂τϕ
−1 fβ ◦ ψ−1 ◦ k(vt,zt) ◦ x(zt,τ)

)
(τ). (4.4)

(I) (II) (III) (IV) (V) (VI)

Let us discuss the individual parts of (4.4) in more detail. The expression
(I) results from the fact that the original system model will be expressed in
different coordinates. By choosing a suitable transformation χ, the transition
problem becomes much easier to solve. We will discuss in the next section a
transformation law with which this can be achieved. The term (II) is obtained
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from a reparametrization of the time domain, which is also called time scaling.
This allows us to consider a fixed time horizon for integrating (4.4). Part
(III) is given by (2.7a) of the original system model introduced in Section 2.2.
The transformation ψ has to be inverted as the vector field of the system
is formulated in the original coordinates. This leads to additional algebraic
equations which must be considered when solving the transition problem. A key
element for the implementation of the transition is the control law in (V). Here
we will present an approach based on a specific class of setup functions. In this
way, the structure of the controller is predefined and only a parameterization has
to be determined. The trajectory in (VI) will be obtained by integrating (4.4)
by state-of-the-art solvers.

Finally, we will introduce the concept of the relative degree, cf. [104, 125], as it
allows the introduction of the output coordinates in the next section. Therefore,
it should be noted that the vector field f can also be interpreted as a map
f : C∞ (Xt × U)→ C∞ (Xt × U).

Definition 4.5 (Relative Degree). Let P be a production system with vector
field f ∈ Γ

(
ρ∗ (T X t)

)
. For a function h ∈ C∞ (Xt × U) it holds that dh ∈

T ∗ (Xt × U) = T ∗ (Xt)⊕ T ∗ (U), where ⊕ means the direct sum of two vector
spaces. Let

(f)0 (h) := h, and (f)i+1 (h) := f
(
(f)i (h)

)
,

be the repeated action of f on a function h. We call r the relative degree of the
system if it holds that

d
(
(f)i (h)

)
∈ T ∗ (Xt) , i = 0, . . . , r − 1, and

d
(
(f)r (h)

)
∈ T ∗ (Xt)⊕ T ∗ (U) .

4.2.3 Inversion-Based Control Law

Once we have introduced the key concepts and formally described the transition
problem, we will now focus on its solution. For this purpose, the applied
coordinate transformations and its effects on the system will be discussed in
detail. First, we consider the time interval. In order to fix the time horizon for
the transition phase, ϕ is chosen as

τ = ϕ(t) := 1
T
t ⇒ t = ϕ−1(τ) = Tτ

It follows that part (II) in (4.4) is given by ∂τϕ−1 = T . In this way, the length
T of the transition phase becomes a parameter that scales the velocity of the
trajectory.
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The coordinate transformation ϕ1 for the system states is motivated by
property (iii) in Problem 4.1. For a more precise and compact description,
we introduce the index sets IX i := {1, . . . , nx,i}, Iini := {1, . . . , nx,i − ri} and
Iex

i := {1, . . . , ri}. Based on the fact that the system is composed of the model
equations of two individual processes, we define

z(i−1)nx,1+α = ϕ
(i−1)nx,1+α

1 (x) := (T f)α−1 (
hi
)

(x), α ∈ Iex
i, (4.5a)

z(i−1)nx,1+ri+β = ϕ
(i−1)nx,1+ri+β

1 (x), β ∈ Iini. (4.5b)

Remark 4.9. Here we have directly used the fact that ∂τϕ−1 = T . In other
words, the coordinate change is defined by the repeated actions of the scaled
vector field on the corresponding output function.

In this way, r1 + r2 coordinates are uniquely defined. The first and (nx,1 + 1)-th
state coincides with the production level of the corresponding processes. The
other states represent the time derivatives of the two production levels. It
follows that the requirement of a stationary production level can be transferred
to the new state coordinates by defining suitable boundary conditions. We will
call the coordinates in (4.5a) external states.
However, there is still the question of how to select the remaining nx − r1 − r2
coordinates. A necessary condition for this choice is that ϕ1 is a diffeomorphism.
Besides, it is useful that the coordinate transformation does not cause any
additional coupling of the individual processes. Therefore, the functions ϕ α

1 ,
α = r1, . . . , nx,1 should only depend on the states of S1, where the functions
ϕ β

1 , β = nx,1 + r2 + 1, . . . , nx should only depend on the states of S2. It is
suitable to choose the remaining states identical to a subset of the original
states. Considering (4.5b), the transformations are given by

z(i−1)nx,1+ri+β = xmi,β β ∈ Iini, (4.6)

where mi,β ∈ Iidi :=
{

(i− 1)nx,1 + ξ | ξ ∈ IX i
}
are a selection of indices of the

original states for the two processes i = 1, 2. The coordinates z(i−1)nx,1+ri+β ,
β ∈ Iini, are called internal states.

Example 4.1. The process S1 is described through five state coordinates, such
that IX1 := {1, 2, 3, 4, 5}. The relative degree is r1 = 2, that yields Iini :=
{1, 2, 3}. It follows that the first two states are uniquely defined by (4.5a), and
three states have to chosen to make ϕ1 to be a diffeomorphism. For this purpose,
we choose the first, the third and the fourth state so that Iid1 := {1, 3, 4}.
The new states are given by z2+1 = xm1,1 = x1, z2+2 = xm1,2 = x3 and
z2+3 = xm1,3 = x4.
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To complete the transformation ψ, the transformation rule for the input
coordinate has to be defined. Here, the identity map is choosen such that
v = ϕ2(u) = u.

Next, we will determine the vector field concerning the new coordinates. Due
to the choice of ϕ, ϕ1 and ϕ2, the transformation

f α
(vt) = ∂xtβχ

α ∂τϕ
−1 fβ ◦ ψ−1,

in (4.4) with vector components fβ in original coordinates, is now discussed in
detail. The first component of the vector field in new coordinates refers to the
dynamic equation of the time component and is obtained via

f 0
(vt) = ∂tχ

0 T 1 + ∂xαχ
0 T fα = ∂tϕT 1 + ∂xαϕT fα = ∂tϕT 1 = 1.

To derive the dynamic equations of the states, we will distinguish the individual
components in a similar way as in (4.5). In general, the new vector components
can be determined from

f α
(vt) = ∂tχ

α T 1 + ∂xαχ
α T fα = T fα ∂xαϕ α

1 .

From this, we derive the individual components of both processes by

f (i−1)nx,1+α
(vt) = T fα ∂xα (T f)α−1 (

hi
)

= (T f)α
(
hi
)
, α ∈ Iex

i,

f (i−1)nx,1+ri+β
(vt) = T fα ∂xαxmi,β = T fmi,β , β ∈ Iini.

By definition of the coordinate change in (4.5a), it follows that

f (i−1)nx,1+α
(vt) = z(i−1)nx,1+α+1, α ∈ Iex

i \ {ri},

which means that the dynamics of the states
(
z1, . . . , zr1−1) and (znx,1+1, . . . ,

znx,1+r2−1) are expressed by two integrator chains. In addition, the approach
in (4.6) and Definition 4.5 tells us that f r1

(vt) = (T f)r1
(
h1) depends on the

input u1 of S1 and f nx,1+r1
(vt) = (T f)r2

(
h2) on the input u2 of S2. This fact

defines implicitly a control law k. Note that f r1
(vt) and f r2

(vt) is equal with the
r1- and r2-th time derivative of the production levels c1 and c2. For instance,
if a suitable function gives the left-hand side of the differential equation for
the time derivative of the production level, the input signal can be determined.
Such a time and parameter-dependent function is called a setup function, and
we define it by

ΛT : I × Rr1+r2+2 × Rnq,1+nq,2 → Co.
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Here, two types of parameters are involved. While the relative degree of the
two processes determines the dimension and value of the first parameter p ∈
Rr1+r2+2, the dimension and value of the second parameter q ∈ Rnq,1+nq,2 can
be chosen arbitrarily. It should be emphasized that the number of components of
q results from the degree of freedom nq,i, i = 1, 2, of the two individual processes.
As we will see later, the parameters q and T have to be determined to achieve
the production level transition and thus to define the control law. Considering
property (i) and (iii) in Problem 4.1, it can be concluded that ΛT connect the two
setpoints cs,1, cs,2 ∈ Co and thus the states

(
x 1

(zt,τ) (0), x nx,1+1
(zt,τ) (0)

)
= cs,1,

at the beginning and
(

x 1
(zt,τ) (1), x nx,1+1

(zt,τ) (1)
)

= cs,2, at the end of the
transition. Furthermore, the requirement of a stationary production level
motivates the following definition.

Definition 4.6 (Admissible Setup Function). Let cs,1, cs,2 ∈ Co two setpoints
within the operating area. For a given change of the production level δc :=
cs,2 − cs,1 ∈ ∆cs,1 , the setup function ΛT of the form

(t, p, q) 7→ ΛT (t, p, q) := cs,1 + δc λT (t, p, q), (4.7)

is called admissible, if λT satisfies component-wise the following properties:

(i) at time t = 0, λT and all time derivatives up to the relative degree rα
vanish: 0 = (λ α

T )(k) (0, p, q), k = 0, . . . , rα,

(ii) at time t = T , λT has to be one: 1 = λ α
T (T, p, q),

(iii) at time t = T , all time derivatives up to the relative degree rα of λT
vanish: 0 = (λ α

T )(k) (T, p, q), k = 1, . . . , rα.

The properties in Definition 4.6 guarantee the stationarity. Additionally,
condition (ii) ensures that the new setpoint is reached. For the structure
of λT , we propose the form

λT (t, p, q) := AT (t, p) +BT (t, q).

where AT is denoted as basic and BT as variation term. The basic term satisfies
component-wise all properties of Definition 4.6. The individual components
A α
T depend only on the relative degree rα of the corresponding process Sα.

This means that p ∈ Rr1+r2+2 is fixed. AT ensures that there exists a smooth
curve between the two production levels cs,1 and cs,2.
In contrast, the variation term BT adapts the curve between the two setpoints.
For this, we will choose BT satisfying (B α

T )(k) (0, p, q) = (B α
T )(k) (T, p, q) = 0,

k = 0, . . . , rα. The parameter q ∈ Rnq,1+nq,2 can be chosen arbitrarily. Table 4.1
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lists two different approaches for the basic and the variation term, see [100].
Appendix A.5 describes how to determine the parameters p based on the relative
degree. Subsequently, we use the rα-th derivative of Λ α

T to determine the input
signal, which allows defining the control law k implicitly by

0 =
(
(T f)rα (hα)

)
(x, u)− (Λ α

1 )(rα) (t, p, q). (4.8)

Using the implicit function theorem, for a given (t, x), it is possible to formulate
k locally and to compute the input u.

Example 4.2. In this example, we consider the process S1, which means that
we only focus on the first component of the control law. The process is an input
affine system of the form fα(x, u) = fα(x) + gα(x)u, where the production level
is described by h ∈ C∞ (X × U). The dimension of S1 is nx,1 = 5, and the
relative degree is r1 = 2. From the given structure of the system, it is easy to
see that f is a sum of two vector fields and one can write f = fs + gs, where
fs = fα(x)∂xα and gs = u gα(x)∂xα . Furthermore, for an input-affine system,
the control law can be explicitly represented by

u = k(t, x) :=
(Λ α

T )(rα) (t)−
(
(fs)2 (h)

)
(x)(

gs
(
fs(h)

))
(x)

.

We conclude this section by presenting the optimization problem to solve
Problem 4.1. For this purpose, we use property (ii) and formulate the reachability
of a state coordinate of the system as a minimization problem. Considering (4.4),
it is clear that the inverse of the transformation ψ has to be used to represent
the new system dynamics. Similar to the implicitly given control law (4.8), the
coordinate change ψ is added to (4.2) in order to avoid the explicit inversion.

Since the time evolution of the states x (i−1)nx,1+α
(zt,τ) , α ∈ Iex

i is directly
defined by the setup function, the number of dynamical equations is reduced.
In addition, the internal states are equivalent to a subset of the original states,
which allows using the original dynamical equations. However, it should be

Table 4.1: Ansatz functions for λT .

Polynomial Trigonometric

A α
T (t, p)

rα+1∑
i=1

pi
(
t
T

)rα+i rα+1∑
i=1

pi cos
(
(i− 1)π

(
t
T

) )
B α
T (t, q)

nq,α∑
i=1

qi
(
t
T

)i ( ( t
T

)2−( tT ) )rα+2 nq,α∑
i=1

qi sinrα+2 (iπ ( tT ))
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emphasized that ψ needs to be used to determine states that are not determined
by solving the dynamic equations but via the setup function.
For a given initial value xt,0 = (0, x0) ∈ R+

0 × Xo with h (xt,0) = cs,1 and
an admissible production change δc ∈ ∆cs,1 , the transition problem can be
reformulated by

(T ∗, q∗) := arg min
T, q

T (4.9a)

subject to

ẋ (i−1)nx,1+α
(τ) (τ) = T fmi,α (x, u) α ∈ Iini, (4.9b)

(
Λ i

1
)(α−1) (τ, p, q) = ϕ

(i−1)nx,1+α
1 (x) α ∈ Iex

i, (4.9c)

x (i−1)nx,1+α
(τ) (τ) = ϕ

(i−1)nx,1+ri+α
1 (x) α ∈ Iini, (4.9d)

(
Λ i

1
)(ri) (τ, p, q) =

(
(T f)ri

(
hi
))

(x, u), (4.9e)

l̇ β
(τ)j (τ) = T ρ β

j (x, u) , (4.9f)

0 = x(0)− (0, x0) , (4.9g)

0 = l β
(τ)j (0), (4.9h)

l β
(τ)j (1) ∈

[
−δ α

j , δ α
j

]
, (4.9i)

0 ≥ s(x, u), (4.9j)

0 ≥ ω(x) (4.9k)

Property (iv) in Problem 4.1 states that the objective function is defined by
the parameter T ∈ R+. The equality constraints (4.9b-d) represent the model
equations and the coordinate transformation of both processes. Given the
relative degrees of the two processes, the implicit given control law (4.9e)
is determined by the time derivative of the setup function up to this value.
The time evolution of the storage levels during the transformation is included
via (4.9f), where the initial value is zero, see (4.9h). For the process dynamics,
the initial value in (4.9g) needs to coincide with the initial production level.
Using (4.9i), it is guaranteed that the result of the transition problem is not in
contradiction with the determined production level cs using (3.9). Since other
processes or downstream processes constraints should not be violated during
the transition, (4.9j) and (4.9k) have to be included. The new production level
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cs is not explicitly considered in transition Problem (4.9) since it is used to
define the setup function ΛT .

Assumption 4.4. For all (x0, δc) ∈ Xo × ∆h(x0), there exist a solution of
Problem (4.9).

Remark 4.10. From Assumption 4.4 follows that the minimal transition time
T ∗ is unique due to the objective function. In contrast, the uniqueness of the
solution q∗ ∈ Rnq,1+nq,2 is not guaranteed. In the case of several solutions for
q∗, one can choose an arbitrary value, as no further specifications are made to
the control law.

For solving Problem (4.9), we propose a direct approach that transforms the
transition problem into an NLP, following the principle first-discretize-then-
optimize, see [5, 73, 205]. This approach is preferable to an indirect approach,
such as Pontryagin’s maximum principle [199], since the input trajectory u is
already parameterized. In other words, the optimal trajectory does not have
to be identified within a function space and then determined as precisely as
required by solving an ODE system.
In general, the direct approaches can be classified into sequential or simultaneous
approaches, whereby the general idea is always to parameterize the occurring
trajectories. For instance, the single shooting method can be assigned to the
sequential approach, where state-of-the-art solvers for integration are employed
to discretize the state trajectory of the ODE. The NLP solver only determines
the parameters T and q that are constant over the entire time span. For
the simultaneous approach, the state trajectory is approximated by a finite
sum of special basis functions, thus avoiding numerical integration routines.
In addition to the original decision variables, the NLP solver determines the
coefficients of these trajectories. The collocation method has been used for
several decades, especially for the simulation of ODEs and for optimization, cf.
[158, 159, 20, 108, 39]. Multiple shooting, which was first proposed by Bock and
Plitt [21], represents a hybrid of sequential and simultaneous approaches. The
idea is to divide the time horizon into smaller parts with their initial conditions
and then to integrate the dynamical system over each of these parts. Finally,
the NLP has to consider additional constraints, called matching conditions, to
ensure a continuous trajectory, whereby the initial conditions of the individual
parts become decision variables of the NLP.

The advantage of Problem (4.9) is that we only consider a transition to a
stationary production level, which gives a shorter transition time than the
transition to a stationary state, see [100]. The result of (4.9) is beside the
transition time T ∗ also the corresponding parameterization q∗ for the control
law (4.8). In this way, we have parameterized the setup function and the
controller that implements the nominal case transition, i.e., without disturbance
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(a) (b)

Figure 4.2: Scheme of the state trajectory during the transition phase.

rejection. Utilizing q∗, the setup function now directly defines the trajectory
c∗ := ΛT∗ of the production levels. Contrary, the trajectory u∗ for the
feed is generated by integrating the system model (2.7) up to time T ∗ while
including (4.8). Therefore, the trajectory generation consists of two phases.
First, the transition problem is solved, and then the system is integrated using
the solution.

As mentioned in Section 3.3, the solution set Sopl of the S-RTO is used to define
the functions Pe

c and Pe
u. To make these functions well-defined, we have to

pick up a solution point. Thus, we finally discuss the result of the trajectory
generation focusing on selecting one point of the set Sopl. Figure 4.2 (a) shows
an illustration of the state space, which serves as a basis for discussion here.
For different production levels ci ∈ Co, the preimage as a subset of Xo is
presented by the black lines. Moreover, we assume several steady states that
are asymptotically stable for each production level, illustrated as white circles.
Note that there have to be unstable steady states between the stable points,
as shown in Figure 3.4. Based on Assumption 3.2, one obtains for a given
(x0, θ, `) ∈ Xo × Θ × D a nonempty set Sopl of steady-state operating points
(cs, us, xs) ∈ Co×U ×Xo by solving Problem (3.8). These solutions are a subset
of the steady states (their production level and input value) and indicated
by the red circles. By solving Problem (4.9) for various production changes
δci ∈ ∆h(x0) resulting from Sopl, we obtain the optimal transition times T ∗i and
parameters q∗i. Afterward, these are used to determine the potential steady
states xs,i by integrating the system model. By comparing these results with
that within Sopl, we can distinguish three cases as indicated Figure 4.2 (a).
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(i) No δci yields a feasible operating point. No production level change
specified by the S-RTO, will result in a state that meets the economic
requirements. Thus, the reachable states are not part of the solution
set Sopl. Assumption 4.1 implies that there is a controller so that the
state given by the S-RTO can be reached after a particular time, but by
choosing (4.8) a precise controller is defined. Hence, Assumption 4.1 must
be extended by this specific control law to exclude such a situation.

(ii) Only one δci yields a feasible operating point. There is only one feasible
production level, so the choice of the operating point is uniquely defined.

(iii) More than one δci yields a feasible operating point. If the system can be
steered to more than one production level, the point that can be reached
as fast as possible is selected.

To ensure that the operating points of the S-RTO can be implemented, we
pose the following assumption. Moreover, the separation of the original bilevel
problem of the cl S-RTO leads to two incompatible subproblems.

Assumption 4.5. The production system P is at least local dynamically operable
using the control law (4.8).

4.2.4 Supervisory Control Layer

So far, we have shown how to generate the trajectory for the production level and
the manipulating feed to achieve the transition. These signals are implemented
by the control law of the supervisory layer. Two different control strategies can
be pursued, as illustrated in Figure 4.3. The first is a pure feedback approach,
where the controller, typically an MPC, uses the trajectories as reference signals,
see Figure 4.3 left. For the second strategy, the feed trajectory is directly applied
to the system as a feedforward signal. An additional feedback controller ensures
disturbance reaction. This two-degree-of-freedom control is shown in Figure 4.3
right. In both strategies, an observer is used to estimate the system state x by
measurements.

Pure feedback control This type of implementation refers to an online
trajectory tracking problem, as described in [8, 56]. The objective of the MPC is
to minimize the squared error between the current position and the reference u∗

and c∗ at discrete time points tk + i∆ts. In this way, the precalculated nominal
trajectory is adapted to react on high-frequency disturbances with sampling
time ∆ts ∈ R+. Finally, the feed ûki is applied on the system.
In certain cases, an upstream steady state target optimization (SSTO) ensures
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supervisory layer
pure feedback control or two-degree-of-freedom control

observerMPC

SSTO

u∗ (tk + i∆ts), c∗ (tk + i∆ts)

x

measurementûki

ũki, c̃ki

x, disturbances

observer

feedback controller

u∗ (tk + i∆ts)

measurement

uf,ki

x

ûki

+

production system layer + regulatory control

trajectories u∗ and c∗

Figure 4.3: Control architecture within the supervisory layer.

the feasibility of the setpoint in some applications if different models are used
on different layers, cf. [271, 166, 200]. This strategy is called the two-stage
approach and represents a cascade of two MPC problems.
Typical applications of tracking MPC are generally associated with the use
of D-RTO, see for example [122, 106]. Gadkar et al. [74] presents a nonlinear
MPC for tracking a time-discrete reference signal on a continuous bioreactor.
For a batch polymerization reactor, Nagy et al. [180] uses an MPC to compute
setpoints for the subordinate PI controller.
More theoretical works about trajectory tracking are presented in Ferramosca
et al. [62] and Ferramosca et al. [63]. In particular, this involves ensuring
feasibility and convergence to a target steady state. Limon et al. [152] presents
an MPC strategy for tracking piecewise constant references, as they might occur
when discretizing formerly generated trajectories.

Two-degree-of-freedom control A classical strategy to perform the transition
is a two-degree-of-freedom controller, where a feedforward signal guarantees
the success of the transition, while an additional feedback controller ensures
disturbance reaction by adding uf,ki to the feed value reference u∗ (tk + i∆ts), see
[4, 254, 83]. Several approaches exist regarding the type of feedback controllers
that can be applied. Hagenmeyer and Delaleau [90] uses a standard PID
controller, where Graichen [81] employs a PI and an LQ controller for a transition
of a CSTR and a double pendulum. The feedback term in [45] is defined by the
weighted error between the current and the reference state.
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A further type of control law that can be assigned to this category is the
neighboring extremal controller [268, 270]. For a theoretical background to this
approach, which was initially introduced for indirect methods in optimal control,
see [192, 85]. The update coming from the feedback control is determined by
solving an optimization problem based on a parameter update by measurements.
This optimization problem is derived from the problem that has generated
the nominal reference using the nominal parameters. In this way, the update
exploits sensitivity information regarding particular parameters.

Control law used for trajectory generation Besides the two strategies
mentioned above, we propose another technique combining both in a certain
way. For this, not the generated trajectory is applied to the system. Instead,
the control law (4.8) with the optimal parameters T ∗ and q∗ is taken to define
the controller K for the supervisory layer. This is motivated by the stationarity
Definition 4.4. At the end of the transition, the system has reached a stationary
production level. At the same time, the internal states are in a neighbourhood
of their new steady state. However, the control law is designed to compensate
for the evolution of these internal states, if

(
Λ i
T∗

)(ri) (t, p, q∗) := 0, for t ≥ T ∗.
A crucial aspect is the stability of P at the steady-state to be achieved when
using (4.8). Even if P is asymptotically stable, the control law can cause an
unstable system, see [242]. It is essential to consider this when we derive a
control law valid for the transition and production phase. Using (4.8) and the
optimal parameters T ∗ and q∗, we define the implicit controller

ktp
im(t, x, ut) :=

(
(f)rα (hα)

)
(x, ut)− (Λ α

T∗ )(rα) (t, p, q∗), (4.10)

to steer the system to the new production level. For the production phase with
the steady-state input us = Pe

u (x, θ, `), we define

(
(f)rα (hα)

)
(x, ut), stable internal dynamics, (4.11a)

us − ut, unstable internal dynamics. (4.11b)
kpp

im(x, ut) :=


whereby the two stability cases are distinguished. If the internal dynamics are
stable, the setup function is set to zero, since the production level for t > T ∗

has to be stationary. The remaining part (4.11a) ensures that the production
level does not change along the trajectory until all states have reached the new
steady state. However, if the internal dynamics are unstable, the control law
is substituted by the feed value us. Based on Assumption 4.2, the system is
asymptotically stable without using (4.11a). Those states that are not yet in a
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steady state are converging towards it.
The controller for both phase has the form

ktp
im(t, x, ut), t ∈ [0, T ∗] , (4.12a)

kpp
im(x, ut), t > T ∗, (4.12b)

Kim(t, x, ut) :=


The feed signal obtained by (4.12) ensures the transition and maintaining the
new steady-state. To guarantee disturbance rejection and noise compensation,
we additionally consider a feedback law kfb : X × C → U similar to the two-
degree-of-freedom approach. For instance, a PI or an LQ controller is possible.
Finally, the total control law for the supervisory layer has the form

u = ut + kfb(x, c), (4.13a)

0 = Kim(t, x, ut). (4.13b)
K :

{

Remark 4.11. It is possible to formulate the controller K at least locally by
the map Kex, as introduced in Problem 2.1.

The case distinction in (4.11) allows two interpretations of control law (4.13).
For an unstable internal dynamic, the controller becomes a two-degree-of-
freedom control, as discusses above. The only difference is that here we use the
current states of the system and not those determined by an offline simulation.
Therefore, it is essential to ensure that the model describes the system well.
The advantage of (4.13) over a classical two-degree-of-freedom approach appears
for a stable internal dynamic. In this context, (4.11a) ensures that the evolution
of the states is precisely compensated and will not affect the production level.
Figure 4.2 (b) illustrates the case distinction for a chosen steady-state from
the S-RTO. First, the controller steers P to xT ∈ Xo during the transition
phase. For a stable steady-state xs ∈ X s

o ⊂ Xo, the time evolution of the
internal states while moving to xs is compensated. Conversely, for an unstable
xs, the stationary input us is applied, while a well-tuned feedback controller
ensures that the production level does not deviate too far from the setpoint.
Furthermore, we assume that xT is within the region of attraction Bδ(xs) of xs,
see [274].

Example 4.3 (Transition of a Coupled AD- and RSR-Process (3.1 continued)).
We continue with the scenario-based analysis of the operational strategy
introduced in Example 3.1 and take a closer look at the transition phases.
However, we will focus only on the first and second transition, as already
discussed in more detail in Example 3.1. Furthermore, we will first consider
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only the real case, i.e., limited storage capacity (case (i)). To finish this example,
we briefly review the second transition and compare the trajectories in the output
space C for the real (i) and the relaxed (ii) case.

Before we discuss the effect of the controller on the system, we will address its
specifications and the numerical method for its solution. It should be remarked
that the manipulating signal is directly applied to the system as a feedforward
controller, following the two-degree-of-freedom control approach.
For the implemented control strategy, we use a polynomial setup function for both
processes and the parts AT and BT , as given in Table 4.1. The properties of the
controller are summarized in Table 4.2. Two factors can explain the reason why
a polynomial function with six parameters each was chosen. Firstly, the more
parameters are used, the more the trajectory of production levels can be modified
(high degree of flexibility). In other words, the more variation parameters and
the broader their acceptable range, the better signals can be described that have
“kinks”, allowing a rapid change of the signal direction. Secondly, the input
trajectory is determined by the derivatives of the output, and the solution of
Problem (4.9), which is numerically challenging. So, for numerical solvers, a
high degree of flexibility in the design of the signals could mean that the stability
and convergence of the solutions cannot be guaranteed. Hence we need to find a
compromise between these two aspects in order to find a solution for any possible
transition that might occur.

Table 4.2: Properties of the controler.

1st process 2nd process
relative degree 3 2
setup function polynomial polynomial

degree of freedom nq,1 = 6 nq,1 = 6

To solve Problem (4.9), we use the direct collocation method since this yields
an optimal solution for almost all transitions in a reasonable time. Alternative
methods, such as direct single or multiple shooting, were also successfully
implemented, but they were less efficient in the automated framework without
readjusting solver options and initial values. Overall, we used five finite elements
for the time interval [0, 1], whereby five sampling points per element were applied,
which corresponds to the polynomial degree. The solver used is CasADi/ipopt
[6, 269] with front-end Matlab R2016b.
Nevertheless, it turns out that a direct solution of Problem (4.9) in the NLP
formulation via direct collocation and the corresponding parameter and boundary
requirements is hard to solve in general. For this reason, we use the following
framework to identify the solution in several steps.
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1. The system dynamics were simulated using the control law and a minor
production change, whereby the parameters of the variation terms were set
to zero. The calculated trajectories are used to generate initial conditions
for the optimization.

2a. A repeated optimization, where the change in production levels is gradually
increased to the desired value, is done on each step. The optimal solutions
of the previous problem are used as warm start values for the new problem.
The boundaries for the parameters of the variational term are set around
±104, and the boundaries for the terminal storage level are given by the
reserve towards the upper and lower storage size. In this way, the transition
problem will be determined first by modifying the transition time.

2b. The transition problem is optimized repeatedly with the required change
of the production level, whereby the admissible parameter space of the
variational terms is gradually increased. Thus the transition time can be
further reduced by varying the trajectory of the production levels. The
terminal storage levels still use the entire storage space.

2c. A final optimization sequence is used to reduce the terminal storage levels.
This will continue until a required storage boundary is reached, or the
transition time has increased by 20% of the original value.

3. The results of the optimization part are used for a subsequent simulation
of the system to generate an offline trajectory.

Using this algorithm, we obtain the following results of the transition problem
for the first two transitions from Example 3.1 are obtained. We start with the
first transition for which the input-output behavior is shown in Figure 4.4 and
the temperature profile in Figure 4.5.
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Figure 4.4: Illustration of the input-output behavior of the production system
for the first transition.
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Figure 4.5: Illustration of the temperature behavior of the two processes for
the first transition.

At time t = 0, the feed parameter changes as illustrated in the feed parameter
space Θ in Figure 4.4 first row left column. In the following, we assume that
the economic objective can also be applied to the transition phase. In this way,
we can interpret the fluctuations in profits during the production change, which
are even negative over time, as high transition costs occur, see Figure 4.4 first
row right column. This allows assessing whether the transition is economically
reasonable or not, as already mentioned in Example 3.1.
Another point that can be seen in the first row right column of Figure 4.4 is
that the full economic potential is not yet reached at the end of the transition
at t = 63.96 min. This is caused by the product quality qs, as it depends on the
state variables in general and these have not yet fully reached their steady state.
For instance, the temperature of both processes, shown in Figure 4.5 is not
constant after the transition phase (indicated by the gray area) but converges to
its steady state. One way to achieve maximum product quality at the end of the
transition is to add a terminal constraint either for the economic objective itself
or the product quality to Problem (4.9). The latter way does not increase the
complexity of the optimization, since the equation is already part of the problem.

Considering the trajectories of the process feed u and thus the production levels c,
it is notable that the solver does not generate intuitive solutions, cf. Figure 4.4
second and fourth row. The input for the production phase is not attained
directly, but goes through several changes of direction in between. This is mainly
due to the constraints of the terminal storage level and the temperature profile,
which we discuss below.
Terminal storage level. In step 2c, we reduce the variation of the storage
level around the initial point as much as possible. This minimizes the effects of
a production change on the storage system in case of continuous operation and
thus several cycles of the considered scenario. We will discuss this point again
when estimating the storage capacity in Section 5.4.
Until the end of the transition, the storage level can only vary by a certain factor
around their initial value (black dot in Figure 4.4 third row) at the beginning
of the transition. These terminal regions are implied in Figure 4.4 third row
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by the red line at the end of the transition phase. Note that these regions are
larger than finally achieved in step 2c. Furthermore, these regions are used for
the S-RTO in Example 3.1 and are represented by H 1

1 and H 1
2 .

A common strategy of the controller is first to move the levels of the storage
elements in the opposite direction to obtain more flexibility. For instance, the
production of S2 is uniformly (almost constantly) increased, which means that
the amount of supplied heat energy also increases in the same proportion, see
Figure 4.4 fourth row. At the same time, S2 needs more of the component C,
which can be concluded from the feed u2 in Figure 4.4 fourth row left column.
This effect is compensated by increasing the process performance of S1 in the
first third of the transition drastically, see Figure 4.4 second row left column.
By this, the production level c1 is increased (see Figure 4.4 second row right
column) and, at the same time, the production of C. However, it follows that
S1 requires more energy, which results a drop in level ` 1

2 of B 1
2 as depicted in

Figure 4.4 third row right column. However, this maneuver is only be pursued
for a short time. By a sequence of increasing and decreasing the amount of feed
u1, followed by a final reduction of the feed value according to the production
phase, the original storage level of B 1

2 is almost reached again. At this time,
all production levels are already close to the new setpoint, so the final reduction
of ` 1

2 is no longer as large as before. Essential for this procedure is that the
transition time is not increased too much again. By step 2c, a trade-off between
the effect of the transition on the storage levels and the time needed for the
transition must to be found.
Temperature profile. A further interpretation of the control law strategy
to change the amount of the feed for several times is given by a study of the
temperature evolution in Figure 4.5. A change in system operation is also
associated with a change in the temperature levels, as any cooling and heating
elements have inertia. During the first transition, the reactor temperature in
S2 rises because the process output is increased. Likewise, the temperature in
S1 fluctuates strongly and is brought to the boundaries, as can also be seen for
S2 in Figure 4.5, where the red areas illustrate the boundaries. To satisfy the
process conditions, the temperature of S1 is first cooled down, creating more
margin towards the upper boundary.

Finally, we consider the product quality qs in Figure 4.4 fifth row right column,
which are kept at 1 during the production phase (see Figure 3.5). Within the
transition phase, the controller uses the entire range of feasible product qualities
to achieve the fastest possible transition. This fluctuation is caused by the slower
dynamics of the part of the H stream which forms the total product of S2 together
with M.
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Figure 4.6: Illustration of the input-output behavior of the production system
for the second transition.
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Figure 4.7: Illustration of the temperature behavior of the two processes for
the second transition.

The second change of the production level starts at time t = 600 min with a
reduction and an increase in feed quality θ1 or price θ2, as shown in Figure 4.6
first row left column. Consequently, the production levels of both processes
need to be reduced. The result is also a decrease of the heat energy supplied
to the storage element B 1

2 and the energy required by process S1. Similarly,
less C is fed to the storage element B 1

1 , and less is taken from process S2.
Considering the evolution of the storage level ` 1

2 of B 1
2 in Figure 4.6 third row

right column, we see that after a short period in which the level changes only
slightly, it then rises strongly for a certain time (≈ 26.5 min). However, before
the transition phase ends, the storage element is briefly discharged before the
level rises again. These terminal regions for ` 1

1 and ` 1
2 can be seen by the red

lines in Figure 4.6 third row. So it is ensured that at the end of the transition,
the S-RTO storage constraints are satisfied. The reason for this reaction of the
controller is an adaptation in the trajectory of output c1 for S1 during the last
third of the transition, cf. Figure 4.6 second row right column. The result is
a short-term increase in the heat demand provided by B 1

2 . Thus the initially
increasing evolution of the storage level ` 1

2 in the third row right column of
Figure 4 temporarily drops before it reaches the final storage level within the
terminal constraints.

Figure 4.7 shows the temperature profiles for the second transition. While the
temperature for the first process does not reach the boundaries, for S2 the lower
bound is active for a certain time period. To satisfy the lower bound, the slope
of the trajectory of the production level c2 is chosen by the optimizer so that the
new setpoint can be reached quickly, but the derived feed signal is adapted to the
inertia of the reactor cooling jacket.

To conclude this example, we will look at the trajectory of the production levels
for the second transition within the operating area Co, as shown in Figure 4.8.
Within Co not all production levels are feasible for a steady state operation, as
they have to meet the downstream process constraints. These constraints are the
total amount of the product and the product quality. The green area in Figure 4.8
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Figure 4.8: Illustration of the second transition (a) of the considered scenario
within Θ and (b) for the trajectory of the production level within Co.

approximates the subset of feasible production levels achieved by the S-RTO
without storage restrictions (i.e., case (ii)). On the left side in Figure 4.8, the
trajectories c∞ and c are presented. While c∞ (green line) is determined by the
S-RTO results for the relaxed case (ii) from Example 3.1, the trajectory c (gray
line) belongs to the real case (i). In addition to the nominal production level cn,
the initial points c∞1 and c1 at the beginning of the second transition, and the
endpoints c∞2 and c2 are shown.
For both trajectories c∞ and c, we can conclude that the fastest path considering
the dynamic properties and all other constraints is not a straight line. Indeed,
the output follows small detours to the new setpoint, so that the derived input
ensures the requirement to the storage system and the state variables (especially
the temperature). Note that the trajectory for the relaxed case (green line)
temporarily leaves the green area in Figure 4.8. During this time period, all
constraints are satisfied nevertheless. The reason for this lies in the definition
of the green area. It is identified as a feasible area for the stationary operation
(during the production phase). This means that for dynamic operation, i.e., the
feasible area can have a different shape and be larger during the transition phase.
We will address this feasible area again when we discuss the time-transition map
design in the next section.
It should also be noted that the description of this area has nothing to do with
the properties of local economically compatible or local economically operable, as
described in Example 2.3. For this classification of the system, the dynamics
and the input did not matter at first. The focus was only on the relationship
between subspaces of the state space X and the operating area Co.
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A final remark on this example refers to the evolution of the storage level from
the end of each transition. It can be concluded from Figures 4.4 or 4.6 that the
storage rate at the end of the transitions is not yet constant, since the state has
not reached the stationary value. However, the state at the end of the transition
lies in a neighborhood of the new steady state and thus is within the attractive
region. The small error resulting from not yet having a constant storage rate at
the end of the transition can be regulated by choosing the safety range ξ and the
terminal region for the storage level.

4.3 Transition-Time Map

In the previous section, we derived the control law to realize the transition of
the production level. For this, we have to solve Problem (4.9) to obtain the
minimal transition-time and an optimal parametrization of the setup function
ΛT∗ and thus the control law (4.8). In this way, we can generate the trajectory
transferred to the supervisory layer and receive the information for the duration
of the transition phase required by the S-RTO.
To avoid repeatedly solving the transition problem during the S-RTO, we
introduced the surrogate model T̃t,− in (2.24). In this way, the original bilevel
problem of the cl S-RTO becomes a single level static optimization. Whereas
in (2.23) the general transition Problem (2.22) was used to define the transition-
time map Te

t , Problem (4.9) is now employed. It follows that T̃t,− is trained
on the results of the transition Problem (4.9). In general, the transition
problem needs, besides the admissible change δc ∈ ∆h(xt,0), also the initial value
xt,0 = (0, x0) ∈ R+

0 ×Xo. Hence, after each transition, the corresponding final
state has to be computed, as they represent the initial value for a further change
of the production level.

In the following, we address a strategy to derive transition-time map T̃t,−
utilizing Problem (2.23). Thereby, the relationship between T̃t,− and the
dependence on initial conditions will be discussed in more detail. More precisely,
we will distinguish between a locally- and a globally-valid map for Te

t or T̃t,−
and discuss under which circumstances the global ones can be generated. Here,
the globally-valid version of Te

t is characterized by the fact that it only depends
on a reference state and no longer on the current state of the production phase
from which the next transition starts. This reduces the size of the domain of
the transition-time map. So before we focus on a precise training strategy, the
next section will first introduce this concept.
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4.3.1 Reduced Transition-Time Map

In Section 4.2.3, we discussed that the states after the transition move towards
xs ∈ X s

o during the production phase. This allows to define the transition-state
map

Te
x : X s

e → X s
o , (x) 7→ Te

x (x) := xs, (4.14)

that yields the state that will be reached after an admissible production change
δc ∈ ∆h(x) starting from stationary state x ∈ X s

o . Here, the set X s
e is defined by

X s
e :=

{
(ξ, ς) ∈ X s

o ×∆h(ξ)
}
.

Remark 4.12. The map (4.14) is defined on X s
e ⊂ Xe. Since Problem (2.23) is

not restricted to steady-state initial conditions, the domain of the transition-state
map Te

x could also be extended to Xe from (2.23). However, we will omit this, as
a composition of Te

x would automatically lead to this restriction from Xe to X s
e .

For notational convenience, we introduce, for a given admissible δc, the
parametric form of Te

x by the map

Te
x,δc : X s

o,δc → X s
o , (x) 7→ Te

x,δc (x) := Te
x
(
(x, δc)

)
, (4.15)

in the sense that one obtains an endomorphism on X s
o . The domain of this

function is defined by X s
o,δc :=

{
ξ ∈ X s

o | h(ξ) + δc ∈ Co
}
⊂ X s

o and consists of
all stationary states that are valid for the production level change δc.

By the assumption that the initial state of P is known, the map Te
x,· allows

determining a sequence of states that will occur in the respective production
phases according to the sequence of production-level changes. In this way, one
obtains the initial condition to solve Problem (4.9) for each transition. One
might ask how this sequence of states of the production phase now depends
on the sequence of production changes. The following definition is intended to
specify the state dependency further to identify a suitable criterion for designing
a globally-valid transition-time map.

Definition 4.7 (State Independency of a Minimal-Time Transition). Let P
be a production system driven by the control law (4.13), that generates Te

x,·.
The system is called state-independent for a minimal-time transition, if for all
x ∈ X s

o it holds that

(i) if the change δc of the production level is zero, the state stays constant:
Te

x,0 = idX ,
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(ii) the composition of multiple transitions is given by addition of their
production level changes:
Te

x,(δc0+δc1) = Te
x,δc0

◦ Te
x,δc1

= Te
x,δc1

◦ Te
x,δc0

.

Otherwise, the system is called not state-independent for a minimal-time
transition.

The concept of Definition 4.7 is illustrated in Figure 4.9. A system that is state-
independent for a production level transition will always return to x0 ∈ Xo when
the initial production level c0 ∈ Co is set. Thus a transition can be achieved
in several steps, as shown in Figure 4.9 (a). Here three production levels are
shown, whereby a transition from c0 is considered directly to c0 + δc0 + δc1
and via the intermediate level c0 + δc0. The brown curve represents the image
of Te

x on X s
o ⊂ Xo. It is characteristic of a system which is state-independent

according to Definition 4.7 that it cannot be driven into two states with the same
production level. Conversely, for a system that is not state-independent, there is
no guarantee that the same state x0 ∈ Xo will be reached again for every closed
production change sequence {δc1, . . . , δcn} with

∑n
i=1 δci = 0. Figure 4.9 (b)

shows this for a transition starting from x0 ∈ Xo to x1 ∈ Xo back to the initial
production level at x0

′ ∈ Xo. Thus, the final state depends highly on the path
that was passed over. The brown curve illustrates this in Figure 4.9 (b). Here,
the controller acts on the vector field so that states on other branches (black
dotted line) for steady states can be reached faster.
Using Definition 4.7, we now have the possibility to restrict the domain of Te

x
to the operating area Co of the product. For this, let xr ∈ Xo be a reference
state, which allows defining the reduced transition-time map Tt by

Tt : Ce → R+,
(
(c, δc)

)
7→ Tt

(
(c, δc)

)
:= Te

t

((
Te

x,
(
c−h(xr)

)(xr), δc
))

, (4.16)

where

Ce :=
{

(ξ, ς) ∈ Co ×∆ξ

}
,

denotes the space of all production levels and their admissible production
changes. The state becomes only a parameter which has to be predefined in
advance. Finally, it must be shown that the reduced transition-time map Tt is
uniquely defined by a reference xr ∈ Xo.
By definition of Te

x,· follows that for a given production level c0 ∈ Co its
associated state can be determined by

x0 = Te
x,
(
c0−h(xr)

)(xr).
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Figure 4.9: Illustration of the state independency of P with respect to a time
minimal transition.

From this state and an admissible change δc0, the transition-time can be
calculated using Te

t . In this way, the transition-time can be determined from
(c0, δc0) ∈ Ce. In order to show that this dependency is unique, we consider a
finite number of arbitrary transition steps {δc1, . . . , δcn} from any point c1 ∈ Co
to c0 ∈ Co. The state after n transitions starting at c1 is given by

xn = Te
x,δcn ◦ . . . ◦ T

e
x,δc1

◦ Te
x,
(
c1−h(xr)

)(xr).

For a state-independent system, and from the property (ii) in Definition 4.7
follows that

xn = Te
x,(
∑n

i=1
δci+c1−h(xr)) (xr) .
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Since we required for the sequence of transitions that c0 = c1 +
∑n
i=1 δci, one

obtains

xn = Te
x,
(
c0−h(xr)

) (xr) = x0.

If c1 and c0 are identical, the property (i) in Definition 4.7 shows

x0 = Te
x,0 ◦ Te

x,
(
c0−h(xr)

) (xr) = idX ◦ Te
x,
(
c0−h(xr)

) (xr) .

Thus the transition-time given by Te
t is independent of the previous transitions

and the production level from which they begin. The uniqueness of Tt follows
directly from the state-independency of the system.

Finally, we want briefly touch on the question of when a system is state-
independent, for which the following lemma gives a sufficient condition.

Lemma 4.1 (Sufficient Condition for a State-Independent System). Let P be
a production system driven by the control law (4.13), that generates the state
transition map Te

x. Furthermore, for a given steady state x ∈ X s
o , a branch is

defined by the set Bx :=
{
ξ ∈ X s

o | ∃µ ∈ C
(
[0, 1],Xo

)
, imag (µ) ⊂ X s

o , µ(0) =
x, µ(1) = ξ

}
. The system at a steady state xr ∈ X s

o is state-independent for a
time minimal transition if it holds that:

(i) no bifurcation point within Xo for P ,

(ii) no multiple production levels: the restriction of h defined by
h̃ : Bxr → C̃o ⊂ Co, x 7→ h̃(x) := h(x), is bijective

(iii) no multiple states: ∀x ∈ Bxr , ∀ δc ∈ ∆h(x) : ∃ γ ∈ C
(
[0, 1] ,Xo

)
with

imag (γ) ⊂ Bxr , γ(0) = x and γ(1) = Te
x,δc(x).

The point xr ∈ X s
o can be set as a reference state.

The first condition in Lemma 4.1 ensures that there is no state x ∈ Xo from
which one can move in two different directions. That means there is no particular
point x ∈ Xo where the number of solutions of the steady-state equation changes.
More precisely, at such a bifurcation point x the manifold X s

o is an intersection
of at least two branches, see [228]. Considering Lemma 4.1 (ii), we can see the
function h̃ as restriction of h to the branch Bxr . In adapted coordinates, the
function h̃ is a map from a subset of R2 (since dimX s

o = 2) into a subset of
R2. The second condition guarantees that no production level is hit twice when
moving along a stationary branch Bxr . In other words, the mapping between the
states of a branch and the production levels is biunique. By the third condition
of Lemma 4.1, it is ensured that no change between two branches occurs during
a transition.
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Proof. Let x1 ∈ X s
o and δc1 ∈ ∆h(x1) be an arbitrary state and production level

change. According to (iii), the new steady state x2 = Te
x,δc1

(x1) ∈ X s
o lies on

the same branch of X s
o (x2 ∈ Bx1). Thus, there exists a γ1 ∈ C

(
[0, 1] ,Xo

)
with

γ1(0) = x1 and γ1(1) = x2. Figure 4.10 illustrates this curve γ1 connecting

x1

x2
x3

γ1

γ2

γ3

Bx1 ⊆ X s
o

Figure 4.10: Schematic illustration of the curves connecting steady states on X s
o .

the two states. Furthermore, let δc2 ∈ ∆h(x2) be an arbitrary production level
change starting at x2, such that the new steady state is

x3 = Te
x,δc2

(x2) = Te
x,δc2

◦ Te
x,δc1

(x1) ∈ Bx1 ⊆ X s
o .

Again, according to Lemma 4.1 (iii), there must exist a curve γ2 ∈ C
(
[0, 1] ,Xo

)
such that γ2(0) = x2 and γ2(1) = x3. Since the final point of γ1 and the initial
point of γ2 are coincide, the curves belong to the same branch of X s

o .
If one applies the production level change δc1 + δc2 ∈ ∆h(x1) directly it follows
that there exist a third curve γ3 ∈ C

(
[0, 1] ,Xo

)
with γ3(0) = x1 and γ3(1) =

Te
x,δc1+δc2

(x1). From the initial and final state and the continuous property of
γ3, it follows that γ3 must lie on the same branch as γ1 and γ2. The second
condition of Lemma 4.1 states that along γ3 no production level occurs twice
under h. Thus, we can construct γ3 from γ1 and γ2 through

γ3(λ) :=
{
γ1(2λ) 0 ≤ λ ≤ 0.5,
γ2(2λ− 1) 0.5 < λ ≤ 1

Finally, we can conclude from γ2(1) = γ3(1) that

Te
x,δc2

◦ Te
x,δc1

(x1) = Te
x,δc1+δc2

(x1) = Te
x,δc2+δc1

(x1) = Te
x,δc1

◦ Te
x,δc2

(x1).

In the case of δc2 = −δc1 it follows from γ1(0) = γ2(1) = γ3(1) that

Te
x,−δc1

◦ Te
x,δc1

(x1) = Te
x,δc1−δc1

(x1) = Te
x,0(x1) = idX (x1).

4.3.2 Surrogate Model of the Transition-Time Map

Next, we want to design a surrogate model T̃t,− for the minimal transition time
to avoid a bilevel optimization within the S-RTO. However, it is only necessary
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that T̃t,− is locally available, i.e., at the current production level c ∈ Co, when
solving Problem (3.8). This is because δc ∈ ∆c is considered as decision variable
for the determination of the new production level. To obtain the locally valid
surrogate model, we will use a GP. For a give state x ∈ Xo, it maps from the
space ∆h(x) of admissible production level changes to the transition time.

The training data are generated by solving the transition Problem (4.9), as
discussed in the previous section. Considering (4.9), the production change
δc is a parameter that appears in the setup function (4.7) within the control
law (4.8). It follows that (4.9) is approximated by a parametric NLP where δc
becomes a parameter [5]. This allows us to determine the sensitivities

Sα := ∂δcα T
e
t(x0, δc)

for a given production change and x0 ∈ Xo. The sensitivities can be calculated
explicitly from the Lagrangian and the KKT conditions, see Appendix A.3. By
adding the sensitivity information, we can improve the quality of the GP with
the same number of training points, see [236, 201].

For a given initial state x0 ∈ Xo, we will use a set Dδ := {δc1, . . . , δcnt}, where
δci ∈ ∆h(x0). From this set of training inputs, one can compute the initial set

T 0 :=
{

(δc1, T1,S1) , . . . , (δcnt , Tnt ,Snt)
}
,

of training points to derive the surrogate model T̃t,h(x0) iteratively, where
Ti = Te

t(x0, δci) and (Si)α = ∂δcα T
e
t(x0, δci). Based on this data, we obtain the

surrogate model T̃t,h(x0) by employing the mean function (A.3) assuming there
is no prior knowledge of the transition time. Thus the initial transition-time
map is given by employing the GP formula by

T̃0
t,h(x0) (δc) :=

(
aιηxι + bιζρxιζ

)
(δc) , (4.17)

where

aα := LαιTι +MαιζSιζ and bαβ := M ιαβTι +RαιβζSιζ ,

are the initial weight factors, which describe the relationship between the
individual transition times Tι and their sensitivity values Sι, ι = 1, . . . , nt. The
functions ηx and ρx evaluate the influence of the points in T 0 on a new point
δc ∈ ∆h(x0). For more details, see Appendix A.2.

Since the initial training points are chosen arbitrarily, map T̃0
t,h(x0) might not

describe the original map Te
t in sufficient detail. In such cases, additional

training points have to be calculated to increase the quality of the surrogate
model. To determine whether the function T̃it,h(x0) is generally suitable, we
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Algorithm 4.1: Locally-valid surrogate model of the transition-time map
Input: the initial model T̃0

t,h(x0) generated from the initial hyperparameter h0,
a value j̄ ∈ N and the set T 0

1set index j := 1 and initialize the set W2 := ∅
2while W2 6= ∅ or j < j̄ do
3generate sets W1 consisting of random points δc ∈ ∆h(x0) and W2 := ∅
4build κ̂ using T j−1 and (A.5)
5for i = 1, . . . , |W1| do
6determine δc∗i := arg max

δc∈∆h(x0)

κ̂ (δc) with initial point δci ∈W1

7if κ̂(δc∗i ) > tol1 then
8determine Ti = Te

t(x0, δc
∗
i ) and (Si)α = ∂δcα T

e
t(x0, δc

∗
i )

9update the set W2 ←W2 ∪ (δc∗i , Ti,Si)
10end
11end
12update the set T j ← T j−1 ∪W2

13build T̃jt,h(x0) using T j and (4.17) and by updating hyperparameter hj

14set the index j ← j + 1
15end

Result: the final surrogate model T̃t,h(x0) := T̃jt,h(x0) of the transition-time
map and set T := T i of training data

analyze the posterior covariance function κ̂ in (A.5) of the GP. This covariance
allows evaluating the confidence of the GP at different δc, cf. [84, 237]. In
[139] and [134], some theoretical approaches and assumptions are discussed for
describing and calculating the error bounds using the covariance. In particular,
the properties of the map to be approximated and the kernel function of the
GPs are discussed.
Assuming that the covariance reflects the quality of T̃0

t,h(x0), we propose to add
further training points corresponding to a given tolerance of the covariance to
improve the model. Algorithm 4.1 describes this procedure in more detail.

Remark 4.13. It is possible that T̃t,− generated by Algorithm 4.1 still has
areas where the error is greater than a specified tolerance. Thus, we suggest to
use κ̂ to evaluate the result of the S-RTO in Problem (3.8).

Using Algorithm 4.1, we can generate a map that yields the transition time for
different production level changes as required within the S-RTO.
Based on the local model, one can also consider designing a globally-valid
surrogate model for the transition time, which approximates the reduced
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Algorithm 4.2: Global surrogate model of the transition-time map
Input: a reference state xr ∈ Xo, the discretization Dc := {c1, . . . , cnc} of the

production area Co
1initialize the training set Ttot := ∅
2for i = 1, . . . , nc do
3generate the discretization Dδ := {δc1, . . . , δcnδ}, where δcj ∈ ∆ci

4compute the inital state xi = Te
x,(ci−h(xr))(xr) and initialize T 0 := ∅

5for j = 1, . . . , nδ do
6compute Tj = Te

t(xi, δcj) and (Sj)α = ∂δcα T
e
t(xi, δcj)

7update the set T 0 ← T 0 ∪ (δcj , Tj ,Sj)
8end
9compute the final set T using Algorithm 4.1 and T 0

10update the set Ttot ← Ttot ∪T

11end
12build T̃t using Ttot and (4.17)

Result: the global surrogate model T̃t of the transition-time map

transition-time map Tt. The main idea is to interpret the production level h(x0)
from which the transition starts as an additional independent variable. In this
way, we can determine for each production level within Co a locally-valid model.
It is important to note that a globally-valid surrogate model to describe Tt needs
a state-independent system P . The procedure is presented in Algorithm 4.2,
using a reference state xr ∈ Xo from that the initial states for each production
level transition can be determined.

Example 4.4 (Transition Time Map of a Coupled AD- and RSR-Process (4.3
continued)). We continue with the application of the operational strategy to
the scenario from Example 2.5 for our system, which is described in detail in
Appendix B.1. In Example 3.1, we have analyzed the S-RTO, which determines
the new production level after a change of the feed parameter. For this purpose,
we have assumed that we have information on the transition-times for the
individual production levels in the form of a surrogate model of the transition-
time map. In the following, we will describe how this local surrogate model
is generated for at the production level c2 ∈ Co, where the system operates
during the second production phase. The same procedure can be applied for all
production level c ∈ Co.

First of all, we assume that the system is in a steady state of the current
production phase. This state describes the initial point for the individual
transition problems to be solved and ensures that the map is independent of the
state coordinate. The map does not need to be trained on the entire operating
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area Co but only on a subset. This subset of Co describes the feasible area where
the S-RTO can find solutions, and it was already introduced in Example 4.3.
To train an initial map, we choose several production levels covering the area
and solving the transition problem for these points. It is important to include
several boundary points of this feasible area (cf. green area in Figure 4.8), as
the surrogate model should be used for interpolation since no prior knowledge is
assumed. Furthermore, the options and initial values used to solve the transition
problem should be the same as those used online in the operational strategy.
Hence, we need to proceed in the same way as described in the individual steps
in Example 4.3. For the initial training set, we used 30 points, 20 points were
on the boundary, and 10 were randomly distributed over the area.

After the training points are generated, the hyperparameters are optimized. For
this, we use a maximum likelihood estimation, which is a standard approach to
find the hyperparameter. However, we use additional inequality constraints on
the posterior mean to ensure that the trained map only yields positive transition
times. In [172], this strategy was used to identify reachable references. Obviously,
this can only be done for a finite number of intermediate points.
Afterwards the map for the transition time and the standard deviation over
the feasible area is calculated and evaluated. It is possible that there are
subregions where the standard deviation is larger than a given tolerance. For
these subregions, additional training points have to be generated and the map
including the hyperparameter optimization has to be redesigned. This iterative
procedure is repeated until a given quality of the transition-time map is obtained.
In total, 8 iterations were performed, whereby different numbers of points were
added in each iteration, as listed below:

1. iteration: 10 points 2. iteration: 2 points

3. iteration: 3 points 4. iteration: 5 points

5. iteration: 5 points 6. iteration: 5 points

7. iteration: 5 points 8. iteration: 5 points

Finally the map was trained with 70 training points.
Even though the posterior deviation of the GP surrogate model offers no
guarantee that the original map, i.e., the transition Problem (4.9), is well
approximated, it is often used as a measure. The standard deviation only allows
us to assess the validity of the map based on the used training points. In the
literature, one can find methods to assess this, if certain assumptions are true,
see [139, 134]. Nevertheless, we assume that for sufficient training points, the
standard deviation is initially a good measure.
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Figure 4.11: Transition-time map (top, right) and the quality of the surrogate
model (bottom, left) derived from the standard deviation (bottom, right) over
the feasible area of the S-RTO for the feed parameter change (top, left).

Figure 4.11 shows the evaluation of the transition-time map for the feasible area
used to calculate the third transition. In addition, the standard deviation and the
evaluation of the quality of the transition-time map are presented in Figure 4.11
bottom right. The tolerance to decide on the quality is fixed at 10 min. The
areas where this tolerance is met are depicted as green areas in Figure 4.11,
bottom left. Additional points might need to be trained for those areas where the
standard deviation is greater than 10. For instance, additional points for the
upper right corner of the feasible area within Co have to be determined. However,
as we know that the next feed parameter will be the nominal value, it can be
concluded where the S-RTO will roughly determine the production level. It is
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important that the map is most accurate between the current and the expected
point or in a sufficiently large neighborhood around these points.

Similar to Figure 4.8, the heat maps show the trajectory between the production
level immediately before the third transition (i.e., at c2) and the nominal level cn
by a solid white line. Around these two points and along the trajectory, the map
complies with the quality specifications that were previously defined. We can
verify this because the trajectory runs through the green area (cf. Figure 4.11
bottom left), which means the standard deviation is less than 10 min.
Considering the heat map of the transition-time map in Figure 4.11 top right, we
can see that in the direct neighborhood of the initial level, the time to reach the
other points is a few minutes. With increasing change δc of the production, the
transition time also grows significantly. The time to reach the final production
level is T̃ = 85.51 min according to the surrogate model used for the S-RTO and
the correct transition time as determined by the third transition T = 87.57 min.

4.4 Summary of Part II

In Part II, we discussed the operational strategy of a cl S-RTO. This strategy
includes the identification of a production level for the production system
according to an economic objective and considering the transition time
determined by the underlying controller. The original cl S-RTO problem
is a bilevel optimization, where the upper layer is a static, and the lower layer
a dynamic optimization. Using certain assumptions, the cl S-RTO can be
reformulated and separated into a static S-RTO and a dynamic transition
problem. Figure 4.12 shows a roadmap of all terms and problems that are part
of the operational strategy.

In Chapter 3, we addressed the S-RTO, which identifies a new stationary
operating point whenever the economic characteristics change. We have
introduced storage constraints that allow predicting the evolution of the storage
level during the production phase and thus take it into account in the S-RTO.
Furthermore, a locally valid transition-time map T̃t,− is used to estimate the
maximum possible length of the production phase. This map is generated using
the transition problem we developed and discussed in Chapter 4.

In Chapter 4, we focused on the transition to the production level determined
by the S-RTO. First, we mathematically formulated the problem and then
proposed a control law to achieve the transition. The optimal parameters for
this controller can be calculated by an OCP, whose objective is to minimize the
transition time. The result of the transition problem is used in two ways. Firstly,
if the S-RTO provides multiple operating points, we can determine that point
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within Sopl that yields the minimum transition time. This allows defining two
functions providing the new setpoint of the production level and the steady-state
input depending on the current state x ∈ Xo, the storage level ` ∈ D, and the
feed parameter θ ∈ Θ. Secondly, the optimal parameters specify the control
law that steers the system to the new setpoint for the stationary production
level. In this way, we can generate a reference trajectory implemented by the
controller of the supervisory layer. Alternatively, under certain conditions, a
controller K can be defined, which performs the transition and compensates
the internal dynamics.
The transition problem defines the transition-time map Te

t that is used to design
the local surrogate model T̃t,−. Besides, we use K to define the transition-state
map Te

x to determine the states x ∈ X s
o for the production phase. Based on Te

x,
the concept of state independence is defined, which requires two properties for
the composition of Te

x. If one can show that the system is state-independent, it
is sufficient to define a reference state xr ∈ Xo from which the transitions can
be observed. Hence, it is possible to define a reduced transition-time map Tt
and, thus, a global surrogate model T̃t.
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Chapter 5

Storage System Design

In the last two chapters, we discussed the operating strategy to ensure that
the production system P operates at an economic optimum. For this purpose,
we introduced the cl S-RTO and described how to efficiently solve this bilevel
optimization by decoupling it into the static S-RTO and the dynamic transition
problem. For the S-RTO, we have formulated storage constraints that become
active when the storage level is close to the boundaries.
This chapter shows how to design the storage size, such that the storage
constraints do not hinder optimal production. Employing the storage rates and
a certain prediction horizon can determine when the storage elements are either
full or empty. Section 5.1 gives a brief overview of storage sizing in general. In
Section 5.2, we derive the relaxed S-RTO to calculate the optimal operating
point when the storage system has no limiting effect because it is sufficiently
large. By exploiting the relaxed S-RTO, we describe in Section 5.3 how the
minimum storage size can be estimated. Finally, in Section 5.4, we propose a
method to estimate the storage size depending on a given stochastic scenario.

5.1 Brief Review of Storage Design

In process engineering, the use of storage elements and their efficient design is an
important issue, especially when the dynamic operation of processes and process
elements is required. According to the field of application, various names for the
storage elements are common [53, 54]. For compensation of quality properties
within the flow, one uses mixing tanks and neutralization vessels. In contrast,
if fluctuations in the flow rates are to be compensated, the elements are usually

120
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Figure 5.1: Illustriation of the structure of the production system.

referred to as surge, holdup or buffer tanks, or as intermediate storage vessels.
In general, the storage elements can be classified into two different categories
according to their tasks [54, 153].

(i) Attenuation of disturbances: The propagation of disturbances between
two connected elements is damped.

(ii) Decoupling of process operations: The downstream process element can
temporarily be operated independently from the upstream element.

Classical applications of the second category are processes with a partial
shutdown of process elements [34, 35] or scheduling tasks [197, 266]. Typically,
the storage sizes for such applications are predefined in advance, which means
that the operational strategy needs to account for them as constraining elements.
In this way, the operational strategy indirectly influences the levels of the storage
elements. According to the precise target of the control strategy, it affects the
required storage size.

In the present work, we consider a generic setup of two processes that exchange
material and energy via one or more storage devices, see Figure 5.1. The flows
supplying or discharging the storages are determined by the cl S-RTO with
integrated trajectory generation. To guarantee optimal economic operation,
we want to achieve a temporal decoupling of the two processes. The time
span for this decoupling depends on the evolution of the economic influencing
parameters, i.e., on the scenario, and the size of the storages. For this reason,
we focus in this chapter on the relationship between the possible scenarios and
storage capacity.

Faanes and Skogestad [54] state that conventional approaches for dimensioning
the storage system are based on heuristics and rules of thumb for the residence
time, i.e., the relation between volume and flow rate [38, 91]. Nevertheless,
there are several publications that deal with the dimensioning and sizing of
storage elements in specific applications, e.g. for water [227, 46, 26, 255, 214],
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for hydrogen [126, 78, 50], for carbon dioxide [273], for chlorine [208], for thermal
energy [3, 146], or for electrical energy [179, 89, 262, 219]. A characteristic
feature, however, is that the procedures usually address the specific type and
setup of the process system, specific storage technology is assumed, or particular
scenarios (e.g., price developments, etc.) are used. The approaches used in the
publications are often based on simulations. In this context, either a discrete
set of storage sizes is tested and evaluated [273, 208, 219], or a decision is made
according to different scenarios [179, 89] (e.g. using forecasts). In some cases,
optimization-based approaches are also used, e.g., in [126].
However, there is no systematic technique and no general recipe for a strategy,
as is the case with operational strategy from Chapters 3 and 4. Specifically,
the relationship between the performance characteristics of a particular control
strategy and the sizing of the storage elements leads to many interesting
questions.

From a control engineering perspective, the averaging level control problem is
used for managing the storage system for a given capacity, cf. [99, 168, 209].
The objective of an averaging level controller is to provide a smooth output flow
for fluctuating input flows by utilizing the storage capacity. In order to achieve
this, the controller can first change the storage level so that it deviates from its
setpoint to adapt the output slowly and uniformly. Afterward, the controller
returns the storage level to the setpoint to ensure sufficient reserve for further
adaptations. Former work in this field can be found in [33], where P and PI
controllers are used, or in [175, 27], where the focus is on predictive control
techniques. To control interconnected storage elements, Sbarbaro and Ortega
[216] focus on an energy-based description and make use of a passivity-based
control approach. Rosander et al. [209] propose two linear control laws that
imitate the behavior of a robust MPC. The averaging level control allows indirect
minimization of the storage size by controlling the levels, considering the storage
constraints directly. For a given controller, the storage size design is based on
the analysis of particular disturbance models used for the input flow and on
the specification of the maximum allowable variation in the output flow.
Another type of design technique for sizing storage elements for linear systems
is proposed by Zheng and Mahajanam [277] and Mahajanam and Zheng [162].
The authors have defined a controllability index given by the additional storage
capacity required to meet the control objective and constraints in the presence
of the expected disturbances. In order to determine the optimal capacities, an
economic objective function (e.g., annualized cost) is employed for evaluation.

Generally, two different design concepts can be distinguished. In integrated
approaches, the controller tuning and the determination of the storage size
are done simultaneously. Contrary, in sequential approaches, both steps are
performed after each other. The optimization to determine the controllability
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index in [162] considers both the storage capacity and the control system as
decision variables, which leads to an integrated approach. An early work
considering minimizing the storage capacity while determining the control
parameters is presented in [9]. Different control laws and various types of
disturbances for the inlet flow are addressed.
Faanes and Skogestad [54] solve the design problem by a two-step approach.
In this way, a storage element is generally described by a linear system with
a transfer function that modifies the inlet flow disturbance. The first step is
to identify a suitable transfer function by determining its time constant and
its order. Next, a physical realization of the function must be found together
with suitable control parameters so that the controller can handle the modified
disturbances. A slightly different approach is considered by Lee and Reklaitis
[140] or Odi and Karimi [183], who determine the capacity of a intermediate
storage that connects two processes. Here, no controller is used to regulate
storage levels. A similar setup is exploited in Orbán-Mihálykó and Lakatos [185]
and his further works [186, 187, 177]. The process that feeds the intermediate
storage is a batch, followed by a continuous process receiving the material.
While the output flow to the continuous process is assumed to be constant, the
time intervals in which the batch feeds the storage is described by a stochastic
process. Based on the integration of a stochastic ODE, the probability of
reaching the upper and lower bounds can be determined on a finite and infinite
time horizon.
Using this setup of intermediate storage between two processes, in the
works [186, 187, 177], the storage size determination are further discussed.
Thereby, the probability density functions that characterize different aspects
(e.g., the finite shortage time or the overflow time) is described by an auxiliary
function for which an integral equation can be given and solved analytically.
Finally, the analytical solution allows determining the storage size. The authors
also compute the initial amount to be stored to avoid emptying.
Based on the production system P , we consider a similar structure where a
system of storage elements connects two processes. However, in our setup,
both processes are continuous and are described by deterministic models.
Disturbances of the nominal operation and thus fluctuations of the input and
output flows of the storages occur when considering specific scenarios θ ∈ Θ.
To cover a larger class of scenarios, in Section 5.4 we extend the definition of
Θ from Section 2.3 so that it describes a stochastic process. Employing the cl
S-RTO, the storage rates, and thus the evolution of the storage levels, can be
described by a stochastic process. Contrary to the approaches in [185, 186, 187],
we propose the use of an unscented transformation [116] for describing the
probability density of the storage level.
Besides, we do not use an averaging level control technique, as is common when
dealing with storages, to ensure that both processes are weakly connected as
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introduced in Definition 2.3. The cl S-RTO is designed to utilize the full storage
capacity without being restricted by an additional level controller, which pushes
the storage level back to a certain level at regular times and keeps it constant.
The integration and control of the storage levels within the cl S-RTO is intended
to fulfill only two tasks:

1. to restrict the variation around the initial value at the end of the transition,

2. to determine the slope during the production phase,

The technique proposed in this chapter contributes to estimating the storage
size according to probabilistic scenarios for the feed parameter θ. Thus, the
cl S-RTO yields economically optimal operating points to a given probability
without being restricted by the storage elements. It should be emphasized that
the approach described here does not include economic aspects of procuring the
storage, such as investment costs. We show the relation between the economic
parameters affecting the operational strategy and the storage level dynamics
and, thus, the storage capacity.

5.2 Relaxed Static Real-Time Optimization

Before considering the storage size estimation, two further parametric NLPs
for determining the production level are introduced. In this way, we obtain
a tool to analyze the effect of the feed parameter on the storage level and
the storage size. Here, the optimal storage rates are determined by a relaxed
S-RTO resulting from the original S-RTO Problem (3.8) without considering
the storage constraints (3.7).

The overview in Figure 5.2 is intended to illustrate the concepts described in
this section. The blue field in the center summarizes the S-RTO introduced
in Section 3.3. We already discussed the Problem (3.8) as part of the control
strategy applied to the production system during online operation. Due to
the transition time T required to reach a new production level, the maximum
production phase ∆pt is obtained, and the admissible intervals R[∆pt,H]

α
j

for
the storage rates.
Let us consider Problem (3.8) and assume that the transition time T is zero
for all production level changes, i.e., the new level can be reached immediately
and the transition-time map T̃t,· is not necessary anymore. It follows that the
length of the maximum production phase is given by ∆θt, which is a parameter
to characterize the scenario set Θ. The production level optimization with
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Figure 5.2: Roadmap of the concepts introduced to estimate the storage size.

maximal production phase has the form
Sopl := arg max

c, u, x
F (p, c, θ, x) (5.1a)

subject to 0 = f (x, u) , (5.1b)

0 = c− h(x), (5.1c)

0 ≥ s (x, u) , (5.1d)

0 ≥ ω (x) , (5.1e)

ρ α
j (x, u) ∈ R[∆θt,H]

α

j
, (5.1f)

x ∈ X , c ∈ Co, u ∈ U . (5.1g)
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The solution set Sopl :=
{

(cs, us, xs) ∈ Co × U × Xo
}
of Problem (5.1) contains

all operation points that maximize the profit function. Since the transition time
is not required, the current state x ∈ Xo of the system is not longer needed. It
follows that the optimal profit value, as well as storage charging rate are only
depend on the feed parameter θ ∈ Θ and storage level ` ∈ D, cf. Figure 5.2
right-hand side. Note that the storage level enters the calculation of R[∆θt,H]

α

j

as stated in (3.6).
Since the length of the maximum production phase is defined by the length
∆θt of constant feed parameters, for the storage constraints in (5.1f) it holds
R[∆pt,H]

α
j
⊃ R[∆θt,H]

α

j
. Therefore, the optimal profit value of (5.1) is worse

or equal than in the original Problem (3.8). This situation is indicated by the
two diagrams in the center and on the right-hand side in Figure 5.2. There,
the profit is shown in the dependency of the decision variables. The red areas
illustrate the boundaries of the storage constraints R[·,H]

α
j

for a given storage
size D. An increase in the storage size D increases the set of admissible
storage rates. Thus the domain of decision variables for optimization becomes
larger. For sufficiently large storage elements, the result of the S-RTO (3.8) and
Problem (5.1) coincides, cf. Figure 5.2.

When we go a step further and neglect the storage constraints completely, one
obtains the relaxed S-RTO problem of the form

S∞opl := arg max
c, u, x

F (p, c, θ, x) (5.2a)

subject to 0 = f (x, u) , (5.2b)

0 = c− h(x), (5.2c)

0 ≥ s (x, u) , (5.2d)

0 ≥ ω (x) , (5.2e)

x ∈ X , c ∈ Co, u ∈ U . (5.2f)

The solution set S∞opl :=
{

(cs, us, xs) ∈ Co × U ×Xo
}
of this problem is equal to

Problem (3.8) if the storage elements are infinitely large and sufficiently filled.
Consequently, it yields the best possible solution if the storage system is not a
limiting factor. On the left-side in Figure 5.2, this relaxed S-RTO is classified
according to the cases described above. This problem can be interpreted as
S-RTO, where the box constrains for the storage rates are given by [−∞, ∞].
The diagram on the left-hand side in Figure 5.2 shows the profit over its decision
variables.
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To solve Problem (5.2), only the feed parameter θ ∈ Θ must be known. The
profit at the optimal operating point might be greater than in the other two
cases since no restrictions apply to the storage rate.
By comparing the optimal profit value, as obtained by solving Problem (5.2)
and (5.1), we can define for a fixed selling price p ∈ R+ the map

F : Θ×D → R+
0 , (θ, `) 7→ F (θ, `) ,

F (θ, `) := F
(
p,pr1(o1), θ, pr3(o1)

)
− F

(
p,pr1(o2), θ, pr3(o2)

)
,

(5.3)

where o1 ∈ S∞opl and o2 ∈ Sopl are the operating points that can be reached in
minimal time. This map describes the gap between the relaxed Problem (5.2)
and the original Problem (5.1) with a production phase of length ∆θt. The
map is used to evaluate the storage size, as shown in the next section.
For later discussions about the storage size and classification of the set Θ we
define functions that yield the optimal storage rates. These functions are derived
from the solution of (5.2) and are given by

Pr
α
j : Θ→ R, (θ) 7→ Pr

α
j (θ) := ρ α

j

(
pr3(o),pr2(o)

)
, (5.4)

where o ∈ S∞opl. For a given feed parameter, it is possible to determine the
changes in the storage levels from the optimal rates resulting from Pr

α
j .

Considering the admissible intervals (3.6), one can determine the size D α
j so

that the optimal rate Pr
α
j (θ) is just in R[∆pt,H]

α
j
. For this purpose, we use the

interval as it occurs in Problem (5.1), which forms a conservative approximation
compared to the original Problem (3.8). However, the storage levels are also
relevant to calculate the boundaries, so we assume they are half-filled. This
means a maximum distance from the boundaries for the size is assumed. Thus,
it ensures that the design of the storage system and the subsequent setup are
independent of the θ ∈ Θ that initially acts on the system. This procedure
is shown in the bottom section of Figure 5.2. For a given θ, the optimal rate
Pr

α
j (θ) can be deployed for the upper bound in (3.5) which yields the storage

size

D α
j = 2∆θt

∣∣Pr
α
j (θ)

∣∣ . (5.5)

Here, the maximum production phase is set to be ∆pt = ∆θt since the transition
time is zero. The main idea is to start by finding the best operating point
for a given θ, thus determining the corresponding storage rate (5.4) through
the relaxed S-RTO Problem (5.2). Subsequently, the storage size is calculated
to ensure that the interval of storage constraints is large enough to make the
previously determined operating point for Problem (5.1) feasible. In other
words, the size calculated in this way makes the storage restrictions active.
Since this problem represents a conservative estimate of the original problem, it
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is guaranteed that the optimal operating point also belongs to the solution set
of Problem (3.8), cf. Figure 5.2.

Remark 5.1. Similar to Assumption 3.2, it is assumed that the solution of the
two NLPs exists for corresponding parameters. Furthermore, if there is more
than one solution, the operating point that can be reached in the shortest time
has to be selected.

Remark 5.2. In the following and w.l.o.g., the safety boundary ζ α
j of the

element B α
i is set to be zero. After the storage size estimation, the corresponding

values can be added again.

5.3 Minimum Storage Size

The goal of this section is to derive the minimum storage size based on the feed
parameter space Θ. For this purpose, we use the map F to classify the state
space D of the storage level ` and thus define what is meant by the minimum
storage size. Following this classification structure, we can determine the storage
sizes D α

j . First of all, independent of a given scenario θ ∈ Θ only by Θ. The
resulting storage size is the minimum size required to ensure the best economical
operation for a particular level, according to the relaxed S-RTO in (5.2). In
the next section, we extend the storage size to guarantee the best economic
operation for a random evolution of the feed parameter.

For the production system P , the space D has the dimension nB := n1 + n2,
which corresponds to the number of all storage elements. A point ` ∈ D
represents the storage level of all storage elements. Using F, we define a subset
AF of D given by

AF := {ξ ∈ D | F (θ, ξ) = 0, ∀θ ∈ Θ} ⊂ D.

This subset AF is denoted as attractive region for the storage level `. Whenever
F is zero, the storage constraints do not lead to performance deterioration of
the original Problem (3.8) compared to the relaxed S-RTO. From this, we can
derive that the storage systems Bj are well-designed if AF 6= ∅ otherwise, at
least one storage element is too small. In the latter case, all initial levels ` ∈ D
the storage constraints are active within Problem (3.8). In other words, the
production level to be set for the next production phase always deviates from
the optimal level if Bj would be larger.

Next, we address the minimum size, which the smallest size D for which AF

is not empty. For this purpose, we choose again an initial level that has a
maximum distance from the boundaries 0 and D α

j . In this way, we reduce the
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degree of freedom and combine storage size design with the condition for the
attractive region. For the minimum storage size D the requirement

F

(
θ,
D

2

)
= 0, ∀θ ∈ Θ (5.6)

has to be fulfilled. Since F implies the evaluation of two optimization problems,
it is hard to solve this implicit equation directly. However, it follows from the
definition of F in (5.3) that the solution for the relaxed problem has to agree
with Problem (5.1) for a sufficiently large D. This means that for such a D the
storage constraints become active. The relationship between the optimal rates
for a given θ ∈ Θ and the storage size is described in (5.5). Hence the minimum
storage size for B α

j can be calculated as follows

D α
j := maximize

θ ∈ Θ
2∆θt

∣∣Pr
α
j (θ)

∣∣ . (5.7)

In general, this optimization problem holds several challenges, especially if a
gradient method is used. Firstly, the objective function is not twice continuously
differentiable due to the absolute value of the rates. Secondly, the map Pr

α
j

again represents an optimization problem so that (5.7) describes a bilevel
optimization.
For this reason, we will discuss how to reformulate Problem (5.7) in the next
step. First, we will focus on the objective function. Although the optimal value
for D α

j (and thus the maximum absolute value of the storage rate) is of interest,
it is initially sufficient to find θ where this occurs. The special structure of the
objective function makes it possible to determine first

θ̂ α
j := arg max

θ ∈ Θ

∣∣Pr
α
j (θ)

∣∣ .
From this, we can conclude for the storage size that

D α
j = 2∆θt

∣∣∣Pr
α
j

(
θ̂ α
j

)∣∣∣ . (5.8)

So the general idea is first to determine θ̂ ∈ Θ, which yields the highest rate,
and calculate that rate afterward. Nevertheless, it is a bilevel optimization
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problem of the form

θ̂ α
j = arg max

θ ∈ Θ

∣∣ρ α
j (xs, us)

∣∣ (5.9a)

subject to (cs, us, xs) ∈ arg max
c, u, x

F (p, c, θ, x), (5.9b)

subject to 0 = f (x, u) , (5.9c)

0 = c− h(x), (5.9d)

0 ≥ s (x, u) , (5.9e)

0 ≥ ω (x) , (5.9f)

x ∈ X , c ∈ Co, u ∈ U (5.9g)

where the lower-level optimization is identical with Problem (5.2). The upper-
level optimization considers the storage rate of B α

j and is used to identify the
feed quality θ̂ α

j . A common approach to solve Problem (5.9) is to replace the
lower-level optimization with its first-order optimality conditions, cf. [93]. In
this way, the problem becomes a high-dimensional NLP whose decision variables
are given by θ, and the variables of the relaxed problem and by the Lagrange
multiplier resulting from the equation and inequality constraints. However, this
approach has some drawbacks. Firstly, it is possible that the rate functions ρ α

j

are non-convex, which means we have to use a global solver to make a reliable
prediction about the storage size. Secondly, we have to check the sufficient
conditions for the solution afterward, because otherwise, it cannot be guaranteed
that the solution is a profit-maximizing operating point.
For this reason, a derivative-free optimization is proposed, where the gradient
of ρ α

j and the constraints are not necessary, cf. [137]. In particular, we use a
stochastic heuristic for a global optimizer, such as the genetic algorithm [101].
This allows us to approximate the global solution within Θ, but there is no
method to measure the quality of the current optimal solution [181]. However,
since we estimate the minimum storage size, the exact value is not crucial. This
has practical reasons, e.g., a safety margin ζ is added to the storage size, or the
size of the installed storage elements is only available in discrete steps.
As the bounded space Θ of the decision variable is always two-dimensional, the
computational effort for searching in Θ is moderate, regardless of the production
system P . Furthermore, Problem (5.9) is solved offline before the system is
started up so that the computational time is not a limiting factor.

The following algorithm describes the determination of the minimum storage
size by means of a genetic algorithm, adapted from Ferentinos et al. [61]. For a
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more detailed description of genetic algorithms, we refer to [234].

Algorithm 5.1: Determine the Minimum Storage Size
Input: the set Θ and the functions Pr

α
j

1initialize a population P0 := {ξ ∈ Θ}
2for j = 1, 2 do
3for α = 1, . . . , nj do
4set generation index ig = 0
5while ig < ig do
6evaluate fitness of all θ within population Pig using

∣∣Pr
α
j (θ)

∣∣
7choose the best elements according to their fitness
8perform crossover and mutation
9determine Pig+1 using elements after crossover and mutation

10set the index ig ← ig + 1
11end
12determine optimal θ̂ α

j using a genetic algorithm
13compute the storage size D α

j by (5.8)
14end
15end

Result: the minimum storage size D

To obtain the minimum size D, each storage element of Bj has to be analyzed
separately since each element has its maximum rate Pr

α
j (θ) at a different

point in Θ. Note that the condition (5.6) must be fulfilled for a size D, so the
attractive region AF contains at least one point. Figure 5.3 (a) illustrates the
space D with minimum size D for a system with two storage elements resulting
from Algorithm 5.1. For half-filled storage elements, the S-RTO yields the
economically best possible operating point independent of the value θ affecting
the system.

So far we have discussed the minimum size of Bj . However, for ` 6= 0.5D,
there might be values for θ, so that the optimal production level differs from
that of the relaxed S-RTO since the storage constraints become active. The
question arises of how the sizes D α

j = D α
j + D̂ α

j can be effectively increased
by D̂ α

j ∈ R+ without oversizing Bj . In this way, AF is enlarged, as illustrated
in Figure 5.3 (b). If ` is changed during unsteady operation, it is desirable that
afterward, ` ∈ AF applies.
Assuming a symmetrical region and by using the minimum size D α

j , the
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D
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⇒ D̂ 1
1 = D̂ 1

2 = 0

D 1
1
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D 1
2

Minimum storage size
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D̂ 1
1

D̂ 1
2

D
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0 D 1
1

=

D 1
1 + D̂ 1

1

0
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2

=

D 1
2 + D̂ 1

2 Szenario-based storage
size using Θ (χA > 0)

(a) (b)

Figure 5.3: Illustration of the storage size design for a system of two storage
elements.

attractive region region can also be described by

AF =
n1∏
α=1

[
D α

1 −
D̂ α

1
2 , D α

1 + D̂ α
1
2

]
×

n2∏
α=1

[
D α

2 −
D̂ α

2
2 , D α

2 + D̂ α
2
2

]
⊂ D.

Furthermore, we define the attractive ratio χA of entire storage system as
follows

χA :=

n1∏
α=1

D̂ α
1

n2∏
α=1

D̂ α
2

n1∏
α=1

D α
1

n2∏
α=1

D α
2

∈ [0, 1) .

For the minimum size, we have an attractive ratio of χA = 0 because D̂ α
j = 0

holds, see Figure 5.3 (a). An enlargement of AF, and thus, an increase of
χA, is associated with identifying a suitable D̂ α

j ∈ R+. This identification is
achieved according to the θ ∈ Θ scenarios that may occur. In the next section,
we propose a technique for identifying D̂ α

j using a stochatic description of the
scenarios.

Example 5.1 (Minimum storage size for a coupled AD- and RSR-process (4.4
continued)). So far, we have discussed the identification of new setpoints for
the production based on feed parameters (see Example 3.1) and the transition
to these setpoints (see Example 4.3). For this operational strategy, we will
determine the minimum storage size using the space Θ and not any scenarios
(e.g., as introduced in Example 2.5).
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As described above, we determine the minimum storage size based on the relaxed
S-RTO, which was already discussed in Example 3.1 by the case (ii). It
means, we have to determine the storage capacity such that for all θ ∈ Θ
and certain production time, no storage-based restrictions have to be considered
when determining the optimal operating point. The length of this time horizon
is assumed to be 1800min as given in Example 2.5.
This example allows for the reformulation of the internal Problem in (5.9) by the
necessary conditions for the optimality of the NLP. Thus the bilevel optimization
problem became a one-layer problem. Moreover, in the objective function, we
also reformulate the absolute value by the square of the rate, which has no effect
on the position of the optimal point but leads to a differentiable cost function.
Thus, the resulting optimization problem to identify the feed parameter that
yields the highest storage rate can be solved with gradient-based methods. Note,
Algorithm 5.1 is more robust because it only requires the calculation of the
objective function, but it is also more time consuming since many points must
be evaluated.
Similar to the other examples before, we use CasADi/ipopt with the Matlab
frontend to solve the estimation problem. The estimation of storage capacity
has to be done for each element individually, which means that two optimization
problems have to be solved.

We start with the element B 1
1 , which holds the component C, a byproduct of S1.

Figure 5.4 shows the storage rate (in (a)) and the negative objective function
over Θ (in (b)). The span for the storage rate % 1

1 that applies at optimal
production levels is given by [−0.903, 1.312] and is encoded by the color gradient
in Figure 5.4 (a). It can be concluded that for low substrate qualities θ1 and
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Figure 5.4: Storage rate for B 1
1 and its negative square over Θ.
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high prices θ2, the storage B 1
1 is preferably discharged. Indeed, under these

conditions, S2 consumes less C because the process is slowed down, but S1 also
produces less C as it operates below nominal production. Conversely, both
processes achieve a higher output at high substrate qualities and low prices,
which yields an increased production and consumption of C. However, the effect
of S1 is larger, so that the storage B 1

1 is charged in the bottom right area of
Θ, cf. Figure 5.4 (a). In Figure 5.4 (a) and (b), the value θ resulting in the
highest rate during the production phase is marked by a blue dot at the bottom
right corner of the graphs.
For θ = (2.5, 0.75), the storage rate is % 1

1 = 1.312, which implies that B 1
1 is

charged at this point. Using the maximum possible time period for which this
feed parameter value is maintained, it follows that the storage level is changed
by ` 1

1 = 2361.6 mol. It follows that the minimum storage capacity, where the
subset AF exist is D 1

1 = 4.7232 kmol.

Next, we analyze the element B 1
2 , which temporarily stores heat energy generated

during the exothermic reaction in S2. Again, Figure 5.5 illustrates the storage
rate (in (a)) and the negative objective for the estimation of the capacity over Θ
(in (b)). For this element, the span of the storage rate % 1

2 occurring at optimal
production levels is given by [−1.438, 0.953], as shown by the color gradient
in Figure 5.5 (a). As for B 1

1 , the range of storage rates covers negative to
positive values. Thus, at low substrate qualities and high prices, the element B 1

2
is charged, and the storage level rises. This is because S1 requires less energy
since it is economically more efficient to reduce production. The lower energy
consumption is dominant, which can be observed from the fact that the storage
is always charged independent of the price and thus of the production of S2.
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This result coincides with the behavior of the storage B 1
1 . For high substrate

qualities and low prices, the stored energy is reduced as both processes have a
higher production output.
The heat map also shows that this correlation is directly obvious. For
instance, one could assume that the lowest rate would occur if the substrate
quality and price were high. At this point, S1 would probably need the most
energy, and S2 would supply the least, as it is slowed down to a lower level.
Nevertheless, additional factors (e.g., downstream process constraints) ensure
that the production levels cannot be set independently of each other, even if the
storage levels can be neglected for the relaxed case.
In Figure 5.4, the feed parameter, which yields the highest absolute value of the
rate for a production phase, is marked as a blue dot. Again, this value is at
θ = (2.5, 0.75), where the storage rate is % 1

2 = −1.438, and B 1
2 is discharged

at this point. Using the maximum possible time period yields a change of the
storage level by ` 1

2 = −2588.4 kJ. Finally, the minimum storage capacity, where
the subset AF exist is D 1

2 = 5177 kJ.

5.4 Scenario-Based Storage Size

In the previous section, the minimum storage size was determined for which
the storage constraints do not lower the economic outcome. It guarantees
that there exists one point in the feed parameter space, for which the storage
constraints will not be active when starting with storage levels at half of the
minimum storage size. This minimum storage size D is independent of the
feed parameter changes. In this section, we take the feed parameter changes
into account by considering a probabilistic formulation of the scenarios. We
calculate the necessary additional storage size D̂ by which D must be increased
to guarantee the optimal operation of the overall production system with a
predefined probability for a specific time span called the design horizon. In
other words, the goal of this section is to design the size D α

j = D α
j + D̂ α

j of
the storage elements such that the image of the trajectory l : R+ → D lies with
high probability within AF.

Considering Definition 2.14, the set Θ of possible scenarios can be characterized
by means of the tuples θ̂ for the feed parameters and Tθ of corresponding time
horizons. The main idea of the process design is described in Figure 5.6. The
storage size is defined before the production system starts operation. Since
the feed parameter changes during the production are, in general, not entirely
known in the planning phase, we propose a stochastic description of these. For
this, two options on how to proceed in the following can be posed. First, a signal
of feed parameters known from the past can be analyzed, and general properties
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before installing the
production system (offline)

during the operation of the
production system (online)

Figure 5.6: Overview of scenario-based storage size estimation.

can be derived, cf. gray box on the left side in Figure 5.6. These properties are
defined by probability density functions (pdfs) for the duration of constant feed
parameters and the preferred subsets in Θ at certain times. Second, assumptions
can be made directly about the pdfs to describe the scenarios. In this way, we
can describe the future behavior of feed parameter changes. These properties
and the realxed S-RTO in Problem (5.2) are used to design the storage system,
cf. Figure 5.6. The proposed storage size parametrizes the S-RTO Problem (3.8)
and the transition Problem (4.9) for the online operation of the system, as
indicated in Figure 5.6.

In the following, we assume that the characteristic properties describing the
scenarios include a nominal trajectory within Θ, combined with a random
deviation around it. Based on (2.20), we further assume that a scenario is
composed by two signals given by

θ(t) = θn(t) + θr(t), (5.10)
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where

θn(t) :=
nθ∑
k=0

θ̂n
k 1T n

θ k
(t),

is called the nominal scenario and

θr(t) :=
nθ∑
k=0

mk∑
l=0

θ̂r
kl 1T r

θ kl
(t),

the random scenario. For the disjoint time spans T r
θ kl holds that for all T

n
θ k it

exists mk ∈ N such that

T n
θ k :=

mk⋃
l=0
T r
θ kl. (5.11)

We call T n
θ k the k-th season of a scenario. It describes long time periods where

the feed parameter changes around a certain mean θ̂n
k . As given in (2.21), the

length of the time horizons is specified by a lower and upper bound. Thus, from
the definition of the season T n

θ k it follows that for its length l
(
T n
θ k

)
≥ ∆θt

holds. As the feed parameter change can occur at any time, we state that
the length l

(
T r
θ kl

)
of the time span is a continuous random variable described

by an aribitary pdf pt :
[
∆θt,∆θt

]
→ R+. However, we assume that θ̂r

kl are
Gaussian distributed random variables θ̂r

kl ∼ N
(
0, P n

k

)
, where the covariance

P n
k ∈ R2,2 is piecewise constant and changes with the seasons T n

θ k.

Remark 5.3. Even if the production system consists of two independent
processes, it is possible that the two feed parameter correlate with each other.

A production change – based on the operational strategy intervention – should
only occurs if the subsequent production phase is maintained for at least the time
∆s ∈ R+. This condition and the fact that the scenario indicates a particular
system’s operation means that only those scenarios are used for which the lower
bound ∆θt ∈ R+ fulfills the condition

∆θt ≥ sup Te
t + ∆s.

Here, Te
t represents the transition-time map defined in (2.23).

Considering the feed parameter changes as described through (5.10), it can be
deduced that the elements B α

j have to be charged and discharged alternately for
a feasible operation. This requirement avoids that the elements are permanently
full or empty after a certain time, as there is no direct level control. The
following definition specifies this aspect. A key aspect to the success of a
dynamic operational strategy is a frequent change in sign of the storage rates,
which has not been addressed so far and is described in the following definition.
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Definition 5.1 (Feasibility for Dynamic Operation). Given are a well-designed
production system P with a strictly positive attractive ratio χA > 0, the set Θ
of all feed parameters and the functions Pr

α
j as defined by (5.4). The system P

is said to be feasible for dynamic operation under the relaxed S-RTO, if for each
element B α

j there exist two real numbers ξ α

j
∈ R+ and ξ α

j ∈ R+ such that

Pr
α
j (Θ) =

[
−ξ α

j
, ξ

α

j

]
.

The system P needs to be feasible for dynamic operation, otherwise the elements
B α
j can only be charged or discharged within Θ. In other words, the operational

strategy (i.e., cl S-RTO) defined in Chapters 3 and 4 causes strongly connected
processes in the long term according to Definition 2.3. For instance, if only for
one element applies that Pr

α
j (θ) > 0 or Pr

α
j < 0, ∀θ ∈ Θ, then its initial level

cannot be reset without leaving AF. We rely on the following assumptions to
ensure that our proposed operational strategy is applicable.

Assumption 5.1. The system P is well-designed with an attractive ratio χA > 0
and is feasible for dynamic operation.

In order to determine if a system fulfills Assumption 5.1, we refer to the analysis
of Θ described in Appendix B.2. There we propose a technique to classify Θ
according to the signs of the storage rates.
Another aspect resulting from a given scenario is introduced in the next
definition.

Definition 5.2 (Self-Regulation of the Storage System). Let P be a production
system with a non-empty attractive region AF. Assume that the transition
time to reach the optimal production level c ∈ Co given by the relaxed S-RTO
Problem (5.2) is zero. For each element B α

j and for a given time span [0, Tmax],
the self-regulating factor with respect to a certain scenario θ ∈ Θ is defined by
the integral

s α
j (θ) :=

∫ Tmax

0

(
Pr

α
j ◦ θ

)
(t)dt. (5.12)

We call B α
j self-regulating with respect to the scenario θ and Tmax ∈ R+, iff

s α
j (θ) = 0 and otherwise not self-regulating with grade s α

j (θ).

The self-regulating factor describes the change of the storage level along a
sequence of feed parameter changes and is highly dependent on the scenario θ.
For instance, the storage level at time Tmax is given by l (Tmax) = l (0) + s α

j (θ).
The assumption within Definition 5.2 is no direct restriction for self-regulation
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if the length of the production phase is much longer than the transition phase.
Otherwise, the transition time and the size of the terminal region within D for
the transition has to be included.
Since we only consider special types of scenarios given by piecewise constant
functions (i.e., (5.10)), (5.12) can also be formulated as series. Deploying the
nominal scenario in (5.12), the self-regulating factor reads

s α
j (θn) =

nθ∑
k=1

l (T n
θ k) Pr

α
j

(
θ̂n
k

)
. (5.13)

This nominal self-regulation factor (5.13) is generally not equal to that one
calculated by averaging Monte Carlo simulations for different realizations of
T r
θ kl and θ̂

r
kl . However, we use it as an approximation to describe the following

concepts. Later in this section, we show that the mean of the self-regulating
factor is obtained by employing the scenario-based storage design.

The storage size needs to be designed according to a design horizon ∆d ∈ R+

for which the storage level has to stay within AF with a certain probability. For
this horizon, the probability distribution around the nominal trajectory and
thus about the preference of certain regions within Θ needs to be known. The
design horizon ∆d is characterized by the nominal scenario θn and, thus, by
the upper bound ∆θt. More precisely, the longer a given feed parameter value
remains constant, the larger the storage elements need to be to avoid additional
disturbance from an operational change.

Next, we focus on the nominal scenario θn, which is uniquely determined by
the tupels θ̂n and T n. Moreover, the tuple θ̂n is restricted by demanding that
there exists an n̄θ ∈ N, called cycle length, so that for all components θ̂n

k holds
θ̂n
k = θ̂n

k+n̄θ and P n
k = P n

k+n̄θ . Using this cyclic property, the concept of a
sequence is introduced, which describes the order of transitions. A sequence is
defined by the feed parameters that occur within a longer time period starting
at θ̂n

k . In general, we write for a sequence that starts at θ̂n
k and has the length n̄θ

θ̂n
k 7→ θ̂n

k+1 7→ . . . 7→ θ̂n
k+n̄θ−1 7→ θ̂n

k+n̄θ .

=

The resulting nominal trajectory is closed as illustrated in Figure 5.7 (a) by the
red line for n̄θ = 3. The trajectory in this example goes through several subsets
of Θ that are elements of a partition Π. This partition describes if the storage
elements are charged (+) or discharged (-). A more detailed explanation of how
to obtain this partition and the separating curves (displayed in solid black line)
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Figure 5.7: Schematic representation of scenario-based storage sizing.

is given in Appendix B.2.
For the sake of simplicity, we set k = 1 and use the brief notation 1 7→ . . . 7→
n̄θ 7→ 1 for the sequence using the indices. Based on this sequence, we define a
cyclic permutation given by the n̄θ-cycle (1 . . . n̄θ), see [141]. We will need this
permutation later to make the estimation method independent of the initial
feed parameter. For reasons of readability, the cyclic permutation is represented
in a compact fashion by the permutation map

π : {1, . . . , n̄θ} → {1, . . . , n̄θ} ,



SCENARIO-BASED STORAGE SIZE 141

where π := (1 . . . n̄θ). For the n-times composition of π we can write

πn := π ◦ . . . ◦ π︸ ︷︷ ︸
n-times

.

Furthermore, it applies that π0(i) := i. Due to the definition of π, it is easy to
see that πn̄θ+1 = π. Using π, a new sequence can be determined by rotating
the initial feed parameters. In total, there are n̄θ sequences, where the k-th
element starting at i is given by πk(i).

Example 5.2. Consider a scenario with three feed parameters as mean θn for
θ corresponding to the sequence 1 7→ 2 7→ 3 7→ 1. This means that if we start
at feed parameter 1, we go to 2 and then to 3 and finally back to 1. For the
permutation map we obtain π := (1 2 3) such that π(1) = 2, π(2) = 3 and
π(3) = 1. A 2-times composition yiels π2(1) = 3, π2(2) = 1 and π2(3) = 2.
That means, if we start now with the feed parameter 3, it goes next to 1, then to
2 and finally back to 3.

Next, we consider the tuple T n, whose components are time intervals of the
seasons with varying lengths. In contrary to θ̂n

k , the lengths of the seasons
are not periodic, i.e. l (T n

k ) 6= l
(
T n
k+n̄θ

)
. This is due to the fact of (5.11)

and that the length of each time horizon is determined by a pdf fT. The
season length is calculated according to (5.11) as the sum of the individual
lengths of the respective time periods T r

θ kl. Considering the distributions of
the lengths l

(
T r
θ kl

)
, the distribution ps,k of the k-th season length is obtained

by convolution of pt, see [127, 128]. Since the number mk of time subhorizons
can vary with each cycle, we assume that there is an average number m̄k ∈ N
of production changes for each season. In this way, the number of convolutions
to derive the distribution ps,k is determined through ps,k := pt ∗ . . . ∗ pt︸ ︷︷ ︸

m̄k-times

.

Based on ps,k we introduce a characteristic length ∆ts,k of the k-th season,
with m̄k∆θt ≤ ∆ts,k ≤ m̄k∆θt. According to the specification for the storage
estimation and the information about pt this length can be given e.g. by the
mean of ps,k or by the upper bound of the interval. For n̄θ seasons, the design
horizon can be determined by

∆d := z

n̄θ∑
k=1

∆ts,k,

where z ∈ N indicates the number of repetitions of the cycles to be addressed.

Finally, we will discuss the determination of the storage capacity based on
θn. The basic idea is – starting from an initial storage level – to determine
the box constrained region where the time evolution of the storage level `
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occurs with a certain probability and over a certain time period. Since we are
only interested in the box size, it is assumed that the initial storage level is
l (0) = `0 = 0. The considered design horizon ∆d, has a direct effect on the box
size. We propose to use z ≥ 1 to determine ∆d, depending on the individual
season lengths. In this way, it is necessary to find a trade-off between the time
period in which economically optimal production levels are guaranteed and
the related investment costs of the storage elements. In case the system is
self-regulating (

(
s α
j (θn) = 0

)
) or can be brought to self-regulation by varying

the system parameters, the problem simplifies, such that z = 1.

Let us return to the design process and consider a given nominal scenario θn.
This is fully described by the individual mean values θ̂n

k , the corresponding
covariances P n

k and the average number m̄k of production changes per season k.
The evolution of the storage level within each season is determined by Pr

α
j and

those feed parameters that live around the mean during that season. Based on
the assumption of a Gaussian distribution for the feed parameters within each
season, we can determine the mean rate constant within a season. Moreover,
we consider the storage level only at the end of each season, i.e., at discrete
time steps. Starting in the i-th season, the mean values of the storage levels of
each element at the end of season πk(i) are given by

(`k+1) α
j = l α

j

(
k∑
l=0

∆ts,πl(i)

)
= (`k) α

j + (∆`k) α
j , (5.14)

where the means of the level change are calculated by

(∆`k) α
j := ∆ts,πk(i)M

[
Pr

α
j

] (
θ̂n
πk(i), P

n
πk(i)

)
.

Here, M[Pr
α
j ] is the mean function of the unscented transformation applied

on the storage rate Pr
α
j , which is introduced in (A.7), see Appendix A.4. By

Definition 5.2, a storage element is called average self-regulating, if (`n̄θ )
α
j = 0.

Remark 5.4. From the definition of the mean function follows that

∆ts,πk(i)M
[
Pr

α
j

]
= M

[
∆ts,πk(i) Pr

α
j

]
.

Therefore it is not important to determine the average rate and then the average
storage change or if the latter is determined directly.

To estimate the size of B α
j , however, not only the final storage level is of interest,

but all possible intermediate levels. The function V [·] for the standard deviation
in (A.8) of the unscented transformation offers a useful tool for estimating this
region. From this, the storage size can be described by a (total) hypercube
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T H ⊂ RnB , which is the smallest axis-parallel outer envelope of the covariance
ellipsoid around the mean value determined by M[·], see [23]. The dimension of
T H is identical to the number of storage elements. In general, we require that
the evolution of the storage level has to stay with a certain probability within
T H during the time horizon [0, ∆d]. In other words, the task of estimating the
storage capacity is determined by the following problem.

Problem 5.1 (Estimation of the storage size). Let P be a production system
with the profit function F and let θ ∈ Θ be a scenario for the feed parameter. For
a given probability pset and design horizon [0, ∆d], find the smallest hypercube
T H such that for the probability holds

P
(

l (t) ∈ T H
)
> pset, ∀t ∈ [0, ∆d] ,

where l (0) = 0 ∈ RnB .

Remark 5.5. It should be noted that Problem 5.1 is formulated for a general
scenario, but in the following, we focus on the scenarios given by (5.10).

The hypercube T H is specified by its boundaries through

T H :=
[
bt, bt

]
,

where the lower and the upper bound bt ∈ RnB and bt ∈ RnB are constructed
componentwise by analyzing the effect of the nominal scenario θn on the optimal
storage rates. For this purpose, we consider the set of initial values from which
a level change in the πk(i)-th season starts through

IHπk(i) :=
[
`k, `k

]
.

Since the storage level is known when the storage systems Bj are started up,
it can be stated that `0 = `0 = 0. To obtain the individual boundaries, we
use the unscented transformation introduced in Appendix A.4. In addition to
the mean function (A.7), the variance function (A.8) plays an important role,
because it can be used to describe a confidence interval for each storage element
containing the initial values for the next season. The boundaries of IHπk(i) at
the end of season πk(i) are determined by the distribution of the storage level
at that time. More precisely, the boundaries are obtained from the sum of the
mean values and the variance up to this season. Finally, we write(

`k+1
) α
j

=
(
`k+1

) α
j
− Zpset

(
Sk+1

) α
j
, (5.15a)(

`k+1
) α
j

=
(
`k+1

) α
j

+ Zpset

(
Sk+1

) α
j
, (5.15b)
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where the mean of the storage level at the end of season πk(i) is given by (5.14),
and its standard deviation is calculated by

(
Sk+1

) α
j

=

√√√√ k∑
l=0

V
[
∆ts,πl(i) Pr

α
j

] (
θ̂n
πl(i), P

n
πl(i)

)
. (5.16)

Here, the parameter Zpset ∈ R+ is used to scale the standard deviation to the
desired probability level pset as specified in Problem 5.1. The function we use
to calculate the variance by the unscented transformation is the rate multiplied
with the corresponding time, i.e., this function yields the storage level change
directly.

Remark 5.6. Using the unscented transformation, the distribution of the
storage level change is approximated by a Gaussian distribution from that
one of the feed parameters by determining the mean value, and the variance
for each element. The sum of the individual storage level changes is again
a random variable. Hence, their distribution at any discrete time is given
by the convolution of the individual distributions. However, since these are
Gaussian random variables, their sum is again a Gaussian distribution in which
the parameters (mean and variance) result from the sum of the individual
distribution parameters. Indeed, it is necessary to validate this approximation
for a given system and to evaluate the error that may occur. In general, this is
not systematically possible due to the nature of the functions Pr

α
j .

In Figure 5.7 (b) the evolution of the hypercube of the initial values is illustrated
using a system with two storage elements. Starting from the zero level, the
storage levels at the end of season 1 = π0(1) or at the beginning of season
2 = π1(1) are located in the ochre rectangle. The length of the edges results
from the difference between the upper and lower boundaries IHπk(i).
Considering (5.15), the boundaries at the end of each season depend on the
season i, from which the cycle begins, and the individual seasons (numbered by
the index k), which successively contribute to the storage level change. After a
certain number z of cycle repetitions has been completed, the traversed region
can be determined componentwise by analyzing the minimum and maximum
boundary values. In this way, the seasonal hypercubes SHi can be defined,
where i indicates that it was started in season i. Figure 5.7 (c) illustrates
this process and also the corresponding region after one cycle (z = 1). The
black line in Figure 5.7 (c) indicates the evolution of the mean of the storage
level. The final level (green dot) for B 1

1 is higher than the initial level, which
means that this element is not self-regulating, and the level will increase on
average. In contrast, B 2

1 has reached the initial level after one cycle, making it
self-regulating.
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Finally we have to go through all possible seasons as initial point to make the
result independent of the initial feed parameter of the path. This procedure is
shown in Figure 5.7 (d). Again, the black lines indicate the evolution of the
mean of the storage level starting at different seasons. The final level (green dot)
is independent of the initial season. The lower and the upper bound bt ∈ RnB

and bt ∈ RnB is obtained by analyzing the minimum and maximum boundary
values over all seasonal hypercube SHi. It follows that the total hypercube
T H is the smallest hypercube that encloses all SHi. The following algorithm
describes the construction of the SHi and T H.

Algorithm 5.2: Obtain smallest axis-parallel hypercube
Input: the tupels θ̂n and P n, a probability pset and a design horizon by a

number z of repetitions
1initialize the set B α

t j := ∅ of total boundaries,
2determine Zpset from pset by lookup tables or integration,
3for i = 1, . . . , n̄θ do
4initialize the set B α

l j := ∅ of local boundaries
5for k = 1, . . . , zn̄θ do
6compute IHπk(i) using (5.15),
7update B α

l j = B α
l j ∪

{
(`k) α

j ,
(
`k
) α
j

}
8end
9calculate b α

l j := min
(
B α

l j
)
and b α

l j := max
(
B α

l j
)
and

10define the seasonal hypercube SHi :=
[
bl , bl

]
11update B α

t j = B α
t j ∪

{
b α
l j , b

α

l j

}
12end
13calculate b α

t j := min
(
B α

t j
)
and b α

t j := max
(
B α

t j
)
and

14define the total hypercube T H :=
[
bt, bt

]
Result: the total hypercube T H with the lower and upper bound bt and bt

Finally, we can update the minimum storage capacity derived in Section 5.3 by
the additional space of the total hypercube T H. However, the boundaries bt
and bt do not necessarily have to be symmetrical, so our approach to calculate
the additional scenario-based capacities is given by

Dθ
α
j

:= 2 max
(∣∣b α

t j
∣∣ , ∣∣∣b α

t j

∣∣∣) . (5.17)

This yields for the entire storage capacity

D α
j = D α

j +Dθ
α
j
. (5.18)
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The hypercube within D, which is symmetrically located around the center and
has the corner length Dθ, describes the subset AF.

Remark 5.7. The additional scenario-based capacity Dθ is one candidate for
a suitable D̂ introduced in Section 5.3.

Example 5.3 (Storage size for a coupled AD- and RSR-process (B.2 continued)).
In the following we want to estimate the capacity of the storage and thus AF

based on certain scenario characteristics. For this purpose, we use the scenario
already introduced in Example 2.5 and extend it according to the approach
described in this section given in (5.10). The key idea is that, even though we
do not know exactly which feed parameter will be set at which time, we can
describe the scenarios by probability distributions. With this additional structure
for the set Θ of scenarios, we perform the estimation of the storage capacity on
a subset of Θ, which still contains infinite functions.

In this context, we describe the total scenario θ using a nominal and a random
scenario. The nominal scenario θn gives us rough information about where the
feed parameters to be realized are located at certain time periods called seasons.
To define θn we use the tuple θ̂ from Example 2.5 from (2.25a). The elements
of this tuple are interpreted as mean values, each belonging to a season and
valid for that particular time period. From θn we conclude that 3 seasons are
used. However, the length of these seasons depends on the distribution of the
lengths of the subseasons for which the feed parameters are constant and on the
average number of changes taken into account.

For the following analysis, we considered 100 cycles of the nominal scenario,
with all random variables determined by a random generator. Such an analysis
can be carried out, for instance, using measurement data obtained in advance,
i.e., before the storage system is designed.

We assume that the length of the subhorizons with constant feed parameter is
given by a two-sided truncated exponential distribution tExp(λ)

pT,i(t) :=


e
−(t−500)

λi

λi

(
1− e

−(1800−500)
λi

) t ∈ [500, 1800] ,

0 t /∈ [500, 1800] ,

(5.19)

where each season has its own mean parameter λi ∈ R+. The subdomain
[500, 1800] of fT,i is chosen according to Example 2.5. On the left hand side in
Figure 5.8, the distributions pT,i are shown, where the data of the 100 cycles
are represented by a normalized histogram in blue. In addition, the curve of
the pdf from the analytical formula is shown for each season as solid black
line. The mean parameters λi of (5.19) can read from Table 5.1 as well as the
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Figure 5.8: Distribution of the time length of the production phase and the
seasons.

average number of production changes per season to be assumed. This table also
shows the minimum and maximum lengths that have occurred during the 100
cycles with all subseasons. The higher λ, the higher is the probability of longer
periods for which the feed parameter is constant. Based on the characteristics of
tExp(λ), the mean value of tExp(λ) can be determined from the mean parameter
of tExp(λ). For a distribution only bounded by the lower bound of 500min, the
seasonal mean value is given by 500min+λi. The mean value of the two-sided
truncated distribution in (5.19) is calculated numerically with Matlab. These
values are listed in Table 5.1 together with the mean value determined from the
data. It is easy to see that the values from the data differ from the true mean
value, cf. in th fifth row.

Finally, we want to use the information how long the feed parameter is in a
certain subset of Θ to determine the mean storage change.
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The pdf of the season length can be derived from that of the subseasons, since it
is a finite sum of random variables. In general, the pdf of the sum of random
variables is determined by convolution of the individual pdfs, which is related to
high computational costs, especially if this operation is to be done several times.
However, there exist analytical expressions for a large number of distributions.
For this purpose, we assume for a moment that the upper bound in (5.19) does
not exist and we have a one-sided truncated pdf. The distribution resulting
from the sum of n random variables with this pdf is a one-side truncated Erlang
distribution tErl(λ, n). For the i-th season, its pdf is given by

pS(t) :=

 λi
−ni (t− ni500)ni−1

(ni − 1)! e−
(t−ni500)

λi t ≥ t− ni500,

0 t < t− ni500,
(5.20)

using the lower bound from (5.19). We use (5.20) to approximate the true
distribution formed from the two-sided truncated one. On the right hand side
in Figure 5.8, the normalized histogram of the individual seasons based on the
data of the 100 cycles is shown in blue. Besides, the one-side truncated Erlang
distribution curve is shown in black to assess how accurate the approximation
is. Similiar to the subseasons the minimum and the maximum length of the
season for the 100 cycles is given in Table 5.1. Figure 5.8 shows that the
pdf of tErl(λ, n) is influenced by the average number of production changes
per season and the rate parameter. Thus the lower boundary naturally shifts
with the average number of subseasons, whereas the rate parameter determines
the width of the unimodal distribution. From (5.20) the mean can determined
by niλi. Table 5.1 shows these mean values of both tErl(λ, n) and the data
from the 100 cycles. Moreover, using Matlab, the mean value of the two-sided
truncated Erlang distribution can also be determined numerically with the help
of a Gamma distribution. We can see in the eighth row of Table 5.1 that the
approximation of the mean via tErl(λ, n) is sufficient for the given parameters.
It can be shown that with increasing parameter λ also the deviation between t1
and t2 is growing. Finally, the last row in Table 5.1 also gives the error between
the mean determined by tErl(λ, n) and the data.

After discussing the distribution of the lengths of the subseasons, we now focus
on the distribution of the θ values, which describe the dispersion around the
mean values in θn presented in Table 5.2. We assume that the feed parameter
that occurs can be described by a time-dependent Gaussian distribution. The
mean value is used for the nominal scenario θn in (5.10). The random scenario
θr takes the information about the standard deviation to describe the variation
around θn. In Table 5.2 the standard deviations valid within each season are
given. Figure 5.9 shows the total scenario θ for the 100 cycles by the grey lines
and the nominal scenario by the blue blue lines within Θ. Furthermore, the
nominal values and the covariance ellipsoids are depicted. Such a scenario type
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Table 5.1: Summary of the information obtained from the distribution of time
horizons for which the feed parameters are constant. The theoretical values
from the one-side (t1) and two-side (t2) truncated distribution as well as from
the given data (d) are represented. All time related data is presented in minutes.

1. season 2. season 3. season
Double truncated exponential distribution

Mean parameter λi 100 150 200
Average production change per season 10 7 10

Minimum length of the subseason 500.09 500.14 500.77
Maximum length of the subseason 1326.9 1492.4 1771.5

Mean length of the subseason (t2/d) 600.0/ 600.4 649.8/ 656.5 698.0/702.3
Erlang distribution

Minimum length of the season 5424.1 3795.0 5885.6
Maximum length of the season 6812.9 5818.4 8874.6

Mean length of the season (t1/t2) 6000/ 6000 4550/ 4550 7000/ 7000
Mean length of the season (d) 6004 4595 7023

Error (between t1 and d) 0.06% 0.99% 0.33%
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Figure 5.9: Random-based scenario (grey lines) within Θ. The nominal scenario
is represented by th blue lines.

can be derived from the analysis of the electricity price on the electricity market
or from more precise information on the origin of the organic substrate.
The solid black in Figure 5.9 partitions the feed parameter space Θ into a region
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where the first storage is emptied, and the second one is filled (-+) and its
complement (+-). Further details on this partition can be found in Example B.2
in Appendix B.2. Compared to the previously discussed scenario, the production
system will now be operated over a longer time period according to the economic
characteristics of the respective section. This means that the storage elements
are now charged or discharged over a longer time span before they operate in
the reverse direction. Hence, we can conclude that the storage capacity has to
be chosen larger than in the examples before.

Table 5.2: Summary of the information obtained from the distribution of the
realization of the feed parameters.

1. season 2. season 3. season
Gaussian distribution
Mean of the feed parameter (2.0, 1.0) (2.4, 0.8) (1.7, 1.2)

Standard deviation of the feed
parameter

(0.038, 0.030) (0.035, 0.035) (0.025, 0.025)

We use Algorithm 5.2 to estimate the smallest size so that the storage level
remains within AF with a predefined probability. For this purpose, the individual
seasons are used successively as initial points to determine the seasonal
hypercubes SHi as shown in Figure 5.10 (a) by dark green areas. The parameters
used for this analysis are presented in Table 5.3.

Table 5.3: Summary of the parameter used to estimate the storage capacity.

Probability pset for confidence interval 95.45%
Design horizon by repetition number z 1

Design horizon by time ∆d 17, 550 min/ 12.18 d
Sigma-point parameters (α, β, κ) (0.5, 2.0, 0.0)

If the production system is started in season 1, only small fluctuations of
the storage level around the initial value would occur. Afterwards, the feed
parameters, which determine the system operation in season 2, ensure that
the storage levels in B 1

1 increase while they decrease in B 1
2 . Finally, the feed

parameters in season 3 will bring the level back close to the initial level. This
is illustrated by the black curve in Figure 5.10, where the storage levels at the
end of each season are marked by the black points. In Figure 5.10 (b), the final
space D is shown composed by the minimum and the scenario-based size. Here
the blue square and the green circle represent the initial and the final level.
Independent of the season in which the operation begins, the final storage level
is reached again on average. However, the paths are different, which has an
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Figure 5.10: Schematic illustration of the scenario-based construction of the
storage size.

effect on the capacity. Thus, if the operation starts in season 2, the storage level
moves first to the lower right corner in T H or in D. Conversely, a production
system that starts its operations in season 3 would initially move the level to
the upper left corner in T H or in D. For this reason we can see this spatial
separation of the seasonal hypercubes SH1/SH2 and SH3.
The fact that the hypercube SH1 and SH2 are similarly positioned has two
reasons. Firstly, the feed parameters around the nominal value cause only minor
level changes, which indicates a good process design as they are well suited to
each other. Secondly, the operation strategy and the distribution around θn
ensures that B 1

1 is preferably charged and B 1
2 preferably discharged.

After the seasonal hypercube is determined, the total hypercube T H can
be determined as the smallest outer axis-parallel envelope illustrated in
Figure 5.10 (a) by the light beige area. The boundaries for T H are given
by

bt = (−6542.5, −7292.8) and bt = (6808.5, 7218.9) .

Due to the fact that each season was used as initial point, the lower and upper
boundary has to be relatively symmetrical the closer the final level is to zero. In
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our case, the deviation from the initial value is

l (∆d) = (119.8, −18.4) .

Thus, we can conclude that even after several cycles, the storage levels remain
in AF with a high probability. This means that the storage restrictions do not
become active when new production levels are calculated and that the storage
system does not negatively influence the optimal operating point.
Using (5.17), we obtain for the additional storage capacity

Dθ = (13.6169 kmol, 14585.7 kJ) .

Hence, the total storage capacity is given by

D = (18.340 kmol, 19761 kJ) ,

where we use the result for the lower storage capacity from Example 5.1. The
right hand side of Figure 5.10 (b) shows the entire storage space D with the
subspace AF in green, where the time evolution of the storage levels occurs. As
can be seen, the storage level never leave AF, which underlines that the designed
storage has a suitable size. The attractive ratio for our system achieved by this
sceanrio is given by χA = 0.548.
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Chapter 6

Conclusions and Perspectives

To face the growing challenges of our time, it is crucial not only to operate
chemical process networks in an economically optimal way but also to consider
fluctuating factors that affect the operational costs. For this purpose, the
consideration of storage elements is decisive. Modern operational strategies
must explicitly account for the storage capacities and the current storage levels
to avoid emptying or overflowing the storages over desired planning horizons.
Moreover, the storage capacities have to be designed not to restrict the optimal
operation negatively. For this purpose, the storage design must be tailored to
the operational strategy to be used.
Optimal and interconnected operation and storage design can be achieved by
an optimization-based operational strategy that addresses various constraints
and the process and storage dynamics. This storage design requires quantifying
the fluctuating factors and analyze their effect on the production system, taking
into account the operational strategy.

This thesis proposes concepts for an optimization-based operational strategy and
the design of storage capacities. A generic production system consisting of two
parallel processes connected via storages is considered to develop these concepts.
We described and defined the production system in general mathematical
form and addressed the individual components, such as storage rates, product
quality, and downstream process constraints. In particular, this includes a
characterization of the economic objective function, which we described using
a hybrid semiparametric model. This hybrid model defines the profit of the
production system, whereby the operational costs of the individual processes are
described by Gaussian processes depending on the feed parameters as economic
measures. In this way, the objective function can be trained using uncertain
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data from a detailed economic model or experience. Furthermore, we discussed
the structure of the time horizon in terms of frequency of feed parameter
changes and time constants of the production system. We pointed out that the
production system always changes between transition and production phases.
As a result, the need for an operational strategy continuously redefines the
production levels and provides a control policy to steer the system towards these
new points in minimal time. We refrain from using an averaging level controller
for the storages since this would couple the process operation. Instead, we
considered an unsteady operation of the storages, which requires a concept for
designing storage capacities.

6.1 Operational Strategy

One main contribution of this thesis is the development of an operational
strategy for an unsteadily operating production system. The operational
strategy proposes optimal operating points as well as the transition between
those in minimal time. To do so, we proposed a closed-loop static real-time
optimization (RTO) with integrated trajectory generation. The conceptual
idea behind this approach is to determine the production level by a static
RTO, where an underlying dynamical optimal control problem (OCP) has
to be solved. The OCP provides the transition time to the new production
level to predict the evolution of the storage level, thus avoiding premature
emptying or overflowing. Since this bilevel optimization problem is complex and
computationally demanding, we solved the layers separately. For this separation,
we introduced storage constraints, which refer to the storage rates within the
static RTO to restrict the slope of the storage level dynamics. Moreover,
constraints on the terminal storage levels are included within the dynamic OCP
to make the static RTO feasible. Furthermore, we use the transition-time map
to transfer the transition time from the dynamic OCP to the static RTO. These
constraints and the transition-time map enable an efficient implementation of
the proposed closed-loop static RTO.
The following five items summarize the contribution to the operational strategy.
Moreover, we give an outlook on possible future research directions in the
individual subtasks.

1. Static RTO. We presented a static optimization to determine a new
production level, which maximizes the profit of the production system. In this
optimization, the storage level is predicted by considering the storage rates.
The restriction of the rates guarantees a feasible operation for a particular time
for unsteadily operating storages.
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Outlook: The static RTO is formulated in the original coordinates of the system.
In future works, the coordinates used for the controller design could be utilized
for the RTO. In this way, some states are fixed to zero, which reduces the
number of equality constraints and potentially the computational time.

2. Controller for transition. We develop a control law for the transition phase
based on a partial system inversion and a novel setup function. This function
guarantees a smooth connection of two operating points and allows a suitable
adaptation of the trajectory between them to ensure different process and system
constraints. The optimal parameters for the setup function are determined by
solving a dynamic OCP where the transition time has to be minimized.
Outlook: For a real application, it is necessary to analyze the robustness of the
transition controller. Primarily this concerns the fact whether the transition
starts from the stationary state or not. Of particular interest is the sensitivity
of the transition times to the initial states, which can be analyzed by future
works.

3. Trajectory generation. The trajectory generation is achieved by integrating
the system model employing the control law and the optimal parameter obtained
by solving the dynamic OCP. The accuracy of the trajectory can be arbitrarily
set and is determined by the step size of the integration. Thus, a transition in
minimal time is achieved.
Outlook: This thesis did not explicitly discuss the control architecture of the
supervisory layer in order to achieve a trajectory from the RTO layer. A further
step of the operational strategy would be designing a control law, which applies
the given reference trajectory accurately while ensuring disturbance rejection.

4. Controller for transition & production. For minimum-phase systems, we
designed a control law for the transition and production phase to compensate
the internal dynamics after reaching the stationary production level. This
procedure ensures that the production level remains constant at its optimal
setpoint.
Outlook: An extension of this control law could be derived to address non-
minimum-phase systems.

5. Transition-time map. To provide transition times for the static RTO,
we presented an algorithm to generate a surrogate model for the transition-
time map utilizing a Gaussian process. This map enables the computation of
the minimum transition time via interpolation between explicitly given data
points. Consequently, the OCP does not have to be solved simultaneously with
the S-RTO. We briefly touched on the concept of globally and locally valid
transition-time maps.
Outlook: An essential point that must be investigated in more detail is the
accuracy of the map. This involves the question of how many training points are
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needed and where they have to be located. Also, the transition-time map offers
a good tool to analyze the dynamic properties of a process. This enables us to
identify areas with higher inertia to production changes and study the causes
more precisely. Unfortunately, there is still no precise condition as to whether
a globally valid transition-time map can be generated for a given production
system.

The novel aspect of our operational strategy is combining the classical approach
of static RTO with the closed-loop behavior of the underlying control system.
In this way, the static RTO result depends on the controller implemented to
reach the new operating point. This concept of a closed-loop S-RTO provides
two major benefits:

1. The operating point defined by the bilevel closed-loop S-RTO is reachable.
In this case, it is not necessary to consider additional techniques such as
the two-stage approach at MPC layer [271, 166, 200].

2. The closed-loop S-RTO allows predicting the future behavior of unsteady
states of the production system while including information from the
controller. This information can not be applied in classical S-RTO
approaches.

This second point allows us to consider storage levels that change over time
explicitly. This, in turn, enables higher degrees of freedom in operation and
results in optimal operation of the overall production. In general, the static RTO
is suitable if the profit of the operational point computed without considering
constraints arising from coupling is higher than that of the operational point
considering a strong coupling.
An essential aspect that is not yet been integrated into the operational strategy
is evaluating whether a transition is necessary. For this purpose, it is important
to assess if the profit of the new production level will compensate for the
transition costs. Considering a given stochastic scenario, we observed that
the initial storage level is probably not precisely reached again after frequent
operational changes, even if the trajectory of the feed parameter is a closed
cycle in Θ. Hence, it is crucial to circumvent the original objective of static
RTO after a particular time to return the storage levels to a defined initial
value. This recovery mode of the RTO has not yet been addressed and designed.
Likewise, we have not yet discussed when such a mode needs to be performed.
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6.2 Storage Design

The second main contribution of this thesis is the design of storage capacities,
which takes the proposed operational strategy into account. In particular, we
use a relaxed version of the static RTO to define a function that provides the
optimal storage rates depending on the feed parameter.
The controller affects the S-RTO if the storage level is nearly at the lower
or upper boundary of the storage space. Only in this case, the prediction of
the storage behavior within the production phase has a restrictive effect on
the optimization result. For this reason, we defined a relaxed RTO without
constraints for the storage rates as a reference as it describes the optimal
production level to be achieved if the storage is not limiting. The following
three items summarize the contribution to the storage design utilizing the
relaxed RTO.

1. Structuring of the Feed Parameter Space Θ. Depending on the respective
feed parameter, the relaxed RTO yields corresponding optimal storage rates.
From the signs of these rates, it can be deduced whether the storages are filled
or emptied under ideal conditions. Based on this distinction, we presented an
algorithm to partition the feed parameter space Θ into separate parts. This
partitioning allows us to analyze in advance how changes in the feed parameter
will affect the storage levels using the proposed operational strategy. Hence,
one can decide in advance whether this strategy is applicable in this form
or, if possible, whether it is necessary to influence the scenarios for the feed
parameter.
Outlook: The structuring concerns until now only Θ. Since the sales price
is another economic variable that affects the production levels and, thus, the
storage rates, an extension of the approach might be useful.

2. Minimum storage capacity. Using the relaxed RTO, we showed how to
identify the feed parameter that yields the highest absolute value of the optimal
storage rate. Combined with a given time, the highest absolute value for the
change of storage levels can be calculated. We exploited this change in the
storage level to define the lower bound of the storage capacity. For storages
with this capacity, which are half-filled in the beginning, the static RTO is not
limited by the storage constraints, at least not during the first operation.
Outlook: The sales price is not yet included in the analysis of the minimum
required storage capacity. An extension of the determination of the lower bound
might be relevant, as product prices can fluctuate over time.

3. Scenario-based storage capacity. We propose a design approach to
measure the evolution of storage levels for a given stochastic scenario of feed
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parameters. For this purpose, the definition of a scenario as a time-dependent,
piecewise constant, feed-parameter value function is extended by a stochastic
description. More precisely, the value of the feed parameter is described by
truncated probability-density distribution. This stochastic approach allows
considering uncertainties. Employing the unscented transformation, we showed
how the distribution of storage rates is approximated from the distribution of
feed parameters by determining mean and variance. The storage capacity is
defined over the confidence interval in which the storage levels are contained
with a given probability. Therefore, this design concept for dimensioning the
storages does not lead to a conservative overestimation, which would lead to
high investment costs.
Outlook: In further studies, the integration of the sales price by a stochastic
description offers a more comprehensive description of the storage size. So
far, the approach neglected the economic aspects of storage capacities, i.e.,
the investment costs. However, this consideration is essential to decide which
storage capacity must be installed in a real application. A related issue is the
design horizon, or more precisely, how many cycles are considered. For instance,
the storage costs determine the design horizon that influences the storage size
and should therefore be investigated in future works.

6.3 Concluding Remarks

The integrated design of efficient control strategies and production system
components is a challenging task that will remain important in the future. In
particular, the requirement to achieve dynamic and flexible process operations,
required by the growing use of renewable energies and raw materials together
with the integration of sustainable production methods, still offers broad
potential for development. Storage elements are essential components here, as
they buffer fluctuations and provide more flexibility in the coupling of processes
that can be considered in production system operation.
This work addresses some of these challenges by introducing a new approach to
an operational strategy located at the RTO layer. The RTO strategy combines
the identification of economically optimal operating points and calculates a
time-optimal trajectory that steers the production system to that point while
considering the presence of unsteady operating storages. Furthermore, the
operational strategy is used to design the storages by presenting a methodology
that allows an estimation of the average minimum capacities. An application of
the developed concepts promises an enhancement of the economic operation of
chemical process networks facing unsteady and dynamical operation challenges.
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Appendix A

Mathematical Background

A.1 Mathematical Preparations: Differential Ge-
ometry

Throughout this thesis, we use concepts and notations of differential geometry.
In particular, this is true for the description of the system models and the
control strategy. The most important terms and concepts are briefly presented
below. For a detailed introduction, see [141, 32].

Let X , dim (X ) = nx a manifold with local coordinates
(
x1, . . . , xnx

)
or shortly

(xα), α = 1, . . . , nx. For a given point p ∈ X , for the sake of simplicity we
denote by x on the one hand a local chart x : X → Rnx , x(p) =

(
x1, . . . , xnx

)
and on the other hand the local coordinates.
The tangent space at a point p ∈ X is presented by TpX and the cotangent
space by T ∗p X . The union T X := ∪p∈XTpX and T ∗X := ∪p∈XT ∗p X combined
with surjective maps τX : T X → X and τ∗X : T X → X denote as the tagent and
the cotagent bundle. Based on a local chart x on X , T X and T ∗X are equipped
with induced charts ξ(x) and ξ∗(x), respectively. For the tagent bundle T X , the
induced coordinates are

(
x1, . . . , xnx , ẋ1, . . . , ẋnx

)
and for the cotangent bundle

T ∗X are
(
x1, . . . , xnx , ẋ1, . . . , ẋnx

)
.

Let X ∈ T X be a vector field and ω ∈ T ∗X be a covector field or 1-form on X .
The vector field X is smooth map that assigns to each point p ∈ X an element
Xp ∈ TpX . A map of this type is also called section of the tangent bundle and
the set of all vector fields on X is denoted by Γ (T X ). In local coordinates, the
field X is given by X = Xα

(x)(x) ∂
∂xα . Likewise, a covector field (or 1-forms) ω is
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smooth map that assigns to each point p ∈ X an element ωp ∈ T ∗p X . Similarly,
the set of all 1-forms on X is denoted by Γ (T X ∗) . In local coordinates, the
field ω is given by ω = ω(x),α(x)dxα.
The Table A.1 summarize the most important concepts and point out the
concepte of a change of coordinates.

Table A.1: Overview about the most important notations.

Abstract Form Coordinate Form & Coordinate Change

1

vector:

Xp ∈ TpX

vector field:

X ∈ Γ (T X )

general form: Xp = Xα
(x)

(
∂
∂xα

)
p

basis change:
(

∂
∂xα

)
p

=
(
∂zm

∂xα

)
p

(
∂

∂zm

)
p

components change: Xα
(z) =

(
∂zm

∂xα

)
p
Xα

(x)

2

covector or 1-form:

ωp ∈ T ∗p X

covector field:

ω ∈ Γ (T ∗X )

general form: ωp = ω(x),α (dxα)p

basis change:
(
dxβ
)
p

=
(
∂xβ

∂zα

)
p

(dzα)p

components change: ω(z),β =
(
∂xα

∂zβ

)
p
ω(x),α

3

map g : X → Y
⇒ g ∈ C∞ (X ,Y)

map h : X → R
⇒ h ∈ C∞ (X )

general form: g(y,x) = y ◦ g ◦ x−1

change: g(y,z) =
(
y ◦ g ◦ x−1

)
◦
(
x ◦ z−1

)
= g(y,x) ◦ Φ(xz)

general form: h(x) = h ◦ x−1

change: h(z) =
(
h ◦ x−1

)
◦
(
x ◦ z−1

)
= h(x) ◦ Φ(xz)

4

exterior derivative:

d : C∞ (X )→ Γ (T ∗X ) ,

h 7→ dh

dh : Γ (T ∗X )→ C∞ (X ) ,

X 7→ dh(X) := X(h)

general form: dh = ∂h
∂xα

dxα

dh(X) = ∂h

∂xα
dxα

(
Xα

(x)
∂

∂xα

)
= ∂h

∂xα
Xα

(x)
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Abstract Form Coordinate Form & Coordinate Change

5

flow for X ∈ Γ (T X ):

φX : R×X → X ,

(t, p) 7→ φXt (p)

6

Pushforward:

g∗ : T X → T Y,

X 7→ g∗(X)

g∗(X)(h) := X(h ◦ g)

(
g∗(X)

)α
(y)

= Y α(y) =

(
∂gβ(yx)

∂xα

)
p

Xα
(x)

7

Pullback:

g∗ : T ∗Y → T ∗X ,

ω 7→ g∗(ω)

g∗(ω)(X) := ω
(
g∗(X)

)
(
g∗(ω)

)
(x),α

= ψ(x),α =

(
∂gβ(yx)

∂xα

)
p

ω(y),β

8

Lie derivative:

LXh := lim
t→0

(
φXt

)∗
h− h
t

=dh(X)

LXh = ∂h

∂xα
Xα

(x)

Remark A.1. For the sake of simplicity, we will abstain from explicit notation
of the underlying coordinates if this is not important. For example, instead of
h(x) := h ◦ x−1 we simply write h.

Remark A.2. Considering n points p1, . . . , pn on a manifold X and a local
chart x. The local coordinates of the individual points are read as x α

i := (xi)α :=
xα(pi).

Remark A.3. To keep the formulas short and readable, we use tensor notation
and the Einstein summation convention throughout this document. For instance,
we write

nx∑
α=1

ωαX
α = ωαX

α.
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Throughout this thesis denote the

state trajectory: x : R→ X , t 7→ x := x (t),

input/manipulating trajectory: u : R→ U , t 7→ u := u(t),

and the controlled variable trajectory: c : R→ C, t 7→ c := c(t)

In general, we define C
(
Y[0,T ]

)
:= C ([0, T ],Y).

In the sense of a simple notation, we consider the simple manifold that is a open
convex subset X ⊂ Rn. If nothing else is mentioned, we choose the standard
chart map id : Rn → Rn. To simplify the notation, we write for a point p ∈ X
on the manifold its chart representation x = x(p) ∈ X .

Below some further definitions are presented.
Definition A.1 (Pullback Bundle). Let (E1, π1,B1) be a bundle and g : B2 → B1
be a map between two manifolds. The pullback bundle (E2, π2,B2) induced by g
is defined by E2 :=

{
(p, q) ∈ B2 × E1 | g(p) = π1(q)

}
and π2(p, q) := p.

Definition A.2 (Open ball). Let x ∈ Rn and δ ∈ R+. An open ball of radius
δ around the point x is defined by

Bδ (x) :=
{
ξ ∈ Rn

∣∣∣∣∣
n∑
α=1

(ξα − xα)2
< δ

}
Definition A.3 (Metric on Rn). Let p, q, r ∈ Rn be three points and let

δαβ :=
{

1 if α = β,
0 in all other cases.

The following two functions describe a metric on Rn.

m2 : Rn × Rn → R+
0 ,

(p, q) 7→m2 (p, q) := δαβ (pα − qα)
(
pβ − qβ

)
md : Rn × Rn × Rn → R+

0 ,

(p, q, r) 7→md (p, q, r) :=
δαβ (pα − qα)

(
qβ − rβ

)√
m2 (p, q)

√
m2 (q, r)

.

A.2 Gaussian Process

A Gaussian process (GP) is a machine learning technique that allows to
approximate a funcion h ∈ C∞ (Rnx) by a function h̃ ∈ C∞ (Rnx) based
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on a set

D :=
{
{(xl, yl, zl)}l=1,...,n | xl ∈ Rnx , yl = h (xl) , (zl)α := ∂αh(xl)

}
,

of training data, where xl, yl and zl are denoted as training input, measurements
and measurements of the derivatives. From a mathematical point of view, a GP is
a stochastic process where (y1, . . . , yn) are n-dimensional Gaussian distributed,
see [128]. In other words, the map h̃ ∈ C∞ (Rnx) is Gaussian distributed
h̃ ∼ N (µ, κ), where µ ∈ C∞ (Rnx) and κ ∈ C∞ (Rnx × Rnx) are called mean
and kernel function. The latter one represents the variance or covariance. For
a detailed introduction to this topic and an overview of different application
areas, we refer to [203, 178, 130].
Employing the stochastic nature of GPs, several advantages can be concluded:

(i) measurement noise of yl or zl can be explicitly addressed in designing h̃.

(ii) prior knowledge from mathematical-physical models can be incorporated
into the design of h̃.

(iii) the tendency for overfitting is reduced

(iv) besides the function value of h̃ at a certain point, the confidence interval
and the associated uncertainty of h̃ can be described, which allows
evaluating the approximation quality of h̃ compared to h

(v) the dimension of involved parameters is independent from the number n
of training data

During the last decades, GPs achieved great success in modelling static [163, 172]
and dynamic [132, 189, 248] systems. Furthermore they are used in the field of
model predictive control [151, 131, 190], for numerical integration [201] or to
estimate the system-model mismatch in context of real-time optimization [65]
or modifier adaptation [7].

Before we describe the design of h̃ in detail, the following assumption is made.

Assumption A.1. If there is nothing else specified, the observation yl =
h(xl)+εy, εy ∼ N

(
0, σy

2) and the partial derivative (zl)α := ∂αh(xl)+εz, εz ∼
N
(
0, σ2

z
)
are affected by noise.

Remark A.4. To simplify index work, we use Latin letters (l,m, . . .) to indicate
the training point and Greek letters (α, β, . . .) to indicate the component of a
variable. For instance, (xl)α describes the coordinate α of the l-th input or (zl)α
describes the derivative with respect to the α component of h, evaluated for the
l-th input x.
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An essential aspect of a GP is the kernel function κ, which describes the relation
of two points in Rnx . Thus, the influence of the points in a neighborhood of
x ∈ Rnx on the function value h(x) can be expressed. The following gives a
formal definition of this fact.

Definition A.4 (Kernel Function). Given is the product space Rnx × Rnx .
A function κ : Rnx × Rnx → R+ is called kernel function, if it satisfied for
x, y ∈ Rnx

(i) κ is symmetrical in both entries: κ(x, y) = κ(y, x),

(ii) κ(x, y) ≤ κ(x, x), ∀y ∈ Rnx .

From the definition of a GP as a stochastic process, whose random variables
(y1, . . . , yn) are normally distributed, the Bayesian formalism can be used to
compute posterior probability based on the prior knowledge of the functions µ
and κ. This way h̃ can be calculated as an element of an infinite-dimensional
space C∞ (Rnx) over a finite number of training points. This update generates
the posterior mean µ̂ ∈ C∞ (Rnx) and posterior kernel κ̂ ∈ C∞ (Rnx × Rnx),
where h̃ := µ̂.
The rest of this section deals with the derivation of functions µ̂ and κ̂. For
this purpose we define the derivatives of the kernel function κ through its
components as follows

χα : (x, y) 7→ χα(x, y) :=
(
∂nx+α κ(x, ·)

)
(y), α = 1, . . . , nx

ψαβ : (x, y) 7→ ψαβ (x, y) :=
(
∂β χα(·, y)

)
(x), β = 1, . . . , nx.

We denote the predictions made by the prior µ by M l := µ (xl). Likewise,
the evaluation of the components of dµ at xl are given by (Dl)α := ∂αµ(xl).
Considering the kernel function κ, we introduce the function ηxl ∈ C∞ (Rnx)
by

(y) 7→ ηxl (y) := κ(xl, y), xl ∈X := {x1, . . . , xn}

that provides a relationship of for any point y ∈ Rnx over a base point xl ∈X
of the training inputs. In the same way we define componentwise a map
(ρxl)α ∈ C∞ (Rnx) by

(y) 7→ (ρxl)α (y) := χα(xl, y), xl ∈X .

Remark A.5. For reasons of readability, we will not use brackets to separate
the l-th point or coordinate and the α-th index in the following. For instance,
instead of (zl)α, we now write zlα . Due to the omission of this explicit separation,
only Greek letters are used as indices.
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Based on ηx and ρx, we construct the posterior mean function µ̂ by

µ̂ (x) :=
(
µ+ aιηxι + bιζρxιζ

)
(x). (A.1)

Here, the first term in the definition denote the prior mean function µ. In the
second term the relationship of x to all input data X is weighted with a factor
aι and in the third term the derivative of the kernel is weighted with a factor
bιζ . Both factors are evaluated from the training data D as follows

aα := Lαι (yι −M ι) +Mαιζ
(
zιζ −Dιζ

)
,

bαβ := M ιαβ (yι −M ι) +Rαιβζ
(
zιζ −Dιζ

)
.

In order to obtain these three matrices Lαβ , Mαβγ and Rαβγε, we first have to
introduce

Klm :=κ(xl, xm) + σy
2δlm,

(Plm )α :=χα(xl, xm),

(Qlm)αβ :=ψαβ(xl, xm) + σz
2 (δlm)αβ ,

for each input xl, xm ∈X . Interpreting K, P and Q as parts of a block matrix,
we define L, M and R as blockwise inverse by using the analytic formula as
discussed below. For this we make use of Remark A.5 and define first the inverse
K̃ and Q̃ by

K̃αιKιβ =δαβ , and Q̃αιβχQιγχε = δαγ δ
β
ε .

Finally, L, M and R are given as follows

LαιΓιβ = δαβ , where Γαβ := Kαβ − Pαιζ Pβχψ Q̃ιχζψ,

RαιβχΛιγχε = δαγ δ
β
ε , where Λαβγε :=Qαβγε − Pιαβ Pζγε K̃ιζ

and

Mαβγ := −LαιPιζχ Q̃ζβχγ .

Remark A.6. Following, we use the squared exponential kernel (Gaussian
kernel)

κ(x1, x2) := σf
2 exp

(
− 1

2

(
lα (x1

α − x2
α)
)2
)
,

where lα ∈ R+ is the horizontal length scale and σf ∈ R+ controls the vertiacal
variation. The parameters H := (l, σf , σy, σz) are called hyperparameter.
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There are two special cases that can be derived from the posterior mean
function (A.1).

Zero prior mean function: If there is no previous knowledge about the process, it
is possible to set the prior mean function to zero. Thus the meaningful domain
of µ̂ is restricted to the area in which training data is available, since only
interpolation is feasible. An extrapolation will lead to the prior mean value i.e.
zero. For the posterior mean function, we obtain

µ̂ (x) :=
(
aιηxι + bιζρxιζ

)
(x), (A.3)

where

aα :=Lαιyι +Mαιζzιζ ,

bαβ :=M ιαβyι +Rαιβζzιζ .

Zero prior mean function and no derivative information: It is often the case that
no information is available regarding the partial derivatives. This is particularly
true when training data are obtained from measurements or observations and
not from complex white box models. The posterior mean function is given by

µ̂ (x) := aιηxι(x), (A.4)

where

aα :=Lαιyι.

Posterior covariance: The posterior kernel function that describes the variance
or covariance is given by

κ̂ (x) :=κ(x, x)− Lαιηxι(x)ηxα(x)− 2Mαιζρxιζ(x)ηxα(x)

−Rαιβζρxιζ(x)ρxαβ(x)
(A.5)

A.3 Optimization – Parametric Sensitivity

Consider an objectiv function J : Rnx × Rnp → R where x ∈ Rnx is called
optimization variable and p ∈ Rnp is a parameter. Moreover, let g : Rnx×Rnp →
Rng and h : Rnx×Rnp → Rnh be two functions. For given boundaries x, x ∈ Rnx
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and h, h ∈ Rnh a parametric NLP reads

minimize
x, p

J(x, p) (A.6a)

subject to 0 = g(x, p), (A.6b)

h ≤ h(x, p) ≤ h, (A.6c)

(x, ps) ≤ (x, p) ≤ (x, ps) , (A.6d)

where ps ∈ Rnp is a parameter to be set. The functions g and h represents the
equality and inequality constraints.

Let λx ∈ Rnx , λp ∈ Rnp , λg ∈ Rng and λh ∈ Rnh be the Lagrange multiplier
of the optimization variable, the parameter, the equality and the inequality
constraints. From the Lagrangian

L (x, p, λx, λp, λg, λh) := J(x, p) + λgα g
α(x, p) + λhβ h

β(x, p) + λxγ x
γ + λpι p

ι,

and KKT condition follows that the parametric sensitivity is given by

λ∗pα = −∂pαJ(x∗, ps)− λ∗gβ ∂pαg
β(x∗, ps)− λ∗hγ ∂pαh

γ(x∗, ps)

where
(
x∗, λ∗g, λ

∗
h
)
is the primal-dual solution of (A.6), [5].

A.4 Unscented Transformation

Consider a Gaussian distributed random variable θ, with mean value θ̂ ∈ Rn
and covariance P ∈ Rn,n. In order to propagate the distributed information by
a nonlinear function h : Rn → R, the unscented transformation was developed
by [116]. The main idea of this method is to approximate a density function of
a distribution by a finite number of sigma points. Subsequently, the image of
these sigma points using the function h is recombined by weighting factors so
that the mean value and the variance/covariance approximate the distribution
in the codomain.
The following descriptions are already adapted to the specific application used
in this work. For instance, the codomain of the function h is only 1-dimensional
since the maps derived here are applied to the rate functions Pr

α
j of the

individual storage elements. For a comprehensive introduction to this topic,
we refer to the works of Julier in [116, 114, 119, 115, 118] or to a book about
nonlinear filtering [30]. Some of the advantages of the unscented transformation
are
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(i) the computational effort for the unscented transformation scales with
(2n+ 1) [116],

(ii) the calculation of the mean value and the variance is parallizable, since
each sigma point can propagate independently [69],

(iii) for scalar parameter, one can show that the error of the mean and variance
is up to the order of four [116, 88],

(iv) the unscented transformation utilizes the first, second and higher moments
of the pdf, which makes it more accurate than a linearization [116].

In the last decades the unscented transformation has been applied in many
fields, such as for state estimation [117, 251], for robust MPC [96], to compute
optimal process trajectories [211], for optimal experimental design [220, 69] or
for statistical robust design [239].

To describe this method we start with the generation of the sigma points by
the map

Sp :
(
θ̂, P

)
7→ Sp

(
θ̂, P

)
:=
{
θ̃0, . . . , θ̃n

}
,

where the sigma points are defined componentwise by

θ̃ α
0 := θ̂α,

θ̃ αi := θ̂α + Sαβ (ei)β , i = 1, . . . , n,

θ̃ α
n+i := θ̂α − Sαβ (ei)β , i = 1, . . . , n.

Here, S is defined as square root following

P̃αβ = SαιS
ι
β ,

where P̃αβ := (n+ λ)Pαβ is the weighted covariance using λ := α2(n+ κ)− n,
which is determined by the parameters α, κ ∈ R. The components of the object
ei are given through (ei)α := δαi . Using these sigma points we obtain the mean
value in the codomain under the function h by the map

M[h] : Rn × Rn,n → Rn,

(
θ̂, P

)
7→M[h]

(
θ̂, P

)
:=

2n∑
i=0

wm
i h(θi), θi ∈ Sp

(
θ̂, P

) (A.7)
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where the weight factors are given by

wm
0 := λ

n+ λ
,

wm
i := 1

2 (n+ λ) , i = 1, . . . , 2n.

The superscript m denotes that the weight factors are used for the mean. Finally,
the variance is described by

V [h] : Rn × Rn,n → R+,
(
θ̂, P

)
7→ V [h]

(
θ̂, P

)
:= Ph (A.8)

where Ph using the sigma points θi ∈ Sp
(
θ̂, P

)
is given by

Ph :=
2n∑
i=0

wc
i

(
h(θi)−M[h]

(
θ̂, P

))(
h(θi)−M[h]

(
θ̂, P

))
.

The weight factors used for the covariance are determined by

wc
0 := λ

n+ λ
+ (1− α2 + β),

wc
i := wm

i , i = 1, . . . , 2n,

where β ∈ R is another parameter. For Gaussian distributions, Julier and
Uhlmann [118] proposes that β = 2. The parameter α scales the spread of the
sigma points around the mean value. It is recommended that 0 ≤ α ≤ 1, and it
needs to be chosen to minimize the scaling effects in higher order of the Taylor
series expansion, since the parameter only affects this one [115]. Van Der Merwe
[251] indicates that there is no global-valid optimal parameter setting or tuning
rules for determineng α, β and κ.

A.5 Parameter for the Setup Function

The parameter for basic term A in Table 4.1 in Section 4.2 are determined by
the relative degree of the processes model. Himmel et al. [100] presented that
the coefficients for the polynomial term are given by

pi = (−1)i−1(2r + 1)!
(i+ r) · r!(i− 1)!(r + 1− i)! .
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Furthermore, the coefficients for the trigonometric series are defined using
Algorithm A.1. It should be emphasized that for a high relative degree r, the
matrix A can be ill-conditioned. At this point, further modifications have to be
made, e.g., regularisation techniques. The convergence rate of Algorithm A.1 is
similar to computing the solution of a linear equation.

Algorithm A.1: Coefficients for the trigonometric series.
1m := 2; v := 0; I := [0 0]; k := 1
2for i = 1 : 2 : r do
3m← m+ 2 v ← v + 2 I ← [I v v]
4end
5b := zeros(m, 1), b(2)← 1 A := zeros(m,m) for i = 1 : numel(I) do
6for ii = 1 : m do
7if mod(k, 2) = 0 then
8h := pow

(
ii− 1, I(i)

)
A(k, ii)← h cos

(
(ii− 1)π

)
9else A(k, ii)← pow

(
ii− 1, I(i)

)
10end
11k ← k + 1
12end
13p← A\b



Appendix B

Example of a Production
System

B.1 Production System for a Biological and Cat-
alytic Production of a Joint Product

We consider two process S1 and S2 that produce M from different raw material
feeds. The first process represents a biological way to produce M from an organic
raw material by anaerobic digestion (AD). A byproduct of this decomposition
is C, which is stored and then converted in the second process. In the second
process, C taken from the storage system is converted with H by a classical
reactor-separation-recycle (RSR) proces to M and W.

Before we explain the entire production system in detail, the individual process
architecture is be discussed. For this purpose we will use reduced models in
which the input/output behavior, the dynamic properties and the characteristics
of certain crucial states are preserved compared to the detailed models. The
parameter values used here are chosen so that the processes and thus the two
models are compatible with each other. This means that the material and
energy flows that both processes exchange have the same proportions. It is
therefore important that the AD produces approximately the same amount of
C at its nominal operational point as is required by the RSR at its nominal
operational point. In addition, the dynamic properties of both processes have to
be similar. This means that the time constants of both processes need to be in
the same order of magnitude, resulting similar transition times for operational

199
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changes.
In general, the parameters of the simplified models can be estimated from
measurement data of real processes or more detailed models.

Brief description: In S1, only the reactor in which the decomposition reaction
takes place is modelled since this is the time dominating process element. The
RSR-process in S2 follows the classical recycling structure consisting of a mixer, a
reactor, and a separation system. The temperature modelling in both processes
is important. For instance, the decomposition in S1 is done by microorganisms,
the temperatures should not fluctuate too much as the resulting stress would
harm the yield of M. Furthermore, the death of the microorganisms would
cause a complete shutdown of production. From [24] we know that production
changes in the catalytic reactor can lead to the formation of a temperature hot
spot because the heat cannot be dissipated quickly enough. This effect has to be
included in the transition times for production changes. Since the purification
of M in S2 cannot be fully guaranteed due to high costs, we assume that light
impurities of H may be present in the product. However, these impurities
should not be too high, as this would harm the selling price. Therefore, the
production quality is also included in the description of the production system.
As the production system is part of a process network, the product has to
satisfy downstream process constraints. In this context, we consider the total
material flow and the product quality of the production system, which needs to
lie within the defined box-constrained area.

Classically, the feed parameter of S1 describes the quality of the organic substrate.
In standard modeling approaches a change of θ1 would have a direct effect
on the process, e.g. in the form of changing stoichiometric parameters or
intermediate products and thus also changing the quantity of M. That means
a higher quality would lead to higher production of M while using the same
amount of feed. To avoid this, we propose an alternative modelling approach to
describe the substrate quality. The key idea is that the substrate is composed
of inert materials and an active component that is decomposed to C and M.
Hence, we assume that the components responsible for the production of M
can be purchased and added separately. Figure B.1 illustrates this concept that
a low price implies more M-producing components, which means that higher
quality can be achieved. For the RSR-process, we use the electricity price to

inert material

active component

inert material

active componentpurchase of
active component

Figure B.1: Illustration of the feed quality concept.

parametrize the operating costs, since H is produced via an upstream process
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element, the electricity price correlates directly with the price of input stream
of H.

Process S1 (anaerobic digestion)

Mathematical model: The internal process topology of S1 is illustrated in
Figure B.2. The process consists of a bioreactor and a separator. However, the
latter process element will not be described by the mathematical model, since
the dynamics of the process is mainly determined by the bioreactor. Within the
liquid phase of the reactor an organic substrate A is deomposed by the reactions

k1A r1−−→ X1 + k2B + k4C,

k3B r2−−→ X2 + k5C + k6M.

The feed stream of the reactor is primarily composed of an inert material for
the reaction and a reactive substance A, supplied by the molar flow G A

ex .
Furthermore, it is assumed that

V A
m G A

ex � Fex,

where V A
m is the molar volume of A and Fex the volume flow of the inert material.

In this way a change of G A
ex has only a marginal effect on the entire volume

flow that enters the reactor. Consequently, we consider a constant volume flow
and a stationary level of the liquid phase within the reactor (Fex = Fwast).
Depending on the concentration of carbon dioxide C and methane M within the
liquid phase, C and M also accumulate in the gas phase above. This gas mixture
is finally cleaned and separated into its components. As the decomposition
reaction is strongly temperature dependent, the reactor needs heat flow Q from
the element B 1

2 to stay within the optimal temperature range.

In the following we will briefly discuss the mathematical model of the process
based on the Bernard et al. [17]. The external input feed stream is given by
the molar flow G A

ex of the component A. We describe the bioreactor by a
continuous stirred tank reactor, whereby the volume of the liquid phase is
constant. Using the dilution rate

D = Fex

Vr
,



202 EXAMPLE OF A PRODUCTION SYSTEM

reactor

k1A r1−−→ X1 + k2B + k4C

k3B r2−−→ X2 + k5C + k6M

separator
G

G A
ex

Fex

Fwast

GM

GC

Q

Figure B.2: Structure of Process S1.

the system reads

Ṫj = κ2 [Tr − Tj] + κ3Q, (B.1a)

Ṫr = h (r1, r2, Tr) + κ1 [Tj − Tr] +D
[
T i

r − Tr
]
, (B.1b)

ċX1 = −DαcX1 + r1, (B.1c)

ċX2 = −DαcX2 + r2, (B.1d)

ċA = −DcA − k1r1 + 1
Vr
G A

ex , (B.1e)

ċB = −DcB + k2r1 − k3r2, (B.1f)

ċC = −DcC + k4r1 + k5r2 −
1
Vr
GC, (B.1g)

ċM = −DcM + k6r2 −
1
Vr
GM, (B.1h)

where the reaction rates r1 and r2 are given by temperature dependent Monod
equations. These equations are given by

r1 := σ1 (Tr)
µ̄1 c

AcX1

cA +K1
and r2 := σ2 (Tr)

µ̄2 c
BcX2

cB +K2
,

where the temperature coefficient is determined through

σi(Tr) := exp −(Tr − Tref)2

ϑsens
.
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Here, Tref describes the reference temperature where the decomposition reactions
are most powerful and ϑsens is used to describe the temperature sensitivity. By
changing the supplied heat flow Q, it has to be ensured that the temperature
of the liquid phase is always around Tref . If the temperature fluctuates too
much, the reaction rates decrease or even stop completely. The reaction-induced
change in temperatur can be described by

h (r1, r2) = −κ4Vr (r1∆h1 + r2∆h2) .

To describe the gas transfer between the liquid and the gas phase, we use the
ansatz

Gα := kL,αVr c
α, α ∈ {C,M}

The individual parameter and state variabels are summarized in the table B.1.

Table B.1: Physical properties of the model parameter for S2.

symbol description dimension
Vr volume of the liquid phase m3

D dilution rate 1/s
G molar flow mol/s
rα reaction term mol/m3/s
α Proportion of dilution rate for bacteria 1
κ1 heat conductivity parameter 1/s
κ2 heat conductivity parameter 1/s
κ3 heat parameter K/kJ
κ4 heat capacity parameter K/kJ
µ̄α maximum bacterial growth rate 1/s
Kα half-saturation constant mol/m3

ϑsens temperatur sensitivity of the reaction K
Tref optimal reaction temperatur K
kL,α liquid-gas transfer coecient 1/s
Fex, Fwast volume flow m3/s
∆hα reaction enthalpy kJ/mol
Q heat flow kJ/s
Vr volume of the liquid phase m3

Tr, Ts temperatur K

Secondary feed: In addition to the reactive substance A, the process also
consumes heat to keep the necessary temperature for the anaerobic digestion.
This heat is extracted from an energy storage element B 1

2 , where the index
number 2 indicates that the process S2 is the heat source. The key factor here



204 EXAMPLE OF A PRODUCTION SYSTEM

is the amount of heat flow in order to maintain the reference temperature in the
reactor. In particular when the molar flow G A

ex changes, more or less energy is
required. We use the ansatz

w 1
2|1 := Q = Qn + β (Tref − Tr)

to determine the heat flow. Here, Qn is the nominal heat flow at the nominal
operational point and β a scaling factor.

Primary product: Since we assume that the speparator works perfectly, the
production level is given by the molar flow

c1 := GM = kL,MVr c
M,

of the component M.

Byproduct: The level of the byproduct is described by the molar flow

v 1
1 := GC = kL,CVr c

C

of the component C. This flow is send to the storage element B 1
1 .

Feed parameter: The approach to describe the entire feed stream (sum of inert
and reactive material) discussed above results from the characterization of the
feed parameter. Usually a bioreactor is fed with a feed stream consisting of
different components (e.g. A). However, it is possible that the composition and
hence the concentration of A might change over time, which would also cause
a change in the production level. In this case the feed parameter is given by
the concentration of A, which means that it would act directly on the process
model as model parameter. If the concentration of A changes (and thus the
quality of the feed), the volume flow also has to be modified in order to ensure
a stable production level.
An alternative approach is to assume that an inert volume flow Fex is enriched
with substance A and that the price of A can change over time. In this way,
the feed quality is expressed by a price, which can later be used to describe the
operational costs.

Process S2 (RSR-process)

Mathematical model: The internal process topology of S2 is illustrated in
Figure B.3. The main process elements are the reactor, the separator and the
mixer that are connected to each other, including a recycle system. In process
S2, we consider the substance set S := {H,C,M,W}. Within the reactor the
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substances H and C react with each other following the scheme

4H + C
r1+−−⇀↽−−
r1−

M + 2W.

The external molar flow G H
ex of S2 contains pure H. In combination with the

recycling stream Gt
s from the first separator and the molar flow G C

s from the
storage element B 1

1 , the individual components are mixed up. The mixer is also
considered as an intermediate storage element, which supplies a feed stream to
the reactor according to the stored amount of material. Within the reactor an
equilibrium reaction takes place depending on the pressure and temperature
level. Furthermore, the reaction is exothermic, so that the produced energy can
be dissipated via cooling jacket and transferred to the energy storage element
B 1

2 . The product of the reactor is then purified in a first separation stage so that
primarily the components H and C are separated from M and W. The recycled
stream Gt

s contains mainly the components H and C, whereas the second stream
Gb

s is mainly composed of M and W. Finally, Gb
s is further separated in a

second separation stage, so that the product of S2 is a composition of M and a
minor proportion of H.

reactor

4H + C
r1+−−−⇀↽−−−
r1−

M + 2Wmixer separator 1

separator 2

G H
ex

G C
s

Gb
s

GM+HQ

Gt
s

Figure B.3: Structure of Process S2.

In the following, we will briefly discuss the mathematical model of the process.
We focus on the modelling of the mixer, the reactor and the first separator
stage, as it is assumed that these elements significantly determine the dynamics.
The dynamical equations of the process reads for the individual elements:
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mixer:

Ṅ H
m = G H

ex +Gt
s
H −Gm

H, (B.2a)

Ṅ C
m = G C

s + Gt
s
C −Gm

C, (B.2b)

Ṅ M
m = Gt

s
M −Gm

M, (B.2c)

Ṅ W
m = Gt

s
W −Gm

W, (B.2d)

reactor:

ω̇ = κ3 (Tj − Tr) (B.2e)

Ṫr = h (r, Tr) + ω +D
[
T i

r − Tr
]
, (B.2f)

Ṅ α
r = Gm

α −Gr
α + Γα, (B.2g)

separator:

Ṅ α
s = Gr

α −Gt
s
α −Gb

s
α
. (B.2h)

Frst, we consider the mixer as process element that gets raw material from
external sources via the flows G H

ex and G C
s . Beside these streams, the element

obtains a recycled molar stream Gt
s from the first separator. The output of the

mixer is defined as follows

Gm
α = DNm

α,

whereD is a velocity determining factor of the mixer. As no specific technology is
addressed, it should be assumed that the factor D is constant for the considered
operational area.
The molar flow Gm is the input for the reactor, where the output flow is given
by

Gr
α = DNr

α.

The individual reaction terms are given by

ΓH := −4r, ΓC := −r, ΓM := r, ΓW := 2r,

where the reaction rate is defined by the the equation

r := k̄ exp
(
−E
Tr

)((
cr

H)4 (crC)1 − K̃ (crM)1 (crF)2).
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Here, the equilibrium constant K̃ of the reaction is assumed to be constant within
the operational area. The reaction-induced change of the reactor temperatur Tr
can be described by

h (r) := −κ2 r∆H,

where ∆H ∈ R+ is the enthalpy of the reaction. The reactor is surrounded
by a cooling jacket, which absorbs the energy and transfers it to storage B 1

2 .
Since the cooling jacket cannot absorb the released energy as fast as it might
be generated when the production level changes, we use (B.2e) to describe
this delay, cf. [24]. In this way the formation of a hot-spot can be modelled.
Assuming that the temperatur Tj of the cooling jacket is constant, the heat flow
is determined by the ansatz

Q := κ1ω.

Finally, we want to describe the separation within the first separator. We
use a dynamic model, since we want to use this one seaparator to represent
the potential inertia of the entire purification process. The key idea here is
that the separator should also be understood as a buffer. The composition
of the two molar flows leaving the separator does not depend directly on the
molar fractions in the input flow, but on the stored amount of the individual
substances. Using the split factor ψs, the distribution coefficients Kα and the
molar fraction

xs
α := Ns

α

N̄s
, with N̄s :=

∑
α∈S

Ns
α,

of the separator, the molar output flows are given by

Gt
s
α := ψsḠr

Kα

1 + ψs(Kα − 1)xs
α,

Gb
s
α := (1− ψs) Ḡr

1
1 + ψs(Kα − 1)xs

α.

The split factor is defined by

ψs := Ḡt
s

Ḡr
,

where Ḡt
s :=

∑
α∈S G

t
s
α and Ḡr :=

∑
α∈S Gr

α are the total molar flows.
Furthermore, it is assumed that there is no accumulation of the total amount
of material within the separator. The distribution coefficients Kα for each
substance are determined by the temperatur and pressure level of the separator
and assumed to be constant.
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Table B.2: Physical properties of the model parameter for S2.

symbol description dimension
κ1 heat conductivity parameter m3K/kJ
κ2 heat conductivity parameter 1/s
κ3 heat conductivity parameter 1/s
κ4 heat extraction parameter kJ/K/s
K̃ equilibrium factor of the reaction m6/mol2
k̄ reaction velocity feactor m6/mol2/s
E activation energy factor K
∆H reaction enthalpy kJ/mol
Q heat flow kJ/s
Vr volume of the reactor m3

Tr, Tj, T
i
r temperatur K

The individual parameter and state variabels are summarized in the Table B.2.

Secondary feed: In addition to the substance H, the process obtains the molar
flow G C

s from the storage element B 1
1 . The amount C from B 1

1 has to be
adapted to the current flow G H

ex according to a stoichiometric ratio. We use
the ansatz

w 1
1|2 := G C

s = 0.25G H
ex

to determine the molar flow.

Primary product: The bottom stream Gb
s consists primarily of M and W.

Nevertheless, there are traces of H, which cannot be completely removed. For
this reason the product level of this process is given by

c2 := GM+H = Gb
s

M + εGb
s

H
,

where ε describes the portion of H.

Byproduct: As already stated above, the level of the byproduct is given by the
heat flow

v 1
2 := Q = κ1ω.

Feed parameter: The feed parameter for S2 describes directly the price of H. In
this context, it is true that the more expensive the substance H is, the higher
the operating costs increase, which makes it necessary to reduce the amount of
H consumed. As a consequence, less M is produced and also less Q.
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Production System P

The states of the system are formed by the the dynamical states of the individual
processes and the storage levels of the two storage elements, so that we obtained

x =
(
Tj , Tr , c

X1 , cX2 , cA, cB, cC, cM, N H
m , N C

m , N M
m , N W

m , ω, Tr , . . .

N H
r , N C

r , N M
r , N W

r , N H
s , N C

s , N W
s , N W

s , ` 1
1 , `

1
2
)
.

Table B.3: Specifications of the production system.

value
nominal production level

(
40 molmin−1, 27 molmin−1)

nominal feed parameter (2, 1)
nominal reactor temperatur (300 K, 480 K)

temperatur for S1 [283K, 315 K]
temperatur for S2 [450K, 500 K]

Beside the dynamical equations of the processes in (B.1) and (B.2) and thus of
the system itself, we have to formulate the dynamical equations for the storage
elements by specifing the rates in (2.8) as follows:

ρ 1
1 (x, u) := v 1

1 − w 1
1|2 , (B.3a)

ρ 1
2 (x, u) := v 1

2 − w 1
2|1 . (B.3b)

Furthermore, the storage level the individual elements are the amount of the
substance C ` 1

1 := NC and the stored energy level ` 1
2 := Eheat.

It is assumed that the system is not operated in isolation, but is part of a
larger production network. Hence one has to formulate downstream process
constraints. Here we determine that the total amount of both products (sum of
the product streams) has to be within predefined boundaries Gtot, Gtot ∈ R+

and write

ω1(x) = Gtot(x)−Gtot, (B.4)

ω2(x) = Gtot −Gtot(x), (B.5)

where the function of the total product stream is

Gtot(x) := GM +GM+H.
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Finally we describe the product quality by

qs(x) := −a (I (x)− In)2 + 1,

where I (x) is denotated as impurity factor, which is defined by

I (x) := εGb
s

H

Gtot
. (B.6)

This factor quantifies the amount of impurities of H. It is clear that Q := {qs}
contains only one element.

B.2 Classification of the Feed Parameter Set

This section describes how the feed parameter space Θ can be classified according
to the sign of the optimal storage rates obtained by the relaxed S-RTO. Based
on this classification, we can analyze whether a production system is feasible for
dynamic operation (see Definition 5.1) according to a scenario of feed parameter
changes. For this purpose, we assume that the system is well-designed and the
subset AF ⊂ D is sufficiently large. The set AF contains all storage levels, for
which the storage size constraints in the S-RTO are not active. Furthermore,
for a given initial level ` ∈ AF, it holds that the optimal storage rate can be
computed by the map Pr

α
j .

In the following, we want to examine the set Θ for a possible partition based on
the sign of the storage rates obtained by Pr

α
j . Therefore, we define Ps : Θ→

{−1, 1}nB componentwise through

Ps
α
j : Θ→ {−1, 0, 1} , (θ) 7→ Ps

α
j (θ) := sgn ◦Pr

α
j (θ). (B.7)

This function Ps yields nB integers describing whether the storage elements are
charged (1), discharged (-1), or the level stays constant (0). Using Ps we can
introduce an equivalence relation. Two feed parameters θ1, θ2 ∈ Θ are said to
be equivalent under the equivalence relation ∼, iff it holds

θ1 ∼ θ2 ⇔ Ps(θ1) = Ps(θ2).

Subsequently, it is possible to define the equivalence class for θ ∈ Θ by [θ] :=
{ξ ∈ Θ | ξ ∼ θ}. It can also be shown that the set Π :=

{
[θ] | θ ∈ Θ

}
, is a

partition of Θ, which means

Θ =
⋃
Ai∈Π

Ai. (B.8)
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Considering the individual sets within Π, it is easy to see that they are not
only disjoint, but there might exist a complementary element Θ̃s

i ∈ Π for each
element Θs

i ∈ Π, which is characterized by

Ps(θ1) = −Ps(θ2), ∀(θ1, θ2) ∈ Θs
i × Θ̃s

i .

Hence, one can reformulate (B.8) by

Θ =
⋃
i∈It

1

Θs
i ∪

⋃
i∈It

2

Θ̃s
i .

where the index sets Iti indicate the number of the particular subsets Θs
i ∈ Π and

Θ̃s
i ∈ Π. It can be derived that the number of subsets is related to the number

of storage elements. For instance, if the system has nB elements, a maximum
of 2nB subsets can be constructed. Note that the number of elements in Π is
affected by two factors. First, it depends on the system P itself in the form of
the function Ps . Second, it depends on the number of storage elements and thus
the dimension of the codomain of Ps , which directly affects the combinatorial
complexity of the integers -1 and 1. Assumption 5.1 enables to derive that the
minimum number of elements of Π is two since, for each storage element, it
needs to be ensured that a switch in the sign of the rate can occur. This is
necessary to ensure a switch between charging and discharging of the storage
element from time to time. Furthermore, it can be stated that for each set Θs

i

there can also exist a complementary set Θ̃s
i. To characterize the partition of

Θ, we use the following notion.

Definition B.1 (Completeness of the Partition). Let Θ be the set of feed
parameters and Ps be a function as defined in (B.7) for a given system P . The
partition Π of the set Θ is called

(i) incomplete, iff it contains for no Θs
i ∈ Π its complementary set Θ̃s

i.

(ii) partially complete, iff it contains for some Θs
i ∈ Π its complementary

set Θ̃s
i.

(iii) complete, iff it contains for all Θ̃s
i its complementary set Θ̃s

i.

Remark B.1. Consider a system P that is feasible for dynamic operation. If
P has only one storage element, the partition is always complete. If P has
two storage elements, the partition is at least partially complete. Incomplete
partitions require a minimum of three elements.

Depending on the number of storage elements and also the system itself, the
distribution and form of the subsets can be very complex. For this, the optimal



212 EXAMPLE OF A PRODUCTION SYSTEM

rate function (5.4) is decisive. In order to obtain and analyze the partition, it
is necessary to look at the individual elements first.
Considering B α

j , the boundary set W α
j := ker Pr

α
j separates the regions −Θ α

j

and +Θ α
j with negative and positive rate signs. Depending on the form of W α

j

and the resulting intersections W α
i ∩W

β
j of the individual boundary sets, it is

possible that the equivalence classes are not connected with each other.

An alternative way to represent the partition Π of Θ is based on a graph using
nodes and edges, where the the subsets Θs

i , Θ̃s
i ∈ Π are the nodes. Two nodes

are connected by an edge whenever there is a boundary W α
j between the two

sets. Moreover, if we assume that
∣∣∣W α

i ∩W
β
j

∣∣∣ is finite for i 6= j or α 6= β, the
properties of Π formulated in Definition B.1 can be derived directly from the
graph. This assumption implies that the transition between two adjacent nodes
along the common edge changes only the sign of one storage element. Thus, the
shortest path between two complementary nodes corresponds to the number nB
of elements.
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θ
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Figure B.4: Construction of the partition Π for a production system with three
storage elements.

Example B.1 (Three arbitrary storage elements). We consider a production
system P with three storage elements. Figure B.4 (bottom left) illustrates
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the structure of Θ in a set-based fashion, while Figure B.4 (bottom right)
shows the graph representation of the partition of Theta. In total, the partition
Π =

{
Θs

1,Θs
2,Θs

3,Θs
4, Θ̃s

4
}
consists of 5 subsets. The boundary sets W α

j which
seperate the subsets −Θ α

j and +Θ α
j for each storage element are depicted as

black thick lines in Figure B.4 (top). The partition of Θ under Ps is partially
complete since only for the subset Θs

4 its complement is also contained in Π.
From a practical point of view, it means that if the feed parameter θk ∈ Θs

4
changes to the value θk+1 ∈ Θ̃s

4 in the next time step, the sign of all storage rates
change completely. The elements that were previously charged or discharged are
now discharged or charged, respectively.

Next, we discuss how the partition of Θ can be constructed. Formally, one
has to identify and parameterize the boundary set W α

i for each B α
j . In the

following, we assume that W α
i is a one dimensional submanifold of Θ, and we

call it boundary path. The identification of the path W α
i requires, however,

that we find all the solutions θ0 ∈ Θ of the root-finding problem 0 = Pr
α
j (θ0).

Note that Pr
α
j is defined by solving the relaxed Problem (5.2) to determine

the optimal production level. Therefore, a direct solution of the root-finding
problem is typically difficult.
An alternative approach is to separate the two subsets formed by W α

i with a
suitable method and describe them directly. Thus we avoid the parameterization
of the pathW α

i . In the literature, several approaches are mentioned to solve this
kind of problem, especially the field of machine learning offers many tools and
methods. For instance, support vector machines [203] can be used to separate
data points by hyperplanes. These points have to be calculated first using Ps

α
j .

Afterward, the hyperplanes used to approximate W α
i can be calculated. The

main disadvantage, however, is that new points cannot be added adaptively. If
one starts with a few points, the distance between some data points might be too
large, so it is useful to generate new points, which yields a better approximation
of W α

i by the hyperplanes. Therefore, for an accurate approximation, one has
to start with a highly dense grid (particularly in the neighborhood of W α

i ),
which increases the computational effort.

Instead of approximating W α
i by hyperplanes to subsequently describe the

subsets −Θ α
j and +Θ α

j from it, we will follow the reverse order. The first step
is to describe the two subsets for each storage element by evaluating Pr

α
j at

corner points of rectangles within Θ. By an iterative refinement of the rectangles
and evaluation of Pr

α
j , the boundary can be approximated arbitrarily precisely.

Afterward, the boundary and the individual equivalence classes are derived from
the rectangles assigned to −Θ α

j or +Θ α
j .

This approach uses the fact that we are not only interested in the boundary but
also for later developments on the surface of each field. To this end, we discretize
Θ by an initially equidistant grid and evaluate Pr

α
j a at the grid points. The
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rectangular areas through which the boundary passes are then further refined.
This procedure is repeated until a predefined tolerance is reached. Algorithm B.1
presents the individual steps in detail.

Algorithm B.1: Subdivision of Θ for a storage element B α
j

Input: the set Θ and the functions Pr
α
j

1choose a tolerance ε, initialize +R ,−R , 0R = ∅ and discretize Θ by
2θ1 = θ 1

1 < . . . < θ 2
nθ,1

= θ
1 and θ2 = θ 2

1 < . . . < θ 2
nθ,2

= θ
2;

3for i = 1, . . . , nθ,1 − 1 do
4for j = 1, . . . , nθ,2 − 1 do
5compute Ps

α
j for all 4 corner points of the rectangle

6Rij :=
{(
θ 1
i , θ

2
j

)
,
(
θ 1
i+1 , θ 2

j

)
,
(
θ 1
i+1 , θ 2

j+1
)
,
(
θ 1
i , θ

2
j+1

)}
7if ∀p ∈ Rij , Ps

α
j (p) > 0 then update +R ← Rij

8if ∀p ∈ Rij , Ps
α
j (p) < 0 then update −R ← Rij

9if ∃p1, p2 ∈ Rij , Ps
α
j (p1) 6= Ps

α
j (p2) then update 0R ← Rij

10end
11end
12initialize the stack R ← 0R of rectangles to be refined
13while R 6= ∅ do
14pick R i ∈ R and divide it into 4 sub-rectangles

{
R i,a,R i,b,R i,c,R i,d

}
15for l ∈ {a, b, c, d} do
16compute Ps

α
j for all 4 corner points of the rectangle R i,l

17if ∀p ∈ R i,l, Ps
α
j (p) > 0 then update +R ← R i,l

18if ∀p ∈ R i,l, Ps
α
j (p) < 0 then update −R ← R i,l

19if
∑
p∈R i,l

(
Pr

α
j (p)

)2
< ε then

20update 0R ← Rij
21else
22update R ← R i,l

23end
24end
25end

Result:
set +R to cover +Θ α

j ≈ +Θ̂ α
j :=

⋃+R

set −R to cover −Θ α
j ≈ −Θ̂ α

j :=
⋃−R

set 0R to cover the boundary W α
j ≈ 0Θ̂ α

j :=
⋃ 0R

Figure B.5 illustrates the procedure for the element B 1
1 from Example B.1. The

blue (-) and beige (+) rectangles in Figure B.5 (a) indicate the areas in which
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the sign of the storage rate is negative or positive, respectively. Red rectangles
represent the initial subset in which the boundary is located. In Figure B.5 (b),
the final separation of Θ is depicted, where the subset containing the boundary
is more detailed (green rectangles). According to a given tolerance, we can pose
that the green rectangles approximate the boundary.

(a) Initial separation of Θ by rectangles
due to the different signs of the rates.

(b) Final separation of Θ by rectangles
due to the refinement of the rectangles.

feed parameter θ1

fe
ed

pa
ra
m
et
er
θ
2

feed parameter θ1

Figure B.5: Illustration of splitting Θ for one storage element.

Note that Algorithm B.1 has to be executed for each storage element individually.
In this way we get for each element not only the boundary path but also the
two additional sets −Θ̂ α

j and +Θ̂ α
j consisting of elementary rectangles that

can be used to approximate the two areas −Θ α
j and +Θ α

j .
The boundary W α

j is described by 0Θ̂ α
j . Based on the specified tolerance, the

detection of the boundary is sufficiently accurate. To derive the boundary
as one dimensional submanifold of Θ, we propose to use centers of the
elementary rectangles in 0Θ̂ α

j . However, the construction of 0Θ̂ α
j described in

Algorithm B.1 does not follow a special order of the rectangles to be checked.
Thus the boundary points are not passed through in the order as they occur in
0Θ̂ α

j . If W α
i runs from one edge of Θ to another (as illustrated in Figure B.5),

the boundary points can be sorted by Algorithm B.2 using the metrics m2 and
md from Definition A.3 in Appendix A.1.

The metric m2 in Algorithm B.2 denotes the Euclidean norm of the last point
in Q to the new one to be added. Contrary to this, the norm md uses the last
two points of Q and evaluates how much the direction of the boundary path
changes by the new point. This can also be interpreted as a measure of the
local “smoothness” of Ŵ α

j . Indeed, the construction of Q uses initially any
point. Of course, this can also be located anywhere in Θ. For this reason, the
path needs to be flipped in the direction at least once. In this way, one goes
from an arbitrary initial point first to one of the two boundary points and from
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Algorithm B.2: Sort the boundary points for a storage element B α
j

Input: the boundary set 0Θ̂ α
j

1choose suitable tolerances ε1, ε2 and initialize l := 3, f := 1,
2choose suitable scaling factors γ1, γ2 ∈ R+,
3compute for all elements in 0Θ̂ α

j the center and write it in B,
4initialize Q := B1, and update B := B \ {B1}
5compute p̂ := argmin

p∈B
m2 (Q1, p) and update Q ← p̂ and B := B \ {p̂}

6while B 6= ∅ ∨ f = 1 do
7compute p̂ := argmin

p∈B
γ1m2 (Ql−1, p)− γ2md (Ql−2,Ql−1, p)

8if md (Ql−2,Ql−1, p̂) < ε1 ∨m2 (Ql−1, p̂) > ε2 then
9flip Q in the left-right direction and set f := 0

10else
11update Q ← p̂, B := B \ {p̂} and l := l + 1
12end
13end

Result: set of sorted boundary points W α
j ≈ Ŵ α

j := Q

there to the second. However, an additional flip would disturb the order again.
This effect is used to filter the original center point data generated from 0Θ̂ α

j .
In general, Ŵ α

j contains less elements than 0Θ̂ α
j .

After the set Θ was divided for each B α
j individually into the two areas −Θ̂ α

j and
+Θ̂ α

j , the elements of Π can be identified. To this end, the various combinations
of signs are used to derive the classification. The number of combinations
results from the total number nB of storage elements. It is generally difficult
and impractical to describe the forms of the individual equivalence classes Θs

i

and Θ̃s
i by their boundaries. Hence, we use the information obtained above to

define an indicator function χΘ : Θ →
{
− 2nB

2 , . . . , 2nB

2
}
that describes, for a

given point θ ∈ Θ, in which class it is located. Algorithm B.1 describes how χΘ
is obtained by the results from.

From the determination of χΘ by the Algorithm B.3 it can be deduced that two
complementary classes differ by their sign according to

χΘ(θ1) = −χΘ(θ2), ∀(θ1, θ2) ∈ Θs
i × Θ̃s

i .

Using χΘ, the partition Π is uniquely defined and can be expressed arbitrarily
exactly corresponding to −Θ̂ α

j and +Θ̂ α
j . The points θ ∈ Θ for which χΘ(θ) = 0

yields, describe the boundary paths between the classes.
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Algorithm B.3: Construction of an indicator function for the partition Π
Input: for all storage elements the sets −Θ̂ α

j and +Θ̂ α
j

1initialize Q := ∅,
2for j = 1, 2 do
3for α = 1, . . . , nθ,j do
4generate indicator functions −χ α

j and +χ α
j for −Θ̂ α

j and +Θ̂ α
j ,

5which states if θ ∈ Θ lies in them and update Q ←
(−χ α

j ,
−χ α

j

)
6end
7end
8compute C := ¬A⊗ [1, 0] +A⊗ [0, 1] where A contains all permutations
9with repetition of [0, 1] if nB elements taken, (each row Cl,: of C contains

10a possible result of Q),
11initialize ψ := 0 and E :=

{
− 2nB

2 , . . . , 2nB

2
}
,

12for l = 1, . . . , 2nB do
13if Q(θ) = Cl then ψ := El (El is l-th element of E)
14end
15define χΘ(θ) := ψ

Result: indicator function χΘ

So far, we have analyzed the structure of Θ under a given operational strategy.
In particular, we can characterize the effects on the storage level caused by
changes in the feed parameter.
Keep in mind that the goal is to classify Θ to evaluate the storage level change
within DD driven by the cl S-RTO under a feed parameter scenario. For this
purpose, D should be chosen so that the storage constraints are active only in
a neighborhood of the boundary of D (red area in Figure 5.3). This ensures
that in most cases, the optimal operating point obtained from Problem (5.2)
can be reached.

However, the previously discussed structure of Θ can be used to give an
initial evaluation of the ability of the storage elements to be self-regulating (cf.
Definition 5.2) under a certain θ. For this purpose, it is necessary to consider
the mean positive and negative rates as well as the corresponding size of the
areas. If the mean rates differ only by their sign, a periodic change of θ between
the regions −Θ α

j and +Θ α
j can have a balancing effect on the storage levels.

However, the sizes of the two regions are a measure of how frequently negative
or positive rates occur. Therefore, we define

c αj :=

∣∣∣∫−Θ α
j

dθPr
α
j (θ)

∣∣∣∫
+Θ α

j
dθPr

α
j (θ)

≈

∣∣∣∫−Θ̂ α
j

dθPr
α
j (θ)

∣∣∣∫
+Θ̂ α

j
dθPr

α
j (θ)

, (B.9)
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which describes the capacity of B α
j for self-regulation. The ratio c αj of integrated

storage rates is a kind of static system inherent property since no scenario θ is
required. If the factor is close to one, it can be seen as an indication that the
system has a high potential for self-regulation for B α

j . In other words, the set
Θ of scenarios that lead to the self-regulation behavior of the system might be
more powerful.

Example B.2 (Structure of Θ for a coupled AD- and RSR-process ). In this
example, we analyze the relationship between θ and the storage rates. From
Example 5.1, we know the rate with the highest absolute value and the heat
map of the rate over Θ. For the following considerations, the exact values of
the rates are not relevant for the two storage elements, but only their signs. It
means that we identify the level set with a zero rate value, which separates Θ
for each element into two subspaces. Hence, we assume that, in addition to
the minimum size determind in Example 5.1, the storage capacity is chosen
sufficiently high so that the attractive ratio is χA � 0.
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Figure B.6: Partition of Θ.

We apply Algorithm B.1 to detect the boundary, using nθ,1 = 15 and nθ,2 = 12
intermediate points for the initial grid. The grid should be fine enough to avoid
two sign changes along the edges between two grid points, and rough enough
to avoid unnecessary computational costs. Afterwards, the areas in which a
change of sign occurs are refined. The tolerance we have chosen for the stopping
criterion is ε = 2 · 10−2.
The level set of the zero value for both storage elements has an similar form, cf.
Figure 5.4 and 5.5 Figure B.6 shows this shared boundary for both elements by
a black curve. Based on this boundary, two complementary subsets of Θ can be
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determined which are the two elements of the partition

Π :=
{

Θs
1, Θ̃s

1
}
,

where

Θs
1 :=

{
θ ∈ Θ | Ps

1
1 (θ) = 1, Ps

1
2 (θ) = −1

}
, and

Θ̃s
1 :=

{
θ ∈ Θ | Ps

1
1 (θ) = −1, Ps

1
2 (θ) = 1

}
.

Based on Definition B.1, we can also state that the partition is complete. Since Π
contains only two elements, we can conclude that a change of the feed parameter
between these two subsets will always cause an opposite dynamic response of the
storage levels. This contrary behavior of B 1

1 and B 1
2 means that a higher level

in B 1
1 corresponds with a lower level in B 1

2 and vice versa. Of course, this only
applies if the storage constraints are not active during the relaxed S-RTO, i.e.,
if the storage elements are not too full or too empty (i.e., ` ∈ AF). Thus, if
external conditions can be favoured in a way that the system is only exposed to
θ changes between these subsets, the storage levels might regulate themselves.
This would have a positive effect on the required storage capacity.
The nominal feed parameter for which the nominal operation of the two processes
of the production system is designed is shown in Figure B.6. Note that this
point is close to the boundary. This is favorable for the production system and
should be achieved by the design of both processes. During nominal operation,
the processes should be synchronized so that the amount of produced byproducts
corresponds to the amount required for the other process.

Table B.4: Analysis of the storage elements for the rates at the optimal
operational point.

storage B 1
1 storage B 1

2

Negative area fraction 44% 54%
Positive area fraction 54% 45%

Boundary area fraction 2% 1%
Mean negative rate -0.46mol ·min−1 -0.60mol · kJ−1

Standard deviation negative rate 0.05mol ·min−1 0.06mol · kJ−1

Mean positive rate 0.56mol ·min−1 0.51mol · kJ−1

Standard deviation positive rate 0.05mol ·min−1 0.05mol · kJ−1

Capacity for self-regulation 0.69 1.39

After identifying the elements of Π based on the sign of the rates, we will next
analyze some characteristics, which are summarized in Table B.4. In total 54%
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of the θ values yield an increase of the storage level for B 1
1 or a decrease for

B 1
2 . So we can see that the areas with opposite signs have almost the same size

for both storage elements. However, not only the size of the area is crucial to
be able to predict how the storage will behave in the long term. Moreover, the
absolute value of the precise rate values is also important. For this purpose, we
also determined the mean and standard deviation of the rate for both subsets.

For their calculation, the numerator and denominator in (B.9) are determined
individually and related to the area. To integrate the functions Pr

α
j , we use an

interpolation method based on a Gauss-Legendre quadrature, see [92, 240, 136].
In particular, we use a Lagrange polynomial of degree 3.
The absolute values of the negative and positive rates for both storage elements
are in similar orders of magnitude, cf. Table B.4 row 4 to 6. To compensate
for the differences, it is necessary to know how long a certain feed parameter is
maintained or how long it remains in the individual subsets based on a specific
scenario. Thus it might be useful for B 1

1 if the time span in which θ is in the
upper left corner is longer than in the lower right corner. Considering the mean
values of B 1

2 , it is obvious that the same statement applies to this element. In
general, the positive rate of θ values in Θ̃s

1 is greater than the absolute value of
the negative rate in Θs

1.

This analysis shows that it can be important to carefully assess the scenarios and
check whether they can be possibly modified. Otherwise, ill-conditioned scenarios
would push the storage levels out of AF for long time periods. The proposed
operational strategy from Chapters 3 and 4 can still be applied, but the storage
constraints would be permanently active, reducing the flexibility of the system
and its economic output.
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