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Abstract

It is still an open question, even among physicians and oncologists, how much potential
good timing of a chemotherapy yields. Systematic approaches from scientific computing
can provide additional insight, even though available mathematical models are far from an
exact description of reality due to patient-, cancer-, and therapy-specific components. In this
diploma thesis, different mathematical models of cancer and cancer chemotherapy presented
in the literature are investigated with scientific computing methods.

We present five models based on ordinary differential equations which all contain some
kind of drug treatment, such as chemotherapy, immunotherapy, anti-angiogenic therapy and
combinations of these. Optimal control problem formulations corresponding to these models
are presented, proposed, and compared.

The optimal control problems are solved numerically with Bock’s direct multiple shoot-
ing method, which is explained in the work. As the resulting optimal controls may not be
realizable in medical practice, also mixed-integer optimal control problems are considered.
Mixed-integer solutions are computed with the MS MINTOC approach. To overcome prob-
lems with chattering behavior of optimal solutions, a new approach is introduced, where a
mixed-integer linear program is solved to approximate the continuous control with a limited
number of switches.

Optimal control results are presented for six different parameter sets. Four of them have
been solved to optimality for the first time. Where no optimal control problems have been
published yet, we formulate some. In particular, we show that an optimally controlled therapy
can be the reason for the difference between a growing and a totally vanishing tumor in a
comparison to standard schemes and untreated or wrongly treated tumors. We consider
different objective functions and show that the obvious one, a minimization of the tumor at
the end time of a treatment, is not always adequate. The new mixed-integer method is tested
and it is shown that this technique may provide practicable treatments. The continuous
treatments are also compared to the more practicable mixed-integer ones.

The work shows that there is a high potential for the optimization of chemotherapies, al-
though the current models have not yet been appropriate for taking the optimal therapies into
medical practice. Here, patient- and tumor-specific parameter estimation on well-understood
mathematical models, together with an intensified collaboration of mathematicians, biolo-
gists, and physicians could lead to significant improvements.





Zusammenfassung

Auch unter Medizinern und Onkologen ist es nach wie vor eine offene Frage, wie viel Poten-
tial im richtigen Timing von Chemotherapien steckt. Systematische Ansätze aus dem wissen-
schaftlichen Rechnen können hier zusätzliche Einsichten liefern, auch wenn die vorhandenen
mathematischen Modelle aufgrund von Patienten-, Krebs- und Therapie-spezifischen Kom-
ponenten noch weit von einer akkuraten Beschreibung der Realität entfernt sind. In dieser
Diplomarbeit werden verschiedene mathematische Modelle aus der Literatur für Krebs und
die zugehörige Chemotherapie mit Methoden des wissenschaftlichen Rechnens untersucht.

Wir stellen fünf verschiedene Modelle mit gewöhnlichen Differentialgleichungen vor, in de-
nen allen eine Art medikamentöser Behandlung wie Chemotherapie, Immuntherapie, Anti-
Angiogenese oder eine Kombination aus diesen enthalten ist. Vorhandene Optimalsteue-
rungsprobleme zu diesen Modellen werden dargestellt.

Die Optimalsteuerungsprobleme werden mit Bocks direkter Mehrzielmethode gelöst, die
in dieser Arbeit erläutert wird. Da die resultierenden Optimalsteuerungen möglicherweise
in der medizinischen Praxis nicht umsetzbar sind, betrachten wir auch gemischt-ganzzahlige
Optimalsteuerungsprobleme. Die entsprechenden Steuerungen werden mit dem in der Ar-
beit beschriebenenen MS MINTOC Algorithmus berechnet. Hierbei wird eine neue Heuristik
eingeführt, in der ein gemischt-ganzzahliges lineares Programm gelöst wird, um die konti-
nuierliche Steuerung mit einer beschränkten Anzahl an Schaltvorgängen zu approximieren.

Ergebnisse der Optimalsteuerung werden für sechs verschiedene Parametersätze vorge-
stellt, wobei für vier davon erstmals Optimallösungen berechnet wurden. Sofern es bisher
keine publizierten Optimalsteuerungsprobleme zu den Parametersätzen bzw. Modellen gibt,
formulieren wir solche. Insbesondere zeigen wir, dass eine optimalgesteuerte Therapie zu ei-
nem vollständig verschwindenden Tumor führen kann im Gegensatz zu einem wachsenden
Tumor bei nicht-optimaler Behandlung, indem die Ergebnisse unter optimalen Steuerungen
mit denen unter Standardbehandlungen, sowie falsch oder gar nicht behandelten Tumoren
verglichen werden. Wir betrachten verschiedene Zielfunktionen und zeigen dabei, dass die
naheliegendste, die Minimierung des Tumors am Ende des Behandlungszeitraums, nicht im-
mer geeignet ist. Unsere neue Heuristik für gemischt-ganzzahlige Probleme wird auf die
beschriebenen Modelle angewandt und es wird gezeigt, dass sich mit diesem Verfahren in ei-
nigen Szenarien praktikable Therapien ergeben. Die kontinuierlichen Behandlungen werden
ebenfalls mit den praxisnäheren gemischt-ganzzahligen Gegenstücken verglichen.

Die Arbeit zeigt, dass es ein möglicherweise großes Potential für die Optimierung von
Chemotherapien gibt, wenn auch die derzeitigen Modelle es noch nicht erlauben, die mit
ihnen errechneten optimalgesteuerten Therapien in der Realität anzuwenden. Hier könnte
patienten- und tumorspezifische Parameterschätzung auf gut verstandenen mathematischen
Modellen, zusammen mit einer intensiven Zusammenarbeit zwischen Mathematikern, Biolo-
gen und Medizinern, zu signifikanten Verbesserungen führen.
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Notation

Symbols

R real numbers
N natural numbers

Names

δ delta distribution
D Domain
f right hand side of an ODE
Φ objective function, objective function value
ΦM mayer term of objective function
ΦL lagrangian term of objective function

G, Gk time grids
hk switching interval lengths
Ii partial time intervals
ni, ne number of inequality/equality constraints
nu number of controls (dimension of control vector)
nx number of states (dimension of state vector)
N maximum number of switches (decomposed MILP)
p0, p1, . . . parameters (in objective function)
p parameter vector, different parameter sets
qi continuous discretized control value
ri, re inequality/equality boundary conditions
s different initial value sets
si additional initial values at multiple shooting nodes
sj slack variables

t time, different time scenarios
t0 start time (of a problem, treatment, . . . )
t f end time

[t0, t f ] time interval

tk step size in SQP method
τ0, . . . , τm time grid points

T , T k trajectories
u control (vector)
u0, u1, . . . controls
v binary parameter vector
w integer or binary control (vector)
wi discretized control parameter, integer/binary control value
x0, x1, . . . states
x state vector
ẋ time derivative of x



x̂0 initial value for state vector

∆xk step in SQP method

Abbreviations

BDF backward differentiation formula
DAE differential algebraic equation
MILP mixed-integer linear program/problem
MINLP mixed-integer nonlinear program/problem
MIOC mixed-integer optimal control
MIOCP mixed-integer optimal control problem
NLP nonlinear programming problem
NMPC nonlinear model predictive control
ODE ordinary differential equation
QP quadratic program/problem
SOS1 special ordered set, type 1

SQP sequential quadratic programming

Different lower an upper case letters, both latin and greek, are used for parameters in the
models. In general, these symbols are chosen to be consistent with the corresponding refer-
ences, if this did not conflict with the overall notation in this work.
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Chapter 1

Introduction

Cancer and Chemotherapy

Today, cancer is one of the major diseases of humanity. In Germany, one in four cases of
death is caused by cancer and every year about 400,000 new affections are detected. Whereas
the exact causes of cancer have not been fully known until today, there is the consensus that
cancer arises from a mutation of genes which are responsible for the correct reproduction of
cells. The final result is a malignancy, a tumor, which grows uncontrolled, invasive, and some-
times builds metastases. Thereby, generally all tissues and organs can be affected, although
incidence and the chance of a cure vary a lot.

Classic treatments contain the removal by surgery, radiotherapy, and also chemotherapy,
which means the admission of drugs which inhibit or stop the growth of tumor cells. A che-
motherapy, however, in general affects also non-tumor cells, a negative side effect, which has
to be kept under control. Such therapies may be combined with additional medicamentous
therapies, like anti-angiogenesis, which has an effect on the blood vessel in the neighbourhood
of the tumor, or immunotherapy which aims at a stimulation of the patients’ immune system.
Particularly for medical treatments such as chemotherapy, immunotherapy, anti-angiogenic
therapy, and a combination of them, time and amount of drug admission may be crucial,
since the cell populations underly complex processes.

Mathematical Modelling, Simulation, and Optimization

While Scientific Computing has become an indispensable ingredient of research and every-
day-practice in robotics and mechanics, chemical engineering, aerospace, transport, and many
other areas, the application of numerical methods to find answers to open questions in
medicine has not yet been as evolved.

Scientific Computing, and in particular the modeling, simulation, and optimization of pro-
cesses, is often regarded as the third pillar of science, complementary to theory and exper-
iment. In medicine however, experiments are not so easily reproducable as in mechanics,
and the theoretic interpretation of drug influence is not as well understood as e.g. Newton’s
equations of motion.

Especially the influence of medicaments and drugs is often not fully understood, and of
course highly patient-dependent. Hence it cannot be expected that currently available models
in ordinary differential equations are a good match to clinical reality. A patient- and tumor-
specific parameter estimation on well-understood mathematical models, possibly also taking
into account spatial effects, will hopefully lead the way in the future.

This work is meant to be another small step in this direction. The basic mathematical
models that have been proposed in the literature over the last years should already capture
several important dynamic effects of chemotherapy treatments. Having in mind that the
gap between simulated and real-world data will still be large, we focus in this work on
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Chapter 1 Introduction

general insights that can already be gained by optimization of available mathematical models.
Examples for basic questions are

• What similarities and what differences arise for the different mathematical models? We
present five mathematical models for cancer and cancer chemotherapy. Although they
all contain some kind of chemotherapy, they differ in the kind of additional treatments
and in type and amount of cell types they include. For the five models, there are eight
parameter sets. We present optimal control results for six of them, whereas to the best
of our knowledge four sets were not solved to optimality before.

• How much potential for the right timing of drug delivery is there? In general the aim
of a therapy, no matter what kind, is to minimize the tumor size, i.e. the tumor volume
or the amount of tumor cells. To answer this question, we consider also therapies
which, with a fixed amount of drugs, maximize the tumor size on a certain time horizon.
The result, a therapy, which makes the tumor grow as big as possible under these
constraints, can be considered the worst treatment one could apply. Together with the
optimal control for a minimal tumor, the best treatment, we compare these results to
standard treatments or untreated tumors, e.g. in figures 5.9, 5.17, 5.47, and 5.60. It turns
out that there are scenarios where the differences between worst and best treatments are
small, but we also show scenarios where the same amount of drugs leads to a growing
tumor on the one hand and a total disappearance on the other hand (figure 5.25).

• How sensitive are optimal control strategies against the choice of the objective function?
The formulation of an objective function is crucial for the optimal control result. We
formulate new optimal control problems with different objective functions for models
for which such problems have not been published yet. Results for different objectives
are shown in sections 5.3, 5.4, and 5.5 (e.g. see figures 5.13 and 5.14, 5.32 and 5.35).

• How much of our objective do we lose because of practical restrictions, e.g. a discrete
and not continuous therapy plan? Optimal controls may consist of so-called singular

arcs, which are parts where the control is not at its lower or upper bound. A treatment
with a singular arc may not be realizable in medical practice. Therefore we also have
a look at corresponding practicable therapies, which are computed as mixed-integer
controls, and compare the results under these treatments to the optimal ones. This
is shown in figures 5.11, 5.42, and 5.44, for example. For this part, we implemented
and tested a new heuristic for the solution of the arising mixed-integer optimal control
problems.

Contributions

This diploma thesis gives an extensive overview of existing mathematical models for cancer
and cancer chemotherapy. Multiple corrections are given and mistakes are revealed. We
apply state-of-the-art optimal control methods to these models. In particular, we use Bock’s
direct multiple shooting for continuous optimal control and MS MINTOC for mixed-integer
optimal control.

The existing mixed-integer algorithms are extended with a new rounding heuristic. There-
fore, the methodic proposal of the advisor has been implemented and is applied successfully.
Optimal solutions for four models are computed, whereas a part of these problems are solved
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to optimality for the first time. Optimal control results from the literature are partly verified,
partly falsified. For the first time in this context, a focus is set on integer respectively binary
controls. The numerical results of both continuous and mixed-integer optimal control are
analysed, compared and explained.

Note that not all mechanisms of cancer are well understood yet. Some, e.g. anti-angiogene-
sis, are still controversial, but a discussion of such processes is not an aim of this work. These
processes are described from a layman point of view while the focus is set on the resulting
mathematical models and the application of methods from scientific computing.

Structure

The work is structured as follows. In the next chapter, we present the five different models
that have been investigated in this work including the eight different parameter sets. We also
introduce some optimal control problems – readers who are totally unfamiliar with optimal
control problems are referred to section 3.1 where we give an abstract problem formulation.
Chapter 3 explains the techniques we used to solve the arising continuous optimal control
problems, direct multiple shooting, while Chapter 4 contains a mixed-integer optimal control
approach together with a new rounding heuristic, where a decomposed mixed-integer linear
program is solved. The optimal control results can be found in chapter 5, where also inter-
pretations and comparisons between the different scenarios are given. Our work concludes
with a summary of our results and an outlook on possible future work.
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Chapter 2

Modeling Cancer and Treatments

In this work, five different models of cancer and cancer chemotherapy respectively immuno-
therapy with a total of eight different parameter sets have been investigated. The models are
all based on a set of ordinary differential equations and feature some kind of medical treat-
ment. In this section, an overview over the models is given and differences between them are
highlighted. We also present their scientific context and give a survey of adjacent approaches
we did not consider in detail.

2.1 Hahnfeldt et al. 1999

In Hahnfeldt et al. [24], a model with two states and one control is given. The states are the
volume of the tumor x0 on the one hand and the volume of blood vessels in the neighborhood
of the tumor x1 on the other hand. This is due to the fact that the therapy u0 applied in this
model is an anti-angiogenic therapy.

Optimal control techniques have not been applied to this model, but as the model presented
in the next section is derived from Hahnfeldt et al., it is useful to verify implementation results
and to give an introduction to Anti-Angiogenesis.

The model has been implemented in the chemo1 application.

Anti-angiogenesis

Anti-angiogenesis is a concept introduced in the 1970s by Folkman [20], who is also one of the
co-authors of [24]. As a tumor needs proliferating blood vessels to survive and to grow, the
basic idea is to administer a drug u0 that supresses Angiogenesis, the process of blood vessels
growing from existing vessels. While the killing agents applied by classic chemotherapy
attack the tumor cells directly, this drugs—TNP-470, Endostatin, and Angiostatin in [24]—
inhibit the growth of endothelial cells which provide the tumor with necessary nutrition.
According to [20], without this neovascularization, most tumors cannot exceed a diameter of
2–3 mm so an anti-angiogenic therapy may be interesting in particular as a combination therapy
with classic chemotherapy when the tumor is attacked directly in addition.

Model Equations

The tumor volume equation consists of a Gompertz-term

−ζ x0(t) log

(

x0(t)

x1(t)

)

(2.1)

in which the limit has been replaced by the endothelial volume. Gompertz growth beside logistic

growth is one of the two types of growth chosen in all models that have been investigated.
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Chapter 2 Modeling Cancer and Treatments

The classic Gompertz growth equation reads

Ṅ(t) = −ζN(t) log

(

N(t)

K

)

(2.2)

where K—the limit for the population N(t)—is called carrying capacity. Inserting the blood
vessel volume as carrying capacity instead of a fixed value means that the growth of the tumor
is limited by the vasculature volume. Thus to grow in the long-term, the tumor needs the
blood vessels to grow. Note that log refers to the natural logarithm—at least, we could only
reproduce the results perfectly using natural logarithm, see chapter 5.

The equation for blood vessel volume is a bit more complex. There is a term

−µ x1(t) (2.3)

that represents the spontaneous loss of vasculature and one that represents the stimulation of
neovascularization by the tumor (e.g. by VEGF, vascular endothelial growth factor),

b x0(t). (2.4)

The third term,

−d x0(t)
2
3 x1(t), (2.5)

comes from the endogeneous inhibition of the vasculature previously generated. Finally, with

−G g(t) x1(t) (2.6)

the response to the anti-angiogenic drug is modeled. g(t) is the concentration of the drug
at the tumor site and contains the effect from partially cleared drug amounts from prior
adminstrations:

g(t) =
∫ t

0
u0(t′) exp

(

−γ
(

t − t′
))

dt′ (2.7)

For reasonable results of course, we have to require all populations as well as the drug ad-
ministration to be ≥ 0, so we have to add

0 ≤ u0(t), x0(t), x1(t). (2.8)

Parameters and Optimal Control

The parameters G, b, d, µ, ζ, γ in [24] are derived by about 1,000,000 runs of a monte-carlo-
algorithm based on data from experiments with mice that have been injected Lewis lung
carcinoma cells.

In Hahnfeldt et al., neither any optimization of treatment schemes is done nor an optimiza-
tion problem is formulated. However, different fixed scenarios with the three different drugs
mentioned above are evaluated. The whole model is described by the following equations.
Initial values used in the article are listed in Table 2.1, parameters compared to the ones from
d’Onofrio et al. [17] can be found in Table 2.3.
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2.2 d’Onofrio et al. 2009

x0(t0) x1(t0) Description

~200 625 Control

~170 625 TNP-470, low

12, 300 625 TNP-470, middle

17, 300 625 TNP-470, high

177 625 Endostatin

170 625 Angiostatin, low

240 625 Angiostatin, middle

400 625 Angiostatin, high

Table 2.1: Initial values used in Hahnfeldt et al.

ẋ0(t) = −ζ x0(t) log

(

x0(t)

x1(t)

)

, (2.9a)

ẋ1(t) = b x0(t)− µ x1(t)− d x0(t)
2
3 x1(t)− G g(t) x1(t), (2.9b)

g(t) =
∫ t

0
u0(t′) exp

(

−γ
(

t − t′
))

dt′, (2.9c)

0 ≤ u0(t), x0(t), x1(t), (2.9d)

t ∈ [t0, t f ]. (2.9e)

2.2 d’Onofrio et al. 2009

The model in d’Onofrio et al. [17] is based on the work in [24] (section 2.1) and especially
on a modification of the Hahnfeldt-model by d’Onofrio and Gandolfi [15, 16]. Therefore we
implemented it also in the chemo1 application. A major modification is the identification of
drug concentration and dosage. Hence, there is no concentration equation like (2.9c) in section
2.1. Furthermore, a classic chemotherapy treatment has been added, so that now there are
two controls: u0 representing anti-angiogenic treatment, and u1 representing chemotherapy.

Model Equations and Parameters

The chemotherapeutic drug influences both tumor and vasculature, so the blood vessel equa-
tion now reads

ẋ1(t) = b x0(t)− µ x1(t) − d x0(t)
2
3 x1(t)− G u0(t) x1(t)− η x1(t) u1(t). (2.10)

If the chemotherapeutic drug is effective, the killing effect on tumor cells should be higher
than on other cells. At least one has to assume that the effect on blood vessel cells and tumor
cells is different, so a different parameter F for the chemotherapy killing term in the tumor
equation is used. Finally, they replace log by ln, although our computation results of the
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Chapter 2 Modeling Cancer and Treatments

Hahnfeldt model suggest that log in [24] already means natural logarithm. However this results
in an corresponding transformation of ζ (see table 2.3). The modified tumor equation is

ẋ0(t) = −ζ x0(t) ln

(

x0(t)

x1(t)

)

− F x0(t) u1(t). (2.11)

In d’Onofrio et al., the total amount of drug applied is limited. To be able to treat this con-
straints easily in MUSCOD-II (see chapter 3 and 5), we add two auxiliary states which sum up
the amounts of given drugs:

ẋ2(t) = u0(t), (2.12)

ẋ3(t) = u1(t). (2.13)

Now the constraints on the total amount can be written as

x2(t f ) ≤ A, (2.14)

x3(t f ) ≤ C, (2.15)

and the additional constraints on the controls are

u0(t) ≤ a, (2.16)

u1(t) ≤ c. (2.17)

Thus, with slight transformations the total model with constraints is described by the system

ẋ0(t) = −ζ x0(t) ln

(

x0(t)

x1(t)

)

− F x0(t) u1(t), (2.18a)

ẋ1(t) = b x0(t)− µ x1(t)− d x0(t)
2
3 x1(t)

− G u0(t) x1(t)− η x1(t) u1(t),
(2.18b)

ẋ2(t) = u0(t), (2.18c)

ẋ3(t) = u1(t), (2.18d)

0 ≤ a − u0(t), (2.18e)

0 ≤ c − u1(t), (2.18f)

0 ≤ A − x2(t f ), (2.18g)

0 ≤ C − x3(t f ), (2.18h)

0 ≤ u0(t), u1(t), x0(t), x1(t), (2.18i)

t ∈ [t0, t f ]. (2.18j)

The values of the parameters can be found in table 2.3, initial values are listed in table 2.2.
Note that the parameters F, η, A, a, C, c, which are not taken from [24], are not based on
experimental data. These values have just been used for numerical experiments.

Optimal Control Problem and Initial Values

In the numerical analysis section, an optimal control problem is posed. The objective function,
which should be minimized, is

x0

(

t f

)

+ α
∫ t f

t0

u0(t)2 dt, (2.19)
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2.3 De Pillis et al. 2006

x0(t0) x1(t0) x2(t0) x3(t0) Description

12, 000 15, 000 0 0 umax—sing—0

14, 000 5, 000 0 0 0—sing—0

Table 2.2: Initial values used in d’Onofrio et al.

Parameter d’Onofrio et al. Hahnfeldt et al. Description

F 0.1 — tumor killing by chemotherapy

G 0.15 0.15/0.66/1.3 vasculature killing by Anti-Angiogenesis

b 5.85 5.85 birth parameter

d 0.00873 0.00873 death parameter

µ 0.02 0.0 natural inhibition parameter

ζ 0.084 (ln) 0.192 (log) tumor growth parameter

γ — 0.13/0.39/0.39 drug clearance rate

η 0.0–0.1 — vasculature killing by chemotherapy

A 300 — maximum inhibitor available

a 75 — maximum dosage of inhibitor

C 2/10 — maximum killing agent available

c 1/2 — maximum dosage of killing agent

Table 2.3: Parameters in Hahnfeldt et al. and d’Onofrio et al.

while the end time t f is free. This means that we minimize the tumor volume at the end time
of the treatment and penalize the angiogenic drug dosage. Hence, the value for α should be
chosen such that the penalty does not dominate the tumor volume part. In the numerical
experiments in the article α = 0.005 is chosen.

Combining (2.18) and (2.19) we finally get the optimization problem

min x0

(

t f

)

+ α
∫ t f

t0

u0(t)2 dt (2.20a)

subject to (2.18). (2.20b)

The initial values have been chosen such that the solution of the optimal control problem
(2.20) has different structures. With the initial values x0(t0) = 12, 000, x1(t0) = 15, 000 the
structure is maximum—singular—minimum (note that here minimum means 0), while the
structure with x0(t0) = 14, 000, x1(t0) = 5, 000 is minimum—singular—minimum.

2.3 De Pillis et al. 2006

While the first two models were relatively small, the model by de Pillis et al. (2006) [10] is a
little bigger, especially concerning the number of parameters. It consists of five respectively

23



Chapter 2 Modeling Cancer and Treatments

Name Description

x0 number of tumor cells

x1 number of NK cells

x2 number CD8+ T cells

x3 number of circulating lymphocytes

x4 chemotherapeutic drug concentration

x5 immunotherapeutic drug concentration

u0 chemotherapeutic drug dosage

u1 immunotherapeutic drug dosage (IL-2)

u2 cytolytic immune cell dosage (TIL)

Table 2.4: Overview of states and controls in de Pillis et al. 2006

six states, up to three controls and 29 parameters in three parameter sets. The work is based
on previous work by the same or similar authors [11, 12, 13].

As a major difference to the models above, this one contains a combination of chemotherapy

and immunotherapy. Thus, one of the five states is still the tumor population x0, but in absolute
cell count. Instead of the blood vessel volume, this model features three types of immune cell
populations (all in absolute cell count):

• NK cells x1—unspecific immune cells which are also present in a healthy body, “natural
killer” cells

• CD8+ T cells x2—tumor-specific immune cells

• circulating lymphocytes x3—white blood cells

The fifth and the sixth state represent the chemotherapeutic drug concentration x4 respec-
tively interleukin-2 concentration x5. Interleukin-2, which is one of the two immunotherapeutic
controls, is a cytokine that stimulates the production of CD8+ T cells and is used “to boost
immune system function” [10]. In addition, there is a control for a classic chemotherapeutic

drug u0 and one for a tumor infiltrating lymphocyte injection (TIL) u2. The latter means an in-
jection of CD8+ T cells that have been highly stimulated against tumor cells outside the body.
See table 2.4 for an overview of states and controls.

The model has been implemented in the chemo3 MUSCOD-II-application.

Parameter Sets

There are three parameter sets given: mouse, human 9, and human 10. As the name suggests,
the mouse parameter set contains parameters derived from murine experiments.

In fact, the parameters come from different papers treating different types of cancer and
different types of mice. For example the tumor growth parameter a has been fitted to data from
a paper by Diefenbach et al. [14]. In that article, EL4 thymoma, RMA lymphoma and B16-BL6

melanoma have been implanted into B6-Rag−/− mice. On the other hand, e.g. the death rate
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of NK cells f is derived from Kuznetsov et al. [28], where a mathematical model is used to
describe the kinetics of growth and regression of a BCL1 lymphoma in BALB/c mice. For the
parameters r2 and v, there is no source.

For the human parameter set, the authors refer to an article by Dudley et al.[18]. This publi-
cation contains real proband data of 13 melanoma patients. The data of the ones numbered 9

and 10 has been used in de Pillis et al. 2006 for fitting seven of the parameters. Again, for r2

and v, there is no source. Actually, there are eight more references for the human parameter
set, e.g. the two murine papers from the mouse parameter set. Another source [27] refers
among others to Kuznetsov et al. Note that this means that about one third of the human
parameters comes from murine experiments.

In [27] it is stated that the value of a certain parameter in their model “(...) varies greatly
from patient to patient and cancer to cancer.” So this model may not be adequate for gener-
ating exact treatment schedules 1—in particular for humans since there is only little human
data used and the values may highly depend on the patient and the type of cancer. But it still
may be useful for making general qualitative statements.

Table 2.5 gives an overview of the different parameter sets.

Model Equations

The model features a logistic growth term in the tumor equation, here

a x0(t) (1 − b x0(t)) . (2.21)

As already mentioned above, NK cells x1 and CD8+ T cells x2 both kill tumor cells. The
interaction between NK and tumor cells is modeled with a bilinear term, while the effect of
CD8+ T cells introduces a quotient also used in other equations:

−c x1(t) x0(t)− D x0(t) with D = d
(x2(t)/x0(t))l

s + (x2(t)/x0(t))l
. (2.22)

Both terms are taken from de Pillis et al. 2003 [12]. The last summand in the tumor equation
represents the effect of chemotherapy on the tumor where a saturation term (1 − e−x4(t)) is
used. This term with different parameters is contained in the immune cell equations, too:

tumor x0 : − KT

(

1 − e−x4(t)
)

x0(t), (2.23a)

NK cells x1 : − KN

(

1 − e−x4(t)
)

x1(t), (2.23b)

CD8+ T cells x2 : − KL

(

1 − e−x4(t)
)

x2(t), (2.23c)

circ. lymphocytes x3 : − KC

(

1 − e−x4(t)
)

x3(t). (2.23d)

The equation for NK cells contains a recruitment term of circulating lymphocytes e x3(t)
and an exponential decay term − f x1(t) representing the limited natural lifespan of each cell.
Additionally, there is a term for recruitment of NK cells,

g
x0(t)2

h + x0(t)2
x1(t), (2.24)

1except for Mickey Mouse. . .
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Parameter Mouse Human 9 Human 10 Description

a 4.31 · 10−1 4.31 · 10−1 4.31 · 10−1
tumor growth rate

b 2.17 · 10−8 1.02 · 10−9 1.02 · 10−9
reciprocal of tumor carrying capacity

c 7.13 · 10−10 6.41 · 10−11 6.41 · 10−11
fractional tumor cell kill by NK cells

d 8.17 2.34 1.88 saturation level of frac. tumor cell kill by CD8+ cells

l 6.57 · 10−1 2.09 1.81 exponent of fractional tumor cell kill by CD8+ cells

s 6.18 · 10−1 8.39 · 10−2 5.12 · 10−1
steepness coefficient of the tumor-CD8+-lysis term

e 1.29 · 10−3 2.08 · 10−7 2.08 · 10−7
fraction of circ. lymphocytes becoming NK cells

f 4.12 · 10−2 4.12 · 10−2 4.12 · 10−2
death rate of NK cells

g 4.98 · 10−1 1.25 · 10−2 1.25 · 10−2
maximum NK cell recruitment rate

h 2.02 · 107 2.02 · 107 2.02 · 107
steepness coeff. of the NK cell recruitment curve

p 1.0 · 10−7 3.42 · 10−6 3.59 · 10−6
NK cell inactivation rate

m 2.0 · 10−2 2.04 · 10−1 9.12 death rate of CD8+ cells

j 9.96 · 10−1 2.49 · 10−2 2.49 · 10−2
maximum CD8+ cell recruitment rate

k 3.03 · 105 3.66 · 107 5.66 · 107
steepness coeff. of the CD8+ cell recruitment curve

q 3.42 · 10−10 1.42 · 10−6 1.59 · 10−6
CD8+ cell inactivation rate

r1 1.10 · 10−7 1.10 · 10−7 1.10 · 10−7
CD8+ cell production stimulation rate by NK cells

r2 3.0 · 10−11 6.50 · 10−11 6.50 · 10−11
CD8+ cell production stimulation rate by circulat-
ing lymphocytes

v 1.80 · 10−8 3.00 · 10−10 3.00 · 10−10
regulatory function by NK cells on CD8+ cells

KT 9.00 · 10−1 9.00 · 10−1 9.00 · 10−1
fractional tumor cell kill by chemotherapy

KN 6.00 · 10−1 6.00 · 10−1 6.00 · 10−1
fractional NK cell kill by chemotherapy

KL 6.00 · 10−1 6.00 · 10−1 6.00 · 10−1
fractional CD8+ cell kill by chemotherapy

KC 6.00 · 10−1 6.00 · 10−1 6.00 · 10−1
fractional circulating lymphocytes cell kill by che-
motherapy

α 1.21 · 105 7.50 · 108 5.00 · 108
constant source of circulating lymphocytes

β 1.20 · 10−2 1.20 · 10−2 8.00 · 10−3
natural death and differentiation of circulating lym-
phocytes

γ 9.00 · 10−1 9.00 · 10−1 9.00 · 10−1
rate of chemotherapy drug decay

pI — 1.25 · 10−1 1.25 · 10−1
maxmimum CD8+ cell recruitment rate by IL-2

gI — 2.00 · 107 2.00 · 107
steepness of CD8+ cell recruitment curve by IL-2

µI — 1.00 · 101 1.00 · 101
rate of IL-2 drug decay

Table 2.5: Parameter sets of de Pillis et al. 2006
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x0(t0) x1(t0) x2(t0) x3(t0) x4(t0) x5(t0) Parameter set

1 · 106 5 · 104 1 · 102 1.1 · 107 0 0 Mouse

1 · 106 1 · 105 1 · 102 6 · 1010 0 0 Human 9/10

1 · 106 1 · 103 1 6 · 108 0 0 Human 9

2 · 107 1 · 103 1 6 · 108 0 0 Human 9

1 · 108 1 · 103 1 6 · 108 0 0 Human 9

1 · 107 1 · 103 1 6 · 108 0 0 Human 9/10

1 · 105 1 · 105 1 · 102 6 · 1010 0 0 Human 10

Table 2.6: Initial values of de Pillis et al. 2006

and one for the inactivation of NK cells after interaction with tumor cells

−p x1(t) x0(t). (2.25)

Matching the assumption that there are no CD8+ T cells present in the absence of a tumor,
there is no growth term but an exponential decay −m x2 in the corresponding equation.
However, there are several recruitment terms. One for the recruitment by tumor-CD8+ T cell
interaction, one for the recruitment by tumor cells killed by NK cells (tumor debris), and one
for the recruitment by encounters between tumor cells and circulating lymphocytes:

j
D2 x0(t)2

k + D2 x0(t)2
x2(t) + r1 x1(t) x0(t) + r2 x3(t) x0(t). (2.26)

Similar to the inactivation of NK cells there is a summand −q x2 x0 for the inactivation of
CD8+ T cells after interacting with tumor cells. In addition, there is an inactivation term
−v x1 x2

2 describing the regulation and suppression of CD8+ T cell activity at high cell levels.
In the CD8+ T cell equation there is also a Michaelis-Menten-term for the influence of IL-2 and
a simple input of the TIL control,

pI x2(t) x5(t)

gI + x5(t)
+ u2(t) (2.27)

Circulating lymphocytes are expected to have a constant source and again a limited natural
lifespan which leads—together with chemotherapeutic influence—to

ẋ3(t) = α − β x3(t) − KC

(

1 − e−x4(t)
)

x3(t), (2.28)

The last two equations—the ones for chemo- and immunotherapeutic drug concentration—
are of simple exponential decay type with the corresponding controls as inputs:

ẋ4(t) = −γ x4(t) + u0(t), (2.29a)

ẋ5(t) = −µI x5(t) + u1(t). (2.29b)
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Again for reasonable results, it is necessary that all states and controls are ≥ 0. Therefore we
add the constraints

x0(t), x1(t), x2(t), x3(t), x4(t), x5(t) ≥ 0, (2.30a)

u0(t), u1(t), u2(t) ≥ 0. (2.30b)

Finally we get the whole model by the following set of ODEs. In favor of readability we omit
the time dependence of states and controls. For more details on the equations we refer to
[10, 12].

ẋ0 = a x0 (1 − b x0) − c x1 x0 − D x0 − KT

(

1 − e−x4
)

x0, (2.31a)

ẋ1 = e x3 − f x1 + g
x0

2

h + x0
2

x1 − p x1 x0 − KN

(

1 − e−x4
)

x1, (2.31b)

ẋ2 = −m x2 + j
D2 x0

2

k + D2 x0
2

x2 − q x2 x0 + (r1 x1 + r2 x3) x0

− v x1 x2
2 − KL

(

1 − e−x4
)

x2 +
pI x2 x5

gI + x5
+ u2,

(2.31c)

ẋ3 = α − β x3 − KC

(

1 − e−x4
)

x3, (2.31d)

ẋ4 = −γ x4 + u0, (2.31e)

ẋ5 = −µI x5 + u1, (2.31f)

D = d
(x2/x0)

l

s + (x2/x0)l
, (2.31g)

0 ≤ x0, x1, x2, x3, x4, x5, (2.31h)

0 ≤ u0, u1, u2, (2.31i)

t ∈ [t0, t f ] (2.31j)

Initial Values and Optimal Control

There are nine different initial value sets given in the article: one for the mouse setting and
eight for human 9 respectively human 10. They are listed in table 2.6. In de Pillis et al. 2006,
there is no optimal control problem given and no optimization done. Though there are
many different scenarios investigated, e.g. big initial tumor size vs. small initial tumor size,
combination therapy vs. monotherapy and so on.

The setting with nonlinear ODEs, multiple controls, three different parameter sets and
lots of initial values looks interesting for an application of our optimal control techniques
(chapters 3 and 4). Numerical results for different scenarios are presented and discussed
in chapter 5. To the best of our knowledge, this model has not been solved to optimality
before—except for the NMPC approach mentioned in 2.6.

2.4 De Pillis et al. 2008

Analog to de Pillis et al. 2006 [10] being essentially derived from previous work by the authors,
de Pillis et al. 2008 [9] can be considered a descendant of de Pillis et al. 2006 (section 2.3).

The model contains again three controls, namely a chemotherapeutic one u0 and an im-

munotherapeutic (IL-2) one u1 as well as TIL injections u2. It includes one state for the tumor
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cell population x0, three for immune cell populations (NK cells x1, CD8+ T cells x2, circulating
lymphocytes x3) and two for chemotherapeutic drug concentration x4 and IL-2 concentration
x5.

In contrast to the previous article, this one focuses on optimal control results. There are
some modifications on the equations, but overall they are very similar. Most of the parameters
have been adapted either from the mouse or the human 9/human 10 sets.

The MUSCOD-II application chemo3a contains this model.

Model Equations

At least some of the changes in the model equations compared to [10] may be owed to the
tractability with an indirect optimal control approach. These techniques are applied in de Pillis et
al. 2008. Hence, the saturation term for the influence of chemotherapy (1 − e−x4(t)) has been
simply replaced by the drug concentration x4 resulting in the following transformations in
the corresponding equations.

tumor x0 : − KT

(

1 − e−x4(t)
)

x0(t) −→ −KT x4(t) x0(t), (2.32a)

NK cells x1 : − KN

(

1 − e−x4(t)
)

x1(t) −→ −KN x4(t) x1(t), (2.32b)

CD8+ T cells x2 : − KL

(

1 − e−x4(t)
)

x2(t) −→ −KL x4(t) x2(t), (2.32c)

circ. lymphocytes x3 : − KC

(

1 − e−x4(t)
)

x3(t) −→ −KC x4(t) x3(t). (2.32d)

The production rate of NK cells is now constant α1 like in [28], instead of proportionally
linked to the circulating lymphocytes. In the CD8+ T cell equation, the terms

j
D2 x0

2

k + D2 x0
2

x2 + r1 x1 x0 (2.33)

are omitted—the latter because of representing tumor debris, the activation of CD8+T cells,
which is said to be still under discussion. For the first term the authors give no reasons.

They also assume now that the regulation of CD8+ T cells at high levels is a self-regulative
process and does not involve NK cells, meaning −v x1 x2

2 becomes −v x2
2. Completely new

are the terms

pT x2 x0

gT + x0
− w x2 x5 (2.34)

in the IL-2 concentration equation. While the first (Michaelis-Menten-)term is said to represent
“the understanding that the interaction of tumor-specific T cells with tumor cells stimulates
IL-2 production” [9], the second is referenced to Abbas et al. [3] where it is stated that all types
of T cells produce IL-2. Note that in [3] there is no reason given for a linear interaction term,
so it is not obvious why the author used −w x2 x5 instead of −w x2 for example.

All the modifications result in the following set of ODEs describing the model. For expla-
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Parameter Value

gT 1.00 · 105

pT 6.00 · 10−1

w 2.00 · 10−4

α1 1.30 · 104

Table 2.7: Additional parameters introduced in de Pillis et al. 2008

nations of the unmodified terms, please have a look at section 2.3.

ẋ0 = a x0 (1 − b x0) − c x1 x0 − D x0 − KT x4 x0, (2.35a)

ẋ1 = α1 − f x1 + g
x0

h + x0
x1 − p x1 x0 − KN x4 x1, (2.35b)

ẋ2 = −m x2 − q x2 x0 + r2 x3 x0

− v x2
2 − KL x4 x2 +

pI x2 x5

gI + x5
+ u2,

(2.35c)

ẋ3 = α − β x3 − KC x4 x3, (2.35d)

ẋ4 = −γ x4 + u0, (2.35e)

ẋ5 =
pT x2 x0

gT + x0
− w x2 x5 − µI x5 + u1, (2.35f)

D = d
(x2/x0)

l

s + (x2/x0)l
, (2.35g)

0 ≤ x0, x1, x2, x3, x4, x5, (2.35h)

0 ≤ u0, u1, u2, (2.35i)

t ∈ [t0, t f ] (2.35j)

Parameters and Initial Values

Unlike in section 2.3, only one parameter set is contained. The parameters are mainly refer-
enced to [14, 18], so one would probably expect that they should be comparable to the human
parameter sets in de Pillis et al. 2006. Actually it turns out that they are a mixture between the
human and the mouse sets. A comparison is given in table 2.9.

About half of the parameters have changed a bit or are completely new. Of course this may
be due to the changes in the model. Some of the parameters are subject of fluctuations of a
couple of orders of magnitude. The newly introduced parameters can be found in table 2.7.

The authors use two sets of initial values. The first set has a small tumor cell population
and is therefore called “small”. The other set contains a “detectable” initial tumor population.
See table 2.8 for the exact values of all states.

Optimal Control Problems

As already mentioned, this paper is mainly about optimal control of the model. Therefore,
there are different objective functions given depending on treatment combinations. They all

30



2.5 AG Lebiedz, Freiburg 2009

x0(t0) x1(t0) x2(t0) x3(t0) x4(t0) x5(t0) Parameter set

1 · 102 3 · 104 3 · 10 5 · 106 0 0 small

1 · 107 5 · 105 2 · 103 4.17 · 1010 0 0 detectable

Table 2.8: Initial values in de Pillis et al. 2008

can be written in the form

∫ t f

t0

x0(t) +
p0

2
u0(t)2 +

p1

2
u1(t)2 +

p2

2
u2(t)2 dt. (2.36)

All optimal control problems in the paper aim to minimize these functions. The quadratic
terms are penalties on the controls and of course it is reasonable to minimize the tumor
population over the whole treatment time. The pi are set to 107 or 105 depending on the
scenario. If ui(t) is not considered in a calculation, the corresponding pi is set to zero.

The three different treatment schemes which have been investigated are a combination of
chemotherapy and immunotherapy, a combination of chemotherapy and TIL, and a combina-
tion of all of them. See table 2.10 for the corresponding objective functions.

Optimal control results, especially compared to the results in the paper, can be found in
chapter 5.

2.5 AG Lebiedz, Freiburg 2009

The model presented in this section is work of our cooperation partner Dirk Lebiedz and his
workgroup, in particular of Marcel Rehberg and Melanie Franzem, who we would like to thank
for a pleasant and inspiring cooperation. Via a collaboration with medical scientists, they have
access to human proband data with a combination of chemotherapy and immunotherapy. The
chemotherapy u0 is based on methotrexat (MTX) and the control u1 consists of the application
of leucovorin, which is used as a kind of a rescue package pushing up the depleted immune
system and is not comparable to the immunotherapy applied in the previous models. Since
it is subject of current work, this model has not yet been published, but publications are in
preparation.

This model differs from all previous models in using transit compartments for immune cell
populations. Additionally to states for the tumor x0 and drug concentrations x6 and x7 there
are stem cells x1 on the one side which transfer partially through three compartments x2,
x3, and x4 to the circulating leucocytes x5 on the other side (see table 2.11 for an overview).
Circulating leucocytes themselves transfer partially to stem cells again. The idea behind this
is that cells are less sensitive or not sensitive at all to specific drugs in some states. Further
information especially on how circadian rhythms and appropriate drug timing impact the
drug’s effect can be found in a work by Lévi and Schibler [31].

There are two parameter sets used—one with testing values and one with values fitted from
real proband data. The chemo4 application is used for this model.
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Parameter New value♦ Mouse⋆ Human 9⋆ Human 10⋆

a 2.00 · 10−3 4.31 · 10−1 4.31 · 10−1 4.31 · 10−1

b 1.02 · 10−9 2.17 · 10−8 1.02 · 10−9 1.02 · 10−9

c 3.23 · 10−7 7.13 · 10−10 6.41 · 10−11 6.41 · 10−11

d 5.00 8.17 2.34 1.88

l 2/3 6.57 · 10−1 2.09 1.81

s 3.00 · 10−1 6.18 · 10−1 8.39 · 10−2 5.12 · 10−1

e — 1.29 · 10−3 2.08 · 10−7 2.08 · 10−7

f 4.12 · 10−2 4.12 · 10−2 4.12 · 10−2 4.12 · 10−2

g 2.50 · 10−2 4.98 · 10−1 1.25 · 10−2 1.25 · 10−2

h 6.00 · 102 2.02 · 107 2.02 · 107 2.02 · 107

p 1.00 · 10−7 1.0 · 10−7 3.42 · 10−6 3.59 · 10−6

m 2.00 · 10−2 2.0 · 10−2 2.04 · 10−1 9.12

j — 9.96 · 10−1 2.49 · 10−2 2.49 · 10−2

k — 3.03 · 105 3.66 · 107 5.66 · 107

q 3.42 · 10−10 3.42 · 10−10 1.42 · 10−6 1.59 · 10−6

r1 — 1.10 · 10−7 1.10 · 10−7 1.10 · 10−7

r2 3.0 · 10−11 3.0 · 10−11 6.50 · 10−11 6.50 · 10−11

v 3.00 1.80 · 10−8 3.00 · 10−10 3.00 · 10−10

KT 8.00 · 10−1 9.00 · 10−1 9.00 · 10−1 9.00 · 10−1

KN 6.00 · 10−1 6.00 · 10−1 6.00 · 10−1 6.00 · 10−1

KL 6.00 · 10−1 6.00 · 10−1 6.00 · 10−1 6.00 · 10−1

KC 6.00 · 10−1 6.00 · 10−1 6.00 · 10−1 6.00 · 10−1

α 5.00 · 108 1.21 · 105 7.50 · 108 5.00 · 108

β 1.20 · 10−2 1.20 · 10−2 1.20 · 10−2 8.00 · 10−3

γ 9.00 · 10−1 9.00 · 10−1 9.00 · 10−1 9.00 · 10−1

pI 1.25 · 10−1 — 1.25 · 10−1 1.25 · 10−1

gI 2.00 · 107 — 2.00 · 107 2.00 · 107

µI 1.00 · 101 — 1.00 · 101 1.00 · 101

Table 2.9: Parameters of de Pillis et al. 2008♦ compared to the sets of de Pillis et al. 2006⋆.
Parameters that equal the new ones are printed in bold face.
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p0 p1 p2 Description

1 · 107 1 · 107 0 chemotherapy and immunotherapy

1 · 107 0 1 · 107 chemotherapy and TIL

1 · 107 1 · 105 1 · 105 chemotherapy, immunotherapy, and TIL

Table 2.10: Objective functions in de Pillis et al. 2008

Name Description

x0 tumor cells

x1 stem cells

x2 leucocyte transit compartment 1

x3 leucocyte transit compartment 2

x4 leucocyte transit compartment 3

x5 circulating leucocytes

x6 MTX drug concentration

x7 Leucovorin drug concentration

u0 chemotherapeutic (MTX) drug dosage

u1 immunotherapeutic (Leucovorin) drug dosage

Table 2.11: Overview of states and controls in the AG Lebiedz model
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Model Equations

The tumor equation contains logistic growth and a linear interaction term for killing of tumor
cells by chemotherapy:

ẋ0(t) = ν x0(t)

(

1 −
x0(t)

K

)

− µM x6(t) x0(t) (2.37)

Leucocyte dynamics are based on work by Friberg et al. [22]. As mentioned above we use a
compartment model with 5 compartments, namely stem cells, circulating leucocytes and three
transit compartments. For simplicity, the same transfer rate kt is used for all compartment
transfers, while a part of the last compartment (circulating leucocytes) is transfered to the first
(stem cells) again. The interaction between leucovorin and MTX in the influence on the tumor
cells is modeled with a hill-type equation

−α kt

(

1 −
x7(t)N

kN + x7(t)N

)

x6(t) x1(t) (2.38)

where 1 − x7(t)N

kN+x7(t)N tends to zero for growing concentration of leucovorin x7 and thus the

influence of MTX diminishes. In the stem cell equation a growth term

kt x1(t)

(

B

x5(t)

)γ

(2.39)

is included. It is chosen such that for no chemotherapy (meaning x6 = 0) xj −→ B for t −→ ∞.
This makes the leucocyte dynamics look like that:

ẋ1(t) = kt x1(t)

[

(

B

x5(t)

)γ

− α

(

1 −
x7(t)N

kN + x7(t)N

)

x6(t)− 1

]

, (2.40a)

ẋ2(t) = kt x1(t)− kt x2(t), (2.40b)

ẋ3(t) = kt x2(t)− kt x3(t), (2.40c)

ẋ4(t) = kt x3(t)− kt x4(t), (2.40d)

ẋ5(t) = kt x4(t)− kt x5(t). (2.40e)

For the pharmacokinetics, we use simple exponential decay and the corresponding controls
as inputs.

ẋ6(t) = −αM x6(t) + βM u0(t), (2.41a)

ẋ7(t) = −αL x7(t) + βL u1(t). (2.41b)

As in all other models, states and controls have to be ≥ 0.

x0(t), x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t) ≥ 0, (2.42a)

u0(t), u1(t) ≥ 0. (2.42b)
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2.5 AG Lebiedz, Freiburg 2009

Taking together tumor dynamics, leucocyte dynamics, pharmacokinetics, and constraints,
the whole model is described by the following set of ODEs.

ẋ0(t) = ν x0(t)

(

1 −
x0(t)

K

)

− µM x6(t) x0(t), (2.43a)

ẋ1(t) = kt x1(t)

[

(

B

x5(t)

)γ

− α

(

1 −
x7(t)N

kN + x7(t)N

)

x6(t) − 1

]

, (2.43b)

ẋ2(t) = kt x1(t)− kt x2(t), (2.43c)

ẋ3(t) = kt x2(t)− kt x3(t), (2.43d)

ẋ4(t) = kt x3(t)− kt x4(t), (2.43e)

ẋ5(t) = kt x4(t)− kt x5(t), (2.43f)

ẋ6(t) = −αM x6(t) + βM u0(t), (2.43g)

ẋ7(t) = −αL x7(t) + βL u1(t), (2.43h)

0 ≤ x0(t), x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t), (2.43i)

0 ≤ u0(t), u1(t), (2.43j)

t ∈ [t0, t f ]. (2.43k)

Parameters and Initial Values

While the parameter set with testing values contains values estimated for testing purposes,
the fitted parameters are gained from a fit with human proband data. The 29 patients suffer
from non-hodgkin lymphoma of CNS and are older than 65 years. Data is being collected since
december 2007 and the observation period ends in the third quarter of 2009.

So this model is the only one of the investigated ones concerning a specific human cancer
type. Unlike the human parameter sets in de Pillis et al. 2006 [10], the fitted parameters are
based completely on human proband data. Note that some parameters could not be fitted yet
because of insufficient data. Both parameter sets are listed in table 2.12.

As initial values we currently only use test values because we still have not enough data.
The initial value test set is

x0(t0) = 3.0 · 102, x1(t0) = 7.0, x2(t0) = 7.0, (2.44a)

x3(t0) = 7.0, x4(t0) = 7.0, x5(t0) = 7.0, (2.44b)

x6(t0) = 0.0, x7(t0) = 0.0. (2.44c)

Optimal Control

Since this model is new work, neither corresponding optimal control problems nor any opti-
mal control results have been published yet.

We present appropriate objective functions and some numerical optimal control results
in this work in chapter 5 for both parameter sets. Together with the fitted parameters and
prospective new data, the setting looks promising for improvements in chemotherapy practice
with (future) optimal control results.
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Parameter Test set Fitted set Description

ν 1.0 · 10−3 1.0 · 10−3 tumor growth rate ♦

K 1.0 · 103 1.0 · 103 tumor growth limit ♦

µM 2.0 · 10−3 2.0 · 10−3 tumor cell kill by MTX ♦

nt 3 3 number of transit compartments

MIT 9.0 · 101 1.005802 · 102 mean-transit-time of leucocytes

kt
nt+1
MIT

nt+1
MIT

�
transit and growth rate of leucocytes

B 7.0 2.758 · 10−1 base value for circulating leucocytes

γ 1.0 · 10−1 2.652 · 10−1 exponential for feedback factor

α 5.0 · 10−2 2.63 · 10−2 influence of MTX and hill parameter

N 4.0 9.888 · 10−1 influence of MTX and hill parameter

k 2.0 5.0780 influence of MTX and hill parameter

αM 2.0 · 10−1 2.545 · 10−1 first order elimination rate of MTX drug

αL 1.0 · 10−2 log 2
6.2

�
first order elimination rate of Leucovorin drug

βM 1.0 3.617 · 10−5 factor for MTX drug dosage

βL 1.0 1.0 factor for Leucovorin drug dosage ♦

Table 2.12: Parameters in the AG Lebiedz model
♦: these parameters have not yet been fitted to experimental data
�: values are not results of numerical fit, but defined like that respectively representing the
drug half-life
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2.6 Other Approaches

Finally we give a short survey on approaches we did not consider in detail. There are lots of
different mathematical modelling approaches in cancer chemotherapy context, so we restrict
ourselves to some that are neighboring the ones presented above.

Ergun et al. 2001

The model in Ergun et al. [19] is—similar to the one in section 2.2—a modification of the
Hahnfeldt-model [24]. In this article, a combination of radiotherapy and anti-angiogenic ther-
apy is investigated. The major difference in the model is the decoupling of the vasculature
equation from tumor volume by simply replacing tumor volume by vasculatur volume. For
the radiotherapy an LQ (linear quadratic) model is used. The authors present several optimal
control results.

Chareyron and Alamir 2008

The work by Chareyron and Alamir [8] is based on the work by de Pillis et al. [11, 12, 13, 10].
The authors use the model presented in section 2.3 to apply nonlinear model predictive control
(NMPC) techniques.

However, only the chemotherapy control is subject of the NMPC scheme while both the
immunotherapy and the TIL are derived by indirect methods independently from the chemo-
therapy. The chemotherapy itself is fixed to a finite set of values (0%, 20%, 40%, 60%, 80%,
and 100% of maximum). This means chemotherapy in this results is not a continuous control
but a mixed-integer one.

The authors propose two optimal control problems. The first one aims to minimize tumor
size at the end time while keeping the circulating lymphocyte above a lower bound. The
second one maximizes the minimum of circulating lymphocytes over the whole treatment
time keeping the tumor size at the end time under a certain fraction of the tumor size at start
time.

Since NMPC techniques are not part of this work and we also want to do optimal control
of continuous chemotherapy, we did not pursue this approach.

De Pillis et al. 2001

De Pillis et al. 2001 [11] is one of the “ancestors” of de Pillis et al. 2006. It only includes a
chemotherapy control. An optimal control problem is posed (minimize tumor size at end
time subject to the number of “normal” cells is above some lower bound) and optimal control
results are presented. With one control and the constraint on normal cells, surprising results
are not to be expected and indeed the optimal schedules show a bang-bang-structure.

We wanted to verify these results in a MUSCOD-II application (chemo2), but some of the
model’s parameters are only given in relations or intervals (e.g. “0 ≤ s ≤ 0.5”, “a3 ≤ a1 ≤
a2”). Several attempts to contact the authors, to get to know the exact parameters they used in
their numerical experiments, failed. So this approach was not subject of further investigations.
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Hahnfeldt d’Onofrio de Pill. 2006 de Pill. 2008 AG Lebiedz

states 2 2 5/6 6 6

controls 1 2 2/3 2/3 2

parameter sets 1 1 3 1 2

chemotherapy � � � � �

immunotherapy � � � � �

anti-angiogenesis � � � � �

TIL � � � � �

optimal control
in paper � � � � �*

optimal control
in this work � � � � �

application chemo1 chemo1 chemo3 chemo3a chemo4

Table 2.13: An overview over the models implemented and optimized in this work.
*: cooperation work, not published yet, �: yes, �: no

Isaeva and Osipov 2008

At last, there is an article by Isaeva and Osipov [25] on arXiv.org. It is somewhat similar to de

Pillis et al. 2006 taking chemotherapy and two types of immunotherapy into account, but the
model also has some differences. For example, they use Gompertz growth instead of logistic

growth and just one state for immune cell populations.
Because of the similarities in the structure to de Pillis et al. 2006, we decided to investigate

only one of the two approaches. Our choice was de Pillis et al., because the scenario with
multiple immune cell populations raised expectations for more interesting optimal control
results.
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Chapter 3

Optimal Control Methods

In the last chapter, within the model presentations, we already formulated some optimal control

problems. Now we want to explain the methods that have been applied in this thesis to solve
these problems, especially with continuous controls. These methods are the base for the
mixed-integer optimal control approach presented in chapter 4, too. We start with an abstract
formulation of the class of problems.

3.1 Problem Formulation

In general, a nonlinear optimization problem looks like

min
x

f (x) (3.1a)

subject to g(x) = 0, (3.1b)

h(x) ≥ 0, (3.1c)

with f : R
nx ⊃ D → R, g : D → R

ne , and h : D → R
ni . f is called objective function, g are

the equality constraints and h the inequality constraints. Obviously, the restriction to min and
h(x) ≥ 0 is no limitation of generality, since max f (x) is the same as min− f (x) and so on.

An optimal control problem is a nonlinear optimization problem in some way, but there are
also some differences. First of all, in this work, we only consider optimal control problems
based on an ODE model. This means, that some variables, the states

xi : [t0, t f ] → R, t 7→ xi(t), i ∈ {0, . . . , nx − 1}, (3.2)

are determined by a set of ODEs (let x be the vector of states xi),

ẋ(t) = f (t, x(t), u(t), p), (3.3)

depending on the time t ∈ [t0, t f ], some free or fixed parameters p ∈ R
np and the controls

ui : [t0, t f ] → R, t 7→ ui(t), i ∈ {0, . . . , nu − 1}, (3.4)

which are functions that can be chosen freely (let u be the vector of controls ui). In addition,
we could have some boundary conditions

re(x(t0), x(t f )) = 0, (3.5a)

ri(x(t0), x(t f )) ≥ 0, (3.5b)

some control and path constraints

g(t, x(t), u(t), p) ≥ 0, (3.6)

39



Chapter 3 Optimal Control Methods

and initial values for the states
x(t0) = x̂0. (3.7)

In the context of cancer chemotherapy, as already described in each model in chapter 2,
states are usually tumor volume or population, vasculature volume (with anti-angiogenesis) or
some kinds of immune cell populations, because their dynamics are given by growth, decay,
interaction terms and so on. Drug dosages are generally the controls as they can be influenced
directly, e.g. by physicians applying the drugs.

The aim is again to minimize (or maximize) an objective function Φ which is usually written
as a sum of a Mayer term ΦM and a Lagrangian term ΦL,

Φ = ΦM + ΦL (3.8a)

with ΦM = ΦM(t f , x(t f ), p) (3.8b)

and ΦL =
∫ t f

t0

L(t, x(t), u(t), p) dt. (3.8c)

Φ is then called Bolza functional.
Equations (3.2)–(3.8) together give the following optimal control problem, which represents

the class of problems we want to solve in this thesis:

min
x,u,p

Φ(x, u, p) (3.9a)

subject to ẋ(t) = f (t, x(t), u(t), p), (3.9b)

x(t0) = x̂0, (3.9c)

0 = re(x(t0), x(t f )), (3.9d)

0 ≤ ri(x(t0), x(t f )), (3.9e)

0 ≤ g(t, x(t), u(t), p), (3.9f)

t ∈ [t0, t f ]. (3.9g)

Transformations of Time and Objective Functions

Of course, in a general problem, one could wish to have a free end time t f (or free start time
t0). Especially in the context of our models, we could use a free end time of the treatment
while minimizing the tumor population at end time, to let the treatment end when the tumor
population is as small as possible. In section 2.2 for example, a problem with free end time
is formulated. However, for the description of our methods, we want to restrict the class of
problems for simplicity to autonomous problems (no explicit time dependence) with fixed
end time and an objective function only consisting of a lagrangian term. This is no restriction
to generality since there are simple transformations.

First, we want to ensure the equivalence of Mayer and Lagrangian terms. For the transfor-
mation of a lagrangian term into a mayer term, we simply define a new state

ẋnx(t) := L(t, x(t), u(t), p), (3.10)

and redefine the corresponding variables x̃(t) = (x0(t), . . . , xnx−1(t), xnx(t))T, ñx = nx + 1,
and so on. Now with

ΦM := xnx(t f ) (3.11)
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we have transformed the Lagrangian into a Mayer term. For the other direction, we define

L(t, x(t), u(t), p) :=
∂ΦM

∂x
(t, x(t), p) f (t, x(t), u(t), p)+

∂ΦM

∂t
(t, x(t), p) (3.12)

and hence get

ΦM(t f , x(t f ), p) = ΦM(t0, x0, p) +
∫ t f

t0

L(t, x(t), u(t), p) dt. (3.13)

Because ΦM(t0, x0, p) is constant, we can omit this part in an objective function and get a
Lagrangian functional.

A problem with explicit time-dependence can be transformed into an autonomous problem
by adding an ODE for the time,

ẋnx = 1, xnx(t0) = t0, (3.14)

meaning xnx(t) = t. Free end time problems can be transformed by introducing a normed
time τ ∈ [0, 1] with

τ =
t − t0

t f − t0
(3.15a)

⇒ t(τ) = t0 + τ
(

t f − t0

)

(3.15b)

⇒ dτ = dt ·
(

t f − t0

)

,
∂

∂τ
=

∂

∂t

(

t f − t0

)

. (3.15c)

Now, t̂ := (t f − t0) is introduced as a free parameter and with the transformations

x̃(τ) := x(t(τ)), (3.16a)

ũ(τ) := x(t(τ)), (3.16b)

p̃ := (p, t̂), (3.16c)

∂x̃

∂τ
= f (t(τ), x̃(τ), ũ(τ), p̃) · t̂ (3.16d)

=: f̃ (τ, x̃(τ), ũ(τ), p̃), (3.16e)

L̃ := L(τ, x̃(τ), ũ(τ), p̃), (3.16f)

r̃e(x̃(0), x̃(1)) := re(x̃(0), x̃(1)), (3.16g)

r̃i(x̃(0), x̃(1)) := ri(x̃(0), x̃(1)), (3.16h)

we get an autonomous problem. For a free start time t0, we can do the same.

3.2 Discretization with Bock’s Direct Multiple Shooting Method

In this work, we use the direct multiple shooting method, developed by Bock and Plitt [6] in
the 1980s, for the solution of optimal control problems. The method is explained in this
section. In the articles mentioned in chapter 2, mostly indirect methods have been used, in case
optimal control was considered at all. These methods in general make use of Pontryagin’s

maximum principle (a Hamilton-Jacobi-Bellman-equation approach would be another possibility).
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In contrast, with direct multiple shooting, we do not need to compute adjoint equations,
which makes the class of problems that can be effectively treated larger.

The issue with the optimal control problem (3.9) is that it is of infinite dimension because
the function spaces, where x and u lie in, are infinite-dimensional. Such a problem cannot be
treated numerically. Therefore we need a discretization.

Free parameters p are treated as artificial constant states while the initial value is optimized.
Thus, the parameter vector is omitted in the following.

Discretization of Controls

We start with the discretization of the controls. The continuous controls are replaced by local
base functions, such as piecewise constant or piecewise linear functions (see figures 3.1 and
3.2 for examples). It is important that they have compact support. These functions can be
described by finitely many parameters.

To do so, we select a time grid

t0 = τ0 < τ1 < · · · < τm = t f , m ∈ N (3.17)

and with Ii := [τi, τi+1] ∀ i ∈ {0, . . . , m − 1} set

u(t)
∣

∣

∣

Ii

= φi(t, wi), wi ∈ R
µi , (3.18)

where the φi are the base functions. Now we have transformed the infinite-dimensional
control u into a finite parameter vector w = (w0, . . . , wm−1).

Discretization of States

The states x are discretized with multiple shooting (see figure 3.3 for an illustration). So we
have to choose a time grid again and for efficiency and simplicity we choose the same grid as
for the controls. In theory, this is no limitation of generality, as we could refine the grids such
that they match and add some constraints. Hence, we have again

t0 = τ0 < τ1 < · · · < τm = t f with Ii = [τi, τi+1] ∀ i ∈ {0, . . . , m − 1}. (3.19)

We introduce m + 1 new variables s0, . . . , sm which represent the initial values of the ODE
on each interval Ii respectively the final value sm. Now we solve m independent initial value
problems ∀ i ∈ {0, . . . , m − 1},

ẋ(t; τi, si) = f (t, xi(t), φi(t, wi)), (3.20a)

x(τi; τi, si) = si, (3.20b)

t ∈ [τi, τi+1]. (3.20c)

In this work, a BDF-based DAE solver, DAESOL [5], has been used to solve the initial value
problems. Note that the method is exact if the initial value problems are solved exactly.

Now we need to do some transformations to get a discretized optimal control problem. To
ensure equivalence to the original problem, we have to add matching conditions, which are the
equality constraints

si+1 = x(τi+1; τi, si) ∀ i ∈ {0, . . . , m − 1}. (3.21)
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w0

w1

w2

. . .

t0 t f t

u(t)

Figure 3.1: Piecewise constant control function

w0
0

w1
0

w0
1 w1

1 w0
2 w1

2

. . .

t0 t f t

u(t)

Figure 3.2: Piecewise linear control function
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Additionally, the objective function is seperable, though it can be computed seperately on
each interval by

∫ t f

t0

L(t, x(t), φ(t, w)) dt =
m−1

∑
i=0

Li(τi+1)

with Li(t) =
∫ t

τi

L(t′, x(t′; τi, si), φi(t′, wi))dt′, t ∈ Ii,

and φ(t, w) := φi(t, wi) for t ∈ Ii.

(3.22)

The continuous constraints g(t, x(t), u(t), p) ≥ 0 are now evaluated pointwise on the grid
(for the ease of notation, we write x(τm; τm, sm) := x(τm; τm−1, sm−1) and φm(τm, wm) :=
φm−1(τm, wm−1) from now on):

g(τi, x(τi; τi, si), φi(τi, wi)) ≥ 0, ∀ i ∈ {0, . . . , m} (3.23)

Finally, transformed boundary conditions and initial values read

r(s0, sm) = 0, (3.24a)

s0 = x̂0. (3.24b)

Nonlinear Programming Problem

With the discretization above, we have transformed the infinite-dimensional optimal control
problem (3.9) into a finite-dimensional nonlinear programming problem (NLP). By defining y :=
(s0, w0, . . . , sm−1, wm−1, sm), we get

min
y

m−1

∑
i=0

Li(τi+1) (3.25a)

s.t. 0 = si+1 − x(τi+1; τi, si) ∀ i ∈ {0, . . . , m − 1}, (3.25b)

0 ≤ g(τi, x(τi; τi, si), φi(τi, wi)), ∀ i ∈ {0, . . . , m}, (3.25c)

0 = re(s0, sm), (3.25d)

0 ≤ ri(s0, sm), (3.25e)

0 = s0 − x̂0. (3.25f)

3.3 Solution of the NLP with an SQP Method

After the discretization of the optimal control method in section 3.2, the resulting nonlinear

programming problem (NLP) is solved with an SQP (sequential quadratic programming) method.
This technique has been introduced by Wilson [41], Han, and Powell [34].

The result of section 3.2 is an NLP of the form

min
x

f (x) (3.26a)

subject to g(x) = 0, (3.26b)

h(x) ≥ 0, (3.26c)
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s0

s1

s2 . . . sm

x(τ2; τ1, s1)

w0

w1

w2

. . .

t0 τ1 τ2 . . . τm = t f t

x(t)

u(t)

Figure 3.3: Illustration of multiple shooting with piecewise constant control

with probably nonlinear f , g, and h. Instead of considering this problem, starting with some
initial value x0, we compute the iterates xk with a step size tk ∈ (0, 1],

xk+1 = xk + tk ∆xk, (3.27)

by solving a related quadratic program (QP),

min
∆x

1

2
∆xT Hk∆x +∇ f (xk)T∆x (3.28a)

subject to g(xk) +∇g(xk)T∆x = 0, (3.28b)

h(xk) + ∇h(xk)T∆x ≥ 0, (3.28c)

where Hk is set e.g. to the Hessian of the Lagrangian of the problem or some kind of approx-
imation of the Hessian. We compute the step size by a line search.

This is equivalent to a Newton-type method. For more information we refer to relevant
literature, e.g. to Nocedal and Wright [33]. The Hessian resulting from the multiple shooting
discretization features a special structure which can and should be exploited in the SQP
algorithm.

3.4 MUSCOD-II

The methods and techniques described in the previous sections are implemented in the soft-
ware package MUSCOD-II (multiple shooting code for direct optimal control) [30]. This package
is developed in the Simulation and Optimization group of H.G. Bock and J.P. Schlöder and
has been used to solve the optimal control problems in this thesis. Results are presented in
chapter 5.
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Chapter 4

A Mixed-Integer Optimal Control Approach

While the last chapter focused on methods applied for continuous optimal control, in this
chapter we introduce a mixed-integer optimal control approach which has also been applied
to the models presented in chapter 2. First, we explain our motivation to calculate mixed-
integer respectively binary controls and give a problem formulation. Then we present an
approach developed by Sager et al. [36, 39]. We conclude with the presentation of a new
rounding heuristic, which has been implemented in MUSCOD-II for this thesis.

4.1 Motivation and Problem Formulation

The treatments included in the different models are all continuous from the model point of
view. Therefore we apply continuous optimal control methods. It is possible that the optimal
control of such a continuous problem is of bang-bang type. This means, that it piecewise
takes either the maximum or the minimum feasible value. But it is still possible, see e.g. the
numerical results in the next chapter, that all or part of the control consists of a singular arc. A
singular arc takes values between minimum and maximum. From a mathematical respectively
theoretical point of view, this is no problem. Though, even if the models are not yet good
enough, calculating an optimal treatment aims to improve existing treatments in reality of
course. And in reality, today it is not possible to apply a treatment which follows a singular
arc [29].

Ledzewicz et al. [29] approximate the singular control by splitting the treatment interval into
parts after the computation of the optimal controls. Then they approximate the optimal con-
trol by piecewise constant controls. This may lead to the same results as our direct multiple
shooting approach with few nodes. As there already are efficient algorithms to compute
mixed-integer or binary controls, especially if we already have continuous optimal controls,
our approach differs from that one. Sager et al. [39] showed that every continuous control can
be arbitrary closely approximated by a binary control. Hence it might be interesting to also
compute binary treatment controls and to compare them to the continuous ones.

So, compared to problem (3.9), we now have additional binary control functions w(t) and
some binary parameters v,

w(t) ∈ {0, 1}nw , (4.1a)

v ∈ {0, 1}nv . (4.1b)

The objective function and the right hand side of the ODE may depend on both w and v,
control and path constraints only on v. The resulting problem is the following mixed-integer

optimal control problem. This is the problem class we want to solve with our mixed-integer
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optimal control approach.

min
x,u,w,p,v

Φ(x, u, w, p, v) (4.2a)

subject to ẋ(t) = f (t, x(t), u(t), w(t), p, v), (4.2b)

x(t0) = x̂0, (4.2c)

0 = re(x(t0), x(t f )), (4.2d)

0 ≤ ri(x(t0), x(t f )), (4.2e)

0 ≤ g(t, x(t), u(t), p, v), (4.2f)

w(t) ∈ {0, 1}nw , (4.2g)

v ∈ {0, 1}nv , (4.2h)

t ∈ [t0, t f ]. (4.2i)

4.2 Convexification

In this section, problem (4.2) will be convexified as in [39] with respect to the binary control w,
while from other aspects the problem still may be nonconvex. This is necessary preparatory
work for the theoretical results at the end of the section upon which our algorithms are based.

For simplicity, we now omit path and control constraints g and boundary conditions ri and
re. By doing that we derive the following binary nonlinear problem (BN) from (4.2):

min
x,u,w,p,v

Φ(x, u, w, p, v) (4.3a)

subject to ẋ(t) = f (t, x(t), u(t), w(t), p, v), (4.3b)

x(t0) = x̂0, (4.3c)

w(t) ∈ {0, 1}nw , (4.3d)

v ∈ {0, 1}nv , (4.3e)

t ∈ [t0, t f ]. (4.3f)

If we replace (4.3d) by w(t) ∈ [0, 1]nw , which means that w is considered to be continuous
between 0 and 1 in each component, we get a new problem, which we call relaxed nonlinear
(RN),

min
x,u,w,p,v

Φ(x, u, w, p, v) (4.4a)

subject to ẋ(t) = f (t, x(t), u(t), w(t), p, v), (4.4b)

x(t0) = x̂0, (4.4c)

w(t) ∈ [0, 1]nw , (4.4d)

v ∈ {0, 1}nv , (4.4e)

t ∈ [t0, t f ]. (4.4f)
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4.2 Convexification

The convexification is done by a linearization of the ODE equation in w. So we replace
(4.3c) by

ẋ(t) =
nw̃

∑
i=1

f (t, x(t), u(t), wj, p, v) w̃i(t) (4.5)

with w̃(t) ∈ {0, 1}nw̃ , w̃ = (w̃1, . . . , w̃nw̃)T . The wj enumerate all possible binary controls, so in
general nw̃ = 2nw . Sager et al. state that in real applications, nw̃ is often “linear in the number
of choices“. To have an equivalent linearized problem, we add an SOS1-constraint

nw̃

∑
i=1

w̃(t) = 1. (4.6)

The resulting problem (binary convex—BC) is convex in w̃ and looks like

min
x,u,w̃,p,v

Φ(x, u, w̃, p, v) (4.7a)

subject to ẋ(t) =
nw̃

∑
i=1

f (t, x(t), u(t), wj, p, v) w̃i(t), (4.7b)

x(t0) = x̂0, (4.7c)

w̃(t) ∈ {0, 1}nw̃ , (4.7d)
nw̃

∑
i=1

w̃(t) = 1 (4.7e)

v ∈ {0, 1}nv , (4.7f)

t ∈ [t0, t f ]. (4.7g)

Again, by replacing (4.7d) with w̃(t) ∈ [0, 1]nw̃ , we get the corresponding relaxed convex
problem (RC), which reads

min
x,u,w̃,p,v

Φ(x, u, w̃, p, v) (4.8a)

subject to ẋ(t) =
nw̃

∑
i=1

f (t, x(t), u(t), wj, p, v) w̃i(t), (4.8b)

x(t0) = x̂0, (4.8c)

w̃(t) ∈ [0, 1]nw̃ , (4.8d)
nw̃

∑
i=1

w̃(t) = 1 (4.8e)

v ∈ {0, 1}nv , (4.8f)

t ∈ [t0, t f ]. (4.8g)

The four different problems are used to proof theoretical results on relations between their
solutions. First of all, we derive a comparison between problems BN and BC. For proofs of
the theorems we refer to Sager et al. [39]. Note that all problems in this thesis are already in
the form 4.7 respectively 4.8 as all controls enter linearly in the right hand side function.
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Theorem 4.1 (Comparison of binary solutions [39])
If problem (BC) has an optimal solution (x∗, w̃∗, u∗, v∗, p∗) with objective value ΦBC, then there exists
an nw–dimensional control function w∗(·) such that the trajectory (x∗, w∗, u∗, v∗, p∗) is an optimal
solution of problem (BN) with objective value ΦBN and

ΦBC = ΦBN . (4.9)

The converse holds as well.

The next step is a comparison between problems (BC) and (RC).

Theorem 4.2 (Comparison of solutions of the convexified problem [39])
Let problem (RC) have a feasible solution (x∗, w̃∗, u∗, v∗, p∗) with objective value ΦRC. Let further-
more f (x, w, u∗, v∗, p∗) with fixed (u∗, v∗, p∗) be globally Lipschitz continuous with respect to x(·)
for all admissable binary controls w(·).

Then for any given ǫ > 0 there exists a binary admissable control function w̄ and a state trajectory
x̄ such that (x̄, w̄, u∗, v∗, p∗) is a feasible solution of problem (BC) with objective value ΦBC and

ΦBC ≤ ΦRC + ǫ. (4.10)

This means that every continuous control can be arbitrarily approximated by a binary con-
trol. Though, such a solution could have to switch infinite times, which is known as chattering
or Zeno’s phenomenon in the literature [42, 43]. Some of the solutions in chapter 5 show such
a behaviour. In [39] it has been shown that even a finite number of switches is sufficient for
every ǫ > 0. Finally we give a comparison of all solutions.

Theorem 4.3 (Comparison of solutions [39])
If problem (RC) has an optimal solution (x∗, w̃∗, u∗, v∗, p∗) with objective value ΦRC, Then for any
given ǫ > 0 there exists a binary admissable control function w̄ and a state trajectory x̄ such that
(x̄, w̄, u∗, v∗, p∗) is a feasible solution of problem (BC) with objective value ΦBC and a nw–dimensional
control function w∗(·) such that the trajectory (x̄∗, w, u∗, v∗, p∗) is a feasible solution of problem (BN)
with objective value ΦBN and it holds

ΦRN ≤ ΦRC ≤ ΦBC = ΦBN ≤ Φ̂BN (4.11)

and
ΦBN = ΦBC ≤ ΦRC + ǫ, (4.12)

where Φ̂RN is the objective function value of any feasible solution to problem (BN).

For the path and interior point constraints we omitted, one has to choose a priori tolerances
ǫc, ǫr > 0. These constraints can only be fulfilled up to these tolerances and the proof of
theorem 4.3 can be extended, so that the tolerances are fulfilled.

4.3 MS MINTOC–Algorithm with Sum-Up Rounding

For the solution of problem (4.2) we need to solve relaxed problems. Therefore we discretize
using direct multiple shooting as described in chapter 3. In the following we refer to the
time grid as G = {τ0, . . . , τm−1} and we assume piecewise constant control functions u and w.
With qi we refer to the relaxed value of w on interval Ii, qi ∈ [0, 1]nw , and with wi to the binary
values, wi ∈ {0, 1}nw . By hi we denote the time horizon lengths τi+1 − τi for i ∈ {0, . . . , m − 1}.
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4.3 MS MINTOC–Algorithm with Sum-Up Rounding

Grid Adaptivity

By discretizing the control functions, we choose a certain subspace of the infinite-dimensional
control space. So the optimal solution with discretized control functions in general will have
a higher (or lower in case of max) objective value than the optimal trajectory T ∗ of the full,
infinite-dimensional space.

In an optimal control, one distinguishes between bang-bang segments, where the control
takes either maximum or minimum, and singular arcs, where the control lies between mini-
mum or maximum. In case of a bang-bang control, our aim should be to select a time grid,
which allows us to reproduce these bang-bang structure with our discretized control function,
too. Therefore, we would need time grid points at the switching times of T ∗. As it is unlikely
that our grid points meet those switching time points by chance, we want to modify our time
grid correspondingly. The first method to do this is the grid adaptivity approach described in
the following. Another possibility would be the switching-time optimization which we describe
a little below.

We now consider a grid Gk with k grid points and a one-dimensional control w. Then we
apply the following technique depending on the value of qi.

qi = 0 =⇒ assume wi = 0 (4.13a)

qi = 1 =⇒ assume wi = 1 (4.13b)

qi /∈ {0, 1} =⇒ add additional time point τ∗ (4.13c)

This means that we only refine the grid where the relaxed solution is not of bang-bang type.
Finally, we have to determine the exact value of τ∗ = τi + γ(τi+1 − τi) and add it to our grid
to get Gk+1 := G ∪ τ∗. Sager et al. suggest to use

γ ≈ qi if qi−1 = 1 and qi+1 = 0 (4.14a)

γ ≈ 1 − qi if qi−1 = 0 and qi+1 = 1 (4.14b)

and a bisection

γ =
1

2
(4.15)

if 0 < qi−1 < 1 or 0 < qi+1 < 1. There is an illustration in figure 4.1.
In the multi-dimensional case one can either apply the rules above to each dimension, or,

since grid adaptivity is an iterative process, select the one with the highest integer gap,

max
j

min(qj,i, 1 − qj,i). (4.16)

Sum Up Rounding

The idea of rounding strategies is to solve the relaxed problem first and then to apply round-
ing heuristics on the relaxed controls. Also, after applying some grid adaptivity iterations,
there may be still some qi which are not 0 or 1, e.g. the ones corresponding to a singular arc.

In [39], three different strategies—standard rounding (”SR“), sum up rounding (”SUR“)
and sum up rounding with a different threshold (”SUR-0.5“)—are presented. In this work,
we use sum up rounding with threshold 0.5 (”SUR-0.5“):

wj,i =

{

1 if ∑
i
k=0 qj,k − ∑

i−1
k=0 wj,k ≥ 0.5

0 else
(4.17)
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q0

q1

q2

t0 t fτ1 τ2

τ1 + γ(τ2 − τ1)

t

w(t)

1

0

Figure 4.1: Illustration of grid adaptivity in MS MINTOC

SOS1-variables need special care, as the SOS1 constraint could be violated by the rules
above. For such variables, with q̂j,k := ∑

i
k=0 qj,k − ∑

i−1
k=0 wj,k a modified rule is used:

wj,i =

{

1 if q̂j,i ≥ q̂k,i∀k 6= j and j < k ∀ k with q̂j,i = q̂k,i

0 else
(4.18)

With such rounding strategies, of course, the solution is binary. But on the other hand, in
general it is suboptimal and may not even be feasible.

Switching Time Optimization

In switching time optimization, one considers a fixed control function (first for the one-
dimensional case nw = 1)

w(t) =

{

1 if t ∈ Ii with i even
0 if t ∈ Ii with i odd

(4.19)

and instead of free control values, the switching times τi respectively the time horizons hi and
the number of grid points are considered free. See figure 4.2 for an illustration. We need to
add the constraint

m−1

∑
k=0

hk = t f − t0. (4.20)

For multi-dimensional controls we use

w(t) = wi if t ∈ Ik with k = j2nw + i − 1 (4.21)

for some j ∈ N0 and some i ∈ {1, . . . , 2nw}, while the wi enumerate all possible values for
w(t). These problems can be considered as multi-stage mixed-integer optimal control problems
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h0 h1 h2 h3 h4

t0 t f t

w(t)

1

0

Figure 4.2: Illustration of switching time optimization in MS MINTOC

with hi and m as free parameters. For details we refer to Sager et al. [39]. Note that for
our applications we are interested in a fixed time grid due to practical restrictions (hospital,
pharmacy) so we do not apply any grid refinement technique.

MS MINTOC

Now we bring all the techniques described above together in the following MS MINTOC-
algorithm as proposed by Sager et al. The proof of the well-posedness of this algorithm
is given in [37, 36]. For applications, e.g. to automobile test drives, see [38] and [26]. A
benchmark library of mixed-integer optimal control problems is available at [35].

Algorithm 4.4 (MS MINTOC [39])
Let G0 be an initial discretization grid for which a feasible trajectory of the relaxed problem exists. Let
furthermore be ǫ > 0 which determines how large the gap between relaxed and binary solution may be.

1. Convexify problem (4.2) with respect to w(·) as described in section 4.2.

2. Relax this problem to w̃(·) ∈ [0, 1]nw̃ .

3. Solve this problem for control discretization G0, obtain grid-dependent optimal value ΦRC
G0 of the

trajectory T0

4. Refine control discretization grid next times as described above and obtain ΦRC
Gnext as the objective

function value on the finest grid Gnext . Set ΦRC = ΦRC
Gnext to this upper bound on Φ∗ and

T = T next .

5. If the optimal control on Gnext is binary admissable then stop, else k = next.

6. Fix the variables u∗(·), p∗, v∗ and the initial values x∗0 .
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7. Repeat

a) Apply a rounding heuristic to T

b) Use switching time optimization, see above, initialized with the rounded solution of the
previous step. If the obtained trajectory is feasible, obtain upper bound ΦS. If ΦS

<

ΦRC + ǫ then stop.

c) Refine the control grid Gk as described above, based on the control values of trajectory T

d) Solve relaxed problem, T = T k, k = k + 1.

4.4 Decomposed MILP/Integral Approximation–Algorithm

Binary optimal controls computed with the MS MINTOC-algorithm with sum-up rounding
may show a chattering behaviour. In the introduction, we explained that we are interested
in mixed-integer respectively binary solutions because of the medical feasibility. A solution
with chattering of course will not be more applicable than a singular arc. To avoid chattering
in a solution, one could wish to limit the number of switches in the optimal solution. In this
thesis, we investigate the heuristics described in the following for this purpose.

Instead of applying sum-up rounding—step 7. a) in MS MINTOC—, we solve a mixed-
integer linear program (MILP) for each control wi—decomposed from our optimization frame-
work as described in chapter 3. For simplicity, we consider only the case of binary controls.
The values of the binary control w are identified as wi and for the relaxed control values we
write qi with i ∈ {0, . . . , m − 1} and m the number of time grid points τi. Again, we assume
piecewise constant controls, compare section 3.2.

Powerful commercial MILP solvers and advances in MINLP (mixed-integer nonlinear program)
solvers, [4, 7], make the usage of general purpose MILP/MINLP solvers more and more
attractive. The mixed-integer optimal control problem (MIOCP) may be discretized by a direct
method and results in MILP, e.g. [32], or a MINLP, e.g. [23], with a finite number of mixed-
integer variables. However, due to the high complexity of MINLPs and the increase in the
number of integer variables, whenever the discretization grid is refined, this only works for
small problems with limited time horizons, see [40] for a discussion.

Our aim is to minimize the difference between binary and continuous control on the one
hand and to keep the number of switches in the binary control below some N on the other
hand. The first point is realized by

min
η,w,s

η (4.22a)

subject to

∣

∣

∣

∣

∣

i

∑
j=0

wj − qj

∣

∣

∣

∣

∣

≤ η ∀i ∈ {0, . . . , m − 1}. (4.22b)

We need the constraint (4.22b) ∀i ∈ {0, . . . , m− 1} because we want to minimize the difference
between the wi and the qi for each time t ∈ [t0, t f ] respectively, as an approximation, on
the corresponding time grid {τ0, . . . , τm}. For the restriction of the number of switches, we
introduce slack variables sj with j ∈ {0, . . . , m − 2} and add the restrictions

∣

∣wj − wj+1

∣

∣ ≤ sj ∀j ∈ {0, . . . , m − 2}, (4.23a)

m−2

∑
j=0

sj ≤ N. (4.23b)
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Hence, we get the following mixed-integer nonlinear program (MINLP):

min
η,w,s

η (4.24a)

subject to

∣

∣

∣

∣

∣

i

∑
j=0

wj − qj

∣

∣

∣

∣

∣

≤ η ∀i ∈ {0, . . . , m − 1}, (4.24b)

∣

∣wj − wj+1

∣

∣ ≤ sj ∀j ∈ {0, . . . , m − 2}, (4.24c)

m−2

∑
j=0

sj ≤ N. (4.24d)

This problem can be easily tranformed into a mixed-integer linear program by replacing the
norms in (4.24b) and (4.24c) by

i

∑
j=0

wj − qj ≤ η ∀i ∈ {0, . . . , m − 1}, (4.25a)

−
i

∑
j=0

wj − qj ≤ η ∀i ∈ {0, . . . , m − 1}, (4.25b)

and

wj − wj+1 ≤ sj ∀j ∈ {0, . . . , m − 2}, (4.26a)

−wj + wj+1 ≤ sj ∀j ∈ {0, . . . , m − 2}. (4.26b)

The derived MILP reads as follows. For this problem class, there are lots well-known standard
techniques and lots of solvers. In this work, we use Cbc [2], an open-source branch-and-cut-
solver from the COIN-OR project [1]. The problem is formulated in AMPL [21], so we use the
solver via the AMPL solver interface.

min
η,w,s

η (4.27a)

subject to
i

∑
j=0

wj − qj ≤ η ∀i ∈ {0, . . . , m − 1}, (4.27b)

−
i

∑
j=0

wj − qj ≤ η ∀i ∈ {0, . . . , m − 1}, (4.27c)

wj − wj+1 ≤ sj ∀j ∈ {0, . . . , m − 2}, (4.27d)

−wj + wj+1 ≤ sj ∀j ∈ {0, . . . , m − 2}, (4.27e)

m−2

∑
j=0

sj ≤ N. (4.27f)

The Integral Approximation solutions converge against the relaxed solution when N and the
number of grid points go to infinity, but not necessarily in a monotone way in N on a fixed
grid. An implementation of this algorithm in the MUSCOD-II framework is part of this work.
Results of the application on some of the models from chapter 2 are given in the next chapter.
Additional analytical insight is subject of current research in the workgroup of Sebastian Sager.

55



56



Chapter 5

Numerical Results: Optimal Control of Cancer

Chemotherapy Models

In this chapter, we present the numerical results derived from the models presented in chap-
ter 2 by applying the methods from chapter 3 and 4. Where no optimal control problems
were posed, we formulate one. The chapter is split into a section for each parameter set we
investigated. As already mentioned before, the Hahnfeldt-model has only been used to ver-
ify our simulation results. For all other models respectively parameter sets, optimal control
results are given.

5.1 Hahnfeldt Simulation

First of all, we recall the model equations (2.9):

ẋ0(t) = −ζ x0(t) log

(

x0(t)

x1(t)

)

, (5.1a)

ẋ1(t) = b x0(t)− µ x1(t) + d x0(t)
2
3 x1(t)− G g(t) x1(t), (5.1b)

g(t) =
∫ t

0
u0(t′) exp

(

−γ
(

t − t′
))

dt′, (5.1c)

0 ≤ u0(t), x0(t), x1(t), (5.1d)

t ∈ [t0, t f ]. (5.1e)

There are three different drugs (Angiostatin, Endostatin, and TNP-470) that have been ap-
plied to mice in different doses and different treatment lengths. The dosage u0(t′) was taken
to be

c(t′) = D ·
(

δ(t′ − t1) + · · ·+ δ(t′ − tnd
)
)

(5.2)

where D is the actual dosage, ti the drug admission times, nd the number of drug admissions,
and δ the delta distribution. The delta distribution is used to simulate injections. This cannot
be realized in our discretized framework, so we approximated the dosage function by using
24 grid points for each day (one for each hour) and setting the dosage function to

c(t′) =
D

1/24
(5.3)

on the first interval of each treatment day.

From the different combinations of initial values, treatment lengths, and drugs, we picked at
least one per drug to verify our results. Exact values from Hahnfeldt et al. are not known, hence
we use the plots from the paper for verification. A part of the plots shows measurement points
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x0(t0) x1(t0) treatment length grid points

200 625 none (control group) 20 days 100 figure 5.1

200 625 none (control group) 50 days 100 figure 5.1

177 625 Endostatin, 20 mg/kg/day 10 days 240 figure 5.2

170 625 Angiostatin, 20 mg/kg/day 14 days 336 figure 5.3

170 625 TNP-470, 30 mg/kg, every sec-
ond day

14 days 336 figure 5.4

Table 5.1: Combinations of initial values, treatment lengths, and drugs which have been used
for verification of the results from Hahnfeldt et al.

and deviations onto which the parameters have been fitted. In table 5.1, the combinations we
used are listed.

The results from the article could all be reproduced correctly, as far as one can tell from
the plots. See figures 5.1, 5.2, 5.3, and 5.4 for the comparisons. Note that these results are not
optimal control results but simulation results.

5.2 d’Onofrio Optimal Control

The model is described by the equations (2.18), which read

ẋ0(t) = −ζ x0(t) ln

(

x0(t)

x1(t)

)

− F x0(t) u1(t), (5.4a)

ẋ1(t) = b x0(t)− µ x1(t) + d x0(t)
2
3 x1(t)

− G u0(t) x1(t)− η x1(t) u1(t),
(5.4b)

ẋ2(t) = u0(t), (5.4c)

ẋ3(t) = u1(t), (5.4d)

0 ≤ a − u0(t), (5.4e)

0 ≤ c − u1(t), (5.4f)

0 ≤ A − x2(t f ), (5.4g)

0 ≤ C − x3(t f ), (5.4h)

0 ≤ u0(t), u1(t), x0(t), x1(t), (5.4i)

t ∈ [t0, t f ]. (5.4j)

Different optimal control problems, called scenarios, are solved in the article. They all share
the same objective,

min x0

(

t f

)

+ 0.005
∫ t f

t0

u0(t)2 dt, (5.5)

while the end time t f is free. The differences between them lie in the different bounds c and
C and in the initial values. Table 5.2 gives an overview.

The different techniques from chapter 3 and 4 have been applied to this model. We tried
to reproduce the results from the paper first. Comparisons for each scenario are given in

58



5.2 d’Onofrio Optimal Control

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50

v
o

lu
m

e
[m

m
3
]

time [d]

0

2000

4000

6000

8000

10000

12000

14000

16000

0 5 10 15 20

v
o

lu
m

e
[m

m
3
]

time [d]

Figure 5.1: Comparison between MUSCOD-II simulation results (left) and Hahnfeldt et al.
(right), control group. Top: 50 days, bottom: 20 days. Vasculature volume is bright, tumor
volume dark.
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Figure 5.2: Comparison between MUSCOD-II simulation results (left) and Hahnfeldt et al.
(right), endostatin therapy, 10 days. Vasculature volume is bright, tumor volume dark. Dose
was 20mg/kg/day.
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Figure 5.3: Comparison between MUSCOD-II simulation results (left) and Hahnfeldt et al.
(right), angiostatin therapy, 14 days. Vasculature volume is bright, tumor volume dark. Dose
was 20mg/kg/day.
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Figure 5.4: Comparison between MUSCOD-II simulation results (left) and Hahnfeldt et al.
(right), TNP-470 therapy, 14 days. Vasculature volume is bright, tumor volume dark. Dose
was 30mg/kg every second day.
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Scenario x0(t0) x1(t0) Parameters

1 12, 000 15, 000 c = 1.0, C = 2.0

2 12, 000 15, 000 c = 2.0, C = 10.0

3 14, 000 5, 000 c = 1.0, C = 2.0

4 14, 000 5, 000 c = 2.0, C = 10.0

Table 5.2: Different scenarios in d’Onofrio et al.

figures 5.5, 5.6, 5.7, and 5.8. The different scenarios feature different solution structures,
but this is just how they were chosen. One can determine from the plots that the results
could be reproduced on the whole, especially the control structure is the same. However,
the end times in the MUSCOD-II results are between 3.5% (scenario 3) and 10.8% (scenario 2)
above the ones in d’Onofrio et al.—e.g. 6.958 (MUSCOD-II) vs. 6.647 (4.7%) in scenario 1. The
differences between the populations though are much smaller: 7020.83 vs. 7019.09 for tumors
and 7328.09 vs. 7365.27 in scenario 1 for example, which corresponds to 0.02% respectively
0.5%. The differences in the other scenarios are pretty much the same. All solutions have
been computed with 100 nodes.

Another question one may ask is how much we gain by optimal control. For this purpose,
we changed the objective function to

min −x0

(

t f

)

+ 0.005
∫ t f

0
u0(t)2 dt, (5.6)

and computed an optimal control for scenario 1 with end time fixed to t f = 7.0 and the
amount of drugs given over the total time fixed to the bounds 300 respectively 2. This cor-
responds to a maximization of the tumor size at the end time. The result is shown in figure
5.9 together with a simulation without any therapy. Tumor volume under maximization is
at 8045.02, which is about 40.3% lower than the volume without any treatment (13484.83) on
the one hand, but on the other hand also 14.6% higher than the volume under the optimal
control (7020.83).

One observes a different structure of the optimal control, which (almost) is of bang-bang
type. Obviously, under a maximization of the tumor volume it is optimal (in this model) to
administer a big part of the drugs at the start of the treatment, because the fraction of cells
killed is lower when the volumes are relatively low. As angiogenic treatment has a delayed
influence on the tumor volume, the full-dose part at the end of the time scale plays no role
for the tumor volume.

The next point is the comparison of the continuous result with binary controls derived by
sum-up rounding and the decomposed MILP-algorithm. Figure 5.10 shows all three types.
With sum up rounding, we get a tumor volume at the end time of 7027.67, which is only 0.1%
higher than the continuous value 7020.83. This solution shows a chattering tendency, though,
which reduces its benefit for possible practical purposes. The decomposed MILP-result with
a maximum of 6 switches is signifcantly higher at 7745.93—about 10% more. This is only
3.7% less than the maximized tumor volume with continuous control.

Finally, we compared decomposed MILP-solutions with different numbers of switches. In
three runs we allowed a maximum of 4, 6 and 8 switches in scenario 1. See figure 5.11 for a
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Figure 5.5: Optimization results compared to results of d’Onofrio et al., scenario 1. Upper part:
MUSCOD-II results, lower part: d’Onofrio et al. In each part: upper left: angiogenic control u0,
upper right: chemotherapeutic control u1, lower left: tumor and vasculature volume (tumor
dark, vasculature bright), lower right: tumor vs. vasculature volume
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Figure 5.6: Optimization results compared to results of d’Onofrio et al., scenario 2. Upper part:
MUSCOD-II results, lower part: d’Onofrio et al. In each part: upper left: angiogenic control u0,
upper right: chemotherapeutic control u1, lower left: tumor and vasculature volume (tumor
dark, vasculature bright), lower right: tumor vs. vasculature volume
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Figure 5.7: Optimization results compared to results of d’Onofrio et al., scenario 3. Upper part:
MUSCOD-II results, lower part: d’Onofrio et al. In each part: upper left: angiogenic control u0,
upper right: chemotherapeutic control u1, lower left: tumor and vasculature volume (tumor
dark, vasculature bright), lower right: tumor vs. vasculature volume
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Figure 5.8: Optimization results compared to results of d’Onofrio et al., scenario 4. Upper part:
MUSCOD-II results, lower part: d’Onofrio et al. In each part: upper left: angiogenic control u0,
upper right: chemotherapeutic control u1, lower left: tumor and vasculature volume (tumor
dark, vasculature bright), lower right: tumor vs. vasculature volume
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Figure 5.9: Comparison between min, max and no therapy, scenario 1. Left column contains
tumor (dark) and vasculature (bright) volume, right column immunotherapy (upper) and
chemotherapy (lower) controls. Top: minimiztion of tumor volume at end time, middle:
maximization of tumor volume at end time with fixed drug amount, bottom: no therapy.
The end value of the tumor population under maximization is about 10% higher than the
minimized value, which is the maximal difference losed by bad timing of drug admission.
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Figure 5.10: Comparison between continuous control, sum-up rounding and decomposed
MILP in d’Onofrio model. Top: continuous, middle: decomposed MILP with a maximum of 6

switches, bottom: sum-up rounding. Tumor volume is dark, vasculature volume bright.
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comparison. One would suppose that the tumor volume decreases with increasing maximal
number of switches. With 4 switches we get 7627.75, 7758.12 with 6, and 7536.35 with 8.
Surprisingly, the value with 6 switches is higher than the one with 4 switches. This may
be due to the fact that in the MILP we optimize the deviation from the continuous control
while the objective function of the original problem is ignored. So it is possible that the
approximation of the control is better with the 6 switches solution while the tumor volume is
higher.

All the values are closer to the “max-volume” than to the min one. The results are 8.6%,
10.5%, and 7.3% higher than the optimal value but only 6.3%, 3.6%, and 5.2% lower than the
maximized tumor volume.

5.3 Mouse Optimal Control (de Pillis 2006)

In this section, we present the optimal control results from the mouse parameter set, which is
one of three parameter sets in de Pillis et al. 2006 [10]. Again, we recall the model equations
(2.31):

ẋ0 = a x0 (1 − b x0) − c x1 x0 − D x0 − KT

(

1 − e−x4
)

x0, (5.7a)

ẋ1 = e x3 − f x1 + g
x0

2

h + x0
2

x1 − p x1 x0 − KN

(

1 − e−x4
)

x1, (5.7b)

ẋ2 = −m x2 + j
D2 x0

2

k + D2 x0
2

x2 − q x2 x0 + (r1 x1 + r2 x3) x0

− v x1 x2
2 − KL

(

1 − e−x4
)

x2 +
pI x2 x5

gI + x5
+ u2,

(5.7c)

ẋ3 = α − β x3 − KC

(

1 − e−x4
)

x3, (5.7d)

ẋ4 = −γ x4 + u0, (5.7e)

ẋ5 = −µI x5 + u1, (5.7f)

D = d
(x2/x0)

l

s + (x2/x0)l
, (5.7g)

0 ≤ x0, x1, x2, x3, x4, x5, (5.7h)

0 ≤ u0, u1, u2, (5.7i)

t ∈ [t0, t f ] (5.7j)

In the numerical simulations in de Pillis et al. 2006 [10], they mostly use a time horizon of 120

days, but there are some treatments with a duration of 40 respectively 80 days. We decided
to investigate three different time scales: a short one with t f = 40, the one from [10] with
t f = 120 and a free end time t f . To these times we refer in the following as t = 1, t = 2,
and t = 3, see table 5.3. For the tumor infiltrating lymphocytes, it is not clear how much TIL
can be injected and how often. For the drugs the maximum amount which can be given
is also not certain, but as TIL models an injection of lymphocytes which have been highly
stimulated outside the body, the question how much of these cells are available in what time
is a lot more important. Because of these uncertainities, we did not consider TIL at all. For
the mouse model which contains no IL-2 therapy, this means we consider a classical chemo-
monotherapy. De Pillis et al. set the dosage in their numerical experiments to 1.0, which is the
value we used in our experiments, too.
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Figure 5.11: Decomposed MILP results for d’Onofrio model with a maximum of 4, 6, and
8 switches in scenario 1. Top: 4 switches, middle: 6 switches, bottom: 8 switches. Tumor
volume is dark, vasculature volume bright.
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t = 1 t f = 40 40 grid points

t = 2 t f = 120 120 grid points

t = 3 t f free 40 grid points

Table 5.3: Time horizons used for de Pillis et al. 2006

No optimal control was done in the paper, so we had to choose objective functions. Of
course, the overall aim is to minimize the tumor population. So a first objective (p = 2) is to
minimize x0 at the end time t f ,

min x0(t f ). (5.8)

As in [17], we also considered this objective together with a penalty P on the chemotherapeu-
tic control u0 (p = 3):

min x0(t f ) + p2 ·
∫ t f

t0

u0(t) dt. (5.9)

However, some results with this objective functions do not look “nice”, as during a major
part of the treatment, controls are zero while the tumor population is on a very high level, see
e.g. figure 5.15. This is not a desired therapy, so we chose a weighted sum as a third objective
(p = 1):

min p0 · x0(t f ) + ·
∫ t f

t0

p1 · x0(t)2 + p2 · u0(t) + p3 · u1(t) dt. (5.10)

Under that objective, the tumor population is minimized over the whole time, see the La-
grangian part, in addition. We have again penalties on the controls. The other two objectives
can be written in this form, too. Table 5.4 shows the values of the pi which were used. In
the following, we refer to the different objectives with p = 1, p = 2, and p = 3. The seven
different initial value sets form de Pillis et al. 2006 are called s = 1 to s = 7, see table 5.5.

p0 p1 p2 p3

p = 1 5.0 · 10−3 1.0 · 10−11 1.0 · 104 0.0

p = 2 1.0 0.0 0.0 0.0

p = 3 1.0 0.0 1.0 0.0

Table 5.4: Objective function parameters used for de Pillis et al. 2006

For the verifcation of the models’ implementations in MUSCOD-II we ran some simulations.
The results of [10] for the mouse set could be reproduced, for chemotherapy as well as without
any therapy, see figure 5.12. Exact values are not given, so we have to rely on the plots.

Optimal control results of the mouse model for continuous controls are shown in figures
5.13, 5.14, and 5.15. In general, not all combinations of t, p, and s could be solved because of
different problems, e.g. with the generation of derivatives or with the QP solution. We give
an overview of the calculation results for the mouse set as well as for the human sets in table
5.6.

One observes that under p = 1, chemotherapy is applied later but the peak is earlier and
tumor cells are on a lower level in general whereas the end level is some orders of magnitude

70



5.3 Mouse Optimal Control (de Pillis 2006)

x0(t0) x1(t0) x2(t0) x3(t0) x4(t0) x5(t0) Parameter set

s = 1 1 · 106 5 · 104 1 · 102 1.1 · 107 0 0 Mouse

s = 2 1 · 106 1 · 105 1 · 102 6 · 1010 0 0 Human 9/10

s = 3 1 · 106 1 · 103 1 6 · 108 0 0 Human 9

s = 4 2 · 107 1 · 103 1 6 · 108 0 0 Human 9

s = 5 1 · 108 1 · 103 1 6 · 108 0 0 Human 9/10

s = 6 1 · 107 1 · 103 1 6 · 108 0 0 Human 9

s = 7 1 · 105 1 · 105 1 · 102 6 · 1010 0 0 Human 10

Table 5.5: Initial values used for de Pillis et al. 2006
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Figure 5.12: Comparison between MUSCOD-II simulation results (left) and de Pillis et al. 2006

(right), Mouse. Top: s = 1 without treatment, bottom: s = 1 with chemotherapy (7 doses,
1 day each, strength 1, every 14 days). Tumor population is black solid, NK cells are black
dashed, CD8+ T cells gray solid and circulating lymphocytes gray dashed.
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Figure 5.13: Optimal control result of de Pillis et al. 2006, mouse. t = 1, p = 1, s = 1.
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Figure 5.14: Optimal control result of de Pillis et al. 2006, mouse. t = 1, p = 3, s = 1.
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Figure 5.15: Optimal control result of de Pillis et al. 2006, mouse. t = 2, p = 3, s = 1.
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lower with p = 3. The 120 day treatment with p = 3 shows the problem of a high level tumor
without chemotherapy applied.

For t = 1, p = 1, s = 1, we fixed the amount of drugs given to the values of the optimal
solution, changed the sign of p0 and p1 and started the optimization again. This corresponds
to a maximization of tumor cells over the whole time and at the end time. We give a com-
parison to the minimization result and to a standard treatment as applied by de Pillis et al. in
figure 5.17. The benefit from optimal control looks a lot better in this scenario compared to
the results in section 5.2. While the maximized tumor at the end time is at about 2 · 107 cells,
the minimal value is only about 105 cells. This corresponds to 0.5% of the maximal value. The
standard treatment is even a little higher than the maximized one, but the amount of drugs
given is notably lower, too.
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Figure 5.16: Comparison between MUSCOD-II simulation results (left) and de Pillis et al. 2006

(right), Human 9. Top: s = 3 without treatment, bottom: s = 4 with chemotherapy (9 doses,
1 day each, strength 5, every 10 days). Tumor population is black solid, NK cells are black
dashed, CD8+ T cells gray solid and circulating lymphocytes gray dashed.
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Figure 5.17: Comparison between maximization, minimization and standard treatment of de
Pillis et al. 2006, mouse. t = 1, p = 1, s = 1. Top: maximization (with fixed drug amount),
middle: minimization, bottom: standard therapy (example). Tumor volume is shown on the
left side, chemotherapy control on the right side. Note that the given drug amount in the
standard treatment is significantly lower, so that the result is even worse than the maximized
one.
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5.4 Human 9 Optimal Control (de Pillis 2006)

The human 9 model is the second parameter set from de Pillis et al. 2006. Thus it uses the same
equations as the mouse model. We picked out two scenarios to verify our implementation
successfully, the results are shown in figure 5.16. The dose of chemotherapy has been changed
to 5.0 (the authors give no reason for the higher dose) and the immunotherapeutic pulses are
said to be at 5.0 · 106 in one experiment and at 5.0 · 105 in another one. Perhaps the latter is
a typing error, as the upper bound of both IL-2 concentration plots is 5.0 · 105, which makes
sense for a dosage of 5.0 · 106 with the equation

ẋ5 = −10 · x5 + u1. (5.11)

Eventually we decided to take 1.0 respectively 5.0 · 106 as upper bounds for the chemothera-
peutic respectively immunotherapeutic control. For chemotherapy, the drug amount applied
in our solutions is notably higher than in the standard treatments tried in [10], so it might
be reasonable to take a smaller upper bound. Additionally, we remind that the human pa-
rameter sets are based on mostly murine data and that there is no reason given for a higher
chemotherapy level in the article. For some remarks on the immunotherapy level, see below.

Figures 5.18, 5.19, 5.20, 5.21, 5.22, 5.23, and 5.24 contain our optimization results. As it
is shown in table 5.6, only about the half of the problems could be solved. In the free time
scenarios, t f often converged to zero. Obviously, these results are not very interesting so
there are no plots of them. Among the good results we made a selection and omitted similar
solutions.

For s = 2 in this parameter set, the tumor vanishes without any therapy. So the optimal
control is at the minimum, zero, in general (figure 5.18). While figure 5.20 features a full dose
chemotherapy, in figures 5.19 and 5.21 there is a full dose part at the beginning followed by a
short singular arc leading into a zero part. A solution like this occurs in some more scenarios
of human 9. The free end time scenario in 5.23 (end time about 26) looks very similar, too.
Figures 5.22 and 5.24 show again the problem of a delayed therapy. The free end time of the
latter is at 315 days.

Except in 5.20, immunotherapy does not play a role in the treatment. Often it is at such low
levels (e.g. 10−7 with an upper bound of 5 · 106) that it cannot be considered a therapy at all.
Note also that none of the objective functions contained a penalty on the immunotherapeutic
control u1, so perhaps immunotherapy would diminish totally with a penalty. There are
mathematical reasons for this low influence of immunotherapy. The control u1 enters only in
equation (5.7f), which reads

ẋ5 = −µI x5 + u1. (5.12)

With a full dose of u1(t) = 5.0 · 106 and µI = 10, x5(t) should be about 5.0 · 105. The state x5

itself only plays a role in equation (5.7c), where the corresponding terms are

ẋ2 = · · ·+
pI x2 x5

gI + x5
+ . . . (5.13)

with pI = 1.25 · 10−1 and gI = 2.00 · 107. For a x2 which is most of the time at a level of at
least 105, we have

pI x2 x5

gI + x5
≈

10−1 105 105

107 + 105
≈

109

107
≈ 102 (5.14)
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Figure 5.18: Optimal control result of de Pillis et al. 2006, human 9. t = 1, p = 1, s = 2.
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Figure 5.19: Optimal control result of de Pillis et al. 2006, human 9. t = 1, p = 1, s = 5.
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Figure 5.20: Optimal control result of de Pillis et al. 2006, human 9. t = 1, p = 2, s = 3.

80



5.4 Human 9 Optimal Control (de Pillis 2006)

Figure 5.21: Optimal control result of de Pillis et al. 2006, human 9. t = 1, p = 3, s = 4.
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Figure 5.22: Optimal control result of de Pillis et al. 2006, human 9. t = 2, p = 3, s = 3.
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Figure 5.23: Optimal control result of de Pillis et al. 2006, human 9. t = 3, p = 1, s = 3.
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Figure 5.24: Optimal control result of de Pillis et al. 2006, human 9. t = 3, p = 3, s = 4.
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and the influence of a 102 term on a 105 state indeed might be low.
Finally, we have a look at the comparison between maximized and minimized tumor pop-

ulations. The procedure was the same as in the mouse section. We fixed the drug amount
to the minimization value, changed the sign of the corresponding objective parameters, i.e.
p0 = −1.0 for p = 3, and started the optimization again. The difference is even higher with a
maximal tumor of almost 109 and a minimum one with less than 1, which corresponds to less
than 0.000001‰. Again the standard treatment is even a little worse than the maximization,
but the drug amount for the maximization also was about 150% more. See also the plots in
figure 5.25.

5.5 Human 10 Optimal Control (de Pillis 2006)

Like human 9, the human 10 parameter set shares the equations with the mouse model. We
start with the reproduction of the results in the article, see figure 5.26. The first two scenarios
without any treatment could be verified by the plots. In the third, we observed some differ-
ences, and the last one could not be reproduced at all. The differences seem to arise from
the influence of IL-2. The third plot shows a treatment with 109 TIL from day 8 to day 9 and
IL-2 from day 8 to day 11. The next one features additional IL-2 from days 11 through 13, 20

through 25, and 80 through 90. Unlike we showed in the section above, in the plots of [10]
IL-2 treatment has a big impact on CD8+ T cells. The differences in the third plot may result
from this, too. Note that IL-2 therapy here causes an increase of CD8+ T cells of about 107.
According to (5.14), with x2 ≈ 1,

pI x2 x5

gI + x5
≈

10−1 · 1 · 105

107 + 105
≈

104

107
≈ 10−3, (5.15)

this seems even more unlikely to be caused by immunotherapy.
In the optimal control computations, we used s = 5 instead of s = 6 due to more interesting

results. A selection of the optimal solutions is presented in figures 5.27 to 5.37. Immunother-
apy is again on very low levels as expected. Many solutions for chemotherapy show a singular
arc (figures 5.27, 5.28, 5.32, 5.33, 5.35). Note however, that these are solutions under objective
p = 1. Only 5.35 contains a singular solution with objective p = 3. With s = 7 the tumor
diminishes by itself, so depending on the objective, there is no treatment at all (figure 5.29) or
only treatment at the end (figures 5.31, 5.34). The free time scenario, figure 5.37, has an end
time of about 600 days, with the therapy only in the last sixth.

The different singular results look interesting for applying the rounding heuristics from
chapter 4, sum up rounding and decomposed MILP. About half of the sum up rounding results
(figures 5.38, 5.39, 5.40, and 5.41) show a chattering tendency, which is not surprising since the
controls are at about the middle of the interval [0, 1]. Of course, sum up rounding applied
to controls that are already or almost of bang-bang type results in a control which is (very)
similar to the original continuous one. Such cases have been omitted as well as similar results.
Whereas the overall performance with respect to the tumor population is as good as expected,
the controls with chattering may not be applicable in medical practice. So we also computed
solutions with only 4, 6, and 8 switches with our decomposed MILP algorithm, see figures 5.42,
5.43, 5.45, 5.44, and 5.46. For t = 1, p = 1, s = 2, the end value is about twice as high
as with the sum up results and about three times as high as with continuous controls. The
performance gets better almost linearly with a growing number of switches. Especially for
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Figure 5.25: Comparison between maximization, minimization and standard treatment of de
Pillis et al. 2006, human 9. t = 1, p = 3, s = 4. Top: maximization, middle: minimization,
bottom: standard therapy (example). Tumor volume is shown on the left side, chemotherapy
control on the right side. Compare figure 5.21 for the total optimal control result.
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Figure 5.26: Comparison between MUSCOD-II simulation results (left) and de Pillis et al. 2006

(right), Human 10. From top to bottom: s = 2 without treatment, s = 7 without treatment,
s = 6 with combination therapy, s = 6 with additional IL-2. Tumor population is black solid,
NK cells are black dashed, CD8+ T cells gray solid and circulating lymphocytes gray dashed.
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the short time scenarios, the decomposed MILP results look promising for a transfer to medical
practice. For the higher times, see figures 5.45 and 5.44, the number of switches seems to be
too low. With a rising number of nodes and switches, the calculation times for the solution
of the MILP grow exponentially, though. For example, when the time for the four switches
control lies at a few minutes, the computation of the six switches takes about 20 minutes.

Finally, we again have a look at a maximization compared to a minimization and a standard
treatment in figure 5.47. Again our approach was to fix the amount of drug, change the
sign of the corresponding parameters (p0 and p1) and restart the optimization. Here the
maximization is a bit lower as the minimization at the end time (a little bit more than 106),
but as the objective function was p = 1, the aim was to maximize/minimize the tumor
population over the whole time. Under this aspect, the maximization is significantly higher,
especially in the first third of the treatment. The standard treatment is at about 109, but the
drug amounts of the two other experiments were about 500% higher.

Figure 5.27: Optimal control result of de Pillis et al. 2006, human 10. t = 1, p = 1, s = 2.
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Figure 5.28: Optimal control result of de Pillis et al. 2006, human 10. t = 1, p = 1, s = 5.
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Figure 5.29: Optimal control result of de Pillis et al. 2006, human 10. t = 1, p = 1, s = 7.
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Figure 5.30: Optimal control result of de Pillis et al. 2006, human 10. t = 1, p = 2, s = 2.
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Figure 5.31: Optimal control result of de Pillis et al. 2006, human 10. t = 1, p = 2, s = 7.
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Figure 5.32: Optimal control result of de Pillis et al. 2006, human 10. t = 2, p = 1, s = 2.
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Figure 5.33: Optimal control result of de Pillis et al. 2006, human 10. t = 2, p = 1, s = 5.
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Figure 5.34: Optimal control result of de Pillis et al. 2006, human 10. t = 2, p = 2, s = 7.
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Figure 5.35: Optimal control result of de Pillis et al. 2006, human 10. t = 2, p = 3, s = 2.
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Figure 5.36: Optimal control result of de Pillis et al. 2006, human 10. t = 2, p = 3, s = 5.
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Figure 5.37: Optimal control result of de Pillis et al. 2006, human 10. t = 3, p = 3, s = 2.
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Figure 5.38: Sum up rounding result of de Pillis et al. 2006, human 10. t = 1, p = 1, s = 2.

99



Chapter 5 Numerical Results: Optimal Control of Cancer Chemotherapy Models

Figure 5.39: Sum up rounding result of de Pillis et al. 2006, human 10. t = 2, p = 1, s = 2.
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Figure 5.40: Sum up rounding result of de Pillis et al. 2006, human 10. t = 2, p = 1, s = 5.
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Figure 5.41: Sum up rounding result of de Pillis et al. 2006, human 10. t = 2, p = 3, s = 2.
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5.6 De Pillis 2008 Optimal Control

Mouse Human 9 Human 10

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 2 s = 5 s = 7

p = 1 ⋆ � ♦ ⋆ ⋆ � ⋆ ⋆ �

t = 1 p = 2 ♦ � � ♦ ♦ ♦ � � �

p = 3 ⋆ ♦ ⋆ ⋆ � � � � �

p = 1 ♦ � ♦ ♦ ♦ ♦ ⋆ ⋆ �

t = 2 p = 2 ♦ ♦ ♦ ♦ ♦ ♦ ♦ � �

p = 3 � ♦ � � � � ⋆ � �

p = 1 � � � � � � � � �

t = 3 p = 2 ♦ ♦ ♦ ♦ ♦ ♦ ♦ � ♦

p = 3 ♦ ♦ ♦ � � ♦ � � ♦

Table 5.6: Overview of results from de Pillis et al. 2006. s refers to the different initial value
sets, p to the different objective functions, and t to the different time horizons (see also tables
5.5, 5.4, and 5.3).
�= Bang-bang result, ⋆= Singular result, �= t f → 0, ♦= Calculation failed, e.g. because of
problems with the generation of derivatives or the QP solution.

5.6 De Pillis 2008 Optimal Control

We recall the model equations given in (2.35), which are derived by the ones for the models
in the three sections above:

ẋ0 = a x0 (1 − b x0)− c x1 x0 − D x0 − KT x4 x0, (5.16a)

ẋ1 = α1 − f x1 + g
x0

h + x0
x1 − p x1 x0 − KN x4 x1, (5.16b)

ẋ2 = −m x2 − q x2 x0 + r2 x3 x0

− v x2
2 − KL x4 x2 +

pI x2 x5

gI + x5
+ u2,

(5.16c)

ẋ3 = α − β x3 − KC x4 x3, (5.16d)

ẋ4 = −γ x4 + u0, (5.16e)

ẋ5 =
pT x2 x0

gT + x0
− w x2 x5 − µI x5 + u1, (5.16f)

D = d
(x2/x0)

l

s + (x2/x0)l
, (5.16g)

0 ≤ x0, x1, x2, x3, x4, x5, (5.16h)

0 ≤ u0, u1, u2, (5.16i)

t ∈ [t0, t f ] (5.16j)
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Figure 5.42: Comparison of different decomposed MILP results of de Pillis et al. 2006, human
10. t = 1, p = 1, s = 2. Top: 4 switches, middle: 6 switches, bottom: 8 switches. Tumor
volume is shown on the left side, chemotherapy control on the right side.
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Figure 5.43: Comparison of different decomposed MILP results of de Pillis et al. 2006, human
10. t = 1, p = 1, s = 5. Top: 4 switches, middle: 6 switches, bottom: 8 switches. Tumor
volume is shown on the left side, chemotherapy control on the right side.
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Figure 5.44: Comparison of different decomposed MILP results of de Pillis et al. 2006, human
10. t = 2, p = 1, s = 5. Top: 4 switches, bottom: 6 switches. Tumor volume is shown on the
left side, chemotherapy control on the right side.
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Figure 5.45: Comparison of different decomposed MILP results of de Pillis et al. 2006, human
10. t = 2, p = 1, s = 2. Top: 4 switches, bottom: 6 switches. Tumor volume is shown on the
left side, chemotherapy control on the right side.
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Figure 5.46: Comparison of different decomposed MILP results of de Pillis et al. 2006, human
10. t = 2, p = 3, s = 2. Top: 4 switches, bottom: 6 switches. Tumor volume is shown on the
left side, chemotherapy control on the right side. Continuous solution is shown in figure 5.27
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Figure 5.47: Comparison between maximization, minimization and standard treatment of de
Pillis et al. 2006, human 10. t = 1, p = 1, s = 5. Top: maximization, middle: minimization,
bottom: standard therapy (example). Tumor volume is shown on the left side, chemotherapy
control on the right side. Note that the objective function is a weighted sum, so that min-
imization and maximization refers to a sum of the integral and the end value of the tumor
population. This explains that the minimized end value of the tumor population is higher
than the maximized one.
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Different scenarios are subject of the optimal control computations in the article. There are
three objective functions, which all have the form

min
x,u

∫ t f

t0

x0(t) +
p0

2
u0(t)2 +

p1

2
u1(t)2 +

p2

2
u2(t)2 dt. (5.17)

These objectives will be denoted by p = 1, p = 2, and p = 3 in the following, see table 5.7 for
the different parameter values. Additionally, there are two initial value sets, shown in table
5.8, to which we refer to as s = 1 and s = 2. All combinations have been investigated by the
authors. The time horizon was 5 days for all scenarios except p = 3, s = 2 with 10 days.

p0 p1 p2

1 · 107 1 · 107 0 p = 1

1 · 107 0 1 · 107 p = 2

1 · 107 1 · 105 1 · 105 p = 3

Table 5.7: Different objective function parameters for de Pillis et al. 2008

x0(t0) x1(t0) x2(t0) x3(t0) x4(t0) x5(t0)

1 · 102 3 · 104 3 · 10 5 · 106 0 0 s = 1

1 · 107 5 · 105 2 · 103 4.17 · 1010 0 0 s = 2

Table 5.8: Initial value sets in de Pillis et al. 2008

We started with an attempt to reproduce the optimization results from [9]. There are no
exact values given, so we have to stick to the plots for verification. First we had a look at the
scenario s = 2, p = 1. Our results can be found in figure 5.48. With the parameters given
by de Pillis et al. 2008, our result differs by up to 12 orders of magnitude from theirs. So we
checked our implementation and especially the parameter values again, and with a trial and
error approach changed some parameters to values similar to the ones in [10]. Eventually, we
found that we could more or less exactly reproduce the result of de Pillis 2008 et al. with a
tumor growth parameter a = 4.0 instead of a = 2.0 · 10−3.

The next scenario, which has been investigated, is s = 1, p = 1. We first tried to reproduce
the result with a = 2.0 · 10−3 but again the differences were high (up to 6 orders of magnitude).
Furthermore, with a = 4.0 (no plot available) we could not reproduce their results either. With
some trial and error experiments however, we observed that a = 2.0 does quite a good job. The
states could be almost perfectly verified. In the controls though there are some differences,
especially in the structure of chemotherapy u0. Anyhow, the level of the controls is that low
that the influence of the two therapies is barely measurable, compare figure 5.49. In contrast,
an effect can be observed in figure 5.48 in which at least the chemotherapy is 6 orders of
magnitude higher.

Because of these deviations, we tried to contact the authors several times. Finally, L.G. de
Pillis stated that it could be possible that there is a typo in the paper but that she had not
enough time to have a look at the code. She referred us to her co-authors, but we did not get
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5.7 AG Lebiedz Test Optimal Control

any further response. Note, however, that in our calculations, it seemed that a typing error
of the parameter value of a only would not be sufficient, since we could not reproduce the
results in different scenarios with the same value for a.

Concerning the optimal therapies for another s = 1 scenario, the treatments are again
on very low levels (10−5), where they might have almost no effect. Note also that in all
experiments by de Pillis et al. 2008, immunotherapy is so low that even with a 10−6 scale it
cannot be told apart from zero. This, however, conforms to our results for the models from de

Pillis et al. 2006 [10], where the influence of immunotherapy was negligibly small.
As it is not clear where the differences originate from, especially as they do not seem to

come from a single wrong parameter value, we eventually decided not to further investigate
this model and its remaining scenarios.

5.7 AG Lebiedz Test Optimal Control

The model is represented by the set of ODEs shown in (2.43):

ẋ0(t) = ν x0(t)

(

1 −
x0(t)

K

)

− µM x6(t) x0(t), (5.18a)

ẋ1(t) = kt x1(t)

[

(

B

x5(t)

)γ

− α

(

1 −
x7(t)N

kN + x7(t)N

)

x6(t) − 1

]

, (5.18b)

ẋ2(t) = kt x1(t)− kt x2(t), (5.18c)

ẋ3(t) = kt x2(t)− kt x3(t), (5.18d)

ẋ4(t) = kt x3(t)− kt x4(t), (5.18e)

ẋ5(t) = kt x4(t)− kt x5(t), (5.18f)

ẋ6(t) = −αM x6(t) + βM u0(t), (5.18g)

ẋ7(t) = −αL x7(t) + βL u1(t), (5.18h)

0 ≤ x0(t), x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t), (5.18i)

0 ≤ u0(t), u1(t), (5.18j)

t ∈ [t0, t f ]. (5.18k)

We started with a simulation of a standard treatment as it was implemented in the MATLAB

version of the model to successfully verify the MUSCOD-II implementation in figure 5.50. Time
scale for testing purposes was 2000 hours (time scale in the plots, though, is hours, not days
as in the other sections), which has been used for the optimal control calculations, too. Initial
values were

x0(t0) = 3.0 · 102, x1(t0) = 7.0, x2(t0) = 7.0, (5.19a)

x3(t0) = 7.0, x4(t0) = 7.0, x5(t0) = 7.0, (5.19b)

x6(t0) = 0.0, x7(t0) = 0.0 (5.19c)

in all scenarios. The level of the leucocyte stem cells x1 can be considered a measure of the
patient’s health. Anyhow, a reasonable lower bound on x1 was not known to us until the
completion of this work. For our computations though we chose different exemplary values,
2.0 and 4.0, corresponding to the test initial value of 7.0.
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Figure 5.48: Optimal control results of de Pillis et al. 2008, p = 1, s = 2. From top to bottom:
result from de Pillis et al. 2008, MUSCOD-II optimal control result with a = 2.0 · 10−3, MUSCOD-II
optimal control result with a = 4.0, MUSCOD-II simulation (no therapy) with a = 4.0. Left part
shows the states, while tumor cells are dark solid, NK cells gray solid, CD8+ T cells gray
dashed, circulating lymphocytes dark dot-dashed and IL-2 gray dashed. Right part shows
the controls while chemotherapy is dark, immunotherapy is bright, but almost always zero
or very close to zero.
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Figure 5.49: Optimal control results of de Pillis et al. 2008, p = 1, s = 1. From top to bottom:
result from de Pillis et al. 2008, MUSCOD-II optimal control result with a = 2.0 · 10−3, MUSCOD-II
optimal control result with a = 2.0, MUSCOD-II simulation (no therapy) with a = 2.0. Left part
shows the states, while tumor cells are dark solid, NK cells gray solid, CD8+ T cells gray
dashed, circulating lymphocytes dark dot-dashed and IL-2 gray dashed. Right part shows
the controls while chemotherapy is dark, immunotherapy is bright, but almost always zero
or very close to zero.
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As the optimal control results generally are on a lower level than the doses of the standard
treatment, in the following we lower the upper bound on the MTX control (chemotherapy)
u0. This makes the control curve better visible and is only a small restriction to the constraint
at the beginning of the time horizon, if any. The objective function has been chosen as the
tumor value at the end time (p0 = 1), with a small penalty p1 = p2 = 10−5 on the controls,

min
x,u

p0 · x0(t f ) +
∫ t f

t0

p1 · u0(t)2 + p2 · u1(t)2 dt. (5.20)

The result without a lower bound > 0 on the leucocyte stem cells, figure 5.52, shows an
almost constant chemotherapy and no use of the rescue package. This may seem the same as
in the de Pillis et al. 2006 models with immunotherapy, but the situation here is different. We
ran the standard treatment simulation again without rescue package, see figure 5.51 and the
immune cell populations are significantly lower than with it, especially when a chemotherapy
is followed by another one in a relatively short time, e.g. at t = 400 and t = 1400. This means,
that the rescue package has a significant influence in this model but with this objective it does
not pay off, maybe because the tumor can be kept on a very low level with chemotherapy
only while the immune cells are above the bounds.

The results with lower bounds 2.0 (figures 5.53 and 5.54) respectively 4.0 (figure 5.55) show
a very similar control scheme. Again the rescue package plays no role—perhaps one should
try different objectives, compare e.g. the one in [8], in future investigations. At the beginning
there is a high dose first, which pushes the tumor down and the leucocyte stem cells to the
bound. This high dosage is followed by an almost constant low level dosage, which follows
the bound on the leucocytes and pushes the tumor further down, but less strong.

Sum up rounding has been applied to the different scenarios. Regarding the tumor, the
performance is good and despite the low dosage more or less significantly better than the
standard treatments. For example, the u0 ≤ 3.0, x0 ≥ 4.0 scenario uses 480 of the chemother-
apeutic drug vs. 420 in the standard scheme, but pushes the tumor down to 15.66 instead of
26.75. This means a 41% smaller tumor with only 14% more drugs. The number of switches
is a bit high, e.g. in the scenario with u0 ≤ 2.0 and x0 ≥ 2.0, but with a time scale of 2000

days may still be practicable. Note however, that the bounds on the leucocyte stem cells are
violated up to 0.5. So for a optimization with real values perhaps a threshold should be added
to the leucocyte bound.

We finally have a look at a comparison of the tumor without therapy, with optimal con-
trolled therapy, and with a standard treatment in figure 5.60. Without any treatment the
tumor grows to more than its double initial size, to about 760. The standard treatment pushes
the tumor down to 26.75 (3.5% of the no treatment size), with a usage of 420 units of the
chemotherapeutic drug and 504 of the immunotherapeutic drug, whereas the optimization
results with x1(t) ≥ 2.0 and u0(t) ≤ 2.0 do almost not use the rescue package but about 1109
units (164% more) of the chemotherapeutic drug and get the tumor down to about 3.3 · 10−3

(0.01% of the standard treatment size).

A comparison between a minimization and a maximization could not be completed due to
computational problems and time limitation, but will be done in future, as soon as the fitted
parameter set is complete.
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Figure 5.50: Simulation result of a standard therapy for AG Lebiedz model.
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Figure 5.51: Simulation result of a standard therapy without rescue package for AG Lebiedz
model.
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Figure 5.52: Optimal control result for AG Lebiedz model without additional bounds.
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Figure 5.53: Optimal control result for AG Lebiedz model with x1(t) ≥ 2.0, u0(t) ≤ 2.0.
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Figure 5.54: Optimal control result for AG Lebiedz model with x1(t) ≥ 2.0, u0(t) ≤ 3.0.
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Figure 5.55: Optimal control result for AG Lebiedz model with x1(t) ≥ 4.0, u0(t) ≤ 3.0.
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Figure 5.56: Sum up rounding result for AG Lebiedz model for original continuous control
without additional bounds.
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Figure 5.57: Sum up rounding result for AG Lebiedz model for original continuous control
with x1(t) ≥ 2.0, u0(t) ≤ 2.0.
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Figure 5.58: Sum up rounding result for AG Lebiedz model for original continuous control
with x1(t) ≥ 2.0, u0(t) ≤ 3.0.
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Figure 5.59: Sum up rounding result for AG Lebiedz model for original continuous control
with x1(t) ≥ 4.0, u0(t) ≤ 3.0.
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Figure 5.60: Comparison between no therapy, optimal control and standard treatment of
AG Lebiedz model. Top: no treatment, middle: optimal controlled treatment for x1(t) ≥ 2.0
and u0(t) ≤ 2.0, bottom: standard treatment. Tumor volume is shown on the left side,
chemotherapy (dark) and rescue package (bright) on the right side.
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5.8 AG Lebiedz Fitted

This parameter set is based on real human proband data, but there are still parameters
which—until the completion of this work—could not be fitted due to a lack of data. Ad-
ditionally, as already mentioned in the section above, a bound on the leucocyte stem cells for
the measurement of the patient’s health is required, but reasonable values for this bound have
not yet been known and initial values were not available either. Although this model may be
one of the most promising approaches, with this enormous lack of required data, applying
optimal control techniques to partly fitted and partly guessed values does not seem to make
any sense. Therefore, we cannot present optimal control results for this parameter set so far.
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Chapter 6

Conclusion and Outlook

In this final chapter, we summarize the results of this work and give an outlook on possible
directions of future work.

Cancer Chemotherapy Models

We presented five models for cancer chemotherapy with eight different parameter sets. Four
of these sets have been solved to optimality for the first time to the best of our knowledge.

The first model was the one of Hahnfeldt et al. [24] with two states, tumor volume and
vasculature volume. It featured different anti-angiogenic treatments with one control for the
dosage and a parameter set dervied by experiments with Lewis lung carcinoma in mice. Kind
of a descendant of this model was the one in d’Onofrio et al. [17], which is based on a modi-
fication of the Hahnfeldt model by d’Onofrio and Gandolfi. This model contained an additional
control for chemotherapy and identified dosage and drug concentration. Parameters have been
taken from [24], while the tumor growth parameter has been adjusted erroneously and miss-
ing parameters are mainly test values for the numerical computations. An optimal control
problem with free end time has been formulated and solved with different initial values and
parameters in the article.

In the next part, we introduced a model by de Pillis et al. [10] which was based on multiple
previous articles of the same or similar authors. In contrast to the first two models, this one
contained three immune cell populations instead of the vasculature: NK cells, CD8+ T cells
and circulating lymphocytes. Accordingly, it contained two immunotherapeutic treatments,
Interleukin-2 (IL-2) and tumor infiltrating lymphocytes (TIL), which formed the three controls to-
gether with chemotherapy. With tumor population and drug concentrations for chemotherapy
and IL-2, the model had up to 6 states. Three parameter sets for this model, mouse, human

9, and human 10, were presented. They were based on different experimental works with
different types of cancer. Especially, for the human sets, there was only one reference with
human data so that about one third of the parameter values came from murine experiments.
Therefore the model served for more or less general qualitative investigations. Many different
scenarios with different therapies were tested by the authors, whereas optimal control has not
been done for the model until now.

For a derived model however, optimal control was done by de Pillis et al. [9]. This model also
was described and the differences to the previous model were highlighted. There were six
states and three controls as in the model above. This work already contained three different
optimal control problems with two different initial value sets.

Finally, we presented a model of our cooperation partners Lebiedz et al. which was based
on human data for non-hodgkin lymphoma of CNS. This model contained leucocyte dynamics
based on work by Friberg et al. [22] with states for leucocyte stem cells, circulating leucocytes, and
three transit compartments. Together with a tumor state and two states for drug concentrations,
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it had a total of eight states. The dosages of the two drugs applied, Methotrexat (MTX) as
chemotherapy and Leucovorin as immunotherapy, were the two controls. We presented two
parameter sets: one with test values and one with fitted values from experimental data,
though not all parameters could be fitted until the completion of this work. As this model
has not been published yet, optimal control was not done before.

Optimal Control Methods

In the next two chapters, we explained the optimal control methods which were applied
to the different cancer chemotherapy models. Direct multiple shooting by Bock and Plitt [6]
was applied to solve optimal control problems with continuous controls. We formulated
the abstract problem class and discretized the infinite-dimensional problem in states and
controls with multiple shooting. The resulting nonlinear programming problem was solved with
a structured SQP method. The software package MUSCOD-II, which contains these methods,
was used in this work.

We gave a motivation for the application of mixed-integer optimal control methods to the
models. Continuous optimal controls with singular arcs might be unsuitable for treatments in
medical practice. The outer convexification approach by Sager et al. [39] was explained and the
MS MINTOC algorithm with grid adaptivity, sum up rounding and switching-time optimization

was described.

With the decomposed MILP respectively integral approximation, we introduced a new round-
ing heuristic where a mixed-integer linear program with a limit on the number of switches
is solved to approximate the continuous control. This algorithm was implemented in the
MUSCOD-II framework and applied to some of the models as a part of this work.

Our results can be considered as a proof of concept: the methods work for all presented
models and parameter sets. When medical understanding yields better models, optimization
methods will be ready for optimal control of them.

Numerical Results

We reproduced different results of Hahnfeldt et al. by simulations with our implementation of
the model in MUSCOD-II. Our optimal control solutions of the d’Onofrio model mostly matched
the ones in the article. Though there was a difference in the end time up to 10.8%. As all
results mainly consist of singular arcs, sum up rounding and decomposed MILP were applied to
one of the four scenarios. The sum up rounding tumor value was very close to the continuous
one, but the solution showed some chattering, which made it not that much more useful than
the continuous singular solution. For decomposed MILP, we limited the number of switches
to 4, 6, and 8 while the 6 switches result was higher than the 4 and 8 switches ones and
in general the results were about 10% higher than the continuous ones. A comparison to
a (continuous) maximization of the tumor at the end time with fixed drug amounts showed
that we gained about 15% with the optimal control whereas without any treatment, the tumor
would have been about 40% bigger.

For the different parameter sets mouse, human 9, and human 10 for the model by de Pillis et

al., we introduced three different objective functions: tumor population at the end time, addi-
tionally with a penalty on chemotherapy, and a weighted sum of the tumor population over
the whole time, at the end time and a penalty on the chemotherapeutic control. Three time
horizons (t f = 40, t f = 120, and t f free) together with 7 initial value sets were considered.
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The many different scenarios showed many different continuous optimal control structures.
However, in the human models immunotherapy was never used significantly. We showed that
in this model, immunotherapy has almost no influence. So we could not reproduce the results
with immunotherapy of de Pillis et al., whereas the scenarios with pure chemotherapy or no
therapy at all could be verified.

Sum up rounding was applied to the different scenarios and for the ones which almost had
a bang-bang structure the results were obvious. A part of the singular solutions resulted in
a rounded result with chattering. We also applied decomposed MILP with a maximum of 4, 6,
and 8 switches to some problems. On the short time scale, the results looked good with an
acceptable deviation from the continuous optimal control. For the long scale, the number of
switches may have been too low though the calculation times even for an 8 switches solution
would have been several hours, so this has not been tried. A maximization of the tumor
population in some exemplary scenarios showed that the difference between minimal and
maximal value can be some orders of magnitude. The performance of the standard treatments
was always bad, however, the drug amounts were much lower. The authors of the article
stated that circulating lymphocytes can be considered a measure for the health of the patient,
but a bound was not given as well as reasons for the dosages chosen for the controls. Such
values would be necessary for the computation of useful optimal controls.

The results of the optimal control paper [9] by de Pillis et al. could not be reproduced with
the equations and the parameter set given in the article. However, with a modified tumor
growth parameter (4.0 instead of 2.0 · 10−3) we succeeded in the reproduction of the optimal
controls result of a first scenario. For a second scenario, we could mostly reproduce the result
with again a different tumor growth parameter (2.0). Our attempts to contact the authors
to resolve these deviations have not been successful until now. Therefore no further optimal
control computations were done with this model.

Eventually, we presented optimal controls for the model by Lebiedz et al. Only the test
parameter set was considered since the fitted set still contains some unfitted parameters and
initial values were not available. This could be an interesting point for future investigations.
Again, a state is said to be a measure for the health of the patient but no reasonable bound was
known. We tested two different lower bounds with two maximal dosages for chemotherapy.
The optimal controls did not significantly contain the rescue package, but we showed that
it has an observable influence in this model. In future work it could be interesting to try
different objectives, e.g. like proposed by Chareyron and Alamir [8]. Sum up rounding was
applied to this model, too, and because of the low level constant treatments in the optimal
controls and the long time scale the solutions looked practicable.

Outlook

We showed that with our methods optimal control can be successfully done for several ex-
isting models. In particular, we presented mixed-integer algorithms for computing therapies
which may be applicable in medical practice. The results look promising for improvements
of real treatments in future.

However, there is only little data for parameter sets particularly for human models, but
there is a partly big variation from cancer type to cancer type and even from patient to pa-
tient. Therefore, our current solutions are of no practical relevance for medical applications,
but show what could be possible. It seems that a lot more cooperation between mathemati-
cians, biologists and physicians will be needed to fill this gap and to bring optimal control
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techniques into medical practice. The model by Lebiedz et al. could be a first step in this
direction.
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