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Abstract

In this article, four different mathematical models of chemotherapy from the literature are investigated with respect
to optimal control of drug treatment schedules. The variousmodels are based on two different sets of ordinary
differential equations and contain either chemotherapy, immunotherapy, anti-angiogenic therapy or combinations of
these. Optimal control problem formulations based on thesemodels are proposed, discussed and compared. For
different parameter sets, scenarios, and objective functions optimal control problems are solved numerically with
Bock’s direct multiple shooting method.

In particular, we show that an optimally controlled therapycan be the reason for the difference between a growing
and a totally vanishing tumor in comparison to standard treatment schemes and untreated or wrongly treated tumors.
Furthermore, we compare different objective functions. Eventually, we show that there is a high potential for opti-
mization of chemotherapy schedules, although the currently available models are not yet appropriate for transferring
the optimal therapies into medical practice due to patient-, cancer-, and therapy-specific components.

Keywords:
optimal control, cancer chemotherapy, mathematical modeling, multiple shooting
2010 MSC:92C50, 92C42, 93C15

1. Introduction

While scientific computing has become an indispens-
able ingredient of research and every-day-practice in
robotics and mechanics, chemical engineering, aero-
space, transportation, and many other areas, the appli-
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cation of numerical methods to find answers to open
questions in medicine is not yet as evolved.

Scientific computing, and in particular modeling,
simulation, and optimization of processes, is often re-
garded as the third pillar of science, complementary to
theory and experiment. In medicine however, experi-
ments are not so easily reproducable as in mechanics,
and the theoretic interpretation of drug influence is usu-
ally not as well understood as control parameters in
physical systems.
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There are many different levels on which tumor
growth and possible control targets can be modeled.
Inherently this is a complex multi-scale problem. A
mathematical model can be stochastic or determinis-
tic, spatially resolved or not, continuous or agent-based.
Also the level of detail may vary. For example, there
may be good reasons to include circadian rhythms and
the cell cycle, [1]. A comprehensive overview can be
found in the highly recommendable survey paper by
Jean Clairambault [2].

We are aware of the fact that the influence of drugs is
often not fully understood in medicine, and of course
highly patient-dependent (e.g., see the parameter sets
“human 9”/“human 10” in [3], respectively [4]). Hence
it cannot be expected that currently available models of
ordinary differential equations are a good match to clini-
cal reality. A patient- and tumor-specific parameter esti-
mation for well-understood mathematical models based
on clinical data will hopefully lead the way and might
allow application of optimized treatment schedules in
the future.

This work is supposed to be another small step in
the direction of analysis and understanding of optimal
control chemotherapy models. The basic mathematical
models that have been proposed in the literature over the
last years (e.g., [3, 5, 6, 7, 8, 9, 10, 11]) should already
capture several important dynamic effects of chemother-
apy treatments. Having in mind that the gap between
simulated and real-world situation will still be large,
we focus in this work on general qualitative insight that
can be gained by optimization of available mathematical
models. Examples for basic questions that are important
in this context are

• What similarities and what differences arise for
the different mathematical models? We discuss
two mathematical models for cancer and cancer
chemotherapy. Although they both contain some
kind of chemotherapy, they differ in the kind of ad-
ditional treatments and in type and amount of cell
types they include. For the two models, four pa-
rameter sets have been described in the literature.
We present optimal control results for all of them
(see section5), to the best of our knowledge three
sets (see Sections5.2, 5.3, and5.4) were not solved
to optimality before.

• How large is the potential for the right timing of
drug delivery? In general, the aim of a therapy,
no matter what kind, is tominimizethe tumor size,
i.e., the tumor volume or the amount of tumor cells.
To answer this question, we consider also therapies

which, with a fixed amount of drugs,maximizethe
tumor size on a given time horizon. The result,
a therapy which makes the tumor grow as big as
possible under these constraints, can be considered
theworst treatment one could apply. We compare
these results to standard treatments or untreated tu-
mors as well as the optimal control for a minimal
tumor, thebesttreatment. It turns out that there are
scenarios where the differences between worst and
best treatments are small, but we also demonstrate
scenarios where the same amount of drugs leads to
a growing tumor on the one hand and a total dis-
appearance on the other hand (see Figures1, 5, 7,
and9).

• How does the choice of the objective function in-
fluence the optimal control strategies? The for-
mulation of a reasonable objective function is cru-
cial for the optimal treatment schedules. We for-
mulate new optimal control problems with non-
standard objective functions for models for which
such problems have not been published yet, see
Sections5.1, 5.2, 5.3, and5.4.

• What role do local optima play? As the compu-
tational effort do perform a rigorous global opti-
mization for all of the scenarios we considered is
beyond the scope of this paper, we concentrated
on some case studies with multiple initializations.
Whereas for most scenarios the local optima seem
to be the unique global ones, also multiple local
optima were observed, compare Figure6 left and
right. This effect is closely linked to the choice of
the objective function. Including a penalization of
tumor volume integrated over time in the objective
function seems to favor multiple local optima.

Our approach to address these questions by numerical
optimization is based on Bock’s direct multiple shooting
approach to solve optimal control problems. The under-
lying first discretize, then optimizeconcept allows for
an efficient and fast solution of a multitude of different
control problems.

This article is structured as follows. In the next two
sections, we review and present the different models
(section2) and control problems (section3) that have
been investigated. Section4 explains the direct multiple
shooting techniques we used to solve the arising opti-
mal control problems. Numerical results can be found
in Section5, where also some interpretations and com-
parisons between the different scenarios are discussed.
We conclude with a summary of our results and an out-
look on future work.
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2. Cancer Chemotherapy Models

Two different models of cancer chemotherapy with a
total of four different parameter sets have been investi-
gated. The models consist of sets of ordinary differential
equations and each feature a particular kind of medical
treatment. In this section, an overview over the models
is given and differences between them are highlighted.
We also present their scientific context and give a survey
of adjacent approaches we did not consider in detail. In
general, we stick to the notation of the original articles
if this does not conflict with the overall notation in this
article.

2.1. d’Onofrio et al.

The model byd’Onofrio et al. [7] is based on the
work byHahnfeldt et al.[5] and in particular on a modi-
fication of theHahnfeldt-model byd’Onofrio and Gan-
dolfi [12, 13].

In [5], a model with two states and one control is pro-
posed. The states are the volume of the tumorx0 on
the one hand and the volume of blood vessels in the
neighborhood of the tumorx1 on the other hand. This
choice of state variables is due to the fact that the treat-
ment strategy includes ananti-angiogenictherapyu0 in
this model, a concept introduced in the 1970s byFolk-
man[14]. As a tumor needs proliferating blood vessels
to survive and to grow, the basic idea is to administer a
drug that suppressesangiogenesis, the process of blood
vessel formation from existing vessels. While the cyto-
static agents applied in classical chemotherapy address
the proliferation of tumor cells directly, anti-angiogenic
drugs inhibit the stimulation of endothelial cells neces-
sary for neo-vascularization.

The tumor volume equation contains aGompertz-
term

− ζ x0(t) log

(

x0(t)
x1(t)

)

(1)

in which the limit has been replaced by the endothelial
volume.Gompertz growthbesidelogistic growthis one
of the two types of growth chosen in all models that have
been investigated. Inserting the blood vessel volume as
carrying capacityinstead of a fixed value reflects that
the growth of the tumor is limited by the vasculature
volume. In [7] a classical chemotherapy treatment has
been added, so that a combination therapy is possible
and thus the model contains a second controlu1 repre-
senting a cytostatic drug:

− F x0(t) u1(t). (2)

The equation for the blood vessel volume is more
complex. It contains a term that represents the spon-
taneous loss of vasculature and one that represents the
stimulation ofneo-vascularizationby the tumor (e.g.,
by the cytokineVEGF, vascular endothelial growth fac-
tor),

− µ x1(t) + b x0(t). (3)

The third term,

− d x0(t)
2
3 x1(t), (4)

reflects the effect of endogenous inhibition of angiogen-
esis. Finally, with

−G u0(t) x1(t) − η x1(t) u1(t) (5)

the response to the drugs is modeled. In contrast to
[5], drug concentration is identified with dosage here.
Hence, there is no concentration equation.

In d’Onofrio et al., the total amount of applied drugs
is limited. To be able to treat this constraint in our opti-
mization framework, we add two auxiliary states which
sum up the amounts of given drugs:

ẋ2(t) = u0(t), (6)

ẋ3(t) = u1(t). (7)

Thus, the complete model is described by the system

ẋ0(t) = −ζ x0(t) ln

(

x0(t)
x1(t)

)

− F x0(t) u1(t), (8a)

ẋ1(t) = b x0(t) − µ x1(t) − d x0(t)
2
3 x1(t)

−G u0(t) x1(t) − η x1(t) u1(t),
(8b)

ẋ2(t) = u0(t), (8c)

ẋ3(t) = u1(t). (8d)

for t ∈ [t0, tf].
The parametersG, b, d, µ, ζ, γ in [5] have been de-

rived by about 1,000,000 runs of a Monte-Carlo algo-
rithm based on data from experiments with mice that
have been injected Lewis lung carcinoma cells. Note
that the parameters and boundsF, η, A, a, C, c (com-
pare also Section3) are neither taken from [5] nor based
on experimental data. These values have been used for
numerical experiments only.

2.2. De Pillis et al. (2006)

The model byde Pillis et al. (2006)[3] consists of
six states, three controls and 29 parameters in three pa-
rameter sets. The work is based on previous work by
the same or some of the authors [8, 15, 16].
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As a major difference to the model above, it con-
tains a combination ofchemotherapyandimmunother-
apy. The first state is again the tumor populationx0,
but now measured in absolute cell count. Instead of the
blood vessel volume, this model features three types of
immune cell populations, all measured in absolute cell
count. NK cellsx1 – unspecific immune cells which are
also present in a healthy body (“natural killer” cells) –
, CD8+ T cells x2 – tumor-specific cytotoxic T-cells –,
and circulating lymphocyte poolx3.

The fifth and the sixth state represent the chemother-
apeutic drug concentrationx4 respectivelyInterleukin-2
(IL-2) concentrationx5. IL-2, which is one of the two
immunotherapeuticcontrols, is a cytokine that stimu-
lates CD8+ T activation cells and is used “to boost im-
mune system function” [3]. In addition, there is a con-
trol for a classiccytostatic drug u0 and one for atu-
mor infiltrating lymphocyteinjection (TIL) u2. The lat-
ter means an injection of CD8+ T cells that have been
stimulated against tumor cells outside the body.

The model is described by the following system of
ODEs. In favor of readability we omit the time depen-
dence of states and controls. For more details on the
equations we refer to [3] and [15].

ẋ0 = a x0 (1− b x0) − c x1 x0 − D x0

− KT
(

1− e−x4
)

x0,
(9a)

ẋ1 = e x3 − f x1 + g
x0

2

h+ x0
2

x1 − p x1 x0

− KN
(

1− e−x4
)

x1,

(9b)

ẋ2 = −m x2 + j
D2 x0

2

k+ D2 x0
2

x2 − q x2 x0

+ (r1 x1 + r2 x3) x0 − v x1 x2
2

− KL
(

1− e−x4
)

x2 +
pI x2 x5

gI + x5
+ u2,

(9c)

ẋ3 = α − β x3 − KC
(

1− e−x4
)

x3, (9d)

ẋ4 = −γ x4 + u0, (9e)

ẋ5 = −µI x5 + u1 (9f)

for t ∈ [t0, tf] and the shortcutD = d (x2/x0)l

s+(x2/x0)l .
Three parameter sets can be found in the literature:

mouse, human 9, andhuman 10. As the name suggests,
themouseparameter set contains numerical values de-
rived from murine experimental data. In fact, the pa-
rameters come from different papers treating different
types of cancer and different types of mice. For ex-
ample thetumor growth parameter ahas been fitted to
data from a paper byDiefenbach et al.[17]. In that
article, EL4 thymoma,RMA lymphoma andB16-BL6
melanoma have been implanted intoB6-Rag−/− mice.

On the other hand, e.g., the death rate of NK cellsf is
derived fromKuznetsov et al.[18], where a mathemati-
cal model is used to describe the kinetics of growth and
regression of aBCL1 lymphoma inBALB/c mice. For
the parametersr2 andv, no source is provided.

For thehumanparameter sets, the authors refer to an
article by Dudley et al.[4]. This publication contains
real proband data of 13 melanoma patients. The data of
the ones numbered 9 and 10 have been used in [3] for
fitting seven of the parameters. Again, forr2 andv, no
source is provided. Actually, there are eight more refer-
ences for thehumanparameter set, e.g., the two murine
papers from themouseparameter set. Another source
[19] refers among others toKuznetsov et al.Note that
this means that about one third of thehumanparameters
comes frommurineexperiments.

In [19] it is stated that the value of a certain parameter
in their model “(...) varies greatly from patient to patient
and cancer to cancer.” So this model may generally not
be adequate for generating useful treatment schedules –
in particular for humans since there is only little human
data used and the values may highly depend on the pa-
tient and the type of cancer. But it still may be useful
for making general qualitative statements.

In summary, the heterogeneity of model parameters
makes an applicability of numerical results obtained by
us or other authors in clinical practice improbable.

2.3. Other Approaches

Finally we give a short survey on models we did not
consider in detail. There are lots of different mathemat-
ical modeling approaches in the cancer chemotherapy
context, so we restrict ourselves to some that are con-
ceptually close to the ones presented above.

2.3.1. Ergun et al.
The model inErgun et al.[6] is – similar to the one

presented in section2.1 – a modification of theHahn-
feldt-model [5]. In this article, a combination of radio-
therapy and anti-angiogenic therapy is investigated. The
major difference in the model is the decoupling of the
vasculature equation from tumor volume by simply re-
placing tumor volume by vasculature volume. For the
radiotherapy anLQ model is used. The authors report
on several optimal control results. There is also a de-
tailed analysis of the combination therapy for a slightly
modified version of the model byLedzewicz et al.[20]

2.3.2. Chareyron and Alamir
The work byChareyron and Alamir[10] is based on

the work byde Pillis et al.[8, 15, 16, 3]. The authors use
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the model presented in section2.2 to applynonlinear
model predictive control(NMPC) techniques.

However, only the chemotherapy control is consid-
ered for the NMPC scheme while both the immunother-
apy and the TIL are derived byindirect methodsinde-
pendently from the chemotherapy. The chemotherapy
itself is fixed to a finite set of values (0%, 20%, 40%,
60%, 80%, and 100% of maximum). This means that ef-
fectively chemotherapy is not a continuous control but a
mixed-integer one. Since NMPC techniques are not part
of our work and we also want to study optimal control of
continuouschemotherapy here, we did not further pur-
sue the approach ofChareyron and Alamir.

2.3.3. De Pillis et al. (2001)
The model ofDe Pillis et al. (2001)[8] is one of the

“ancestors” ofde Pillis et al. (2006). It only includes
a cytostatic chemotherapy control. An optimal control
problem is formulated (minimize tumor size at end time
subject to the number of “normal” cells is above some
lower bound) and optimal control results are presented.
With one control and the constraint on normal cells, sur-
prising results are not to be expected and indeed the op-
timal schedules show a bang-bang-structure.

We wanted to verify these results in our optimization
framework, but some of the model’s parameters are only
given in relations or intervals (e.g., “0≤ s≤ 0.5”, “ a3 ≤

a1 ≤ a2”). Since it was not possible to get the exact
parameter values from the authors, this approach was
not subject of further investigations.

2.3.4. De Pillis et al. (2008)
In analogy tode Pillis et al. (2006)[3] essentially

derived from previous work by the authors,de Pillis et
al. (2008)[9] can be considered a descendant model of
de Pillis et al. (2006). It contains the same controls and
states as the one discussed in Section2.2.

In contrast to its predecessor, the latter article focuses
on optimal control results. There are some modifica-
tions of the equations, but overall they are very similar.
Most of the parameters have been adapted either from
themouseor thehuman 9/human 10sets. At least some
of the changes in the model equations compared to [3]
may be due to the tractability with anindirect optimal
control approach. As an example, the saturation term
for the influence of chemotherapy (1− e−x4(t)) has been
replaced by the drug concentrationx4, significantly fa-
cilitating the analytical work of thefirst optimize, then
discretizeapproach chosen by the authors.

We could not reproduce the numerical results on the
basis of the equations and the parameter set given in

the article. However, with a modified tumor growth pa-
rameter (4.0 instead of 2.0 · 10−3) we succeeded to re-
produce some optimal controls result of a first scenario.
For a second scenario, we could mostly reproduce the
result choosing again a different tumor growth param-
eter (2.0). Our attempts to contact the authors to re-
solve these deviations have not been successful. As it
is not clear where the differences originate from, espe-
cially as they do not seem to derive from a single wrong
parameter value, we eventually decided to not further
investigate this model. Details on our simulation and
optimization studies can be found in [21].

2.3.5. Isaeva and Osipov
The article byIsaeva and Osipov[11] is similar tode

Pillis et al. (2006)as it also takes classical chemother-
apy and two types of immunotherapy into account, but
the model also shows some differences. For example,
they useGompertz growthinstead oflogistic growthand
just one state for immune cell populations. Because of
the structural similarities tode Pillis et al. (2006), we
decided to investigate only one of the two similar ap-
proaches.

3. Chemotherapy Control Problems

Our goal is to investigate properties of optimal solu-
tions based on the ODE models in Section2. This in-
cludes the definition of an objective function, initial val-
ues, as well as constraints the trajectories have to fulfill.

D’Onofrio et al. formulated an optimal control prob-
lem for the model. The objective function supposed to
be minimized is

x0(tf) + α
∫ tf

t0

u0(t)2 dt, (10)

while the end timetf is free andα is small. Apparently
a value ofα = 0.005 has been used in [7] to identify the
correct control switching structure, whereas a valueα =
0 has been used for the final calculation of the objective
value. In [3] no control problem was specified, whereas
in [9] a weighted sum was used. In our study we use the
weighted sum

p0 ·x0(tf)+
∫ tf

t0

p1·x0(t)2 dt+
nu−1
∑

i=0

∫ tf

t0

pi+2 ·ui(t) dt (11)

with a L1 penalization of the positive controls. Forα =
0 the objective (10) is a special case of (11). We will
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Name x0(t0) x1(t0) x2(t0) x3(t0) x4(t0) x5(t0) Parameter set

(T1) 1 · 106 5 · 104 1 · 102 1.1 · 107 0 0 Mouse

(T2) 1 · 106 1 · 105 1 · 102 6 · 1010 0 0 Human 9/10

(T3) 1 · 106 1 · 103 1 6 · 108 0 0 Human 9

(T4) 2 · 107 1 · 103 1 6 · 108 0 0 Human 9

(T5) 1 · 108 1 · 103 1 6 · 108 0 0 Human 9/10

(T6) 1 · 107 1 · 103 1 6 · 108 0 0 Human 9

(T7) 1 · 105 1 · 105 1 · 102 6 · 1010 0 0 Human 10

Table 1: Initial values used forde Pillis et al. (2006). “Parameter set” indicates for which of the three parametersets “mouse”, “human 9”, and
“human 10” the initial values have been used in this article.

compare the influence of different objective functions
in Section5, in particular,

p0 = 1, p1 = 0, p2 = 0, (O1)

p0 = −1, p1 = 0, p2 = 0, (O2)

p0 = 5 · 10−3, p1 = 10−11, p2 = 104, (O3)

p0 = −5 · 10−3, p1 = −10−11, p2 = 104, (O4)

p0 = 1, p1 = 0, p2 = 1, (O5)

p0 = −1, p1 = 0, p2 = 1, (O6)

p0 = 1, p1 = 10−6, p2 = 10−2, (O7)

with p3 = p4 = 0 in all cases. We will later identify
these parameter sets with an objective function, e.g., re-
fer in short to (O1) as the objective function (11) with
values forp0, p1, p2 defined by (O1).

The trajectories are constrained in the following way.
For all control problems we have the inequalities

0 ≤ ui(t) ≤ umax
i , 0 ≤ xi(t). (12)

For the control problems based on the model of
d’Onofrio et al. we furthermore consider a maximal
dose over the whole time horizon in the form

x2(t) ≤ xmax
2 , x3(t) ≤ xmax

3 (13)

We will consider different scenarios in Section5. In our
context a scenario consists of a set of initial values and
values for the upper bounds in (12) and (13). For the
control problems solved in Section5.1 we fix x2(0) =
x3(0) = 0 andumax

0 = 75, xmax
2 = 300 in all cases and

define

x0(0) = 12000, x1(0) = 15000, (S1)

umax
1 = 1, xmax

3 = 2.

x0(0) = 12000, x1(0) = 15000, (S2)

umax
1 = 2, xmax

3 = 10.

x0(0) = 14000, x1(0) = 5000, (S3)

umax
1 = 1, xmax

3 = 2.

x0(0) = 14000, x1(0) = 5000, (S4)

umax
1 = 2, xmax

3 = 10.

For the solutions of the control problems presented in
Sections5.2to 5.4the upper bounds are given byumax

0 =

1, umax
1 = 5 · 106, andumax

2 = 0. Note that for thetumor
infiltrating lymphocytes (TIL)control u2(·) no bounds
were given in the original paper, therefore we fixedu2(·)
to zero for this study. The value of the fixed end timetf
varies in our scenarios and can be seen in the plots. The
resulting scenarios are defined by different initial values
listed in Table1.

4. Direct Multiple Shooting

We give a short introduction toBock’s direct mul-
tiple shooting method, developed byGeorg Bockand
coworkers [22] in the early 1980s. More information on
this technique can be found, e.g., in [23].

4.1. Problem Formulation

The followingoptimal control problemrepresents the
class of problems we want to solve in this article:

min
x,u,p

E(x(tf)) +
∫ tf

t0

L(t, x(t), u(t), p) dt (14a)
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subject to ˙x(t) = f (t, x(t), u(t), p), (14b)

x(t0) = xs, (14c)

0 = re(x(t0), x(tf), p), (14d)

0 ≤ r i(x(t0), x(tf), p), (14e)

0 ≤ g(t, x(t), u(t), p), (14f)

for t ∈ [t0, tf] almost everywhere, withdifferential states
x : [t0, tf] → R

nx, control functions u: [t0, tf] → R
nu,

fixedmodel parameters p∈ Rnp, and anobjective func-
tion of Bolza type, all functions assumed sufficiently
smooth.

Let x andu be the vectors of statesxi and controlsui ,
then equation (14b) represents the ODE model with a
right hand sidef depending ontime t∈ [t0, tf] and initial
valuesxs are given in (14c). In (14d) and (14e) equality
respectively inequality boundary conditions are summa-
rized, and (14f) contains state and path constraints.

4.2. Discretization of States and Controls

In the articles mentioned in section2, mostlyindirect
methodshave been used, when optimal control was con-
sidered. These methods build on the necessary condi-
tions of optimality in function space,Pontryagin’s max-
imum principle, and apply an appropriate discretization
to solve the resulting boundary value problem.

In contrast, ourfirst discretize, then optimizeap-
proach transforms the control problem first to a nonlin-
ear program (NLP), before this finite-dimensional op-
timization problem is solved to optimality. We start
with the discretization of the controls. The continu-
ous controls are replaced bybase functionswith local
support, such as piecewise constant or piecewise linear
functions. These functions can be described by finitely
many parameters. To do so, we select a time grid

t0 = τ0 < τ1 < · · · < τm = tf , m ∈ N (15)

and withI i := [τi , τi+1] ∀ i ∈ {0, . . . ,m− 1} set

u(t)
∣

∣

∣

∣

I i

= φi(t,wi), wi ∈ R
µi , (16)

where theφi are the base functions. Now we have trans-
formed the infinite-dimensional controlu into a finite
vectorw = (w0, . . . ,wm−1). For notational convenience
we omit the parameter vectorp in the following.

The statesx are discretized usingmultiple shooting.
We have to choose a time grid again and for efficiency
and simplicity we choose the same grid as for the con-
trols. In theory, this is no limitation of generality, as we
could refine the grids such that they match and add some
constraints. We introducem+1 new variabless0, . . . , sm

which represent the initial values of the ODE on each in-
tervalI i respectively the final valuesm. Now we solvem
independentinitial value problems∀ i ∈ {0, . . . ,m− 1},

ẋ(t; τi , si) = f (t, xi(t), φi(t,wi)), (17a)

x(τi ; τi , si) = si , (17b)

t ∈ [τi , τi+1]. (17c)

For the numerical results presented in this paper, a BDF-
based DAE solver,DAESOL[30], has been used to solve
the initial value problems. Note that the method is exact
if the initial value problems are solved exactly.

To ensure equivalence to the original problem, we
have to addmatching conditions, which are the equality
constraints

si+1 = x(τi+1; τi , si) ∀ i ∈ {0, . . . ,m− 1}. (18)

The objective function is separable, so it can be com-
puted separately on each interval by

∫ tf

t0

L(t, x(t), φ(t,w)) dt =
m−1
∑

i=0

Li(τi+1) (19)

with Li(t) =
∫ t

τi

L(t′, x(t′; τi , si), φi(t′,wi))dt′ (20)

andφ(t,w) := φi(t,wi) for t ∈ I i . (21)

The continuous constraintsg(t, x(t), u(t), p) ≥ 0 are
evaluated pointwise on the grid (for ease of nota-
tion, we write x(τm; τm, sm) := x(τm; τm−1, sm−1) and
φm(τm,wm) := φm−1(τm,wm−1) from now on):

g(τi , x(τi ; τi , si), φi(τi ,wi)) ≥ 0, ∀ i ∈ {0, . . . ,m}. (22)

Finally, transformed boundary conditions and initial
values read

r(s0, sm) = 0, (23a)

s0 = xs. (23b)

4.3. Solution of the NLP

We have transformed the infinite-dimensional opti-
mal control problem (14) into a finite-dimensional NLP.
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By definingy := (s0,w0, . . . , sm−1,wm−1, sm), we obtain

min
y

E(sm) +
m−1
∑

i=0

Li(τi+1) (24a)

s.t. 0= si+1 − x(τi+1; τi , si) ∀ i ∈ {0, . . . ,m− 1},
(24b)

0 ≤ g(τi , x(τi ; τi , si), φi(τi ,wi)) ∀ i ∈ {0, . . . ,m},
(24c)

0 = re(s0, sm), (24d)

0 ≤ r i(s0, sm), (24e)

0 = s0 − xs. (24f)

This NLP is solved with a sequential quadratic pro-
gramming (SQP) method. This technique has been in-
troduced byWilson[31], Han, andPowell [32].

The NLP (24) can be written in the form

min
x

f (x) (25a)

subject to g(x) = 0, (25b)

h(x) ≥ 0, (25c)

with generally nonlinearf , g, andh. Instead of consid-
ering this problem, starting with some initial valuex0,
we compute the iteratesxk with a step sizetk ∈ (0, 1],

xk+1 = xk + tk∆xk, (26)

by solving a related quadratic program (QP),

min
∆x

1
2
∆xT Hk∆x+ ∇ f (xk)T∆x (27a)

subject to g(xk) + ∇g(xk)T∆x = 0, (27b)

h(xk) + ∇h(xk)T∆x ≥ 0, (27c)

whereHk is set, e.g., to the Hessian of the Lagrangian
of the problem or some approximation of this Hessian.
We compute the step size by aline search.

This is equivalent to a Newton-type method. For
more information we refer to relevant literature, e.g., to
Nocedal and Wright[33].

The Hessian resulting from the multiple shooting dis-
cretization features a special structure which can and
needs to be exploited in the SQP algorithm, [23].

5. Numerical Results

In this section, we present numerical results for the
control problems that have been introduced in Sec-
tions2 and3 obtained by applying Bock’s direct multi-
ple shooting algorithm from Section4. This section is
split into a subsection for each model and parameter set
we investigated.

5.1. d’Onofrio et al.

We tried to reproduce the results from the paper [7]
first. Optimal solutions for each scenario are depicted
in Figures1 left and 3. One can conclude from the
plots that the results could be essentially reproduced
on the whole, especially the control structure is the
same. However, the end times in our results differ to
some extent (0.13% or less) from those ind’Onofrio et
al. – e.g., 6.653 vs. 6.648 (0.08%) in scenario (S1).
The differences between the tumor volumes are much
smaller (in each case less than 0.01%), between vascu-
lature volumes a little higher (1.47% or less): 7019.29
vs. 7019.09 for tumors and 7294.18 vs. 7365.33 for
vasculature in scenario (S1) for example, which corre-
sponds to 0.003% respectively 0.97%. The differences
in the other scenarios are in a similar range and might
be due to differences in the discretization. All solutions
have been computed with 100 multiple shooting nodes
in our case.

A reasonable question one may ask is how much can
be gained by optimal control of chemotherapy treatment
schedules. For this purpose, we changed the objective
function to (O2), min−x0 (tf), and computed an optimal
control for (S1) with end time fixed totf = 6.653 and
the amount of drugs given over the total time fixed to the
bounds 300 respectively 2. This corresponds to a max-
imization of the tumor size at the end time. The result
is shown in Figure1 together with a simulation without
any therapy. Tumor volume under maximization is at
7979.50, which is about 40.5% lower than the volume
without any treatment (13419.80) on the one hand, but
on the other hand 13.7% higher than the volume under
the optimal control (7019.29).

One observes a different structure of the optimal con-
trol, which is almost of bang-bang type for both control
functions. Obviously, under a maximization of the tu-
mor volume it is optimal (in this model) to administer
a large amount of the drugs at the beginning of treat-
ment, because the fraction of cells killed is lower when
the tumor and vessel volumes are relatively small. As
angiogenic treatment has a delayed influence on the tu-
mor volume, the full-dose part at the end of the time
scale does not play a role for the development of tumor
volume.

In summary, we compared solutions for minimal and
maximal tumor value for the first time in this model.
The optimal chemotherapy controls that have been plot-
ted in Figure1 can be intuitively understood on the basis
of the model, as they are related to the Gompertz-type
growth of the tumor. However, the observed difference
of about 10% is, in particular when considering the high
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Figure 1: Optimization results ford’Onofrio et al.. Upper row: tumor (dark) and vasculature (bright) volume. Lower row: anti-angiogenic (bright,
u0) and chemotherapy (dark,u1) controls. All results for scenario (S1) for different objective functions. Left: minimization of tumor volume at end
time, objective (O1). Middle: maximization of tumor volume at end time, (O2). Right: no therapy (controls both at lower bound). The end value
of the tumor population under maximization (with the sametf ) is about 10% higher than the minimized value, which is the maximal difference due
to bad timing of drug admission.

uncertainty of model and parameters, not highly encour-
aging for practical improvements. This conclusion is
supported by the results for different objective functions
which show that the reduction in tumor size is strongly
dependent on the amount of drugs, not so much on the
timing of its application.

5.2. “mouse”, de Pillis et al. (2006)

In this section, we present optimal control results for
themouseparameter set, which is one of three parame-
ter sets inde Pillis et al. (2006)[3].

For all three parameter sets we consider a fixed time
horizon of eithertf = 40 or tf = 120 days, as in [3].
In [21] also scenarios with free end time can be found.
As stated before, we did not considertumor infiltrating
lymphocytes (TIL), as more modeling work is necessary
to come up with realistic bounds here. For the mouse
model which contains noIL-2 therapy, this means we
consider a classical cytostatic chemo-monotherapy. As
in De Pillis et al. we chooseumax

0 = 1 for numerical
experiments.

There are seven different initial value sets in [3], see
Table 1. Note that only (T1) has been used for the
“mouse” model.

For the verification of the models’ implementations in
our optimization framework we ran several simulations.
The results of [3] for themouseset could be reproduced,
for chemotherapy as well as without any therapy, [21].
Optimal control results of themousemodel are shown
in Figures5 and6.

For tf = 40 and the weighted sum objective (O3) we
fixed the total amount of drugs applied to the values of
the optimal solution, changed the sign ofp0 and p1.
This corresponds to a maximization of the tumor over
the whole time horizon and at the end time in the given
relative weighting under the constraint of a given total
amount of drugs. We also compare the minimization re-
sult to a “standard treatment” as applied byde Pillis et
al. in Figure5. The potential benefit of optimal control
is much higher in this scenario compared to the results
in Section5.1. While the maximized tumor at the end
time is at about 2· 107 cells, the minimal value is only
about 105 cells. This corresponds to 0.5% of the maxi-
mal value. The tumor size for the standard treatment is
even higher than the maximized one, but again the total
amount of drugs given is significantly lower here.

Considering the high potential for correct timing of
drug administration in this case, the question which ob-
jective function should be used becomes more impor-
tant. In Figure6 left and right one observes that under
the weighted sum objective (O3) tumor cells are on a
lower level in general whereas the end level is orders of
magnitude lower with (O5) (middle plot).

Figure6 right shows an alternative local minimum to
Figure6 left. While one solution applies chemotherapy
early, hence reducing the tumor volume to a low value
in the first half of the time horizon and letting it grow
in the second half, the solution on the left allows for a
higher value in the first part to reduce it in the second.
Both strategies are related to the Gompertz growth of
the tumor — if the tumor volume is high, the growth rate
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Figure 3: Trajectories as in Figure1. Optimization results ford’Onofrio et al., scenarios (S2), (S3), (S4) from left to right, all with objective (O1),
minimization of tumor at end time. All solutions are structurally similar.

is considerably lower. Therefore a strategy distributing
the chemotherapy over time would lead to a (nonopti-
mal) higher average growth rate.

5.3. “human 9”, de Pillis et al. (2006)

Thehuman 9model is the second parameter set from
de Pillis et al. (2006). We picked out two scenarios to
verify our implementation, see [21]. The maximal dose
of chemotherapy has been changed to 5.0, but there is
no reason given for the higher dose. The immunothera-
peutic pulses are said to be at 5.0·106 in one experiment
and at 5.0 ·105 in another one. Maybe the latter is a typ-
ing error, as the upper bound of bothIL-2 concentration
plots is 5.0 · 105, which makes sense for a dosage of

5.0 · 106 with the corresponding equation (9f). Even-
tually we decided to adopt 1.0 respectively 5.0 · 106 as
upper bounds for the chemotherapeutic respectively im-
munotherapeutic control. For chemotherapy, the drug
amount applied in our solutions is notably higher than
in thestandardtreatments investigated in [3], so it might
be reasonable to consider a smaller upper bound. Addi-
tionally, note that thehumanparameter sets are based on
mostlymurinedata. Some remarks on the immunother-
apy level will follow below.

First, we have a look at the comparison between max-
imized and minimized tumor populations, see Figure7.
The procedure was the same as in themouseSection.
We fixed the drug amount to the minimization value and
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Figure 4: Trajectories as in Figure3, now with objective (O7) which includes impact of theL2 norm. Althoughx0(tf ) is of comparable size,
controls, end timetf , and trajectories differ considerably compared to the objective in Figure3.

changed the sign of the corresponding objective param-
eters, i.e.,p0 = −1.0 for the objective with a penalty on
u0. The difference is even higher here with a maximal
tumor of almost 109 and a minimum one with less than
1, which is less than 0.000001‰. Again the standard
treatment is worse than the maximization, however, the
drug amount for the maximization was about 250% of
the standard treatment.

Figure 8 contains representative optimization re-
sults for different initial values and objective functions.
While Figure8center features a full dose chemotherapy,
in Figures8 left there is a full dose part at the beginning
followed by a short singular arc leading into a zero part.
A similar solution occurs in some more scenarios ofhu-
man 9(data not shown) and a free end time scenario
(tf ≈ 26) looks very similar, too. Figure8 right shows
the problem of a delayed therapy – if the objective is
to minimize tumor volume at the end time and the time
horizon is large, the result may be long time periods (65
days Figure8 right) with a high tumor volume before
therapy starts.

Except for one scenario, immunotherapy does not
play a significant role in the treatment. Often it is at
such a low levels (e.g., 10−7 with an upper bound of
5 · 106) that it might not be be considered therapeutic
at all. Note also that none of the objective functions
contains a penalty on the immunotherapeutic controlu1,
so immunotherapy might dissappear completely with a
penalty. However, there are also mathematical reasons
for this low influence of immunotherapy. The controlu1

enters only in equation (9f), which reads

ẋ5 = −µI x5 + u1. (28)

With a full dose ofu1(t) = 5.0 · 106 andµI = 10, x5(t)
should be at about 5.0 · 105 close to a steady state. The
statex5 itself only plays a role in equation (9c), where
the corresponding terms are

ẋ2 = · · · +
pI x2 x5

gI + x5
+ . . . (29)

with pI = 1.25· 10−1 andgI = 2 · 107. For ax2 which is
most of the time at a level of at least 105, we have

pI x2 x5

gI + x5
≈

10−1 105 105

107 + 105
≈

109

107
≈ 102 (30)

and the influence of a 102 term on a 105 state indeed
should be low. We conclude that additional work on the
modeling of immunotherapy influences is necessary.

5.4. “human 10”, de Pillis et al. (2006)

Like human 9, thehuman 10parameter set shares the
equations with themousemodel. Considering repro-
duction of the results in thede Pillis et al. article, the
first two scenarios without any treatment could be ver-
ified. In other scenarios, we observed some differences
or they could not be reproduced at all. The differences
seem to arise from the influence ofIL-2, compare [21]
for a detailed discussion.

In Figures9, 10, and11we show optimal controls for
different initial values from Table1, end timestf, and
objective functions.

We again compare maximization and minimization
and astandardtreatment in Figure9.

A selection of optimal solutions is presented in Fig-
ures10 and11. Immunotherapy is again on a very low
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Figure 5: Optimization results forde Pillis et al. (2006), mouse, scenario (T1). Upper row: tumor population. Lower row: chemotherapy control
u0. Left: minimization of weighted objective (O3). Middle: maximization of weighted objective (O4). Right: standard therapy (example from [3]).
The end value of the tumor population under minimization is about two orders of magnitude below the maximized (worst) one. Note that the given
drug amount in the standard treatment is significantly lower, so that the result is even worse than for maximization.

levels as expected. Many solutions for chemotherapy
show a singular arc (Figure10 center and Figure11
throughout). Note that these solutions have been com-
puted for the weighted sum objective. Only11 right
contains a singular solution with minimization of the
tumor at the and time with a penalty on chemotherapy.
Further results, including free end time scenarios and
the calculation ofsparse controls, can be found in [21].

6. Conclusion and Outlook

We presented optimal control results for four different
cancer chemotherapy models based on two sets of ordi-
nary differential equations. Not all of the previous sim-
ulation results in the literature could be verified, e.g.,de
Pillis et al. 2008, [9], see [21] for a detailed discussion.
As the general purpose software package MUSCOD-
II has been successfully applied to hundreds of differ-
ent applications, and we cross-checked our problem-
dependent implementation of the equations, we suspect
inconsistencies in the published model, in particular in
some parameter values.

Our optimal control solutions of thed’Onofrio model
nearly quantitatively match the ones in their article [7].
But we also study additional optimization scenarios.
The three different models based onde Pillis et al.
(2006)have been solved to optimality for the first time
to the best of our knowledge.

In order to estimate the potential for the correct tim-
ing of chemotherapies we proposed to compare the re-
sults of a minimization to the ones of a maximization
with the same total amount of drugs. The ratio between
these two values is an indicator for the potential gain.
For the d’Onofrio model in Section5.1 this potential is
rather low. A comparison to a maximization of the tu-
mor at the end time with fixed drug amounts showed
that tumor size is only about 15% larger in the worst
treatment scenario, which can nevertheless be clinically
significant. The optimal treatment yields a tumor 40%
smaller than in the case without any treatment.

For the control problems based on thede Pillismodel,
Sections5.2, 5.3, and5.4, the difference between min-
imimal and maximal objective is several orders of mag-
nitude, indicating a high potential for optimal timing.

In this context the question of how to define the ob-
jective function naturally becomes more important. We
considered different terms in a weighted sum objective
function: tumor population at the end time and inte-
grated over the whole time horizon, as well as possible
penalizations of the controls. A high dependency of the
results on the weights could be shown. For certain sce-
narios a control strategy leads to a complete removal of
the tumor at the end time at the price of a higher av-
erage value, whereas an optimal control taking theL2

norm into account generally does not lead to a removal.
From the point of view of potential clinical applications,
a tradeoff between minimal end size of the tumor and
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Figure 6: Optimization results forde Pillis et al. (2006), mouse, scenario (T1). Upper row: differential states, the tumor populationx0(·) in dark.
Lower row: chemotherapy control. Left: weighted sum objective (O3) as in Figure5 left. Middle: the same scenario under minimization of the
tumor at the end time and a penalty on chemotherapy, (O5). Right: The plot shows a different local minimum, objective (O3) as in the left plot.
Note the lowerintegratedtumor volume in the left and right plots, at the price of not eliminating the tumor at the end time.

minimal average value (e.g., minimizing tumor inva-
siveness and destruction of surrounding tissue) should
be important and will depend on the type of tumor, its
location in the body and its absolute initial size.

The influence of the immunotherapy in thede Pillis
models was surprisingly low. As the results are not fully
convincing from a practical point of view in our opin-
ion, further efforts should be devoted to a more detailed
modeling of the interplay between immune system and
cancer growth and its quantitative understanding.

Generally, only few data are available for parameter
sets, particularly in the case of human models, and obvi-
ously there is a significant variation from cancer type to
cancer type and even from patient to patient. Therefore,
we are aware that our current solutions are of no practi-
cal relevance for clinical applications, but they provide
a proof of principles of what could be possible. It is ob-
vious that an intense interdisciplinary cooperation be-
tween mathematicians, biologists, and physicians will
be necessary to bridge this gap and to bring optimal con-
trol techniques into medical practice.
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Figure 7: Optimization results forde Pillis et al. (2006), human 9, scenario (T4). Upper row: tumor population. Lower row: chemotherapy control
u0. Left: minimization of tumor at end time with penalty on chemotherapy control (O5). Middle: maximization, objective (O6). Right: standard
therapy (example from [3]). Immunotherapy is (almost) zero in all cases. The optimaltreatment makes the difference between a completely
diminishing and a growing tumor here.
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Figure 9: Optimization results forde Pillis et al. (2006), human 10, scenario (T5). Upper row: tumor population. Lower row: chemotherapy control
u0. Left: minimization of weighted sum (O3). Middle: maximization, objective (O4). Right: standard therapy (example from [3]). Immunotherapy
is (almost) zero in all cases. Minimization is even a little higher than maximization at the end time, but the objective contains the minimization of
the tumor over the whole time here, where the minimization issignificantly better. Standard treatment is about 3 orders of magnitude worse due to
a significantly lower total amount of drugs.
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Figure 10:de Pillis et al. (2006), human 10. Left: Optimal control result for scenario (T7) with end time tf = 40 days under minimization of tumor
at the end time (O1). Center: optimal control result for scenario (T5) with endtime tf = 120 days under the weighted sum objective (O3). Right:
Simulation of scenario (T6) with standard therapy including immunotherapy and TIL — the results from [3] could not be reproduced.
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Figure 11:de Pillis et al. (2006), human 10, different optimal control results for scenario (T2). Upper row shows states, lower row controls. Left:
Weighted sum objective (O3) with end timetf = 40 days. Center: same objective (O3) with end timetf = 120 days. Right: minimization of tumor
at end time with penalty on chemotherapy (O5), end time at 120 days. In contrast to Figure10 left, all solutions are dominated by singular arcs.
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