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Zusammenfassung
Im psychologischen Forschungsgebiet Komplexes Problemlösen (engl.: Complex Problem Solving)
werden computergestützte Tests eingesetzt, um die komplexe Entscheidungsfindung und das Lö-
sen komplexer Probleme von Menschen zu analysieren. Dazu werden üblicherweise computerba-
sierte Mikrowelten verwendet, in denen die Leistung von Probanden ermittelt und mit bestimmten
Eigenschaften verknüpft wird. Solche Testszenarien wurden bisher im Allgemeinen in iterativen, auf
Versuch und Irrtum beruhenden Prozessen erarbeitet, bis sie bestimmte Charakteristika aufwiesen.
Je komplexer solche Modelle werden, umso wahrscheinlicher ist es jedoch, dass unerwünschte Ei-
genschaften bei der Verwendung in Studien hervortreten.

In der vorliegenden Arbeit werden mathematische Optimierungsverfahren nicht nur als Analyse-
und Trainingswerkzeug im Komplexen Problemlösen eingesetzt, sondern auch bereits in der Ent-
wicklungsphase eines neuen komplexen Problemszenarios. Diese neuartige Mikrowelt, der IWR Tai-
lorshop, wird in der Arbeit vorgestellt und besteht aus funktionalen Zusammenhängen, die auf Op-
timierungsergebnissen beruhen. Mit dem IWR Tailorshop wurde im Rahmen dieser Arbeit erstmals
ein Testszenario für die Problemlöseforschung von Anfang an für den Einsatz mathematischer Op-
timierungsverfahren entwickelt. Als Basis diente hierbei das ökonomische Framing des Tailorshops,
eine weitverbreitete und häufig eingesetzte Mikrowelt.

Diese Arbeit beschreibt eine optimierungsbasierte Analysemethode von Probandendaten in sol-
chen Mikrowelten, die um Methoden zur Berechnung eines optimierungsbasierten Feedbacks er-
weitert wird. Dabei werden sowohl für die Berechnung als auch für die Darstellung des Feedbacks
verschiedene Ansätze diskutiert und implementiert. Darüber hinaus werden verschiedene differen-
zierbare Umformulierungen eines in der Formulierung des Testszenarios unvermeidlichen Mini-
mumterms untersucht und Rechenergebnisse dazu präsentiert. Der Schwierigkeiten, für die sich aus
dem Testszenario ergebenden nichtkonvexen gemischt-ganzzahligen Optimierungsprobleme global
optimale Lösungen zu finden, wird in der vorliegenden Arbeit mit einem neuartigen Dekompositi-
onsverfahren begegnet. Für diese Methode werden ebenfalls Rechenergebnisse vorgestellt. Die neue
Mikrowelt wurde in einem webbasierten Interface implementiert, das von einer Analysesoftware für
gesammelte Datensätze ergänzt wird. Diese Softwarepakete stehen als Open-Source-Software auch
als Basis für andere Testszenarien zur Verfügung und sind aufgrund ihrer modularen Struktur gut für
die Übertragung auf ebensolche geeignet.

Abschließend wird die entwickelte Methode in einer webbasierten Feedbackstudie unter Benut-
zung des IWR Tailorshop angewandt. Die Probanden werden hierbei beim Erlernen der Steuerung
dieser Mikrowelt durch optimierungsbasiertes Feedback unterstützt. In dieser Studie mit 148 Teil-
nehmern wird gezeigt, dass das Feedback zu einer signifikanten Verbesserung der Probandenleistung
führen kann, wenn eine günstige Darstellung hierfür gewählt wird. Je nach Berechnungs- und Dar-
stellungsvariante ist die Verbesserung im Vergleich zu einer Kontrollgruppe gravierend. Die Arbeit
enthält eine ausführliche Analyse der Studie und formuliert neue Erkenntnisse über die menschliche
Entscheidungsfindung in komplexen Problemen, die erst durch den auf allen Ebenen optimierungs-
basierten Ansatz ermöglicht wurden.
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Abstract
In the research domain Complex Problem Solving (CPS) in psychology, computer-supported tests
are used to analyze complex human decision making and problem solving. The approach is to use
computer-based microworlds and to evaluate the performance of participants in such test-scenarios
and correlate it to certain characteristics. However, these test-scenarios have usually been defined
on a trial-and-error basis, until certain characteristics became apparent. The more complex models
become, the more likely it is that unforeseen and unwanted characteristics emerge in studies.

In this thesis, we use mathematical optimization methods as an analysis and training tool for com-
plex problems solving, but also in the design stage of a new complex problem scenario. We present
the IWR Tailorshop, a novel test scenario with functional relations and model parameters that have
been formulated based on optimization results. The IWR Tailorshop is the first CPS test-scenario de-
signed for the application of optimization and is based on the economic framing of another famous
microworld, the Tailorshop.

We describe an optimization-based analysis approach and extend it to optimization-based feed-
back with different approaches for both feedback computation and feedback presentation. Addition-
ally, we investigate differentiable reformulations for an unavoidable minimum expression and show
the according numerical results. To address the difficulties of computing globally optimal solutions
for this test-scenario, which yields a nonconvex mixed-integer optimization problems, we present a
decomposition approach for the IWR Tailorshop. The new test-scenario has been implemented in a
web-based interface together with an analysis software for collected data, which both are available
as open-source software and allow for an easy adaption to other test-scenarios.

In this work, we also apply our methodology in a web-based feedback study using the IWR Tai-
lorshop in which participants are trained to control the microworld by optimization-based feedback.
In this study with 148 participants, we show that such a feedback can significantly improve partic-
ipants’ performance in a complex microworld with a possibly huge difference to a control group.
However, the performance improvement depends on the representation of the feedback. We give a
detailed analysis of the study and report on new insights about human decision making which only
have been possible through the IWR Tailorshop and our optimization-based analysis and training
approach.
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CHAPTER 1

Introduction
1.1 Motivation
Modern life imposes daily decision making, often with important consequences. Illustrative exam-
ples are politicians who decide on actions to overcome a financial crisis, medical doctors who decide
on complementary chemotherapy drug delivery strategies, or entrepreneurs who decide on long-
term strategies for their company.

The process of human decision making is the subject of research in the field of Complex Problem
Solving (CPS), which deals with complex problems. The complexity may result from one or several
different characteristics, such as a coupling of subsystems, nonlinearities, dynamic changes, opaque-
ness, or others [42]. Such problems are considered to be similar to problems we encounter and solve
in everyday life and thus investigation of CPS is claimed to yield more insight into real-world human
decision making. Apparently, our introductory examples are complex problems and as such, they are
ill-defined. More precisely, their problem space is open and a problem solver has to deal with lots of
variables, dependencies and dynamics making them complex problems: which information is rele-
vant? How is the data connected? What is the exact aim? How can contradictory aims be weighted?

The main intention in CPS is to understand how certain exogenous variables influence a solu-
tion process. In general, personal and situational variables are differentiated. The most typical and
frequently analyzed personal variable is intelligence. It is an ongoing debate how intelligence in-
fluences complex problem solving [136]. Other interesting personal variables are working memory
[106], amount of knowledge [77], and emotion regulation [96]. Situational variables like the impact
of goal specificity and observation [95], feedback [29], and time constraints [62] attracted less atten-
tion. In a recent work [116], an abstract computer-simulated monopoly market is used to investigate
dynamic decision making based on the choice of goal systems.

Doubts about the relevance of simple problems with a well-defined problem space, like the Tower
of Hanoi, for real-world problems like the above-mentioned lead to the development of computer-
based simulations of small parts of the real world, microworlds. These simulations resemble the
properties of complex real-world problems, but offer researchers the possibility to conduct studies
under controlled conditions. In CPS, the performance of participants in a clearly defined microworld
is investigated, evaluated and correlated to certain characteristics, such as the participant’s capacity
to regulate emotions.

One microworld that comprises a variety of properties such as dynamics, complexity and inter-
dependence, discrete choices, lack of transparency, and polytely in an economical framing is the
Tailorshop. Participants have to make economic decisions to maximize the overall balance of a small
company, specialized in the production and sales of shirts. The Tailorshop sometimes is referred to
as the Drosophila for CPS researchers [55] and thus a prominent example for a computer-based mi-
croworld. It has been used in a large number of studies, e.g., [102, 78, 76, 87, 11, 12]. Comprehensive
reviews on studies with Tailorshop have been published, e.g., [50, 54, 56, 55].

The calculation of indicator functions to measure performance of CPS participants is by no means
trivial. To measure performance within the Tailorshop microworld, different indicator functions have
been proposed in the literature, see [39] for a recent review. To use a comparison of the variable which
the participants are requested to maximize between all participants was proposed in [72]. Such a
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CHAPTER 1 INTRODUCTION

performance criterion seems natural. However, it cannot yield insight into the temporal process
and is not objective in the sense that the performance depends on what other participants achieved.
Analyzing the temporal evolution of other variables of this microworld has also been proposed (see,
e.g., [101, 122, 51, 12]). An obvious drawback of comparing the development of variables which were
not the actual objective for the participants is that a monotonic development does not necessarily
indicate good or even optimal decisions. If we consider the variable capital, for instance, it may be
better to invest into infrastructure at the beginning to have a higher pay-off towards the end of the
time-scale in the test-scenario. Thus it might happen that decisions are analyzed to be bad by these
approaches, while they are actually good ones and vice versa.

The availability of an objective performance indicator is an obstacle for analysis and it has often
been argued that inconsistent findings are due to the fact that

“. . . it is impossible to derive valid indicators of problem solving performance for tasks
that are not formally tractable and thus do not possess a mathematically optimal solu-
tion. Indeed, when different dependent measures are used in studies using the same
scenario (i.e., Tailorshop [51, 122, 101]), then the conclusions frequently differ.”

as stated by Wenke and Frensch [131, p.95].
To overcome this problem, we propose to use indicator functions based on optimal solutions. In

[111, 112] the question how to get a reliable performance indicator for the Tailorshop microworld has
been addressed. Because all previously used indicators have unknown reliability and validity, deci-
sions are compared to mathematically optimal solutions. For the first time, a complex microworld
such as Tailorshop has been described in terms of a mathematical model. Thus, the assumption that
the fruit fly of complex problem solving is not mathematically accessible has been disproved. The
novel methodological approach has also been combined with experimental studies, [11, 12, 112].

So far, all CPS microworlds have been developed in a purely disciplinary trial-and-error approach.
To our knowledge, a systematic development of CPS microworlds based on a mathematical model,
sensitivity analysis, and eventually optimization methods to choose parameters that lead to a wanted
behavior of the complex system has not yet been applied. An example for this necessity is the fact that
the mathematical modeling of the Tailorshop microworld in [112] led to the discovery of unwanted
and unrealistic winning strategies (e.g., the vans bug as described in Chapter 4).

With tasks for humans getting more complex in the real-world, there is an increasing need to train
and assist participants in complex tasks. In [73], a framework for training engineering students in
designing controllers for complex systems like chemical reactors is presented. In this approach, stu-
dents can learn from the results of simulations depending on their inputs. In the context of CPS, an
interesting approach would be to determine optimal solutions and corresponding controls for a mi-
croworld to compute a feedback for participants to support and train them. However, as [37] shows,
the presentation of information in a dynamic context is crucial for the success of the participants. To
the best of our knowledge, there have been no studies investigating the effects of an optimization-
based feedback.

It turns out that the optimization problems that need to be solved in the context of the Tailorshop
scenario are mixed-integer nonlinear programs with nonconvex continuous relaxations. Whenever
optimization problems involve variables of continuous and discrete nature, the term mixed-integer
is used. In this case they can be interpreted as discretized optimal control problems. See [109] for a
recent review of algorithms to treat continuous-time mixed-integer optimal control problems. How-
ever, as the time grid is fixed, the applicability of such methods is limited, and we have to focus on
combinatorial methods.

Progress in mixed-integer linear program (MILP) started with the fundamental work of DANTZIG

and coworkers on the Traveling Salesman problem in the 1950s. Since then, enormous progress has
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Figure 1.1: Relation between optimization methods, CPS, and cognitive processes: optimal solutions
can be used for analysis, parameter optimization, and feedback in CPS test-scenarios. Problems
arising from microworlds vice versa provide a stimulation and data for algorithmic research. CPS
contributes to a better understanding of cognitive structures and processes.

been made in areas such as linear programming (and especially in the dual simplex method that is
the core of almost all MILP solvers because of its restart capabilities), in the understanding of branch-
ing rules and more powerful selection criteria such as strong branching, the derivation of tight cutting
planes, novel preprocessing and bound tightening procedures, and of course the computational ad-
vances roughly following MOORE’s law. For specific problem classes problems with millions of integer
variables can now be routinely solved [10]. Also generic problems can often be solved very efficiently
in practice, despite the known exponential complexity from a theoretical point of view [20].

The situation is different in the field of mixed-integer nonlinear program (MINLP). Only at first
sight many properties of MILP seem to carry over to the nonlinear case. Restarting nonlinear contin-
uous relaxations within branching trees is essentially more difficult than restarting linear relaxations
(which, e.g., global solvers like BARON and Couenne also use for nonlinear problems), as no dual
algorithm comparable to the dual simplex is available in the general case. Nonconvexities lead to lo-
cal minima and do not allow for easy calculation of subtrees, which is important to avoid an explicit
enumeration. Additionally, nonlinear solvers are slower and less robust than LP solvers. However,
the last decade saw great progress triggered by cross-disciplinary work of integer and nonlinear op-
timizers, resulting in generic MINLP solvers, e.g., [2, 25]. Most of them, however, still require the
underlying functions to be convex. Comprehensive surveys on algorithms and software for convex
MINLPs are given in [63, 26]. Recent progress in the solution of nonconvex MINLPs is in most cases
based on methods from global optimization, in particular convex under- and overestimation. See,
e.g., [123] for references on general under- and overestimation of functions and sets.

The connection of mathematical optimization methods and CPS seems promising for both disci-
plines, as illustrated in Figure 1.1. Optimal solutions can be used for analysis, parameter optimiza-
tion, and feedback in CPS test-scenarios. Problems arising from microworlds vice versa provide a
stimulation and data for algorithmic research. As discussed above, the problems arising from CPS
microworlds usually are hard optimization problems which may trigger research in mathematical
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CHAPTER 1 INTRODUCTION

optimization. With optimization-based analysis and feedback methods, CPS can contribute to a bet-
ter understanding of cognitive structures and processes.

1.2 Contributions
The methodology optimization has a long record of successful improvements in many technological
and scientific areas, being used for tasks such as design, scheduling, business control rules, process
control, and the like. Optimization has also been successfully applied in the context of inverse prob-
lems, e.g., for the choice and calibration of mathematical models, or as a modeling paradigm for
biological systems. In this work we propose to use numerical optimization as an analysis tool for
the understanding of human problem solving, which to our knowledge has not yet received much
attention.

Based on the experience with the original Tailorshop-microworld described in [112] with modeling
oddities, bugs, and other undesirable properties, we decided to build a mathematical model for a
CPS microworld from scratch. Therefore, in this work we present a new microworld with desirable
(mathematical) properties based on the economical framing of Tailorshop, for which optimization
methods have been considered already throughout the modeling phase, the IWR Tailorshop. To the
best of our knowledge, the IWR Tailorshop is the first CPS test-scenario with functional relations and
model parameters that have been formulated based on optimization results.

For the unavoidable minimum expression describing the variable sales, we investigate different re-
formulations and discuss numerical results. We describe the optimization-based analysis approach
published in [112] and extend it to optimization-based feedback. We present different approaches
for both feedback computation and feedback presentation. The new test-scenario has been imple-
mented including the different optimization-based feedback methods in a web-based interface. For
the analysis of data collected with this interface, optimization-based analysis methods have been
implemented in the analysis software Antils. Both the web front end and the analysis back end are
available as open-source software under the GNU General Public License (GPL).

To address the difficulties of computing globally optimal solutions for this test-scenario, which still
yields nonconvex optimization problems, we present a decomposition approach tailored to the IWR
Tailorshop. Mathematical model reduction techniques are quite common in other domains, see e.g.,
[18, 9, 115] for an overview. The basic idea of our new approach to solve the occurring discretized
mixed-integer optimal control problem (dMIOCP) consists of a decomposition of the MINLP into a
master and several smaller subproblems. This works if the objective function is separable. The idea
is related to Lagrangian relaxation, one of the most used relaxation strategies for MILPs.

Finally, we proof the feasibility of our methodology in practice with a web-based feedback study
using the IWR Tailorshop. In this study, we collected data from 148 participants and applied our
optimization-based analysis and feedback approach. The participants were asked to play several
rounds of the economic simulation via its web interface. We give a detailed description of study,
hypotheses, analysis, and results. Both the analysis and feedback based on optimal solutions enabled
insights on human decision making which else would not have been possible.

The thesis is organized as follows. We start with an overview of CPS in Chapter 2. Optimization
problem classes and algorithms for the solution of dMIOCPs or MINLPs respectively are described in
Chapter 3. Chapter 4 gives a description of the Tailorshop microworld and introduces the new test-
scenario, IWR Tailorshop. In Chapter 5, the framework for our optimization-based analysis and feed-
back approach is specified. Additionally, we investigate different reformulations for a min-expression
and explain the tailored decomposition. We present the results of the web-based feedback study us-
ing the IWR Tailorshop in Chapter 6 and conclude with an outlook in Chapter 7.
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CHAPTER 2

Complex Problem Solving
Decision making is the cognitive process of selection between several alternatives [61]. Although
many human decisions are made unconsciously, i.e., "without thinking much about the decision
process" [93], Human Decision Making is closely connected with problem solving—a term which
is used in different disciplines for different aspects. This chapter gives an introduction into prob-
lem solving with a focus on Complex Problem Solving (CPS) (CPS), a research domain in psychology,
which is the field of application for the methods in this work.

2.1 Problems
2.1.1 What Is a Problem
Regarding the term problem solving, we first should spend some words on what is considered to
be a problem. There are varying definitions of problems, classifications of problems, and origins
of problems, but there is consensus on the following characteristics, see e.g., [54, 61]. A problem
consists of an initial state, which describes an unsatisfactory situation at the beginning and a goal
state, which is the state one strives to achieve by a set of operations which gradually transform the
initial state into a goal state.

Imagine you are in Germany in autumn. It is getting colder and darker outside and you feel that
lying at some beautiful beach in the Caribbean Sea is the only thing which could make your life bear-
able again. So, you have got a problem: an unsatisfactory initial state of you being at a place where
you do not want to be and the goal state of you at a beach somewhere in the Caribbean. The set of
possible operations is extensive: you could put on your swimwear and immediately start walking in
the direction of Martinique (maybe not the best one, though). Or you start with booking a flight leav-
ing Frankfurt Airport tomorrow. But do not forget the constraints: your employer will not be happy if
you disappear without notice. And your PhD thesis will not be finished of its own volition either.

2.1.2 Ill- andWell-defined Problems
Both the initial and the goal state can be defined more or less accurate. Feasible operations can be
described precisely or only given vaguely and a problem does not need to have a unique solution,
as the example already showed. Depending on how accurately states and operations are defined,
problems are called well-defined or ill-defined.

The task to successfully lead a company, for instance, is ill-defined compared to the task to max-
imize a single variable, say the company’s capital or profit. Of course, there are problems which
even more deserve the term ill-defined, like to find an answer to “the ultimate question of life, the
universe, and everything” [4]. Nevertheless, even maximizing a company’s profit may still be an ill-
defined problem itself, as neither the actual initial state of the company nor the possible courses of
action are given precisely by this description.

A prominent example for a well-defined problem is the Tower of Hanoi, see Figure 2.1, a puzzle
probably invented by French mathematician ÉDOUARD LUCAS in the 19th century. The puzzle con-
sists of a varying number of disks of different size and three rods on which the disks can be put. The
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CHAPTER 2 COMPLEX PROBLEM SOLVING

Figure 2.1: A disordered Tower of Hanoi set with three rods and eight disks. According to the rules
of the task, no disk may be moved on top of a smaller one. Only one disk at a time and only the
uppermost disk may be moved. The entire stack of disks has usually to be moved from the left rod to
the right one.

task usually is to move the stack ordered by the size of the disks from one rod to another, e.g., from
left to right. There are three rules: no disk may be moved on top of a smaller one, only one disk at
a time, and only the uppermost disk may be moved. Obviously, both states and feasible operations
are quite accurately defined in this puzzle making it a well-defined problem. Figure 2.5 shows all
possible states and actions for a Tower of Hanoi with three disks.

2.2 Problem Solving
The higher-order cognitive processes related with the solution of a problem are usually called prob-
lem solving in psychology. According to [54], investigation of problem solving consists of the analysis
of a series of decisions. In contrast, decision theory and decision analysis concentrate on the pro-
cesses and circumstances that lead to a single decision. These fields are also related to the economic
discipline game theory, which focuses on conflict and cooperation between rational decision-makers
[89]. Further adjacent domains are multi-criteria decision analysis (MCDA), which considers multi-
ple contradicting criteria in decision-making environments, and the development of decision support
systems (DSS), which support a human decision maker in complex decision making settings.

The term problem solving is also used in computer science in the domain of artificial intelligence.
Here, it refers to algorithms and heuristics in computer software, which are developed to solve prob-
lems in specified presentations. Actually, the development of artificial intelligence is connected to
research in the cognitive sciences, as we will see below.

Finally, the term problem solving is used for methods like Failure Mode Effects Analysis (FMEA),
Fault tree analysis (FTA), and forensic engineering. These are systematic techniques to analyze fail-
ures or to prevent problems, e.g., in engineering.

In the remainder of this chapter, we will have a closer look on the domain problem solving in
psychology.
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2.2.1 Cognitive Revolution
Although there were some earlier contributions, research in problem solving mainly evolved with the
development nowadays called cognitive revolution starting in the 1950s, enforced by developments
during the 1930s and 1940s. The preceding decades of psychological research were dominated by
behaviorism (see e.g., [54]). A characterization by the famous behaviorist JOHN B. WATSON [130]
shows that cognitive processes were not regarded as important by behaviorism:

“Psychology as the behaviorist views it is a purely objective experimental branch of nat-
ural science. Its theoretical goal is the prediction and control of behavior. Introspection
forms no essential part of its methods, nor is the scientific value of its data dependent
upon the readiness with which they lend themselves to interpretation in terms of con-
sciousness.”

While this essentially was a North American phenomenon, psychological research in Europe and in
Germany in particular suffered from the events related to World War II.

According to GARDNER [57], multiple developments during the 1930s and 1940s finally led to the
emergence of the discipline cognitive science. First, in 1936, British mathematician ALAN TURING de-
veloped a theoretical machine, which could carry out every plan or program that could be expressed
in a binary code [127]—the Turing machine, which was extended, e.g., by JOHN VON NEUMANN by
the concept of storage. Furthermore, WARREN MCCULLOCH and WALTER PITTS introduced the con-
cept of neural networks, i.e., modeling the operation of nerve cells and their connections by logic
expressions.

Inspired by this concept, NORBERT WIENER and colleagues realized that a combined examination
of problems from control engineering and communication engineering is useful for the investigation
of both mechanical and human self-correcting and self-regulating systems. Thus, WIENER stated
[134] that they

“[...] have decided to call the entire field of control and communication theory, whether
in the machine or in the animal, by the name Cybernetics [. . . ].”

Also by this time, CLAUDE SHANNON and WARREN WEAVER developed the key notion of informa-
tion technology, recognizing that the principles of logic can be used to describe the two states of a
relay switch. This insight could be used to describe all kinds of information by the basic unit binary
digits—bits.

Finally, findings achieved during World War I and World War II on mental pathology caused by
injury to the brain could barely be explained by behaviorism. Research on deficits caused by brain
damage like aphasia (language deficit) and agnosia (difficulty in recognition) also enforced indica-
tions on the information processing function of the brains of healthy individuals.

With the development of stored program computers around 1950 and the first high-level program-
ming languages, including LISP in 1958, there was a basis for simulation and investigation of cogni-
tive processes. This eventually led to the emergence of cognitive science, a discipline which GARDNER

[57] defines as

“. . . a contemporary, empirically based effort to answer long-standing epistemological
questions—particularly those concerned with the nature of knowledge, its components,
its sources, its development, and its deployment.”

These developments were the basis for psychological research in problem solving.
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2.3 Theory of Problem Solving
There have been multiple theories to explain how humans solve problems. [54] gives an extensive
overview on the different approaches. In contrast to theories in mathematics, in a mainly empirical
discipline, theories can often not be proved or disproved directly and thus may coexist, e.g., consid-
ering different aspects of a phenomenon. We will have a closer look at three important theories on
problem solving: the rather historical Gestalt psychology or gestaltism perspective, the functional-
ism viewpoint of information processing, and symbolic and connectionist approaches of cognitive
modeling. The following sections are not meant to be exhaustive and for details we refer to [54].

2.3.1 Gestaltism
Gestaltism is based on psychology of perception, characterized by the famous KOFFKA quotation “the
whole is other than the sum of the parts”. This refers to the fact that humans consider an arrange-
ment of objects as a whole with a higher-level structure, gestalt, rather than as a sum of its parts.
Some of the principles of grouping which lead to formation of a certain gestalt are shown in Figure
2.2: the principle of proximity—objects which are close to each other appear as a group, the prin-
ciple of similarity—objects which are similar to each other, e.g., have the same color, appear as a
group, the principle of closure—missing parts are filled by human perception, the principle of sym-
metry—objects which are symmetrical are perceived as a group, and the principle of prägnanz—the
perception of easily memorable structures, e.g., an object which differs from all others.

The connection of gestaltism to problem solving becomes apparent with a look at the nine dots
puzzle, a problem in which the task is to connect nine dots with four straight lines or less without
lifting the pen and without tracing one line more than once. The puzzle and possible solutions are
depicted in Figure 2.3. The nine dots are arranged in a square, but a solution is only possible by draw-
ing lines which go beyond this imaginary box. For most participants, it is difficult to overcome this
boundary perceived because of the dots’ proximity. This suggests that the principles of gestaltism are
transferable to problem solving where a visualization is necessary and useful. However, the gestaltist
description of problem solving by WALLAS [129], e.g., with the four stages preparation, incubation, il-
lumination, and verification stays relatively vague on what actually happens in these stages. Another
famous contributor was KARL DUNCKER, who did experiments in which participants had to “think
aloud” during solving a problem and developed a theory of psychology of productive thinking [45]
(“Psychologie des produktiven Denkens” in German).

2.3.2 Functionalism
Functionalism is an approach concerned with the function of a system, e.g., a learning process, in-
dependently from its context, e.g., the learning content or the motivation of the learning person.
Cognitive processes are considered as a functional organization of an information processing system
[54].

In 1958, NEWELL, SHAW, and SIMON presented their Logic Theorist (LT) [91], a computer program
able to draw logic conclusions. The software was designed to mimic human problem solving skills
and thus can be considered the first artificial intelligence program. By the application to the prob-
lems in WHITEHEAD’s and RUSSELL’s Principia Mathematica [133], LT could not only proof several
theorems, but also found some more elegant proofs.

The LT was a basis for another computer program called general problem solver (GPS), also by
NEWELL, SHAW, and SIMON, which was intended to solve a broad variety of problems by applying
different generic problem solving methods. In fact, GPS could solve problems, which could be suf-
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(a) Proximity (b) Similarity

(c) Closure (d) Prägnanz

(e) Symmetry

Figure 2.2: Principles of gestaltism: proximity—objects which are close to each other appear as a
group, similarity—objects which are similar to each other appear as a group, closure—missing parts
are filled by human perception, symmetry—objects which are symmetrical are perceived as a group,
prägnanz—the perception of easily memorable structures, e.g., an object which differs from all oth-
ers.
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Figure 2.3: The nine dots puzzle and possible solutions thereof. The task is to connect nine points
arranged in a square (left) with four (or less) straight lines without lifting the pen and without tracing
the same line more than once. For a solution (mid and right) one needs to overcome the imaginary
boundary induced by the square arrangement of the points.

ficiently formalized with objects and operators being applied to them. The GPS separated its knowl-
edge, i.e., input data, from its problem solving strategies.

GPS makes use of the division of a goal into subgoals or subproblems. Referring to the introduc-
tory example, if you want to get to Martinique, one subgoal possibly is to purchase a flight ticket
and another could be to get to the airport. GPS can deal with three different types of subproblems
corresponding to three different problem solving methods, see Figure 2.4. First type is transforma-
tion of an object A into another object B , which consists in computation and partial reduction of
the difference between the two objects—another subproblem. The application of an operator to an
object checks feasibility of an operator q and transforms an object into an appropriate input form if
necessary. Finally, for a reduction of a difference, GPS searches for an operator which may reduce the
difference and applies it if found. The way GPS chooses actions to solve problems is called means-
ends-analysis.

However, a fundamental problem of GPS is that it is only able to treat problems which can be
sufficiently formalized and are simple enough, like the Tower of Hanoi. For more general problems,
the division into subgoals suffers from combinatorial explosion and thus, GPS has not been able to
solve real-world problems.

Later on, NEWELL and SIMON also published a theory on Human Problem Solving [90], which still
is an important basis for the functionalist approach [54]. Their theory consists of the two processes
of understanding, which creates the problem space as an inner representation of a problem, and
search in that problem space. Such a problem space is characterized by the initial state, the available
operators for transformation of states, and a criterion to evaluate if the goal has been achieved.

A problem solver searches for differences between the current state and the goal state and for oper-
ators which can be applied to achieve a change of the current state. Possible search procedures are,
e.g., generate and test—generation of possible solutions, which then are tested, forward and back-
ward chaining—the consecutive application of operators starting with the current or the goal state
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Figure 2.4: Problem solving methods of the General Problem Solver according to [92]: transformation,
operator application, difference reduction.
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Figure 2.5: Possible states of Tower of Hanoi with three rods and three disks. Each circle represents
one state with the first character referring to the position of the largest disk, the second character to
the middle disk, and the third character to the smallest disk. Possible positions for each disk are the
three rods labeled a, b, and c from left to right. The states resemble a Sierpiński [119] triangle. An
optimal strategy obviously moves along the right hand edge of this triangle.
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respectively, subgoal decomposition—the decomposition of the goal into subgoals which are easier
to achieve, and difference reduction—the search for the operator which most reduces difference be-
tween current state and goal state. All these, however, are weak methods because of their generality.
More specific methods may be stronger, but can be applied only to specific problems.

In this approach, problem solving starts with the creation of a problem space from the problem
description. During the problem solving process, understanding and search in the problem space
may be executed without a fixed sequence.

DÖRNER follows a similar approach, considering problem solving as information processing in
relation to specific sections of reality which consist of circumstances and operators [41]. Circum-
stances are characterized by the five properties complexity, interdependence, dynamics, opaqueness,
and polytely. We will explain these properties below in the context of complex problems as circum-
stances with a high level of all of them are considered to be complex.

Operators according to DÖRNER are characterized by the properties reliability of impact, breadth of
impact, reversibility, and conditions of application. Reliability of impact means that at least for some
operators there is only some probability that the desired impact is achieved, think e.g., of medicine.
The number of properties influenced by an operator represents the breadth of impact. Reversibility
refers to the possibility to undo the effect of an operator and of course, most operators can only be
applied if certain conditions of application are fulfilled.

DÖRNER also developed a software to simulate psychological processes on computers, Psi (ψ),
which includes a simulation of emotions. ψ is able to store experience and to draw conclusions, but
also has needs which need to be fulfilled by certain activities. This is related to the approaches of
cognitive modeling in the following section.

2.3.3 CognitiveModeling
In [54], cognitive modeling is specified as the attempt to describe cognitive processes such that they
can be executed on a machine. Cognitive modeling has the aim to reflect both processes and re-
sults of human problem solving. There are mainly two approaches to cognitive modeling, symbolic
and connectionist. Both approaches make use of cognitive architectures, a term which ANDERSON [5]
defines as

“[...] a specification of the structure of the brain at a level of abstraction that explains
how it achieves the function of the mind.”

Symbolic models build upon a production system, which separates between production rules and
data. Production rules consist of a precondition and an action which is executed if the condition
is fulfilled, i.e., these rules are if–then statements. The approach is to match the production rules
against the current state to check which rules apply. If this is true for more than one rule, then the
system decides in a conflict resolution which rule to apply and finally executes respectively fires the
corresponding rule.

One of the most famous cognitive architectures is ACT-R (adaptive control of thought—rational)
mainly developed by JOHN R. ANDERSON. A detailed description of this architecture and the theory
it is based on is given, e.g., in [6] and a schematic overview of ACT-R’s modules and their intercon-
nections is depicted in Figure 2.6. Knowledge is stored as chunks in the declarative memory, whereas
procedural knowledge is stored as production rules in the production system. For different tasks,
one has to create different models by programming production rules and defining the structure of
chunks. The basic assumptions of the architecture are claimed to be based on research results on the
human brain, e.g., from cognitive neuroscience.
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Figure 2.6: Interconnections among ACT-R modules according to [5].

The connectionist approach, on the other hand, is based on small and often uniform units and
connections between them, i.e., networks, which change over time. This refers to the neurobiology of
the human brain with units corresponding to neurons and connections corresponding to synapses.
The most common connectionist models thus are neural networks.

In contrast to symbolic systems, a connectionist system does not need rules, but adapts to its en-
vironment by changing its network and thus is able to “learn”. Therefore, connectionist models obvi-
ously are beneficial for pattern recognition.

2.4 Simple vs. Complex Problems
What is the difference between a problem like Tower of Hanoi or the nine dots puzzle and problems of
daily life, like how to get to Martinique or to maximize a company’s profit? Apparently, the latter are
ill-defined. More precisely, their problem space is open and a problem solver has to deal with both
knowledge and emotions.

Doubts about the relevance of simple problems like the above-mentioned for insight into the psy-
chology and cognitive processes related with daily decision making created the research domain CPS
starting in the 1970s, which deals with complex problems. Such problems are considered to be sim-
ilar to problems we encounter and solve in everyday life and thus investigation of CPS is claimed to
yield more insight into real world human decision making. FRENSCH and FUNKE [50] define CPS as
follows.

“CPS occurs to overcome barriers between a given state and a desired goal state by means
of behavioral and/or cognitive, multistep activities. The given state, goal state and barri-
ers between given state and goal state are complex, change dynamically during problem
solving and are intransparent. The exact properties of the given state, goal state, and
barriers are unknown to the solver at the outset. CPS implies the efficient interaction
between a solver and the situational requirements of the task, and involves a solver’s
cognitive, emotional, personal, and social abilities and knowledge.”

In [54], complex problems are characterized by the five properties complexity, interdependence,
opaqueness, dynamics, and polytely. The word complex in CPS refers to the complexity of these prop-
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erties. In fact, it is not clear that cognitive processes in CPS are more complex than those related to
simple problems, although they probably differ.

Figure 2.7 visualizes the five properties of complex problems. Here, complexity often refers to the
number of variables of a problem. However, this is not the only aspect of complexity and CASTI [34]
states that

Production
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Resources?? ??

Motivation of
Employees
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k k+1 k+2

Motivation
of Employees

Product
Quality

Figure 2.7: Properties of a complex problem: complexity and interdependencies, opaqueness, poly-
tely, and dynamics.

“Of all the adjectives in common use in the system analysis literature, there can be little
doubt that the most overworked and least precise is the descriptor ’complex’. In a vague
intuitive sense, a complex system refers to one whose static structure or dynamic be-
havior is ’unpredictable’, ’counterintuitive’, ’complicate’, or the like. In short, a complex
system is something quite complex [...]”

Complexity also incorporates the relevance of historical data, hierarchical organization, and sys-
tem conditions like constraints and degrees of freedom [54]. Interdependence between variables is
closely connected to complexity and is required for variables to build a system. Because of connec-
tions between variables, participants need to create a mental model of dependencies.

Dynamics refers to the question how a system develops over time. According to [54], it is the prop-
erty human problem solvers have the most difficulties with. Dynamics require a prediction of future
developments of the variables. In a company, for instance, the development of the variable wages
may influence, e.g., the motivation of employees in the future. Depending on the sensitivity, a predic-
tion may be difficult and can possibly be too demanding—at least for humans.
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Opaqueness refers to incomplete information, e.g., on the connections between variables, which
requires an active search for information. Polytely, finally, is characterized by multiple, possibly con-
tradictory aims, e.g., to maximize a company’s profit and to achieve a certain level of employees’
motivation, which may have contradictory implications on the variable wages. Such aims can be
set externally as a task, e.g., “maximize profit”, but can also be set implicitly by the problem solvers
themselves, e.g., as an interpretation of a vague aim like “solve the problem”.

2.5 Microworlds
Complex problems are often implemented as computer-based scenarios which simulate a part of the
real world, e.g., a shirt company. These simulation are also called microworlds and emerged in the
1980s, when computing time became available for psychological research.

Computer-simulated microworlds opened up a third type of research in CPS besides laboratory
experiments and field research. While laboratory research has often been criticized for its lack of
relevance for human behavior in the real world, field research often lacks control of the experimen-
tal conditions [30]. In laboratory experiments, the level of complexity is often too low to produce
results which are relevant for the real world. Vice versa, in field research, there usually is too much
complexity to make definite conclusions.

Microworlds, according to [30], yield the possibility to create complex settings for CPS research
with controlled conditions and thus, to some extent, combine the advantages of laboratory and field
research. In contrast to static problems, as [53] states, to control and explore computer-based sce-
narios, participants need to “continuously acquire and use knowledge about the internal structure
of the system”. Therefore, microworlds are widely used as computer-based test scenarios in CPS for
some decades. Prominent examples are Lohhausen—in which participants have to take decisions as
the (dictatorial) mayor of an imaginary city [43], Moro—in which participants advise an imaginary
African tribe as a development worker [44], and Tailorshop—a business simulation.

2.6 The Tailorshop: a ComplexMicroworld
The Tailorshop (German name: Schneiderwerkstatt) is a microworld which has been developed and
implemented as a computer-based test scenario in the 1980s by DÖRNER [42] and co-workers. There
are numerous studies based on it, e.g., [102, 78, 76, 87, 11, 12]. Comprehensive reviews in which
more information on the psychological background can be found have also been published, see e.g.,
[50, 52, 54, 56, 55]. Thus, Tailorshop is one of the most famous and most important test scenarios in
CPS and was also referred to as the “Drosophila” for problem solving researchers [55].

In the Tailorshop, participants have to make economic decisions as the head of an imaginary com-
pany, which produces and sells shirts. Usually, the task is to maximize the overall balance of that
company over twelve rounds, which are referred to as months. Participants can modify infrastruc-
ture (employees, machines, distribution vans), financial settings (wages, maintenance, prices), and
logistical decisions (shop location, buying raw material) in each round. In total, the system consists
of 31 variables. Differing numbers of variables in other publications, e.g., in [54], are due to different
methods of counting, like the combination of states and their corresponding controls. These vari-
ables can be separated into 15 free control variables, which can be chosen by the participant within
certain constraints, and 16 dependent state variables, which are computed depending on the partic-
ipant’s actions and historic state values. Table 2.1 gives an overview of the variables in Tailorshop.

The two types of machines refer to the amount of shirts they can produce in one month. Workers
can be trained to one machine type and then have to work on either a 50 or a 100 shirt machine.
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States Variable Unit∗ Controls Variable Unit∗

machines 50 xM50 machine(s) advertisement uAD MU

machines 100 xM100 machine(s) shirt price uSP MU

workers 50 xW50 worker(s) buy raw material u∆MS shirt(s)

workers 100 xW100 worker(s) workers 50 u∆W50 worker(s)

demand xDE shirt(s) workers 100 u∆W100 worker(s)

vans xVA van(s) buy machines 50 u∆M50 machine(s)

shirts sales xSS shirt(s) buy machines 100 u∆M100 machine(s)

shirts stock xST shirt(s) sell machines 50 uδM50 machine(s)

possible production xPP shirt(s) sell machines 100 uδM100 machine(s)

actual production xAP shirt(s) maintenance uMA MU

material stock xMS shirt(s) wages uWA MU

satisfaction xSA — social expenses uSC MU

machine capacity xMC shirt(s) buy vans u∆VA van(s)

base capital xBC MU sell vans uδVA van(s)

capital after interest xCA MU choose site uCS —

overall balance xOB MU

Table 2.1: Controls and states in the Tailorshop microworld. Note that units are only given implicitly
in the test scenario. ∗ MU means money units.

We will have a closer look on the mathematical model Tailorshop is based on and its equations in
Chapter 4.

The Tailorshop was one of the first complex test scenarios available for direct control by partici-
pants on a computer. Earlier versions and microworlds were computed on a mainframe computer
and thus had a delay from the participant’s decision to the next round. A German GW-BASIC in-
terface for Tailorshop is shown in Figure 2.9. The text-based interface shows values of states and
controls (but not all of them) in the upper part, and possible actions in the lower part. Arrows next to
the values indicate differences to the previous round.

Figure 2.8 shows the model structure of Tailorshop. The variables are interconnected with partly
nonlinear relations and the microworld is dynamic with discrete time. In general, participants do not
know the specific dependencies between the variables at the beginning which makes the problem
opaque. However, participants can usually buy different levels of information on each variable. For
most studies, polytely was not considered explicitly.

The usual approach in CPS is to evaluate the participant’s performance in a test scenario like Tai-
lorshop and to either correlate it to personal attributes or to analyze the influence of different exper-
imental conditions for groups of participants. Thus, the measurement of performance is crucial.

Within the Tailorshop scenario different indicator functions have been proposed in the literature.
For a review on Tailorshop success criteria, see e.g., [39]. To use a comparison of accumulated capital
at the final month 12 between all participants was proposed in [72]. This criterion seems natural, as
this is what the participants usually are requested to maximize. However, it cannot yield insight into
the temporal process and is not objective in the sense that the performance depends on what other
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Figure 2.8: Schematic representation of the Tailorshop microworld: bubbles represent variables,
white diamonds indicate participant’s control possibilities, and arrows show dependencies with +
and − for proportional and reciprocal influence respectively.

participants achieved.
Analyzing the temporal evolution of state variables has also been proposed. In [101, 122] the evo-

lution of profit, equivalent to the evolution of capital after interest xCA, was proposed. In [51, 12] the
evolution of the overall worth of the Tailorshop xOB was used.

An obvious drawback of comparing the results of several rounds with one another is that the main
goal of the participant is to maximize the value at the end of the test, not necessarily in between.
Thinking about the analogy of maximizing the amplitude of a pendulum with a hair dryer, in cer-
tain scenarios “going back” to gain momentum is obviously better than pushing it all the time in the
desired direction. The same is true for the Tailorshop scenario. It may be better to invest into in-
frastructure at the beginning (which is actually decreasing the overall capital as infrastructure looses
value over time) to have a higher pay-off towards the last rounds of the test. Hence it might happen
that decisions are analyzed to be bad, while they are actually good ones and vice versa.

In Chapter 5, we present an approach to measure performance in microworlds like Tailorshop
based on mathematically optimal solutions. Furthermore, we explain, how mathematical optimiza-
tion can be used to train participants in controlling such microworlds.
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Figure 2.9: German GW-BASIC interface for Tailorshop. The text-based user interface shows current
values of the model variables in the upper part, possible interventions in the lower part.

31



32



CHAPTER 3

Mathematical Optimization andOptimal Control
This chapter describes optimization problems and mathematical optimization algorithms, which
are relevant for the analysis of human decision making in complex microworlds, as we will see in
the following chapters. We start with a general introduction into mathematical optimization, then
formulate the relevant problem classes, and eventually present algorithms for their solution.

3.1 Optimization
Mathematical optimization has a long record of successful improvements in many technological and
scientific areas, for tasks as diverse as design, scheduling, business control rules, process control,
and the like. More recently, optimization has also been successfully applied in the context of inverse
problems, e.g., for the choice and calibration of mathematical models, or as a modeling paradigm
for biological systems. In this thesis we use numerical optimization as a tool for both analysis and
training of human decision making. For the modeling of our new test scenario, the IWR Tailorshop,
optimization methods were considered from the beginning to ensure desired properties and model
behavior. We start with a general introduction.

There are many different classes of optimization problems which are considered in mathematical
optimization depending on the properties they have and the algorithms needed to solve them. A very
general formulation of a mathematical optimization problem is the following.

Definition 3.1 An optimization problem consists of an objective function F : X → R, equality con-
straints G : X → Rne , and H : X → Rni inequality constraints with X ⊂ Rnx , ne the number of equality
constraints, ni the number of inequality constraints, and x ∈ X the optimization variables. The prob-
lem then has the following form:

min
x

F (x)

s.t. G(x) = 0,
H(x) ≤ 0,
x ∈ X ⊂Rnx .

(3.1)

Obviously, the restriction to minimization is no limitation of generality, since maximizing F (x) is
the same as minimizing−F (x). Similar applies to H(x) ≤ 0. If there are no constraints, i.e., ne = ni = 0,
the problem is unconstrained. For most applications, however, there will be some kind of constraints.

Definition 3.2 A point x ∈ X is said to be feasible if

G(x) = 0 and H(x) ≤ 0. (3.2)

The feasible set F is the set of feasible points,

F= {x ∈ X |G(x) = 0; H(x) ≤ 0} . (3.3)
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Definition 3.3 The active set A(x) for any feasible point x consists of the indices of all active inequal-
ity constraints, i.e.,

A(x) = {i |Hi (x) = 0;1 ≤ i ≤ ni } . (3.4)

The active set is in particular important for active set optimization methods like sequential qua-
dratic programming (SQP), which will be discussed below. In optimization, one seeks for minima or
maxima respectively. Therefore, it is important to recall the following definitions.

Definition 3.4 A point x∗ ∈ X is said to be a local minimizer of F if there is a neighborhood U of x∗,
such that

F (x∗) ≤ F (x) ∀x ∈U ∩X . (3.5)

Definition 3.5 A point x∗ ∈ X is said to be a global minimizer of F if

F (x∗) ≤ F (x) ∀x ∈ X . (3.6)

In general, one would like to find a global minimizer for Problem (3.1) and for some problems,
e.g., convex problems, every local minimizer is a global minimizer. However, for non-convex prob-
lems, one often is satisfied to find a local optimum. The field of global optimization deals with the
development of algorithms which find a global optimum for non-convex problems.

Note that all these general definitions contain no additional assumptions on F , G , H , and X . Thus,
optimization problems according to Definition 3.1 comprise problems as diverse as linear programs,
nonlinear programs, problems with integral or binary variables, problems with stochastic compo-
nents, problems with nondifferentiabilities, and the like. This variety of optimization problem classes
requires different approaches for an efficient solution. In the following, we concentrate on nonlinear
and mixed-integer nonlinear programs and algorithms for these classes.

3.2 Nonlinear andMixed-Integer Nonlinear Programming
Definition 3.6 A nonlinear program (NLP) is an optimization problem of the form

min
x

F (x)

s.t. G(x) = 0
H(x) ≤ 0
x ∈ X ⊂Rnx

(3.7)

with nonlinear, smooth, twice continuously differentiable functions F : X → R, G : X → Rne , and
H : X →Rni .

Definition 3.7 For a point x, we say that the linear independence constraint qualification (LICQ)
holds if the gradients of the equality constraints ∇Gi (x)∀i ∈ {1, . . . ,ne } and the gradients of all ac-
tive inequality constraints ∇Hi (x)∀i ∈A(x) are linearly independent, where ∇ means the derivative
with respect to x.

We now have a look at the necessary and sufficient conditions for optimality. For these conditions,
LICQ is important, although there are other (i.e., weaker) constraint qualifications which can be used
as well. For the ease of notation, we first introduce the Lagrangian.
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Definition 3.8 The Lagrangian function for problem (3.7) is defined as

L(x,λ,µ) = F (x)+λT G(x)+µT H(x) (3.8)

with the LAGRANGE multiplier vectors λ ∈Rne and µ ∈Rni .

Now we can formulate the first order necessary conditions for minimizers.

Theorem 3.1 Let x∗ be a local minimizer of problem (3.7) and assume that LICQ holds at x∗. Then
there are unique LAGRANGE multipliers λ∗ ∈Rne and µ∗ ∈Rni such that the following conditions hold
at (x∗,λ∗,µ∗).

∇xL(x∗,λ∗,µ∗) = 0 (3.9a)

G(x∗) = 0 (3.9b)

H(x∗) ≤ 0 (3.9c)

µ∗ ≥ 0 (3.9d)

µ∗T H(x∗) = 0. (3.9e)

The conditions (3.9) are known as the KARUSH-KUHN-TUCKER conditions and a point (x,λ,µ) which
fulfills them is often called a KARUSH-KUHN-TUCKER or KKT point. Second order necessary conditions,
where second order refers to the second derivative of the Lagrangian, are the following.

Theorem 3.2 Let x∗ be a local minimizer of problem (3.7) and assume that LICQ holds at x∗. Fur-
thermore, let λ∗ and µ∗ be LAGRANGE multiplier vectors, such that the conditions (3.9) are satisfied.
For all ∆x with

∇Gi (x∗)∆x = 0 ∀i ∈ {1, . . . ,ne }, (3.10a)

∇Hi (x∗)∆x = 0 ∀i ∈A(x∗), (3.10b)

we then have
∆xT ∇2

xxL(x∗,λ∗,µ∗) ∆x ≥ 0. (3.11)

Finally, (second order) sufficient conditions for minimizers, i.e., conditions that guarantee that a fea-
sible x∗ is a (local) minimizer, are given by the following theorem.

Theorem 3.3 Let x∗ be a feasible point for problem (3.7) andλ∗ andµ∗ LAGRANGE multiplier vectors,
such that the conditions (3.9) are satisfied. Assume that

∆xT ∇2
xxL(x∗,λ∗,µ∗) ∆x > 0. (3.12)

for all ∆x 6= 0 with

∇Gi (x∗)∆x = 0 ∀i ∈ {1, . . . ,ne }, (3.13a)

∇Hi (x∗)∆x = 0 ∀i ∈A(x∗) and µi > 0, (3.13b)

∇Hi (x∗)∆x ≥ 0 ∀i ∈A(x∗) and µi = 0. (3.13c)

Then x∗ is a local minimizer for problem (3.7).
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Proofs for these three theorems can be found, e.g., in [94].

Some components of optimization problems may need to be formulated with integer or binary
variables. In complex microworlds, for instance, impartible resources like employees, machines, and
production sites are represented by an integer variable. Problems which only consist of integer vari-
ables are called integer programs. In the context of complex microworlds, however, such variables
are often combined with continuous components like an amount of money spent, e.g., for wages or
advertising. Together with nonlinear dependencies between the variables, this leads to the following
problem class.

Definition 3.9 A mixed-integer nonlinear program (MINLP) is an optimization problem of the form

min
x,y

F (x, y)

s.t. G(x, y) = 0
H(x, y) ≤ 0
x ∈ X ⊂Rnx

y ∈ Y ⊂Rny ∩Zny

(3.14)

with F : X ×Y →R, G : X ×Y →Rne , and H : X ×Y →Rni nonlinear and twice continuously differen-
tiable.

Such problems with linear F , G , and H are called mixed-integer linear programs. This problem class is
known to be at least NP-hard (see, e.g., [58]), and as it is contained in the class of MINLP, the MINLP
problem class is at least NP-hard, too. Note that in problem (3.14), the notation of the inequality
constraints changed to H(x, y) ≤ 0, which is useful for the description of MINLP algorithms in Section
3.4.

3.3 Optimal Control
Optimal control is a field related to (nonlinear) optimization. In optimal control, one strives for a
control function u(t ), which minimizes an objective functional subject to some kind of dynamics
determining the state function x(t ). These dynamics model a (nonlinear) process and usually are
based on some kind of differential equations, e.g., ordinary differential equations (ODE), differential
algebraic equations (DAE), or partial differential equations (PDE). Considering ODE dynamics, an
optimal control problem can be defined as follows.

Definition 3.10 An optimal control problem (OCP) is an optimization problem of the form

min
x,u,p

F [x,u, p]

s.t. ẋ(t ) =G(x(t ),u(t ), p), t ∈ [t0, t f ],
0 ≥ H(x(t ),u(t ), p), t ∈ [t0, t f ],
u(t ) ∈U ⊂Rnu , t ∈ [t0, t f ],
x(t0) = x0.

(3.15)

with F the objective functional, G :Rnx ×Rnu ×Rnp →Rnx the ODE right hand side, and H :Rnx ×Rnu ×
Rnp → Rni additional control and path constraints. t is the time, x : [t0, t f ] → Rnx the state function,
u : [t0, t f ] →Rnu the control function, and p ∈Rnp parameters with their corresponding numbers nx ,
nu , and np . x0 is called initial value, t0 is the start time, and t f the end time.
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Optimal control problems can be formulated for a variety of processes, e.g., in physics, chemistry,
and engineering. For instance, for a car traveling on a road, an optimal control problem may be to
minimize the traveling time to get from a starting point to some end point elsewhere on the road.
The car can be controlled by acceleration, braking, and some other controls. An ODE may be used to
model the physics and there are several constraints, e.g., the car has to stay above the road (and its
wheels should touch the road, at least most of the time).

By the notation of Problem (3.15), an optimal control problem is an infinite-dimensional prob-
lem, as the optimization variables are functions. For the solution of these problems, there are two
basic approaches. Indirect methods are based on PONTRYAGIN’s maximum principle [121], which
formulates necessary optimality conditions in the infinite-dimensional function space. These con-
ditions are used to transform the optimal control problem into a boundary value problem, which can
be solved by an appropriate discretization, e.g., by single or multiple shooting (first-optimize-then-
discretize, [32, 21]). Direct methods—including direct single shooting, direct multiple shooting [24],
and collocation [125, 19]—discretize the optimal control problem by an appropriate state and con-
trol discretization to transform it into a finite-dimensional nonlinear program and the optimize the
NLP (first-discretize-then-optimize). Another approach is dynamic programming, which is based on
the HAMILTON-JACOBI-BELLMAN equation [14].

3.3.1 Mixed-Integer Optimal Control Problems (MIOCP)
In the case of the optimal car control example from the previous section, in reality, the choice of
gear will also be a control function. In contrast to braking and acceleration, however, gears require
discrete values as it usually is not possible to select gear 3.141592, but gear 3 or 4 (see [75] for this
application). This example illustrates that some processes require a mixed-integer control function,
which leads to the following modification of Problem (3.15), comparable to the relation of MINLPs to
NLPs.

Definition 3.11 A mixed-integer optimal control problem (MIOCP) is an optimization problem of the
form

min
x,u,v,p

F [x,u, v, p]

s.t. ẋ(t ) =G(x(t ),u(t ), v(t ), p), t ∈ [t0, t f ],
0 ≥ H(x(t ),u(t ), v(t ), p), t ∈ [t0, t f ],
u(t ) ∈U ⊂Rnu , t ∈ [t0, t f ],
v(t ) ∈Ω⊂Znv , t ∈ [t0, t f ],
x(t0) = x0

(3.16)

with F the objective functional, G : Rnx ×Rnu ×Rnv ×Rnp → Rnx the ODE right hand side, and H :
Rnx ×Rnu ×Rnv ×Rnp → Rni additional control and path constraints. t , x, u, p, x0, t0, t f are defined
as in Problem (3.15). v : [t0, t f ] →Znv is the integer control function.

Thus, a MIOCP is an OCP with additional integrality constraints on some controls. Indirect methods
have been applied to such problems (see, e.g., [22]) but are not capable of large scale MIOCPs. [108,
110, 113] present direct methods for this problem class.

3.3.2 DiscretizedMixed-Integer Optimal Control Problems (dMIOCP)
Tasks in complex microworlds can also be seen as optimal control problems. The participant has
to make decisions, comparable to the controls of an OCP, which influence some dependent vari-
ables, like the states. Furthermore, the task usually contains some kind of optimization problem, for
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instance, to maximize a company’s profit. However, most microworlds are round-based, i.e., they
require the participant to make decisions at discrete time points. Together with mixed-integer deci-
sions, such a task can be considered as a discretized version of Problem (3.16):

Definition 3.12 A discretized mixed-integer optimal control problem (dMIOCP) is an optimization
problem of the form

min
x,u

F (x,u, p)

s.t. xk+1 =G(xk ,uk , p), k = t0, . . . , t f −1,
0 ≥ H(xk ,uk , p), k = t0, . . . , t f ,
uk ∈Ωk , k = t0, . . . , t f −1,
xt0 = x0,

(3.17)

with the objective function F , the state progression law G : Rnx ×Rnu ×Rnp → Rnx , additional con-
straints H :Rnx ×Rnu ×Rnp →Rni , andΩk ∈Rnu the feasible region for the controls at time k.

A dMIOCP therefore is both a special case of a MINLP and a mixed-integer optimal control prob-
lem (MIOCP). In the following section, we describe algorithms for the solution of the dMIOCP as a
MINLP.

3.4 Optimization Algorithms
This section gives an overview of algorithms for mixed-integer nonlinear optimization and presents
two general methods for nonlinear optimization, which build the basis for MINLP algorithms. A
recent overview of methods for (convex) nonlinear programs is given in [80] and especially in [26].
An extensive introduction into nonlinear programming can be found in [94]. For the underlying
methods from (mixed-integer) linear programming, we refer to standard textbooks, like [36], [94],
and [118]. For this section, we assume that the NLP is convex and the MINLP has a convex relaxation,
i.e., if integrality constraints are relaxed, the resulting NLP is convex and F , G , and H are convex
functions (also called convex MINLP in the following).

3.4.1 Interior PointMethods
Interior point methods are barrier methods which have been studied for nonlinear optimization in
the 1960s. The following decades, barrier methods fell out of research interest, until KARMARKAR pre-
sented his famous interior point algorithm for linear programs [74]. This development also triggered
research on interior point methods for NLPs and today, interior point methods together with sequen-
tial quadratic programming (see Section 3.4.2) are considered the most powerful approaches for the
solution of NLPs. The interior in the name refers to the method’s property to approach the boundary
of a linear problem’s feasible set only in the limit with iterates in the interior of the feasible set—in
contrast to the simplex method, which moves along the vertices of the feasible polytope.

For this section, we assume the NLP to have the form

min
x,s

F (x)

s.t. G(x) = 0
H(x)− s = 0
s ≥ 0,

(3.18)

where s are slack variables used to transform inequality constraints into equality constraints and all
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F(x)

h(x)

dominated

acceptable

Figure 3.1: Scheme of a filter in nonlinear optimization algorithms: points right and above the fil-
ter points are dominated, acceptable points need at least either a lower feasibility gap or a higher
objective. Points which are dominated by a point added to the filter will be removed.

other symbols as in Definition 3.6. The KKT conditions for this problem can be written as

∇F (x)− JG
T (x)λ− JH

T (x)µ= 0 (3.19a)

Sµ−βe = 0 (3.19b)

G(x) = 0 (3.19c)

H(x)− s = 0 (3.19d)

with β= 0, s ≥ 0, µ≥ 0, and e the all-ones vector. JG and JH are the Jacobians of the constraint func-
tions, λ and µ their LAGRANGE multipliers, and S a diagonal matrix whose diagonal entries are given
by s. For β 6= 0, these conditions are called perturbed KKT conditions and β is the barrier parameter.
Interior points method can be seen as homotopy or continuation methods solving these conditions
for a sequence {βk } with βk → 0. With M a matrix with diagonal µ, we can apply NEWTON’s method
to (3.19) and obtain the system

∇2
xxL 0 −JG

T (xk ) −JH
T (xk )

0 M 0 S
JG (xk ) 0 0 0
JH (xk ) −I 0 0



∆x
∆s
∆λ

∆µ

=−


∇F (xk )− JG

T (xk )λk − JH
T (xk )µk

Sµk −βe
G(xk )

H(xk )− sk

 , (3.20)

with I the identity matrix and L the Lagrangian,

L(x, s,λ,µ) = F (x)−λT G(x)−µT (H(x)− s). (3.21)

For a step (∆x,∆s,∆λ,∆µ), new iterates can then be computed, e.g., by a line search or a trust region
approach.

An exemplary interior point algorithm is presented in Algorithm 3.1. Ipopt 3.10 is an open source
interior point solver by WÄCHTER and BIEGLER [128] available for the use with Bonmin 1.5.
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1. Initialize:
Choose x0 and s0 > 0;
Determine initial values for multipliers λ0 and µ0 > 0;
Select initial parameter β0;
Choose parameters σ,τ ∈ (0,1);
k := 0;

2. Check convergence:
If xk , e.g., fulfills the KKT conditions for problem (3.18), stop;

3. Compute search direction:
Determine search direction (∆x,∆s,∆λ,∆µ) by solution of

∇2
xxL 0 −JG

T (xk ) −JH
T (xk )

0 M 0 S
JG (xk ) 0 0 0
JH (xk ) −I 0 0



∆x
∆s
∆λ

∆µ

=−


∇F (xk )− JG

T (xk )λk − JH
T (xk )µk

Sµk −βe
G(xk )

H(xk )− sk



4. Compute step:
Compute step, e.g., by

αmax
s = max

α∈(0,1]
(s +α ∆s ≥ (1−τ)s)

αmax
µ = max

α∈(0,1]
(z +α ∆z ≥ (1−τ)z)

5. Update:
Set (xk+1, sk+1,λk+1,µk+1) by

xk+1 = xk +αmax
s ∆x sk+1 = sk +αmax

s ∆s

λk+1 =λk +αmax
µ ∆λ µk+1 =µk +αmax

µ ∆µ

6. Determine barrier parameter:
Determine βk+1, e.g., βk+1 ∈ (0,σ βk );
k := k +1;
go to 2;

Algorithm 3.1: An exemplary interior point algorithm.
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3.4.2 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is an algorithm for the solution of NLPs originally devel-
oped by WILSON [135], HAN [68], and POWELL [100]. The idea is to iteratively solve quadratic approx-
imations of the NLP until some convergence criterion is fulfilled. The quadratic approximation for
some iteration k is given by the problem

min
∆x

∇F (xk )T ∆x + 1
2∆xT Ĥk ∆x

s.t. G(xk )+∇G(xk )T ∆x = 0
H(xk )+∇H(xk )T ∆x ≤ 0

(3.22)

where Ĥk is the Hessian or an approximation of the Hessian of the Lagrangian of the NLP,

Ĥk ≈∇2
xxL(x,λ,µ). (3.23)

In Problem (3.22), Ĥk is chosen such that the Lagrangian of the NLP and the Lagrangian of the QP
are identical up to second order if Ĥk is the exact Hessian, which guarantees every minimizer of the
NLP to also be a minimizer of the QP. With a search direction∆x computed from (3.22), the iteration’s
step α usually is computed by a line search or a trust region method or variations of these, i.e.,

xk+1 = xk +α ∆x (3.24)

Algorithm 3.2 describes an exemplary SQP algorithm.

It can be shown that SQP is equivalent to NEWTON’s method on the KKT conditions of the NLP.
Therefore, convergence properties are the same as for the corresponding NEWTON’s method. An
implementation for the use with Bonmin 1.5 is available in FilterSQP by FLETCHER and LEYFFER [49].

3.4.3 FilterMethods

Both in the interior point and the sequential quadratic programming approach, modern solvers
often—and especially Ipopt 3.10 and FilterSQP do—implement filter methods, to decide on the ac-
ceptance of a step. This concept considers nonlinear programming as a multi-objective problem
with the minimization of the problem’s objective function F on the one hand and the minimization
of constraint violation on the other hand, i.e.,

min
x

h(x) with h(x) =
ne∑

i=1
|Gi (x)|−

ni∑
i=1

min(0, Hi (x)). (3.25)

In this context, a pair ( f (k),h(k)) is said to be dominated by some other pair ( f ( j ),h( j )) if f (k) ≤ f ( j )

and h(k) ≤ h( j ). A filter consists of a set of pairs ( f (k),h(k)) which do not dominate each other, Figure
3.1 gives an illustration. A new iterate xk is acceptable to the filter if it is not dominated by the points
in the filter. Usually, if a step is accepted, the corresponding pair ( f (k),h(k)) will be added to the filter
and dominated pairs will be removed. Filter methods can be combined with both line search and
trust region methods and are enhanced in practice by several modifications, e.g., to ensure global
convergence.
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1. Initialize:
Determine initial values for x0, λ0, µ0;
k := 0;

2. Check convergence:
If terminal condition is fulfilled by xk , stop;

3. Evaluate derivatives:
Evaluate F (xk ), G(xk ), H(xk ) and derivatives ∇F (xk ), ∇G(xk ), ∇H(xk );
Compute the Hessian or an approximation of the Hessian of the Lagrangian,

Ĥk ≈∇2
xxL(x,λ,µ)

4. Solve QP:
Determine δx, λ̃, and µ̃ as solution and corresponding multipliers from the QP

min
∆x

∇F (xk )T ∆x + 1
2∆xT Ĥk ∆x

s.t. G(xk )+∇G(xk )T ∆x = 0
H(xk )+∇H(xk )T ∆x ≤ 0

5. Compute step:
Compute step size α, e.g., by line search

6. Update:
Set (xk+1,λk+1,µk+1) by

xk+1 = xk +α ∆x

λk+1 =λk +α
(
λ̃−λk

)
µk+1 =µk +α

(
µ̃−µk

)
7. Repeat:

k := k +1;
go to 2;

Algorithm 3.2: An exemplary sequential quadratic programming algorithm.
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3.4.4 Branch and Bound
Branch and bound is an algorithmic framework first proposed by LAND and DOIG [79] for the solution
of integer and combinatorial problems. It was originally developed for mixed-integer linear program
(MILP)s and later was extended for the solution of MINLPs by DAKIN [38]. A branch and bound
algorithm performs a systematic enumeration of all possible solutions by doing a tree search.

The single root node P0 of the tree often is a relaxation of the problem to solve. In the case of
MINLPs, the relaxation usually consists in dropping the integrality constraints. The two essential
elements of the approach are branching and bounding, which is where the method’s name comes
from.

Branching divides the problem into smaller subproblems Pi by adding additional inequalities. The
minimum of the solutions of the children of a node, which have been derived by branching, is the
same as the minimum of the parent node. Based on this principle, a tree with smaller and smaller
subproblems is generated. In the case of binary variables, for instance, branching on such a variable
would fix it to 0 or 1.

Bounding is used to eliminate nodes and subtrees from the tree to avoid a complete enumeration.
During the processing of the tree, the algorithm computes an upper bound UB for the problem and
lower bounds for subproblems LB(Pi ) (in the case of a minimization problem). Every solution which
is feasible for the original problem, obviously yields an upper bound for the optimal solution. Vice
versa, a solution for a relaxation of a problem yields a lower bound for the problem’s mixed-integer
solution. As by adding constraints in the branching process, the feasible set gets smaller, a node’s
lower bound is a valid lower bound for all its child nodes, too. Apparently, if a node’s lower bound
is higher than the problem’s upper bound, it cannot contain the optimal solution and so do its (po-
tential) child nodes. Thus, if the solution of the current yields a better upper bound UB is found,
all nodes Pi with LB(Pi ) > UB can be fathomed from the tree. Furthermore, if the current node is
infeasible or its lower bound is higher than the current upper bound, it can be removed from the tree
without branching on it.

The algorithm stops if there are no more nodes to be considered for branching on the tree with the
current mixed-integer solution as the optimal solution for the problem. An illustration of a problem
tree in a branch and bound algorithm is shown in Figure 3.2. Algorithm 3.3 describes a generic branch
and bound algorithm.

Of course, this general description stays vague on several critical aspects of the algorithm. First,
the selection of the next node to be processed is crucial. The algorithm may follow a breadth-first, i.e.,
nodes on the highest level are processed first, or a depth-first approach, i.e., newly created subprob-
lems are processed first, for instance. Other aspects are the choice of the variable to branch on and
the number of branches to create. Additionally, For MILPs, details on these algorithmic decisions are
given in [3]. [16] states that “most observations generalize from the MILP to the MINLP case”. In [27],
branch and bound strategies for MINLPs are investigated.

3.4.5 Outer Approximation
The outer approximation algorithm for MINLPs was introduced by DURAN and GROSSMANN [46]. It
is based on a linear approximation of the objective function and the constraints and iteratively solves
MILPs and NLPs yielding lower and upper bounds for the MINLP.

For the description of the algorithm, we assume that the MINLP has the following form, i.e., equal-
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P0

P41 P42

P51 P52 P54P53

P43

P56P55

P11 P12

P23 P24

P32P31 P33 P34

P21 P22

P35 P36 P37 P38

P61 P62 P63 P64

P0

P11

P32

root problem, integrality relaxed

problem with non-integral solution

problem with integral solution

P35infeasible problem

P43 P63fathomed nodes P35

Figure 3.2: Scheme of a branch and bound problem tree: in the root node at the top, integrality is
relaxed, but the solution typically is non-integral. By recursive branching, smaller child problems
are generated and one will eventually find integral solutions. Nodes can be fathomed if they are
infeasible or their objective value is below the lower bound.

1. Initialize:
Relax integrality in MINLP to get root problem P0;
UB :=∞; LB(P0) :=−∞;
L := {P0};

2. Select:
If L 6= ;, select P ∈ L, L := L\P ;
Else stop, S is a solution;

3. Solve:
Solve P ;
If P infeasible, go to 2;
Else let FP be the objective value;

4. Prune/Bound:
If FP >UB , go to 2;
Else if solution is integral, UB := FP ; S := sol(P );
Remove nodes with LB(·) >UB , L := {

p|p ∈ L,LB(P ) <UB
}
;

5. Branch:
Branch on P , i.e., create new nodes P1, . . . ,Pk ;
Determine lower bounds for Pi , e.g., LB(P1) = ·· · = LB(Pk ) = FP ;
If LB(Pi ) ≤UB , add Pi to L, L := L∪ {Pi };

Algorithm 3.3: An exemplary branch and bound algorithm for MINLPs.
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ity constraints are transformed into corresponding inequality constraints,

min
x,y

F (x, y)

s.t. H(x, y) ≤ 0
x ∈ X ⊂Rnx

y ∈ X ⊂Rny ∩Zny .

(3.26)

Given such an MINLP, FLETCHER and LEYFFER [48] showed for convex and twice continuously dif-
ferentiable F and H and bounded sets X and Y that solutions of the following MILP—a linearized
version of the MINLP—and solutions for the MINLP are identical,

min
x,y

η

s.t. η≥ F (x( j ), y ( j ))+∇F (x( j ), y ( j ))T
(

x −x( j )

y − y ( j )

)
∀(x( j ), y ( j )) ∈K

0 ≥ H(x( j ), y ( j ))+∇H(x( j ), y ( j ))T
(

x −x( j )

y − y ( j )

)
∀(x( j ), y ( j )) ∈K

x ∈ X ⊂Rnx

y ∈ Y ⊂Rny ∩Zny

(3.27)

if K contains all feasible solutions (x( j ), y ( j )) for all possible integer assignments of the problem

min
x

F (x, y (k))

s.t. H(x, y (k)) ≤ 0
x ∈ X ⊂Rnx

(3.28)

or the solutions of a given feasibility problem, in case Problem (3.28) is infeasible for some integer
assignment.

In the algorithm, Problem (3.27) is called master problem and K contains a much smaller number
of linearization points, usually starting only with the solution of the relaxed MINLP. With a smaller
K, however, Problem (3.27) still yields lower bounds for the MINLP (3.26) and an integer assignment
y (k). As more and more points get added, the approximation and the lower bounds get better. On the
other hand, optimal solutions of Problem (3.28) with integer variables fixed to an integer assignment
y (k) give upper bounds for the MINLP and new linearization points for the master problem. Such a
new linearization point cuts off the current solution of the master problem, unless it is optimal for
the MINLP.

Thus, the algorithm iterates between the master problem and the NLP with fixed integer variables
while the solutions of the master problem give a nondecreasing sequence of lower bounds. If the
difference between lower and upper bound is within a certain tolerance, the algorithm stops with
the best mixed-integer solution found. A generic description of an outer approximation algorithm is
given in Algorithm 3.4.

3.4.6 LP/NLP-based Branch and Bound
The LP/NLP-based branch and bound algorithm was introduced by QUESADA and GROSSMAN [103]
and is an extension of the outer approximation from the previous section. The idea is to avoid solving
a large number of MILPs and instead evaluate a single MILP with a branch and bound method being
dynamically updated with new linearization points.
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1. Initialize:
UB :=∞; LB :=−∞; i := 1;
Choose convergence tolerance ε;

Determine x(0), e.g., by solving the NLP relaxation ;

K := {
x(0)

}
; S :=;;

2. Check convergence:
If UB −LB < ε or the master problem,

min
x,y,η

η

s.t. η≥ F (x( j ), y ( j ))+∇F (x( j ), y ( j ))T
(

x −x( j )

y − y ( j )

)
∀(x( j ), y ( j )) ∈K

0 ≥ H(x( j ), y ( j ))+∇H(x( j ), y ( j ))T
(

x −x( j )

y − y ( j )

)
∀(x( j ), y ( j )) ∈K

x ∈ X ⊂Rnx

y ∈ Y ⊂Rny ∩Zny ,

is infeasible, stop. S is a solution;

3. Lower Bound:
Let ηMP be the optimal value and (xMP , yMP ,ηMP ) the corresponding solution of the master
problem;
LB := ηMP ;

4. Solve NLP:
Fix integer variables y := yMP in the original problem and solve the resulting NLP;

Let (x(i ), y (i )) be the solution;

5. Upper Bound:
If (x(i ), y (i )) feasible for the original problem and F (x(i ), y (i )) <UB , set S := (x(i ), y (i )) and
UB := F (x(i ), y (i ));

6. Refine:
K :=K∪ {(x(i ), y (i ))};
i := i +1;
go to 1;

Algorithm 3.4: An exemplary outer approximation algorithm for MINLPs.
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1. Initialize:
UB :=∞;
Let P0 be the problem’s NLP relaxation;

Let x(0) be the solution of P0;

K := {
x(0)

}
; L := {P0}; S :=;;

2. Select:
If L 6= ;, select P ∈ L, L := L\P ;
Else stop, S is a solution;

3. Evaluate:
Solve the linear master program

min
x,y,η

η

s.t. η≥ F (x( j ), y ( j ))+∇F (x( j ), y ( j ))T
(

x −x( j )

y − y ( j )

)
∀(x( j ), y ( j )) ∈K

0 ≥ H(x( j ), y ( j ))+∇H(x( j ), y ( j ))T
(

x −x( j )

y − y ( j )

)
∀(x( j ), y ( j )) ∈K

x ∈ X ⊂Rnx

y ∈ Y ⊂Rny .

If the linear master program is infeasible, go to 2;
Else let ηLMP be the optimal value and (xLMP , yLMP ,ηLMP ) the corresponding solution of the
master problem;

4. Prune:
If ηLMP >UB , go to 1;

5. Solve NLP:
If yLMP integer, fix variables y := yMP in the original problem and solve the resulting NLP;

Let (x(P ), y (P )) be the solution;
Else go to 8;

6. Upper Bound:
If (x(P ), y (P )) feasible for the original problem and F (x(P ), y (P )) <UB ,
set S := (x(P ), y (P )) and UB := F (x(P ), y (P ));

7. Refine:
K :=K∪{

(x(P ), y (P ))
}
;

go to 3;

8. Branch:
Branch on P , i.e., create new nodes P1, . . . ,Pk ;
Determine lower bounds for Pi , e.g., LB(P1) = ·· · = LB(Pk ) = ηLMP ;
go to 2;

Algorithm 3.5: An exemplary LP/NLP-based branch and bound for MINLPs.
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Therefore, relaxations of the master program (3.27) are solved in a branch and bound scheme for
a solution of the master program. Whenever an integer solution (xLMP , yLMP ) is found (i.e., integral
yLMP ), the algorithm is stopped and Problem (3.28) with y fixed to yLMP is solved, which yields a new
linearization point (x(P ), y (P )) (and an upper bound for the MINLP, of course). The master problem
is updated with the new linearization point and the branch and bound continues. Thus, a major ad-
vantage over the outer approximation algorithm is that the LP/NLP-based branch and bound avoids
a restart of the tree search at this point. A generic description is given in Algorithm 3.5.

3.4.7 FurtherMINLPAlgorithms
The algorithms from the sections above are all implemented in the open source MINLP solver Bon-
min 1.5 [25], which has been used within this thesis for the (local) solution of MINLPs. Further algo-
rithms for MINLPs include the extended cutting planes (ECP) algorithm [132] and generalized BEN-
DERS decomposition (GBD) [17, 59]. ECP is an outer approximation variant which does not solve any
NLP, but linearizes objective and constraints at the solution of the master problem and alternates
between the solution of the master problem and the generation of new linearizations. GBD is an
outer approximation variant, too, and uses a different master problem. In GBD’s master problem,
linearizations of objective and constraints are summed up into a single constrained using duality
theory. However, the resulting BENDERS cuts are weaker than outer approximation cuts.

3.5 Nonconvex Problems and Global Optimization
In the previous section, we assumed convex NLPs and MINLPs and the algorithms presented so far
find local solutions, i.e., if the problem is nonconvex, there is no guarantee that these algorithms find
the global optimum. Indeed, a dMIOCP is nonconvex if the dependencies between its variables are
nonlinear and thus, the state progression function G in Problem (3.17) is nonlinear. Because of the
equality constraint,

xk+1 =G(xk ,uk , p), k = t0, . . . , t f −1, (3.29)

nonconvexities can only be avoided with linear dMIOCPs. A restriction to linear dMIOCPs, however,
is a severe limit for the possible models and tasks for complex problem solving. Many aspects of
real world problems have to be modeled with nonlinear functions, a demand function, for instance,
which often is assumed to be exponentially decreasing in price (e.g., [120]).

The field of global optimization is concerned with algorithms for nonconvex problems, which of-
ten but not necessarily include nonconvex MINLPs. Extensive introductions into global optimization
can, e.g., be found in [63, 123, 83]. Couenne [15] is a global solver for nonconvex MINLPs based on
Bonmin 1.5 and Ipopt 3.10, which has been used within this thesis.

There are a lot of heuristics considered for global optimization, like genetic algorithms, simulated
annealing, particle swarm algorithms and the like. Although such methods may find a good solution,
there typically is no guarantee to find an optimum at all. Modern deterministic solvers for global op-
timization of MINLPs including Couenne mostly perform a spatial branch and bound (sBB) method,
see, e.g., [16]. sBB is a branch and bound method, comparable to the one in Section 3.4.4, which par-
titions the search domain for smaller subproblems, not only for integer variables but also for contin-
uous variables. The central aspect of sBB is then to find lower bounds for sub-regions of the feasible
set by convex relaxations of the problem. Often, bounds tightening techniques are used to reduce the
search domain. Obviously, the quality of the convex relaxation is crucial to the performance of the
algorithm. In general, it is required that the problem is factorable for many reformulations, such as
the famous MCCORMICK relaxation for products of variables [86].
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Although there has been much progress in recent years, optimization algorithms, which guaran-
tee global optimality for a nonconvex MINLP, are rather slow and are only capable of small-scale
systems.
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CHAPTER 4

The IWR Tailorshop—aNewComplexMicroworld
This chapter presents the new microworld developed within this thesis, the IWR Tailorshop. We will
describe the assumptions for variables and equations in this model and give the parameter set, e.g.,
used in Chapter 6. We start with a short analysis of the original Tailorshop test-scenario to see why a
new microworld was necessary.

4.1 Modeling the TailorshopMicroworld
In Section 2.6, we introduced the Tailorshop microworld, which has been developed since the 1980s
by DÖRNER and others. Originally created for a TI59 programmable calculator [54], this microworld
later was implemented as a GW-BASIC application, which was the basis for the first thorough mathe-
matical analysis [112]. This implementation is still in use in multiple variations, although there now
are modern reimplementations. A snippet from the GW-BASIC code is shown in Figure 4.1. From
a modern programming viewpoint, this typical early BASIC code style with line numbers and many
GOTOs makes it hard to debug and maintain the code. Indeed, this implementation included several
bugs which—at least partly—only became apparent through the mathematical analysis.

As described in Section 2.6, the Tailorshop is an economic microworld, in which a participant has
to take economic decisions as the head of a company which produces and sells shirts. For most
of the existing implementations, the scenario comprises t f = 12 rounds, which are called months.
The scenario consists of 15 free control variables uk , which can be chosen by the participant within
certain constraints, and 16 dependent state variables xk , i.e. 31 time-discrete variables in total.

In the Tailorshop microworld, there are two different kinds of machines to produce either 50 or
100 shirts per month. Workers can only work on either one of them. Participants can choose to buy
and sell machines as well as to hire and dismiss employees. The machines need to be maintained to
preserve their capacity and equipped with raw material to actually produce something. The possible
production depends furthermore on the satisfaction of the workers, linked to the controls wages and
social expenses. The number of vans (in reimplementations sometimes renamed to stores) influences
the demand in a positive way, which itself is a limit to the shirts sales. Shirts which cannot be sold
remain in the stock. Furthermore, advertisement, location of the sales shop, and shirt price decisions
can be used to maximize profit. All the decisions influence the base capital, and thus the capital
after interest. Table 4.1 repeats the overview of all the states and controls (note that units of control
and state variables are only given implicitly depending on how they enter the model equations and
constraints) in the Tailorshop microworld and Figure 2.8 illustrates again the dependencies between
the model variables.

4.1.1 Model Equations
In [112], a mathematical model of the Tailorshop microworld has been extracted from the GW-BASIC
implementation. In general, the model has the form of a discretized mixed-integer optimal control
problem (dMIOCP) (3.17), but with several min/max-expressions in the state progression function
G . Slack variables sk can be used to reformulate these expressions by standard techniques using
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2650 ZA=.5+((LO-850)/550)+SM/800:IF ZA>ZM THEN:ZA=ZM
2660 SK=SM*(N1+N2):KA=KA-SK
2670 X=A1:IF N1<X THEN:X=N1
2680 Y=A2:IF N2<Y THEN:Y=N2
2690 PM=X*(MA+RND*4-2)+Y*(MA*2+RND*6-3):PM=PM*(ABS(ZA)^.5)
2700 X=PM:IF RL<X THEN:X=RL
2710 PA=X:HL=HL+PA:RL=RL-PA:KA=KA-(PA*1)-(RL*.5)
2720 NA=(NA/2+280)*1.25*2.7181^(-(PH^2)/4250):KA=KA-HL
2730 X=NA:IF HL<X THEN:X=HL
2740 VH=X:HL=HL-VH:KA=KA+VH*PH
2750 KA=KA-WE
2760 X1=WE/5:IF X1>NM THEN:X1=NM
2770 KA=KA-LW*500:X1=X1+LW*100
2780 KA=KA-GL*2000
2790 X=0:IF GL=.5 THEN:X=.1:ELSE IF GL=1 THEN:X=.2
2800 X1=X1+X1*X
2810 NA=X1+(RND*100-50)
2820 RP=2+(RND*6.5)
2830 MA=MA-.1*MA+(RS/(A1+A2*1E-08))*.017
2840 IF MA>MM THEN:MA=MM
2850 KA=KA-RS
2860 KA=KA-(N1+N2)*LO
2870 IF KA>0 THEN:KA=KA+KA*GZ:ELSE KA=KA+KA*SZ

Figure 4.1: Excerpt of the GW-BASIC implementation of the original Tailorshop. Special care is nec-
essary to separate already updated variables xk+1 from the values xk , compare the role of xMS

k ≈ RL

and xPP
k ≈ PM in lines 2690 to 2710.

several constraints, which are given below. We define

(xP,uP) = (xP
0 , . . . , xP

N ,uP
0 , . . . ,uP

N−1) (4.1)

to be the vector of decisions and state variables for all months of a participant. Common initial
values x0 are given together with fixed parameters p in Table 4.2. Pseudo-random values ξ appear in
the equations, e.g., line 2810 in Figure 4.1. However, the analysis of the compiled code revealed that
the random values are only dependent on a fixed initialization (seed) within the GW-BASIC code,
hence they are identical for all participants and can be considered as fixed parameter vectors.

The number of machines for 50 and 100 shirts per month depends on buying and selling of ma-
chines. Note that there is a difference between buying and selling in the base capital equation so that
two independent controls are needed here:

xM50
k+1 = xM50

k +u∆M50
k −uδM50

k , (4.2)

xM100
k+1 = xM100

k +u∆M100
k −uδM100

k . (4.3)

For the workers, a single control which stands for hiring and firing workers is sufficient since there
is no such difference (one might even avoid the state variable if the control was the current number
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States Variable Unit∗ Controls Variable Unit∗

machines 50 xM50 machine(s) advertisement uAD MU

machines 100 xM100 machine(s) shirt price uSP MU

workers 50 xW50 worker(s) buy raw material u∆MS shirt(s)

workers 100 xW100 worker(s) workers 50 u∆W50 worker(s)

demand xDE shirt(s) workers 100 u∆W100 worker(s)

vans xVA van(s) buy machines 50 u∆M50 machine(s)

shirts sales xSS shirt(s) buy machines 100 u∆M100 machine(s)

shirts stock xST shirt(s) sell machines 50 uδM50 machine(s)

possible production xPP shirt(s) sell machines 100 uδM100 machine(s)

actual production xAP shirt(s) maintenance uMA MU

material stock xMS shirt(s) wages uWA MU

satisfaction (motiv.) xMO — social expenses uSC MU

machine capacity xMC shirt(s) buy vans u∆VA van(s)

base capital xBC MU sell vans uδVA van(s)

capital after interest xCA MU choose site uCS —

overall balance xOB MU

Table 4.1: Controls and states in the Tailorshop microworld. Note that units are only given implicitly
in the test scenario. ∗ MU means money units.

of workers, but we stick to the hiring control for better comparability with the microworld):

xW50
k+1 = xW50

k +u∆W50
k , (4.4)

xW100
k+1 = xW100

k +u∆W100
k . (4.5)

Demand depends on a time-dependent pseudorandom parameter pDE
k as well as on the advertise-

ment expenses and the number of vans multiplied by a factor depending on the site, f 1
(
uCS

k

)
,

xDE
k+1 = 100 ·pDE

k −50+
(

uAD
k

5
+100 · xVA

k+1

)
· f 1(uCS

k

)
, with f 1(uCS

k

)= 1+ uCS
k

10
. (4.6)

While the influence of advertisement is bounded, see (4.20), the effect of vans is unbounded. This
will be discussed in Section 4.1.3.

For the vans again, two controls for buying and selling are needed due to differences in the base
capital. Shirt sales are determined by the slack variable sSS

k and shirts in stock depend on the slack
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State Unit∗ Variable Value

machines 50 machines xM50
0 10

machines 100 machines xM100
0 0

workers 50 workers xW50
0 8

workers 100 workers xW100
0 0

demand shirts xDE
0 766.636

vans vans xVA
0 1

shirts sales shirts xSS
0 407.2157

shirts stock shirts xST
0 80.7164

possible production shirts xPP
0 403.93

actual production shirts xAP
0 403.93

material stock shirts xMS
0 16.06787

satisfaction (motiv.) — xMO
0 0.9807

machine capacity shirts xMC
0 47.04

capital after interest MU xCA
0 165774.66

overall balance MU xOB
0 250690.66

Parameter Unit Variable Value

max. demand shirts pMD 900
max. machine capacity shirts pMM 50
max. satisfaction — pMS 1.7
interest rate — pIR 0.0025

Table 4.2: Fixed initial values x0 and parameters p for Tailorshop. Note that some initial values are
not needed, as they do not enter the right-hand-side function G(·). Note also that units are only
implicitly given in the test scenario. ∗ MU means money units.
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Figure 4.2: Original Tailorshop model. Arrows show proportional/reciprocal dependencies, diamond
indicates participants’ control influence.

variables for actual production sPP
k and shirt sales sSS

k ,

xVA
k+1 = xVA

k +u∆VA
k −uδVA

k , (4.7)

xSS
k+1 = sSS

k , (4.8)

xST
k+1 = xST

k + sPP
k − sSS

k . (4.9)

In the possible production equation, the part representing machine and worker dependence con-
sists of a term for each machine type with slack variables sM50

k and sM100
k , which are used to replace

min expressions of workers and machines, multiplied by a machine capacity term (machines for 100
shirts have double machine capacity). This part is multiplied by the square root of workers’ satisfac-
tion. The actual production is determined by a slack variable:

xPP
k+1 =

(
sM50

k · (xMC
k +4 ·pP50

k −2
)+ sM100

k · (2 · xMC
k +6 ·pP100

k −3
)) · (xMO

k+1

) 1
2

, (4.10)

xAP
k+1 = sPP

k . (4.11)

Raw material in stock depends on the use of material represented by the slack variable for actual
production and the purchase of new material. Wages and social expenses influence satisfaction and
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the machine capacity is determined by a slack variable:

xMS
k+1 = xMS

k +u∆MS
k − sPP

k , (4.12)

xMO
k+1 =

1

2
+ uWA

k −850

550
+ uSC

k

800
, (4.13)

xMC
k+1 = sMC

k . (4.14)

The equation for base capital,

xBC
k+1 = xCA

k + sSS
k ·uSP

k −pRP
k ·u∆MS

k −10000u∆M50
k − f 2(uCS

k

)
+8000

xMC
k

pMM
uδM50

k −20000u∆M100
k +16000

xMC
k

pMM
uδM100

k

−uAD
k −uMA

k − (
xW50

k+1 +xW100
k+1

) · (uWA
k +uSC

k

)−2 sPP
k − 1

2
xMS

k+1

−xST
k −10000u∆VA

k + (8000−100 k) ·uδVA
k −500 xVA

k+1,

(4.15)

contains all income and expenses during a round added to the capital after interest from the previous
round. The income consists of the amount of shirts sold times the shirt price sSS

k ·uSP
k , the sale of ma-

chines 8000 · (xMC
k

/
pMM

) ·uδM50
k and 16000 · (xMC

k

/
pMM

) ·uδM100
k (depending on the current machine

capacity), and the sale of vans (8000−100k) ·uδVA
k .

Money is spent for the raw material bought times the price of a raw material unit −pRP
k ·u∆MS

k , the

purchase of machines −10000u∆M50
k and −20000u∆M100

k , the purchase of vans −10000u∆VA
k , adver-

tisement and maintenance −uAD
k −uMA

k , and the number of workers times wages plus social expenses

−(xW50
k+1 + xW100

k+1 ) · (uWA
k +uSC

k ). Additionally, each unit of material in stock at the end of a round costs

half a monetary unit (MU) − 1
2 ·xMS

k+1, the production of a shirt costs two MU −2sPP
k , each shirt in stock

costs one MU, and each van costs 500 MU per round −500xVA
k+1. There is another amount of money

to be paid, which depends on the site,

f 2(uCS
k

)= 500+250 uCS
k +250 uCS

k ·uCS
k . (4.16)

From the base capital the capital after interest is computed by multiplying it with an interest rate
factor (1+pIR). Overall balance, the objective function, besides capital after interest contains terms
for material and shirts in stock, for machines, and for vans. However, machines are worth less in the
overall balance than if they were sold:

xCA
k+1 = xBC

k+1 ·
(
1+pIR)

(4.17)

xOB
k+1 =

xMC
k

pMM

(
8000 xM50

k+1 +16000 xM100
k+1

)
+ (8000−100k) · xVA

k+1

+2 xMS
k+1 +20 xST

k+1 +xCA
k

(4.18)

This leads to end time effects, as discussed in [112].

4.1.2 Reformulations
The GW-BASIC code which was the basis for the mathematical model formulated above, contains
several min-expressions. Two expressions which originally enter the motivation or the demand equa-
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tion respectively,

min

(
pMS,

1

2
+ uWA

k −850

550
+ uSC

k

800

)
and min

(
uAD

k

5
, pMD

)
(4.19)

could be directly replaced by introducing additional constraints,

1

2
+ uWA

k −850

550
+ uSC

k

800
≤ pMS,

uAD
k

5
≤ pMD. (4.20)

The remaining expressions,

sPP
k ≈ min

(
xPP

k+1, xMS
k +u∆MS

k

)
, sM50

k ≈ min
(
xW50

k+1, xM50
k+1

)
, (4.21)

sMC
k ≈ min

(
pMM ,0.9xMC

k +0.017
uMA

k

xM50
k+1 +10−8 xM100

k+1 +10−8

)
, sM100

k ≈ min
(
xW100

k+1 , xM100
k+1

)
, (4.22)

sSS
k ≈ min

xST
k +xAP

k+1,
5

4

(
xDE

k

2
+280

)
·2.7181−

(
uSP

k

)2

4250

 , (4.23)

could be reformulated using slack variables with corresponding constraints,

sPP
k ≤ xMS

k +u∆MS
k , sPP

k ≤ xPP
k+1, (4.24)

sMC
k ≤ pMM , sMC

k ≤ 0.9xMC
k +0.017

uMA
k

xM50
k+1 +10−8 xM100

k+1 +10−8
, (4.25)

sSS
k ≤ xST

k +xAP
k+1, sSS

k ≤ 5

4

(
xDE

k

2
+280

)
·2.7181−

(
uSP

k

)2

4250 , (4.26)

sM50
k ≤ xW50

k+1, sM50
k ≤ xM50

k+1, (4.27)

sM100
k ≤ xW100

k+1 , sM100
k ≤ xM100

k+1 , (4.28)

for all k ∈ {0, . . . ,11}. sPP
k is used for the minimum of possible production and material in stock. With

sMC
k , the minimum of maximum machine capacity pMM and the machine capacity determined by

loss of capacity over time and the recovery by maintenance is described. Finally, sSS
k is used to refor-

mulate the minimum of shirts available for sale xST
k + xAP

k+1 and a nonlinear term depending on the
demand and the shirt price. For equation (4.26), note that 2.7181 has been used in the GW-BASIC
code instead of exp. These reformulations are valid, because the corresponding variable have only
positive effects in the objective and thus will be at the limit in a solution.

As we have seen, including these reformulations, the functions G(·) and H(·) are smooth, nonlinear
functions of the unknown variables x, u and s. The nonlinearities are often bilinear, but sometimes
also include denominators and exponentials.

4.1.3 Model Shortcomings
In the GW-BASIC implementation, there are few bounds on the controls and only little checks on
reasonable values. For instance, the participant is only allowed to sell as much machines xM50 and
xM100 as the Tailorshop currently owns, but there is neither a limit nor a check for buying machines,
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Figure 4.3: Tailorshop interface with unbounded decisions: as only few bounds are included, a par-
ticipant, e.g., may “buy” an infinitely low negative number of machines. Compare also Figure 2.9.

such that a participant may “buy” a (infinitely low) negative number of machines, see Figure 4.3. The
bounds included in the code are the following.

uAD
k ∈ [0,∞] u∆M50

k ∈ [−∞,∞] uWA
k ∈ [850,∞] (4.29)

uSP
k ∈ [10,100] u∆M100

k ∈ [−∞,∞] uSC
k ∈ [0,∞] (4.30)

u∆MS
k ∈ [0,∞] uδM50

k ∈ [0, xM50
k ] u∆VA

k ∈ [0,∞] (4.31)

u∆W50
k ∈ [−xW50

k ,∞] uδM100
k ∈ [0, xM100

k ] uδVA
k ∈ [0, xVA

k ] (4.32)

u∆W100
k ∈ [−xW100

k ,∞] uMA
k ∈ [0,∞] (4.33)

However, in studies using the Tailorshop, participants did not do this and even restricted themselves
to integer values in general, although only for uAD, uSP, and u∆MS, inputs are converted into integer
numbers. Obviously, with these bounds on the controls, the problem is unbounded, although one
can assume reasonable bounds, e.g., u∆M50

k ,u∆M100
k ≥ 0 for existing data.

But even with these bounds, there are further shortcomings in the model. First, the effect of the
variable vans xVA

k on the demand, in contrast to advertising, is not limited. Probably, demand was
meant to be

xDE
k+1 = 100 ·pDE

k −50+min

(
uAD

k

5
+100 · xVA

k+1, pMD

)
· f 1(uCS

k

)
, (4.34)

but in the code actually is determined as

xDE
k+1 = 100 ·pDE

k −50+
(

min

(
uAD

k

5
, pMD

)
+100 · xVA

k+1

)
· f 1(uCS

k

)
. (4.35)
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Thus, the effect of advertising is limited to 900 by pMD, but vans can increase demand without any
limit. For xVA

k À 9, vans become the dominating factor in this equation, and computations in [112]
showed that this effect also dominates the development of the whole model, even if a lower bound
on the capital is introduced to make the problem bounded (see Figure 4.4). Furthermore, it seems
rather unrealistic that demand is influenced by the number of vans. This also applies if the variable
is renamed to stores which could plausibly influence the sales, but might not have much effect on the
demand.
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Figure 4.4: Tailorshop objective with vans bug: the effect of vans on the model is so strong that it dom-
inates the model. Even with an artificial lower bound on the capital to make the problem bounded,
optimal solutions starting at different months increase so fast that the participant’s solution seems
to be constantly 0 in this example.

Finally, in equation (4.25) for machine capacity, a typing error might have lead to another oddity
in the Tailorshop model. The first 10−8 in the denominator was probably meant as a safe guard and
should be another summand instead of a factor (the second 10−8 actually was not in the code, but
added during the modeling as such a safe guard). By the multiplication of 100 shirt machines with
10−8, however,

· · ·+0.017
uMA

k

xM50
k+1 +10−8 xM100

k+1 +10−8
, (4.36)

an infinitesimal uMA
k is sufficient to achieve a high level of machine capacity if only 100 shirt machines

are used (which turns out to be optimal).

All these shortcomings together with the necessary reformulations illustrate the need for a new
complex microworld with controlled properties—not only, but especially for the application of opti-
mization methods as an analysis and training tool.
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4.2 The IWR TailorshopMicroworld
For this work, we systematically built a new microworld based on the economical framing of Tailor-
shop with controlled properties. Besides the reformulation and shortcomings discussed above, the
decision variables in the Tailorshop microworld are a mixture of operational (e.g., decide how much
employees work on which machine class) and strategical decisions (e.g., shirt price, amount of ad-
vertising). First, depending on the size of the company of course, these decisions will rarely all be
made by the same person, i.e., by the head of the company. Second, it seems not quite realistic, for
instance, that employees who are trained to operate a 50 shirt machine are by no means able to op-
erate a 100 shirt machine and will also not report to the person who (accidentally) trained them for
the wrong machine type but instead sit around and do nothing all the month. This illustrates that
there are some (implicit) assumptions in the Tailorshop which are not very plausible and a simple
smoothening of min-expressions and correction of modeling bugs would still leave some questions
about the model and its assumptions. Altogether, these problems lead to the development of a new
test-scenario, the IWR Tailorshop microworld.

Compared to the Tailorshop, the variety of variables has been shifted towards a more abstract level.
For example, the participants have no longer the task to buy or sell machines, but instead have to take
care of the number of production sites xPS of their company. The rather concrete variable vans has
been replaced by more abstract distribution sites xDS, and so on. We chose to set up IWR Tailorshop
on such an abstract level because this yields a more realistic position of a decision maker for the
participants. Table 4.3 lists all states and controls the IWR Tailorshop contains together with corre-
sponding units. The final model consists of 14 state variables and 10 control variables including 5
integer controls.

4.3 Variable Assumptions and Equations
In the following, we will discuss the assumptions for each variable in this microworld and develop
the model equations. The starting point for the modeling was a concept for a model structure shown
in Figure 4.5 which contains possible variables and influences without precise formulations. Based
on this concept, possible model assumptions and variables have been developed. The approach is
for each variable to consider by which other variables it is influenced. Control or decision variables
are discussed together with their corresponding state variables if there are any.

4.3.1 Employees
For employees xEM

k , a basic assumption is that their number always is greater or equal 1, i.e., there
has to be at least one employee in the company. We do not differentiate between employees and
assume that they are distributed to different tasks appropriately. The participant is allowed to recruit
(uDEM

k ) and dismiss (udEM
k ) employees,

xEM
k+1 = xEM

k −udEM
k +uDEM

k (4.37a)

xEM
k ≥ 1 (4.37b)

but only an integer number of employees, i.e., the controls for recruiting and dismissal are required
to be integer,

uDEM
k ∈Z+

0 , udEM
k ∈Z+

0 . (4.38)
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States Variable Unit∗ Controls Variable Unit∗

employees xEM person(s) shirt price uSP MU/shirt

production sites xPS site(s) advertising uAD MU

distribution sites xDS site(s) wages uWA MU/person

shirts in stock xSH shirt(s) working conditions∗∗ uWC MU

resources in stock xRS shirt(s) maintenance uMA MU

production xPR shirt(s) buy resources∗∗ uDRS shirt(s)

sales xSA shirt(s) sell resources∗∗ udRS shirt(s)

demand xDE shirt(s) resources quality uRQ —

reputation xRE — recruit/dismiss empl. udEM /uDEM person(s)

shirts quality xSQ — or uEM

machine quality xMQ — create production site uDPS site(s)

resources quality xRQ — close production site udPS site(s)

motivation of empl. xMO — create distribution site uDDS site(s)

resources price∗∗ xRP MU/shirt close distribution site udDS site(s)

capital xCA MU

Table 4.3: States and controls in the IWR Tailorshop microworld (∗ MU means monetary units, ∗∗ not
part of the final model for the web-based study)
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Figure 4.5: Concept for IWR Tailorshop with possible variables and dependencies. Arrows indicate
possible dependencies in general, not positive, negative, or linear influence.
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One could argue that a fractional amount of employees can be understood, e.g., as part-time em-
ployees, but usually employees will not work at an arbitrary full-time fraction (e.g., for 13.37min per
month) but at certain rates from a finite set (e.g., 25 %, 50 %, and 75 %). This can easily be modeled
using integer variables as well. Thus, the integer constraints on uDEM

k and udEM
k are reasonable.

At the beginning, two controls for recruiting and dismissal have been used to be able to include
separate effects (i.e., motivation and discouragement) in the motivation equation. In the final model,
however, these effects were rather weak so that a formulation with two separate controls was close
to singularity with respect to these variables and thus, solvers had problems to deal with this. So, the
two decision variables have been reduced to the variable uEM

k with the corresponding equation

xEM
k+1 = xEM

k +uEM
k . (4.39)

This simple equation follows directly from the assumptions and there are no reasonable alternatives.
For the decisions on the number of employees, we assume that the amount of employees available
for recruitment is limited due to the job market. Each production and distribution site yields access
to a different job market,

uEM
k ≤ pDEM,0 · xPS

k +pDEM,1 · xDS
k . (4.40)

The dismissal is also limited to a fixed number of employees per round under the assumption that
higher dismissal would not be compatible, e.g., with unions,

uEM
k ≥−pdEM . (4.41)

Parameter values for these equations are

pDEM,0 = 5 persons/site, pDEM,1 = 10 persons/site, pdEM = 10persons. (4.42)

4.3.2 Production Sites
The different types of machines from the Tailorshop microworld are represented by production sites
in our new model. The number of production sites has to be greater or equal 1 and the participant is
allowed to create (udPS

k ) and close (uDPS
k ) production sites,

xPS
k+1 = xPS

k −udPS
k +uDPS

k , (4.43a)

xPS
k ≥ 1. (4.43b)

Again, there are no other options for this equation. One can only create or close whole production
sites, i.e., these controls also have to be integer,

uDPS
k ∈Z+

0 , udPS
k ∈Z+

0 . (4.44a)

Here, two different controls are needed because of a different treatment in both the motivation of em-
ployees and the capital. There is a maximum amount for the creation of production sites in a month
due to logistical and technical constraints and it is not possible to close more than one production
site in two months (compare dismissal of employees),

uDPS
k ≤ pDPS (4.45a)

udPS
k +udPS

k−1 ≤ pdPS with pdPS = 1site (4.45b)
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In this work, we used pDPS = 1.

4.3.3 Distribution Sites
Distribution sites are introduced as a replacement for vans or stores and modeled quite symmetric
to production sites. The assumption is again that the amount of distribution sites is ≥ 1 and the
participant is allowed to create (uDDS

k ) and close (udDS
k ) distribution sites,

xDS
k+1 = xDS

k −udDS
k +uDDS

k , (4.46a)

xDS
k ≥ 1. (4.46b)

Again, creating and closing distribution sites is treated differently in motivation of employees and
capital equations and thus, two separate control variables which are required to be integer,

uDDS
k ∈Z+

0 , udDS
k ∈Z+

0 , (4.47)

are needed. There also are maximum numbers of distribution sites which may be created and closed
in one month for the same reasons as given above,

uDDS
k ≤ pDDS, udDS

k ≤ pdDS, (4.48)

with the parameter values

pDDS = 2sites pdDS = 1site. (4.49)

4.3.4 Shirts in Stock
The amount of shirts in stock is assumed to be greater or equal 0. Shirts are sold from the stock and
in each month, newly produced shirts get in stock and can be sold in the same month. Thus, shirts
in stock are computed from the old number of shirts in stock added the number of produced shirts
minus the number of shirts sold,

xSH
k+1 = xSH

k −xSA
k+1 +xPR

k+1 (4.50a)

xSH
k ≥ 0 (4.50b)

This requires, of course, shirt sales to be lower than shirts in stock and produced shirts together. Note
that shirts in stock are not required to be integer which actually would be difficult to realize as the
variable only depends on other states. A fractional amount of shirts can be considered to represent
unfinished shirts. Here, a fractional value makes a lot more sense than for employees.

Another possible assumption is that shirt storage capacity is limited and that for each distribution
site there is a certain storage capacity,

xSH
k ≤ pSH,0 · xDS

k , (4.51)

with, e.g., pSH,0 = 2000 shirts/site. However, such a constraint introduces a lot of additional complexity.
Production, for instance, would then require a min-expression or an equivalent reformulation. In a
reasonably configured model it should be optimal to sell the produced goods anyway and therefore,
we dropped this assumption and the corresponding constraint in the final model.
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4.3.5 Resources

All types of resources are considered in aggregated form. The assumption is that one resource unit is
needed to produce one shirt. If a resource stock should be modeled, it would additionally be assumed
that the amount of resources in stock xRS

k is ≥ 0. Then, a participant would be allowed to buy uDRS
k

and possibly sell udRS
k (a limited amount of) resources,

udRS
k ≤ pdRS,max, (4.52a)

udRS
k ≥ 0, (4.52b)

uDRS
k ≥ 0, (4.52c)

e.g., with pdRS,max = 350shirts. A limitation of resource storage capacity can be realized much easier
than a shirt storage limitation, as it only concerns the potential decision buy resources. If realized, for
each production site there would be a certain storage capacity,

xRS
k ≤ pRS,0 · xPS

k , (4.53a)

xRS
k ≥ 0, (4.53b)

e.g., with pRS,0 = 2000 shirts/site. The resulting equation would then consist of the old amount of re-
sources in stock added the resources bought minus resources sold and resources consumed in pro-
duction of shirts,

xRS
k+1 = xRS

k −xPR
k+1 −udRS

k +uDRS
k . (4.54)

However, as mentioned above, buying and selling resources at an (rather) undynamic price is an
operational, not a strategical decision and therefore both have been dropped for the final model.
Additionally, a limitation of available resources to resources in stock again requires a min-expression
or a corresponding reformulation for production. An alternative assumption is that resources can
always be bought from the market for a fixed price per shirt.

We further assume that the participant can choose the resource quality uRQ
k for each round either

for the resources consumed by production or for the resources bought, depending on whether buying
resources is included in the model. There is a finite number of different resource qualities available,
identified by values between 0 and 1,

uRQ
k ∈

{
pRQ,1, . . . , pRQ,nRQ

}
, (4.55a)

e.g., with nRQ = 2, pRQ,1 = 0.5, pRQ,2 = 1.0. (4.55b)

Low quality resources are cheaper than high quality ones, but also result in lower quality products.
If a resource storage is modeled, quality may be interpolated linearly if different qualities get mixed,
e.g.,

xRQ
k+1 =

xRQ
k

(
xRS

k −udRS
k

)+uRQ
k ·uDRS

k

xRS
k −udRS

k +uRS
k +pRQ,zeroOffset

, (4.56a)

xRQ
k ∈ [0,1] . (4.56b)

In this case, of course, the resource quality decision has no impact if no resources are bought in a
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round.

4.3.6 Production
For the shirt production, two basic assumptions are that neither without production sites nor without
employees, the company can produce any shirts. The more production sites and employees there
are, the more can be produced. We assume that there are saturation effects for employees per site.
For instance, if there are already 783 employees at one production site, one additional employee will
increase productivity less than at a site of the same size (e.g., think of a fixed number of machines)
with only 2 employees. This assumption is modeled with a logarithmic term corresponding to a
uniform distribution of employees to all production and distribution sites which is adjusted to be
well-defined for all possible variable values,

log

(
pPR,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pPR,2
+1

)
. (4.57)

This factor for the employees is multiplied with the number of production sites,

xPR
k+1 = pPR,0 · log

(
pPR,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pPR,2
+1

)
· xPS

k+1. (4.58)

By the design of this equation, with appropriate parameter values, e.g.,

pPR,0 = 99.9 shirts/sites, pPR,1 = 2.0 sites/persons, pPR,2 = 10−6 sites, (4.59)

we also fulfill the assumption that production is always greater or equal 0,

xPR
k ≥ 0. (4.60)

If a resource storage is modeled as discussed in the previous section, production requires enough
resources in stock. In this case, production would be modeled as

xPR
k+1 = min

{
pPR,0 · log

(
pPR,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pPR,2
+1

)
· xPS

k+1; xRS
k +uDRS

k −udRS
k

}
, (4.61)

which requires an equivalent reformulation for optimization.

4.3.7 Sales
The modeling of the variable sales is analog to production with respect to distribution sites instead
of production sites. Without distribution sites and employees, the company cannot sell any shirts
and the more distribution sites and employees there are, the more can be sold. We again assume
that employees are uniformly distributed on production and distribution sites and that there is a
saturation effect for the number of employees per site. As for production sites, this is modeled with a
logarithmic term,

log

(
pSA,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pSA,2
+1

)
. (4.62)
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This term corresponds to the productivity of the employees per site and thus is multiplied by the
number of distribution sites. However, for the sales there are restrictions which require a min-ex-
pression. First, sales cannot exceed the demand, see also the following section. Furthermore, the
company can only sell what is in stock (except if its name is FlowTex, perhaps).

xSA
k+1 = min

{
pSA,0 · log

(
pSA,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pSA,2
+1

)
· xDS

k+1; xSH
k +xPR

k+1; pSA,3 · xDE
k+1

}
(4.63)

This equation also ensures that sales are ≥ 0,

xSA
k ≥ 0. (4.64)

Parameter values used in this work are

pSA,0 = 99.9 shirts/sites, pSA,1 = 2.0 sites/persons, pSA,2 = 10−6 sites, pSA,3 = 1.0. (4.65)

4.3.8 Demand
The variable demand refers to the demand for the single company which the participant controls
and not to the demand for the whole market. For goods like shirts, it is reasonable to assume that in
competition the demand at a single company will fall if this company raises the price of shirts and
vice versa. For the price component, we use a negative exponential term which is well-defined for all
(positive) prices,

exp
(
−pDE,1 ·uSP

k

)
. (4.66)

Compared to, e.g., linear terms, the advantage of this formulation is that it does not need to be
adapted to the maximum feasible shirt price.

We further assume that advertising raises demand with a saturation effect, modeled with a loga-
rithmic term,

log
(
pDE,2 ·uAD

k +1
)

. (4.67)

Finally, in IWR Tailorshop, the reputation of the company influences the demand as a factor with an
offset. With these three components, we have

xDE
k+1 = pDE,0 ·exp

(
−pDE,1 ·uSP

k

)
· log

(
pDE,2 ·uAD

k +1
) · (xRE

k +pDE,3) , (4.68)

and this equation also ensures
xDE

k ≥ 0, (4.69)

with the parameter values

pDE,0 = 2200.0shirts, pDE,1 = 2 ·10−2 shirts/M.U., (4.70a)

pDE,2 = 2 ·10−2 1/M.U., pDE,3 = 0.5. (4.70b)

4.3.9 Reputation
For the company’s reputation, we assume that there is a memory effect, i.e., the reputation depends
partly on the previous reputation. Further assumptions are that both high shirt quality and price,
as well as advertising raise the reputation. Considering the shirt price, we additionally assume that
there is an interaction with the shirt quality. A luxury product will not keep its luxury reputation if it
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is sold at a low budget price. On the other hand, it will not be possible to achieve a good reputation
by a high price when the product quality is low. These effects are modeled with the nonlinear term

pRE,3 ·uSP
k · (xSQ

k )2, (4.71)

where shirt quality enters quadratically. Working conditions, represented here by the variable wages,
will also influence reputation.

All influences on reputation are assumed to be subject to saturation effects and thus modeled with
a logarithmic term, as we only consider positive effects. The whole equation for reputation is

xRE
k+1 = pRE,0 · xRE

k +pRE,1 log
((

pRE,2 ·uAD
k +pRE,3 ·uSP

k · (xSQ
k )2 +pRE,4 ·uWA

k

) ·pRE,5
)
. (4.72)

The corresponding parameter values,

pRE,0 = 0.5, pRE,1 = 0.627, pRE,2 = 2.5 ·10−5, (4.73a)

pRE,3 = 10−4 shirts, pRE,4 = 6 ·10−5 persons, xRE
5 = 12.0, (4.73b)

are determined such that the log-term is always positive considering the lower (and upper) bounds
on the controls. With a positive initial reputation, we then also have

xRE
k ≥ 0. (4.74)

Additionally, these parameter values keep reputation between 0 and 1 for the majority of decisions.
Realizing a true normalization, i.e., xRE

k ∈ [0,1], would require more complexity (min/max-expres-
sions in the worst case) without yielding any advantage for the modeling.

4.3.10 Shirts Quality
Shirts quality is assumed to depend on the motivation of employees, the quality of machines, and
the quality of resources. Highly motivated employees will produce better shirts and of course, high
machine and material quality will improve the shirt quality as well. Thus, shirt quality is a linear
combination of these factors which is positive because all the summands are positive,

xSQ
k+1 = pSQ,0 · xMO

k +pSQ,1 · xMQ
k +pSQ,2 ·uRQ

k , (4.75a)

xSQ
k ≥ 0, (4.75b)

with the parameters

pSQ,0 = 0.2, pSQ,1 = 0.3, pSQ,2 = 0.5. (4.76)

4.3.11 MachineQuality
We assume that the quality of machines for production of shirts decreases when machines are used.
This decrease consists of a loss due to the machine load and is complemented by a temporal loss.
The participant may decide on the amount of money spent for machine maintenance uMA

k in each
month. Maintenance spendings increase the machine quality and are greater or equal 10 M.U. Un-
less otherwise stated, maintenance is limited to 5000 M.U. Machine quality is determined in IWR
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Tailorshop by

xMQ
k+1 = xMQ

k ·pMQ,0 ·exp

(
−pMQ,1

xPR
k

xPS
k +pMQ,2

)
+pMQ,3 · log

(
uMA

k ·pMQ,4 +1
)

, (4.77a)

uMA
k ∈ [10M.U.,5000M.U.]. (4.77b)

With a positive initial value, we have

xMQ
k ≥ 0, (4.78)

and with the corresponding parameter values,

pMQ,0 = 0.8, pMQ,1 = 6 ·10−3 sites/shirts, pMQ,2 = 10−6 sites, (4.79a)

pMQ,3 = 0.13, pMQ,4 = 0.2M.U.−1, (4.79b)

machine quality mostly stays between 0 and 1, but for the same reasons as reputation it is not limited
to [0,1].

4.3.12 Motivation of Employees

The basic assumption for the motivation of employees is that there are factors which increase and
factors which decrease the motivation. Factors which are assumed to motivate employees comprise
the growth of the company (i.e., recruitment of employees and an increasing number of production
or distribution sites), good working conditions (i.e., a high level of wages), and a good company rep-
utation,

log
(
pMO,1 · (uEM

k +pdEM )+pMO,2 ·uDPS
k +pMO,3 ·uDDS

k +pMO,4 ·uWA
k +pMO,5 · xRE

k +pMO,6
)
. (4.80)

On the other hand, dismissal of employees and site closures are sources of discouragement,

exp
(
− (pMO,7 ·udPS

k +pMO,8 ·udDS
k )+pMO,9

)
. (4.81)

The product of these two effects determines the new level of motivation. Motivation of employees is
assumed to be a convex combination of the old motivation and the new level of motivation,

xMO
k+1 =

(
1−pMO,0

)
· xMO

k +pMO,0 · log
(
pMO,1 · (uEM

k +pdEM )+pMO,2 ·uDPS
k +pMO,3 ·uDDS

k

+pMO,4 ·uWA
k +pMO,5 · xRE

k +pMO,6
)
·exp

(
− (pMO,7 ·udPS

k +pMO,8 ·udDS
k )+pMO,9

)
·pMO,10.

(4.82)

The corresponding parameter values,

pMO,0 = 0.5, pMO,1 = 2 ·10−2 persons−1, pMO,2 = 0.5sites−1, (4.83a)

pMO,3 = 0.25sites−1, pMO,4 = 2.0 ·10−4 persons/M.U., pMO,5 = 0.3, (4.83b)

pMO,6 = 1.0, pMO,7 = 2.5sites−1, pMO,8 = 2.0sites−1, (4.83c)
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pMO,9 = 1.0, pMO,10 = 0.5, (4.83d)

are again chosen such that the motivation of employees is always ≥ 0 and between 0 and 1 for most
cases, but it is not explicitly limited to [0,1].

4.3.13 Resources Price
If the variables buy and sell resources are included in the model, the resources price may also be deter-
mined using the following equation instead of using a fixed value. If the resources price is modeled,
we assume that it depends on supply and demand, i.e., on the amount of resources bought or sold
by the company, as this is the only data available on supply and demand. It is assumed that there
are always enough resources available on the market. Resources price should be ≥ 0 and will not
immediately adapt to demand,

xRP
k+1 =

(
1−pRP,0)

xRP
k +pRP,0 ·

(
pRP,1

(
uDRS

k −udRS
k

)
+pRP,2

)
, (4.84)

xRP
k ≥ 0. (4.85)

Possible parameter values are

pRP,0 = 0.3, pRP,1 = 7

1080
M.U./shirt2, pRP,2 = 101

27
M.U./shirt. (4.86)

However, in the final model, the resources’ price is not included as the variables for the amount of
resources in stock have been removed.

4.3.14 Shirt Price, Advertising,Wages, andWorking Conditions
The participant is allowed to set the price per shirt uSP

k , the amount of money spent for advertising
per month uAD

k , and the wages per employee and month uWA
k . All these controls are required to be

greater or equal zero in general, and are subject to reasonable bounds, both for the IWR Tailorshop
context and for the optimization,

uSP
k ∈ [35M.U.,55M.U.], uAD

k ∈ [1000M.U.,2000M.U.], uWA
k ∈ [1000M.U.,2000M.U.]. (4.87)

In the early modeling phase, a variable for working conditions uWC
k was considered to model monthly

expenses for all workers, similar to social expenses in the Tailorshop microworld. The only equation
this variable could reasonably influence seems to be the motivation of employees. However, the in-
fluence would have been quite low without dominating the other effects and thus, this imprecise
variable has been dropped.

4.3.15 Capital
For the capital equation, components mostly follow directly from all other equations and assump-
tions. The capital is determined from the old capital plus revenues minus expenses, multiplied with
an interest rate. We assume that the interest rate pCA,0 is the same for both assets and debts. Although
reality differs from this assumption, it is still close enough and the assumption of identical interest
rates makes the model easier (for different interest rates, a smoothened if/else expression would be
necessary). The capital itself remains unbounded, i.e., the participant is allowed to get into debt
arbitrarily high.
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Revenue is assumed to consist of the following components in each month. Each shirt sold yields
an income in the amount of the shirt price. Closing a production or distribution site brings a fixed
amount of money per site, pCA,1 or pCA,2. Furthermore, if sell resources is modeled, each resource
unit sold earns a part of the resources price depending on the resource quality.

Expenses are assumed to contain the following components in each month. Each employee is
payed wages. Production and distribution sites produce monthly fix costs, pCA,4 and pCA,5, per site.
Furthermore, there are monthly expenses for machine maintenance and advertising. Each shirt in
stock produces storage costs pCA,6. If production or distribution sites are created, a fixed amount
of money pCA,7 or pCA,8 per new site is spent. Finally, if resources are modeled, each resource unit
bought costs the resource price multiplied by the chosen resource quality and resources in stock
produces costs. Else, each shirt produced causes expenses of pCA,3 multiplied by the resource quality.

Thus, we have the following equation for capital,

xCA
k+1 = pCA,0 ·

(
xCA

k +
(
xSA

k+1 ·uSP
k

)
+

(
udPS

k ·pCA,1
)
+

(
udDS

k ·pCA,2
)
− (

xEM
k+1 ·uWA

k

)
−

(
xPR

k+1 ·uRQ
k ·pCA,3

)
−

(
xPS

k ·pCA,4
)
−

(
xDS

k ·pCA,5
)
−uMA

k −uAD
k −

(
xSH

k+1 ·pCA,6
)

−
(
uDPS ·pCA,7

)
−

(
uDDS ·pCA,8

))
,

(4.88)

with the corresponding parameters,

pCA,0 = 1.03, pCA,7 = 10000 M.U./site, pCA,1 = 5000 M.U./site, (4.89a)

pCA,4 = 1000 M.U./site, pCA,8 = 7000 M.U./site, pCA,2 = 3500 M.U./site, (4.89b)

pCA,5 = 700 M.U./site, pCA,6 = 1.5 M.U./shirt. (4.89c)

4.4 Model Overview
With the assumptions and equations from the previous section, the mathematical representation of
the IWR Tailorshop consists of the following set of equations for k = t0, . . . , t f .

xEM
k+1 = xEM

k +uEM
k (4.90a)

xPS
k+1 = xPS

k −udPS
k +uDPS

k (4.90b)

xDS
k+1 = xDS

k −udDS
k +uDDS

k (4.90c)

xDE
k+1 = pDE,0 ·exp

(
−pDE,1 ·uSP

k

)
· log

(
pDE,2 ·uAD

k +1
) · (xRE

k +pDE,3) (4.90d)

xRE
k+1 = pRE,0 · xRE

k +pRE,1 log
((

pRE,2 ·uAD
k +pRE,3 ·uSP

k · (xSQ
k )2 +pRE,4 ·uWA

k

) ·pRE,5
)

(4.90e)

xPR
k+1 = pPR,0 · xPS

k+1 · log

(
pPR,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pPR,2
+1

)
(4.90f)
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Figure 4.6: IWR Tailorshop model. Arrows show proportional/reciprocal dependencies, diamond
indicates participants’ control influence.

xSA
k+1 = min

{
pSA,0 · xDS

k+1 · log

( pSA,1 · xEM
k+1

xPS
k+1 +xDS

k+1 +pSA,2
+1

)
; xSH

k +xPR
k+1; pSA,3 · xDE

k+1

}
(4.90g)

xSH
k+1 = xSH

k −xSA
k+1 +xPR

k+1 (4.90h)

xSQ
k+1 = pSQ,0 · xMO

k +pSQ,1 · xMQ
k +pSQ,2 ·uRQ

k (4.90i)

xMQ
k+1 = xMQ

k ·pMQ,0 ·exp

(
−pMQ,1

xPR
k

xPS
k +pMQ,2

)
+pMQ,3 · log

(
uMA

k ·pMQ,4 +1
)

(4.90j)

xMO
k+1 =

(
1−pMO,0

)
· xMO

k +pMO,0 · log
(
pMO,1 · (uEM

k +pdEM )+pMO,2 ·uDPS
k +pMO,3 ·uDDS

k

+pMO,4 ·uWA
k +pMO,5 · xRE

k +pMO,6
)
·exp

(
− (pMO,7 ·udPS

k +pMO,8 ·udDS
k )+pMO,9

)
·pMO,10

(4.90k)
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xCA
k+1 = pCA,0 ·

(
xCA

k +
(
xSA

k+1 ·uSP
k

)
+

(
udPS

k ·pCA,1
)
+

(
udDS

k ·pCA,2
)
− (

xEM
k+1 ·uWA

k

)
−

(
xPR

k+1 ·uRQ
k ·pCA,3

)
−

(
xPS

k ·pCA,4
)
−

(
xDS

k ·pCA,5
)
−uMA

k −uAD
k −

(
xSH

k+1 ·pCA,6
)

−
(
uDPS ·pCA,7

)
−

(
uDDS ·pCA,8

)) (4.90l)

Additional constraints are given by the inequalities

udPS
k +udPS

k−1 ≤ pdPS, (4.91a)

uEM
k ≤ pDEM,0 · xPS

k +pDEM,1 · xDS
k , (4.91b)

xEM
k , xPS

k , xDS
k ≥ 1, (4.91c)

xSH
k , xPR

k , xSA
k , xDE

k , xRE
k , xSQ

k , xMQ
k , xMO

k ≥ 0, (4.91d)

and the simple bounds on the constraints,

uSP
k ∈ [35M.U.,55M.U.], uAD

k ∈ [1000M.U.,2000M.U.], (4.92a)

uWA
k ∈ [1000M.U.,2000M.U.], uMA

k ∈ [10M.U.,5000M.U.], (4.92b)

uRQ
k ∈

{
pRQ,1, pRQ,2

}
, uEM

k ∈
[
−pdEM ,∞

]
∩Z+

0 , (4.92c)

uDPS
k ∈

[
0, pDPS

]
∩Z+

0 , udPS
k ∈Z+

0 , (4.92d)

uDDS
k ∈

[
0, pDDS

]
∩Z+

0 , udDS
k ∈

[
0, pdDS

]
∩Z+

0 . (4.92e)

Compared to equation (3.17), these equations and inequalities together with the reformulation of
the sales equation, see Chapter 3, form the functions G and H . For the objective function F , one
could think of different options, e.g., a weighted combination of maximizing profit, reputation, and
some other factors. We decided to use the capital at the end of the discrete time-scale in this work,
which effectively avoids end-time effects. Hence, we use the following objective:

max
x,u,p

xCA
N (4.93)

Of course, the set of parameters has a significant influence on the model behavior. One could, e.g.,
think of applying derivative-free optimization methods with a subset of the parameters to determine
an appropriate parameter set for a microworld like IWR Tailorshop. For this work, however, we set
up a parameter set manually such that the model fulfills a certain desired behavior, as described in
Section 4.3. The chosen parameters also yield a model behavior that makes sense for the optimiza-
tion, i.e. there are feasible solutions and the optimization problem is not unbounded. The parameter
values used throughout this work unless otherwise stated are listed in Tables 4.4 and 4.5.
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Parameter Value

pDE,0 2200.0shirts
pDE,1 2 ·10−2 shirts/MU

pDE,2 2 ·10−2 1/MU

pDE,3 0.5
pRE,0 0.5
pRE,1 0.672
pRE,2 2.5 ·10−5 1/MU

pRE,3 10−4 shirts/MU

pRE,4 6 ·10−5 persons/MU

pRE,5 12.0
pPR,0 99.9 shirts/sites

pPR,1 2.0 sites/persons

pPR,2 10−6 sites
pSA,0 99.9 shirts/sites

pSA,1 2.0 sites/persons

pSA,2 10−6 sites
pSA,3 1.0
pSQ,0 0.2
pSQ,1 0.3
pSQ,2 0.5
pMQ,0 0.8
pMQ,1 6 ·10−3 sites/shirts

pMQ,2 10−6 sites

Parameter Value

pMQ,3 0.13
pMQ,4 0.2MU−1

pMO,0 0.5
pMO,1 2 ·10−2 persons−1

pMO,2 0.5sites−1

pMO,3 0.25sites−1

pMO,4 2.0 ·10−4 persons/MU

pMO,5 0.3
pMO,6 1.0
pMO,7 2.5sites−1

pMO,8 2.0sites−1

pMO,9 1.0
pMO,10 0.5
pCA,0 1.03
pCA,1 5000 MU/site

pCA,2 3500 MU/site

pCA,3 5.0 MU/shirt

pCA,4 1000 MU/site

pCA,5 700 MU/site

pCA,6 1.5 MU/shirt

pCA,7 10000 MU/site

pCA,8 7000 MU/site

Table 4.4: Parameter set for states used with IWR Tailorshop. MU means monetary units.

Parameter Value

nRQ 2
pRQ,1 0.5
pRQ,2 1.0
pDEM,0 5 persons/site

pDEM,1 10 persons/site

Parameter Value

pdEM 10persons
pDPS 1site
pdPS 1site
pDDS 2sites
pdDS 1site

Table 4.5: Parameter set for controls used with IWR Tailorshop.
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CHAPTER 5

Methods for Analysis and Training of HumanDecisionMaking
In this chapter, we describe methods for an optimization-based analysis and training of human deci-
sion making. We also investigate different reformulations of the IWR Tailorshop model which are nec-
essary for the application of optimization methods. We present a tailored decomposition approach
for the computation of valid upper bounds for optimal solutions of IWR Tailorshop and discuss an
approach for model parameter optimization.

5.1 Optimization-basedAnalysis of HumanDecisionMaking
In Section 2.6, we have seen that complex microworlds are used as test-scenarios in CPS to analyze
human decision making. Remember that in CPS, researchers need an indicator for the participant’s
performance, as the performance in such test-scenarios is usually correlated with some other vari-
ables (e.g., personal attributes or experimental conditions). Common approaches—including the
analysis of the evolution of variables like capital in the Tailorshop—have severe drawbacks, see also
Section 2.6.

We recall that many microworlds and especially the IWR Tailorshop presented in the previous
chapter can be formulated as a discretized mixed-integer optimal control problem (dMIOCP), and
thus, we can formulate the following definition.

Definition 5.1 The IWR Tailorshop optimization problem (ITOP) is the task to solve the problem

min
x,u

F (x,u, p)

s.t. xk+1 =G(xk ,uk , p), k = t0, . . . , t f −1,
0 ≤ H(xk ,uk , p), k = t0, . . . , t f ,
uk ∈Ω, k = t0, . . . , t f −1,
xt0 = x0,

(5.1)

with F , G , H , Ω, x, p, and u defined by the description of IWR Tailorshop in Chapter 4. Unless
otherwise stated, we have

t0 = 0 and t f = 10. (5.2)

Reasonable initial values x0 are given, e.g., in Table 6.1.

The ITOP is the task for a potential participant in a study using the IWR Tailorshop. For the analysis
of decisions made by a participant, we suggest to use optimal solutions of the ITOP. A comparison
of the objective function values, i.e., the end time capital, achieved by the participants with the one
of the optimal solution for ITOP also gives an objective indicator. However, this approach does not
yield any information to also determine when significant performance deviations occurred or even
which decisions were particularly good or bad ones with respect to the overall outcome.

Note that a comparison with the controls of the optimal solution for starting month t0 = 0 would
not yield a good indicator function, as there might be multiple ways to perform well. If, for instance,
due to his previous actions, a participant has many shirts on his stock, good decisions may differ
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Figure 5.1: Variable employees as derived by a participant (solid line) together with optimal solutions
(dashed lines). The optimal strategy changes several times (months 1 to 2, 3 to 4, and the last three
times) depending on the remaining time and the state the IWR Tailorshop is in.

drastically from a situation in which the stock is empty and demand is much higher than current shirt
sales (see Figure 5.1). Therefore, we do not only consider the ITOP, but also a series of optimization
problems:

Definition 5.2 The IWR Tailorshop analysis problem (ITAP) is a series of optimization problems for

ts ∈ {0,1, . . . , t f −1} (5.3)

with objective valuesΦH (ts ) based on the ITOP,

ΦH (ts ) := min
x,u

F (x,u, p)

s.t. xk+1 =G(xk ,uk , p), k = ts , . . . , t f −1,
0 ≤ H(xk ,uk , p), k = ts , . . . , t f ,
uk ∈Ω, k = ts , . . . , t f −1,
xts = xP

ts
,

(5.4)

with F , G , H , Ω, x, p, and u defined by the description of IWR Tailorshop in Chapter 4. The initial
values for the problem series, xP

ts
, are the states derived by a participant’s decisions until month ts .

Unless otherwise stated, in this work we have again t f = 10.

In contrast to the ITOP, the problem series in ITAP starts with initial states derived by a participant.
Thus, in the ITAP, we solve the ITOP for every round of the participant’s data, starting with exactly
the same conditions as the participant. In a certain analogy to the cost-to-go-function in dynamic
programming, the optimal objective function values for all months yield a monotonically decreasing
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Figure 5.2: Illustration of the definition of the How much is still possible-function. The left plot con-
tains the variable capital (magenta) as derived by the decisions of a participant together with all
optimal solutions for the variable capital (dashed black) with the optimization starting in the states
derived by the participant in all the months. The final values of the optimal solutions can be seen as
a function over the months again, see the plot on the right hand side, which is the How much is still
possible-function.

function (if we found global optima or, at least, if the participants did not find better solutions for any
month). Therefore, we suggest to use the valuesΦH (ts ) as an indicator function for the performance
of a participant.

Definition 5.3 We callΦH : [t0, t f ]∩Z+
0 −→R : ts 7→ΦH (ts ) the How much is still possible-function for

IWR Tailorshop.

The values of this function indicate—corresponding to its name—how much still would be possible
to achieve if all future decisions were optimal. Figure 5.2 shows the solutions of ITAP together with the
variable capital for a single participant and illustrates how the How much is still possible-function is
derived. With this indicator function, we can analyze in which months potential for a higher objective
function value has been lost by suboptimal decisions. In Figure 5.3, two examples are analyzed. Using
the evolution of the variable capital as an indicator, the analysis coincides with the How much is still
possible-function for the first example. Here, performance is not so good in the first two months, but
significantly better from month 3 on. For the second plot, the evolution of capital would mislead,
as decisions in month 3, for instance would be analyzed as good (capital increases), although the
participant actually loses much potential in this round, as the How much is still possible-function
shows. Decisions for month 2 were quite good but would vice versa be analyzed as bad considering
the capital.

By comparing ΦH (ts ) with ΦH (ts +1), we obtain the exact value of how much less the participant
is able to obtain.

Definition 5.4 We call

ΦP : [t0, t f −1]∩Z+
0 −→R : ts 7→ΦP (ts ) :=ΦH (ts +1)−ΦH (ts ) (5.5)

the Use of potential-function.

Under the same assumptions as for the How much is still possible-function, this is a non-positive
function. The Use of potential indicates, as explained above, how much potential a participant lost in
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Figure 5.3: How much is still possible-function and variable capital: the solid lines show the evolution
of capital derived by the participants’ decisions, the dashed lines show the How much is still possi-
ble-function which is composed of objective function values of optimal solutions with optimization
starting in the corresponding months. Using capital, which is evaluated as the objective at the end
of the discrete time scale, as an indicator, the analysis coincides with the How much is still possi-
ble-function for the left plot: performance is not so good in the first two months, but significantly
better from month 3 on. For the right plot, the evolution of capital would mislead, as decisions in
month 3, for instance would be analyzed as good (capital increases), while they actually are quite
bad, as the How much is still possible-function reveals.

a month, i.e., it is 0 for optimal decisions. An increase of Use of potential can thus also be considered
as learning: when a participant learns how to control the microworld, he is able to better use the
potential.

By its definition, Use of potential is kind of a discrete derivative of How much is still possible. Figure
5.4 illustrates this dependency between these two functions. Note that in general also a relative loss
given as a percentage could be used, but this does only make sense in the presence of reasonable
bounds on F orΦH respectively, which is not the case for IWR Tailorshop.

The approach described in this section is generic and should also be used for other test scenarios
in complex problem solving in the future. In [112], this methodology has been applied to the orig-
inal Tailorshop microworld. Due to the drawbacks of that test-scenario described in Section 4.1.3,
the variable vans, for instance, was not part of the optimization. In Section 6.3, we present results
obtained by using the How much is still possible- and Use of potential-functions in a web-based feed-
back study with IWR Tailorshop. Once the performance of all participants has been determined, an
aggregation and further statistical analysis can be performed. The proposed methodology is more
reliable than non–optimization-based indicator functions and generally applicable to test-scenarios
in complex problem solving.

5.2 ComputingOptimization-based Feedback
Depending on the computing time for one problem in the ITAP series, the approach from the previ-
ous section can also be used to compute an optimization-based feedback while a participant solves
the task. Computing times have to be sufficiently low then, of course—see Section 5.3 for the efforts
taken in IWR Tailorshop regarding this issue.
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Figure 5.4: Dependency between Use of potential- and How much is still possible-functions: Use of
potential (left) is kind of a discrete derivative of How much is still possible (right). In this example, the
participant seems to learn how to control the microworld as Use of potential is increasing.

For an optimization-based feedback, we distinguish to aspects: on the one hand, there is the way
the feedback is computed and on the other hand there is the presentation of such a feedback. Fig-
ure 5.5 gives an overview of the optimization-based feedback methods discussed in this section and
implemented in the IWR Tailorshop web interface.

Considering the way a feedback is computed, there are basically two approaches. The first one is
to compute an optimal solution and to use the optimal controls for the feedback.

Definition 5.5 The IWR Tailorshop feedback problem (ITFP) is the problem to determine optimal
controls u∗(ts ) starting in the state xP

ts
derived by a participant until month ts ,

u∗(ts ) := argmin
u

F (x,u, p)

s.t. xk+1 =G(xk ,uk , p), k = ts , . . . , t f −1,
0 ≤ H(xk ,uk , p), k = ts , . . . , t f ,
uk ∈Ω, k = ts , . . . , t f −1,
xts = xP

ts
,

(5.6)

with F , G , H ,Ω, x, p, u, t f defined as before.

Let the microworld be at month k+1, i.e., the participant has to determine controls uk+1. Then there
are two reasonable approaches: first, to compute u∗(k +1) to give the participant a hint what would
be optimal in the current state—approach A in Figure 5.5; and second, to compute u∗(k) to give the
participant information about the previously made decisions—approach C.

The second method for optimization-based feedback can be considered sensitivity-based. We in-
troduce artificial constraints to fix the controls chosen by the participant for month k and—at least
in the continuous case—use the LAGRANGE multipliers of these constraints as a sensitivity feedback.

Definition 5.6 The IWR Tailorshop sensitivity feedback problem (ITSFP) is the problem to determine
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4 Bar chart

1 Highlight variables
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fix decisions uk with constraints
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Figure 5.5: Optimization-based feedback at month k + 1: on the left hand side, there are different
methods to compute a feedback and on the right hand side there are different types of feedback pre-
sentation. Optimization method A is used with feedback presentation 1, 2, and 3 and optimization
method B is used with feedback presentation 4 in the IWR Tailorshop web interface. Further opti-
mization methods C and D have not been implemented for the use with IWR Tailorshop.
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sensitivities for the controls uP
ts

determined by a participant for month ts from

min
x,u

F (x,u, p)

s.t. xk+1 =G(xk ,uk , p), k = ts , . . . , t f −1,
0 ≤ H(xk ,uk , p), k = ts , . . . , t f ,
uk ∈Ω, k = ts , . . . , t f −1,
uts = uP

ts
,

xts = xP
ts

,

(5.7)

by determining LAGRANGE multipliers λ∗
ts

for the constraints

uts = uP
ts

(5.8)

with F , G , H ,Ω, x, p, u, t f , and xP
ts

defined as before.

With the ITSFP formulation, an optimization code will automatically calculate the LAGRANGE mul-
tipliers or dual variables for the constraints (5.8). It is well known that the LAGRANGE multipliers
indicate the shadow prices, i.e., how much the objective function will vary if the corresponding con-
straints were relaxed. However, this is a local information for the point (xP

ts
, . . . , xP

t f
,uP

ts
, . . . ,uP

t f −1) and

assumes that the active set of inequality constraints does not change.

Mixed-integer variables need additional care in the ITSFP, as for integer variables this is not a
feasible concept. For IWR Tailorshop, we first compute a mixed-integer solution then and in a sec-
ond step fix this solution with constraints in a relaxed (i.e., continuous) formulation of the problem.
These multipliers can then be used as an approximation of the desired sensitivity information. This
approach is realized in the IWR Tailorshop web interface as approach B.

Both from a training and a decision support aspect, one could think of a kind of a combination
of these different methods—approach D. Whenever the participant changes a control value in the
interface, an ITSFP with the fixation of only that single control value could be solved. The result-
ing optimal solution gives a feedback which controls need to be changed. This could possibly also
be done based on sensitivities. Unfortunately, this is far beyond the current capabilities of MINLP
solvers and would lead to an unusable interface as the participant would have to wait far too long
after changing one single control (at least for high t f − t0).

Regarding the presentation of the feedback, four options are implemented in the IWR Tailorshop
web interface, see Figure 5.5. Control variables can be highlighted, up and down arrows in different
thickness can be shown next to them, and values can be toggled. Another option is to display a bar
chart for all control variables when controls have been submitted.

For IWR Tailorshop, we use the combination of optimization approach A with highlighting, arrows,
and toggling. Approach B is used together with the bar chart. Variables are highlighted if they differ
from the optimal value more than a given threshold, e.g., 30 % of the difference δ between lower and
upper bound of the variable. Arrows indicate the direction of the optimal control: if the optimal con-
trol is greater, the arrow points up and vice versa. Arrow thickness is also determined by thresholds
on δ. For the value toggling, the exact optimal control values are shown. In the bar chart, LAGRANGE

multipliers are displayed scaled according to δ. We will refer to these four options as highlight, trend,
value, and chart.
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5.3 Model Reformulations
5.3.1 Shirt Sales
We recall the state progression law for the variable sales, equation (4.90g),

xSA
k+1 = min

{
pSA,0 · log

(
pSA,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pSA,2
+1

)
· xDS

k+1; xSH
k +xPR

k+1; pSA,3 · xDE
k+1

}
, (5.9)

which consists of the minimum of three expressions. For the solution of ITOP and the like, the prob-
lem is that a min-expression is not differentiable. However, we want to apply the derivative-based
optimization methods described for dMIOCP in Chapter 3. Hence we need a differentiable reformu-
lation of IWR Tailorshop. In the following, we will use abbreviations T i

k , i ∈ {1,2,3}, for the min-terms,

T 1
k+1 := pSA,0 · log

(
pSA,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pSA,2
+1

)
· xDS

k+1, (5.10a)

T 2
k+1 := xSH

k +xPR
k+1, (5.10b)

T 3
k+1 := pSA,3 · xDE

k+1, (5.10c)

so that we have

xSA
k+1 = min

{
T 1

k+1;T 2
k+1;T 3

k+1

}
. (5.11)

5.3.2 Reformulations of Shirt Sales
An obvious reformulation of the minimum would be to use inequality conditions,

xSA
k+1 ≤ T 1

k+1, xSA
k+1 ≤ T 2

k+1, xSA
k+1 ≤ T 3

k+1. (5.12)

However, this only guarantees that xSA
k+1 is less than all the parts of the minimum. In our case, though

the influence of sales is positive in the objective,

xCA
k+1 = pCA,0 ·

(
· · ·+

(
xSA

k+1 ·uSP
k

)
+ . . .

)
, (5.13)

because of shirts in stock’s equation,

xSH
k+1 = xSH

k −xSA
k+1 +xPR

k+1, (5.14)

it could be beneficial to keep shirts in stock to sell them later at some higher price if possibly the
demand also is higher due to a better reputation. Of course, this can easily be avoided by choosing
storage costs to be higher than the maximum shirt price, since

xCA
k+1 = pCA,0 ·

(
· · ·−

(
xSH

k+1 ·pCA,6
)
− . . .

)
, (5.15)

but it would be an unrealistic assumption that storage costs of an item for one month are as high as
the value of the item itself. Nevertheless, for the most cases, sales will be equal to the minimum as
the trade-off to generate a higher demand at some future time point is not profitable. We refer to this
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reformulation as INEQ.

The INEQ reformulation can be extended such that it is an equivalent formulation to the min-ex-
pression. This is done by adding binary variables which are required to sum up to 1,

y1 + y2 + y3 = 1, (5.16a)

y1, y2, y3 ∈ {0,1}. (5.16b)

The shirt sales can then be determined as a linear combination of the yi multiplied by the Ti ,

xSA
k+1 = y1 ·T 1

k+1 + y2 ·T 2
k+1 + y3 ·T 3

k+1, (5.17)

and together with the inequality constraints on xSA
k+1, we have

xSA
k+1 = y1 ·T 1

k+1 + y2 ·T 2
k+1 + y3 ·T 3

k+1, (5.18a)

xSA
k+1 ≤ T 1

k+1, (5.18b)

xSA
k+1 ≤ T 2

k+1, (5.18c)

xSA
k+1 ≤ T 3

k+1, (5.18d)

y1 + y2 + y3 = 1, (5.18e)

y1, y2, y3 ∈ {0,1}, (5.18f)

which is called the LC reformulation in the remainder of this section. Unfortunately, this reformula-
tion violates the LICQ as for any feasible (integer) solution, two of the newly introduced constraints
coincide. However, this is no problem in practice as we will see below.

An alternative formulation for the inequality constraints is

y1 ·T 1
k+1 ≤ (1− y2) ·T 2

k+1 y1 ·T 1
k+1 ≤ (1− y3) ·T 3

k+1 (5.19a)

y2 ·T 2
k+1 ≤ (1− y1) ·T 1

k+1 y2 ·T 2
k+1 ≤ (1− y3) ·T 3

k+1 (5.19b)

y3 ·T 3
k+1 ≤ (1− y1) ·T 1

k+1 y3 ·T 3
k+1 ≤ (1− y2) ·T 2

k+1 (5.19c)

which together with the other constraints,

xSA
k+1 = y1 ·T 1

k+1 + y2 ·T 2
k+1 + y3 ·T 3

k+1 (5.20a)

y1 ·T 1
k+1 ≤ (1− y2) ·T 2

k+1 y1 ·T 1
k+1 ≤ (1− y3) ·T 3

k+1 (5.20b)

y2 ·T 2
k+1 ≤ (1− y1) ·T 1

k+1 y2 ·T 2
k+1 ≤ (1− y3) ·T 3

k+1 (5.20c)

y3 ·T 3
k+1 ≤ (1− y1) ·T 1

k+1 y3 ·T 3
k+1 ≤ (1− y2) ·T 2

k+1 (5.20d)

y1 + y2 + y3 = 1 (5.20e)

y1, y2, y3 ∈ {0,1} (5.20f)

will be called LCV. Note that this variation uses vanishing constraints which are also known to violate
LICQ.

A different approach is the application of generalized disjunctive programming (GDP) which was
introduced by GROSSMANN et al., see [64, 65]. GDP describes an optimization problem class contain-
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k 0 1 2 3 4 5 6 7 8 9 10

xRE
k 0.79 0.53 0.42 0.37 0.35 0.34 0.34 0.34 0.34 0.34 0.34

xSQ
k 0.75 1.996 2.274 2.412 2.48 2.52 2.532 2.54 2.544 2.546 2.548

xMO
k 0.73 2.12 2.81 3.15 3.32 3.41 3.45 3.47 3.48 3.49 3.49

Table 5.1: Computation of upper bounds for variables xRE
k , xSQ

k , and xMO
k .

ing disjunctions:
min

x
F (x)+∑

k
ck

s.t. G(x) ≤ 0

∨
j∈Jk

 Y j k

G j k (x) ≤ 0
ck = γ j k

 ,k ∈ K

Γ(Y ) = true,Y j k ∈= {true, false}
x ∈Rnx ,ck ∈R

(5.21)

Each option j of a disjunction k may contain different constraints G j k and the boolean variables Y j k

indicate if the corresponding disjunction option is active, i.e., if the constraints have to be fulfilled.
Disjunctions can be used to describe the minimum expression. As we have three terms of which one
has to equal the sales (the others may equal also but must not, so we can assume w.l.o.g. that one
option has to be active), we have one disjunction with three options,

Y1

T 1
k+1 ≤ T 2

k+1
T 1

k+1 ≤ T 3
k+1

xSA
k+1 = T 1

k+1

∨


Y2

T 2
k+1 ≤ T 1

k+1
T 2

k+1 ≤ T 3
k+1

xSA
k+1 = T 2

k+1

∨


Y3

T 3
k+1 ≤ T 1

k+1
T 3

k+1 ≤ T 2
k+1

xSA
k+1 = T 3

k+1

 , (5.22)

with Yi ∈ {true, false} for i = 1,2,3.

5.3.3 BigMRelaxation of the GDPReformulation
To be able to treat the GDP reformulation with the same MINLP solvers, we apply the Big M relaxation
to transform the GDP part above in an MINLP:

T 1
k+1 −T 2

k+1 ≤ M · (1− y1) T 1
k+1 −T 3

k+1 ≤ M · (1− y1) (5.23a)

T 2
k+1 −T 1

k+1 ≤ M · (1− y2) T 2
k+1 −T 3

k+1 ≤ M · (1− y2) (5.23b)

T 3
k+1 −T 1

k+1 ≤ M · (1− y3) T 3
k+1 −T 2

k+1 ≤ M · (1− y3) (5.23c)

xSA
k+1 −T 1

k+1 ≤ M · (1− y1) −xSA
k+1 +T 1

k+1 ≤ M · (1− y1) (5.23d)

xSA
k+1 −T 2

k+1 ≤ M · (1− y2) −xSA
k+1 +T 2

k+1 ≤ M · (1− y2) (5.23e)

xSA
k+1 −T 3

k+1 ≤ M · (1− y3) −xSA
k+1 +T 3

k+1 ≤ M · (1− y3) (5.23f)

y1 + y2 + y3 = 1 (5.23g)

y1, y2, y3 ∈ {0,1} (5.23h)
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Note that equality constraints need to be formulated as two inequalities in this context,{
xSA

k+1 −T 1
k+1 ≤ M · (1− y1)

−xSA
k+1 +T 1

k+1 ≤ M · (1− y1)

}
<

{
xSA

k+1 −T 1
k+1 = M · (1− y1)

}
. (5.24)

Written as a vector, we have

g =



T 1
k+1 −T 2

k+1 −M · (1− y1)
T 1

k+1 −T 3
k+1 −M · (1− y1)

T 2
k+1 −T 1

k+1 −M · (1− y2)
T 2

k+1 −T 3
k+1 −M · (1− y2)

T 3
k+1 −T 1

k+1 −M · (1− y3)
T 3

k+1 −T 2
k+1 −M · (1− y3)

xSA
k+1 −T 1

k+1 −M · (1− y1)
−xSA

k+1 +T 1
k+1 −M · (1− y1)

xSA
k+1 −T 2

k+1 −M · (1− y2)
−xSA

k+1 +T 2
k+1 −M · (1− y2)

xSA
k+1 −T 3

k+1 −M · (1− y3)
−xSA

k+1 +T 3
k+1 −M · (1− y3)



,
∂g

∂z
=



M 0 0 1 −1 0
M 0 0 1 0 −1
0 M 0 −1 1 0
0 M 0 0 1 −1
0 0 M −1 0 1
0 0 M 0 −1 1

M 0 0 −1 0 0
M 0 0 1 0 0
0 M 0 0 −1 0
0 M 0 0 1 0
0 0 M 0 0 −1
0 0 M 0 0 1



(5.25)

with z = (y1, y2, y3,T 1
k+1,T 2

k+1,T 3
k+1) and thus, the Big M relaxation of the GDP fulfills the LICQ. We

will refer to this reformulation as GDP. For optimization, we need a numerical value for M . Detailed
computations are given in Appendix C. For nx = t f − t0 = 10, we eventually get

T 1
k+1 ∈ [6,16545], T 1

k+1 −T 2
k+1 ∈ [−50661,16539], (5.26a)

T 2
k+1 ∈ [6,50667], T 1

k+1 −T 3
k+1 ∈ [−1654,16241], (5.26b)

T 3
k+1 ∈ [304,1660], T 2

k+1 −T 3
k+1 ∈ [−1654,50363], (5.26c)

and for the remaining constraints, with xSA
k ∈ [6,1660],

T 1
k+1 −xSA

k+1 ∈ [0,16539], (5.27a)

T 2
k+1 −xSA

k+1 ∈ [0,50661], (5.27b)

T 3
k+1 −xSA

k+1 ∈ [0,1654], (5.27c)

which means that we can chose, e.g., M = 50661.

5.3.4 Numerical Results
With these different reformulations, we conducted several computations. The initial values used for
all computations with IWR Tailorshop in this chapter are given in Table 5.7. We always used t0 = 0
and t f = 10 unless otherwise stated and all computations were done using Bonmin via the AMPL
interface of IWR Tailorshop.

In a first step, the IWR Tailorshop model has been used with separate controls for recruiting and
dismissing employees, udEM and uDEM . Parameters in this model differ from the ones given in Tables
4.4 and 4.5 only in the way that both models behave equivalent, but these changes can be neglected
in this case. Computations using the udEM /uDEM -model of IWR Tailorshop revealed that the differ-
ent effects of udEM and uDEM were too weak so that the model was almost singular with respect to
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t0 GDP LC LCV INEQ

9 0.6 181939.84 0.3 181939.82 0.8 181939.82 0.3 181939.82
8 10.2 189087.89 3.7 189087.83 18.2 189087.83 2.9 189087.83
7 134.1 196450.37 46.7 196450.28 179.3 196450.28 39.0 196450.28
6 2223.2 204033.73 760.8 204033.60 3051.8 204033.60 620.5 204033.60
5 >120h 213277.82 > 20h 213277.65 >20h 213277.65 >20h 213277.65
4 ? ? ? ? ? ? ? ?
3 ? ? ? ? ? ? ? ?
2 ? ? ? ? ? ? ? ?
1 ? ? ? ? ? ? ? ?
0 ? ? ? ? ? ? ? ?

Σ >720 h >120 h >120 h >120 h

Table 5.2: Computation times for different min-reformulations of IWR Tailorshop using the
udEM /uDEM -model: all approaches are far beyond the feasible scope. All approaches returned similar
results. LCV seems to be the slowest, LC and INEQ are the fastest.

this variables (i.e., udEM
k = 0 and uDEM

k = 5 was almost the same as udEM
k = −5 and uDEM

k = 10, for
instance). In Table 5.2, computation times for the reformulations and different t0 are displayed. For
t0 = 5, computation times are far beyond the feasible scope for all approaches. LCV seems to be the
slowest, followed by GDP, whereas LC and INEQ are dramatically faster and at about the same level.
All approaches returned similar (often even the same) objective values, which is also the case for the
remaining computations as we will see below.

In the next step, we introduced a small penalty on udEM and uDEM in the capital equation. Compu-
tation times for this modification are given in Table 5.3. For all approaches, the computation times
are drastically lower than before and it is possible to solve the ITOP with this model. INEQ is the
fastest approach, closely followed by LC. GDP and LCV are far behind and because of the theoretical
disadvantages of LCV, this approach has been discarded. Times for LC are already in an acceptable
region for optimization-based feedback computation, i.e., ITFP.

A shift towards a single control uEM for the employees in the model yielded even lower computation
times, see Table 5.4. INEQ is the fastest approach again, closely followed by LC. Both INEQ and LC
are fast enough for optimization-based feedback. GDP falls apart and is too slow for online feedback
computation.

In August 2012, within the scope of the International Symposium on Mathematical Programming,
the Mathematical Optimization Society hosted a Klaus Tschira Workshop on mathematical optimiza-
tion for high school students and teachers organized by ARMIN FÜGENSCHUH. In one of the practical
exercises, students were asked to solve the IWR Tailorshop via an early version of its web interface
(optimization-based feedback was not yet implemented). Most of the participants played several
rounds of 10 months each. This data has later been used together with results obtained during soft-
ware testing as a test set for the optimization according to ITAP: the states derived by the participants
were used as initial values for the optimization.

Table 5.5 shows average computation times for each month for this test set together with the per-
centage of problems which could be solved using the different reformulations. Both GDP and INEQ
were able to solve all but one of the 1593 problems. The average computation times confirm the pre-
vious results: INEQ is the fastest, LC closely behind, and GDP far behind. LC is also fast enough for
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t0 GDP LC LCV INEQ

9 0.4 181939.94 0.2 181908.92 0.2 181908.92 0.1 181908.92
8 2.5 189056.06 0.4 189056.00 2.4 189056.00 0.3 189056.00
7 6.5 196417.59 2.2 196417.49 5.5 196417.49 0.8 196417.49
6 23.9 203999.96 4.2 203999.83 18.1 203999.83 2.2 203999.83
5 1194.6 213245.62 16.8 213245.46 64.9 213245.46 9.1 213245.46
4 434.5 224031.37 40.0 224031.17 3502.6 224031.17 22.8 224031.17
3 787.6 237150.46 62.6 237150.46 255.9 237133.07 11.9 237150.46
2 1423.0 251604.12 66.9 251604.12 805.0 251585.46 10.9 251604.12
1 3231.2 269315.38 79.4 269315.30 2153.8 269044.70 19.2 269315.30
0 7358.1 290367.51 75.2 290367.51 10222.6 290088.79 28.0 290367.51

Σ ca. 14500 s ca. 350 s ca. 17000 s ca. 110 s

Table 5.3: Computation times for different min-reformulations of IWR Tailorshop with a small
penalty on udEM /uDEM : dramatically decreased times for all approaches. INEQ is the fastest, closely
followed by LC. GDP and LCV are far behind.

t0 GDP LC INEQ

9 0.3 181939.84 0.1 181939.82 0.1 181939.82
8 2.8 189087.89 0.3 189087.83 0.2 189087.83
7 7.0 196450.37 1.4 196450.28 0.5 196450.28
6 30.8 204033.73 3.1 204033.60 1.3 204033.60
5 66.2 213277.82 8.8 213277.65 4.3 213277.65
4 153.4 224063.71 16.4 224063.71 8.2 224063.71
3 434.9 237243.32 26.6 237243.32 7.2 237243.32
2 398.7 251465.31 21.5 251746.64 8.0 251746.64
1 1805.6 269491.15 53.8 269491.15 14.0 269491.15
0 7279.3 290583.98 103.1 290583.98 21.1 290583.98

Σ ca. 10200 s ca. 240 s ca. 70 s

Table 5.4: Computation times for different min-reformulations of IWR Tailorshop using the
uEM -model: times are even lower. INEQ is the fastest again, closely followed by LC. GDP falls apart
and is too slow for optimization-based feedback.
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t0

GDP LC INEQ

Time Problems solved Time Problems solved Time Problems solved

1 2461.82 177 100.0% 65.41 173 97.7% 13.43 177 100.0%
2 1013.53 176 99.4% 47.13 173 97.7% 8.55 176 99.4%
3 478.91 177 100.0% 27.27 174 98.3% 6.70 177 100.0%
4 206.85 177 100.0% 15.90 173 97.7% 6.24 177 100.0%
5 50.82 177 100.0% 7.39 176 99.4% 2.88 177 100.0%
6 17.99 177 100.0% 3.17 175 98.9% 1.30 177 100.0%
7 5.48 177 100.0% 1.41 176 99.4% 0.60 177 100.0%
8 1.75 177 100.0% 0.50 177 100.0% 0.22 177 100.0%
9 0.24 177 100.0% 0.11 177 100.0% 0.06 177 100.0%

Total 4234.33 1592 99.9% 166.81 1574 98.8% 39.97 1592 99.9%

Table 5.5: Average computation times for each month for a set of 177 datasets collected via an early
version of the IWR Tailorshop web interface.

optimization-based feedback. However, LC ran into infeasibilities for some problems which could
be prevented by setting the iteration limit for the NLP solver in the branch and bound algorithm to a
lower number, see Table 5.6.

From Table 5.8, one can determine how much problems (i.e., optimization starting at some month)
and datasets (i.e., all optimization problems for ts = 0, . . . , t f ) could be processed successfully by each
approach in a given time limit. This is important in particular, because we consider a waiting time
of more than 180 s per month as unacceptable for participants. If participants have to wait too long,
they probably will not finish the task and thus produce incomplete datasets which are almost useless
for the optimization-based analysis. We can conclude that LC seems to be the method of choice in
this context and thus has been implemented for the web-based study described in Chapter 6.

5.4 A Tailored Decomposition Approach
The systematically built microworld IWR Tailorshop with desirable properties could now be used for
studies, evaluating participants’ performance based on optimal solutions as explained in Section 5.1.
For the computation of an indicator function, however, one would want to use guaranteed globally
optimal solutions because then we can be sure to get an objective indicator function. Fortunately,
the optima found by Bonmin are good enough such that participants are not able to find better so-
lutions for IWR Tailorshop and therefore the solutions found by Bonmin were used for analysis and
training in the study in Chapter 6. However, globally optimal solutions or at least upper bounds on
the global solutions would be even better. But—as already mentioned above—the IWR Tailorshop
yields a nonconvex problem. This property is unavoidable as long as we are interested in turn-based
scenarios with nonlinear model equations. Hence, it is difficult to compute global solutions for such
test-scenarios.

And indeed, the computation times with Couenne on a Intel Core i7 machine with 12 GB RAM look
bad: for nx = 1 it takes less than 1 sec, for nx = 2 already 3 sec, and for nx = 3 by far more than 10 min
(see also Table 5.10). For higher values of nx , we cannot hope for a solution at all before the machine
runs out of memory.
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t0

LC LC, iter. limit

Time Problems solved Time Problems solved

1 65.41 173 97.7% 75.01 177 100.0%
2 47.13 173 97.7% 54.99 177 100.0%
3 27.27 174 98.3% 30.97 177 100.0%
4 15.90 173 97.7% 15.98 177 100.0%
5 7.39 176 99.4% 7.67 177 100.0%
6 3.17 175 98.9% 3.23 177 100.0%
7 1.41 176 99.4% 1.49 177 100.0%
8 0.50 177 100.0% 0.52 177 100.0%
9 0.11 177 100.0% 0.11 177 100.0%

Total 166.81 1574 98.8% 189.99 1593 100.0%

Table 5.6: Average computation times for each month for a set of
177 datasets collected via an early version of the IWR Tailorshop
web interface: LC shows some problems with infeasibilities which
can be solved by setting a lower iteration limit for the NLP solver of
the branch and bound algorithm.

State Value

xEM 10
xPS 1
xDS 1
xSH 67.00
xPR 200.00
xSA 200.00
xDE 700.00
xRE 0.79
xSQ 0.75
xMQ 0.81
xMO 0.73
xCA 175,000.00

Table 5.7: Initial values
used for computations
with IWR Tailorshop in
this chapter.

Mathematical model reduction techniques are quite common in other domains, see e.g., [18, 9,
115] for an overview. The basic idea of our new approach to solve problem (3.17) consists of a de-
composition of the MINLP into a master and several smaller subproblems. This works if the objective
function is separable. The idea is related to Lagrangian relaxation, one of the most used relaxation
strategies for MILPs. Its first application was the one-tree relaxation of the traveling salesman prob-
lem in the famous Held-Karp algorithm in [69, 70]. The traditional application fields are variants
of the knapsack problem like, e.g., facility location and capacity planning [99], general assignment,
network flow and the unit commitment problem [88]. The general approach is thoroughly explained
in [60] and in [81]. A problem-specific decomposition approach has been proposed in [33]. The au-
thors reformulate the MIOCP as a large-scale, structured nonlinear program (NLP) and solve a small
scale linear integer program on a second level to approximate the calculated continuous aggregated
output of all pumps in a water works. To obtain objective performance measures, we need guar-
anteed upper bounds for the maximum. Hence the mentioned techniques can not be applied in a
straightforward way.

In the following, we will develop a decomposition approach tailored to the IWR Tailorshop mi-
croworld (but not made from fabric, though). The idea of the decomposition approach is to exploit
the structure of the problem—especially the separability of the objective function or the variable cap-
ital respectively, see (4.93)—to create a relaxation of the original problem where parts of the problem
are replaced by free variables (i.e., free within some simple bounds), for which costs are computed
in decoupled programs, which contain the complexity from the original program. A schematic rep-
resentation of this decomposition can be found in Figure 5.9. The decoupling of certain parts of
the original problem obviously makes the remaining master problem smaller and therefore easier to
handle. This approach has been published in [47].

Such a decomposition is not unique. We chose one with few overlapping variables. A schematic
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Time limit
GDP LC LC, iter. limit INEQ

Prob. Datas. Prob. Datas. Prob. Datas. Prob. Datas.

60 s 760 177 159 118 144 99 1 1
90 s 684 177 40 31 28 22 1 1
120 s 655 177 35 28 18 14 1 1
180 s 576 177 28 23 13 11 1 1
240 s 532 177 26 21 10 8 1 1
300 s 496 177 25 21 9 7 1 1
600 s 356 176 20 17 4 4 1 1
1200 s 229 166 19 16 0 0 1 1
3600 s 45 6 19 16 0 0 1 1

Table 5.8: Number of problems (i.e., months) and corresponding datasets in the test set, which could
not be solved within a given time limit by the different reformulation approaches.

representation of the resulting master problem is shown in Figure 5.6. The costs computation via the
decoupled problems is done offline on a discretized grid. The decoupled problems themselves yield
an optimization problem of the type

min costs (5.28a)

s.t. achieve desired value of free variable
(as in master problem)

(5.28b)

The optimal solutions on the grid points can be used to fit some model, which underestimates the
costs, details can be found below. This cost model is now plugged into the objective function of the
master problem representing costs for the newly introduced free variables. We then can compute a
globally optimal solution for the reduced master problem. If the relaxation is valid, this approach
yields a valid upper bound for the original problem. The upper bound determined by the decompo-
sition can then be used as an indicator how far a local solution for the original problem is away at the
most from a global one.

To compare the problem sizes, we consider the time-discrete state and control variables as single
variables. Then, by the decomposition, the problem size has been reduced from 12·nx state variables
and 11 · (nx −1) control variables to 4 ·nx +3 · (nx −1) free variables and 5 ·nx states with 2 decoupled
problems.

The master problem in our decomposition consists of the following equations, which form a relax-
ation of the original problem (4.90) by underestimating negative and overestimating positive effects:

xDE
k+1 = pDE,0 ·exp

(
−pDE,1 ·uSP

k

)
· log

(
pDE,2 ·uAD

k +1
) · (xRE

k +pDE,3) (5.29a)

xRE
k+1 = pRE,0 · xRE

k +pRE,1 log
(
pRE,2 ·uAD

k +pRE,3 ·uSP
k · (uSQ

k )2 +pRE,4 ·uWA
k +1

)
(5.29b)

xSA
k+1 = min

{
pSA,0 ·usites

k+1 · log

(
pSA,1 ·uEM

k+1

usites
k+1 +pSA,2

+1

)
; xSH

k +uPR
k+1; pSA,3 · xDE

k+1

}
(5.29c)
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Figure 5.6: IWR Tailorshop reduced master problem with dependencies and proportional/reciprocal
influences. Diamonds indicate free variables.

xSH
k+1 = xSH

k −xSA
k+1 +uPR

k+1 (5.29d)

xCA
k+1 = pCA,0 ·

(
xCA

k +
(
xSA

k+1 ·uSP
k

)
−uAD

k −uEM
k+1 ·uWA

k −
(
xSH

k+1 ·pCA,6
)

− f1(usites
k ;uPR

k ,uEM
k )− f2(uSQ

k ;uPR
k )

) (5.29e)

uSP
k ∈

[
lbSP,ubSP

]
uSQ

k ∈
[

lbSQ,ubSQ
]

(5.29f)

uPR
k ∈ [

lbPR,ubPR]
uWA

k ∈ [
lbWA,ubWA]

(5.29g)

usites
k ∈

[
lbsites,ubsites

]
∩Z+

0 uAD
k ∈ [

lbAD,ubAD]
(5.29h)

uEM
k ∈ [

lbEM ,ubEM]∩Z+
0 (5.29i)

Here, we denote lower and upper bounds on the free variables by lb and ub , respectively which
can be found in Table 5.9 together with initial values for the decomposition. The functions f1 and f2

return the costs to be determined in the decoupled problems. We choose the objective again as

max
x,u,p

xCA
N . (5.30)
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Original model Decomposition

xEM
0 = 10 uEM

0 = 10
xPS

0 = 1
usites

0 = 2
xDS

0 = 1
xSH

0 = 67 xSH
0 = 67

xPR
0 = 200 uPR

0 = 200
xSA

0 = 200 xSA
0 = 200

xDE
0 = 700 xDE

0 = 700
xRE

0 = 0.79 xRE
0 = 0.79

xSQ
0 = 0.75 uSQ

0 = 0.75

xMQ
0 = 0.81 —

xMO
0 = 0.73 —

xCA
0 = 175000 xCA

0 = 175000

(a) Initial values

Original model Decomposition

uSP
k ∈ [35,55] uSP

k ∈ [35,55]
uAD

k ∈ [1000,2000] uAD
k ∈ [1000,2000]

uWA
k ∈ [1000,1500] uWA

k ∈ [1000,1500]
uMA

k ∈ [0,5000] uMA
k ∈ [0,5000]

xEM
k ∈ [8,16] uEM

k ∈ [8,16]
xPS

k , xDS
k ∈ [1,6] usites

k ∈ [2,6]
xPR

k ∈ [0,1000] uPR
k ∈ [0,1000]

xSQ
k ∈ [0.25,0.75] uSQ

k ∈ [0.25,0.75]
xSH

k , xDE
k , xRE

k , xSA
k ≥ 0 xSH

k , xDE
k , xRE

k , xSA
k ≥ 0

xMO
k , xMQ

k ≥ 0 —

(b) Simple bounds

Table 5.9: Initial values and simple bounds used for computations with original full problem and
decomposition.

The first decoupled program, which determines the costs for a given shirt quality, is

min uRQ
k · �uPR

k+1 ·pPR,cost +uMA
k−1 (5.31a)

s.t. ûSQ
k = pSQ,1 · xMQ

k +pSQ,2 ·uRQ
k (5.31b)

xMQ
k = pMQ,3 · log

(
pMQ,4 ·uMA

k−1 +1
)

(5.31c)

uRQ
k ∈

{
pRQ,1, . . . , pRQ,nRQ

}
(5.31d)

uMA
k−1 ∈

[
lbMA,ubMA]

(5.31e)

Here, the variables with a hat are considered to be given, e.g., from the free variables in the master
problem. In the following, we call them input variables in this context. The second subproblem
determines the costs for a given total number of sites and consists of the following equations.

min uDS
k+1 ·pCA,5 +uPS

k+1 ·pCA,4 (5.32a)

s.t. �usites
k+1 = uPS

k+1 +uDS
k+1 (5.32b)

�uPR
k+1 = pPR,0 · log

(
uPS

k+1 ·
pPR,1 · �uEM

k+1

uPS
k+1 +uDS

k+1 +pPR,2
+1

)
(5.32c)

uDS
k+1 ∈

[
lbDS,ubDS

]
∩Z+

0 (5.32d)

uPS
k+1 ∈

[
lbPS,ubPS

]
∩Z+

0 (5.32e)

We evaluate these decoupled programs on a grid, i.e., on a discretization of the feasible interval for
each input variable. For usites

k ∈ [2,16], e.g., we could choose the grid 2,4,8,10,12,14,16. With more
than one discretized variable, this leads to multidimensional grids. For each grid point, we compute
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an optimal solution for the corresponding decoupled program. With the solutions for all grid points,
we can fit, e.g., a quadratic model, like

f (uSQ
k ;uPR

k ) = a0 +a1 ·uPR
k +a2 ·uSQ

k +a3 ·uPR
k ·uSQ

k +a4 · (uPR
k )2 +a5 · (uSQ

k )2. (5.33)

Of course, we could as well use a linear or a cubic model or something completely different. The fit
can then be done by solving a simple least squares problem, with X being the set of grid points and
h(x) a function, which returns the optimal objective value for each grid point x ∈ X :

min
a,x

∑
x∈X

‖ f (x)−h(x)‖2
2 (5.34a)

s.t. f (x) ≤ h(x) ∀x ∈ X . (5.34b)

Especially when considering the integrality conditions, equality constraints are unlikely to be ful-
filled exactly. Therefore the following reformulation is introduced for each equality constraint.

ûk = . . . −→ ûk +ε= . . . with ε ∈ [−ρ,ρ] (5.35)

Here, ρ should be chosen reasonably small, such that the decoupled program is feasible for almost
all of the grid points.

t0
Original model Decomposition

Ipopt Bonmin Couenne Couenne

9 ¿ 1s < 1s < 1s <1 s
8 ¿ 1s 4s 3s 1 s
7 < 1s 45s > 10min 2 s
6 < 1s 537s > 10min 3 s
5 < 1s > 10min > 10min 5 s
4 < 1s > 10min > 10min 10 s
3 1s > 10min > 10min 17 s
2 < 1s > 10min > 10min 27 s
1 < 1s > 10min > 10min 52 s
0 1s > 10min > 10min 88 s

Table 5.10: Comparison of computation times between Ipopt, Bonmin, and Couenne for the original
problem, as well as Couenne for the decomposition.

We present results of our decomposition approach for the IWR Tailorshop. All computations have
been done on an Intel Core i7 machine with 12 GB RAM running Ubuntu 11.10 (64-bit) with the
COIN-OR solvers Ipopt, Bonmin, and Couenne. Remember that Ipopt is not able to treat integer
constraints and has only been used for reference. For the computations in this article, an NLP-based
branch-and-bound algorithm, has been used in Bonmin. Initial values and simple bounds on states
and controls used in all computations can be found in Tables 5.9a and 5.9b. All computations for the
original model refer to the two control version for employees. The parameter sets used are mainly
the ones from Tables 4.4 and 4.5, but adapted to the udEM /uDEM and with pDE,0 = 600.0shirts. This is
the reason for the differences compared to Section 5.3.
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For the decomposition, in a first step the cost functions f1 and f2 for the new free variables uSQ
k

and usites
k have been computed. Therefore the subproblems (5.31) and (5.32) have been solved on the

grids

uSQ
k ∈ {0.25,0.26,0.27, . . . ,0.74,0.75}, (5.36a)

uPR
k ∈ {100,200,300, . . . ,900,1000}, (5.36b)

respectively

usites
k ∈ {2,3,4,5,6}, (5.37a)

uEM
k ∈ {8,9,10, . . . ,15,16}, (5.37b)

uPR
k ∈ {100,200,300, . . . ,900,1000}. (5.37c)

By solving the corresponding problems of type (5.34) with this data, we received the following under-
estimators for the costs:

f1(usites
k ;uEM

k ,uPR
k ) = 21.6754−944.6455 ·usites

k +1.4968 ·uPR
k −28.9341 ·uEM

k

+0.1338 ·usites
k ·uPR

k −3.3626 ·usites
k ·uEM

k −0.0586 ·uPR
k ·uEM

k

−1.3478 · (usites
k )2 +1.8831 · (uEM

k )2

(5.38a)

f2(uSQ
k ;uPR

k ) =−898.0761+0.1991 ·uPR
k+1 +4726.3749 ·uSQ

k+1 −8.5390 ·uPR
k+1 ·uSQ

k+1

+0.0004 · (uPR
k+1)2 −5501.7182 · (uSQ

k+1)2
(5.38b)

The problems for all grid points of one subproblem could be solved in less than 1 min including the
fit of the quadratic model. A plot of the resulting cost function for the uSQ-subproblem can be found
in Figure 5.7. However, it was necessary to use the global solver Couenne at least in this subproblem,
as we got different solutions with Ipopt for a relaxed version of this subproblem which obviously are
not globally optimal as one can observe from the comparison to the solutions of Couenne in Figure
5.8. For the usites-subproblem a plot of the cost function is not possible due to its dimensions.

When comparing solutions and objective function values, three effects need to be distinguished:
integrality, local vs. global solutions, and full versus overestimating reduced model. We investi-
gated two scenarios. First, the variables usites

k respectively uPS
k and uDS

k have been fixed to their lower
bounds 2 respectively 1. The results are listed in table 5.11. Here, Ipopt and Bonmin found the same
solutions for the original problem, which is due to the fact that the solutions determined by Ipopt are
already integral. Thus, there is no difference between these solvers. In this special case, Couenne also
finds the same solutions for the original problem in an acceptable time (< 1min). This setting allows
us to focus exclusively on the third effect, the gap between our reduced and the full model. The gap
determined by Couenne in both cases reaches from 4.0% to 16.3%.

If we let usites
k free within their simple bounds as shown in Table 5.9b, the gaps between local solu-

tion to the full model and global solution to the reduced model alternate from 4.0% to 8.1%. Note that
the gap relating to Ipopt is only for reference, since Ipopt cannot handle integer constraints and thus
solves a relaxed version of the problem. One observes that the gap first increases, but then decreases,
seeming to converge to some c > 0. This behavior can be explained by the fact that the mentioned
effect leads to an increase in cost (due to storage of not-sold shirts) that is about linear in the num-
ber of turns. The possible winnings making use of a free choice of usites

k outperform these additional
costs if the time scale for the optimization is long enough. Thus, the gap first increases and than
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Figure 5.7: Cost values Φ2 (blue dots) for solutions by Couenne for the decoupled problem for uSQ

with pRQ,nRQ = 2 on the grid uSQ
k ∈ {0.25,0.26, . . . ,0.75}, uPR

k ∈ {100,200, . . . ,1000} together with the
underestimating cost function (colored surface).

again decreases.
For this general case, Couenne is not able anymore to find a solution for the original problem in

less than 10 min for t0 ≤ 7. All computation times can be found in Table 5.10. Obviously, the decom-
position can be solved faster by orders of magnitude. Even for t0 = 0, it takes less than 2 min with
Couenne, while Bonmin is not able to compute a local solution for the udEM /uDEM version of the
original problem in less than 10 min for t0 ≤ 5.

Summing up, we could estimate the gap between reduced and full model to be in the range of a
few percent. For longer time horizons and more freedom of variable choice, however, our approx-
imation becomes better and better. The computational gains are dramatic and allow to calculate
global solutions even on the full length of the time horizon.

5.5 Model Parameter Optimization
The IWR Tailorshop model parameters presented in Chapter 4 have been chosen by hand such that
the model exhibits a desired behavior and solutions of ITOP and ITAP contain necessary interven-
tions, i.e., not all controls are on their lower or upper bound in all the months. In Section 4.4, we
already discussed the importance of the parameter set. It is well known for models of, e.g., chemical
reactions (e.g., [23]) that derivative-based optimization methods should be used to estimate model
parameters to significantly improve the model’s performance in representing the real world process
(and if there is no feasible parameter set to explain the data, the model might be wrong). However,
in the case of complex microworlds, there usually is no real world process to model and thus there is
no data the parameters can be estimated from. Nevertheless, model parameter optimization may be
done for complex microworlds following a different approach.

For a subset of the model parameters, a two-level optimization problem can be solved with a prob-
lems similar to the ITOP on the lower level and an upper level optimization of the parameters subject
to the lower level objective function values. The aim of this parameter optimization could be, e.g.,
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t0

Original model Decomposition Gap in %

Ipopt Bonmin Couenne

9 180995.1 180995.1 188495.0 4.0%
8 187170.0 187170.0 198599.3 5.8%
7 193530.2 193530.2 209006.8 7.4%
6 200081.2 200081.2 219726.5 8.9%
5 206828.8 206828.8 230767.7 10.4%
4 213778.7 213778.7 242140.2 11.7%
3 220937.2 220937.2 253853.9 13.0%
2 228310.4 228310.4 265919.0 14.1%
1 235904.8 235904.8 278346.0 15.2%
0 243727.0 243727.0 291145.9 16.3%

Table 5.11: Solutions using the full problem with fixed number of sites compared to the decompo-
sition approach. Note that the solutions by Ipopt are already integer, so that there is no difference
between Bonmin and Ipopt.

t0

Original model Decomposition

Ipopt Gap in % Bonmin Gap in % Couenne

9 181835.6 3.5% 180995.1 4.0% 188495.0
8 189161.4 4.8% 187170.0 5.8% 198599.3
7 196180.0 6.1% 193530.2 7.4% 209006.8
6 204760.9 6.8% 201860.5 8.1% 219726.5
5 215097.9 6.8% 212332.9∗ 8.0% 230767.7
4 226408.7 6.5% 223118.0∗ 7.9% 242140.2
3 239011.7 5.8% 236196.6∗ 7.0% 253853.9
2 252536.7 5.0% 250100.3∗ 6.0% 265919.0
1 266817.6 4.1% 264399.8∗ 5.0% 278346.0
0 281619.2 3.3% 279119.3∗ 4.1% 291145.9

Table 5.12: Solutions using the full problem compared to the decomposition approach. For solutions
with a ∗, Bonmin did not find an optimal solution within 10 min. However, the gap between lower
and upper bound was in all cases significantly below 1%.
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(a) Couenne
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Figure 5.8: Cost values Φ2 (blue dots) for solutions by Couenne and Ipopt for the decoupled

problem for uSQ with pRQ,nRQ = 2 and relaxed uRQ on the grid uSQ
k ∈ {0.25,0.26, . . . ,0.75}, uPR

k ∈
{100,200, . . . ,1000} together with the underestimating cost function (colored surface). From the dif-
ferences between Couenne (global solver) and Ipopt (local solver) one can determine that it is neces-
sary here to use a global solver for the decoupled problem.

to guarantee a comparable result for the application of different strategies in the microworld—for
instance, a low and a high price strategy, see Figure 5.10. In the lower level problem, some of the
control variables will then be fixed to a given strategy while others remain free. In the case of two
strategies, one could think of minimizing the difference between the two lower level problems while
parameters are required to be within reasonable bounds.

Definition 5.7 The IWR Tailorshop parameter optimization problem (ITPOP) is the multilevel prob-
lem

min
p

Ψ(p)

s.t. p ∈Π⊂Rnp
(5.39)

with, e.g., the objective function
Ψ(p) =∑

i
αi ·Φi (p) (5.40)

which contains objective values Φi (p) for i ∈ {0,1} of an underlying optimization problem similar to
the ITOP,

Φi (p) := min
x,u

F (x,u, p)

s.t. xk+1 =G(xk ,uk , p), k = t0, . . . , t f −1,
0 ≤ H(xk ,uk , p), k = t0, . . . , t f ,
uk ∈Ω, k = t0, . . . , t f −1,

u( j )
k = û( j )

k , j ∈Ui ,k = t0, . . . , t f −1,
xt0 = x0,

(5.41)

with F , G , H ,Ω, x, p, u, t0, and t f defined as before.

Note that in (5.41), we fix some of the controls with the constraint

u( j )
k = û( j )

k , j ∈Ui ,k = t0, . . . , t f −1. (5.42)
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max      F(xN)
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~

~

min c1(·)
s.t. ... min c2(·)

s.t. ...

original problem

max      F(xN)
s.t. xk+1 = G(xk,xk+1,uk,p) 

0 ≤ H(xk,xk+1,uk,p)

≤

decomposition

Figure 5.9: Schematic representation of the tailored decomposition approach

For two competing strategies, one might choose the upper level objective function

Ψ(p) =Φ0(p)−Φ1(p), (5.43)

but another weighting might be applicable as well. One might even think of choosing other objective
functions than linear combinations of the lower level objectives. However, without implementing
advanced techniques, the lower level problems have to be considered as black boxes in the upper
level problem. Thus, the upper level problem needs to be solved by derivative-free optimization
methods. As the capabilities of these methods are very limited, the amount of parameters to optimize
should be rather low. The same is true for the number of lower level problems, as they all have to be
solved for a single evaluation ofΨ(p).
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Figure 5.10: Parameter optimization for different strategies: some of the control variables are fixed
to a given strategy and, e.g., the difference between these strategies are minimized in an upper level
optimization.
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CHAPTER 6

AWeb-based Feedback Study
From November to December 2013, we conducted a feedback study with the IWR Tailorshop mi-
croworld. 148 participants were asked to play the economic simulation via its web interface. This
chapter gives a description of study, hypotheses, analysis, and results including an optimization-
based analysis.

6.1 StudyDesign
6.1.1 Task
Participants had to play four rounds of the IWR Tailorshop microworld of 10 months each via its web
interface, see Figure 6.1. They were allowed to interrupt the process at any time. For the four rounds,
different initial values were used, see Table 6.1, but the same for all participants. Rounds 1 and 3
started with the same values, whereas in rounds 2 and 4 pairwise different values were used. Control
values for recruitment and dismissal of employees and creation and closing of sites were always reset
to 0 in order to avoid accidental execution.

Participants were divided randomly into six groups based on pseudorandom numbers generated
by a Mersenne twister [85]. Four of the groups—indicate group, trend group, value group, and chart
group—received optimization-based feedback as described in Section 5.2 during the first two rounds.
These rounds therefore will be called feedback or training rounds in the following. One group, high-
score group, received a feedback based on the results of previous participants during training rounds,
giving a ratio of participants who performed better and worse of the kind “Until now x% of partici-
pants performed better and y% performed worse than you.” The sixth group was a control group
without any feedback at all. In the last two rounds, however, no group received any feedback. These
rounds will be referred to as performance rounds.

As an incentive, there was a competition with chances weighted according to success in which
participants could win one of six 20 euro Amazon gift cards. For this, only the results of performance
rounds were considered.

Additional information on the participants was collected via three questionnaires. The first survey
was on general properties including, e.g., gender and interest in economics and is described in Table
6.2. This survey had to be answered before participants could start the main task, i.e., the four IWR
Tailorshop rounds. The other two surveys were carried out after the main task. The second survey
was targeted on participants’ model knowledge. Participants were shown five claims about the IWR
Tailorshop microworld and had to decide if they were right or wrong. A detailed description is given
in Table 6.3. Final survey was the 10-item short version of the Big Five Inventory test proposed by
[105] to measure the Big Five dimensions of personality [40], i.e., agreeableness, conscientiousness,
extraversion, neuroticism, and openness.

For the main task, the control of the IWR Tailorshop microworld, the participants received guid-
ance by the following introduction:

Thank you! Now you can start into the IWR Tailorshop microworld. Please note, that you
need to finish 4 rounds of 10 "months" each to participate in the competition.
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Variable Round 1 Round 2 Round 3 Round 4

Employees xEM
0 14 3 14 42

Production sites xPS
0 1 1 1 2

Distribution sites xDS
0 1 5 1 7

Shirts in stock xSH
0 319 0 319 0

Production xPR
0 270 69 270 467

Sales xSA
0 270 69 270 467

Demand xDE
0 3877 2399 3877 3065

Reputation xRE
0 0.7934 0.1805 0.7934 0.4711

Shirts quality xSQ
0 0.7500 0.6558 0.7500 0.8136

Machine quality xMQ
0 0.8125 0.9998 0.8125 0.7712

Motivation of employees xMO
0 0.7403 0.4032 0.7403 0.5108

Capital xCA
0 175226 28075 175226 323907

Shirt price uSP
0 50 39 50 42

Advertising uAD
0 2000 1599 2000 1337

Wages uWA
0 1500 1750 1500 1451

Maintenance uMA
0 500 3000 500 267

Resources quality uRQ
0 2 1 2 2

Recruit employees uDEM
0 0 0 0 0

Dismiss employees udEM
0 0 0 0 0

Create production site uDPS
0 0 0 0 0

Close production site udPS
0 0 0 0 0

Create distribution site uDDS
0 0 0 0 0

Close distribution site udDS
0 0 0 0 0

Table 6.1: Initial values for each round used in IWR Tailorshop feedback study. Note that values for
controls (lower part) were only preset values and could still be changed by the participant. The last
six controls, starting from recruit employees, were always set to the value in the table after each month
to avoid accidental recruitment and dismissal as well as site creation and closing. Round 1 and 3 had
the same initial values.
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Figure 6.1: The IWR Tailorshop web interface with trend feedback and a hint for maintenance control.

Abbreviation Claim Possible answers

Computer Games I play computer games regularly (i.e., at least
once per week)

{yes,no}

Economics I am interested in economic connections {yes,no}

Problem Solving I solve problems systematically in general {yes,no}

Gender I am ... {female,male}

Age My age is in the range ... {<18,18-24,25-29,30-39,
40-49,50-59,60-69,69+}

Table 6.2: Survey on general properties at the beginning of task. This survey had to be answered
before participants could start the main task. The participants were told that “First, we would like to
ask you to answer the following five questions truthfully. This data will be used exclusively for research
purposes after being anonymized and will not be given to third party under no circumstances. Your
answers do not affect your chances to win.” The content of the five items can be found in the claim
column, possible answers are shown in the corresponding column. Abbreviation lists the terms used
in this chapter to refer to these items.
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Claim Answer Correct Wrong Don’t know

Motivation of employees plays an important role. false 56% 28% 16%

Maintenance is an important intervention
possibility.

false 55% 26% 19%

The higher the shirt price is, the lower is the
demand.

true 41% 45% 14%

Opening and Closing sites are important
intervention possibilities.

true 90% 3% 6%

It is wise to dismiss employees at the end. true 31% 33% 36%

Table 6.3: Survey on model properties at the end of task. The participants were told that “We would
like to ask you a few questions once again. Your answers will help us very much and it only takes
two minutes. [. . . ] Please decide if the following propositions are correct or wrong according to your
experience from all four rounds.” Participants could always choose between true, false, and don’t
know. The content of the five items can be found in the claim column, the correct answer is shown in
the corresponding column. The remaining columns show the ratio of correct, wrong and don’t know
answers. Differences to 100% are due to rounding.

All in all it will take you about 30–45 minutes. You ideally play all 4 rounds at a stretch,
but you may interrupt after each “month” and continue at a later date. The first two rounds
are training rounds, only your points (not your rank) in the last two rounds are considered
for the drawing.

Now, please imagine you are the head of a company, which produces shirts. Your aim is
to maximize the company’s capital at the end of each round, i.e. in month 10. For this
there are several possibilities of intervention available, which will be located in the lower
part. In the upper part you will find important figures of your company.

However, your intervention possibilities are subject to certain constraints, e.g. you are not
allowed to close all company sites. At the end of each round, you will find a highscore
table and after the last round the table, which is important for the competition. In the
blue hint box you can find assistance and useful hints during your game.

Good luck!

The hint box the introduction refers to was displayed at the border and contained hints corre-
sponding to the situation and the feedback group the participant was in, e.g.,

During your first two rounds, you will receive assistance to improve your performance. We
will show you arrows next to the interventions to indicate in which direction the mathe-
matically optimal decision for the next month is, depending on the decision shown at the
beginning of the month. The arrows will be thicker if the optimal decision is far away, but
will not change when you change the values.

Hints on each state and control, e.g., “the wages for each employee per month in money units” for
control wages, were available as a tooltip on mouse rollover.

After each round, participants were shown an anonymized highscore list with the top 20 partici-
pants in their group (Figure 6.2).
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Figure 6.2: Anonymized highscore list with
top 20 of participants in one feedback group
in IWR Tailorshop web interface.

6.1.2 Prestudy
In October 2013, 18 participants recruited directedly via e-mail took part in a prestudy. The aim was
twofold: on the one hand, this was a test under realistic conditions for the main study and an op-
portunity to eliminate bugs in the interface. On the other hand, the data were used for highscore
feedback in the main study. This was particularly necessary to avoid a feedback like “0% performed
better and 0% worse than you” for the first participant in that group. However, the data were consid-
ered neither in our statistical nor in our optimization-based analysis.

6.1.3 Data Collection
Starting from November 15, 2013, the study was announced in several first and third term lectures for
mathematics, physics, computer science, engineering, and psychology students at Heidelberg Uni-
versity and Otto von Guericke University Magdeburg in Germany. These announcements were com-
plemented by public announcements in the social networks Google+ and Facebook as well as selective
announcements via e-mail.

Potential participants were informed that they would have to play four rounds of the economic
simulation IWR Tailorshop via a device of their choice with a web browser (e.g., PC, tablet, or smart-
phone) which in total would take approximately 30–45 minutes. It was advertised as an incentive
that there will be a competition with chances weighted according to success where participants can
win one of six 20 euro Amazon gift cards. The deadline for participation was December 15, 2013.

Participants had to create an account with an e-mail address, which they needed to confirm in
order to avoid multiplicate participation. Creating multiple accounts was also prohibited by terms of
participation leading to exclusion from the competition.

Until the end of data collection, 157 accounts were registered for participation. Two accounts have
not been activated, maybe because of erroneous e-mail addresses or the like. Furthermore, seven
participants did not answer the first survey and therefore could not start the main task, i.e., no data
was recorded for them at all. Thus, we received data from 149 participants, of which 101 provided
complete datasets, i.e., they played four full rounds and answered all three surveys. One account was
identified as a duplicate participation and was excluded from the analysis. The first account of the
corresponding participant was part of the analysis, but was not considered in the competition. This
results in 100 complete datasets and 148 datasets in total for our statistical analysis.
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Platform Absolute Relative

Desktop 141 80%
Mobile 36 20%

Total 177 100%

(a) Platform

System Absolute Relative

Windows 106 60%
Android 24 14%
Mac OS 19 11%
Linux 16 9%
iOS 12 7%

Total 177 100%

(b) Operating system

Browser Absolute Relative

Firefox 72 41%
Version <25 9 5%
Version 25 57 32%
Version 26 5 3%
Version 27 1 1%

Chrome 54 31%
Version <30 6 3%
Version 30 12 7%
Version 31 33 19%
Version 32 3 2%

Safari 22 12%
Android 10 6%
Internet Explorer 10 6%
Opera 9 5%

Total 177 100%

(c) Browser

Table 6.4: Usage of platforms, operating systems and browsers by all participants based on user lo-
gins. Note that participants using more than one device were counted more than once. Differences
to 100% are due to rounding.

6.1.4 Technical Implementation
For data collection, the IWR Tailorshop web interface was used, which is implemented using XHTML
and JavaScript with jQuery 1.10 and usage of AJAX client-side, complemented by a server-side PHP
code. For the online optimization, AMPL Version 20131012 together with Bonmin 1.5 and Ipopt 3.10
was used via IWR Tailorshop’s AMPL interface. The web server for the study was an Intel Core i7 920
machine with 12 GB RAM running PHP 5.5 and MySQL 5.5 with an Apache 2.4 HTTP server on Ubuntu
13.10 64-bit. More details on the technical implementation can be found in Appendix A.

The web interface implemented a so-called responsive grid, which allowed participants to use both
mobile devices and desktop PCs conveniently. Usage statistics based on user logins (Table 6.4) show
that approximately 20% of participants used mobile devices.

6.1.5 Hypotheses
Before the beginning of the study, 28 hypotheses were formulated. One of the more obvious expec-
tations is e.g., Hypothesis (A), participants with optimization-based feedback perform better overall
than those without. The 18 hypotheses concerning the statistical analysis are listed in Table 6.5, the
10 hypotheses for the optimization-based analysis are listed in Table 6.28. They are checked in Sec-
tions 6.2 and 6.3 respectively, and Table 7.1 gives an overview of the results.
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(A) participants with optimization-based
feedback perform better overall than
those without

(B) participants with optimization-based
feedback perform better in feedback
rounds than those without

(C) participants with optimization-based
feedback perform better in
performance rounds than those without

(D) control group performs worst

(E) control group performs worse in
performance rounds than groups with
optimization-based feedback

(F) trend group performs best overall

(G) trend group performs best in
performance rounds

(H) value group performs best in feedback
rounds

(I) value group will perform better in
feedback rounds, but worse in
performance rounds (compared to other
feedback groups)

(J) participants with high BFI-10 values
perform worse/better than those with
low values

(K) participants who play computer games
regularly perform better than those who
don’t

(L) participants who claim to be interested
in economic connections perform
better than those who don’t

(M) participants who claim to solve
problems systematically in general
perform better than those who don’t

(N) control group needs more time than
optimization-based feedback groups

(O) participants who performed well in
performance rounds know more about
the model

(P) participants who know much about the
model perform well in performance
rounds

(Q) value group knows less about the model
than other groups, trend group knows
most about the model, i.e., participants
choose correct answers more and don’t
know less often

Table 6.5: Hypotheses on results of the web-based feedback study
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6.2 Statistical Analysis
Statistical analysis of the data was done using the open source package R Version 3.0.1 [104]. 148
datasets have been considered, 100 of them were complete. This corresponds to all participants
for whom any data has been recorded. For all statistical tests, p-values of < 0.05 were considered
statistically significant (i.e., α= 0.05). All such values are printed in bold in tables.

6.2.1 Incomplete
An analysis of the 48 dropouts revealed that more than half of them aborted during the first round,
as one can determine from Table 6.6. Indeed, 11 of 27 dropouts during round 1 did not play a single
month after having answered the first survey.

Overall, 48 dropouts out of 148 participants is a dropout rate of approximately one third. By feed-
back groups, control group shows a slightly lower dropout rate of about 17%, whereas all other groups
are approximately at the same level of about 40%. However, these differences are not significant. For
gender, the differences between complete and incomplete datasets are only marginal.

By score, incomplete datasets exhibit lower means during the first two rounds. For performance
rounds, there are too few datasets to draw any conclusions, but for the sake of completeness, it should
be mentioned that in round 3 incomplete datasets have a higher mean than complete datasets.

The aim of this analysis was to detect systematic differences between complete and incomplete
datasets, e.g., if participants who did not complete the task were demotivated by their poor perfor-
mance. However, the differences in score means are not significant and thus it can only be speculated
about the reasons. Finally, we can summarize that incomplete datasets do not show any systematic
differences compared to complete datasets.

6.2.2 Outliers
A score boxplot for all rounds of all complete datasets, Figure 6.3, reveals that there are some severe
outliers, especially in rounds 2 and 4. The extremest outlier in round 2 is approximately 16 times
the Interquartile Range (IQR, difference between upper and lower quartile) below the 25% quartile.
Although it is often stated that no data should be rejected, given the severity of the outliers and our
size of 10 to 27 datasets per feedback group, retention of all datasets would cause huge biases and
thus hardly seems sensible in our case.

On the other hand, excluding datasets from the analysis has to be done carefully and such that
only a small portion of the data is considered to be an outlier, of course. We compared three different
approaches for outlier detection, applied to all complete datasets in total and in groups.

First, we determined the best and worst datasets of all complete datasets in groups and globally,
based on the score sum. Doing this round-based would detect about one third of the datasets as
outliers and thus makes no sense. Nevertheless, among the 12 worst and best datasets (12%) are
also some one would barely call an outlier. This is especially due to the fact that almost all datasets
detected as outliers by the other approaches are near the corresponding lower bound. Therefore, this
approach has been discarded.

A second approach was GRUBBS’ test for outliers, which additionally was applied to the score sum
over all rounds in groups and in total. GRUBBS’ test is a statistical test proposed by FRANK E. GRUBBS

[66, 67], which detects one outlier at a time in a normally distributed population. We used the im-
plementation of GRUBBS’ test available in the R package outliers. For significance level α = 0.05,
GRUBBS’ test recursively identifies 12 datasets (12%) as outliers applied in groups (Table 6.7) and 9
datasets (9%) applied globally (Table 6.8). Applied to the score sum 4 and 2 datasets (4% and 2%) are
detected as outliers in groups and globally respectively.
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Round Participants Total Ratio Dropouts

1 27 27 56.25% 18.24%
2 14 41 29.17% 9.46%
3 6 47 12.50% 4.05%
4 1 48 2.08% 0.68%

Total 48 48 100.00% 32.43%

(a) Dropouts per round: more than half of the dropouts aborted during round
1. Overall dropout ratio was about one third.

Group Total Complete Incomplete Dropouts

Control 35 29 6 17.14%
Highscore 25 15 10 40.00%
Indicate 17 10 7 41.18%

Trend 35 22 13 37.14%
Value 19 12 7 36.84%
Chart 17 12 5 29.41%

Total 148 100 48 32.43%

(b) Absolute and relative dropouts per group: control group shows the lowest
relative dropout. All other groups are on a similar level.

Gender Total Complete Incomplete Dropouts

Female 42 28 14 33.33%
in % 28.38% 28.00% 29.17%

Male 106 72 34 32.08%
in % 71.62% 72.00% 70.83%

Total 148 100 48 32.43%

(c) Gender distribution for dropouts: only marginal differences between com-
plete and incomplete datasets.

Round Total Complete Incomplete t-Test

1 46156.2 50196.1 26918.4 0.2785
2 -74465.6 -59074.5 -294339.6 0.1976
3 147677.7 147574.2 158022.3 —

(d) Means per round for dropouts: no significant differences.

Table 6.6: Incomplete datasets: no significant deviations.
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Figure 6.3: Score boxplot of all feedback groups (co: control, hs: highscore, in: indicate, tr: trend, va:
value, ch: chart) for all rounds and all complete datasets (N = 100). Round 1, round 4, and especially
round 2 show some severe outliers. It seems quite obvious from the boxplot that value group is better
than the other groups. Chart group could not profit, indeed rather suffered from the feedback.
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Group R p-val. Score P

Control 1 0.0913 -268972.3 90
0.1355 -212152.1 205

2 0.0127 -255313.9 73
0.2769 70124.4 129

3 0.0571 -131941.7 88
0.0207 -107466.2 86
0.8806 273425.1 129

4 0.9085 -239364.6 76

Highscore 1 0.0037 -966712.5 85
0.0004 -617007.9 122
0.2581 -167571.4 144

2 0.0881 -454850.5 85
0.0012 -441338.3 122
0.0314 -227081.0 144
0.1342 51796.2 193

3 0.0057 -288026.4 144
0.5360 -18202.1 85

4 1.0000 490396.3 193

Indicate 1 0.1135 206425.5 175

2 0.0001 -593318.0 131
0.3853 45760.5 179

3 0.2244 8022.8 214

4 0.7710 -194799.7 116

Group R p-val. Score P

Trend 1 0.8375 -31777.7 108

2 0.0359 -155986.8 108
0.0057 -135683.9 216
0.0388 -74903.0 83
0.4149 -30902.5 119

3 0.2634 -5213.9 83

4 0.0086 -439288.0 83
0.0336 -188878.4 216
0.1077 -27816.9 123

Value 1 0.0161 14885.7 207
0.0031 98571.8 165
0.0764 195469.9 200
0.3132 227910.6 208

2 0.0038 -25724.4 207
0.3320 40111.0 200

3 0.1047 97178.2 207

4 0.0234 -24511.4 207
0.5141 226552.2 134

Chart 1 0.3641 -478441.6 101

2 0.0000 -1783737.6 218
0.1940 -139539.2 126

3 0.0395 -17715.5 99
0.6088 76031.2 218

4 0.0000 -1054995.1 218
0.3355 14819.6 101

Table 6.7: Results of recursive GRUBBS’ test for outliers separately for each feedback group (R: round,
P: participant, p-val.: p-value). With α= 0.05, participants 73, 83, 85, 99, 108, 122, 131, 144, 165, 207,
216 and 218 are identified as outliers by this approach. This is a total of 12% of all complete datasets.
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Round p-value Score Participant

1

0.0000 -966712.5 85
0.0004 -617007.9 122
0.0041 -478441.6 101
0.0028 -442934.0 96
0.0038 -389675.3 218
0.0732 -268972.3 90
0.2337 -212152.1 205

2

0.0000 -1783737.6 218
0.0000 -593318.0 131
0.0001 -454850.5 85
0.0000 -441338.3 122
0.0608 -255313.9 73
0.1304 -227081.0 144

3

0.0001 -288026.4 144
0.0342 -131941.7 88
0.0462 -107466.2 86
1.0000 -18202.1 85

4
0.0000 -1054995.1 218
0.1213 -439288.0 83

Table 6.8: Results of recursive GRUBBS’ test for outliers on all complete datasets, i.e., without respect
for feedback groups. Withα= 0.05, participants 85, 86, 88, 96, 101, 122, 131, 144 and 218 are identified
as outliers by this approach. This is a total of 9% of all complete datasets.
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Figure 6.4: Histogram for feedback groups (co: control, hs: highscore, in: indicate, tr: trend, va: value,
ch: chart). Left: all complete datasets (N = 100), right: complete datasets without 6 outliers (N = 94).
Distributions are qualitatively similar.

The last approach were the outer fences for boxplots as described by JOHN W. TUKEY. The outer
fences are defined in [126] as

Lower outer fence := Q1 − 3 · IQR,

Upper outer fence := Q3 + 3 · IQR,

where Q3 is the upper quartile, Q1 the lower quartile, and IQR the interquartile range, the difference
between the upper and lower quartiles. Note that the whiskers in boxplots in this thesis represent the
inner fences, i.e., upper and lower quartile± 1.5 · IQR. [126] considers “values between an inner fence
and its neighboring outer fence [...] outside” and “values beyond outer fences [...] far out”. Hence, we
checked in groups and globally for each round, which datasets are far out. The result is shown in
Table 6.9: each variant identified 7 (different) datasets (7%) as outliers.

An overview of the datasets identified as outliers by the different approaches is given in Table 6.10.
Two datasets, participants 85 and 218, are considered to be outliers by all approaches. GRUBBS’ test
applied globally on score sum does not detect any further outliers. Worst and best datasets and
GRUBBS’ test for each round applied in groups identify more than 10% as outliers and therefore have
been discarded. GRUBBS’ test applied globally detects the same outliers as global outer fences except
of participants 86 and 88, which no other approach considers to be outliers. From the remaining
three, outer fences in groups seemed to yield the best trade-off between a small total number of
outliers and group-specific outlier detection with the exception of participant 216, which is not con-
sidered an outlier by almost all other approaches. Thus, in the following analysis participants 83, 85,
122, 131, 207, and 218, i.e., 6% of all complete datasets, will be excluded as outliers. The analysis in
the remainder is therefore based on 94 datasets. The histograms in Figure 6.4 show that no qualitative
difference is caused by this rejection.

6.2.3 Normality andVariance Homogeneity
In the following analysis, we want to test the statistical significance of differences between means of
scores and other variables. Statistical tests used in the remainder like STUDENT’s t-test and WELCH’s
t-test require normality of the population—although these two are known to be relatively robust
against non-normality (e.g., [114]).
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Group R Min Max Lower Upper Participants

Control 1 -268972.3 216017.6 -471166.5 511195.3 —
2 -255313.9 70124.4 -274254.7 172544.4 —
3 -131941.7 273425.1 -292962.5 568022.8 —
4 -239364.6 515249.8 -1216884.3 1545476.0 —

Highscore 1 -966712.5 223102.9 -564521.7 544564.6 85, 122
2 -454850.5 51796.2 -327944.7 187664.0 85, 122
3 -288026.4 266810.8 -443324.0 718864.3 —
4 -128185.7 490396.3 -1219911.3 1612883.7 —

Indicate 1 36950.1 206425.5 10267.8 221926.6 —
2 -593318.0 45760.5 -400647.2 278866.0 131
3 8022.8 266534.6 -160097.0 475882.0 —
4 -194799.7 505103.2 -1295279.5 1619710.2 —

Trend 1 -31777.7 264094.7 -358952.2 609654.6 —
2 -155986.8 70603.8 -165307.7 210189.5 —
3 -5213.9 271909.4 -106402.0 462778.8 —
4 -439288.0 442941.5 -158903.8 827099.4 83, 216

Value 1 14885.7 288819.6 67071.6 423438.8 207
2 -25724.4 95189.3 -56897.8 204007.4 —
3 97178.2 281928.9 -13303.3 482540.8 —
4 -24511.4 517939.7 -372493.1 1134446.6 —

Chart 1 -478441.6 127763.6 -992831.6 892192.1 —
2 -1783737.6 8063.8 -250258.0 127622.3 218
3 -17715.5 210841.4 -128407.9 417987.5 —
4 -1054995.1 466244.6 -256996.7 763162.2 218

All 1 -966712.5 288819.6 -423424.1 573410.9 85, 96, 101, 122
2 -1783737.7 95189.3 -393507.4 334401.6 85, 122, 131, 218
3 -288026.4 281928.9 -271070.9 579494.2 144
4 -1054995.1 517939.7 -1163753.7 1573760.8 —

Table 6.9: Detection of outliers by outer fences according to TUKEY [126], i.e., 1st/3rd quartile ±3·IQR
(Lower: lower outer fence, Upper: upper outer fence, R: round, Min: minimal value, Max: maximal
value). By groups, participants 83, 85, 122, 131, 207, 216, and 218 are identified as outliers by this
approach. This is a total of 7% of all complete datasets. For all complete datasets together, partici-
pants 85, 96, 101, 122, 131, 144, and 218 are considered as outliers, which is also 7% of all complete
datasets.
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Parti- Grubbs Grubbs Fences Fences Grubbs Grubbs Sum Worst
Sum

cipant All Groups All Groups Sum All Groups & Best

73 — X — — — — — 1
76 — — — — — — X 1
83 — X — X — — X 3
85 X X X X X X X 7
86 X — — — — — — 1

88 X — — — — — — 1
96 X — X — — — — 2
99 — X — — — — — 1

101 X — X — — X — 3
108 — X — — — — — 1

122 X X X X — — — 4
129 — — — — — — X 1
131 X X X X — — X 5
133 — — — — — — X 1
144 X X X — — — — 3

158 — — — — — — X 1
164 — — — — — — X 1
165 — X — — — — — 1
175 — — — — — — X 1
207 — X — X — X X 4

210 — — — — — — X 1
216 — X — X — — — 2
218 X X X X X X X 7

Total 9% 12% 7% 7% 2% 4% 12%

Table 6.10: Different approaches of outlier detection with all participants, which were detected as
outliers by at least one approach. Grubbs All and Grubbs Groups refer to recursive GRUBBS’ test, see
Tables 6.8 and 6.7. Fences All and Fences Groups refer to outer fences according to TUKEY [126], see
Table 6.9. Grubbs Sum All and Grubbs Sum Groups refer to recursive GRUBBS’ test on score sum. Worst
& Best are the worst and best participants in each group according to the score sum. Sum contains
the number of detections for each dataset. Participants 85 and 218 are considered to be outliers by
all seven approaches. Outer fences in groups according to Tukey seem to yield the best trade-off
between a small total outlier number and group-specific outliers, except for participant 216, which
is not considered an outlier by almost all other approaches.
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Therefore, we applied implementations of several tests for normality from the R package nortest
to the score variables: SHAPIRO-WILK test [117], KOLMOGOROV-SMIRNOV test [84], LILLIEFORS test
[84], ANDERSON-DARLING test [7, 8], CRAMÉR-VON MISES test [124], PEARSON’s chi-squared test [97],
and SHAPIRO-FRANCIA test [107]. The results are shown in Table 6.11. For α= 0.05, the hypothesis of
the data being normally distributed cannot be rejected for most groups and rounds by a majority of
the applied tests for normality. Note that for all normality tests, the alternative hypothesis is that the
data is not normally distributed.

STUDENT’s t-test—in contrast to WELCH’s t-test—also requires homogeneity of variances between
the groups. This has been tested using LEVENE’s test [82], BROWN-FORSYTHE test [31] (both as im-
plemented in R package lawstat), and BARTLETT’s test [13]. Table 6.12 contains the results: LEVENE’s
and BROWN-FORSYTHE tests show qualitatively similar results, whereas BARTLETT’s test yields quite
different results. At least for rounds 1 and 4, with α = 0.05 we cannot assume homogeneous vari-
ances between feedback groups. Thus, for the sake of comparability, WELCH’s t-test will be used for
comparison of score means for all rounds.

Normality and variance homogeneity for other variables are discussed in the correspondent sec-
tions.

6.2.4 ScoreMeans
Table 6.13 lists quartiles, means, and standard deviations for all groups and rounds. Comparing
rounds 1 and 3, which had the same initial values, we can conclude that all groups improved dras-
tically (20% at least) except of value group. For the other five groups, this shows that participants
acquired knowledge on how to control the model in the first rounds. Value group remained static
(-4%) at a higher level than the other groups. A reason for this may be that participants profited so
strong from the value feedback during the feedback rounds that their performance without feedback
slightly decreased. However, the group’s mean is on a high level, so there was not much space for
improvement anyhow. The score shift from round 1 to round 3 can also be observed in the score
histograms in Figure 6.5.

The data also show that value group was the best by far in all the rounds, trend group comes sec-
ond. In contrast to Hypothesis (D) from Table 6.5, control group is not the worst, neither overall nor
exclusively in the performance rounds. In fact, control group, highscore group, and indicate group
are on a similar level, whereas chart group performs even worse at least in the feedback rounds.
This changes in performance rounds, so one can suppose that the feedback consternated the partic-
ipants. A possible reason could lie in a misinterpretation of the sensitivity information participants
were given by this feedback. All other optimization-based feedback groups received direct informa-
tion on the optimal solution.

The score boxplot in Figure 6.6 emphasizes these presumptions. Again, it seems quite obvious that
value group and—except for round 3—trend group are better than the others. Chart group on the
contrary rather suffered from the feedback and slightly improved in performance rounds. Indicate
group could profit from the feedback only in round 1.

The results of WELCH’s t-test in Table 6.14 confirm all these observations. Forα= 0.05, value group
is significantly better than control group in all the rounds. Trend group misses significance only in
round 3 by narrow margin, but exhibits significant differences in the other rounds. Indicate group is
significantly better only in round 1. The remaining groups are not significantly different than control
group.

A comparison between optimization-based feedback groups and the other two groups in Table
6.15 shows that participants who received optimization-based feedback performed significantly bet-
ter in each round and in total. The difference between value group and all other groups is also signif-
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Group R SW KS LF AD CVM PEAR SF Sum

Control 1 0.1354 0.3426 0.0343 0.0907 0.0644 0.0961 0.1131 6
2 0.0839 0.6261 0.2012 0.0873 0.0921 0.0415 0.0389 5
3 0.0307 0.5794 0.1603 0.0926 0.2399 0.5745 0.0295 5
4 0.1080 0.6182 0.1938 0.0904 0.0832 0.4244 0.2055 7

Highscore 1 0.8601 0.8621 0.5223 0.5180 0.3786 0.0770 0.6386 7
2 0.4915 0.8945 0.5974 0.4431 0.5312 0.5259 0.2272 7
3 0.0130 0.5894 0.1518 0.0396 0.0973 0.1718 0.0095 4
4 0.0126 0.1512 0.0020 0.0046 0.0047 0.0040 0.0248 1

Indicate 1 0.3756 0.8380 0.4462 0.3032 0.3369 0.2636 0.1940 7
2 0.4968 0.9670 0.7994 0.5963 0.6525 0.8007 0.6822 7
3 0.7615 0.8883 0.5539 0.7595 0.7031 0.4594 0.8496 7
4 0.3874 0.9839 0.8794 0.5187 0.5976 0.8007 0.5909 7

Trend 1 0.3551 0.7829 0.3931 0.4076 0.4910 0.1991 0.5054 7
2 0.0004 0.1174 0.0012 0.0005 0.0023 0.0054 0.0006 1
3 0.0472 0.6762 0.2481 0.0467 0.0968 0.0700 0.0577 5
4 0.0000 0.0039 0.0000 0.0000 0.0000 0.0000 0.0001 0

Value 1 0.0051 0.5937 0.1483 0.0131 0.0210 0.0442 0.0063 2
2 0.1799 0.8373 0.4625 0.2399 0.2726 0.6718 0.2640 7
3 0.1849 0.7917 0.3803 0.2394 0.3341 0.4512 0.1664 7
4 0.0869 0.6414 0.1888 0.1214 0.1690 0.2925 0.1470 7

Chart 1 0.0016 0.3500 0.0277 0.0016 0.0024 0.0036 0.0044 1
2 0.9751 0.9647 0.8014 0.9155 0.8828 0.6718 0.9479 7
3 0.1256 0.8155 0.4217 0.2063 0.3096 0.4512 0.0855 7
4 0.4943 0.6495 0.1965 0.4397 0.4170 0.1856 0.5025 7

All 1 0.0000 0.1167 0.0017 0.0002 0.0006 0.0248 0.0000 1
2 0.0242 0.6226 0.2009 0.0887 0.1665 0.0763 0.0315 5
3 0.0000 0.4790 0.0903 0.0005 0.0040 0.0089 0.0000 2
4 0.0000 0.0052 0.0000 0.0000 0.0000 0.0000 0.0000 0

Table 6.11: p-values of different normality tests (R: round, SW: SHAPIRO-WILK test, KS: KOLMOGO-
ROV-SMIRNOV test, LF: LILLIEFORS test, AD: ANDERSON-DARLING test, CVM: CRAMÉR-VON MISES

test, PEAR: PEARSON’s chi-squared test, SF: SHAPIRO-FRANCIA test) on scores of all complete data-
sets without 6 outliers (N = 94). For α = 0.05, the hypothesis of the data being normally distributed
cannot be rejected for most groups and rounds by a majority of the applied tests for normality. Note
that for all normality tests, the alternative hypothesis is that the data is not normally distributed.
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Round Levene BF Bartlett

1 0.0004 0.0406 0.0000
2 0.2927 0.3675 0.0082
3 0.0666 0.1349 0.0029
4 0.0007 0.0261 0.0776

Table 6.12: p-values of different variance homo-
geneity tests (BF: BROWN-FORSYTHE test) on scores
of all complete datasets without 6 outliers (N = 94).
LEVENE’s and BROWN-FORSYTHE tests show qualita-
tively similar results, whereas BARTLETT’s test yields
quite different results. As at least for rounds 1 and 4,
withα= 0.05 we cannot assume homogeneous vari-
ances between feedback groups, WELCH’s t-test will
be used for comparison of score means.

icant in all rounds for α= 0.05 (not in the table).

We can summarize that Hypotheses (A), (B), (C), (E), and (H) were proved and Hypotheses (D), (F),
and (G) were disproved. Hypothesis (I) can at most be considered as proved partly, as the differences
between rounds 1 and 3 for value group are very small and not significant. Optimization-based feed-
back could significantly improve participants’ performance in the IWR Tailorshop microworld if the
presentation was chosen appropriately. In our study, value group performed significantly better than
all other groups. All WELCH’s t-tests in this section have been confirmed qualitatively by WILCOXON

rank sum tests.

6.2.5 General Properties
Histograms of the general properties collected with the first survey can be found in Figures 6.7 and
6.8. The distribution of gender reflects the distribution of students in mathematics and natural sci-
ence lectures, where participants were mainly recruited from. The recruitment of participants from
first and third term lectures is also reflected in the age distribution as almost all participants were in
the groups 18-24 years and 25-29 years. The property problem solving reveals that almost all partici-
pants claim to solve problems systematically. This can be considered an above average effect [71].

Score boxplots for both computer games (Figure 6.10a) and economics (Figure 6.10b) do not show
a clear trend for the performance of the corresponding yes and no groups. For problem solving, by
means and medians the yes group outperforms the no group in each round. However, the differences
are not significant, as a t-test reveals (Table 6.17). Mean score values can be found in Table 6.16. This
eventually disproves Hypotheses (K), (L), and (M).

Because of the age distribution—some groups consist of one or two datasets only—, a compar-
ison of all age groups does not make sense. Therefore we merged the data in three groups of age
with 68, 20 and 6 datasets respectively: <25 (low), 25–29 (middle), and >29 (high). 25–29 group has
the highest score means in all rounds, see Table 6.19, whereas >29 group has the lowest means in 3
of 4 rounds. Middle age group is significantly better than low age group except for round 2, where
it scarcely misses significance. High age group is still too small to draw reliable conclusions. The
boxplot in Figure 6.9 complements these results. We can only speculate on the reasons for middle
age group’s success. Regarding the participants’ background, participants with middle age may have
more experience with complex systems, which they can build on controlling a complex microworld.
A hypothesis would be that these effects are based on the different development of fluid and crystal-
lized intelligence during adulthood ([35], p. 272ff.).

One could wonder if all these general properties are correlated, e.g., a property like computer games
with gender (although this is kind of a prejudice, see e.g., [1]). A correlation matrix, see Table 6.18,
shows that correlation for all properties is very low and irrelevant in this study, though.
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G R Min 25% Median 75% Max Mean SD

co 1 -268972.3 -50154.3 42066.4 90183.1 216017.6 24274.1 113871.4
2 -255313.9 -82769.3 -68063.6 -18940.9 70124.4 -57289.0 65176.2
3 -131941.7 76031.2 118906.3 199029.1 273425.1 128502.7 96555.0
4 -239364.6 -33015.6 189881.7 361607.3 515249.8 166039.1 222732.1
S -307683.5 10123.9 272033.3 462332.5 1074817.0 261526.8 355735.9

hi 1 -167571.4 -12994.9 48132.9 71395.8 223102.9 29427.6 102902.4
2 -227081.0 -91332.2 -69651.2 -23943.3 51796.2 -62394.1 68015.2
3 -288026.4 56998.7 155530.9 213910.3 266810.8 114554.4 146052.4
4 -128185.7 -231.9 13251.4 411936.9 490396.3 181818.6 235011.6
S -719763.9 53342.8 110737.4 546795.1 1032106.2 263406.5 444204.5

in 1 72854.7 105405.2 119647.3 133175.7 206425.5 125011.9 37418.4
2 -119047.1 -97544.8 -60257.1 -3438.8 45760.5 -50069.6 59593.4
3 8022.8 99019.0 173712.1 212900.8 266534.6 155561.8 85334.1
4 -194799.7 -28726.9 246636.9 386168.8 505103.2 190322.4 264463.9
S -97790.9 -3706.4 420949.1 665375.5 976088.9 420826.5 402820.6

tr 1 -31777.7 75430.8 118862.6 196184.2 264094.7 123606.6 87157.5
2 -155986.8 -4279.1 19997.2 50001.2 70603.8 10474.8 59322.9
3 22537.6 138273.6 172730.1 220249.9 271909.4 167642.2 69113.9
4 -188878.4 348854.9 368507.1 405435.0 442941.5 297328.6 182044.2
S -175989.9 553577.9 692629.8 825085.2 949601.3 599052.3 339750.2

va 1 98571.8 233237.0 262980.7 273080.7 288819.6 241696.5 54822.0
2 40111.0 59777.6 80120.2 92578.5 95189.3 74541.3 19623.8
3 134230.7 204746.9 232137.2 270527.7 281928.9 231867.6 45358.3
4 226552.2 330559.5 403517.7 490299.6 517939.7 401167.1 109249.3
S 610696.1 875420.6 924908.4 1095569.8 1157422.0 949272.5 169498.5

ch 1 -478441.6 -72877.2 49071.8 84558.3 127763.6 -50298.3 214314.1
2 -139539.2 -78642.1 -49229.5 -31840.2 8063.8 -59124.2 41907.6
3 -17715.5 116080.3 152277.6 185886.0 210841.4 137970.4 65091.6
4 14819.6 225280.3 252473.9 347153.1 466244.6 262485.2 141433.0
S -458625.3 233027.0 302050.1 484527.4 534712.0 291033.2 283194.8

all 1 -478441.6 13487.8 86105.6 151144.0 288819.6 73539.7 138910.1
2 -255313.9 -75645.0 -25405.5 37525.9 95189.3 -26952.9 73074.2
3 -288026.4 98383.5 161247.4 215645.2 281928.9 151112.2 95348.8
4 -239364.6 24199.9 311883.9 403088.7 517939.7 238678.2 211968.3
S -719763.9 105266.8 465693.5 756781.1 1157422.0 436377.2 409125.4

Table 6.13: Score quantiles (G: group —co: control, hs: highscore, in: indicate, tr: trend, va: value,
ch: chart—, R: round, S: score sum, 25%: 25%-quartile, 75%: 75%-quartile, SD: standard deviation)
for each round and feedback group for all complete datasets without 6 outliers (N = 94).
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Round Highscore Indicate Trend Value Chart

1 0.4429 0.0001 0.0005 0.0000 0.8531
2 0.5891 0.3804 0.0002 0.0000 0.5414
3 0.6216 0.2168 0.0507 0.0000 0.3622
4 0.4200 0.4037 0.0133 0.0000 0.0577

Sum 0.4947 0.1539 0.0007 0.0000 0.3935

Table 6.14: WELCH’s t-test p-values of comparison of score means for each round to control group
with all complete datasets without 6 outliers (N = 94). Alternative hypothesis was that mean of con-
trol group is lower. With α = 0.05, only value group is significantly better than control group in all
rounds. However, trend group misses significance only in round 3 by narrow margin.

Round
Means t test

ch control of ch < of control < of

1 25869.2 24274.1 112042.8 0.0009 0.0020
2 -58869.2 -57289.0 -1174.4 0.0000 0.0003
3 124185.3 128502.7 172860.8 0.0091 0.0182
4 170923.2 166039.1 293403.4 0.0029 0.0059

Sum 262108.6 261526.8 577132.7 0.0000 0.0002

Table 6.15: WELCH’s t-test p-values of comparison of score means for each round between control
and highscore groups (ch) on the one side and groups with optimization-based feedback (of) on the
other side with all complete datasets without 6 outliers (N = 94). With α= 0.05, optimization-based
feedback groups were significantly better than those without.

Round Group Gender Age Economics Games Problems

1
no/female/low 76190.5 57191.0 62749.4 80372.3 34947.1
yes/male/middle 72471.5 120974.6 81191.0 65080.3 77626.0

2
no/female/low -44839.1 -32025.7 -33809.9 -26799.0 -54595.8
yes/male/middle -19745.0 -4364.7 -22090.7 -27143.4 -24026.0

3
no/female/low 131822.7 144973.0 161470.0 144409.3 120682.2
yes/male/middle 158885.6 183191.3 143767.6 159411.0 154334.2

4
no/female/low 154121.5 226455.9 229691.9 217952.0 160459.0
yes/male/middle 272753.3 327212.8 245050.4 264339.3 246960.3

Table 6.16: Mean score values for general properties (Gender: female/male, Age: low/high, i.e.,
<25/25–29, Economics/Games/Problems: yes/no) with all complete datasets without 6 outliers
(N = 94). For explanations of the groups, see also Table 6.2.
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Round Gender Economics
Computer Problem

Games solving

1 0.5594 0.2684 0.7021 0.1763
2 0.0423 0.2254 0.5089 0.1598
3 0.0793 0.8206 0.2164 0.2309
4 0.0119 0.3665 0.1435 0.1920

Table 6.17: p-values of WELCH’s t-test for general properties for all complete datasets without 6 out-
liers (N = 94). See Table 6.2 for an explanation of the headings with α= 0.05. For Economics, Games,
and Problems, alternative hypothesis was that yes group has a higher mean than no group. For Gen-
der, alternative hypothesis was that male group has a higher mean than female group.

Gender Economics Games Problems

Gender 1.00 0.23 0.24 -0.05
Economics 0.23 1.00 0.02 0.17
Games 0.24 0.02 1.00 0.00
Problems -0.05 0.17 0.00 1.00

Table 6.18: Correlation matrix of general properties for all complete datasets without 6 outliers (N =
94): no relevant correlation was observed.

Round
Low Middle High
< 25 25−29 > 29

1 57191.0 120974.6 100709.1
2 -32025.7 -4364.7 -44754.8
3 144973.0 183191.3 113759.4
4 226455.9 327212.8 82083.3

(a) Mean score values

Round
Low < High < High <

Middle Middle Low

1 0.0148 0.3127 0.8561
2 0.0509 0.1465 0.3605
3 0.0210 0.0668 0.2321
4 0.0175 0.0449 0.1361

(b) p-values of WELCH’s t-test (α= 0.05)

Table 6.19: Mean score values of age groups and pairwise comparison by WELCH’s t-test with all
complete datasets without 6 outliers (N = 94). 25–29 group is significantly better than those younger
than 25. Comparisons with participants older than 29 do not make much sense because of the small
group size.
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Figure 6.5: Score histogram for all four rounds for all complete datasets without 6 outliers (N = 94).
Round 1 and 3 had the same initial values, whereas round 2 and 4 had pairwise different initial values.
The distribution shifted slightly to the right, i.e., to higher scores from round 1 to round 3.

6.2.6 Gender and Feedback
Gender property deserves special attention. The t-test in Table 6.17 already indicates that there were
gender-specific differences. A closer investigation targeted differences in the effects of feedback be-
tween the genders. For this, datasets were redivided into four groups: females in control or highscore
group (f/ch), females in groups with optimization-based feedback (f/of ), males in control or highscore
group (m/ch), and males in groups with optimization-based feedback (m/of ).

The boxplot in Figure 6.11 shows a quite surprising result. Obviously, in contrast to male partic-
ipants, women could profit from the optimization-based feedback only in round 1. Here, both f/of
and m/of were significantly better than f/ch and m/ch, as a t-test confirms (Table 6.20). There is no
significant difference between f/of and m/of in the first round. However, this changes in the other
rounds in which f/of is approximately at the same level as f/ch and m/ch. According to the t-test, m/of
has a significantly higher mean than all the other groups, including f/of.

Mean score values for the four groups can be found in Table 6.21. A detailed overview of score
means for each feedback group/gender combination including the gender distribution is given in
Table 6.22. Note that for some female groups, values are based on one or two participants only and
thus are not representative.

Given the design of the study and the data collected, it is not possible to determine a reason for
this effect. The unbalanced distribution of female and male participants to feedback groups could
also have influenced this observation. In order to investigate this aspect, one therefore would have
to conduct a new study with, e.g., only one feedback and a control group and an approximately equal
distribution of female and male participants.
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Round
f/ch < f/ch < f/ch < f/of < m/ch < m/ch <
m/ch f/of m/of m/of f/of m/of

1 0.7352 0.0024 0.0168 0.6725 0.0011 0.0074
2 0.6332 0.1637 0.0003 0.0339 0.1116 0.0001
3 0.6801 0.5507 0.0085 0.0254 0.3817 0.0099
4 0.1794 0.2381 0.0049 0.0323 0.5331 0.0054

Table 6.20: p-values of WELCH’s t-test for gender/feedback combinations (f/ch: females in control
or highscore group, f/of: females in optimization-based feedback groups, m/ch: males in control
or highscore group, m/of: males in optimization-based feedback groups) with all complete datasets
without 6 outliers (N = 94). For α = 0.05, except for round 1, men receiving optimization-based
feedback were significantly better than all other groups. In contrast, women receiving optimization-
based feedback could not achieve significant differences to both men and women in control and
highscore groups. Thus, women could only profit from optimization-based feedback in round 1.

Round f/ch f/of m/ch m/of

1 38341.3 123502.0 18940.3 108605.1
2 -54680.6 -32537.3 -61196.2 8234.5
3 133548.5 129665.5 118983.6 185819.4
4 125463.6 189944.0 196178.6 324441.3

Table 6.21: Mean score values for each round corresponding to gender/feedback combinations (f/ch:
females in control or highscore group, f/of: females in optimization-based feedback groups, m/ch:
males in control or highscore group, m/of: males in optimization-based feedback groups) with all
complete datasets without 6 outliers (N = 94).
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Figure 6.6: Score boxplot of all feedback groups (co: control, hs: highscore, in: indicate, tr: trend, va:
value, ch: chart) for all rounds and all complete datasets without 6 outliers (N = 94). It seems quite
obvious from the boxplot that value group and—except for round 3—trend group are better than the
others, whereas chart group rather suffered from the feedback.

6.2.7 BFI-10
With the final survey, the big five dimensions of personality were determined via a 10-item short
version of the Big Five Inventory proposed by Rammstedt and John [105]. Figure 6.12 contains his-
tograms of all BFI-10 scales. All observed distributions fulfill the expectations: most values lie in the
mid range, only openness exhibits a slight shift to higher values.

For an investigation of possible correlation of performance and scales, Figure 6.13 shows scatter-
plots for all five BFI-10 scales. No obvious correlation with score can be observed from the plots and
indeed, correlation is close to 0 (| · | < 0.03) for four scales, only for agreeableness it is about -0.19.
Thus, there is no relevant correlation for any BFI-10 scale and Hypothesis (J) has to be discarded
completely.

6.2.8 Processing Times
Within the statistical analysis, participants’ processing times have also been analyzed. Because of the
web-based data acquisition, the times determined can only serve as an approximation. Exact time
measurement is extremely difficult in this case, because HTTP is a stateless protocol. But even if the
time for which the user is logged in is measured correctly, it is almost impossible to determine when
the user actually paid attention to the interface.

Nevertheless, we used the time information collected via explicit login or logout events together
with reception times of participants’ decisions to compute an approximate processing time per par-
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Figure 6.7: Histograms of general properties collected via questionnaire at the beginning of the study
task for all complete datasets without 6 outliers (N = 94). See Table 6.2 for details on the survey. His-
togram (d) reveals an above average effect, as almost all participants claim to solve problems system-
atically. The distribution of gender in (a) reflects the distribution of students in mathematics and
natural science lectures, where participants were mainly recruited from.

ticipant. In the following, we compare effective processing times only, i.e., time spent for computing
optimal solutions for the optimization-based feedback is excluded.

Means of both processing and computing times per feedback group are shown in Figure 6.14, nu-
merical values are given in Table 6.23c. Processing times decrease from round 1 to round 4 for all
groups. However, the decrease is much higher for optimization-based feedback groups. For these
groups, especially the processing times in feedback rounds are a lot higher than for control and high-
score group.

Processing times have also been tested for normality with SHAPIRO-WILK test and KOLMOGO-
ROV-SMIRNOV test, see Tables 6.23a and 6.23b. For almost all rounds and groups, the assumption
of normality cannot be rejected. LEVENE’s test and BROWN-FORSYTHE test in Table 6.23e can also not
reject the hypothesis of variance homogeneity, thus STUDENT’s t-test has been used to investigate
statistical significance.

The results of STUDENT’s t-test in Table 6.23d show that all optimization-based feedback groups
had significantly higher processing times than control group in rounds 1 and 2. This is also reflected
in total processing times. Hence, hypothesis (N) clearly is disproved, indeed the opposite is true.
A boxplot of processing times (Figure 6.15) supports these results. An obvious assumption is that
participants simply need more time to process the feedback information.

6.2.9 Model Knowledge andUncertainty
A questionnaire (Table 6.3) was used at the end of the four rounds to determine the participants’
knowledge about the IWR Tailorshop microworld. The overall ratio of correct answers varies a lot for
the five claims. This shows that the questions had a varying difficulty, which was intended.

Correct answers are identified as knowledge about the model. Participants who chose don’t know
are considered to be uncertain about the corresponding claim. The focus of this section are the two
variables knowledge and uncertainty.

With the analysis of these measures, we want to answer three different questions. The first one is
if participants with a good performance, i.e., a high score, had a better knowledge or a lower uncer-
tainty respectively about the model (Hypothesis (O)). Furthermore it will be examined if those with a
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Figure 6.8: Histogram of participants’ age collected via questionnaire at the beginning of the study
task for all complete datasets without 6 outliers (N = 94). The distribution reflects the fact that par-
ticipants were mainly recruited via 1st and 3rd term lectures. One participant claimed to be under
the age of 18, although forbidden by terms of participation. There were no participants in the groups
50-59 and above 69.
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Figure 6.9: Boxplot of all four rounds for participants’ age with all complete datasets without 6 out-
liers (N = 94). Participants older than 29 have been merged in one group, as there are only 6 such
datasets in total. 25–29 group seems to outperform the others in all rounds, see also Table 6.19.

good knowledge or a low uncertainty about the model did manage vice versa to perform better (Hy-
pothesis (P)). And finally, we want to analyze differences in model knowledge and uncertainty be-
tween the groups, i.e., if optimization-based feedback could enhance the participants’ model knowl-
edge (including Hypothesis (Q)).

To investigate the first aspect, quartiles have been used to build groups of participants with high
(best 25%), mid (those between first and third quartile), and low (worst 25%) score for each round.
Means of correspondent model knowledge and uncertainty scores can be found in Tables 6.24 and
6.25. High groups have the highest means which increase over the rounds. Except for round 1, mid
groups are between low and high groups. In performance rounds, all differences are significant ac-
cording to the WELCH’s t-test, which verifies Hypothesis (O). Significance roughly increases over the
rounds, which suggests that model knowledge is a crucial factor for successful control of the IWR
Tailorshop microworld.

For the second question, participants have been merged in 3 (low (0/1), mid (2/3), and high (4/5))
and 2 (low (0/1) and mid (2/3)) groups respectively according to their knowledge and uncertainty
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Round Group Control Highscore Indicate Trend Value Chart

1
female 51455.1 -46898.5 107717.3 141283.8 266053.5 39341.3
male 2189.5 43305.1 138847.6 118082.5 239260.8 -70218.2

2
female -52784.4 -67005.6 -60936.5 -14490.4 56619.8 -65434.5
male -60949.1 -61555.7 -41376.1 18276.4 76333.5 -57721.9

3
female 122532.9 205150.1 100555.7 162528.2 199355.4 70883.7
male 133353.1 98082.4 199566.7 169240.4 235118.9 152878.6

4
female 107902.8 239608.2 60698.4 264346.7 235081.7 239859.8
male 213274.9 171311.4 294021.7 307635.5 417775.6 267513.1

#P
female 13 2 4 5 1 2
male 16 11 5 16 10 9

Table 6.22: Mean score values separate for each gender and gender distribution corresponding to
feedback groups (#P: number of participants) with all complete datasets without 6 outliers (N = 94).
Note that for some female groups, values are based on one or two participants and thus are not
representative. A reason why women could not profit from optimization-based feedback cannot be
determined from the available data.

score, which both are between 0 and 5. No participant achieved an uncertainty score of 4 or 5, thus
there are only two groups for uncertainty. Tables 6.26a and 6.26b contain the mean score values of
all four rounds for these groups.

For knowledge, the high group has the highest score means by far. Except for round 1, mid group
lies between low and high group. STUDENT’s t-test in Table 6.26c shows that high group was almost
always significantly better than the two other groups. Significance increases over the rounds, which
means that model knowledge becomes a better predictor for participants success the more rounds
the participants played. Comparing round 1 and 3, participants with low model knowledge could
barely improve their performance, whereas the high group approximately doubled their score. In-
deed, correlation between score and model knowledge increases from about 0.09 in round 1 to 0.48
in round 4. This proves Hypothesis (P).

For uncertainty, the low group has higher means in all rounds, but again the differences are much
smaller than for knowledge. Hence, the differences between the groups are not significant. Correla-
tion with score is about -0.2 for all rounds except the first.

Finally, for an analysis of differences between the groups, ratios of model knowledge and uncer-
tainty levels and mean values are given in Table 6.27. Trend and value group have the highest knowl-
edge, but only highscore and trend group are significantly better than control group. Indicate and
chart group have a much lower knowledge, which together with these groups’ performance suggests
that participants were rather confused by the optimization-based feedback.

Trend group has by far the lowest uncertainty among the groups and is the only one which has
significantly lower uncertainty than control group. All other groups are on a similar level. Thus, the
second part of Hypothesis (Q) is proved and the first part disproved.
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Round Control Highscore Indicate Trend Value Chart All

1 0.0089 0.1595 0.5852 0.0009 0.0209 0.3442 0.0000
2 0.1443 0.0971 0.0265 0.0007 0.0012 0.0114 0.0000
3 0.3491 0.1613 0.0010 0.0000 0.0000 0.5525 0.0000
4 0.1905 0.3140 0.1119 0.0000 0.0001 0.0347 0.0000

Sum 0.0794 0.3366 0.4809 0.0000 0.0004 0.1850 0.0000

(a) Shapiro-Wilk test p-values (α= 0.05)

Round Control Highscore Indicate Trend Value Chart All

1 0.5251 0.5312 0.8690 0.2280 0.3688 0.9729 0.2909
2 0.7315 0.8037 0.5267 0.6913 0.2482 0.3527 0.0283
3 0.9203 0.6241 0.2020 0.0141 0.1319 0.7262 0.0003
4 0.6096 0.9071 0.9066 0.0087 0.1713 0.6441 0.0039

Sum 0.2131 0.7051 0.9070 0.2219 0.1189 0.8443 0.2910

(b) Kolmogorov-Smirnov test p-values (α= 0.05)

Round Control Highscore Indicate Trend Value Chart All

1 595.0 742.4 1200.5 1045.2 1071.2 1116.4 892.1
2 366.0 452.1 723.0 608.4 573.5 821.5 540.8
3 330.9 453.4 508.1 526.9 433.5 435.1 431.8
4 293.0 376.6 352.1 452.5 359.4 364.5 362.0

Sum 1579.7 1949.8 2916.3 2538.0 2437.6 2795.0 2405.7

(c) Mean effective times (i.e., total time without computing times) in seconds

R Highscore Indicate Trend Value Chart

1 0.1193 0.0004 0.0007 0.0018 0.0001
2 0.1211 0.0037 0.0008 0.0150 0.0001
3 0.0411 0.0614 0.0576 0.1511 0.0580
4 0.0792 0.1609 0.0656 0.1650 0.1120

Sum 0.1000 0.0010 0.0028 0.0170 0.0001

(d) STUDENT’s t-test p-values (α= 0.05)

R Levene BF

1 0.3388 0.4871
2 0.0620 0.3558
3 0.3253 0.8733
4 0.5440 0.8615

Sum 0.5349 0.7490

(e) Variance homogeneity tests

Table 6.23: Analysis of processing times (R: round, BF: BROWN-FORSYTHE test) for all complete da-
tasets without 6 outliers (N = 94). During feedback rounds, processing times for optimization-based
feedback groups are significantly higher. STUDENT’s t-test has been applied pairwise with alternative
hypothesis of control group’s mean being less.
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Round High Score Mid Score Low Score High > Low High > Mid Mid > Low

1 3.17 2.50 2.79 0.1477 0.0205 0.8417
2 3.42 2.65 2.25 0.0004 0.0063 0.0770
3 3.46 2.74 2.04 0.0000 0.0061 0.0068
4 3.50 2.70 2.08 0.0000 0.0023 0.0142

Sum 3.33 2.80 2.04 0.0001 0.0384 0.0035

Table 6.24: Means of model knowledge for participants with high (i.e., best 25%), mid (between 1st
and 3rd quartile), and low (i.e., worst 25%) score in the corresponding round with all complete da-
tasets without 6 outliers (N = 94). Pairwise comparison of means by WELCH’s t-test with α = 0.05
shows, that high scorers know significantly more about the model than mid or low scorers.

Round High Score Mid Score Low Score High > Low High > Mid Mid > Low

1 0.75 1.07 0.79 0.4376 0.0909 0.8716
2 0.58 1.07 0.96 0.0711 0.0181 0.6733
3 0.67 0.87 1.25 0.0097 0.1667 0.0633
4 0.71 0.93 1.08 0.0820 0.1612 0.2740

Sum 0.67 0.98 1.04 0.0696 0.0930 0.3924

Table 6.25: Means of model uncertainty for participants with high (i.e., best 25%), mid (between 1st
and 3rd quartile), and low (i.e., worst 25%) score in the corresponding round with all complete data-
sets without 6 outliers (N = 94). Uncertainty means are lower for high scorers. Pairwise comparison
of means by WELCH’s t-test with α= 0.05 barely shows significance, however.
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Round Low (0/1) Mid (2/3) High (4/5)

1 101085.2 42407.9 110944.2
2 -51748.1 -40915.9 10319.9
3 108448.1 135943.2 200281.3
4 80163.6 214925.1 366269.3

(a) Mean score values for different levels of model knowl-
edge

Round Low (0/1) Mid (2/3)

1 69516.5 86706.5
2 -22096.4 -42847.0
3 159269.1 124416.9
4 259346.6 171036.4

(b) Mean score values for different levels of
model uncertainty

R Low < High Low < Mid Mid < High

1 0.3740 0.9743 0.0188
2 0.0005 0.2657 0.0010
3 0.0004 0.1447 0.0007
4 0.0001 0.0223 0.0001

(c) STUDENT’s t-test p-values for model knowledge

Round Mid < Low

1 0.7335
2 0.1221
3 0.1020
4 0.0626

(d) STUDENT’s t-test p-values for model un-
certainty

Table 6.26: Scores for different model knowledge and uncertainty levels (R: round) with all complete
datasets without 6 outliers (N = 94). With α = 0.05, participants with high model knowledge have
achieved a significantly better score in almost all rounds. For model uncertainty, no significant score
differences have been observed.

Property co hi in tr va ch All

Knowledge

low 24% 8% 44% 5% 18% 9% 17%
mid 59% 54% 33% 48% 36% 73% 52%
high 17% 38% 22% 48% 45% 18% 31%

mean 2.38 3.00 2.22 3.19 3.09 2.64 2.74
t-test — 0.0451 0.6241 0.0113 0.0824 0.2377 —

Uncertainty

low 72% 69% 67% 95% 82% 64% 77%
high 28% 31% 33% 5% 18% 36% 23%

mean 1.03 1.15 1.22 0.38 0.91 1.09 0.91
t-test — 0.6525 0.6630 0.0017 0.3545 0.5545 —

Table 6.27: Ratio of model knowledge and uncertainty levels for all feedback groups (co: control,
hs: highscore, in: indicate, tr: trend, va: value, ch: chart) with all complete datasets without 6 out-
liers (N = 94). Mean refers to mean uncertainty and knowledge per group. Alternative hypothesis
for WELCH’s t-test was that mean of control group is lower (knowledge) or higher (uncertainty) re-
spectively. For α = 0.05, only trend group is significantly better in both knowledge and uncertainty.
Differences to 100% are due to rounding.
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Figure 6.10: Score boxplots of all rounds for general properties collected via questionnaire at the
beginning of the study task with all complete datasets without 6 outliers (N = 94). See Table 6.2 for
details on the survey. For (a) and (b), there is no clear trend. For (c), by means and medians the yes
group outperforms the no group in all rounds. However, the differences are not significant, see also
Table 6.17.
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Figure 6.11: Boxplot of all four rounds for gender/feedback combinations (f/ch: females in control
or highscore group, f/of: females in optimization-based feedback groups, m/ch: males in control or
highscore group, m/of: males in optimization-based feedback groups) with complete datasets with-
out 6 outliers (N = 94). Except for round 1, women could not significantly profit from optimization-
based feedback. Whereas m/of group is significantly better than f/ch and m/ch, f/of exhibits no sig-
nificant difference in round 2-4, see also Table 6.20.

0

10

20

30

2 4 6 8 10
Agreeableness

N
um

be
r o

f P
ar

tic
ip

an
ts

0

10

20

30

2 4 6 8 10

0

10

20

30

2 4 6 8 10
Extraversion

0

10

20

30

2 4 6 8 10
Neuroticism

0

10

20

30

2 4 6 8 10
OpennessConscientiousness

Figure 6.12: Histograms of all five BFI-10 scales for all complete datasets without 6 outliers (N = 94).
All observed distributions fulfill the expectations.
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(a) Agreeableness
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(b) Conscientiousness
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(c) Extraversion
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(d) Neuroticism
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Figure 6.13: Scatterplots of all five BFI-10 scales versus score sum for all complete datasets without 6
outliers (N = 94). No obvious correlation can be observed from the plots. Indeed, correlation is close
to 0 (| · | < 0.03) for four scales, only for agreeableness it is about -0.19.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 3 4

E
ffe

ct
iv

e 
Ti

m
e 

[s
]

Round

 0

 50

 100

 150

 200

 250

 300

1 2 3 4

C
om

pu
tin

g 
Ti

m
e 

[s
]

Round

control
highscore

indicate
trend
value
chart

Figure 6.14: Mean effective time (i.e., total time minus computing time) consumed in each round
by participants and mean computing time consumed per round by optimization according to the
feedback groups for all complete datasets without 6 outliers (N = 94). Computing time is always 0 for
control and highscore group as no optimal solution was computed online. In rounds 3 and 4, there
was no optimization at all since no feedback was given.
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Figure 6.15: Boxplot of effective time (i.e., total time minus computing time) used in each round
by participants according to the feedback groups (co: control, hs: highscore, in: indicate, tr: trend,
va: value, ch: chart) with all complete datasets without 6 outliers (N = 94). In feedback rounds,
optimization-based groups show significantly higher times. In performance rounds, all groups are
on a similar level. For all groups, mean time decreases from round 1 to round 4.
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6.3 Optimization-basedAnalysis
We applied the methods for an optimization-based analysis to the data as described in Section 5.1.
These methods are implemented in the open-source software package Antils (Analysis Tool for IWR
Tailorshop Results and Solutions). All computations were carried out on an Intel Core i7 920 machine
with 12 GB RAM running Ubuntu 14.04 64-bit. For the solution of the arising optimization prob-
lems, AMPL Version 20140331 together with Bonmin 1.5 and Ipopt 3.10 was used via IWR Tailorshop’s
AMPL interface. For the optimization-based analysis, we considered the same 94 datasets as in the
statistical analysis.

(1) participants learn to control the model

(2) learning function is approximately
logarithmic over all rounds

(3) optimization-based feedback groups
learn faster or more respectively

(4) value group does almost not learn in
feedback rounds

(5) trend group learns fastest or most
respectively

(6) participants who learn much perform
well

(7) participants who perform well learned
much

(8) participants with high model knowledge
learned more than those with low
knowledge

(9) initial performance is not important for
final performance

(10) chart group got irritated by and suffered
from feedback

Table 6.28: Hypotheses on results of the optimization-based analysis

An overview of the average objective achieved by the participants in all six groups can be found in
Figure 6.16. In all rounds value group is on top quite early. Other groups sometimes start similarly,
but performance differs at a later time point, compare, e.g., control and trend group in round 2. Note
that these plots do not yield insight into structural differences between the participants of the groups.
If we were considering single participants, the performance of trend group in round 2 could be due to
structural investments which pay off from month 5 on. For aggregated values an analysis of structural
differences is not reasonable, however.

6.3.1 Howmuch is still possible

As described in Section 5.1, we computed optimal solutions for each participant and month in all
rounds starting from the model state derived by the participant’s decisions. This means, we solved
94·4·10 = 3760 optimization problems for this analysis. The resulting solutions, each evaluated at the
final month, yield the How much is still possible function, which hence is a monotonically decreasing
function. Average values of How much is still possible for all groups in all rounds are displayed in
Figure 6.17.

Again, value group is clearly the best from the beginning in all rounds. During feedback rounds,
value group is almost constant, i.e., almost optimal, starting from month 1. This changes in perfor-
mance rounds, when participants do not have access to the exact optimal values. In round 1, chart
group falls apart after month 3, when participants possibly got confused by the feedback. Chart
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Figure 6.16: Average objective according to feedback groups for all complete datasets without 6 out-
liers (N = 94). In all rounds value group is on top quite early. However, for the other groups, e.g.,
control and trend group in round 2, differences only arise at a later point of time.
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Figure 6.17: Average How much is still possible according to feedback groups for all complete datasets
without 6 outliers (N = 94). Again, value group is clearly the best in all rounds. In round 1, chart group
falls apart after month 3. trend group and value group are almost parallel at the end of round 2, and
value group is almost constant, i.e., almost optimal, in feedback rounds.
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group continuously improves in the other rounds. Besides this, there are no abrupt changes in How
much is still possible.

Note that trend and value group are almost parallel at the end of round 2. Thus trend group is
possibly able to control the model almost as well as value group under feedback at this time point.
However, without feedback in performance rounds, trend group does not achieve the level of value
group.

6.3.2 Use of potential

For more insight into the performance of the participants, we determined the Use of potential, which
is kind of a derivative of How much is still possible (see Section 5.1). Use of potential for all participants
over all rounds is shown in Figure 6.18. Especially round 1 shows some severe outliers. One can also
determine from the plot that performance is generally increasing during rounds 1–3 and that there is
a big spread in round 4.
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Figure 6.18: Use of potential for all complete datasets without 6 outliers (N = 94) over all rounds (one
round consists of 10 months). Especially round 1 shows some severe outliers.

Figure 6.19 contains the average Use of potential for each feedback group over all rounds. This
plot reveals much more detail on the performance of the different groups. Value group is always
on top as expected and almost constant in feedback rounds, but decreases slightly in performance
rounds. This means that the performance of participants in this group is on a very high level from
the beginning and hardly improves, in fact rather impairs.

All other groups show a more or less severe decline at the beginning of round 4 with control and
highscore group at the one end and trend group at the other. However, all groups except value group
seem to improve their performance during the first three rounds. In contrast to all other groups,
chart group oscillates in the first round with huge amplitude, which again suggests that participants
in this group were confused by the feedback. Figure 6.20 gives an impression of this oscillation in
comparison to the overall average. Although there is no direct evidence, it seems quite likely that
Hypothesis (10) is true.
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Figure 6.19: Use of potential according to feedback groups for all complete datasets without 6 outliers
(N = 94) over all rounds (one round consists of 10 months). value group is always on top and almost
constant in feedback rounds, but decreases slightly in performance rounds. All other groups show a
more (control and highscore group) or less (trend group) severe decline at the beginning of round 4.

0 10 20 30

-4

-3

-2

-1

(x10
4
) Analysis function 7

Month

Po
te

n
ti

a
l 
fo

r 
a
ll 

ro
u
n
d
s

Average

(a) All

0 10 20 30

-6

-4

-2

(x10
4
) Analysis function 7

Month

Po
te

n
ti

a
l 
fo

r 
a
ll 

ro
u
n
d
s

Average

(b) Chart

Figure 6.20: Use of potential for all complete datasets without 6 outliers (N = 94) and those in chart
group over all rounds (one round consists of 10 months). In the first round, chart group oscillates
with huge amplitude. During feedback rounds, the group average increases and shows a sharp de-
cline at the beginning of round 4.
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(b) Participant 164
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(d) Participant 208

Figure 6.21: Use of potential for four single participants from value group over all rounds (one round
consists of 10 months). These four participants exhibit different patterns: participants 134 and 164
seem to more or less copy the optimal solution in the feedback rounds (remember that the feedback
for these participants consisted of the numeric values of the optimal solution), whereas especially
participant 208 seems not to copy the solution. The success in performance rounds also varies a
lot: participant 164 seems to remember the solution (round 1 and round 3 have the same initial val-
ues), but participant 134 obviously does not. Participant 165, who changes strategy during feedback
rounds, decreases in round 3, too. Participant 208, however, stays on the same level throughout all
rounds.
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Figure 6.22: Use of potential for two single participants from trend group over all rounds (one round
consists of 10 months). Both participants reach a quite high level of Use of potential and seem to
learn how to control the model. Participant 115 shows monotonically increasing curves during the
first two rounds and comes close to optimality at the ends.
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Figure 6.23: Shirt price decision of participant 188 (chart group) in round 3. Although already in
a performance round, the participant seems quite unsure about the right strategy and changes the
control a lot. This participant achieved a model knowledge of 2.
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control highscore indicate trend value chart

Mean -31807.3 -32308.6 -27065.5 -31202.2 -32194.4 -29073.8
KS test 0.2192 0.6468 0.5051 1.0000 0.6880 0.9652
t-test — 0.8988 0.1455 0.8231 0.9335 0.4110

Table 6.29: Comparison of Use of potential by feedback groups in first month for all complete datasets
without 6 outliers (N = 94): no significant differences between groups. Values can be considered to
be normally distributed.

A more detailed look on some single participants in value group reveals different decision patterns,
although sample numbers of the group are too small to derive trustworthy results. Figure 6.21 shows
Use of potential for participants 134, 164, 165, and 208. Participants 134 and 164 seem to more or less
copy the optimal solution in the feedback rounds. Remember that feedback for these participants
consisted of the numeric values of the optimal solution. Participant 208, in contrast, seems to pursue
a different strategy which is less solution-oriented.

The success in performance rounds also varies a lot: participant 164 seems to remember the solu-
tion, which is especially useful in round 3 as it started with the same value as round 1, but participant
134 obviously does not and lacks knowledge how to control the model. Participant 165, who seems to
change strategy during feedback rounds from exploration to solution-oriented, decreases in round
3, too. Participant 208, who possibly has found an own strategy, stays on the same level throughout
all rounds.

For comparison, we also investigate two participants from trend group, participants 110 and 115,
see Figure 6.22. Both participants reach a quite high level of Use of potential and learn how to con-
trol the model. Participant 115 shows monotonically increasing curves during the first two rounds
converging to 0, i.e., comes close to optimality at the end of each round. Not surprisingly, a solution-
oriented pattern like among the participants from value group in Figure 6.21, cannot be observed
due to the different type of feedback.

Finally, Figure 6.23 shows the shirt price decision of a participant 188 from chart group. Although
already in a performance round, the participant seems quite unsure about the right strategy and
changes the control a lot. Such a pattern at that time point can particularly be found among the
datasets from chart group. This again supports Hypothesis (10).

6.3.3 Participants’ Prerequisite
One could argue that, given the low number of samples for some groups, participants in differ-
ent groups had different prerequisites, e.g., one group simply consisted of better problem solvers
at the beginning of the study. This would obviously have biased the groups’ performance. The
optimization-based analysis gives us the possibility to check this by comparing the first Use of po-
tential value. At this point, all participants had received the same information, as feedback only
started after the first decision, so there should be no significant difference in the performance.

Table 6.29 contains mean values, KOLMOGOROV-SMIRNOV test results, and WELCH’s t-test results
(in comparison to control group). The KOLMOGOROV-SMIRNOV test shows that the first Use of poten-
tial values can be considered to be normally distributed for all groups. No significant differences to
control group can be observed by the WELCH’s t-test for all groups, so we can suppose that there were
no systematic differences among the participants of the six groups. Correlation between first Use of
potential and score in performance rounds is 0.067. This also proves Hypothesis (9).
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Round control highscore indicate trend value chart

1 -30622.4 -30836.2 -18760.4 -23089.9 -2969.4 -48049.1
2 -21556.0 -21706.3 -18897.0 -12217.8 -2708.2 -20016.8
3 -21286.8 -20595.5 -15387.0 -10933.9 -5267.3 -18001.7
4 -53127.9 -47590.5 -39841.6 -27086.2 -13237.8 -31695.5

(a) Means

Round control highscore indicate trend value chart

1 0.3517 0.2169 0.8968 0.4475 0.1231 0.1954
2 0.8416 0.7342 0.4724 0.0730 0.8747 0.9185
3 0.6993 0.6605 0.9975 0.7083 0.9003 0.7388
4 0.5704 0.6928 0.7805 0.4309 0.4863 0.6659

(b) KOLMOGOROV-SMIRNOV test

Table 6.30: Regression c by feedback groups for all complete datasets without 6 outliers (N = 94):
means and KOLMOGOROV-SMIRNOV test. The values of all groups can be considered to be normally
distributed in all rounds.

6.3.4 Learning
To enable conclusions on learning effects, we used R’s lm to fit a linear model for Use of potential for
each participant and each round,

y = m · x + c, (6.1)

with the regression parameters m and c, which estimate the gradient and the intercept of Use of
potential. An estimate for the gradient, vice versa, characterizes how much more potential the par-
ticipant was able to use over time, i.e., how much the participant learned. Therefore regression m is
used as a measure for learning in the remainder and Use of potential may also be considered as the
learning curve.

With this definition of learning, it is clear from the plot in Figures 6.19 and 6.20a that it makes
no sense to fit a logarithmic model to the learning curve, neither per group nor globally. The single
participant examples from Section 6.3.2 suggest that this is also not reasonable for most single par-
ticipants. One could argue that an appropriate scaling of the rounds due to their varying difficulty is
necessary, which could lead to different shape of learning curves. There is no objective measure how
to choose such a scaling though, making scaling totally arbitrary. Hypothesis (2) is thus disproved.

An important aspect is the choice of range for the fit in each round. Figure 6.24 illustrates the
problem for the value group. No feedback is given before the first decision and thus Use of potential
changes drastically from month 0 to month 1. As we use a linear model, including month 0 leads to a
very bad fit, which may not represent the gradient of Use of potential at all (Figure 6.24a). Without first
month (Figure 6.24b), the fit is good for both control and highscore group and optimization-based
feedback groups (see also Figure 6.25). In performance rounds, this effect does not occur, so all
months are considered.

Mean values and KOLMOGOROV-SMIRNOV test results for regression parameter c can be found in
Table 6.30. The values can be considered to be normally distributed for all groups in all rounds.
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(b) Without first month in feedback rounds

Figure 6.24: Regression lines for Use of potential for value group over all rounds (one round consists
of 10 months). In feedback rounds, participants received feedback only from month 1 on, i.e., after
their first decision, due to the way feedback was computed for chart group. (a) shows a regression
with all months of each round, for (b) the first month of feedback rounds has been excluded. It is
necessary to exclude the first month of each feedback round, as the regression result with all months
does not represent the actual gradient of the Use of potential function. See Figure 6.25 for a compar-
ison with other groups.
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However, for the remaining analysis, we concentrate on parameter m.
Table 6.31 contains mean values, KOLMOGOROV-SMIRNOV test results, and WELCH’s t-test results

for regression parameter m by feedback groups. The values can also be considered to be normally
distributed in all rounds except for chart group in round 1. Trend group is the only group with a sig-
nificant learning effect in both rounds 1 and 2. For control group, the learning effects get significant
from round 2 on, and for highscore group they are significant in rounds 2 and 4. The mean values in
performance rounds for control and highscore group are drastically higher than for the optimization-
based feedback groups. Value group is the only one with a significantly decreasing performance in
round 3 and also the only one with an overall mean below 0. Overall, participants show significant
learning effects in all rounds except for round 3, as Table 6.32 shows. This proves that participants
learn to control the model, which is hypothesis (1).

Figures 6.26–6.30 contain the fits for control, highscore, indicate, trend, and chart group. Control
and highscore group increase during all rounds, but exhibit a decline at the beginning of round 3
and the most severe decline at the beginning of round 4. Indicate group shows a slight increase
throughout all rounds, but stays approximately on the same level during the first three rounds. After
an increase in the feedback rounds on a rather high level, trend group decreases slightly without
feedback in round 3, but increases again in the last round. As already mentioned, chart group shows
a lot of oscillation in round 1, so the fit for this round is almost meaningless. This changes for rounds
2–4.

A plot with connected regression lines for Use of potential for all groups in Figure 6.31 shows that
in feedback rounds, all groups except value group seem to learn. The decrease at the beginning of
round 4 is much smaller for groups with optimization-based feedback. Together with the results from
Table 6.31, Hypotheses (4) and (5) can thus be considered proved.

6.3.5 Optimization-based Feedback
In Table 6.34, control and highscore group are compared with optimization-based feedback groups.
The mean for parameter m for the latter is higher in round 1 and lower in all other rounds. This
suggests that, given the performance of these groups, optimization-based feedback groups learned
faster, namely mainly in the first round. However, WELCH’s t-test only shows significance for rounds
2–4. Thus there is only indication that Hypothesis (3) might be true, but it cannot be fully proved with
our data.

6.3.6 Performance
Another essential question is if there is a connection between performance and learning. To check
if high performers also learned much, the datasets have been divided into three groups based on
quartiles. High group contained all datasets above the higher quartile, mid group all between lower
and higher quartile, and low group all below the lower quartile. Table 6.33 shows the mean values
for parameter m and WELCH’s t-test results can be found in Table 6.35. High performers have the
highest mean for m in the first round and the lowest in all other rounds. The mean of high group,
however, is not significantly higher in round 1, but significantly lower in rounds 2–4.

The effects of learning on the performance on the other hand, are documented in Tables 6.36,
6.37, and 6.38. There are big differences, depending on whether only learning in round 1, learning in
feedback rounds, or learning in all rounds is considered. Remembering our findings up to this point,
this is not surprising.

Considering all rounds (Table 6.37), low group is significantly better than the other two in almost
all cases. This matches the means from Table 6.33, where low performers have by far the highest
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Round control highscore indicate trend value chart

1 599.1 767.5 359.9 1286.5 -91.3 2366.5
2 1140.9 965.4 714.2 725.0 22.2 610.7
3 814.4 350.8 104.6 -616.5 -448.5 294.7
4 3717.4 2837.5 1304.5 847.9 78.0 1097.9

Feedback rounds sum 1740.0 1732.9 1074.1 2011.5 -69.1 2977.2
Performance rounds sum 4531.8 3188.3 1409.2 231.4 -370.5 1392.6
Total sum 6271.8 4921.2 2483.2 2242.9 -439.6 4369.9

(a) Means

Round control highscore indicate trend value chart

1 0.1551 0.2901 0.7662 0.4528 0.0748 0.0493
2 0.5016 0.9603 0.9348 0.4203 0.6070 0.6826
3 0.8186 0.9434 0.7300 0.7786 0.4601 0.9627
4 0.9961 0.8713 0.8615 0.9498 0.9832 0.6299

(b) KOLMOGOROV-SMIRNOV test

Round control highscore indicate trend value chart

1 0.1051 0.1820 0.2194 0.0036 0.6708 0.0960
2 0.0002 0.0248 0.1263 0.0045 0.4718 0.0787
3 0.0002 0.1528 0.3853 0.9399 0.9646 0.2284
4 0.0000 0.0016 0.0435 0.1053 0.4542 0.0858

(c) WELCH’s t-test for µ>0

Round control highscore indicate trend value chart

1 0.8949 0.8180 0.7806 0.9999 0.3292 0.9040
2 0.9998 0.9752 0.8737 1.0000 0.5282 0.9213
3 0.9998 0.8472 0.6147 0.0601 0.0354 0.7716
4 1.0000 0.9984 0.9565 0.8947 0.5458 0.9142

(d) WELCH’s t-test for µ<0

Table 6.31: Parameter m by feedback groups for all complete datasets without 6 outliers (N = 94):
means, WELCH’s t-test, and KOLMOGOROV-SMIRNOV test. The values of all groups can be consid-
ered to be normally distributed in all rounds except for chart group in round 1. trend group is the
only group with a significant learning effect in the first two rounds, value group the only one with a
significantly decreasing performance in round 3.
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Round Mean t-Test µ> 0

1 879.1 0.0016
2 789.9 0.0000
3 154.0 0.1365
4 1991.2 0.0000

Table 6.32: Regression m for all complete da-
tasets without 6 outliers (N = 94): means and
WELCH’s t-test results (α = 0.05). Participants
show significant learning effects in all rounds ex-
cept for round 3, in which especially value group
is significantly < 0.

Round Low Mid High

1 305.2 924.5 1365.9
2 1439.3 637.2 433.2
3 549.4 148.2 -230.2
4 4409.5 1888.7 -230.4

Feedback 1744.4 1561.7 1799.2
Performance 4958.9 2036.9 -460.7
Sum 6703.3 3598.6 1338.5

Table 6.33: Means for regression m according to
performance in performance rounds (low: below
lower quartile, mid: between lower and higher
quartile, high: above higher quartile) for all com-
plete datasets without 6 outliers (N = 94): high
performers have the highest mean for m in the
first round and the lowest in all other rounds.

Round
Control & Opt.-based

Highscore (ch) Feedback (of )

1 651.2 1063.1
2 1086.6 550.3
3 670.9 -263.4
4 3445.1 817.0

(a) Regression m means

ch < of of < ch

0.2384 0.7616
0.9642 0.0358
0.9997 0.0003
1.0000 0.0000

(b) WELCH’s t-test

Table 6.34: Regression m comparison between control and highscore group on one side and groups
with optimization-based feedback on the other side for all complete datasets without 6 outliers (N =
94): those with optimization-based feedback learned more in round 1, control and highscore group
learned more in rounds 2–4. These differences are significant except for round 1.
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(b) highscore group
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(c) indicate group
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(d) trend group
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Figure 6.25: Comparison of regression lines for Use of potential by feedback groups for all complete
datasets without 6 outliers (N = 94) over all rounds (one round consists of 10 months). chart group
shows a lot of oscillation in round 1. The decrease at the beginning of round 4 is much smaller for
groups with optimization-based feedback. See Figures 6.24b, 6.26–6.30 for large plots of each group.
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Figure 6.26: Regression lines for Use of potential for control group over all rounds (one round consists
of 10 months). Use of potential increases during all rounds, but exhibits a decline at the beginning of
round 3 and a severe decline at the beginning of round 4. See Figure 6.25 for a comparison with other
groups.
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Figure 6.27: Regression lines for Use of potential for highscore group over all rounds (one round con-
sists of 10 months). Use of potential increases during all rounds, but exhibits a decline at the begin-
ning of round 3 and a severe decline at the beginning of round 4. See Figure 6.25 for a comparison
with other groups.
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Figure 6.28: Regression lines for Use of potential for indicate group over all rounds (one round con-
sists of 10 months): the group shows a slight increase throughout all rounds, but stays approximately
on the same level during the first three rounds. See Figure 6.25 for a comparison with other groups.

●

●
●

●

● ●

●

●
●

●

●

●

● ●
●

● ●

●
●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

● ● ● ●
●

●
●

−6 × 10+4

−4 × 10+4

−2 × 10+4

 0 × 10+0

0 10 20 30

Month

U
se

 o
f p

ot
en

tia
l

Figure 6.29: Regression lines for Use of potential for trend group over all rounds (one round consists
of 10 months). After an increase in the feedback rounds on a high level, Use of potential decreases
in round 3 without feedback, but increases again in the last round. See Figure 6.25 for a comparison
with other groups.
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Figure 6.30: Regression lines for Use of potential for chart group over all rounds (one round consists
of 10 months). This group exhibits lots of oscillation with high amplitude in round 1, which may be
an indicator that participants in this group have been confused by the feedback. Oscillation almost
vanishes in rounds 2–4. See Figure 6.25 for a comparison with other groups.
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Figure 6.31: Connected regression lines for Use of potential (co: control, hs: highscore, in: indicate,
tr: trend, va: value, ch: chart) for all complete datasets without 6 outliers (N = 94) over all rounds (one
round consists of 10 months). In feedback rounds, all groups except value group seem to learn. The
decrease at the beginning of round 4 is much smaller for groups with optimization-based feedback.
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Round Low < High High < Low Low < Mid Mid < Low Mid < High High < Mid

1 0.1238 0.8762 0.0953 0.9047 0.3181 0.6819
2 0.9933 0.0067 0.9852 0.0148 0.7312 0.2688
3 0.9796 0.0204 0.8511 0.1489 0.9127 0.0873
4 1.0000 0.0000 0.9999 0.0001 0.9999 0.0001

Table 6.35: WELCH’s t-test for regression m according to performance in performance rounds (low:
below lower quartile, mid: between lower and higher quartile, high: above higher quartile) for all
complete datasets without 6 outliers (N = 94): the mean of high group, see Table 6.33, is not signifi-
cantly higher in round 1, but significantly lower in rounds 2–4.

Round Low Mid High

1 101174.3 100803.0 -6349.5
2 -24182.7 -17629.0 -47593.9
3 148725.0 148247.0 158990.9
4 300693.4 208536.8 234434.3

3 & 4 449418.4 356783.8 393425.2
Sum 526410.0 439957.8 339481.8

(a) Score means

Low < High Mid < High Low < Mid

0.9876 0.9955 0.5045
0.8493 0.9578 0.3741
0.3708 0.2696 0.5061
0.8734 0.3147 0.9620

0.7539 0.2970 0.8862
0.9437 0.8775 0.7696

(b) WELCH’s t-test

Table 6.36: Performance according to learning, i.e., regression m, in feedback rounds (low: below
lower quartile, mid: between lower and higher quartile, high: above higher quartile) for all complete
datasets without 6 outliers (N = 94): high group is significantly lower than the other two in round 1,
but almost all other differences are not significant. Low learning in feedback rounds results in good
performance, especially in the last round, which is due to the value group’s low learning in feedback
rounds.

sum of learning over all rounds. For feedback rounds, high group has a significantly lower score
than the other groups in round 1, but almost all other differences are not significant. Considering
only learning in round 1, mid group has the highest score mean in all rounds, but is significantly
better than low and high group only in two rounds. In this analysis, it might seem like learning was
counterproductive at first, but note also that value group has a very low average learning, but high
average performance values.

So we can neither prove nor disprove Hypotheses (7) and (6). Anyhow, there is some evidence that
(moderate) learning in the first round was crucial for performance and that low performers learn
later.

6.3.7 Knowledge andUncertainty
Finally, we want to have a look at the connection between learning and model knowledge and uncer-
tainty. Therefore, datasets have been divided into groups with high (4–5), mid (2–3), and low (0–1)
model knowledge and uncertainty respectively. Note that there were no datasets with high uncer-
tainty.

The average Use of potential for the three model knowledge groups can be found in Figure 6.32.
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Round Low Mid High

1 124159.3 82159.9 6398.1
2 5425.6 -23146.4 -66627.3
3 179437.8 154541.1 116214.4
4 361354.9 237016.9 119185.7

3 & 4 540792.8 391558.0 235400.2
Sum 670377.7 450571.5 175171.0

(a) Score means

Low > High Mid > High Low > Mid

0.0010 0.0154 0.0950
0.0002 0.0075 0.0497
0.0078 0.0587 0.1321
0.0000 0.0149 0.0033

0.0001 0.0157 0.0098
0.0000 0.0009 0.0115

(b) WELCH’s t-test

Table 6.37: Performance according to learning, i.e., regression m, in all rounds (low: below lower
quartile, mid: between lower and higher quartile, high: above higher quartile) for all complete da-
tasets without 6 outliers (N = 94): in almost all cases, low group performed significantly better than
mid group, and mid group vice versa performed significantly better than high group.

Round Low Mid High

1 61209.2 124516.0 -11834.4
2 -51613.0 -12166.2 -30633.9
3 117780.8 172313.9 143807.1
4 183177.5 276613.1 221470.5

3 & 4 300958.3 448927.0 365277.6
Sum 310554.5 561276.7 322809.3

(a) Score means

Low < High Mid > High Low < Mid

0.9537 0.0006 0.0166
0.1470 0.1360 0.0216
0.1815 0.0625 0.0314
0.2873 0.1552 0.0524

0.2378 0.1165 0.0327
0.4594 0.0052 0.0148

(b) WELCH’s t-test

Table 6.38: Performance according to learning, i.e., regression m, in first round (low: below lower
quartile, mid: between lower and higher quartile, high: above higher quartile) for all complete data-
sets without 6 outliers (N = 94): mid group performed best in all rounds, but is significantly better
than low and high group only in some rounds.
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Figure 6.32: Use of potential according to high, mid, and low model knowledge for all complete data-
sets without 6 outliers (N = 94) over all rounds (one round consists of 10 months). Participants with
low knowledge show a severe decline at the beginning of round 4, whereas they stay on the same level
in the rounds before. High and mid group show an increase in feedback rounds and high group also
stays almost on the same level in round 4.
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Round Low Mid High

1 93.3 1013.0 1086.4
2 666.2 888.5 691.6
3 111.0 301.0 -70.5
4 3257.4 1979.4 1312.6

(a) Means for Regression m

Low < High Mid < High Low < Mid

0.0207 0.4518 0.0686
0.4788 0.7564 0.3262
0.6712 0.8680 0.3020
0.9828 0.8480 0.9291

(b) WELCH’s t-test

Table 6.39: Regression m according to model knowledge (low: below lower quartile, mid: between
lower and higher quartile, high: above higher quartile) for all complete datasets without 6 outliers
(N = 94): those with low model knowledge learned less in the first round, and more in the last round.
In comparison with high group, this is significant.
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Figure 6.33: Use of potential according to low and mid model uncertainty for all complete datasets
without 6 outliers (N = 94) over all rounds (one round consists of 10 months). Note that there were
no datasets with high uncertainty. low group shows a smaller decrease at the beginning of round 4.
Apart from this, no qualitative differences can be observed.

Participants with low knowledge show a severe decline at the beginning of round 4, whereas they stay
on the same level in the rounds before. High and mid group show an increase in feedback rounds and
high group also stays almost on the same level in round 4.

The values in Table 6.39 reveal that participants with low model knowledge learned significantly
less in round 1 than those with high knowledge. Again, the situation reverses in round 4. Hypothesis
(8) can thus be confirmed with a restriction to round 1.

For model uncertainty, see Figure 6.33, low group shows a smaller decrease at the beginning of
round 4. Apart from this, no qualitative differences can be observed.
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CHAPTER 7

Conclusion andOutlook
In this work, optimization methods were used in the context of Complex Problem Solving (CPS) at dif-
ferent levels: first, in the design stage of the complex problem scenario, second, as an analysis tool,
and third, to provide feedback in real time for learning purposes. While first works on optimization-
based analysis for CPS [111, 112] had a focus on understanding how external factors influence think-
ing, in the work at hand, we also investigated learning effects. The use of optimization as an analysis
and feedback tool for psychological studies is completely new to our knowledge.

We explained what characteristics complex problems have and how the domain CPS emerged from
the basic developments in the cognitive revolution. Among the coexisting models of human problem
solving, functionalism which sees problem solving as information processing is the most important
in the context of microworlds like IWR Tailorshop.

Different problem classes of optimization problems were formulated and we derived the discret-
ized mixed-integer optimal control problem which can be considered a mixture of mixed-integer
nonlinear programs and mixed-integer optimal control problems and can be used to describe both
Tailorshop and IWR Tailorshop. For MINLPs, the generic optimization algorithms branch and bound
and outer approximation were described and for the underlying NLPs, we considered interior point
and SQP methods.

We presented a new microworld for complex problem solving, the IWR Tailorshop. This turn-based
test-scenario yields a mixed-integer nonlinear program with nonconvex relaxation and consists of
functional relations based on optimization results. With the IWR Tailorshop, we intend to start a new
era beyond trial-and-error in the definition of microworlds for analyzing human decision making.

Compared to the Tailorshop, the variety of variables was shifted towards a more abstract level. The
participants have to take care of the number of production sites of their company instead of buying
or selling single machines, for instance. This abstract level was chosen for IWR Tailorshop, because it
yields a more realistic position as a decision maker for the participants. The final model consists of
14 state variables and ten control variables including five integer controls.

For the optimization-based analysis, we solved a series of optimization problems for each partic-
ipant. By starting an optimization in the microworld state a participant achieved for each month,
we were able to determine how much could have been achieved if the participant’s decisions would
have been optimal. The How much is still possible-function which consists of these values gives in-
sight when decision were bad or good respectively. The derived Use of potential-function indicates
how much of the potential of optimal decisions was used by a participant. Our extension of this ap-
proach to the computation of an optimization-based feedback is quite similar. Starting from the state
a participant derived until a certain month, we either computed optimal solutions for the next month
or derived (pseudo-)sensitivities for the previous controls. Types of feedback presentation included a
simple highlighting, arrows indicating the direction of the optimum, the exact optimal control value,
and a bar chart with sensitivity information.

We investigated different reformulations for a minimum-expression in the sales equation. A linear
combination using binary variables (and a variation thereof) was derived beneath a generalized dis-
junctive programming formulation and a simple inequality reformulation. Numerical results showed
that a binary linear combination is the method of choice for IWR Tailorshop.
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Hypothesis Proved Hypothesis Proved

(A) participants with opt.-based
feedback perform better
overall

X (O) well-performers know more
about the model

X

(B) participants with opt.-based
feedback perform better in
feedback rounds

X (P) participants who know much
about the model perform
well

X

(C) participants with opt.-based
feedback perform better in
performance rounds

X (Q) value group knows less, trend
group knows most about the
model

—/X

(D) control group performs worst — (1) participants learn to control
the model

X

(E) control group performs worse
than opt.-based groups in
performance rounds

X (2) learning function is
approximately logarithmic

—

(F) trend group performs best
overall

— (3) optimization-based feedback
groups learn faster

(X)

(G) trend group performs best in
performance rounds

— (4) value group does almost not
learn in feedback rounds

X

(H) value group performs best in
feedback rounds

X (5) trend group learns fastest X

(I) value group performs better in
feedback rounds, worse in
performance rounds

(X) (6) participants who learn much
perform well

?

(J) participants with high BFI-10
values perform worse/better

— (7) participants who perform
well learned much

?

(K) participants who play
computer games regularly
perform better

— (8) participants with high model
knowledge learned more

X

(L) participants interested in
economics perform better

— (9) initial performance is not
important for final
performance

X

(M) participants who solve
problems systematically
perform better

— (10) chart group suffered from
feedback

(X)

(N) control group needs more
time than opt.-based feedback
groups

—

Table 7.1: Overview of results for hypotheses in this work.
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To be able to get upper bounds for the resulting problems within reasonable times, we proposed
a tailored decomposition approach, where the problem is divided into a master problem and several
subproblems. This decomposition is built such that it yields a valid upper bound for the correspond-
ing global solution of the original problem and thus can be used as an indicator for the quality of
local solutions of the original problem.

We showed promising numerical results using this decomposition approach, which indicated a
high potential. In a first (worst-case like) scenario with fixed variables, the gap between decompo-
sition and original problem was between 4.0% and 16.3%, while the original problem could also be
solved to global optimality. In a second scenario, it alternated between 4.0% and 8.0%. For this sce-
nario, only with the decomposition it was possible to get a globally optimal solution for more than
2 turns. The computation times for the decomposition are below 2 min even for 10 turns with the
global solver Couenne. Here, in future work, an approach could be to create microworlds which are
actually defined as a decomposed model. The benefit of such a test-scenario would be twofold. On
the one hand, if the model size and structure is comparable to the IWR Tailorshop, the decomposition
gap would then be 0, of course, i.e. under certain circumstance one would be able to compute glob-
ally optimal solutions for the actual microworld. Furthermore, with an appropriate structure, these
scenarios could also be used for investigation of group decision making while several participants
control different parts of the model.

The parameter set used for the computations in this work has been set up manually to achieve
a reasonable model behavior. Here we still see high potential for improvement. One could use
derivative-free optimization methods to optimize the parameter values such that two (or even more)
previously defined strategies (e.g., a high and a low price strategy) yield a similar objective value. By
that, participants could follow different strategies and perform quite well in all of them if decisions
are made appropriate.

In our web-based feedback study with 148 participants, we used the IWR Tailorshop microworld to
investigate the effects of optimization-based feedback. An overview of the results for all hypotheses
is given in Table 7.1. We could show that such a feedback can significantly improve participants’ per-
formance in a complex microworld and for some kinds of feedback, the difference to control group
was huge. However, it also became apparent that the representation of feedback is important. Feed-
back based on a kind of sensitivity information seemed to rather confuse participants in this study,
which was also suggested by our optimization-based analysis.

The best-performing group was the value group which received the most precise information
about the optimal solution. Knowledge about the model was better amongst another well-performing
group, the trend group. Since we could show that model knowledge is a predictor for performance,
perhaps these participants would have outperformed the others on a longer timescale. More data is
needed to verify this hypothesis, though.

There were significant differences between participants of different age. Because of the unbal-
anced distribution of age in this study, potential influence of fluid and crystallized intelligence should
be investigated again, e.g., by a study with controlled age distribution and less feedback groups. In
contrast, interest in economics, playing computer games regularly, and solving problems systemati-
cally in general (all as claimed by the participants) had no effects on the result.

Surprisingly, women could profit from optimization-based feedback only in the first round in this
study. More research is necessary to determine if there is a systematic difference between women
and men regarding an optimization-based feedback. This could be done, e.g., via a study with only
one feedback and a control group with approximately equal gender ratios.

Optimization-based analysis could show that participants learn to control the model over time by
an analysis of Use of potential. Different aspects of the analysis indicate that for a high performance,
learning during the first round is crucial. It turned out that the best way to enforce learning at the be-
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ginning was by trend feedback. Through the optimization-based analysis, we were also able to show
that there were no systematic differences between the groups at the beginning and that initial per-
formance was not relevant for performance at the end of the time scale. For some of the hypotheses,
however, significance could not or only partly be shown. In these cases, more data and investigation
will be necessary.

Another interesting aspect of future research could be if the widely spread assumption that positive
feedback increases performance is true. In [12] it has been shown that negative feedback impairs
performance. However, it is unclear if this is also true in the long run. From former studies we know
that positive and negative feedback lead to different processing styles. Therefore one could expect
that a quotient of positive and negative feedback (carrot and stick) impairs performance the most.
40% positive feedback and 60% negative feedback might lead to the best performance, for instance.

Finally, another exciting question which could be treated within the IWR Tailorshop framework is
if humans unconsciously try to control a linearized version of the model. However, this question is
only reasonable for participants who acquired enough model knowledge and know about most de-
pendencies between the model variables. In our study, feedback was used to train participants to the
nonlinear model, thus the study data cannot be used in this respect. Therefore, this aspect should
possibly be treated in another study where participants are shown all dependencies at the begin-
ning. Then one could compare their decisions with optimal solutions for a linearized IWR Tailorshop
model.
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APPENDIX A

Implementation Details of theOptimization Framework
This chapter describes the software developed for analysis and training of human decision making
within this thesis. There are two parts of the software: a web front end for participants with support
for optimization-based feedback and a back end for the analysis of datasets collected within the front
end. Both front and back end are published as open-source software under GPL version 3.

A.1 Web Front End
Computer-based test scenarios like IWR Tailorshop emerged in CPS in a time when Internet access
was only available for academic and military institutions if at all and the world wide web had not
been invented yet. Therefore, researchers had to conduct studies with test scenarios running on local
computers under their direct control. While this is beneficial for controlled experimental conditions,
it is also a severe limitation for collecting data—it costs both participants and experimenter much
time and parallelization is severely limited due to both equipment and staff.

In recent decades, Internet access became common for individuals and in recent years, mobile
devices with Internet access like smartphones and tablets became widely spread. This yields a large
potential for studies with microworlds as participants can in principle take part with their own device
from nearly all over the world. Of course, experimental conditions then are less controlled and the
experimenter has to judge how much control is needed from study to study.

A.1.1 AJAX-based Interface
At the beginning of the work on an IWR Tailorshop front end for the use by participants, we decided
to implement a web-based interface for several reasons. First, a web-based front end is portable to a
great extent as it basically only needs a device with a web browser (there always will be some require-
ments on the browser, though, as Netscape 4.73 might have some problems with your AJAX driven
interface) and thus can be run without additional software independently from the operating system
on a large number of devices. To be able to run the GW-BASIC interface of the original Tailorshop, for
instance, one nowadays needs DOSBox, a DOS emulator. Second, it drastically improves options for
parallelization. In principle, datasets can be collected massively parallel from participants all over
the world recruited via the Internet, if the corresponding web server can deal with it. On the other
hand, it is still possible to conduct studies in a local network, if more control on the conditions is
needed. And finally, in especially if AJAX is used for communication with the server, a web-based
implementation is easily extendible, e.g., with additional platform-specific implementations of the
front end.

A crucial requirement on the implementation of a microworld for CPS research is often to hide the
complexity of the test scenario, i.e., the microworld’s model with variable dependencies, from the
participants. This requires especially that participants cannot determine the model from HTML and
JavaScript code the web server delivers as clear text. Technically speaking, it should also not be pos-
sible to determine the model by reverse compiling of binary code, but this requires an incomparably
higher effort than choosing “view source code” from some menu and can thus be neglected here.
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There are three convenient options to avoid this problem: an Adobe Flash interface, a Java Applet,
and an AJAX-based XHTML and JavaScript interface running the model on a web server. The latter
can be combined, e.g., with a Flash interface, of course. Both Flash and Java Applets are regarded
somewhat outdated nowadays (although they were not at the beginning of the IWR Tailorshop devel-
opment) and are not available on mobile devices. Furthermore, although reverse compiling needs
more work, for Java’s and Flash’s byte code it is relatively easy (compared, e.g., to an optimized C
code).

The AJAX approach is to run the simulation on a server, which sends new values for states, feed-
back, and bounds on controls via XML upon request by the client. In general, this approach can be
combined with other interfaces, but XHTML with JavaScript is the most portable and efficient way.
To avoid manipulation by offensive users, it is important, however, that the server only accepts neces-
sary information, i.e., new control values, and determines all other information from, e.g., a database.
Server-side simulation requires more computing power from the web server, but enables usage with
mobile devices with an appropriate interface. For our purpose—computing an optimization-based
feedback online—it is particularly beneficial to run both simulation and optimization on the same
machine, which also has to be under our control for the execution of optimization software and thus
should be a server, not the client.

A.1.2 Front End and Back End Structure
Therefore, the IWR Tailorshop front end was implemented as an AJAX-based XHTML and JavaScript
interface together with a server-side PHP application. The PHP application is object-oriented with
problem-specific parts, e.g., the state progression function for simulation (see Chapter 4), encapsu-
lated in a problem class. The problem-specific JavaScript code handles the communication via AJAX
with the web server using the jQuery framework on the client. There are separate classes (and scripts)
processing the XML requests for surveys, high score, and simulation on the server. Data is stored in
a MySQL database on the server via the database abstraction layer PEAR MDB2 and for optimiza-
tion, optimizers Bonmin and Ipopt are called via the AMPL interface of IWR Tailorshop. Figure A.1
illustrates this setup. Configuration of the server-side software is done via a central configuration file.

Participants need to register and to successfully verify their e-mail address via an e-mail link to get
access to the interface. During the registration, a CAPTCHA needs to be solved correctly. Together
with the restriction to one account per address, this common method aims to both prevent bot and
duplicate registrations (although this is not a guarantee, of course). After logging in, the communica-
tion with the server is managed via AJAX, which additionally prevents accidental control submission
on a reload. Survey answers are sent to the server as a POST request and responded with either an er-
ror or a success message. For high score, on a GET request, the server sends an XML file with the high
score, see Listing A.2 for an example. For simulation, a POST request with the control values (without
states) is sent to the web server. The server determines previous states and the current month from
the database, applies the controls uk and sends an XML file with new state values xk+1, including
feedback and new bounds on controls. An example file is displayed in Listing A.1.

A.1.3 Optimization-based Feedback
Communication with AMPL for the solution of the optimization problems for optimization-based
feedback is done via data file generation with a template class. A template snippet is shown in List-
ing A.4. The AMPL execution file writes solutions in the tailor file format, which will be explained
below. Parallel execution of optimization tasks can be limited in the configuration file according to
the available hardware. A limitation is necessary and cannot be left to the operating system’s sched-
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<?xml version="1.0" encoding="utf-8" ?>
<tailorshop>

<newround>true</newround>
<hint>Hint message...</hint>
<month>

<id>1</id>
<state>

<name>EM</name>
<value>12</value>
<trend>1</trend>

</state>
...
<control>

<name>AD</name>
<value>1750</value>
<bounds>

<lower>1000</lower>
<upper>2000</upper>

</bounds>
<feedback>

<type>trend</type>
<value>-2</value>

</feedback>
</control>
...

</month>
</tailorshop>

Listing A.1: IWR Tailorshop XML for a simulation month with trend feedback.

<?xml version="1.0" encoding="utf-8" ?>
<tailorshop>

<highscore>
<item>

<rank>1</rank>
<name>Chuck</name>
<surname>Norris</surname>
<score>238192</score>

</item>
</highscore>
...
<ownscore>-17329</ownscore>

</tailorshop>

Listing A.2: IWR Tailorshop high score XML.
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## TAILOR V2
## MODEL IWR-Tailorshop-2013-1
#
# tailor data file, generated by Antils on 2014-06-13 17:06:29
# contains a user data set with 4 rounds and optimal solutions.
#
## BEGIN PROPERTIES
## feedback 2
## age 2
## gender 0
## economics 0
## problems 1
## games 1
## bfi10_agreeableness 5
## bfi10_conscientiousness 6
## bfi10_extraversion 8
## bfi10_neuroticism 7
## bfi10_openness 10
## model_knowledge 3
## model_uncertainty 1
## END PROPERTIES

## BEGIN ROUND
# month x_employees x_prodSites x_distSites x_shirts...
0 14 1 1 319 ...
1 16 2 2 319 ...
2 15 2 2 319 ...
3 15 3 3 319 ...
4 15 4 5 172.5129...
5 16 5 6 36.31878...
6 18 6 6 36.31878...
7 18 6 6 36.31878...
8 18 6 6 36.31878...
9 18 6 6 36.31878...
10 18 6 6 36.31878...
## BEGIN SOLUTION
8 18 6 6 36.31878...
9 25 6 6 36.31878...
10 21 5 5 36.31878...
## END SOLUTION
...
## END ROUND
...
#
# End of file iwrtailorshop_u1337.tailor
#

Listing A.3: IWR Tailorshop tailor-File.

164



IMPLEMENTATIONDETAILSOF THEOPTIMIZATION FRAMEWORK APPENDIXA

MySQL
Database AMPL

Bonmin Ipopt

index.php xml_request.phpsurvey.php highscore.php

CLIENT
tailorshop.js

Web Interface

Login Interface Answers Highscore uk xk+1

WEBSERVER

Figure A.1: Schematic representation of IWR Tailorshop web front end structure.

uler because idle time is a crucial factor for participants and may decide on complete or incomplete
datasets. Parallel execution may also need to be limited because of the available main memory. Lim-
itation is realized via a database table (see Figure A.2, table schedule) for running and waiting opti-
mization tasks, which are queued, and can be supplemented by a hard time limit for the individual
computations.

A.1.4 Database
A MySQL database is used to store all accumulating data. Sensitive information, e.g., user passwords,
are saved as salted SHA-256 hashes, which inhibits simple dictionary attacks and drastically increases
the effort required to restore passwords in case of data theft. SHA-256 is an SHA-2 method and re-
garded as safe until the writing of this work, e.g., by the National Institute for Standards and Technol-
ogy (NIST). To prevent SQL injection attacks, prepared statements are used throughout the server-side
software.

In Figure A.2, a scheme of the database is shown. The relational database model separates data
gained from the surveys and the problem solving from personal information about the users. This is
necessary anyway for an anonymized analysis of the data. Keys in the database are user_id, an iden-
tification number for users referred to, e.g., in Chapter 6, and initial_id, an identification number
for initial value sets. Data about users’ login and logout is also saved in the database (table log) for
analysis of processing times, but as HTTP is a stateless protocol, especially logout events cannot be
tracked reliably.

A.1.5 Language Support
The interface supports multiple languages and receives all language-specific text elements from da-
tabase table language. English and German were available for the web-based feedback study. Lan-
guage support can easily be extended by translating the text fragments for all labels, which are re-
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#####################################################################
#
# iwr-tailorshop_web.dat
#
# An AMPL version of the IWR Tailorshop model for execution from the
# web interface, data file
#
#####################################################################

#####################################################################
# Global Settings
#
param NS := ^start_month/$; # First month
param NX := ^last_month/$; # Last month + 1
param NTM := ^test_months/$; # Number of test phase months

#####################################################################
# Parameters
#
...

#####################################################################
# Initial Values
#
let x_EM [NS] := ^EM/$; fix x_EM [NS];
let x_PS [NS] := ^PS/$; fix x_PS [NS];
let x_DS [NS] := ^DS/$; fix x_DS [NS];
let x_SH [NS] := ^SH/$; fix x_SH [NS];
let x_PR [NS] := ^PR/$; fix x_PR [NS];
let x_SA [NS] := ^SA/$; fix x_SA [NS];
let x_DE [NS] := ^DE/$; fix x_DE [NS];
let x_RE [NS] := ^RE/$; fix x_RE [NS];
let x_SQ [NS] := ^SQ/$; fix x_SQ [NS];
let x_MQ [NS] := ^MQ/$; fix x_MQ [NS];
let x_MO [NS] := ^MO/$; fix x_MO [NS];
let x_CA [NS] := ^CA/$; fix x_CA [NS];
...

Listing A.4: Snippet from IWR Tailorshop data file template: placeholders are enclosed by ˆ and /$.
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data
user_id
received
month
initial_id
performance
highscore_high
highscore_low
x_employees
…

initial
initial_id
x_employees
…

language
name
language
value

log
user_id
action
received
user_agent
ip

login
user_id
salt
login
last_visit
agent

solutions
user_id
computed
received
mode
month
start_month
end_month
valid
x_employees
…

schedule
schedule_id
user_id
received
month
status

survey
user_id
general_games
…

users
user_id
name
surname
email
salt
password
…

Figure A.2: Database scheme: tables and keys for IWR Tailorshop web interface.

placed in templates and XML responses on the fly, and using a corresponding language identifier
(e.g., de_DE for German).

A.2 Data Formats
XML formats are easily extendible and methods for reading and writing are widely available. How-
ever, the disadvantages are that XML involves a big data overhead and from AMPL, e.g., it is easy to
write a CSV-style file, but much more difficult to write an XML file. Therefore, there are two data
formats available for data export from the database in the web interface: an XML format and the
tailor format, which basically is a character-separated values format with tabulator as separator. An
example for the tailor format is shown in Listing A.3, an XML example in Listing A.5. Datasets can be
exported automatically from the database with an export tool in both formats.

The tailor format was already used in Tobago, an analysis software for the original Tailorshop mi-
croworld [112]. In tailor format version 2 (i.e., the version for IWR Tailorshop) at the top, there is
information on format and model version,

## TAILOR V2

## MODEL IWR-Tailorshop-2013-1

while V2 indicates version 2. The tabulator-separated data is enclosed by meta information initiated
by a double number sign, ##, and followed by a keyword like BEGIN ROUND. Lines starting with a single
# are meant to be ignored. The number sign # has been chosen because it is also used for comments
in the AMPL syntax. The keywords separate the different parts of data contained in a tailor file, like
rounds and optimal solutions. In the head, meta data can be included with the keywords BEGIN/END
PROPERTIES. This format is also used for AMPL optimization results within both the web interface
and the analysis software.
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<?xml version="1.0" encoding="UTF-8"?>
<tailorshop>

<round>
<month>

<id>0</id>
<state>

<name>EM</name>
<value>12</value>

</state>
...
<control>

<name>SP</name>
<value>41</value>

</control>
...

</month>
...
<solution>

<start>0</start>
<month>

<id>0</id>
<state>

<name>EM</name>
<value>12</value>

</state>
...
<control>

<name>SP</name>
<value>55</value>

</control>
...

</month>
</solution>
...

</round>
...

</tailorshop>

Listing A.5: IWR Tailorshop XML file.
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Figure A.3: Antils—the IWR Tailorshop analysis and optimization back end with all optimal solutions
for variable capital for a single data file.

A.3 Analysis Back End
The analysis and optimization back end software Antils, Analysis Tool for IWR Tailorshop Results and
Solutions, is based on Tobago, a software for the original Tailorshop microworld presented in [112].
It is an object-oriented C++ implementation using GTK+ for the user interface. Problem-specific
parts are again encapsulated in a problem class and thus, adaption to other microworlds with similar
properties should be possible without much effort. In general, compilation for Windows or OS X
should be possible, but for the results in this work, Antils has only been used on a Ubuntu Linux
distribution. A screenshot of Antils is shown in Figure A.3.

Antils reads and writes files in tailor format version 2 and is able to handle multiple datasets. It is
possible to review the user’s decisions and to simulate starting at an arbitrary time point. Antils offers
various plot possibilities using the PLplot library including, e.g., separate averages for each feedback
group and plots with all optimal solutions for one dataset. Plots can be exported as PDF and PNG
files. The software uses IWR Tailorshop’s AMPL interface for automated optimization to implement
the optimization-based analysis methods described in Chapter 3.

169



170



APPENDIX B

Statistical Hypothesis Tests
This appendix gives a short overview on statistical hypothesis test used for analysis of the web-based
study data in this thesis. Extensive introductions into mathematical statistics and statistical hypoth-
esis tests can be found, e.g., in [28, 98].

B.1 Hypothesis Tests
The aim of statistical hypothesis tests is to decide which one of two contrary assumptions about
some characteristic of the probability distribution of a population, hypotheses, is true based on a
given sample of that population and some statistical properties. Because of the data being realiza-
tions of random variables, there often is no definite result for such hypotheses. The approach is to
make a decision with a controlled probability of choosing the wrong hypothesis, which is called the
significance level and often denoted by α.

An analogy for a hypothesis test, which is commonly used, is a criminal trial. At the beginning of
the trial, there are two hypotheses. The first one is that the defendant is innocent, which is called
the null hypothesis H0 and assumed to be true at first. The second is that the defendant is guilty,
which is called the alternative hypothesis H1. The aim is to proof the alternative hypothesis, but
there are two types of possible errors. The defendant can be considered to be guilty based on the
available information, but in fact is innocent, which is called a type I error. Vice versa, the defendant
can be considered to be innocent, but is guilty. This is called a type II error. Usually, one strives
for minimization of the probability for a type I error, i.e., one wants to avoid the conviction of an
innocent. Unfortunately, it is not possible to control the probability of both types of errors at the
same time in general, thus the probability for a type II error can be high in this setting.

The conventional approach of statistical hypothesis tests can be described as follows:

1. Formulate the null hypothesis H0 and the alternative hypothesis H1

2. Choose the appropriate test and test statistic T

3. Select the significance level α, the limit on the probability for a type I error, below which the
null hypothesis will be rejected

4. Determine the critical region C in which the null hypothesis will be discarded for test statistic
T and significance level α

5. Determine the sample’s Tobs for the test statistic

6. Decide to keep or discard the null hypothesis depending on whether Tobs is within the critical
region, i.e.,

Tobs ∈C ⇒ discard H0, H1 true

Tobs ∉C ⇒ keep H0

However, in statistics software like R or SPSS, the approach slightly differs, as no significance level is
set in advance in the software but a p-value is computed. The p-value is the probability to determine
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a sample at least as extreme as the observed one under the assumption that the null hypothesis is
true. It is common practice to reject the null hypothesis if the corresponding p-value is below a
significance level α, which is often chosen to be 0.05 or 0.01. In this work, significance level α= 0.05
was used in all hypothesis tests. Pestman [98] gives the following formal definition of a test.

Definition B.1 A hypothesis test is understood to be an ordered sequence

(X1, . . . , Xn ; H0, H1;C ), (B.1)

where X1, . . . , Xn is a sample, H0 and H1 are hypotheses concerning the probability distribution of
the population, and C ∈Rn a Borel set. The set C is called the critical region in the hypothesis test. If
the outcome of (X1, . . . , Xn) is an element of C , then H1 is accepted; if not, then H0 is accepted.

In the remainder of this Appendix, we give an overview of hypothesis tests applied to the data from
the web-based feedback study in Chapter 6 in this work.

B.2 Tests forMeanValues
The most important tests in Chapter 6 are tests for comparing means of different samples. There are
two well-known hypothesis tests for this purpose, depending on whether the two samples have equal
or unequal variances. Both tests require normally distributed populations. For the following, let
X1, . . . , Xn and Y1, . . . ,Ym be two statistically independent samples of sizes n and m from N (µx ,σx )-
and N (µy ,σy )-distributed populations with unknown µx , µy , σx , and σy . We denote the samples’
means by

X = 1

n

n∑
i=1

Xi , Y = 1

m

m∑
i=1

Yi . (B.2)

For a given ∆ (in Chapter 6, we always have ∆ = 0), the hypotheses we want to test are

H0 : µy −µx =∆ against H1 : µy −µx 6=∆. (B.3)

With σX = σY , i.e., equal variances, the test statistic is t-distributed with m + n − 2 degrees of
freedom under the null hypothesis and the two-sided STUDENT’s t-test can be applied with

Tobs =
Y −X −∆
S
√

1
m + 1

n

=
√

nm

n +m

Y −X −∆
S

(B.4a)

with S =
√

(n −1)S2
X + (m −1)S2

Y

m +n −2
, (B.4b)

S2
X = 1

n −1

n∑
i=1

(Xi −X )2, (B.4c)

S2
Y = 1

m −1

m∑
i=1

(Yi −Y )2, (B.4d)

C =
{

t
∣∣∣t > t1− α

2 ;n+m−2

}
, (B.4e)

where S2
X and S2

Y are the sample variances.
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If variances are not known to be equal, σX 6=σY , the test statistic is not t-distributed and needs to
be approximated by a t-distribution, which leads to the two-sided WELCH’s t-test:

Tobs =
Y −X −∆

S
≈ tν (B.5a)

with S =
√

S2
X

n
+ S2

Y

m
, (B.5b)

ν=

(
S2

X
n + S2

Y
m

)2

(
S2

X
n

)2

n−1 +
(

S2
X

m

)2

m−1

, (B.5c)

C =
{

t
∣∣∣t > t1− α

2 ;ν

}
, (B.5d)

with S2
X and S2

Y as above.

B.3 Tests for Normality
Normality, i.e., normally distributed populations, is a requirement for many other tests, especially
for STUDENT’s t-test and WELCH’s t-test from the previous section. Therefore, it is often necessary
to test if a normal distribution adequately describes the sample. Let now X be a random variable
and X1, . . . , Xn independent and identically distributed (iid) observations of that variable, which are
sorted in ascending order, i.e., X1 > . . . , Xn . The hypotheses for normality test then are

H0 : FX (x) = F0(x) against H1 : FX (x) 6= F0(x), (B.6)

with FX (x) the distribution function of X and F0(x) = N (µX ,σX ). There are several hypothesis tests
for distribution tests of which some are limited to normal distributions and some can be applied to
arbitrary distributions. In the following, however, we will only consider the case of normal distribu-
tions.

The KOLMOGOROV-SMIRNOV test [84] uses the following KOLMOGOROV-SMIRNOV statistic,

Dn = sup
x

|Fn(x)−F0(x)| , (B.7)

with Fn(x) the empirical distribution function and IXi≤x the indicator function,

Fn(x) = 1

n

n∑
i=1

IXi≤x . (B.8)

According to the GLIVENKO-CANTELLI theorem, Dn converges to 0 for n → ∞ if the sample comes
from the distribution F0(x). The null hypothesis will be rejected if Dn is greater than the critical value

1p
n

Kα, where Kα is determined from
P(K ≤ Kα) = 1−α (B.9)

with the KOLMOGOROV distribution K .

The LILLIEFORS test [84] is based on the KOLMOGOROV-SMIRNOV test, but uses the LILLIEFORS dis-
tribution instead. The ANDERSON-DARLING test [7, 8] and the CRAMÉR-VON MISES test [124] use
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a test statistic which measures the distance between the empirical distribution function and the hy-
pothesized distribution function. The test statistic in the SHAPIRO-WILK test [117] compares variance
estimates,

T = b2

(n −1)s2 , (B.10)

with s2 the estimate for the sample’s variance and b2 an estimate on how the variance should be if the
sample was normally distributed. The SHAPIRO-FRANCIA test [107] is a modification thereof. Finally,
PEARSON’s chi-squared test [97] is a χ2-test using the χ2-distribution.

B.4 Tests for Variance Homogeneity
STUDENT’s t-test requires equal variances for two samples, but WELCH’s t-test does not. To deter-
mine which test could be applied, different tests for variance homogeneity have been used in this
thesis. The hypotheses for tests on variance homogeneity are

H0 : σ2
0 =σ2

1 = ·· · =σ2
k against H1 : ∃(i , j ) with i 6= j :σ2

i 6=σ2
j . (B.11)

Let Xi j be the sample with i = 1, . . . ,k indicating the group and j = 1, . . . ,ni the samples for each

group, i.e., we have k groups and ni samples in group i . With the group sample mean X i , the total
sample number n =∑k

i=1 ni , and

Yi j =
∣∣∣Xi j −X i

∣∣∣ , Y i = 1

ni

ni∑
j=1

Yi j , Y = 1

k

k∑
i=1

Y i , (B.12)

the test statistic for LEVENE’s test [82] is

T = (n −k)

(k −1)

∑k
i=1 ni (Yi −Y )∑k

i=1

∑ni
j=1 (Yi j −Yi )

. (B.13)

The test statistic T can be approximated by Fk−1,n−k . BROWN-FORSYTHE test [31] is a modification of
LEVENE’s test with the usage of sample medians instead of sample means X i for the computation of
Yi j , and thus, the test statistic is approximated by a χ2 distribution. BARTLETT’s test [13] is a slightly
different approach, but known to be rather sensitive to non-normality and thus has only been applied
for comparison.

B.5 Test for Outliers
GRUBBS’ test [66, 67] is a test for the detection of outlying samples. The test detects one outlier at a
time and needs normally distributed data. The hypotheses for the test are

H0 : no outliers in the data set

against H1 : at least one outlier in the data set.
(B.14)

Let X1, . . . , Xn be a sample from a normally distributed population. Then, with the sample mean X ,
the test statistic for GRUBBS’ test is

T =
max

i=1,...n

∣∣∣Xi −X
∣∣∣

s
. (B.15)
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The null hypothesis is rejected if

T > n −1p
n

√√√√ t 2
α/(2n),n−2

n −2+ t 2
α/(2n),n−2

. (B.16)

The test can be applied recursively, but may detect most of the sample as outliers for small sample
sizes. GRUBBS’ test has been applied in this work together with other approaches for outlier detection
like outer fences according to TUKEY [126]. For the actual selection of outliers, however, the results
of GRUBBS’ test have not been used.
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Computation ofM for the BigMRelaxation
For optimization, we need a numerical value for M and thus we need bounds on the three terms T 1

k+1,

T 2
k+1, and T 3

k+1. This means we need bounds for the variables xEM
k+1, xPS

k+1, xDS
k+1, xSH

k , xPR
k+1, and xDE

k+1.
Fortunately, most of these are quite easy to get. For production and distribution sites, for instance,
we have

xPS
k+1 = xPS

k −udPS
k +uDPS

k , xDS
k+1 = xDS

k −udDS
k +uDDS

k , (C.1a)

xPS
k ≥ 1, xDS

k ≥ 1, (C.1b)

uDPS
k ≤ pDPS, uDDS

k ∈ [0, pDDS], (C.1c)

udPS
k +udPS

k−1 ≤ pdPS, udDS
k ∈ [0, pdDS], (C.1d)

(C.1e)

and thus

xPS
k ∈ [1,1+nx ], xDS

k ∈ [1,1+2 ·nx ], (C.2)

with nx = t f − t0. Furthermore, bounds for employees can be computed via

xEM
k ≥ 1 uEM

k ∈ [−pdEM , pDEM,0 · xPS
k +pDEM,1 · xDS

k ] (C.3a)

xEM
k+1 = xEM

k +uEM
k , = [−pdEM ,15+25 ·nx ], (C.3b)

which leads to

xEM
k ∈ [1, xEM

0 + (15+25 ·nx ) ·nx ] = [1,10+15 ·nx +25 ·n2
x ]. (C.4)

If we assume the stock capacity constraint for shirts which is not part of the final model, we have

xSH
k ∈ [0, pSH,0 · xDS

k ] = [0,2000 · [1,1+2 ·nx ]] = [0,2000+4000 ·nx ]. (C.5)

Note that this assumption is valid for the computations in this section, as the constraint was far from
being active in all test cases.

Then, we can compute bounds for T 1
k+1 and xPR

k+1,

xPR
k+1 = pPR,0 · xPS

k+1 · log

(
pPR,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pPR,2
+1

)
(C.6a)

= 99.9 · [1,1+nx ] · log

(
2 · [1,10+15 ·nx +25 ·n2

x ]

[1,1+nx ]+ [1,1+2 ·nx ]+10−6 +1

)
(C.6b)

=
[

99.9 · log

(
2

2+3 ·nx +10−6 +1

)
,99.9 · (1+nx ) · log

(
20+30 ·nx +50 ·n2

x

2+10−6 +1

)]
, (C.6c)
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T 1
k+1 = pSA,0 · xDS

k+1 · log

(
pSA,1 · xEM

k+1

xPS
k+1 +xDS

k+1 +pSA,2
+1

)
(C.7a)

= 99.9 · [1,1+2 ·nx ] · log

(
2 · [1,10+15 ·nx +25 ·n2

x ]

[1,1+nx ]+ [1,1+2 ·nx ]+10−6 +1

)
(C.7b)

=
[

99.9 · log

(
2

2+3 ·nx +10−6 +1

)
,99.9 · (1+2 ·nx ) · log

(
20+30 ·nx +50 ·n2

x ]

2+10−6 +1

)]
, (C.7c)

and hence also for T 2
k+1,

T 2
k+1 = xSH

k +xPR
k+1 (C.8a)

= [0,2000 · (1+2 ·nx )]+
[

99.9 · log

(
2

2+3 ·nx +10−6 +1

)
,

99.9 · (1+nx ) · log

(
20+30 ·nx +50 ·n2

x ]

2+10−6 +1

)] (C.8b)

=
[

99.9 · log

(
2

2+3 ·nx +10−6 +1

)
,

2000 · (1+2 ·nx )+99.9 · (1+nx ) · log

(
20+30 ·nx +50 ·n2

x ]

2+10−6 +1

)]
.

(C.8c)

As a next step, for T 3
k+1 we need to compute bounds for xDE

k+1,

xDE
k+1 = pDE,0 ·exp

(
−pDE,1 ·uSP

k

)
· log

(
pDE,2 ·uAD

k +1
) · (xRE

k +pDE,3) (C.9a)

= 600.0 ·exp([−1.1,−0.7]) · log([21,41]) · (xRE
k +0.5

)
, (C.9b)

and here, we also need bounds for xRE
k+1 which vice versa requires bounds on xSQ

k+1, xMQ
k+1, and xMO

k+1:

xRE
k+1 = pRE,0 · xRE

k +pRE,1 log
((

pRE,2 ·uAD
k +pRE,3 ·uSP

k · (xSQ
k )2 +pRE,4 ·uWA

k

)+1
)

(C.10a)

= 0.5 · xRE
k + log

(
[1.085,1.14]+ [0.0035,0.0055] · (xSQ

k )2
)
. (C.10b)

For xMQ
k+1, we have

xMQ
k+1 = pMQ,0 · xMQ

k ·exp

(
−pMQ,1 · xPR

k

xPS
k +pMQ,2

)
+pMQ,3 · log

(
uMA

k ·pMQ,4 +1
)

(C.11a)

= 0.8 · xMQ
k ·exp

(
−0.6 ·10−2 · [6,8667]

[1,11]+10−6

)
+0.13 · log([0,5000] ·0.2+1) , (C.11b)

and as for xMQ
k+1, only the upper bound is important (the lower bound 0 is obvious), we proceed as

follows:

xMQ
k+1 = 0.8 · xMQ

k ·exp

(
−0.6 ·10−2 · 6

11+10−6

)
+0.13 · log(1001) (C.12a)

≤ 0.8 · xMQ
k +0.9. (C.12b)
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This equation obviously has the fix point xMQ
k = 4.5, so we have xMQ

k ∈ [0.0,4.5] with an initial value
within this interval. For the shirt quality, it holds

xSQ
k+1 = pSQ,0 · xMO

k +pSQ,1 · xMQ
k +pSQ,2 ·uRQ

k (C.13a)

= 0.2 · xMO
k + [0.25,1.85], (C.13b)

and for the motivation of employees, we can compute

xMO
k+1 =

(
1−pMO,0

)
· xMO

k +pMO,0

· log
(
pMO,1 ·uDEM

k +pMO,2 ·uDPS
k +pMO,3 ·uDDS

k +pMO,4 ·uWA
k +pMO,5 · xRE

k +pMO,6
)

·exp
(
− (pMO,7 ·udEM

k +pMO,8 ·udPS
k +pMO,9 ·udDS

k )+pMO,10
)
·pMO,11

(C.14a)

= 0.5 · xMO
k +0.25 · log

([
1.2,2.3+4 ·10−2 · (15+25 ·nx )

]+0.3 · xRE
k

)
·exp

(
[−10.5,1]

)
. (C.14b)

So, for xRE
k+1, xSQ

k+1, and xMO
k+1, we have

xRE
k+1 = 0.5 · xRE

k + log
(
[1.085,1.14]+ [0.0035,0.0055] · (xSQ

k )2
)
, (C.15a)

xSQ
k+1 = 0.2 · xMO

k + [0.25,1.85], (C.15b)

xMO
k+1 = 0.5 · xMO

k +0.25 · log
([

1.2,2.3+4 ·10−2 · (15+25 ·nx )
]+0.3 · xRE

k

)
·exp

(
[−10.5,1]

)
. (C.15c)

With the initial values xRE
0 = 0.79, xSQ

0 = 0.75, and xMO
0 = 0.73, we can compute upper bounds for

these variables, see Table 5.1, and as the last column of the table is a fix point for our parameter set,
we get

xRE
k ∈ [0,1.0], xSQ

k ∈ [0,2.6], xMO
k ∈ [0,3.5]. (C.16)

Eventually, this means

xDE
k+1 = 600.0 ·exp([−1.1,−0.7]) · log([21,41]) · ([0,1]+0.5) ∈ [304,1660], (C.17a)

T 3
k+1 = pSA,3 · xDE

k+1 = 1.0 · xDE
k+1 ∈ [304,1660]. (C.17b)

Finally, for nx = t f − t0 = 10, we get

T 1
k+1 ∈ [6,16545], T 1

k+1 −T 2
k+1 ∈ [−50661,16539], (C.18a)

T 2
k+1 ∈ [6,50667], T 1

k+1 −T 3
k+1 ∈ [−1654,16241], (C.18b)

T 3
k+1 ∈ [304,1660], T 2

k+1 −T 3
k+1 ∈ [−1654,50363], (C.18c)

and for the remaining constraints, with xSA
k ∈ [6,1660],

T 1
k+1 −xSA

k+1 ∈ [0,16539], (C.19a)

T 2
k+1 −xSA

k+1 ∈ [0,50661], (C.19b)

T 3
k+1 −xSA

k+1 ∈ [0,1654], (C.19c)

which means, that we can chose, e.g., M = 50661.
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Nomenclature
Throughout this thesis, the variables i , j , and k are used as counting indices. The time is identi-
fied with t and x usually refers to state or dependent variables, u denotes control, decision, or free
variables and p stands for parameters.

Meanings of Decorations

xXY , xXY
k Microworld variable XY (in month k)

x∗ Locally/globally optimal values
xT Transposed
∆x Difference, step
x(i ) Linearization points in outer approximation, filter points
xP Values from participant data
x̂ Free variables in decomposition master problem

x̂( j )
k Fixed value for variable ( j ) in microworld round k

x Sample mean
x0 Initial value

Roman Symbols

ai Coefficients in decoupled costs model
ch,
{f,m}/ch

Control and highscore groups (female, male)

C critical region
e All-ones vector
f 1, f 2 Auxiliary functions in Tailorshop model
f1, f2 cost functions in decomposition
F Objective function
FP Objective function value of problem P
G , Gi Equality constraints, state progression law in dMIOCPs
h(x) constraint violation of x, objective value for grid points
H , Hi Inequality constraints
Ĥk Hessian approximation in iteration k
H0, H1 Competing hypotheses in tests
I Identity matrix
JG , JH Jacobian of G, H
L List of problems/nodes
LB , lb lower bound
m Slope in learning curve fit
M parameter in Big M relaxation, diagonal matrix with entries µ
ne ,ni Number of equality and inequality constraints
nx ,nu ,np Number of states, controls, and parameters
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nx Time horizon for microworlds
ny ,nv Number of integer variables, integer controls
N Sample size
of,
{f,m}/of

Optimization-based feedback groups (female, male)

p Parameters, probability value in hypothesis tests
P,Pi Nodes in branch and bound
Q1,Q3 Lower and upper quartile
s Slack variables
S Solution (in algorithms), diagonal matrix with entries s
SX Sample variance of sample X
t Time
ts Start time for optimization
t0, t f Start time, end time
T,Tobs Test statistics (value for observation)
T i

k Terms in minimum-expression for sales
u(t ),uk Control functions/variables
U Neighborhood
UB ,ub upper bound
v(t ) Integer control functions
x (continuous) Optimization variables
x(t ), xk State functions/variables
X Feasible region for optimization variables
Xi Random sample variables
y Integer optimization variables
yi Binary variables in sales reformulation
Y Feasible region for integer optimization variables
Yi Boolean variables in GDP reformulation

Greek andOther Symbols

∇ Derivative with respect to x
∇2

xx Second derivative with respect to x
α Step size, significance level
αi Coefficients of parameter optimization objective
β Barrier parameter, homotopy parameter
Γ Boolean function in GDP reformulation
ε Convergence tolerance in outer approximation, equality constraint offset
η Linearization error in outer approximation
λ LAGRANGE multipliers (for equality constraints)
µ LAGRANGE multipliers (for inequality constraints), mean value
Π Feasible region for parameters in model parameter optimization
ρ Equality constraint tolerance in decomposition
φi Lower level objective function value in multilevel problem
φH How much is still possible-function
φP Use of potential-function
ψ Parameter optimization objective function
Ω Feasible region for controls
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Calligraphic Symbols

A Active set
F Feasible set
K Set of linearization points in outer approximation
L Lagrangian function

Black Board Symbols

R Set of real numbers
Rn Space of n–vectors with elements from the set R
Z,Z+

0 Set of (positive) integer numbers (including 0)
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