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Abstract. Using partial outer convexification, we can reformulate MINLPs
constrained by ODEs or PDEs such that all integer control variables are bi-
naries. We can obtain the canonical continuous relaxation of such problems by
replacing the binary control variables with [0, 1]-valued ones. The relaxation
is generally easier to solve. The two-step approach of computing a relaxed
solution and approximating it using binary controls afterwards is called Com-
binatorial Integral Approximation (CIA) decomposition. We survey recent
developments concerning this methodology.

There are several well-behaved algorithmic approaches that approximate
the relaxed controls with binary ones. For these algorithms, driving the mesh
size of the rounding mesh to zero induces convergence of the binary control
with the relaxed one in the weak-∗ topology of L∞. Such approximation results
for one-dimensional domains transfer to multi-dimensional ones under a mild
condition on the rounding mesh refinement. If the solution operator of the
state equation exhibits sufficient regularity, i.e. compactness properties, the
state vector corresponding to the rounded binary control converges in norm to
the state vector of the relaxed problem. Variations of these algorithms allow
additional pointwise constraints that involve the discrete controls without
sacrificing these convergence properties.

As a test case, we present a multi-dimensional model problem that com-
pares two recently investigated algorithmic approaches, which are transferred
to the multi-dimensional setting using iterates of the Sierpinski curve.
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1. Introduction

We consider partial outer convexification reformulations, see [21, 22], of optimal
control problems with mixed control inputs, i.e. control problems of the form

min
y,ω

J(y)

s.t. Ay =

M∑
i=1

ωifi(y),

0 ≤ ωi(s)ci(y(s)) for a.a. s ∈ ΩT , i ∈ {1, . . . ,M},
ω(s) ∈ {0, 1}M for a.a. s ∈ ΩT ,

M∑
i=1

ωi(s) = 1 for a.a. s ∈ ΩT .

(BC)

Here, the quantity M denotes the number of different control realizations (or
right-hand sides in the differential equation context), y denotes the state variable

and ω the binary control input of the problem. Ay =
∑M
i=1 ωifi(y) is the state

equation of the optimized process. We assume that it is defined on a bounded
domain or space-time cylinder ΩT , A is a suitable differential operator and the fi
are suitable non-linearities. The functions ci are pointwise a.e. defined constraint
functions. The function ω : ΩT → {0, 1}M activates the different right-hand sides
f1, . . . , fM of the state equation, i.e., ωi(s) = 1 for exactly one i ∈ {1, . . . ,M} and
ωj(s) = 0 for j 6= i a.e. The continuous relaxation of (BC) reads

min
y,α

J(y)

s.t. Ay =

M∑
i=1

αifi(y),

0 ≤ αi(s)ci(y(s)) for a.a. s ∈ ΩT , i ∈ {1, . . . ,M},

α(s) ∈ [0, 1]
M

for a.a. s ∈ ΩT ,

M∑
i=1

αi(s) = 1 for a.a. s ∈ ΩT .

(RC)

We note that additional continuous control inputs into J , the fi and ci would be
possible here if we added additional assumptions. However, we omit them to keep
the article concise. We note that the constraint 0 ≤ αici(y) implies that versions of
(RC) with discretized differential equations exhibit so-called vanishing constraints.
For further information on optimality conditions and algorithmic approaches for
the class of optimization problems exhibiting such constraints, Mathematical Pro-
grams with Vanishing Constraints (MPVCs), we refer to the articles [1, 8, 9, 10].
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Let Y be a Banach space that serves as the state space for the state equation.
We will make use of the abbreviations

F(BC) :=
{

(y, ω) ∈ Y × L∞(ΩT ,RM ) : (y, ω) feasible for (BC)
}
,

F(RC) :=
{

(y, α) ∈ Y × L∞(ΩT ,RM ) : (y, α) feasible for (RC)
}
,

for the feasible sets of (BC) and (RC). The following definition applies the naming
convention of relaxed and binary control to α and ω, see [15].

Definition 1.1 (Binary and relaxed control). Let d ∈ N. Let ΩT ⊂ Rd be a bounded

domain. We call a measurable function ω : ΩT → {0, 1}M with
∑M
i=1 ωi = 1 a.e. in

ΩT a binary control and a measurable function α : ΩT → [0, 1]M with
∑M
i=1 αi = 1

a.e. in ΩT a relaxed control.

We split the process of solving (BC) into the following two steps:

1. solve the relaxation (RC) to obtain an optimal relaxed control α∗,
2. derive a binary control ω from α∗ as an approximate solution for (BC).

We call the second step rounding and stress that this is different from point-
wise rounding to the nearest integer. This splitting methodology is described in
detail in [23] and sometimes called Combinatorial Integral Approximation (CIA)
decomposition. Several algorithmic approaches exist to compute the binary control
in the second step. For instance, Sum-Up Rounding (SUR) [20] and Next-Forced
Rounding (NFR) [11] provide guaranteed bounds on the so-called integrality gap,

supt

∥∥∥∫ t0 α− ω∥∥∥ in the one-dimensional case ΩT = (0, T ), which behave linearly

with respect to the mesh size of the rounding mesh. Here, the term mesh size refers
to the maximum cell volume of the mesh cells, which is different from its use in
literature on PDE numerics. As the mesh size may be fixed prior to the solution
process, it is also sometimes suggested to compute the binary control by directly
minimizing the integrality gap for a given rounding mesh, see [23]. We later refer
to the resulting optimization problem as the CIA problem.

As noted in [7, 14], similar convexification and approximation properties have
been studied in the optimal control community in contexts other than mixed-
integer optimization. We reference the important the Filippov-Ważewski theorem,
see [6, 24]. This theorem states that the solutions of the differential inclusion

d

dt
y(t) ∈ F (y(t)), t ∈ [0, T ],

y(0) = y0

are dense in the solutions of the differential inclusion
d

dt
y(t) ∈ conv{F (y(t))}, t ∈ [0, T ],

y(0) = y0

for a Lipschitz continuous set-valued function F , which maps into compact subsets
of a Euclidean space and a uniformly bounded solution set of the second differential
inclusion.
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Our rounding algorithms can be interpreted as constructive means to com-
pute the approximation in a mixed-integer optimal control setting. We note that
similar considerations are used for model order reduction using Koopman opera-
tors, see the recent publication [18].

1.1. Outline of the remaining sections

Section 2 summarizes sufficient conditions on the rounding meshes and algorithms
as well as the approximation arguments to obtain norm convergence of the state
vector associated with the rounded controls that are obtained in the second step of
the CIA decomposition. Section 3 presents two algorithms that can be used in the
second step of the CIA decomposition, i.e., both satisfy the prerequisites for the
aforementioned convergence argument. The first is very resource efficient but not
optimal with respect to the integrality gap. The second yields an optimal integral-
ity gap and can be modified to incorporate additional combinatorial constraints
on the control. Section 4 presents an algorithmic framework to perform the round-
ing step. Section 5 compares the two basic rounding algorithms computationally
in terms of state vector and objective approximation error for an optimal con-
trol problem that is governed by an elliptic state equation on a two-dimensional
domain. Finally, we summarize our findings in Section 6.

1.2. Notation

For an integer k, we use the abbreviating notation [k] := {1, . . . , k}. For a Banach
space X, we denote its topological dual by X∗. As we have done up to this point,
we use the abbreviated forms “a.e.” and “for a.a.” for “almost everywhere” and
“for almost all” respectively.

2. Approximation arguments for the CIA decomposition

Independent of the actual rounding algorithms, this section summarizes the argu-
ment that a decaying integrality gap implies convergence of the control and state
vectors. This later factors into the optimality and feasibility of the approximations.
We begin by introducing required properties of rounding meshes and the output
of the rounding algorithm. We continue by describing the convergence properties
that result from these properties and show how they factor into optimality and
feasibility. Finally, we point out the differences, i.e., our loss in approximation
quality, if mixed constraints of the form 0 ≤ ωici(y) are present.

2.1. Properties of rounding meshes and algorithms

The rounding algorithms presented later operate on controls discretized on meshes.
We refer to these as rounding meshes.

Definition 2.1 (Rounding mesh and mesh size). Let d ∈ N. Let ΩT ⊂ Rd be a
bounded domain. A set of mesh cells {T1, . . . , TN} ⊂ B(ΩT ) is called a rounding
mesh if the cells make up a finite partition of ΩT . The quantity N denotes the
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number of mesh cells and the quantity h := maxk∈[N ] λ(Tk) denotes the mesh size
of the rounding mesh.

We highlight again that, in contrast to PDE numerics literature, we have
defined mesh size as the maximum cell volume and not as the maximum cell di-
ameter of the mesh cells. Although these quantities are connected on the considered
meshes, they are of course not equivalent.

The convergence results in this section require the following assumptions
on the binary control vector ω produced during the rounding step. This will be
justified for SUR in Section 3.1.

Assumption 2.2. There exists a constant C > 0 such that for all relaxed controls
α and rounding meshes {T1, . . . , TN} with mesh size h, the rounding ω satisfies

max
k∈[N ]

∥∥∥∥∥
∫
⋃k

`=1 T`
α(s)− ω(s) ds

∥∥∥∥∥
∞

≤ Ch. (2.1)

2.2. Weak control approximation

Assumption 2.2 implies convergence of ω to α in the weak-∗ topology of L∞(ΩT ,RM )
by means of a density argument. We refer to [14] for the proof. In case ΩT is one-
dimensional, i.e., ΩT = (0, T ), this arises straightforwardly if the mesh cells are
intervals.

Theorem 2.3. Let ({T n1 , . . . , T nNn
})n be a sequence of rounding meshes with the

cells T nk being consecutive (closed, open and half-closed) intervals for all n ∈ N
and k ∈ [Nn]. Let (hn)n denote the corresponding sequence of mesh sizes and (ωn)n
the corresponding sequence of binary controls by a rounding algorithm satisfying
Assumption 2.2. Then,

sup
t∈[0,T ]

∥∥∥∥∫ t

0

α(s)− ωn(s) ds

∥∥∥∥
∞
≤ Chn

If hn → 0, we have
ωn ⇀∗ α in L∞((0, T ),RM ).

The density argument to prove Theorem 2.3 makes use of the one-dimensional
domain of integration, namely the integration by parts formula before Assump-
tion 2.2 is applied. This procedure does not generalize to the multi-dimensional
setting as there is no multi-dimensional analog to the forward progression along
the single coordinate axis in one-dimension. To overcome this, we impose a regu-
larity condition on the refinement strategy of the sequence of rounding meshes to
obtain weak-∗ convergence of the sequence (ωn)n.

Theorem 2.3 demonstrates that refining the meshes uniformly and satisfying
a condition on the progression of the SUR algorithm through cells of consecutive
meshes gives the desired convergence. This condition is satisfied by space-filling
curves, e.g., the Hilbert curve. For a short proof, we refer to [16].

Fortunately, it is possible to obtain the weak-∗ approximation property in-
dependently of chosen progressions through the mesh cells, i.e., independent of
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the indexing of the mesh cells in the estimate (2.1). However, we still require a
regularity condition to avoid a degeneration of the eccentricity of the mesh cells
during the successive refinement of the rounding meshes. The regularity condition
is given in Definition 2.4 below and is introduced in [15].

Definition 2.4. Let d ∈ N and ΩT ⊂ Rd be a bounded domain. Let ({T n1 , . . . , T nNn})n
be a sequence of rounding meshes with corresponding sequence of mesh sizes (hn)n.
Then, we call the sequence ({T n1 , . . . , T nNn})n an admissible sequence of refined
rounding meshes if

1. hn → 0,
2. for all n ∈ N and all k ∈ [Nn+1], there exists ` ∈ [Nn] such that T n+1

k ⊂ T n` ,
3. the cells T nk shrink regularly, i.e. there exists C > 0 such that for each T nk

there exists a ball Bnk such that T nk ⊂ Bnk and λ(T nk ) ≥ Cλ(Bnk ).

As in [15], we note that the last condition, which limits the eccentricity of the
cells along the refinements, is similar to requirements on finite element triangula-
tions, namely refining with an isotropic strategy on quasi-uniform triangulations,
see [3]. We state the weak-∗ convergence, which is proven in [15].

Theorem 2.5. Let d ∈ N and ΩT ⊂ Rd be a bounded domain. Let ({T n1 , . . . , T nNn})n
be an admissible sequence of refined rounding meshes and (ωn)n be the correspond-
ing sequence of binary controls computed by means of a rounding algorithm satis-
fying Assumption 2.2. Then,

ωn ⇀∗ α in L∞(ΩT ,RM ).

2.3. State vector approximation

Let y(α) denote the solution of the state equation for the relaxed control α and
y(ωn) the solution of the state equation for the binary control ωn. To obtain
y(ωn)→ y(α) in the state space Y , we need compactness of the solution mapping
to transform the weak-∗ convergence into convergence in norm. We state two
results. The first is for a class of semi-linear evolution equations with Lipschitz
continuous non-linear part and unbounded linear part, which generates a strongly
continuous semigroup. It is proven in [14] and extends the results in [7].

Theorem 2.6. Let X be a Banach space. Let α : [0, T ]→ RM be a relaxed control.
Let y ∈ Y := C([0, T ], X) solve

∂ty +Ay =

M∑
i=1

αifi(y), y(0) = y0

with A being the generator of a strongly continuous semigroup on X and fi being
Lipschitz continuous with respect to y for i ∈ [M ]. Let (ωn)n be a sequence of binary
controls computed by means of a rounding algorithm satisfying Assumption 2.2 on
a sequence of rounding meshes as demanded in Theorem 2.3 with hn → 0 and let
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(yn)n ⊂ Y be the sequence of state vectors that solve

∂ty +Ay =

M∑
i=1

ωni fi(y), y(0) = y0

for n ∈ N. Then,
yn → y in Y.

The second result is developed in [15] for PDEs governed by elliptic operators
of second order, for which it follows immediately from the Lax-Milgram theorem.

Theorem 2.7. Let X and Y be Banach spaces satisfying the dense and compact
embedding X ↪→c Y . Let α : ΩT → RM be a relaxed control. Let y ∈ Y be the
solution of

Ay =

M∑
i=1

αifi(y)

with the restriction A having a bounded inverse A−1 : X∗ → X. Let (ωn)n be a
sequence of binary controls computed by means of a rounding algorithm satisfying
Assumption 2.2 on an admissible sequence of refined rounding meshes and let
(yn)n ⊂ X be the sequence of state vectors that solve

Ay =

M∑
i=1

ωni fi(y)

for n ∈ N. Let ωni fi(y) ⇀ αif(yn) in Y ∗. Then,

yn → y in X.

One should have the Dirichlet-Laplacian with the Hilbert space setting X =
H1

0 (Ω), X∗ = H−1(Ω) and Y = Y ∗ = L2(Ω) in mind for this case. If the fi do not
depend on the state vector, the condition ωni fi(y

n) ⇀ αif(yn) is trivially true in
this case.

2.4. Optimality and feasibility in the absence of mixed constraints

Again, we denote the state space by the symbol Y . Regardless of the presence of
the mixed constraint or not, we can deduce the following from continuity of the
objective J with respect to the state vector.

Lemma 2.8. Let (y, α) solve (RC) and let (yn, ωn)n ⊂ Y ×L∞(ΩT ) satisfy yn → y.
Then,

lim J(yn) = min
(y,α)∈F(RC)

J(y).

Now assume, the mixed constraints ci are not present, i.e., ci ≡ 0 holds for
all i ∈ [M ]. Then we even obtain

Theorem 2.9. Let the prerequisites of Lemma 2.8 hold. Then,

min
(y,α)∈F(RC)

J(y) = inf
(y,ω)∈F(BC)

J(y).



8 M. Hahn, C. Kirches, P. Manns, S. Sager and C. Zeile

These statements are proven in [15] and guarantee algorithmic well-definedness
and finite termination if we refine the rounding mesh successively in the sense of
Definition 2.4 until an acceptable approximation error between the objective value
of the current iterate and the optimal objective value of (RC) is reached.

2.5. Optimality and feasibility in the presence of mixed constraints

As mentioned before, in the presence of mixed constraints, we need to take some
extra care and unfortunately, the decomposition approach may not be able to pro-
duce a feasible point of (BC), in contrast to Theorem 2.9, but only one exhibiting
an arbitrarily small constraint violation.

Applying a rounding algorithm in the presence of the constraints 0 ≤ αici(y)
without any modifications might lead to arbitrary low values of the term ωici(y).
To see this, let i ∈ [M ] be fixed and remember that the functions ci are assumed
to be continuous. The problem arises from the bilinear structure of the constraint
0 ≤ αici(y). If αi = 0 on a set of non-zero measure, the value of ci(y) may be
arbitrarily low for (y, α) ∈ F(RC). If the algorithm does not prevent the rounding
of ωni to 1 on this particular set of non-zero measure, this may lead to an arbitrarily
high violation of the constraint 0 ≤ ωni ci(yn) on this particular set.

To overcome this problem, the following assumption restricts the indices that
are admissible for rounding in a particular cell T nk to the ones satisfying

∫
T n
k
αi > 0.

Assumption 2.10. For all relaxed controls α and rounding meshes {T1, . . . , TN},
the rounding ω satisfies ∫

Tk
αi = 0⇒

∫
Tk
ωi = 0

for all k ∈ [N ] and all i ∈ [M ].

Now, the continuity of the ci and Assumption 2.10 yield the following result.

Theorem 2.11. Let the prerequisites of Lemma 2.8 hold. Let the binary controls
(ωn)n be computed by means of a rounding algorithm that satisfies Assumption 2.10.
Then,

lim J(yn) = min
(y,α)∈F(RC)

J(y)

as well as
0 ≤ lim inf ωni ci(y

n) for all i ∈ [M ].

Note that the second asymptotics also hold for continuous path constraints
(as a special case). Further classes of constraints on states and controls are dis-
cussed in [21].

3. Approximation quality of roundings

The rounding step of the CIA decomposition can be performed using different
algorithmic approaches. Section 3.1 focuses on variants of the SUR algorithm,
while the explicit minimization of the integrality gap using mixed-integer linear
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programs (MILPs) is the subject of Section 3.2. Note that other approaches like
Next-Forced Rounding, see [11], exist for the second step of the CIA decomposition.

3.1. Sum-Up Rounding algorithms

We introduce two variants of the SUR algorithm, see [13, 20], below and discuss
their basic properties and the difference between them.

Definition 3.1 (SUR algorithms). Let α be a relaxed control and let {T1, . . . , TN}
be a rounding mesh. We define the function ω iteratively for k = 1, . . . , N as

ω(s) :=

N∑
k=1

χTk(s)Wk,

Wk(i) :=

{
1 if i = arg max

j∈Fk

∫
Tk αj −

∫⋃k−1
`=1 T`

αj − ωj ,

0 else
for i ∈ [M ].

If a tie arises with respect to the maximizing index k, the smallest of the max-
imizing indices is chosen. We define the two variants, which differ in the sets of
admissible indices for rounding in the cells of the rounding mesh:

Fk := {1, . . . ,M} for all k ∈ [N ], (SUR)

Fk :=

{
i ∈ [M ] :

∫
Tk
αi > 0

}
for all k ∈ [N ]. (SUR-VC)

The algorithm (SUR) is the original SUR algorithm introduced in [20] and
the algorithm (SUR-VC) is a variant introduced in [13] that works properly in
the presence of mixed constraints. We restate the approximation property that
establishes Assumption 2.2 below. It is proven in [13, 22] for (SUR) and in [13, 17]
for (SUR-VC).

Proposition 3.2. The algorithms (SUR) and (SUR-VC) produce binary controls ω
for all relaxed controls α and rounding meshes. There exists a constant C > 0 such
that for a relaxed contro α and ω computed by means of (SUR) or (SUR-VC) on
a rounding mesh with mesh size h, we have the estimate

max
k∈[N ]

∥∥∥∥∥
∫
⋃k

`=1 T`
α(s)− ω(s) ds

∥∥∥∥∥
∞

≤ Ch.

In particular, Assumption 2.2 holds true.

Due to the integration domain being an increasing union of rounding mesh
cells, this estimate depends on the ordering of the mesh cells. However, if the
sequence of mesh cells is constructed such that Definition 2.4 is satisfied, the
reasoning in Section 2.2 guarantees convergence.

Example. We illustrate the necessity for making the rounding algorithm aware
of the mixed constraint, see Section 2.5, for the algorithm (SUR). Let M = 3,
ΩT = (0, 2), let α be the relaxed control given by

α1 := .5χ[0,2], α2 := .5χ[0,1], α3 := .5χ[1,2].
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Assume in mesh iteration n, ΩT is discretized into Nn = 2·3n equidistant intervals,
i.e., hn = 3−n. By applying (SUR), we obtain ωn1 (s) = 1 on the intervals with odd
indices and ωn2 (s) = 1 on the intervals with even indices. This implies∫ 1

0
α1 − ωn1 =

∫⋃3n

k=1 T n
k
α1 − ωn1 = −0.5 · 3−n,∫ 1

0
α2 − ωn2 =

∫⋃3n

k=1 T n
k
α2 − ωn2 = 0.5 · 3−n,∫ 1

0
α3 − ωn3 =

∫⋃3n

k=1 T n
k
α3 − ωn3 = 0.

Thus, for the 3k + 1-st interval, we have∫
T n
3n+1

α1 +
∫⋃3n

k=1 T n
k
α1 − ωn1 = 0.,∫

T n
3n+1

α2 +
∫⋃3n

k=1 T n
k
α2 − ωn2 = 0.5 · 3−n,∫

T n
3n+1

α3 +
∫⋃3n

k=1 T n
k
α3 − ωn3 = 0.5 · 3−n

and (SUR) gives ωn2 = 1 on the interval [1, 1 + hn]. Thus, ‖ωn2 |[1,2]‖L∞ = 1 for all
n ∈ N. Now, assume c2(yn)→ c2(y) and c2(y) ≡ −1 on [1, 2]. Then,

ess inf ωn2 c2(yn)→ −1 on [1, 2].

The restriction of the set of admissible indices for rounding, Fk for k ∈ [N ],
in the definition of (SUR-VC) ensures that Assumption 2.10 is satisfied as well
and the problem illustrated above cannot occur, see [13].

Proposition 3.3. Algorithm (SUR-VC) satisfies Assumption 2.10.

We note that a similar modification is not possible for the algorithm Next-
Forced Rounding (NFR) from [11] mentioned above as this may lead to an empty
set of indices admissible for rounding.

3.2. Combinatorial Integral Approximation Problems

In this subsection, we discuss the minimization problem

min
ω

max
k∈[N ]

∥∥∥∥∥
∫
⋃k

`=1 T`
α(s)− ω(s) ds

∥∥∥∥∥
∞

,

which defines binary controls ω that minimize the integrality gap. By introducing
an additional variable θ ≥ 0 and adding inequality constraints for all control
realizations and mesh cells, we are able to define an equivalent mixed-integer linear
program (MILP) that aims at solving the above problem. We refer to the latter as
Combinatorial Integral Approximation Problem, see [23], and provide its definition
below.

Definition 3.4 (CIA-MILP). Let the prerequisites of Definition 3.1 hold. Based on
the relaxed controls and the rounding mesh we introduce the average values

Ak(i) :=
1

λ(Tk)

∫
Tk
αi(s) ds, for i ∈ [M ], k ∈ [N ].
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We define further the CIA-MILP to be:

min
θ,W

θ s.t. (CIA-MILP)

θ ≥ ±
∑
l∈[k]

(Al(i)−Wl(i))λ(Tl), for i ∈ [M ], k ∈ [N ],

Wk(i) ∈ {0, 1} for i ∈ [M ], k ∈ [N ],
1 =

∑
i∈[M ]

Wk(i) for k ∈ [N ].

The solution of (CIA-MILP) is used to construct a piecewise constant binary
control function as already sketched in Definition 3.1:

ω(s) :=

N∑
k=1

χTk(s)Wk, s ∈ ΩT .

We note that the family of SUR algorithms has linear complexity in the total
number of mesh cells N . In contrast, using an MILP in the rounding step increases
the computational burden exponentially with N , but may construct solutions with
smaller integrality gap. In fact, one can interpret SUR as a heuristic way to solve
(CIA-MILP) or at least construct a feasible point. Since (SUR) provides a feasible
point for (CIA-MILP), the following proposition which asserts Assumption 2.2,
follows directly from Proposition 3.2.

Proposition 3.5. The solution of (CIA-MILP) yields a binary control ω for all
relaxed controls α and rounding meshes. There exists a constant C > 0 such that
for α being a relaxed control and ω being computed by solving (CIA-MILP) on a
mesh with mesh size h, we have the estimate

max
k∈{1,...,N}

∥∥∥∥∥
∫
⋃k

`=1 T`
α(s)− ω(s) ds

∥∥∥∥∥
∞

≤ Ch.

In particular, Assumption 2.2 holds true.

(CIA-MILP) represents the CIA problem based on the ∞-norm, whereas
there is a whole family of MILPs to carry out the binary approximation problem.
A generalization of CIA problems with respect to different norms, the order of the
accumulated control difference and different scaling of the latter is proposed in
[25]. For instance, we may scale the approximation inequality for the CIA problem
with the evaluated right hand side fi after solving (RC).

Another aspect of using an MILP in the rounding step is the opportunity
to include general combinatorial constraints on the binary controls. Real-world
problems on a time domain, i.e., ΩT ⊂ R, see e.g. [4, 19], often require a limited
number of switches occurring between the system modes or the presence of so-
called minimum dwell time constraints that describe the necessity of activating a
control ωi for at least a given minimal duration if at all. Similar constraints can
be introduced for deactivation periods. To impose a maximum number of switches
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σ ∈ N on the time horizon, we would add

σ ≥ 1

2

∑
i∈[M ]

∑
l∈[N−1]

|Wl+1(i)−Wl(i)| (3.1)

to (CIA-MILP). The dwell time constraints for a given dwell time CD ∈ N, an
assumed equidistant mesh, as well as l ∈ [N−2], k = l+1, . . . ,min{l+1+CD, N}
would read

Wk+1(i) ≥Wl+1(i)−Wl(i), for i ∈ [M ],

1−Wk+1(i) ≥Wl(i)−Wl+1(i), for i ∈ [M ],

and can also be addressed by (CIA-MILP). In contrast to the one-dimensional case,
it is not immediately clear how to interpret such constraints on multi-dimensional
domains. Here, the total max-up constraint is an example of a meaningful combi-
natorial condition, which limits the total number of activations on all mesh cells
for certain controls by a constant CL(i) ∈ N:

CL(i) ≥
∑
l∈[N ]

Wl(i), for i ∈ [M ].

Combinatorial conditions have in common that Assumption 2.2 can not generally
be satisfied in their presence and hence the convergence argument in Section 2.2
may fail. The following example illustrates this issue.

Example. Let us again consider the case ΩT = [0, 2] with two discrete control
realizations, i.e. M = 2, and with the presence of the constraint (3.1) that limits
the number of switches with the choice σ = 1. We further assume that the relaxed
control is given by

α1 := .5χ[0,2], α2 := .5χ[0,2].

Then, we recognize that the optimal solution of (CIA-MILP) approximates α by
setting the values Wl(1) = 1 on a minimal set covering ∪lTl of [0, 1] and Wl(1) = 0
else. Therefore, (CIA-MILP) exhibits an objective, i.e. an integrality gap, of at
least 1

2 independent of the discretization of ΩT . In particular, Assumption 2.2 is
not satisfied.

This example can be adapted analogously to cases where σ > 1 is given or
M > 2 holds.

4. Solving the CIA problem

The open-source software package pycombina1 contains an implementation for
various rounding algorithms, e.g., for the presented SUR from Section 3. Sophis-
ticated MILP solvers such as Gurobi struggle to solve (CIA-MILP) efficiently, see

1Available under https://github.com/adbuerger/pycombina
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[11]. This may be due to the fact that its canonical linear programming relax-
ation, i.e. (CIA-MILP) with Wk(i) ∈ [0, 1], yields only trivial lower bounds in case
of absent additional combinatorial constraints. (CIA-MILP) can be solved more
efficiently by means of a tailored Branch and Bound scheme, see [23]; an efficient
version is also implemented in pycombina. Algorithm 1 describes the main steps.
The algorithm exploits that an evaluation of the objective function up to the cur-
rent mesh cell yields a valid lower bound due to the maximization operator over all
intermediate steps in the objective function. This lower bound is extremely cheap
to compute and is tighter than canonical relaxations [12]. We select nodes from a
queue Q until it is empty or a termination criterion is reached, such as a maximum
number of iterations or a time limit (line 2). The selected node n is pruned if its
lower bound θ is greater than the global upper bound UB (lines 4 - 5) or we update
the currently best node n∗ to be n, if its depth equals the number of mesh cells N
(lines 6 - 7). We branch forward with respect to the mesh index k ∈ [N ], whereby
for each child node creation all control entries Wk(i) become fixed with exactly one
index set to be active (line 9). Nodes contain information on their depth, which is
the mesh cell index, their so far largest accumulated control deviation θ and the
accumulated deviation for each control realization θi. Depending on the imposed
combinatorial constraints, we save also information about previous Wk(i) values
in the nodes and add their child nodes only if they satisfy these constraints (line
10). For further details and numerical examples benchmarking Algorithm 1 with
MILP solvers, we refer to [4, 11].

5. Illustration of the multi-dimensional control approximation

As noted in Section 2.2, weak convergence of the control function can be ensured
for elliptic PDEs with both algorithms, if we use an admissible sequence of refined
rounding meshes. As shown in [16], this can be achieved by iterating over the mesh
cells along approximants of a space-filling curve such as the Hilbert curve. In this
section, we demonstrate the bare SUR algorithm and the MILP approach described
above by applying them to a simple distributed inverse problem for the Poisson
equation. We use a finite element method with continuous first-order Lagrange
elements on a structured triangular mesh which we will iterate over according to
the Sierpinski curve.

5.1. Test problem

Our test problem is based on the Poisson equation, which is an inhomogeneous,
uniformly elliptic second-order linear PDE system used to find stationary solutions
to diffusion and heating problems. Due to its theoretical simplicity, the Poisson
equation is often used as a testbed for mixed-integer PDE-constrained optimiza-
tion. We solve the Poisson equation in two dimensions on the unit square Ω = [0, 1]

2

using Robin boundary conditions, which guarantees the uniqueness and Fréchet
differentiability of the PDE solution with respect to our controls, which select one
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Algorithm 1: Branch and Bound for solving (CIA-MILP)

Input : Relaxed control values Ak(i), mesh size volumes λ(Tk), k ∈ [N ],
termination criterion, parameters for combinatorial constraints.

Output: (Optimal) solution (θ∗,W ∗) of (CIA-MILP).
1 Initialize node queue Q with empty node and set upper bound UB.

2 while Q 6= ∅ and termination criterion not reached do
3 Choose n ∈ Q according to node selection strategy.

4 if n.θ > UB then
5 Prune node n.

6 else if n.depth = N then
7 Set new best node n∗ ← n and UB = n.θ

8 else
9 Create M child nodes ci with

ci.depth← d := n.depth+ 1,

Wci,d(j)←

{
1 if j = i

0 otherwise
,

ci.θj ← n.θj + (Ad(j)−Wd(j)) · λ(Td)

ci.θ ← max
(
{n.θ} ∪

{
|ci.θj |

∣∣ j ∈ [M ]
})
.

10 Add ci to Q if and only if it satisfies all combinatorial constraints.

11 end

12 end

13 return: (θ∗,W ∗) = (n∗.θ, n∗.W );

of five discrete source term values for each point in the domain. Our objective is
an L2 tracking objective. Thus, the problem can be stated as

min
y,ω
‖y − ȳ‖2L2(Ω)

s.t. −∆y =

5∑
i=1

viωi a.e. in Ω,

∂y

∂ν
− y = 0 a.e. in ∂Ω,

5∑
i=1

ωi(x) = 1 a.e. in Ω,

ωi(x) ∈ {0, 1} a.e. in Ω ∀i ∈ [5],

(P)
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where ν : ∂Ω → R2 is the outer unit normal of Ω and ȳ ∈ L2(Ω) is the unique
weak solution of the boundary value problem for the right-hand side given by

f̄(x) :=

5∑
i=1

vi
ᾱi(x)∑5
j=1 ᾱj(x)

∀x ∈ Ω

with a set of known control functions

ᾱi(x) := exp
(
−100(min {‖x−m∗,1‖, ‖x−m∗,2‖} − ri)2

)
.

The additional parameters are

v :=

(
−2,−1

2
,

1

4
, 1, 2

)T
,

r := (0.25, 0.2, 0.15, 0.1, 0.05)
T
,

m :=

(
0.25 0.75
0.25 0.75

)
.

After normalization, the functions ᾱ sum up to one everywhere. Therefore, they
are optimal controls for the relaxed problem with objective function value 0.

5.2. Mesh structure and Sierpinski curve

We use the finite-element package FEniCS [2] to generate meshes and solve the
boundary value problem. Meshes are generated using a RectangleMesh with cross-
ed diagonals, meaning that at refinement level l ∈ N0, the unit square is subdivided
into 4l equally sized squares, each of which is again subdivided into four congruent
triangles along its diagonals. This is equivalent to subdividing each triangle into
four congruent sub-triangles on each refinement level as illustrated in Fig. 1.

In order to generate an order approximating the Sierpinski curve, we gener-
ate the vertices of a Sierpinski curve at the l-th iteration, starting at the point(

1
2l+1 ,

√
2−1

2l+1

)
which is located in the leftmost triangle that has an edge contained

entirely within the x1 axis. The first step is made at an angle of π
4 and all steps

have length
√

2−1
2l . This produces one vertex within each triangle. We then iterate

over the triangles in the mesh according to the order of the vertices.
For a more detailed description of the Sierpinski curve, we refer to [5, Section

2.10.3]. The procedure is illustrated for refinement levels 0, 1, 2 in Fig. 2.

5.3. Numerical results obtained with the CIA decomposition

For practical problems we suggest to calculate optimal relaxed and derived binary
controls iteratively on refined meshes. However, both the convergence of the relaxed
solutions and of the rounding strategies have an impact and overlap, complicating
the analysis of the overall convergence behavior. In our setting and due to the
way the test problem is stated, the optimal relaxed control function is known in
advance. This allows us to highlight the convergence of the rounded solutions to the
optimal relaxed solution in function space. We use continuous first-order Lagrange
elements to approximate weak PDE solutions and piecewise constant functions to
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Figure 1. Refinement of a single triangle.

Figure 2. First three refinement levels in an admissible sequence
of rounding meshes using the Sierpinski curve.

Table 1. Results of numerical experiments

Level Cells h Abs. Err. SUR Abs. Err. BnB CIA Obj. SUR CIA Obj. BnB

0 4 2.500000×10−1 1.825637×10−3 1.825637×10−3 1.487897×10−1 1.487897×10−1

1 16 6.250000×10−2 8.382177×10−4 1.734637×10−4 4.562038×10−2 4.562038×10−2

2 64 1.562500×10−2 1.110449×10−5 6.927478×10−6 9.355154×10−3 9.355154×10−3

3 256 3.906250×10−3 7.461304×10−6 7.232266×10−6 3.395206×10−3 2.910952×10−3

4 1024 9.765625×10−4 2.725262×10−7 3.082747×10−7 8.505270×10−4 7.388801×10−4

5 4096 2.441406×10−4 2.005071×10−8 1.848401×10−8 2.377537×10−4 2.053501×10−4

6 16384 6.103516×10−5 2.574303×10−9 4.133702×10−9 7.280519×10−5 7.280519×10−5

approximate control functions. We coarsen the optimal relaxed control for lower
refinement levels by taking a weighted average over each cell of the coarse mesh and
approximate it using both sum up rounding and pycombina’s specialized branch-
and-bound algorithm. The latter is limited to 108 explored nodes and up to one
CPU hour of computation time. We compare both approximation methods using
the absolute error in the objective function value as well as the objective they
achieve in the CIA problem (CIA-MILP). The latter approaching zero indicates
weak-∗ convergence of the control function.

We note that pycombina terminates early on account of exceeding the ex-
plored node limit for levels 3, 4, 5, and 6. However, it does so in less than 20 CPU
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Figure 3. Solutions for SUR at levels 1, 3, and 5.
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Figure 4. Solutions for branch-and-bound at levels 1, 3, and 5.

minutes in all cases. By contrast, if we try to solve the CIA problem (CIA-MILP)
using Gurobi, the CPU time limit of one hour is already exceeded at level 3.

Table 1 summarizes the outcome of our experiment. Despite early and possi-
bly suboptimal termination, we see that the branch-and-bound algorithm always
achieves a CIA objective that is at least as good or better than that achieved by
sum up rounding, though this does not always translate into a smaller error in the
actual objective function value. For levels 1, 3, and 5, we plot the right-hand side
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function and PDE solution for sum up rounding and branch and bound alongside
their relaxed counterparts in Figs. 3 and 4, respectively.

6. Conclusion

In this article, we surveyed recent improvements of the CIA decomposition for
solving PDE-constrained mixed-integer optimal control problems. This approach
consists of solving first the problem with relaxed controls before approximating
these values with binary ones as part of a rounding problem. We summarized our
findings with respect to convergence results in the weak-∗ topology of L∞ and
discussed two rounding algorithms together with their efficient numerical imple-
mentation. Finally, these two algorithmic approaches were compared on a test
problem based on the Poisson equation, where we used the space-filling Sierpinski
curve to iterate over a structured triangular mesh.
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