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Zusammenfassung

Das Ziel dieser Dissertation ist die Entwicklung eines neuen Algorithmus zur effizienten Be-
stimmung des globalen Optimums von Optimalsteuerungsproblemen. Im Unterschied zu bis-
herigen Methoden basiert dieser hier vorgestellte Ansatz auf dem direkten Mehrzielverfahren
zur Diskretisierung des Optimalsteuerungsproblems, was in einer signifikanten Steigerung der
Effizienz resultiert. Zur Relaxierung des diskretisierten Optimalsteuerungsproblems wird das
sogenannte α-Branch-and-Bound Verfahren in Kombination mit validierter Integration ver-
wendet.
Zum direkten Vergleich der auf dem direkten Einzielverfahren beruhenden Relaxierungen mit
dem auf der direkten Mehrzielmethode basierenden Algorithmus werden mehrere theoretische
Resultate bewiesen, die die Basis für die Effizienzsteigerung der neuen Methodik bilden. Eine
speziell angepasste Branching-Strategie sorgt außerdem dafür, dass die durch das Mehrziel-
verfahren zusätzlich eingeführten Variablen den entstehenden Branch-and-Bound Baum nicht
vergrößern. Des Weiteren wird eine adaptive Skalierung der verbreiteten Gershgorin Metho-
de zur Abschätzung der Eigenwerte von Intervallmatrizen vorgestellt, die optimierte Relaxie-
rungen liefert und damit allgemein zur Verbesserung der α-Branch-and-Bound Relaxierungen
sowohl im Einziel- und Mehrzielverfahren beiträgt, als auch auf entsprechende Relaxierungen
für nicht dynamische nichtlineare Probleme übertragbar ist. Zur weiteren Verbesserung der
Laufzeit werden in dieser Arbeit außerdem noch Vorschläge im Bezug auf die benötigten In-
tervallsensitivitäten zweiter Ordnnung gemacht und eine Heuristik vorgestellt, welche nur auf
einem bestimmten Unterraum relaxiert.
Der neu entwickelte Algorithmus ist, ebenso wie die auf dem Einzielverfahren basierte Alter-
native für den direkten Vergleich, in einem neu entwickelten Softwarepaket mit dem Namen
GloOptCon implementiert. Das neue Verfahren wird genutzt um für eine Reihe von Bench-
markproblemen aus der Literatur und für bisher im Rahmen der globalen Optimalsteuerung
noch wenig betrachteten Anwendungen das globale Optimum zu bestimmen. Die zusätzlich
untersuchten Probleme stellen neue Herausforderungen, sowohl im Sinne der Größe, als auch
dadurch, dass eines dieser Probleme seinen Ursprung in den sogenannten gemischt ganzzah-
ligen Optimalsteuerungsproblemen hat, da es eine ganzzahlige zeitabhängige Steuerungsva-
riable enthält. Der bereits theoretisch bewiesene Effizienzgewinn wird durch die numerischen
Ergebnisse bestätigt. Verglichen mit dem bisherigem Ansatz aus der Literatur wird die Anzahl
der benötigten Iterationen für typische Probleme mehr als halbiert, während die Rechenzeit so-
gar um fast eine Größenordnung reduziert werden konnte. Dies wiederum erlaubt die globale
Lösung von deutlich größeren Optimalsteuerungsproblemen.





Abstract

The goal of this thesis is the development of a novel and efficient algorithm to determine the
global optimum of an optimal control problem. In contrast to previous methods, the approach
presented here is based on the direct multiple shooting method for discretizing the optimal
control problem, which results in a significant increase of efficiency. To relax the discretized
optimal control problems, the so-called α-branch-and-bound method in combination with val-
idated integration is used.
For the direct comparison of the direct single-shooting-based relaxations with the direct multiple-
shooting-based algorithm, several theoretical results are proven that build the basis for the
efficiency increase of the novel method. A specialized branching strategy takes care that the
additionally introduced variables due to the multiple shooting approach do not increase the
size of the resulting branch-and-bound tree. An adaptive scaling technique of the commonly
used Gershgorin method to estimate the eigenvalues of interval matrices leads to optimal re-
laxations and therefore leads to a general improvement of the α-branch-and-bound relaxations
in a single shooting and a multiple shooting framework, as well as for the corresponding re-
laxations of non-dynamic nonlinear problems. To further improve the computational time,
suggestions regarding the necessary second-order interval sensitivities are presented in this
thesis, as well as a heuristic that relaxes on a subspace only.
The novel algorithm, as well as the single-shooting-based alternative for a direct comparison,
are implemented in a newly developed software package called GloOptCon. The new method
is used to globally solve both a number of benchmark problems from the literature, and so
far in the context of global optimal control still little considered applications. The additional
problems pose new challenges either due to their size or due to having its origin in mixed inte-
ger optimal control with an integer-valued time-dependent control variable. The theoretically
proven increase of efficiency is validated by the numerical results. Compared to the previ-
ous approach from the literature, the number of iterations for typical problems is more than
halved, meanwhile the computation time is reduced by almost an order of magnitude. This in
turn allows the global solution of significantly larger optimal control problems.
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Chapter 1

Introduction

The optimization of dynamic processes plays a crucial role for a wide range of applications
in fields such as biology, chemistry, economy, engineering, physics and many more. These
problems based on a dynamic process that is described by nonlinear differential equations
with potentially nonlinear objective functions and additional nonlinear constraints are called
optimal control problems (OCPs).

Whereas the local optimization of such problems advances rapidly, including partial differen-
tial equations [Pot11], multiple levels [Hat14], delay differential equations [Len14], mixed-
integer decisions [Sag06], real-time applications [Kir10], robust solutions [HFD11b] or exper-
imental design [KPBS12], finding the global optimum for such problems is still a very chal-
lenging, yet very important task, as many applications inhibit different local minima with
potentially large differences in the objective function values. Those local minima sometimes
occur due to obvious reasons such as symmetries in the movement of a robotic arm, but often
are not predictable at all, as the analytical solution of the underlying differential equations
is not known and the nonconvexities leading to such local minima are hidden in those equa-
tions. A general overview on non-dynamic global optimization is given in [FG09], whereas
[HC14] starts with an overview of different approaches to solve OCPs in the context of global
optimization.

In this thesis, we present a method to obtain deterministic global solutions for OCPs by trans-
ferring the α-branch-and-bound (αBB) method [AMF95, AF96] to a direct multiple shoot-
ing framework [BP84]. In comparison to the direct single-shooting-based approach [EF00b,
PA02], we prove that adding multiple shooting nodes improves the convex relaxations and
therefore results in a significant increase of efficiency. This is validated by means of numerical
results.

1.1 Results of this Thesis

We present a novel mathematical algorithm for finding the global optimum of OCPs. We prove
theoretically that this direct multiple-shooting-based algorithm is indeed a viable strategy that
improves the efficiency and therefore allows to solve larger problems globally. These results are
validated by means of numerical examples from the literature as well as real-world problems.
The following points highlight and summarize the main results of this thesis in more detail.
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Chapter 1 Introduction

A Multiple-Shooting-Based Algorithm for Global Optimal Control

Based on previous approaches that combine the α-branch-and-bound algorithm with the di-
rect single shooting approach, we derive a novel multiple-shooting-based algorithm for global
optimal control.

Theoretical Comparison and Quality of the Convexifications

We show that the multiple-shooting-based algorithm for the global optimization of optimal
control problems is indeed a viable choice by proving theoretical results that compare the
algorithm with the single-shooting-based variant and show how additional multiple shooting
nodes increase the quality of the convexifications.

Treatment of Additional Variables

We derive a specialized branching strategy for the direct multiple-shooting-based algorithm
and prove that the additional multiple shooting variables do not increase the size of the branch-
and-bound tree.

An Adaptively Scaled Gershgorin Method

We use the scaled Gershgorin method to under- and overestimate the eigenvalues of the in-
terval sensitivities. For the scaling vector, we suggest a fast heuristic based upon the iterative
scaling proposed in [Hla15]. This provides us with fast means to scale the convex and con-
cave relaxations that occur in the relaxed matching conditions independently. Furthermore,
we give a different proof that provides more insight into the improvement gained over classical
choices of the scaling vector.

Suggestions for Fast Bounds on the Second-Order Sensitivities

We propose to obtain the necessary second-order sensitivites not by validated integration of
the variational differential equation, but by modifying the validated integrator such that it
uses the Taylor model directly to obtain bounds on the sensitivities. This may speed up the
algorithm significantly as shown in a proof-of-concept implementation.

Heuristics for a Reduced Space Relaxation

Experience with the direct multiple shooting method as a lifting of OCPs gives rise to an idea
for a heuristic that relaxes the matching conditions on a certain subspace only and proves
to be quite viable by speeding up the optimization by several orders of magnitude while not
converging to a wrong local minimum a single time in our numerical results.

Software Package GloOptCon

We implement the proposed algorithm and the single-shooting-based variant for a direct com-
parison in our novel software package GloOptCon in order to obtain the numerical results.
Various test functions, interfaces to different integrators and nonlinear program solvers and
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1.2 Thesis Overview

various plotting capabilities provide useful information when dealing with the global optimiza-
tion of optimal control problems.

Numerical Results

We present a number of numerical results obtained by using our software package GloOpt-
Con. The applications include a number of test problems from the global optimal control
literature and, in the context of global optimization, novel real-world problems that contain
new challenges. We systematically provide numerical confirmations for the previously proven
theoretical results.

1.2 Thesis Overview

This thesis consists of three parts. The first part, consisting of Chapters 2 and 3, gives a short
overview of the mathematical background necessary for the following chapters. The second
part, consisting of Chapter 4 and 5, presents our theoretical advances as highlighted above and
introduces the implementation in our software package GloOptCon. The last part presents the
numerical results.
After a general introduction, we start with a short overview of direct optimal control in Chapter
2, focusing on the direct single shooting and direct multiple shooting approach. The first
approach is the current state of the art in global optimal control, whereas the latter approach
will be the basis for our new algorithm.
Chapter 3 presents the necessary basics from general non-dynamic deterministic global op-
timization, such as interval arithmetic, spatial branch-and-bound and convex relaxations. A
section about common methods to obtain bounds on the eigenvalues of interval matrices fol-
lows. These bounds are necessary for the so-called α-branch-and-bound method that we use
for the convex relaxations and validated integration methods. The last section in this chapter
deals with methods to generate validated state bounds for differential equations in the form
of Taylor-expansion-based validated integrators, which is important for deterministic global
optimal control.
The following Chapter 4 focuses on our theoretical results, starting with the general idea, giv-
ing proofs for comparing results obtained with the direct single shooting approach and our final
novel algorithm. We continue with sections on further improvements regarding an adaptively
scaled Gershgorin method, an idea on faster bounds on the second-order sensitivities that are
necessary for our relaxations and a heuristic that performs the relaxations on a reduced space.
We close with notes on the global solution of global mixed integer optimal control problems.
Chapter 5 gives some insight in the implementation of our algorithm in the software package
GloOptCon.
The last part, consisting of Chapter 6, applies our new method to a number of test problems
from the literature and compares the results with our theoretical predictions of the perfor-
mance of the direct single shooting approach versus the direct multiple-shooting-based global
optimal control. We continue with an even larger optimal control application and one mixed
integer optimal control problem, where multiple local minima are observed.
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Introduction to Optimal Control and
Global Optimization
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Chapter 2

Direct Optimal Control

Optimal control is the optimization of an objective function with underlying nonlinear differ-
ential equations including time-dependent controls that govern the modeled process that is
described by so-called state variables. In general, the controls are the unknowns in this prob-
lem class. In this thesis, we restrict ourselves to the case of ordinary differential equations
(ODEs). This chapter gives a brief overview over the literature about solving such optimal
control problems (OCPs) and introduces the problem formulation and notation that is needed
in the following chapters.

Using the methods presented in this chapter, we are able to solve a large number of problems
locally, but our test cases and applications solved globally in Chapter 6 give a first insight
that even small OCPs often inhibit many local solutions. Some of these local solutions are
obvious due to symmetries, for example during a robot arm movement on two symmetric
paths, but many are not and the problem properties, such as nonconvexities and nonlinearities,
are further concealed by the underlying ODEs that have to be solved numerically. Therefore, it
is a very important task to determine global optimal solutions for this problem class. The main
challenges arise from two sources. First, we have to determine bounds of the states that are
governed by the underlying ODEs. Second, the time dependent controls naturally lead to very
high dimensional and thus computationally expensive problems. A recent paper by Houska
et al. [HC14] gives a short overview of different approaches to solve OCPs in the context
of global optimization. It is important to note that most optimal control literature considers
only underlying initial values problems (IVPs) with fixed or parametrized initial values only,
whereas two of our applications are based on boundary value problems (BVPs) that contain
fixed end points as well. An early method for the global solutions of such problems is given in
[Loh92].
There are several methods to solve OCPs numerically. The first class is based on the Hamilton-
Jacobi-Bellman (HJB) equation [Bel54, Bel57] and is called dynamic programming (DP). Using
a cost-to-go function to calculate optimal arcs, this approach leads to a full tabulation of the
state variables. Although DP is capable of identifying globally optimal solutions in a deter-
ministic way, the tabulation limits the application to problems with a small number of state
variables. In contrast, the so-called indirect or “first optimize, then discretize” approaches
based on Pontryagin’s Maximum Principle (PMP) [PBGM62, Boc81] formulate necessary op-
timality conditions of the OCP in function space resulting in a BVP that can be discretized and
solved numerically. As all local optimality principles, PMP leads to locally optimal solutions
and has not been extended to global optimal control so far.

In this thesis, we restrict ourselves to the so-called direct or “first discretize, then optimize”
methods that discretize the underlying differential equations first and lead to a finite di-
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Chapter 2 Direct Optimal Control

mensional nonlinear problem. One method in this class, collocation [RS72, Bär83, Bie84],
parametrizes both states and controls. Collocation is used for example in [EF00b] for global
optimal control. Although the resulting NLPs are sparse, the high dimension makes solving
them to global optimality hard [FTTMB08]. Instead, we focus on the direct single shooting
[HR71, SS78] and direct multiple shooting [Pli81, BP84] method.

After presenting the general problem formulation considered in this thesis in the following
section, we introduce both the direct single and the direct multiple shooting method. Direct
single shooting is presented since it is the currently the most widely used approach in global
optimal control, compare [FG09] for an extensive overview, and multiple shooting will be
used in our new algorithm derived in Chapter 4. Since our optimization algorithms, as well as
our convex relaxations method introduced in Chapter 3 are derivative-based, we dedicate the
section afterwards to the derivatives of the solution trajectories, the so-called sensitivities.

2.1 Problem Formulation

For the remainder of this thesis, we consider a general OCPs of the following form

min
u,p

ΦM(x(tN ), p) +

∫ tN

t0

ΦL(t, x(t), u(t), p) dt (2.1a)

s.t. ẋ(t) = f (t, x(t), u(t), p) ∀t ∈ [t0, tN ] (2.1b)

0≤ c(t, x(t), u(t), p) ∀t ∈ [t0, tN ] (2.1c)

0= req(x(t0), . . . , x(tN ), p) (2.1d)

0≤ r ieq(x(t0), . . . , x(tN ), p) . (2.1e)

The ODE describes the dynamic system between an initial time t0 and a final time tN . The
time-dependent states x : [t0, tN ]→ Rnx are governed by the right-hand side (RHS) function
f : [t0, tN ] × Rnx × Rnu × Rnp → Rnx . The RHS depends on the time t, the states x(t), a
measurable control function u : [t0, tN ]→ Rnu and time-independent control values p ∈ Rnp

such as free components of the initial value x(t0) or even a free final time tN . A given initial
value, as well as more general constraints on interior or boundary values can be specified
using the point-wise equality, respectively inequality constraints req and r ieq. Furthermore,
general mixed control-state constraints c(t, x(t), u(t), p) may be included. For existence and
uniqueness of the ODE solution, we assume f to be locally Lipschitz continuous. The validated
integrator methods we apply later are based on high-order Taylor expansions and therefore
require that f is sufficiently often differentiable with respect to the time t. Furthermore, the
nonlinear program (NLP) solvers and convexification used in this thesis assume that f , as well
as c, req and r ieq are at least twice continuously differentiable.

The objective function of Bolza-type, consisting of a Mayer term ΦM(x(tN ), p) evaluated at the
final time tN only and a Lagrange term

∫ tN

t0
ΦL(t, x(t), u(t), p) dt that is integrated over the

time horizon, needs to be twice continuously differentiable. It is well known that these two
types can be transformed into each other and therefore, we mainly focus on the Mayer term
formulation to ease the notation. Details can be found for example in [Ces83].

20



2.2 Direct Methods for Optimal Control Problems

2.2 Direct Methods for Optimal Control Problems

As mentioned in the introduction, there are many different methods to solve such OCPs nu-
merically. In this next section, we focus on direct methods, namely the direct single and direct
multiple shooting approach. We omit the widely used direct collocation method that approx-
imates the control and state space using polynomial expressions. In contrast to that, direct
single shooting relies on state-of-the-art numerical integrators to alter between simulating the
ODE and iterating the optimization. Direct multiple shooting is a hybrid but nevertheless
simultaneous approach, where the state trajectory is split into several independent parts by
introducing new artificial initial values.

Direct Single Shooting

In direct single shooting, the control u(t) in function space is approximated on a control dis-
cretization grid

t0 = τ0 < τ1 < · · ·< τM = tN . (2.2)

On each interval [τi ,τi+1], i ∈ {0, . . . , M−1} a local basis function ũi(t, qi)with a finite dimen-
sional parametrization qi ∈ Rnq is used to approximate the true optimal control u(t). Common
choices for these functions are piecewise constant functions or piecewise linear approxima-
tions, the latter potentially with or without additional continuity conditions. Figure 2.1 shows
an illustration of the direct single shooting method with different variants of the control dis-
cretization.

Combining all qi into a single vector, we define the discretized control vector

q :=







q0
...

qM−1






∈ RMnq . (2.3)

An ODE solver is used to integrate from the potentially free initial value x(t0) to the final
value x(tN ) using the discretized controls ũi(t, qi). Suitable numerical integration methods
range from classical explicit and implicit Runge-Kutta (RK) methods [Feh69] to backward
differentiation formula (BDF) [CH52] implementations such as DAESOL-II [Alb10] or the
SUNDIALS suite [HBG+05a].

The mixed control-state constraints c(t, x(t), u(t), p) are usually evaluated on a discretized
grid as well. To ease the notation, we assume that this constraint grid coincides with the control
discretization grid. Please note that this assumption is not necessary and our software package
GloOptCon presented in Chapter 5 is not restricted in this regard. For further information on
how to handle certain types of path constraints in detail we refer to [Pot06].
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Chapter 2 Direct Optimal Control

Figure 2.1: Visualization of the direct single shooting approach with state trajectory x(t) be-
tween the initial value x(t0) and a final value x(tN ) based upon the local control
approximation ũi(t, qi) of different types defined on the control discretization grid.

Applying this control discretization to Problem (2.1) results in the discretized OCP

min
q,p

ΦM(x(tN ), p) +
M−1
∑

i=0

∫ t i+1

t i

ΦL(t, x(t), ũi(t, qi), p) dt (2.4a)

s.t. ẋ(t) = f (t, x(t), ũi(t, qi), p) ∀t ∈ [t i , t i+1], ∀i ∈ {0, . . . , M − 1} (2.4b)

0≤ c(t, x(t), ũi(t, qi), p) ∀t ∈ [t i , t i+1], ∀i ∈ {0, . . . , M − 1} (2.4c)

0= req(x(t0), . . . , x(tN ), p) (2.4d)

0≤ r ieq(x(t0), . . . , x(tN ), p) . (2.4e)

To solve this discretized problem with an NLP solver iteratively, we have to alternate between
simulations of the underlying ODE to obtain the states and optimization iterations of the, now
finite dimensional, decision variables (q, p). In this sense the direct single shooting approach
is a sequential method. The advantage, compared to collocation methods is that we can use
state-of-the-art ODE solvers for the simulation. Furthermore, we have few degrees of freedom
even for large ODE systems and we need only an initial guess for the discretized controls q
and control values p. A first downside is that we are not able to include additional knowledge
about the states x(t) in the initial guess in the iterative method and the solution trajectory
x(t) may depend very nonlinearly on q. Therefore, unstable systems are often difficult to
treat using the direct single shooting approach.

For theory and algorithms on how to solve the resulting NLPs, we refer to the textbook [NW06].

Direct Multiple Shooting

Direct multiple shooting introduces a second time grid, the multiple shooting nodes

t0 < t1 · · ·< tN (2.5)
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with multiple shooting intervals [t i , t i+1], i ∈ {0, . . . , N − 1}. Although this new grid may
coincide with the control grid τ0 < τ1 < · · · < τM , it is important to highlight that these two
grids do not have to be equivalent. We present some numerical results in Chapter 6 using
different grids.
For the sake of simplicity, Figure 2.2 illustrating the multiple shooting method shows only a
single common grid. Furthermore, to ease the notation, we assume that the multiple shoot-
ing nodes are a subset of the control grid. This assumption allows us to merge the control
parameterizations into a single vector qi per multiple shooting node.
At each multiple shooting node t i , we introduce a new auxiliary variable si ∈ Rnx , i ∈
{0, . . . , N}. We refer to these vectors as multiple shooting variables. The multiple shooting
variables s0, . . . , sN−1 act as new initial values for the corresponding integrations on each mul-
tiple shooting interval and at the last node tn, sn replaces the end value of the trajectory
x(tN ), for example in an occurring Mayer-type objective function. To ensure a continuous
solution trajectory, we have to add so-called matching conditions to the problem. We define
x(t i+1; si , qi , p) as the solution trajectory at time t i+1 based upon initial values si at time t i ,
the corresponding control discretization qi in this multiple shooting interval and control values
p. Please note that to ease the notation, the dependency of x(t i+1; si , qi , p) on the local basis
functions ũi(t, qi) is omitted. Using this definition, we can add equality constraints to enforce
the end of the trajectory on an interval [t i , t i+1] being equal to the next multiple shooting
variable si+1:

x(t i+1; t i , si , qi , p)− si+1 = 0 ∀i ∈ {0, . . . , N − 1} . (2.6)

These matching conditions ensure a continuous solution trajectory after convergence of the
resulting discretized problem and are illustrated in Figure 2.3. Furthermore, we define the
vector of all multiple shooting variables

s :=







s0
...

sN






. (2.7)

Applying this discretization to Problem (2.1) results in the discretized OCP

min
s,q,p

ΦM(sN , p) +
N−1
∑

i=0

∫ t i+1

t i

ΦL(t, x(t; t i , si , qi , p), ũi(t, qi), p) dt (2.8a)

s.t. 0= x(t i+1; t i , si , qi , p)− si+1 ∀i ∈ {0, . . . , N − 1} (2.8b)

0≤ c(t i , si , ũi(t i , qi), p) ∀i ∈ {0, . . . , N − 1} (2.8c)

0= req(s0, . . . , sN , p) (2.8d)

0≤ r ieq(s0, . . . , sN , p) . (2.8e)

Direct multiple shooting is in a sense hybrid between the direct collocation and direct single
shooting. On the one hand, the resulting discretized problem is not as large as in the colloca-
tion case and can even be reduced to the size of the direct single shooting using a technique
called condensing [BP84, Lei99]. On the other hand, we are still able to apply state-of-the-art
ODE solvers as in the single shooting case. Nevertheless, and in contrast to direct single shoot-
ing, we are able to include additional information about the states x(t) in the initial guesses
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Figure 2.2: Visualization of the direct multiple shooting method with local state trajectories
on the multiple shooting intervals [t i , t i+1] based upon the corresponding initial
values si and the local control approximation ũi(t, qi) of different type defined on
the control discretization grid.

Figure 2.3: Visualization of the multiple shooting matching conditions in Equation (2.6) that
ensure a continuous trajectory after convergence of the discretized Problem (2.8).

for the multiple shooting variables si . This results in an efficient method to solve OCPs that is
able to solve unstable systems as well. For more details on multiple shooting, we refer to the
in-depth introductions among others in [Lei99, Die02, Sag05, Kir10].

2.3 Sensitivities

Using a derivative-based NLP solver to solve the discretized Problem (2.4) or (2.8) requires the
derivatives of the solution trajectory at some point x(t), t ∈ [t0, tN ]with respect to the control
parametrization variables q and control values p such as potentially free initial values x(t0) or
a free final time tN . Furthermore, the so-called sensitivities play a crucial role in the theoretical
results in Chapter 4. We focus on the sensitivities necessary for the direct multiple shooting
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approach as the sensitivities for direct single shooting are a subset of these as indicated briefly
at the end.

First-Order Sensitivities

Differentiating the trajectory x(t; t i , si , qi , p) at a time t i+1 with respect to the initial values
at the multiple shooting nodes t i , the control discretization qi , further free control values p
and the time, we obtain the first-order sensitivities from the first-order variational differential
equations [Boc87]. Using the unit matrix In ∈ Rn×n, the zero matrix 0n×m ∈ Rn×m and omitting
the function arguments to ease the notation, we obtain on each multiple shooting interval
[t i , t i+1] the matrix-valued variational differential equations

d
dt

dx
dsi
=
∂ f
∂ x

dx
dsi
+
∂ f
∂ si
=
∂ f
∂ x

dx
dsi

,
dx(t i)

dsi
= Inx ∀i ∈ {0, . . . , N − 1} (2.9a)

d
dt

dx
dqi
=
∂ f
∂ x

dx
dqi
+
∂ f
∂ ũi

dũi

dqi
,

dx(t i)
dqi

= 0nx×nq ∀i ∈ {0, . . . , N − 1} (2.9b)

d
dt

dx
dp
=
∂ f
∂ x

dx
dp
+
∂ f
∂ p

,
dx(t i)

dp
= 0nx×np ∀i ∈ {0, . . . , N − 1} (2.9c)

that hold true componentwise. We are already using the simplification that the RHS is inde-
pendent of the initial values si and therefore ∂ f

∂ si
= 0. In the single shooting case, we need the

derivatives obtained from Equations (2.9b) and (2.9c) as well. The sensitivities with respect
to the initial value are only necessary for each free initial value p′ ∈ Rnp′ , np′ ≤ nx . To ease
the notation, we assume that the last np′ states have a free initial value and we obtain

d
dt

dx
dp′
=
∂ f
∂ x

dx
dp′

,
dx(t0)

dp′
=

�

0(nx−np′ )×np′

Inp′

�

(2.10)

instead of Equation (2.9a).

Second-Order Sensitivities

The convex relaxation that we use to obtain globally optimal solutions and that is introduced
in Chapter 3 is based on second-order derivatives and in the case of OCPs this means that their
second-order sensitivities are required.

Differentiating Equations (2.9) once more and using the same simplification for the derivative
with respect to potentially free initial values leads to the second-order variational differential
equations, for example derived in [VBCB99]. We use the notation from [OB05] with ⊗ being
the Kronecker product and the second derivative tensors of the vector valued functions written
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in matrix form composed of the derivatives of each component of the RHS functions such as

∂ 2 f
∂ x∂ qi

:=









∂ 2 f0
∂ x∂ qi

...
∂ 2 fnx−1

∂ x∂ qi









=

































∂ 2 f0
∂ x0∂ qi,0

. . . ∂ 2 f0
∂ xnx−1∂ qi,0

...
. . .

...
∂ 2 f0

∂ x0∂ qi,nq−1
. . . ∂ 2 f0

∂ xnx−1∂ qi,nq−1

...
. . .

...
∂ 2 fnx−1

∂ x0∂ qi,0
. . .

∂ 2 fnx−1

∂ xnx−1∂ qi,0
...

. . .
...

∂ 2 fnx−1

∂ x0∂ qi,nq−1
. . .

∂ 2 fnx−1

∂ xnx−1∂ qi,nq−1

































, (2.11)

with additional subscripts indicating the corresponding vector components.

Furthermore, as the second-order variational differential equations are coupled with respect
to si , qi and p. Therefore, we introduce the vector of local decision variables

s̃i :=







si

qi

p






(2.12)

on each multiple shooting interval [t i , t i+1], containing the initial values, parametrized con-
trols and control values with influence on the local state x(t; t i , si , qi , pi) = x(t; t i , s̃) with
dimension ns̃ = nx + nq + np.

Using s̃, we can define the matrix form of the second-order sensitivity tensor

d2 x
ds̃2

:=









d2 x0
ds̃2

...
d2 xnx−1

ds̃2









. (2.13)

Using this notation, we can state the second-order variational differential equation as

d
dt

d2 x
ds̃2
=
�

∂ f
∂ x
⊗ Ins̃

�

d2 x
ds̃2
+

�

Inx ⊗
�

dx
ds̃

�T��∂ 2 f
∂ x2

dx
ds̃
+
∂ 2 f
∂ x∂ s̃

�

+

�

∂ 2 f
∂ x∂ s̃

dx
ds̃
+
∂ 2 f
∂ s̃2

�

. (2.14)

Please note that for the corresponding components of s̃ the same simplifications such as ∂ f
∂ si
= 0

and further application of the chain rule ∂ f
∂ qi
= ∂ f
∂ ũi

dũi
dqi

apply for the corresponding components
as seen for the first-order sensitivities.

Furthermore, assuming given first-order sensitivities dx
ds̃ , the second-order sensitivities de-

couple with respect to the state components and we can reformulate Equation (2.14) ∀i ∈
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0, . . . , nx − 1 as follows

d
dt

d2 x i

ds̃2
=
�

∂ f
∂ x
⊗ Ins̃

�

d2 x i

ds̃2
+

�

�dx
ds̃

�T Ins̃×ns̃

0nx×ns̃

�







∂ 2 fi
∂ x2

∂ 2 fi
∂ x∂ s̃

∂ 2 fi
∂ x∂ s̃

∂ 2 fi
∂ s̃2







 

dx
ds̃

0ns̃×nx Ins̃×ns̃

!

. (2.15)

This formulation gives a bit more insight into the convex relaxations of the ODE in the next
chapters.
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Chapter 3

Global Optimization

The field of global optimization aims at identifying the global optimum of a nonconvex prob-
lem. In [Neu04] Neumaier classifies global optimization into four categories, ranging from
incomplete and only asymptotically complete methods that have no means to quantify the
quality of the currently best solution, to complete and rigorous methods that lead to bounds
on the global optimum, in the last category even accounting for any rounding errors.

The wide range of different stochastic global optimization methods such as simulated anneal-
ing (SA) [KGV83] and genetic algorithms (GA) [Hol73] are often easy to implement, but fall
into the first two categories. Therefore, those approaches do not yield lower bounds on the
optimal solution. In contrast, in this thesis, we focus on the latter two categories, because for
many applications, such as [SBD+11], it is crucial to have a real measure for the quality of the
solution in the form of an interval, in which the global optimal function value is guaranteed
to be.

The survey [FG09] gives a broad overview over the literature in global optimization in gen-
eral. The basis for those methods and for most deterministic global optimization algorithms
in general are interval arithmetics [Moo66] and a spatial branch-and-bound technique [LD60,
LMSK63]. Both fundamentals are briefly introduced in this chapter.

More complex algorithms for deterministic global optimization rely on convex relaxations of
the original problem. In this chapter, we focus on the α-branch-and-bound (αBB) method that
is described for example in [AMF95, AF96, AAF98]. Apart from this particular convexification
method, there are other convexification techniques applied successfully in global optimization
and global optimal control in particular, such as McCormick relaxations [MCB09, SSB11] and
polyhedral outer approximations [TS05].
The convex relaxations used in the αBB algorithm are based on the eigenvalues of interval Hes-
sians that are the bounds on the second derivatives. The authors in [SW14] give an overview
and comparison of different methods to determine bounds on those eigenvalues. We focus on a
method based on Gershgorin’s circle theorem suggested in [AAF98] and present this approach
briefly in the last section of this chapter.

Finally, any deterministic global optimization approach for optimal control problems (OCPs)
as introduced in Equation (2.1) relies on bounds on the states of the ordinary differential
equations (ODEs). We obtain those bounds through so-called validated integration that aims
at enclosing all possible solution trajectories based on an interval of feasible initial values,
controls or control parameters. An early overview of different methods is given in [Rih94],
whereas [Ned06] focuses on the different software implementations available. Section 3.6 is
dedicated to obtaining bounds of the states of an OCP using those methods. These bounds in
combination with a spatial branch-and-bound are sufficient for a simple single-shooting-based
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deterministic global optimization algorithm that is described in this section. Furthermore,
using validated integrators allows us to obtain state bounds on the second-order variational
differential equalities (2.14), resulting in bounds on the sensitivities that allow the application
of the αBB algorithm to OCPs. We close the chapter by describing the single-shooting-based
αBB algorithm for OCPs.

3.1 Constrained Nonlinear Optimization

In this first section, we restrict ourselves to the global optimization of nonlinear programs
(NLPs), because as we have seen in the last chapter, our discretized optimal control problem
(OCP) in Equation (2.8) is such an NLP. Only the last section on validated integrators is tailored
to the special case of global optimal control. Furthermore, one general assumption is that all
optimization variables have at least box constraints. Such constraints are usually given in
most applications where, e.g., a controlled temperature is within specified limits, a motor has
certain constraints on its torque and so on.
A standard constrained nonlinear program (NLP) has the following form

min
v

φ(v)

s.t. g(v) = 0

h(v)≥ 0

v ∈ V ⊂ Rnv , V compact

(3.1)

with objective function φ : Rnv → R, equality constraints g : Rnv → Rneq and inequality con-
straints h : Rnv → Rnieq that are all assumed to be sufficiently smooth. We directly recognize
the discretized multiple shooting problem from Equation (2.8) as an NLP with a special struc-
ture. It is important to exploit this structure as we will see in Chapter 4. For now, we focus
on such general NLPs to introduce the concepts used for global optimization. Finally, we note
that an NLP is convex if and only if the objective function and the feasible set are convex.
The theory and algorithms to obtain local solutions of such NLPs can be found amongst others
in [NW06].

3.2 Interval Arithmetic

Interval arithmetic or analysis is described in detail in the textbook [MKC09]. We summarize
the mathematical notation that is used in the following sections and chapters.
We denote the closed interval Z indicated by an uppercase character as

Z := [z, z] = {z ∈ R : z ≤ z ≤ z} (3.2)

with lower bound z ∈ R and upper bound z ∈ R, indicated by underlined and overlined
variables. We denote the set of closed intervals with [R] := {[z, z] : z ≤ z, z ∈ R, z ∈ R}.
For basic operations � on such intervals Z1 and Z2, we expect the resulting interval to contain
all possibilities as follows

Z1 � Z2 = {z1 � z2 : z1 ∈ Z1, z2 ∈ X2} . (3.3)
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Using the so-called endpoint notation from Equation (3.2), set operations for addition, sub-
traction, multiplication and division that satisfy the requirement above are

Z1 + Z2 =
�

z1 + z2, z1 + z2

�

(3.4a)

Z1 − Z2 =
�

z1 − z2, z1 − z2

�

(3.4b)

Z1Z2 =
�

min{z1z2, z1z2, z1z2, z1z2},max{z1z2, z1z2, z1z2, z1z2}
�

(3.4c)

Z1

Z2
= Z1

1
Z2

with
1
Z2
= {z2 :

1
z2
∈ Z1}=

�

1
z2

,
1
z2

�

. (3.4d)

Furthermore, we denote the width of an interval Z by w(Z) := z−z, the midpoint by m(Z) :=
1
2(z + z) and finally the absolute value by |Z | :=max(|z|, |z|).
In this thesis, we usually deal with interval vectors, such as the box constrained domain of an
NLP, or even interval matrices, such as the bounds on the Hessian of a function. In this case, all
interval operations are meant to be componentwise. Let v ∈ Rnv and v ∈ Rnv , then we define

V :=







[v0, v0]
...

[vnv−1, vnv−1]






(3.5)

with the corresponding set of all interval vectors [Rnv ] of dimension nv .

The width, midpoint and absolute value of an interval vector are then denoted by

w(V ) :=







w([v0, v0])
...

w([vnv−1, vnv−1])






, (3.6)

m(V ) :=







m([v0, v0])
...

m([vnv−1, vnv−1])






and (3.7)

|V | :=







|[v0, v0]|
...

|[vnv−1, vnv−1]|






. (3.8)

and accordingly for interval matrices.

3.3 Branch-and-Bound

Branch-and-bound (BB) methods are extensively described in [Sch11]. For an early application
in global optimization, we refer to [FS69], whereas our notation is based on the version found
in [HT96, TH88]. In [SKS13] the authors deal with the problems that stem from nonconvex
constraints.

The general idea is that any feasible solution of an NLP denotes an upper bound f for the
global solution f (x∗glo) and the local optimum of a convex relaxation NLPcv, which is equal to
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the global optimum in this case, is a corresponding lower bound f of f (x∗glo). To refine those
bounds, we branch on the optimization variables x . This means, we split their domain into
two or more disjoint sets and treat the resulting subproblems that have a smaller feasible set
separately. Figure 3.1 illustrates the idea for a one dimensional unconstrained problem.

Objective
Convex
relxation 

Lower bound 
for global optimum

Obtain Lower Bound
Objective
Convex
relxation 

Lower bound 
for global optimum

Obtain Upper Bound

Upper bound 
for global optimum

Objective
Convex
relxations

New lower bound 
for global optimum

Branch

New upper bound 
for global optimum

Corresponding Search Tree

Fathom

Branch

Figure 3.1: An illustration of the general branch-and-bound idea.

The resulting set of problems can be viewed as a tree structure, where we divide the domain
further and further till we have achieved a desired interval width of f (x∗glo) ∈ [ f , f ] with

w([ f , f ])≤ ε. In Algorithm 1, we formalize the spatial branch-and-bound approach.

To solve the resulting nonconvex and convex subproblems, different methods and solvers
where mentioned in Section 3.1. Depending on the size of the problem and the memory nec-
essary for warmstart information, a major speed up can usually be gained by saving additional
data along with the nodes to improve the initial guess for the child nodes.

Two important customization decisions in the branch-and-bound algorithm are the problem
and branching index selection. As all lower bounds must either be improved to convergence
or till the corresponding node can be pruned, the former is usually done by selecting the node
with the global bounds. The latter question is more complex and it is important to highlight
that the selection of the next branching interval is not arbitrary, but has to follow certain rules
to proof convergence. Furthermore, the selection method usually has a major influence on
the convergence speed, compare for example [EF00a] or [PA02] for comparisons of αBB with
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Algorithm 1: A basic spatial branch-and-bound algorithm for global optimization.

Let φ and φ denote the lower and upper bound on the global optimum of the
objective function of an NLP (3.1), v ∈ V0 the initial compact domain of v and ε a
desired accuracy for the global optimum.

Solve NLP locally on V0 and obtain solution v∗0 and objective value φ(v∗0).
Relax NLP on V0 and obtain convex problem NLPcv

0 .
Solve NLPcv

0 locally (=globally) on V0 and obtain solution vcv,∗
0 and objective value

φcv
0 (v

cv,∗
0 ).

Initialize a set of pairs of domains with corresponding local lower bounds
V := {(V0,φcv

0 (v
cv,∗
0 ))}.

Initialize bounds φ := φ0
cv(vcv,∗

0 ), φ := φ(v∗), currently best solution v∗ := v∗0 and an

iteration counter i := 0 that serves as an index only.
while V 6= ; do

if φ −φ ≤ ε then
Stop algorithm, global solution obtained.

end
Increment iteration counter i := i + 1.
Select pair (Vi ,φ

cv(vcv,∗
i )) ∈ V.

Branch domain Vi into N disjoint nonempty subdomains Wi,1, . . . Wi,N such that
V =

⋃

k∈{1,...,N}
Wi,k.

for k = 1 to N do
Solve NLP locally on Wi,k and obtain solution w∗i,k and objective value φ(w∗i,k).

if φ(w∗i,k)< φ then

Update upper bound φ := φ(w∗i,k).
Update best known solution v∗ := w∗i,k.

end
Relax NLP on Wi,k and obtain convex problems NLPcv

i,k.
Solve NLPcv

i,k locally (=globally) on Wi,k and obtain solution wcv,∗
i,k and objective

value φcv
k (w

cv,∗
i,k ).

end

Set V :=
�

V \
�

Vi ,φ
cv(vcv,∗

i )
��

⋃

k∈{1,...,N}
{(Wi,k,φcv

i,k(w
cv,∗
i,k ))}.

Set new global lower bound φ :=min{φcv(vcv,∗) : (V,φcv(vcv,∗)) ∈ V} .
Fathom: remove all pairs with worse local lower bound than the global upper
bound, i.e. V := V \ {φcv(vcv,∗) : (V,φcv(vcv,∗)) ∈ V,φ ≤ φcv(v∗)} .

end

The true global optimum is now bounded: φ(v∗glo) ∈ [φ,φ] with w([φ,φ])≤ ε .
Furthermore, the best solution found v∗ is either the global optimum or has an
objective function value within the desired accuracy.

33



Chapter 3 Global Optimization

different branching strategies on OCPs. A simple choice is to use the component with the
largest interval width such that

∀i, j ∈ {1, . . . , nx} : w([x i , x i])≥ w([x j , x j]) . (3.9)

Scaling this, leads to the so called “least reduced axis method”, that is

min
i

x i − x i

x i,0 − x i,0
. (3.10)

Convex-relaxation-specific versions exist and we present one tailored version for αBB in Sec-
tion 3.4.

After choosing the index i, we have to branch into disjoint sets. For the implementation in
Chapter 5, we choose the a bisection defined as follows

X0 =

















[x1, x1]

. . .

[x i , m(X I)]

. . .

[xnx
, xnx

]

















, X1 =

















[x1, x1]

. . .

[m([X I]), x i]

. . .

[xnx
, xnx

]

















. (3.11)

Another crucial element in the BB algorithm is the convex relaxation of the NLPs on the cur-
rent domain. In Section 2, we present methods to generate the necessary convex relaxations,
focusing on the so-called αBB method for general nonconvex twice differentiable functions.

3.4 Convex Relaxations

Obtaining convex relaxations of a nonconvex problem can be achieved in many different ways.
The global solvers BARON [TS05, Sah13] and Couenne [Bel09] decompose a nonconvex func-
tion into elementary functions and replace those with known convex underestimations. An-
other popular approach is to use McCormick relaxations [McC76] that were generalized later
to not only create convex under- and overestimators of factorable functions, but even of whole
algorithms [MCB09]. McCormick relaxations generate nonsmooth relaxations that in turn
restrict the choice of an optimization algorithm especially in the presence of nonlinear con-
straints.

The basis for our results in the next chapters is the αBB relaxation that generates differentiable
convex underestimations. The αBB algorithm uses second-order derivatives of a function to
generate a convex underestimation and with an opposite sign in the following equations, a
concave overestimation.

Whereas it is suggested in [AAF98] to use exact convex underestimations where possible, in
general, any twice differentiable nonconvex function f : Rnx → R may be convexified using a
sufficiently large quadratic term [MF94]:

f cv(x) = f (x) +
nx
∑

i=1

αi(x i − x i)(x i − x i) ,
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with x and x being the bounds of the domain of x and the componentsαi ofα ∈ Rnx sufficiently
large. This is the so called nonuniform diagonal shift, as we use a specific αi for each variables
component. On the one hand, a simpler version is obtained using only a single α0, the so-
called uniform shift, whereas on the other hand, generalized versions [SWMF12] based on
nondiagonal shifts exists.

To choose α sufficiently large, we check the convexity of a function f with the positive defi-
niteness of the corresponding Hessian ∇2 f , see [BV04] amongst others:

Theorem 1 (Convexity of twice differentiable functions). Let f : X ⊆ Rnx → R be twice dif-
ferentiable. Then f is convex on X if and only if the domain X of f is convex and the Hessian is
positive semidefinite, i.e. ∀x ∈ X :∇2 f (x)� 0 .

Applied to our convex relaxation f cv, we obtain the following condition for positive definite-
ness:

∀x ∈ X :∇2 f cv(x) + 2diag(α)� 0 . (3.12)

Therefore, using the smallest eigenvalue λmin(∇2 f cv(x),∀x ∈ X ) over the whole domain of
x , we derive that a sufficiently large choice of α is

αi ≥max(0,−
1
2
λmin(∇2 f cv(x),∀x ∈ X )) . (3.13)

The Hessian over the whole domain is an interval matrix. Therefore, we do not calculate this
eigenvalue exactly, but under- and overestimate the eigenvalues using the methods described
in the next section.

Furthermore, we are able to deduce an analogous concave overestimation estimation rule,
demanding that the concave overstimation

f cc(x) = f (x) +
nx
∑

i=1

αcc
i (x i − x i)(x i − x i) (3.14)

of f is negative semidefinite:

∀x ∈ X :∇2 f cc(x) + 2diag(αcc)� 0 . (3.15)

Once more, we deduce an αcc that is sufficiently large if

αi ≥min(0,−
1
2
λmax(∇2 f cc(x),∀x ∈ X )) . (3.16)

To get a better impression of this relaxation technique, Figure 3.2 shows a comparison of a
manual, exact convex relaxation of the bilinear function f (x) = x1 x2 relaxed on the domain
X = ([−5, 5], [−5, 5])T . For bilinear terms the exact convex relaxation coincides with the
following McCormick relaxation

f (x)≥ x2 x1 + x1 x2 − x2 x1 f (x)≤ x2 x1 + x1 x2 − x2 x1

f (x)≥ x2 x1 + x1 x2 − x2 x1 f (x)≤ x2 x1 + x1 x2 − x2 x1 .
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The αBB relaxation is based on the corresponding Hessian

∇2 f (x) =

�

0 1

1 0

�

(3.18)

with eigenvalues λ1 = −1 and λ2 = 1. Therefore, according to Equation (3.13), choosing
α= 1

2 is sufficiently large to guarantee convexity and we obtain

f cv(x) = x1 x2 +
1
2
((5− x0)(−5− x0) + (5− x1)(−5− x1)) . (3.19)

We note that McCormick is a piecewise linear approximation, whereas the αBB uses a suf-
ficiently large quadratic term to overpower any nonconvexities in the function. Please note
that this single example gives by no means an insight into the approximation and convergence
quality for more complex functions. We refer to [BM12] for a comparison of the convergence
rates of these methods showing that despite αBB relaxations often being quite weak for large
domains, the convergence when reducing the domain size is of quadratic order.
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Figure 3.2: Comparison of an exact convex relaxation (left) of the bilinear function f (x) =
x1 x2 with the corresponding αBB relaxation (right).

Specializing the general spatial branch-and-bound in Algorithm 1 with the αBB relaxation
above leads to the αBB algorithm stated in Algorithm 2.

To give an illustration of this method to obtain globally optimal solutions, Figure 3.3 shows
the αBB algorithm applied to the nonconvex function f (x) = x4 − x2 − 0.05x using already
the plot capabilities of our software package presented in Chapter 5, while setting the number
of state variables and constraints to zero.

3.5 Eigenvalues of an Interval Matrix

As seen in the last section, a crucial element when using αBB is to obtain bounds on the
eigenvalues of the interval Hessian. [SW14] compares methods to obtain such bounds and
concludes that the estimators based on Gershgorin’s circle theorem still yield excellent results
in comparison to other proposed methods. The theorem in [Ger31] states the following:
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3.5 Eigenvalues of an Interval Matrix

Algorithm 2: An αBB algorithm for global optimization, based on the basic branch-and-
bound Algorithm 1 and specialized by the αBB relaxation.

Let φ and φ denote the lower and upper bound on the global optimum of the
objective function of an NLP (3.1), v ∈ V0 the initial compact domain of v and ε a
desired accuracy for the global optimum.

Solve NLP locally on V0 and obtain solution v∗0 and objective value φ(v∗0).
Obtain α0 on X0.
Relax NLP on X0 using α0 and obtain convex problem NLPcv

0 .
Solve NLPcv

0 locally (=globally) on V0 and obtain solution vcv,∗
0 and objective value

φcv
0 (v

cv,∗
0 ).

Initialize a set of pairs of domains with corresponding local lower bounds
V := {(V0,φcv

0 (v
cv,∗
0 ))}.

Initialize bounds φ := φ0
cv(vcv,∗

0 ), φ := φ(v∗), currently best solution v∗ := v∗0 and an

iteration counter i := 0 that serves as an index only.
while V 6= ; do

if φ −φ ≤ ε then
Stop algorithm, global solution obtained.

end
Increment iteration counter i := i + 1.
Select pair (Vi ,φ

cv(vcv,∗
i )) ∈ V.

Branch domain Vi into N disjoint nonempty subdomains Wi,1, . . . Wi,N such that
V =

⋃

k∈{1,...,N}
Wi,k.

for k = 1 to N do
Solve NLP locally on Wi,k and obtain solution w∗i,k and objective value φ(w∗i,k).

if φ(w∗i,k)< φ then

Update upper bound φ := φ(w∗i,k).
Update best known solution v∗ := w∗i,k.

end
Obtain αi,k on Wi,k.
Relax NLP on Wi,k using αi,k and obtain convex problems NLPcv

i,k.
Solve NLPcv

i,k locally (=globally) on Wi,k and obtain solution wcv,∗
i,k and objective

value φcv
k (w

cv,∗
i,k ).

end

Set V :=
�

V \
�

Vi ,φ
cv(vcv,∗

i )
��

⋃

k∈{1,...,N}
{(Wi,k,φcv

i,k(w
cv,∗
i,k ))}.

Set new global lower bound φ :=min{φcv(vcv,∗) : (V,φcv(vcv,∗)) ∈ V} .
Fathom: remove all pairs with worse local lower bound than the global upper
bound, i.e. V := V \ {φcv(vcv,∗) : (V,φcv(vcv,∗)) ∈ V,φ ≤ φcv(v∗)} .

end

The true global optimum is now bounded: φ(v∗glo) ∈ [φ,φ] with w([φ,φ])≤ ε .
Furthermore, the best solution found v∗ is either the global optimum or has an
objective function value within the desired accuracy.
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1
branching on 0

-1 : 0 : 1
-3.72438 < -0.285663

2
branching on 0

-1 : -0.5 : 0
-0.441121 < -0.214963

3
branching on 0

0 : 0.5 : 1
-0.504197 < -0.285663

4
fathomed

-0.214963, -0.214963

5
fathomed

-0.1625, -0.1625

6
fathomed

-0.2125, -0.2125

7
converged

-0.285663, -0.285663

Figure 3.3: Above is an example application of the αBB on a one dimensional non convex func-
tion. The four plots illustrate how the branching tightens the convex relaxations
till a convergence is achieved. Below is a visualization of the resulting branch-and-
bound tree with the topmost number indicating the node index. The second line
in each node describes the chosen branching index, which is always 0 in this one
dimensional example. The third line gives the local lower and upper bounds of the
domain of x and the last line states the global lower and upper bound available
while processing the node.

Theorem 2 (Gershgorin’s circle theorem). Let A ∈ Cn×n with entries ai j . Let Ri =
∑

j 6=i

|ai j| be

the sum of absolute values of the non-diagonal entries in the i-th row. Every eigenvalue of A lies
within at least one of the Gershgorin discs D(aii , Ri) := {z : ‖z − aii‖2 ⊆ Ri centered at aii with
radius Ri .

By assuming the worst case, it is possible to transfer this theorem to the case of real interval
matrices.
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3.5 Eigenvalues of an Interval Matrix

Theorem 3 (Gershgorin’s circle theorem for interval matrices). Let A ∈ RN×N with interval
entries AI J . Let Ri =

∑

j 6=i

|ai j| be the sum of absolute values of the non-diagonal entries in the i-th

row. Then for all eigenvalues λ j(A) ∃i, such that λ j(A) ∈ ∪a∈Aii
D(a, Ri).

In other words, the eigenvalues now lie in the union of infinite many Gershgorin discs with
their center being in the corresponding intervals Aii .
Figures 3.4, 3.5 and 3.6 show an illustration of both theorems and a visualization of the idea
behind αBB as seen in a talk by Westerlund [Wes12].
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Figure 3.4: Illustration of Gershgorin’s circle theorem.
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Figure 3.5: Illustration of Gershgorin’s circle theorem in the interval version.
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Figure 3.6: Illustration of a diagonal shift using Gershgorin’s circle theorem.
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Therefore, doing a diagonal shift ∇2 f + diag(α) of the Hessian using

αi = −
1
2

min

 

0, aii −
∑

j 6=i

|ai j|

!

(3.20)

guarantees that all eigenvalues of f cv are nonnegative and thus f cv is indeed convex.

There are many other approaches including nondiagonal shifts [SWMF12], but according to
[SW14], the scaled diagonal Gerschgorin method works reasonably well in comparison to
other methods on a range of test functions. This scaled version that we use in our multiple-
shooting-based algorithm in Chapter 4 is

αi = −
1
2

min

 

0, aii −
∑

j 6=i

|ai j|
d j

di

!

(3.21)

with a scaling vector d := x − x .

Concave overestimations are important for the relaxation for equality constraints such as the
direct multiple shooting matching conditions shown in Equation (2.6). We can overestimate
the largest eigenvalue accordingly with

αi =
1
2

max

 

0, aii +
∑

j 6=i

|ai j|

!

(3.22)

and

αi =
1
2

max

 

0, aii +
∑

j 6=i

|ai j|
d j

di

!

. (3.23)

3.6 Validated Integration

The discretized OCP from Equation (2.8) contains state variables. Therefore, one integral part
in determining the global optimum of an OCP is to determine bounds of the states. In fact, a
repeated forward propagation of the state bounds and a global optimization of the objective
function using those bounds is already a method to globally optimize OCPs, as shown for
example in [LS07a] and briefly described in Algorithm 3. In contrast, more complex global
optimal control algorithms, such as the one presented in the following chapters, try to tighten
those bounds through additional calculations, often leading to a faster convergence of the BB
method.

In contrast to traditional integrators with a variable step size that usually only approximate
the local [Alb10] or global [Bei12] error to determine a suitable time step [Sha05], validated
integrators enclose the solution trajectories using interval-arithmetic-based Taylor series ex-
pansions and the corresponding remainder term. This is often done in two steps. First, a
cheap a priori enclosure is generated together with a step size such that the solution exists
and is unique. In a second phase, this a priori bound is tightened. According to the survey
[Rih94], the idea goes back to [Moo66]. [Ned06] is a more recent survey focusing on the
differences in the software implementations that were developed. A different approach in
[Sco12] uses McCormick relaxations to improve the bounds of a cheap a priori bound esti-
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3.6 Validated Integration

mation and [HVC13] finally reverses the following two-phase approach by constructing the
predictor first and then determining the step size. The authors in [VHC15] present a unified
framework for such enclosures of the state variables.

Although we do not contribute to this extensive field, we employ the software packages VNODE
[NJP01] and VSPODE [LS07b]. Due to the differences, the first one is a potential method
to calculate the bounds even for larger problems, whereas the latter one usually produces
tighter bounds, but scales worse for an increase in the control discretization and control value
dimension, because the control is represented by a Taylor model as well. See Chapter 6 for a
detailed comparison in some of the numerical examples. Therefore, this section gives a brief
overview over the idea behind the two approaches and highlights the differences.

First, we need the Taylor coefficients of a sufficiently often continuously differentiable function
f . Written in recursive form we obtain

f [0](x) = x (3.24a)

f [i](x) =
1
i

�

∂ f [i−1]

∂ x
f

�

(x) ∀i ≥ 1 . (3.24b)

These coefficients can be determined by means of automatic differentiation (AD) [GW08]
using software implementations such as CppAD [Bel] or FADBAD++ [BS96].
A common method to generate coarse a priori bounds for the next time interval [t j , t j+1] and
obtaining a step size h j = t j+1− t j is to use first (i = 1) or even high-order enclosures [NJP01].
Given a desired maximum on the domain X̃ j of the enclosure, we choose 0 < h j ≤ tN such
that

x j +
k−1
∑

i=1

hi
j f [i](x j) + hk

j f [k](X̃ j) ⊆ X̃ j , ∀t ∈ [t j , t j+1] (3.25)

with k ≥ 1 and ∀x j ∈ X̃ j , then there exists a unique solution on [t j , t j+1] and

x(t) ∈ x j +
k−1
∑

i=1

hi
j f [i](x j) + hk

j f [k](X̃ j) . (3.26)

In a second phase, these state bounds are tightened using either an interval approximation of
the remainder using the mean-value evaluation as implemented in VNODE

x j +
k−1
∑

i=1

(t − t j)
i f [i](x j) + hk

j f [k](X j) (3.27a)

⊆ x j +
k−1
∑

i=1

(t − t j)
i f [i](x j) + hk

j f [k](X j)

+

�

I +
k−1
∑

i=1

hi
j
∂ f [i]

∂ x
(X j)

�

(X j − x j) ∀t ∈ [t j , t j+1], ∀x j , x̃ j ∈ X j (3.27b)

or a Taylor model as in VSPODE, where a full interval polynomial approximation representing
the enclosure overestimation is propagated using operator overloading and evaluated at the
desired time steps.

Both variants allow even for contracting enclosures which means that the width of the state
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bounds is not increasing and may even shrink over time. Nevertheless, special care has to be
taken about the so-called wrapping effect that occurs because the remainder term may not be
accurately represented by box intervals aligned to the coordinate axes. This effect is one of
the sources for exponentially increasing interval widths that may be observed. One of the first
and often applied remedies is Lohner’s QR factorization [Loh92] that transforms coordinate-
axis-aligned boxes into a better fitting parallelepiped, effectively reducing the overestimation
in each step.
Using validated integration to generate bounds on the states, we can derive a first single shoot-
ing algorithm to solve OCPs as seen in (2.1) with an underlying IVP problem. We alternate
between propagating the states with respect to bounds on the control parametrization qi and
the control values p using the resulting interval at the final time tN , we can evaluate the ob-
jective function and use this as a lower bound on the global optimum. Algorithm 3 formalizes
this method.
Finally, we can now use the validated integration to derive bounds on the second-order sen-
sitivities and thus relax the solution of an ODE using αBB. Combining Algorithms 2 with an
validated integrator, we can derive the single-shooting-based αBB algorithm for OCPs shown
in Algorithm 4.
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3.6 Validated Integration

Algorithm 3: A branch-and-bound-based algorithm for IVP-based OCPs using only a
validated integrator.

Let Φ and Φ denote the lower and upper bound on the global optimum of the objective
function of an IVP-based discretized OCP (2.4), (q, p) ∈ P0 the initial domain of the
control discretization q and control values p, and ε a desired accuracy for the global
optimum.

Simulate OCP on P0 using a validated integrator and obtain bounds X0 on the final
state, such that x(tN ; (q0, p0)) ∈ X0 ∀(p0, q0) ∈ X0.
Evaluate the objective function on P0 using natural interval extension and obtain
bounds Φ0 := ΦM(X0, P0).
Initialize a set of pairs of domains with corresponding local lower bounds on the
objective function P := {(P0,Φ0}.
Initialize bounds Φ := Φ0, Φ := Φ0 and an iteration counter i := 0 that serves as an

index only.
while P 6= ; do

if Φ−Φ≤ ε then
Stop algorithm, global solution obtained.

end
Increment iteration counter i := i + 1.
Select pair (P,Φ) ∈ P.
Branch domain P into N disjoint nonempty subdomains Q i,1, . . .Q i,N such that
P =

⋃

k∈{1,...,N}
Q i,k.

for k = 1 to N do
Simulate OCP on Q i,k using a validated integrator and obtain bounds X i,k,
such that x(tN ; (qi,k, pi,k)) ∈ X i,k ∀(qi,k, pi,k) ∈Q i,k.
Evaluate the objective function on Q i,k using natural interval extension,
obtaining bounds Φi,k := ΦM(X i,k, Pi,k).
if Φi,k < f then

Update upper bound f := Φi,k.
end

end

Set P :=
�

P \
�

P,Φ
��

⋃

k∈{1,...,N}
{(Q i,k,Φi,k)}.

Set new global lower bound Φ :=min{Φ : (P,Φ) ∈ P} .
Fathom: remove all pairs with worse local lower bound than the global upper
bound, i.e. P := P \ {φ : (P,φ) ∈ P,Φ≤ φ} .

end
The true global optimum is now bounded: Φ∗glo ∈ [Φ,Φ] with w([Φ,Φ])≤ ε .
Furthermore, any solution remaining in P has an objective function value within the
desired accuracy.
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Algorithm 4: A single-shooting-based αBB algorithm for global optimal control that
builds upon on the basic branch-and-bound Algorithm 1 and is specialized by the αBB
relaxation using an validated integrator to obtain bounds on the second-order sensitiv-
ities.

Let Φ and Φ denote the bounds on the globally optimal objective value of an
discretized OCP (2.4), (q, p) ∈ P0 the initial domain of the control discretization q and
control values p, and ε a desired accuracy for the global optimum.

Solve OCP locally on P0 and obtain solution (q∗0, p∗0) and ΦM(x(tN ), p0).
Simulate OCP on P0 using a validated integrator along with the first (Equation (2.9))
and second (Equation (2.14)) order variational differential equations to obtain bounds
X0 on the final state and H0 on the second-order sensitivities.
Relax OCP on P0 using an H0 based α0 and obtain convex problem OCPcv

0 .
Solve OCPcv

0 locally (=globally) on P0 and obtain solution (qcv,∗
0 , pcv,∗

0 ) and objective
value ΦM,0(x(tN ), p0).
Initialize a set of pairs of domains with corresponding local lower bounds
P := {(P0,ΦM,0(x(tN ), p0))}.
Initialize bounds Φ := ΦM,0(x(tN ), p0), Φ := ΦM(x(tN ), p0), currently best solution
(q∗, p∗) := (q∗0, p∗0) and an iteration counter i := 0.
while P 6= ; do

if Φ−Φ≤ ε then
Stop algorithm, global solution obtained.

end
Increment iteration counter i := i + 1.
Select pair (P,ΦM(x(tN ), p)) ∈ P.
Branch domain P into N disjoint nonempty subdomains Q1, . . .QN such that
Q =

⋃

k∈{1,...,N}Qk.
for k = 1 to N do

Solve OCP locally on Qk obtaining (qcv,∗
i,k , pcv,∗

i,k ) and ΦM,i,k(x(tN ), pi,k).

if ΦM,i,k(x(tN ), pi,k)< Φ then
Update upper bound Φ := ΦM,i,k(x(tN ), pi,k) and best known solution
(q∗, p∗) := (q∗i,k, p∗i,k).

end
Simulate OCP on Q i,k with validated integration to obtain X i,k and Hi,k.
Relax OCP on Q i,k using an Hi,k based αi,k and obtain convex OCPcv

i,k.
Solve OCPcv

i,k locally (=globally) on Q i,k and obtain solution (qcv,∗
i,k , pcv,∗

i,k ) and

objective value ΦM,i,k(x(tN ), pi,k).
end
Set P := (P \ (P,ΦM(x(tN ), p)))

⋃

k∈{1,...,N}(Qk,ΦM,i,k(x(tN ), pi,k)).
Set new global lower bound Φ :=min{ΦM(x(tN ), p) : (P,ΦM(x(tN ), p)) ∈ P} .
Fathom: remove all pairs with worse local lower bound than the global upper
bound, i.e. P := P \ {ΦM(x(tN ), p) : (P,ΦM(x(tN ), p)) ∈ P,Φ≤ ΦM(x(tN ), p)} .

end
The true global optimum is now bounded: ΦM(x(tN ), p∗glo) ∈ [Φ,Φ] with

w([Φ,Φ])≤ ε. Furthermore, the best solution found (q∗, p∗) is either the global
optimum or has an objective function value within the desired accuracy.
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Chapter 4

Global Optimal Control Using Multiple
Shooting

We present a novel and efficient method to obtain deterministic global solutions for optimal
control problems (OCPs) by applying the α-Branch-and-Bound (αBB) method [AMF95, AF96]
in a direct multiple shooting framework [BP84]. On the one hand, we obtain a larger problem
with additional variables and equality constraints, on the other hand, we will prove that the
resulting convex relaxations of the reformulated problem are at least as good as the corre-
sponding relaxations of the original formulation and a true improvement in nontrivial cases.
This property is due to the observation that the variational differential equations have a con-
stant initial value on each multiple shooting node leading to a certain decoupling by this re-
formulation. We prove that using αBB leads to equal or smaller α values for the convex un-
derestimation of the differential equations and hence may improve the lower bounds on each
node.
In extension to previous literature [EF00a, EF00b, PA04, PA05] that describes direct single-
shooting-based approaches and how to treat pointwise equality constraints involving the state
variables during the integration horizon, we propose for the first time to use a multiple shoot-
ing formulation instead to improve the convex relaxations. Numerical results indicate that the
computational improvement obtained due to the tighter convexifications are not only able to
compensate for the additional variables, but to improve the overall computational effort. Fur-
thermore, the direct multiple shooting approach still maintains all other advantages compared
to direct single shooting, such as improved stability and efficient parallelization.
To account for the additional variables, we will introduce a specialized treatment of the ad-
ditional variables in the multiple shooting case and give a proof that these variables do not
increase the size of the branch-and-bound tree using this strategy and thus the computational
overhead reduces to a slightly larger, but highly structured NLP on each tree node.
In the last part of this chapter, we combine our theoretical results to formulate the full multiple-
shooting-based αBB algorithm that is implemented in our software package that will be intro-
duced in Chapter 5 and is used to obtain the numerical results in Chapter 6 that will indicate
that this novel lifting is indeed a viable strategy that leads to a better performance in compar-
ison with the usually applied direct single shooting method.

4.1 Treatment of Matching Conditions

Recalling the discretized forms of an OCP from Chapter 3 in Equation (2.4) for direct single
shooting and Equation (2.8) for direct multiple shooting, the major difference lies in the addi-
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tional auxiliary variables si and the corresponding matching conditions as shown in Equation
(2.6).

Equality constraints are convex in the linear case only, therefore we need to split up the match-
ing conditions into two inequality constraints with opposite signs:

x(t i+1; si)− si+1 = 0⇔

¨

x(t i+1; t i , si , qi , p)− si+1 ≤ 0

−x(t i+1; t i , si , qi , p) + si+1 ≤ 0

«

. (4.1)

Adding or subtracting si+1 preserves convexity. Therefore, we just need to convexify

x(t i+1; t i , si , qi , p) and − x(t i+1; t i , si , qi , p) , (4.2)

the latter being the concave relaxation of x(t i+1; t i , si , qi , p) which can be obtained through
the same methods introduced in Chapter 4 by overestimating the eigenvalues of the inter-
val Hessian and applying a corresponding shift by means of αBB such that all eigenvalues
become negative instead of positive for the convexification. To distinguish between the α
values, we use the notation ᾰ for the values necessary to convexify x(t i+1; t i , si , qi , p) and α̂
for the concave relaxation of x(t i+1; t i , si , qi , p) that is equivalent to the convex relaxation of
−x(t i+1; t i , si , qi , p). Please note that the additional computational overhead in this case is
rather low, because using Gershgorins circle theorem, the computationally expensive part is
to determine the interval Hessian in the first place and not the over- and underestimation of
the eigenvalues.

Applying the αBB relaxation as described in Chapter 3 leads to the relaxed matching conditions

x j(t i+1; t i , si , qi , p)− si+1, j +
nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk)≤ 0 (4.3)

−x j(t i+1; t i , si , qi , p) + si+1, j +
nx
∑

k=1

α̂s
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

α̂
q
i jk(qi,k − qk)(qi,k

− qi,k) +
np
∑

k=1

α̂
p
i jk(pk − pk)(pk

− pk)≤ 0 (4.4)

for all multiple shooting nodes indexed by i = 0, . . . , N − 1 and all components of x and s
indexed by j = 0, . . . , nx and with [s, s], [q, q], [p, p] being the bounds on s, q, p.
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Based on Equation (2.8), we obtain the full discretized OCP:

min
s,q,p

ΦM(sN , p) +
N−1
∑

i=0

∫ t i+1

t i

ΦL(t, x(t; t i , si , qi , p), ũi(t, qi), p) dt (4.5a)

s.t. 0≥ x j(t i+1; t i , si , qi , p)− si+1, j +
nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k) (4.5b)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk) (4.5c)

0≥ −x j(t i+1; t i , si , qi , p) + si+1, j +
nx
∑

k=1

α̂s
i jk(si,k − si,k)(si,k − si,k) (4.5d)

+
nq
∑

k=1

α̂
q
i jk(qi,k − qk)(qi,k

− qi,k) +
np
∑

k=1

α̂
p
i jk(pk − pk)(pk

− pk) (4.5e)

0≤ ccc(t i , si , ũi(t i , qi), p) (4.5f)

0≤ req,cc(s0, . . . , sN , p) (4.5g)

0≤ −req,cv(s0, . . . , sN , p) (4.5h)

0≤ r ieq,cc(s0, . . . , sN , p) (4.5i)

∀i ∈ {0, . . . , N − 1}, j ∈ {1, . . . , nx} (4.5j)

with ccc(t i , si , ũi(t i , qi), p) being a concave relaxation of c, req,cv and req,cc being convex re-
spective concave relaxations of req and r ieq,cc being a concave relaxation of r ieq. These may
be generated using αBB as well if necessary.

Since we do not always have to distinguish between αs, αq and αp, we define

ᾰ=







ᾰs

ᾰq

ᾰp






, α̂=







α̂s

α̂q

α̂p






and α=

�

ᾰ

α̂

�

(4.6)

to ease the notation.

4.2 Theoretical Comparison

In this section, we begin with a theoretical comparison of the quality of the αBB convexifica-
tions between direct single and multiple shooting. We have to take care of potentially different
integration steps and therefore, most results in the first part have one exact version, assuming
exact integration and a numerical version taking into account the numerical integration with
an additional assumption concerning the integration steps. In the second part, we focus on
the treatment of the additional variables introduced by our method and the potential impact
on the computational time, introducing a specialized branching scheme that eliminates the
necessity to branch on those extra variables.
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4.2.1 Comparison with Direct Single Shooting

To compare the convexifications of direct single and direct multiple shooting and to ease the
formulation of the following lemmata, theorems and corollaries, we introduce the assump-
tion that, apart from this fundamental difference, all other means of the αBB relaxation, in
particular the method to overestimate α is identical in both cases.

Assumption 4. We assume that we have an OCP as seen in Equation (2.1) with an at least twice
continuously differentiable right-hand side (RHS) function f (t, x(t), u(t), p) together with a con-
trol discretization ũi(t, qi) and αBB-based relaxations of all nonconvex functions. Furthermore,
we overestimate α based on Gershgorin’s circle theorem as shown in Equation (3.20).

We begin this comparison for linear objective functions of Mayer-type. Many test problems and
applications in the global optimal control literature are formulated in this way, for example
compare Problems (6.3) and (6.7) in Chapter 6. Furthermore, we can always obtain such
a type by combining any nonlinear Mayer type and Lagrange type objective function into a
new Lagrange objective ΦL′ = ΦL +∇ΦM as shown in [Ces83] among others. Then we can
transform this combined Lagrange type into Mayer type introducing a new state xnx+1 = ΦL′ .
The resulting Mayer type objective function is now ΦM ′ = xnx+1(tN ) and thus linear in the
new state, effectively hiding any nonlinearities of the objective function in the additional state
variable. Please note that this reformulation and relaxing the problem do not commute due
to our relaxations being based on interval arithmetic. Therefore, this reformulation may not
lead to an equivalent convex relaxation.
Without loss of generality, let us assume that the initial value is fixed. In the single shooting
case, such free initial values would be included in an augmented parameter vector p′ and we
are able to identify any free initial value in s0 with these additional components.
We abbreviate the following Lemma, we combine both assumptions formally into

Assumption 5. We assume that the given OCP has a linear objective function of Mayer-type and
fixed initial values x(t0).

To compare the quality of the αBB-based convex relaxations of the direct single and the mul-
tiple shooting discretization with each other, we first compare the single shooting relaxation
with the two point multiple shooting case, where only one node at the final time t1 is intro-
duced.
We formalize this result that was observed numerically in [PA02] and proof that under As-
sumptions 4 and 5, introducing a multiple shooting node at the final time t1 leads to convex
relaxation that is at least as good as the one obtained using Algorithm 4.

Lemma 6 (Comparison of DSS with Two Point DMS with a Linear Objective Function). Under
Assumptions 4 and 5, using direct single shooting and using direct multiple shooting with only
two multiple shooting nodes and corresponding relaxed objective function values Φdss

M and Φdms
M ,

it holds true that Φdms
M (s∗1, p∗) ≥ Φdss

M (x(tN ), p?) for the optimal solution (s∗1, q∗, p∗), respectively
(q?, p?).

Proof. To ease the notation, we define p̃ := (qT , pT )T and obtain for the second derivative
of the single shooting objective function with respect to the discretized controls and control
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values:

d2

dp̃2
Φdss

M (x(tN ), p) =
d

dp̃

�

∂Φdss
M (x(tN ), p)

∂ x
dx(tN )

dp̃
+
∂Φdss

M (x(tN ), p)

∂ p̃

�

(4.7a)

=

�

�

dx(tN )
dp̃

�T ∂ 2Φdss
M (x(tN ), p)

∂ x2
+ 2
∂ 2Φdss

M (x(tN ), p)

∂ x∂ p̃

�

dx(tN )
dp̃

+

�

∂Φdss
M (x(tN ), p)

∂ x
⊗ Inp̃

�

d2 x(tN )
dp̃2

+
∂ 2Φdss

M (x(tN ), p)

∂ p̃2
∀p̃ . (4.7b)

Due to the objective function being linear by assumption, the second-order partial deriva-
tives of the objective function vanish. Furthermore, the objective function can be written as
cT x(tN ) + dT p with constant vectors c ∈ Rnx and d ∈ Rnp and we obtain

d2

dp̃2
Φdss

M (x(tN ), p) =

�

∂Φdss
M (x(tN ), p)

∂ x
⊗ Inp̃

�

d2 x(tN )
dp̃2

(4.8a)

=
nx
∑

i=1

(ci I
np̃)

d2 x i(tN )
dp̃2

∀p̃ . (4.8b)

To ease the following notation, we use a tensor index notation for the individual interval valued
elements of the second-order sensitivity bounds and define

Hi jk :=

�

d2 x i(tN )
dp̃2

�

j,k
∀i ∈ {1, . . . , nx} ∀ j, k ∈ {1, . . . np̃} . (4.9)

Using this definition and Gershgorin’s circle theorem to generate lower bounds on the eigen-
values of the second derivative and calculating αdss as seen in (3.20), we obtain

αdss
j =−

1
2

min






0, (

nx
∑

i=1

ciHi j j)−
np̃
∑

k=1
k 6= j

|
nx
∑

i=1

ciHi jk|






(4.10a)

=−
1
2

nx
∑

i=1
ci≥0

ci min






0, H i j j −

np̃
∑

k=1
k 6= j

|Hi jk|







−
1
2

nx
∑

i=1
ci<0

ci max






0, H i j j +

np̃
∑

k=1
k 6= j

|Hi jk|






. (4.10b)

The objective function is linear by assumption and therefore, the optimal solution lies on the
boundary of the feasible set. Using the relaxed matching condition (4.3) with ᾰdms and α̂dms

being the corresponding relaxation parameters, we obtain for the single-shooting-based opti-
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mal solution p̃?:

Φdss
M = cT x(tN ) + dT p̃? +

np̃
∑

j=1

αdss
j (p̃− p̃?)(p̃− p̃?) (using Equation (4.10)) (4.11a)

−
nx
∑

i=1
ci<0

ci







np̃
∑

j=1

1
2

max






0, H i, j, j +

np̃
∑

k=1
k 6= j

|Hi jk|






(p̃ j − p̃?j )(p̃ j

− p̃?j )






(4.11b)

= cT x(tN ) + dT p̃? +
nx
∑

i=1
ci≥0

ci







np̃
∑

j=1

1
2

min






0, H i, j, j −

np̃
∑

k=1
k 6= j

|Hi jk|






(p̃ j − p̃?j )(p̃ j

− p̃?j )







−
nx
∑

i=1
ci<0

ci

 np̃
∑

j=1

α̂dms
j (p̃ j − p̃?j )(p̃ j

− p̃?j )

!

(4.11c)

= cT x(tN ) + dT p̃? +
nx
∑

i=1
ci≥0

ci

 np̃
∑

j=1

ᾰdms
j (p̃ j − p̃?j )(p̃ j

− p̃?j )

!

+
nx
∑

i=1
ci<0

ci(x(tN )−
np̃
∑

j=1

α̂dms
j (p̃ j − p̃?j )(p̃ j

− p̃?j )) + dT p̃? (4.11d)

=
nx
∑

i=1
ci≥0

ci(x i(tN ) +
np̃
∑

j=1

ᾰdms
j (p̃ j − p̃?j )(p̃ j

− p̃?j ))

=
nx
∑

i=1

ci · [x i(tN ) +
np̃
∑

j=1

ᾰdms
j (p̃ j − p̃?j )(p̃ j

− p̃?j ), x(tN )−
np̃
∑

j=1

α̂dms
j (p̃ j − p̃?j )(p̃ j

− p̃?j )] + dT p̃?

(4.11e)

= Φdms
M (s1, p̃?) . (4.11f)

Therefore, p̃? is the optimal solution for Φdms
M if it is feasible. In particular s1 ⊆ X (tN ) with

the state bounds X (tN ) at the final time tN . Therefore, we can use the constant interval
X (tN ) as bounds S1 on s1. Adding these constant bounds on s1 to the resulting NLP can only
further tighten the feasible set in the multiple shooting case and thus improve the relaxation
⇒ Φdms

M (s∗1, p∗)≥ Φdss
M (x(T ), p̃?).

In Lemma 6, we assumed a linear objective function. For the comparison of single-shooting-
based relaxations of general nonlinear twice continuously differentiable objective functions,
the problem becomes the question how the αBB relaxation of a composite function is related to
the separate αBB relaxation of both functions. In general this does not commute. We have to
refer to the numerical experience in the optimal control literature [PA02] and our own obser-
vations in Chapter 6 that the two point multiple shooting approach, including the additional
bound on s1, usually results in a faster overall convergence. Especially at the beginning of the
branch-and-bound tree, the αBB underestimator is often worse than these constant bounds.
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4.2.2 Adding Additional Multiple Shooting Nodes

Based on Lemma 6, we can start to quantify the quality of the convex relaxation of a direct
multiple shooting discretization with more artificial multiple shooting nodes. Therefore, the
next step is to analyze the effect of additional multiple shooting nodes. For this purpose, we
introduce a new multiple shooting node at a time t ′ ∈ (t i , t i+1).
To compare the quality of both convex underestimations, we need a classical result on so-called
quasi-monotone functions.

Definition 7 (Quasi-Monotone Function [Wal71]). The function f (t, x(t)) : D ⊂ [t0, tN ] ×
Rn 7→ Rn is said to be quasi-monotonically increasing in x, if each component fi(t, x) is weakly
increasing in x j for i 6= j; more exactly, if ∀i ∈ {1, . . . nx}

(t, x) ∈ D, (t, y) ∈ D, x ≤ y, x i = yi ⇒ fi(t, x)≤ fi(t, y) . (4.12)

The right-hand side function in our discretized direct optimal control formulation additionally
depends on a control parametrization vector q and control values p and we define:

Definition 8 (Quasi-Monotone Function with Discretized Controls and Control Values). The
function f (t, x(t), ũi(t, qi), p) : D ⊂ [t0, tN ] × Rn 7→ Rn is said to be quasi-monotonically in-
creasing in x, if ∀(q, p) each component fi(t, x , ũi(t, qi), p) is weakly increasing in x j for i 6= j;
more exactly, if ∀i ∈ {1, . . . nx}, ∀(q, p)

(t, x) ∈ D, (t, y) ∈ D, x ≤ y, x i = yi ⇒ fi(t, x , ũi(t, qi), p)≤ fi(t, y, ũi(t, qi), p) . (4.13)

On each multiple shooting interval [t i , t i+1], we define a new differential equation with the
property that evaluated at t i+1 it is equal to the convex underestimator of x(t i+1; si , qi , p). For
this purpose, we use the following ᾰ/α̂-augmented right-hand side functions.

Definition 9 (ᾰ/α̂-Augmented RHS Function). Based on Problem (4.5) with differential equa-
tion right-hand side function f (t, x(t), ũi(t, qi), p), we define on each time interval [t i , t i+1] ⊆
[t0, tN ] the ᾰi-augmented function f ᾰi : R × Rnx × Rnu × Rnp × Rnx 7→ Rn

x component-wise
∀ j ∈ {1, . . . , nx} as

f ᾰi
j (t, x(t), q, p, si) := f j(t, x(t), ũi(t, qi), p) +

1
t i+1 − t i

� nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk)

�

(4.14)

and correspondingly the α̂-Augmented function as

f α̂i
j (t, x(t), q, p, si) := f j(t, x(t), ũi(t, qi), p) +

1
t i+1 − t i

� nx
∑

k=1

α̂s
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

α̂
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

α̂
p
i jk(pk − pk)(pk

− pk)

�

. (4.15)

These augmented functions have the property that they define additional trajectories that,
evaluated at t i+1, coincide with the convex/concave relaxation of x(t i+1; si , qi , p). This closes
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the gap in the state variables of the multiple shooting formulation and allows us to directly
compare trajectories in the upcoming proofs instead of a trajectory and a potential jump in the
state variables afterwards. We formalize and prove this as the following lemma.

Lemma 10 (Evaluating the ᾰ-Augmented Function). Let x(t; si , qi , p) be the unique solution to
ẋ = f (t, x(t), ũi(t, qi), p), x(t i) = si on [t i , t i+1]. Then the ᾰ-augmented differential equation
defined by

x ᾰi (t, x(t), q, p, si) = f ᾰi (t, x(t), ũi(t, qi), p, si) x ᾰi (t0) = x(t0) (4.16)

is unique, exists and is equal to

x ᾰi
j (t, x(t), q, p, si) = x j(t; si , qi , p) +

t − t i

t i+1 − t i

� nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk)

�

. (4.17)

In particular, evaluated at t = t i+1, we obtain

x ᾰi
j (t i+1; si , qi , p) = x j(t i+1; si , qi , p) +

nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk) (4.18)

which is the αBB-based convex underestimator of x(t i+1; si , qi , p).

Proof. Using the integral form of the solution, we can split the integral up into the known
solution and an integration of the time independent augmentation term from t i to t:

x ᾰi (t, x(t), q, p, si) = si +

∫ t

t i

f j(t, x(t), ũi(t, qi), p)dt

+

∫ t

t i

1
t i+1 − t i

� nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk)

�

(4.19)

= x(t; si , qi , p) +
t − t i

t i+1 − t i

� nx
∑

k=1

α̂s
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

α̂
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

α̂
p
i jk(pk − pk)(pk

− pk)

�

. (4.20)

Existence and uniqueness follow directly from the corresponding assumption on x(t; si , qi , p).

Another important aspect for our main results in this section is that quasi-monotonicity of a
RHS function is preserved when applying the augmentation. We formalize this as follows.
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Lemma 11 (Quasi-Monotonicity of the ᾰ-Augmented Function). If f (t, x(t), ũi(t, qi), p) is
quasi-monotonically increasing in x(t), then the corresponding ᾰi-augmented function as defined
in Definition 9 is quasi-monotonically increasing as well.

Proof. We obtain for (t, x), (t, y) ∈ D ⊂ [t i , t i+1]× Rnx , x ≤ y, x j = y j:

f ᾰi
j (t, x(t), ũi(t, qi), p, si) (4.21)

= f j(t, x(t), ũi(t, qi), p) +
1

t i+1 − t i

� nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk)

�

(4.22)

f QM
≤ f j(t, y(t), ũi(t, qi), p) +

1
t i+1 − t i

� nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk)

�

(4.23)

= f ᾰi
j (t, y, q, p, si) (4.24)

∀ j ∈ {1, . . . , nx}, ∀(q, p, si), using the quasi-monotonicity of f and that the augmentation term
is less or equal zero ∀(si , q, p) by definition and therefore does not change the monotonicity
property of f .

The next step is to compare the ᾰ-augmented function on the full interval [t i , t i+1] with the
locally augmented functions obtained when adding an additional multiple shooting node in
between t i and t i+1. To compare both trajectories, we need a theorem that goes back to
[Müller27, Kam32].

Theorem 12 (Quasi-Monotone Function Trajectory Comparison [Wal64]). Let f (t, x(t)) : R×
Rn 7→ Rn be quasi-monotonically increasing in x(t). Let v(t), w(t) : R 7→ Rn be continuous in
[t i , t i+1] and differentiable in (t i , t i+1] and let

v(t i)≤ w(t i) (4.25a)

v̇(t)− f (t, v(t))≤ ẇ(t)− f (t, w(t)) ∀t ∈ (t i , t i+1] , (4.25b)

then
v(t)≤ w(t) ∀t ∈ [t i , t i+1] . (4.26)

With this comparison tool, we can compare the convex under- and overestimations with a
different number of multiple shooting nodes.
We start with introducing a common notation used throughout the rest of this chapter to keep
track of the original problem DMSN with N multiple shooting nodes and the new problem
DMSN+1 with N + 1 multiple shooting nodes that is derived by adding an additional multiple
shooting node at t ′ ∈ [t i , t i+1] to DMSN . We formalize this as follows:

Definition 13 (Notation for Adding Additional Multiple Shooting Nodes). Given a multiple
shooting based OCP relaxation DMSN as described in Equation (4.5) with N multiple shoot-
ing nodes and αBB relaxation parameter vectors ᾰs, ᾰq and ᾰp, we denote the derived multiple
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shooting relaxation that is obtained by adding a multiple shooting node at t ′ ∈ [t i , t i+1], i ∈
{0, . . . , N − 1} by DMSN+1. To distinguish between the different relaxation parameters, ᾰs†

, ᾰq†

and ᾰp†
belong to the relaxation of the additional matching condition of DMSN+1 at t ′ and ᾰs‡

,
ᾰq‡

and ᾰp‡
are the new parameters on the second time interval [t ′, t i+1]. Accordingly, the con-

cave relaxations parameters are α̂s, α̂q and α̂p for DMSN and α̂s†
, α̂q†

, α̂p†
, α̂s‡

, α̂q‡
and α̂p‡

for
DMSN+1.

To simplify the following theorem itself and the corresponding proof, we include rather strong
assumptions on the values of α first and proceed afterwards to analyze how we can fulfill or
even relax them.

Theorem 14 (Adding Multiple Shooting Nodes). Given a problem as defined in Equation (4.5)
with a quasi-monotone right-hand side function f (t, x(t), ũi(t, qi), p) on [t i , t i+1] w.r.t. x(t),
∀(q, p), ∀i = 0, . . . , N adding an additional multiple shooting node at t ′ ∈ (t i , t i+1) leads to a
new convex relaxation with optimum ΦN+1 and it holds true that ΦN+1 ≥ ΦN if

ᾰs†

i jks
≤ ᾰs

i jks
ᾰs‡

i jks
= 0 (4.27a)

ᾰ
q†

i jkq
≤ ᾰq

i jkq
ᾰ

q‡

i jkq
≤ ᾰq

i jkq
(4.27b)

ᾰ
p†

i jkp
≤ ᾰp

i jkp
ᾰ

p‡

i jkp
≤ ᾰp

i jkp
(4.27c)

and

α̂s†

i jks
≤ α̂s

i jks
α̂s‡

i jks
= 0 (4.28a)

α̂
q†

i jkq
≤ α̂q

i jkq
α̂

q‡

i jkq
≤ α̂q

i jkq
(4.28b)

α̂
p†

i jkp
≤ α̂p

i jkp
α̂

p‡

i jkp
≤ α̂p

i jkp
(4.28c)

∀i ∈ {0, . . . , N − 1}, ∀ j ∈ {1, . . . , nx}, ∀ks ∈ {1, . . . , nx}, ∀kq ∈ {1, . . . , nq}, ∀kp ∈ {1, . . . , np} .

In the following proof, we make use of the integral form of different solutions of the underlying
ODE. To keep track of the notation of the unique trajectories that differ in the initial values
only, we include the initial value of the integral at its lower bound directly below the integral
sign, e.g.

x j(t i+1; si , qi , p) = si, j +

∫ t i+1

t i
x j(t i)=si, j

f j(t, x(t), ũi(t, qi), p)dt . (4.29)

The general idea is to compare both relaxations through their feasible trajectories using the
α-augmented functions introduced in Lemma 10, as shown in Figure 4.1. In preparation of
the main part of this proof, where we apply Theorem 12, we derive the two necessary under-
estimations in Assumptions 4.25a and 4.25b now.

First, we solve the new relaxed matching conditions at t ′ from Equation (4.5b) for s′j and use
the left column of the Assumptions 4.27 to obtain:
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s′j ≥ x j(t
′; si , qi , p) +

nx
∑

k=1

ᾰs†

i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q†

i jk(qi,k − qi,k)(qi,k
− qi,k) +

np
∑

k=1

ᾰ
p†

i jk(pk − pk)(pk
− pk) (4.30a)

≥ x j(t
′; si , qi , p) +

nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk) (4.30b)

= x ᾰj (t
′; si , qi , p) ∀ j ∈ {1, . . . , nx} . (4.30c)

The second preparation is to verify that

f j(t, x(t), q, p) +
1

t i+1 − t i

� nx
∑

k=1

ᾰs‡

i jk(s
′
k − s′k)(s

′
k − s′k)

+
nq
∑
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ᾰ
q‡

i jk(qi,k − qi,k)(qi,k
− qi,k) +

np
∑

k=1

ᾰ
p‡

i jk(pk − pk)(pk
− pk)

�

(4.31a)

≥ f j(t, y(t), q, p) +
1

t i+1 − t i

� nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk)

�

, (4.31b)

which holds true due to Assumption 4.27a. Especially when si,k = si,k = si,k is fixed and
the interval width w([s′j , s′j]) > 0, the necessity for this very restrictive assumption becomes
obvious. Nevertheless, we are able to relax it in the following sections.

To compare the feasible sets of both relaxations, we now estimate si+1, j from below, once more,
by solving the relaxed matching conditions from Equation (4.5b), this time for si+1, j , and we
obtain the following proof of Theorem 14.

Proof.

si+1, j ≥ x j(t i+1; s′, qi , p) +
nx
∑

k=1

ᾰs‡

i jk(s
′
k − s′k)(s

′
k − s′k)

+
nq
∑
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ᾰ
q‡

i jk(qi,k − qi,k)(qi,k
− qi,k) +

np
∑
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ᾰ
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i jk(pk − pk)(pk
− pk) (4.32a)

= s′j +

∫ t i+1

t ′
x j(t ′)=s′j

�

f j(t, x(t), q, p) +
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t i+1 − t i

� nx
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i jk(s
′
k − s′k)(s
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+
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np
∑

k=1

ᾰ
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i jk(pk − pk)(pk
− pk)

��

dt (4.32b)
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≥ x j(t
′; si , qi , p) +
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+
nq
∑

k=1

ᾰ
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= si, j +
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ᾰ
p†

i jk(pk − pk)(pk
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��
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+
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t ′
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ᾰs‡

i jk(s
′
k − s′k)(s

′
k − s′k)

+
nq
∑

k=1

ᾰ
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≥ si, j +
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��
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+
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t ′
x j(t ′)=x ᾰj (t
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dt (4.32e)

≥ si, j +
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+
nq
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ᾰ
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∑
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ᾰ
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��

dt

+
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t ′
x j(t ′)=x ᾰj (t
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�
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t i+1 − t i

� nx
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ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
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��

dt (4.32f)
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= si, j +

∫ t i+1

t i
x j(t i)=si, j

�

f j(t, x(t), q, p) +
1

t i+1 − t i

� nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk)

��

dt (4.32g)

= x(t i+1; s′, qi , p) +
nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk) , (4.32h)

where we apply Lemma 10 from Equation (4.32a) to (4.32b). The next step is to replace
s′j by its lower bound from the additional relaxed matching condition at t ′ leading to Equa-
tion (4.32c). Once more applying Lemma 10 results in Equation (4.32d).

In the next step, from Equation (4.32d) to Equation (4.32e), the integral initial values be-
come important, because we have to estimate the gap between the trajectories. Using the
quasi-monotonicity of the augmented function that was shown in Lemma 11 together with
Equations (4.30) and (4.31), we are able to apply Theorem 12 and estimate once more from
below by decreasing the initial value of the second integral from s j to x ᾰj (t

′; si , qi , p).

Afterwards, we use Assumption (4.27) to underestimate both integrals, because the augmenta-
tion terms are negative by definition, resulting in Equation (4.32f). The last step is to combine
both integrals that act on the same trajectory now and finally using Lemma 10 once more to
obtain the lower relaxed matching condition of DMSN on si+1, j .

Accordingly, with reversed estimates, we show that Inequality (4.5d), as an upper bound on
si+1, j , is under the assumption a tighter bound in problem DMSN+1. Therefore, the feasible
set of DMSN+1 is a subset of DMSN and it holds true that ΦN+1 ≥ ΦN .

We continue this Chapter by showing under which circumstances the assumptions of Theo-
rem 14 are fulfilled.

4.3 Influence of Additional Multiple Shooting Nodes on α

This section is dedicated to analyzing and relaxing the assumptions of Theorem 14 in Equa-
tion (4.27). Our first focus is the Assumption (4.27a).
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Figure 4.1: An illustration of the idea to the proof of Theorem 14.

4.3.1 Rate of Convergence of the Over- and Underestimations With Respect to
the Multiple Shooting Variables

Solving both additional relaxed matching conditions at t ′ for x j(t ′; t i , si , qi , p)− s′j , we obtain
componentwise ∀ j ∈ {1, . . . , nx} the under- respectively overestimation:

s′j ≥ x j(t
′; t i , si , qi , p) +

nx
∑

k=1

ᾰs†

i jk(si,k − si,k)(si,k − si,k)

+
nq
∑

k=1

ᾰ
q†

i jk(qi,k − qi,k)(qi,k
− qi,k) +

np
∑

k=1

ᾰ
p†

i jk(pk − pk)(pk
− pk) (4.33a)

s′j ≤ x j(t
′; t i , si , qi , p)−

nx
∑

k=1

α̂s†

i jk(si,k − si,k)(si,k − si,k)

−
nq
∑

k=1

α̂
q†

i jk(qi,k − qi,k)(qi,k
− qi,k)−

np
∑

k=1

α̂
p†

i jk(pk − pk)(pk
− pk) . (4.33b)

The reason for the assumption α= 0 is the integrand

nx
∑

k=1

ᾰs‡

i jk(s
′
k − s′k)(s

′
k − s′k) (4.34)

in Equation (4.32e). Using Equation (4.33), we can derive a lower bound.

0≥
nx
∑

k=1

ᾰs‡

i jk(s
′
k − s′k)(s

′
k − s′k) (4.35a)
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≥ −
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2

4
(4.35b)

= −
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4
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+
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∑

l=1

α̂
p†

ikl(pl − pl)(pl
− pl)

− xk(t
′; t i , si , qi , p) +

nx
∑

l=1
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(4.35d)

≥ −
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i jk

16

� nx
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l=1

(ᾰs†

ikl + α̂
s†

ikl)(si,l − si,l)
2

+
nq
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. (4.35e)

Interpreting the convex underestimation as a sequence in w([s, s]) → 0, w([q, q]) → 0 and
w([p, p])→ 0 during the branch-and-bound that is bounded from above by zero, we have de-
rived an additional lower bound that depends only on fourth degree monomials in the variable
interval widths, compared to the usual quadratic convergence rate of the αBB underestimator.
Therefore, although this term may not be equal zero in general it vanishes much faster then
the convex relaxations with respect to the discretized controls and control values.

We now generalize the observation from Inequality (4.35) to the case of arbitrary many mul-
tiple shooting nodes by applying this technique recursively using the corresponding relaxed
matching conditions on each node. This way, we are able to under- and overestimate the con-
vex relaxations of the direct multiple-shooting-based approach with respect to s1, . . . , sN by
replacing all dependencies on the interval width of these terms with monomials in the interval
widths of w(s0, s0), w(q, q) and w(p, p) of at least fourth degree.

This is stated in the following theorem.

Theorem 15 (Rate of Convergence of the Over- and Underestimations With Respect to the
Multiple Shooting Variables). Given Problem (4.5), ∀i ∈ {1, . . . , N} and ∀ j ∈ {1, . . . , nx},
∃c1, c2 ∈ R, c1 > 0, c2 > 0, such that

0≥
nx
∑

k=1

ᾰs
i jk(si,k − si,k)(si,k − si,k) (4.36a)
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and correspondingly
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Proof. By induction over i, we obtain for

i=1: Using Equation (4.35) and replacing si,k with s0,k and s′k with s1,k, we over- and under-
estimate ∀ j ∈ {1, . . . , nx} as follows:

0≥
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i → i + 1: Using Equation (4.35) once more and this time replacing only s′k with si+1,k, we
over- and underestimate ∀ j = 1, . . . , nx as follows:
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using the induction hypothesis from Equation (4.41d) to (4.41e).
And accordingly for the overestimation of the concave αBB term w.r.t. the multiple shooting
variables.

Therefore, for w([s0, s0]) → 0, w([q, q]) → 0 and w([p, p]) → 0, the rate of convergence of
the αBB over- and underestimator with respect to s1, . . . , sN is two orders higher compared to
the quadratic convergence rate of the corresponding terms in q and p.
This gives a theoretical explanation why branching solely on q and p, as described in Sec-
tion 4.4.1, is not only a valid choice that maintains convergence, but works very efficiently in
practice. Furthermore, for problems with fixed or partially fixed initial values, the monomials
including (s0−s0) become zero as well. This motivates and justifies the reduced space heuristic
described later in Section 4.4.3.
This convergence behavior, resulting in a rapid bound tightening with respect to the multiple
shooting variables in the lifted variable space, shows similarities with the observations made
in [AD10] for the convergence of a lifted Newton approach.
In the next section, we take a closer look at the second-order sensitivities and the effect of
adding additional multiple shooting nodes on the bounds of the solution of the variational
differential equations.

4.3.2 Influence of the Constant Initial Value of the Variational Differential
Equations

The next step is to exploit the fact that the initial value of the second-order interval sensitivities
H(t; si , qi , p) is H(t i; si , qi , p) = [0,0]. This allows us to prove that the left columns of Assump-
tion (4.27) and Assumption (4.28) are automatically fulfilled under some assumptions on the
second-order sensitivities in theory and almost every time for practical applications.
To ease the notation in the following theorem and proof, we use an indexed tensor notation
for H jkl(t; si , qi , p) instead of the formulation given in Equation (2.14) with j ∈ {1, . . . , nx}
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being the dimension of the state space and therefore, for fixed j, H jkl(t; si , qi , p) is the interval
Hessian of x j(t) with components k, l ∈ {1, . . . , (nx +nq+np)}. Furthermore, we define the k-
th radius of the corresponding Gershgorin disc of H j(t; si , qi , p)) as Rk(H j(t; si , qi , p)). Finally,
as in Section 4.2 and formalized in Definition 13, we indicate new variables after introducing
a multiple shooting node t ′ ∈ [t i , t i+1] on [t i , t ′] with † and on [t ′, t i+1] with ‡ to distinguish
them from the original variables on [t i , t i+1].
Using Gershgorin’s theorem to underestimate the eigenvalues of the interval Hessians, the
following theorem requires an additional assumption on the diagonal entries. Namely that if
the lower bound of a diagonal entry already has a positive sign, the difference in the radius
for different initial values has to be greater than the difference in the diagonal entry itself.
Likewise, for the overestimation of the eigenvalues that if the upper bound of a diagonal entry
on one of the interval Hessians is already negative, the difference in the corresponding radius
has to exceed the difference in the diagonal entry itself.
We state this assumption this as follows.

Assumption 16 (Difference of Diagonal and Radius). Given Assumption 4 and a problem as
defined in Equation (4.5), adding an additional multiple shooting node at t ′ ∈ (t i , t i+1) leads to a
new convex relaxation. We assume for the bounds on the solution of the second-order variational
differential equation H(t; si , qi , p) that if ∃ j ∈ {1, . . . , nx}, ∃k ∈ {1, . . . , (nx + nq + np)}, such
that

H jkk(t i+1; s′, qi , p)≥ 0

⇒ Rk(H j(t i+1; si+1, qi , p))− Rk(H j(t i+1; s′, qi , p))≥ H jkk(t i+1; si+1, qi , p)−H jkk(t i+1; s′, qi , p)

(4.44)

and correspondingly if ∃ j ∈ {1, . . . , nx}, ∃k ∈ {1, . . . , (nx + nq + np)}, such that

H jkk(t i+1; s′, qi , p)≤ 0

⇒ Rk(H j(t i+1; si+1, qi , p))− Rk(H(t i+1; s′, qi , p))≥ H jkk(t i+1; si+1, qi , p)−H jkk(t i+1; s′, qi , p) .
(4.45)

Using this assumption, we state and prove the following theorem .

Theorem 17 (Adding Multiple Shooting Nodes – Influence on α). Given Assumption 4 and
a problem as defined in Equation (4.5), adding an additional multiple shooting node at t ′ ∈
(t i , t i+1) leads to a new convex relaxation. Let the RHS of the second-order variational differential
equation be quasi-monotonically increasing in si and let Assumption 16 be fulfilled, then

ᾰ† ≤ ᾰ ᾰ‡ ≤ ᾰ (4.46a)

α̂† ≤ α̂ α̂‡ ≤ α̂ . (4.46b)

Proof. The left column of Equation (4.46) follows directly from the fact that the variational
differential equations and the initial value x(t i) = si are identical for both, the original problem
DMSN and problem DMSN+1 with the additional multiple shooting node at t ′. Using the quasi-
monotonicity, we derive ᾰ† ≤ ᾰ and α̂† ≤ α̂ directly from evaluating at t ′ < t i+1.
The idea for proving the other two inequalities is to exploit the constant initial values of sen-
sitivities on each multiple shooting node. By assumption the RHS of the second-order vari-
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ational differential equation is quasi-monotonically increasing. Using Theorem 12, we con-
clude that the trajectories inside of H(t; si+1, qi , p) do not intersect, in particular this is true
for the trajectory bounds with respect to [si , si], [s′, s′], [q

i
, qi] and [p, p]. Therefore, we have

to distinguish between three different cases for each component in the second-order sensi-
tivity tensor individually, depending on whether the constant initial value at t ′ is contained
in the interval H(t ′; si+1, qi , p) or not. Figure 4.2 depicts these cases for clarity. Exploiting
H jkl(t ′; s′, qi , p) = [0, 0], we obtain that

I if [0, 0] ⊆ H jkl(t ′; si , qi , p), then H jkl(t; s′, qi , p) ⊆ H jkl(t; si , qi , p) ∀t ∈ [t ′, t i+1]
⇒ H jkl(t i+1; s′, qi , p)≥ H jkl(t i+1; si , qi , p) and H jkl(t i+1; s′, qi , p)≤ H jkl(t i+1; si , qi , p)
⇒ |H jkl(t i+1; s′, qi , p)| ≤ |H jkl(t i+1; si , qi , p)| ,

II if [0,0]> H jkl(t ′; si , qi , p), then H jkl(t; s′, qi , p)> H jkl(t; si , qi , p) ∀t ∈ [t ′, t i+1]
⇒ H jkl(t i+1; s′, qi , p)> H jkl(t i+1; si , qi , p) and H jkl(t i+1; s′, qi , p)> H jkl(t i+1; si , qi , p)
⇒ |H jkl(t i+1; s′, qi , p)|< |H jkl(t i+1; si , qi , p)| ,

III if [0,0]< H jkl(t
′; si , qi , p), then H jkl(t; s′, qi , p)< H jkl(t; si , qi , p) ∀t ∈ [t ′, t i+1]

⇒ H jkl(t i+1; s′, qi , p)< H jkl(t i+1; si , qi , p) and H jkl(t i+1; s′, qi , p)< H jkl(t i+1; si , qi , p)
⇒ |H jkl(t i+1; s′, qi , p)|< |H jkl(t i+1; si , qi , p)| .

Using the interval version of Gershgorin’s circle theorem (Theorem 3) to over- and underes-
timate α, it is obvious that a smaller absolute value of the off-diagonal entries of the interval
Hessians always improves the corresponding α. For negative lower bounds of the diagonal
entries this is true as well, but for a positive lower bound on the diagonal and a sufficiently
large (especially> 0) corresponding radius, we have to ensure that the difference in the radius
is larger than the gap between both Gershgorin disc centers. This curvature condition on the
second-order sensitivities is expressed in Assumption (4.44) allows us to overestimate the new
values ᾰ‡

i jk on [t ′, t i+1] with the old values ᾰi jk at t i+1 and we obtain:

ᾰ‡
i jk =max

(

0,−
1
2

 

H jkk(t i+1; s′, qi , p)−
∑

l 6=k

|H jkl(t i+1; s′, qi , p)|

!)

(4.47a)

≤max

(

0,−
1
2

 

H jkk(t i+1; si , qi , p)−
∑

l 6=k

|H jkl(t i+1; si , qi , p)|

!)

(4.47b)

= ᾰi jk ∀ j, k (4.47c)

and accordingly

α̂‡
i jk =max

(

0,
1
2

 

H jkk(t i+1; s′, qi , p) +
∑

l 6=k

|H jkl(t i+1; s′, qi , p)|

!)

(4.48a)

≤max

(

0,
1
2

 

H jkk(t i+1; si , qi , p) +
∑

l 6=k

|H jkl(t i+1; si , qi , p)|

!)

(4.48b)

= α̂i jk ∀ j, k . (4.48c)
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Figure 4.2: An illustration of the three cases in the proof of Theorem 17 indicating the upper
and lower bounds on the trajectories of an arbitrarily chosen entry ( j, k, l) of the
second-order sensitivities H jkl(t; s′, qi , p) and H jkl(t ′; si , qi , p) between t i and t i+1.

The constant initial value of the first-order interval sensitivities G(t; si , qi , p) at the multiple
shooting nodes will usually further improve the second-order interval sensitivities as those
depend on the bounds of the first-order variational differential equations, but it is not neces-
sary to exploit this fact in the proof above. In the numerical results in Chapter 6, we show
plots of typical lower and upper bounds for both first- and second-order variational differen-
tial equations that underline this improvement due to the constant initial values for practical
applications.

Assumption 16 is used to derive the Inequalities (4.47) and (4.48) using the unscaled Gersh-
gorin method. For the scaled Gershgorin approach with a scaling vector d the Assumption can
be modified to include d. It remains an open question if this assumption is necessary for other
means of under- and overestimating α.

67



Chapter 4 Global Optimal Control Using Multiple Shooting

1 0 1 2 3 4 5
Re

3

2

1

0

1

2

3

Im Hii H′
ii

Ri
R′i

Figure 4.3: An illustration of the case in the proof of Theorem 17, where the underestimation
in Equation (3.20) solely based on Gershgorin’s theorem is not sufficient.

Theorem 17 is true for exact bounds on the sensitivities. In practical algorithms, we use vali-
dated integration as introduced in Section 3.6 which yields an over- respectively underestima-
tion of these bounds. Furthermore, the integrated step-size control that we use may disturb by
adding an additional evaluation at t ′, as it potentially results in different integration grids. To
compare the quality, we use the same validated integration method and the same integration
steps, in particular, we introduce a forced stop at t ′.
This leads to the numerical version of Theorem 17.

Corollary 18 (Adding Multiple Shooting Nodes – Influence of Validated Integrator Stepsize).
Given Assumption 4 and a problem as defined in Equation (4.5), adding an additional multiple
shooting node at t ′ ∈ (t i , t i+1) leads to a new convex relaxation. Let the RHS of the second-
order variational differential equation be quasi-monotonically increasing in si , the bounds on the
solution of the differential equation and its first- and second order sensitivities generated by a
validated integrator with the same step length in both cases and let Assumption 16 be fulfilled,
then

ᾰ† ≤ ᾰ ᾰ‡ ≤ ᾰ (4.49a)

α̂† ≤ α̂ α̂‡ ≤ α̂ . (4.49b)

Proof. For every common validated integrator step at a time t l l ∈ I and I the index set of
integrator steps between t i and t i+1, it now still holds true that |H jkl(t l ; t ′)| ≤ |H jkl(t l ; t i)| ∀l ∈
I as seen in the proof for Theorem 17. The rest is analogous.

Regarding the state bounds obtained by the validated integrator and apart from the enforced
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stop at t ′ that may vary the taken step size and thus worsen the corresponding bounds, we
expect the validated integration to perform better in the multiple shooting case with an increas-
ing amount of multiple shooting nodes. The “reset” in interval width at the multiple shooting
nodes as seen in the proof of Theorem 17 helps tremendously to prevent the bounds from
blowing up over time which is a typical behavior due to the underlying interval arithmetic.
In our numerical results in Chapter 6, we observe this effect multiple times, especially when
the validated integration in the single shooting case still fails for certain variable domains,
whereas the direct multiple shooting approach already produces valid bounds.
So far, the choice of an additional multiple shooting node t ′ ∈ (t i , t i+1) is not restricted. But
there is a natural choice, namely, choosing a remaining node of the control grid τ′ ∈ (t i , t i+1)
if such a grid point exists. The next section proves that this choice usually improves the convex
relaxation.

4.3.3 Adding Multiple Shooting Nodes on the Control Grid

Adding a multiple shooting node at a time t ′ ∈ [t i , t i+1] that coincides with a remaining control
grid point τ′ ∈ (t i , t i+1) in between t i and t i+1 splits the local discretized control vector qiRnq

into two parts qi = (q
†
i

T
, q‡

i
T
)T with q†

i ∈ R
nq† and q‡

i ∈ R
nq‡ .

Lemma 19 (Adding Multiple Shooting Nodes on the Control Grid). Let the assumptions from
Theorem 17 hold. Adding the additional multiple shooting node at a control grid point t ′ = τ′ ∈
(t i , t i+1), let w.l.o.g. I† the index set of q† within (si , qi , p)T and I‡ the corresponding set of q‡,
then ∀ j ∈ {1, . . . , nx} and ∀(k, l) ∈ {(k, l) ∈ {1, . . . , nq}2|k ∈ I† ∨ l ∈ I†}

H jkl(t; si , qi , p) = 0 ∀t ∈ [t i , t ′] (4.50)

and
H jkl(t; s′, qi , p) = 0 ∀t ∈ [t ′, t i+1]. (4.51)

Proof. The solution trajectory x(t; t i , qi , p) is independent of q† ⇒ Ḣ jkl(t; si , qi , p) = 0 ∀ j ∈
{1, . . . , nx} and ∀(k, l) ∈ {(k, l) ∈ {1, . . . , nq}2|k ∈ I† ∨ l ∈ I†}. Together with the initial value
H jkl(t i; si , qi , p) = 0, we obtain that

H jkl(t; si , qi , p) = 0 ∀t ∈ [t i , t ′] (4.52)

and correspondingly for q‡ on [t ′, t i+1].

A direct consequence of this result using Gershgorin’s theorem to under- and overestimate
α is that if the corresponding rows were nonzero before the “split” this additional multiple
shooting node improves all other Gershgorin disc radii, resulting in a smaller ‖α†‖ and ‖α‡‖.
Additionally, in a practical implementation this multiple shooting grid choice reduces the size
of the second-order sensitivity tensor and results in a significant reduction in computation time
when determining or updating α.
Therefore, we conclude that with regard to the quality of the convexifications, the natural
choice of the multiple shooting grid is the control discretization grid. To elaborate further on
this choice, we test different grid combinations in the numerical results in Chapter 6.
Having derived theoretical results on the quality of the direct multiple-shooting-based convex-
ification, in next section we state the full algorithm.
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4.4 Direct Multiple-Shooting-Based Global Optimal Control
Algorithm

In this section, we use the theoretical results obtained so far to combine them into the full
direct multiple-shooting-based αBB algorithm.
We apply the αBB algorithm to obtain a global solution of Problem (2.8). The major difference
when applying direct multiple shooting instead of direct single shooting is the introduction of
the new variables si at the multiple shooting nodes. The matching conditions are treated as
described in [PA05] and shown in Equation (2.6) by splitting the equality constraint into two
inequality constraints. Please note that this does not significantly increase the computational
effort to obtain α, because the corresponding interval Hessian, based on the sensitivities of the
ordinary differential equations, have to be computed or overestimated by verified integration
on the time horizon in both cases.
In contrast to direct single-shooting-based algorithms that include pointwise constraints on the
trajectories, we include the multiple shooting variables as local initial values for the trajectories
as described in Section 4.1 and solve the full system simultaneously.
The presented method is complete in the sense that we obtain the global minimum with cer-
tainty in infinite run time, but we also know after finite time or with a prescribed tolerance
that an approximate global minimizer is found, assuming exact calculations [Neu04]. The
proposed implementation is not rigorous, because we do not apply a rigorous NLP solver to
solve the arising subproblems, but this part of the algorithm may be replaced by a rigorous
solver at the cost of an overall runtime penalty.
The overall framework is a classical spatial branch-and-bound as shown in Algorithm 1 where
local solutions to the original problem lead to upper bounds on the global optimum and lower
bounds are obtained through the global solutions to the convex relaxations. Furthermore, we
branch on the feasible set of the decision variables. And we finally terminate the algorithm
when a desired accuracy of the interval on the global objective function value is obtained.
This combination leads to Algorithm 5.
We have obtained theoretical evidence in Sections 4.2 and 4.3 that the convex relaxations
based on our novel direct multiple shooting approach are tighter than those based on the
classical direct single shooting approach. But when using multiple shooting, we introduce
new auxiliary variables si at the multiple shooting nodes which may increase the size of our
branch-and-bound tree. The next subsection deals with those additional variables.

4.4.1 Treatment of Additional Variables

We have introduced additional variables s1, . . . , sN in comparison to a direct single-shooting-
based formulation and using Algorithm 2, we would have to branch on those additional vari-
ables as well, leading to a potentially larger branch-and-bound tree. This might remove any
computational advantages gained due to the improved relaxations. To remedy this, we intro-
duce a specialized branching strategy in the multiple shooting case. Instead of branching on
all decision variables, we branch solely on the original decision variables q0, q1, . . . , qN−1 and
p, and successively refine the bounds on s1, . . . , sN by propagating the bounds on s0 through
the underlying ODE. First of all, a general bound refinement is essentially for free as the state
bounds are integrated once per node using the validated integrator. Even more important is
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Algorithm 5: The full multiple-shooting-based αBB algorithm for global optimal control
in extension to the single-shooting-based Algorithm 4.

Let Φ and Φ denote the bounds on the globally optimal objective value of an
direct-shooting-based discretized OCP (2.8) with N multiple shooting intervals,
(s, q, p) ∈ P0 the initial domain and ε a desired accuracy for the global optimum.

Solve OCP locally on P0 and obtain solution (s∗0, q∗0, p∗0) and ΦM(x(tN ), p0).
Simulate OCP on P0 using a validated integrator along with the first (Equation (2.9))
and second (Equation (2.14)) order variational differential equations to obtain bounds
S0 on the multiple shooting variables and H0, j j ∈ {1, . . . , n} on the second-order
sensitivities for each multiple shooting interval.
Update bounds on s0 using S0.
Relax OCP on P0 using an H0, j j ∈ {1, . . . , n} based α0 and obtain convex problem
OCPcv

0 in the form of Equation (4.5).
Solve OCPcv

0 locally (=globally) on P0 and obtain solution (scv,∗
0 , qcv,∗

0 , pcv,∗
0 ) and

objective value ΦM,0(x(tN ), p0).
Initialize a set of pairs of domains with corresponding local lower bounds
P := {(P0,ΦM,0(x(tN ), p0))}.
Initialize bounds Φ := ΦM,0(x(tN ), p0), Φ := ΦM(x(tN ), p0), currently best solution
(s∗, q∗, p∗) := (s∗0, q∗0, p∗0) and an iteration counter i := 0.
while P 6= ; do

if Φ−Φ≤ ε then
Stop algorithm, global solution obtained.

end
Increment iteration counter i := i + 1.
Select pair (P,ΦM(x(tN ), p)) ∈ P.
Branch domain P into partition Q1, . . .QN such that P =

⋃

k∈{1,...,N}Qk.
for k = 1 to N do

Solve OCP locally on Qk obtaining (scv,∗
i,k , qcv,∗

i,k , pcv,∗
i,k ) and ΦM,i,k(x(tN ), pi,k).

if ΦM,i,k(x(tN ), pi,k)< Φ then
Update upper bound Φ := ΦM,i,k(x(tN ), pi,k) and best known solution
(s∗, q∗, p∗) := (s∗i,k, q∗i,k, p∗i,k).

end
Simulate OCP on Q i,k with validated integration to obtain Si,k and
Hi,k, j j ∈ {1, . . . , n}.
Update bounds on si,k using Si,k.
Relax OCP on Q i,k using an Hi,k, j j ∈ {1, . . . , n} based αi,k and obtain convex
OCPcv

i,k.
Solve OCPcv

i,k locally (=globally) on Q i,k and obtain solution (scv,∗
i,k , qcv,∗

i,k , pcv,∗
i,k )

and objective value ΦM,i,k(x(tN ), pi,k).
end
Set P := (P \ (P,ΦM(x(tN ), p)))

⋃

k∈{1,...,N}(Qk,ΦM,i,k(x(tN ), pi,k)).
Set new global lower bound Φ :=min{ΦM(x(tN ), p) : (P,ΦM(x(tN ), p)) ∈ P} .
Fathom: remove all pairs with worse local lower bound than the global upper
bound, i.e. P := P \ {ΦM(x(tN ), p) : (P,ΦM(x(tN ), p)) ∈ P,Φ≤ ΦM(x(tN ), p)} .

end
The global optimum is now bounded: ΦM(x(tN ), p∗glo) ∈ [Φ,Φ] with w([Φ,Φ])≤ ε .
Furthermore, the best solution found (s∗, q∗, p∗) is either the global optimum or has an
objective function value within the desired accuracy.
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that using Theorem 15, we know that the αBB relaxation of the relaxed matching conditions
converge two orders of magnitude faster with respect to s1, . . . , sN than the αBB terms in the
remaining variables.
We state this strategy as follows.

Lemma 20 (Branching on Free Initial Values, Discretized Controls and Control Values Only).
Given Problem 4.5 and Algorithm 5, it is sufficient to branch only on free initial values s0, the
discretized controls q and the control values p and retain convergence to the global optimum.

Proof. Branching evenly on s0, q and p leads to a monotonically decreasing interval width
for the bounds on s1, . . . , sN . Therefore, the assumptions in [PA05] for the convergence of a
dynamical αBB-based global optimization remain fulfilled.

Furthermore, under the assumptions of Theorems 12 and 17, we do not expect the branch-
and-bound tree size to be larger, as in every node for a given domain, the direct multiple-
shooting-based relaxation is at least as tight. Nevertheless, comparing the branch-and-bound
tree sizes directly is difficult, as different domains on the child nodes may lead to a different
node selection.
Therefore, using this specialized branching strategy, for practical applications, we expect no
additional computational cost with respect to the branch-and-bound tree itself due to these
additional variables, but the NLPs at the tree nodes are slightly larger and may be more ex-
pensive to solve. Thus, it is important to exploit the highly structured form of those NLPs to
minimize the computational overhead [BP84, FSD15].
It remains an open question if we can actually exploit the possibility to branch on those addi-
tional variables to speed up the algorithm. Several heuristics in this regard are presented in
Chapter 6.

4.4.2 Adaptively Scaled Gershgorin

The following concepts are very general in the sense that they are applicable in non-dynamic
global optimization as well. The classical suggestion regarding the choice of a scaling vector
d in the scaled Gershgorin method as described in Equations (3.21) and (3.23) is based on
the interval width w(v) = v − v, e.g., [ADFN98]. The author in [Hla15] shows that this
choice is optimal in some cases with respect to the maximum separation distance [AMF95]
that is defined as the maximum difference between a function φ(v) : Rnv 7→ R and its convex
underestimator φcv(v) : Rnv 7→ R over a domain [v, v] of v:

max
v∈[v,v]

φ(v)−φcv(v) . (4.53)

For the αBB convex underestimator we obtain

max
v∈[v,v]

φ(v)−φcv(v) = max
v∈[v,v]

nv−1
∑

i=0

−αi(v i − vi)(v i − vi) =
nv−1
∑

i=0

αi
(v i − v i)

2

4
. (4.54)

For the case that w(v) is not optimal, the author in [Hla15] proposes two iterative algorithms
that optimize the scaling vector d with respect to the maximum separation distance of the
convex relaxation. We refer to the second one as “iteratively scaled Gershgorin method” and
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have reimplemented the approach for a direct numerical comparison in Section 6.5 in the
context of global optimal control and especially in comparison with the scaled Gershgorin
method.

The proposed algorithms are iterative methods and have to be applied separately for the over-
and underestimation of the eigenvalues for each relaxed matching condition that are neces-
sary for the direct multiple-shooting-based algorithm. Therefore, we propose to heuristically
perform only a single iteration of the first algorithm with a specific index selection. To give
reasons for the heuristic and the specific selection, we present a different and more specif-
ically a direct proof of the property that each iteration preserves the sparsity pattern of α.
Furthermore, we interpret the results visually and measure the performance of our heuristic,
compared to the scaled Gershgorin method with the variable interval width as scaling and both
iterative methods in the context of global optimal control in Chapter 6. To differentiate from
the full iterative methods, we refer to our proposal as “adaptively scaled Gershgorin method”.

We start with the observation that it is highly desirable to detect convexity and concavity if
it is possible at all using the scaled Gershgorin method. A function is convex if αcv = 0 and
concave if αcc = 0. Therefore, instead of the maximum separation distance that takes into
account not only α, but also the complete under- or overestimation term, we propose to focus
on the sparsity pattern of α.

Definition 21 (Sparsity pattern). The sparsity pattern of a vector α ∈ Rn
α is the index set I such

that αi = 0.

Let there be a Gershgorin disc D(H ii , Ri(H)) that lies already inside the right half-plane, i.e.,
H ii−Ri(H)> 0. We would not have to push this diagonal entry during our relaxation. On the
other hand, we can use the scaling to increase the radius Ri using the scaling vector d such
that the disc touches the imaginary axis exactly once in 0. This leads to an optimal scaling in
the sense that it improves the determined α without losing the sparsity pattern of the unscaled
Gershgorin method. Figure 4.4 visualizes the idea behind this adaptively scaled Gershgorin
method.

We state and prove this result formally as

Lemma 22 (Adaptively Scaled Gershgorin Method). Let an interval matrix H ∈ [R]n×n and
corresponding αcv ∈ Rn based on the unscaled interval Gershgorin method be given. If ∃ j ∈
1, . . . , n, such that H j j − R j(H) > 0, then defining i := argmin j{

R j(H)
H j j
| H j j − R j(H) > 0} and

scaling the interval Gershgorin method with

di :=
1

H ii
d j :=

1
Ri(H)

=
1

∑

k 6=i |Hik|
∀ j 6= i (4.55)

results in the new α′cv being at least as good: α′cv
k ≤ α

cv
k ∀k = 0, . . . , n.

Proof. In contrast to the indirect proof given in [Hla15], we prove this lemma directly and
obtain for the component i

H ii −
∑

j 6=i

|Hi j|
d j

di
= H ii −

∑

j 6=i

|Hi j|
H ii

∑

j 6=i |Hi j|
= 0 . (4.56)
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Figure 4.4: An illustration of the idea of Lemma 22. The scaling is improved such that the
smallest positive Gershgorin disc is increased such that it touches zero and the
radius of every other Gershgorin disc is reduced by that fraction.

Therefore, we maintain α′cv = αcv = 0, but can not scale this particular component any further
without loosing the sparsity pattern of αcv. By assumption, we have H ii > 0 and we obtain

H ii − Ri(H)> 0⇒ 1>
Ri(H)

H ii
> 0 . (4.57)

Using this, for all j 6= i it holds true that

H j j −
∑

k 6= j

|H jk|
dk

d j
= H j j −

∑

k 6= j
k 6=i

�

|H jk|
Ri(H)
Ri(H)

�

− |H ji|
Ri(H)

H ii
(4.58a)

= H j j −
∑

k 6= j
k 6=i

�

|H jk|
�

− |H ji|
Ri(H)

H ii
(4.58b)

≥ H j j −
∑

k 6= j
k 6=i

|Hk j| − |H ji| (4.58c)

= H j j −
∑

k 6= j

|Hk j| . (4.58d)

And thus α′cv
k ≤ α

cv
k ∀i = 0, . . . , n.

The specific choice i := argmin j{
R j(H)

H j j
| H j j−R j(H)> 0} is not a necessary assumption, but is

our heuristic that aims to maximize the gap in the underestimation in Equation (4.58c) above
and is a valid choice due to H ii > 0.
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This result is independent of the optimal control algorithm and can be used in the single
shooting approach and in the context of global optimization of NLPs as well.

The next step is to analyze when equality occurs and when true inequality holds true. In our
version of the proof, we see that we obtain ‖α′cv‖ = ‖αcv‖ if and only if |H ji| = 0 ∀ j 6= i. In
other words, the adaptively scaled Gershgorin method leads to tighter relaxations as soon as a
single off-diagonal element, that is not in the row respectively column of the selected scaling
component i, is not zero. Therefore, we expect the adaptively scaled Gershgorin method to
outperform the unscaled version almost every time. We formalize this result as

Corollary 23 (Adaptively Scaled Gershgorin Method – True Inequality). Let an interval matrix
H ∈ [R]n×n and corresponding αcv ∈ Rn based on the unscaled interval Gershgorin method be

given. If ∃ j ∈ 1, . . . , n, such that H j j − R j(H) > 0, then defining i := argmin j{
R j(H)

H j j
| H j j −

R j(H)> 0} and scaling the interval Gershgorin method with

di :=
1

H ii
d j :=

1
Ri(H)

=
1

∑

k 6=i |Hik|
∀ j 6= i (4.59)

results in the new α′cv being better: α′cv
k < α

cv
k ∀k = 0, . . . , n, if and only if ∃ j 6= i, such that

|Hi j| 6= 0.

Proof. In Equation (4.58a), we can use the additional assumption ∃ j 6= i, s.t.|Hi j| 6= 0. We
obtain

H j j −
∑

k 6= j

|H jk|
dk

d j
= H j j −

∑

k 6= j
k 6=i

�

|H jk|
�

− |H ji|
Ri(H)

H ii
(4.60a)

> H j j −
∑

k 6= j
k 6=i

|Hk j| − |H ji| (4.60b)

= H j j −
∑

k 6= j

|Hk j| . (4.60c)

And thus α′cv
k < α

cv
k ∀k = 0, . . . , n.

In the other direction, if |Hi j|= 0,∀ j ∈ {1, . . . , n} then the inequality above becomes an equal-
ity and we obtain α′cv

k = α
cv
k ∀k = 0, . . . , n.

Furthermore and in particular for our direct multiple-shooting-based global optimization algo-
rithm, this adaptively scaled Gershgorin method offers an adapted scaling for the under- and
overestimation of the eigenvalue independently. We formalize this as

Corollary 24 (Adaptively Scaled Gershgorin Method – Concave Case). Let an interval matrix
H ∈ [R]n×n and corresponding αcc ∈ Rn based on the unscaled interval Gershgorin method be

given. If ∃ j ∈ 1, . . . , n, such that H j j + R j(H) < 0, then defining i := argmax j{
R j(H)

H j j
| H j j +

R j(H)< 0} and scaling the interval Gershgorin method with

di :=
1

H ii

d j :=
1

Ri(H)
=

1
∑

k 6=i |Hik|
∀ j 6= i (4.61)
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results in the new α′cc being better: α′cc
k < α

cc
k ∀k = 0, . . . , n, if and only if ∃ j 6= i, such that

|Hi j| 6= 0.

Proof. H i i is negative by assumption and we obtain −1<
R j(H)

H j j
< 0, resulting in our heuristic

to be i := arg max j{
R j(H)

H j j
| H j j + R j(H) < 0}. The rest is analogous to the proof of Lemma 22

and Corollary 23.

So far, for the sake of simplicity, we preserved the sparsity pattern of the unscaled Gershgorin
method. We can extend the results by combining our adaptively scaled Gershgorin method
with other choices of the scaling vector d to improve them as well to optimality with respect
to the respective sparsity pattern. The obvious choice for such a scaling combination is the
interval width w(v) that is already optimal with respect to the maximum separation distance
in some cases. To simplify the notation, we define the radius that is already scaled by d as
Rd

j (H) :=
∑

j 6=i |Hi j|
d j

di
and state

Corollary 25 (Combining the Adaptively Scaled Gershgorin Method with Other Scalings).
Let an interval matrix H ∈ [R]n×n and corresponding αcv ∈ Rn based on the scaled interval
Gershgorin method with a scaling vector d be given. If ∃ j ∈ 1, . . . , n, such that H j j − R j(H) > 0,

then defining i := arg min j{
R j(H)

H j j
| H j j −R j(H)> 0} and scaling the interval Gershgorin method

with

di :=
1

H ii
d j :=

1
Ri(H)

=
1

∑

k 6=i |Hik|
∀ j 6= i (4.62)

results in the new α′cv being better: α′cv
k < α

cv
k ∀k = 0, . . . , n, if and only if ∃ j 6= i, such that

|Hi j| 6= 0.

Proof. Analogous to the proof of Lemma 22 and Corollary 23.

Finally, we can combine the results of Corollary 24 with other scalings accordingly. This is
the version of the scaled Gershgorin version that we use to determine α in the numerical
results for both the single shooting and multiple shooting approach. Especially in our multiple
shooting-based approach this gives us the means for fast and independently improved under-
and overestimations that lead to potentially tighter bounds. We present a direct numerical
comparison between the scaled, the full iteratively scaled and the our adaptively Gershgorin
methods in Section 6.5.
We close this section with the observation that improving the sparsity pattern of α by scaling
a Gershgorin disc that overlaps with the left half-plane, but whose center is in the right half-
plane, is often not possible. We would have to shrink the corresponding radius and in the
process increase the radius of the other discs, resulting in a potentially worse α. As Figure 4.5
shows α may even loose the sparsity pattern in other components.

4.4.3 Reduced Space Relaxations

For an at least partially fixed initial value, we can use the fixed values to reduce the variable
space for the two point direct multiple shooting approach by performing the convex relaxation
only in the directions of the discretized controls and control values. Without loss of generality
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Figure 4.5: An illustration why decreasing the radius of a Gershgorin disc, such that one addi-
tional component of α becomes zero may change the sparsity pattern.

and to simplify the notation, we assume all initial values s0 to be fixed. Although using the
αBB relaxation, those fixed values have no direct influence on the convex relaxation as the
corresponding quadratic term becomes zero, they have an indirect influence as they increase
the size of the second-order sensitivities. Using the scaled Gershgorin approach to underesti-
mate the eigenvalues, this leads to bigger Gershgorin disc radii for the other components and
thus potentially worse αq and αp.
For the two point multiple shooting approach, this results in a similar formulation as per-
formed in [EF00b] and [PA02] for the inclusion of constraints or additional objective function
evaluations at intermediate points t j ∈ [t0, tN ].
In this section, we want to go further and propose a heuristic for our direct multiple-shooting-
based global optimal control algorithm for more multiple shooting nodes. This heuristic is mo-
tivated by the results of Theorem 15 that the αBB relaxation with respect to s1 to sN converges
two orders faster in the interval widths of s0, q and p than the remaining quadratic terms.
Assuming fixed initial values s0, this is fostered by the observation that the convergence rate
improves further, because [s0, s0] = 0 and the corresponding terms and mixed terms in the
convergence rate vanish. Futhermore, this coincides with the experience that in practical ap-
plications the direct multiple shooting approach is said to be more robust against being stuck
in local minimas. Although it is always possible to create counterexamples, we show this effect
once more on the numerical test cases from the literature in Chapter 6. Figure 4.6 illustrates
the reduced space approach.
We formalize the reduced space direct multiple-shooting-based convexification of the original
problem in Equation 2.8 and in particular in comparison to the full space approach described
in Equation 4.5:
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Figure 4.6: An illustration of the space reduction described in Section 4.4.3. We still convexify
the matching conditions with respect to the discretized control variables q and the
control values p, here combined into a parameter vector p̃ := (q, p), but not with
respect to the additional multiple shooting variables si in the lifted space. The
gradient of each disc represents the convexity of a one dimensional state at t i+1
with respect to p̃ for a fixed si .

min
s,q,p

ΦM(sN , p) +
N−1
∑

i=0

∫ t i+1

t i

ΦL(t, x(t; t i , si , qi , p), ũi(t, qi), p) dt (4.63a)

s.t. 0≥ x j(t i+1; t i , si , qi , p)− si+1, j (4.63b)

+
nq
∑

k=1

ᾰ
q
i jk(qi,k − qi,k)(qi,k

− qi,k) +
np
∑

k=1

ᾰ
p
i jk(pk − pk)(pk

− pk) (4.63c)

0≥ −x j(t i+1; t i , si , qi , p) + si+1, j (4.63d)

+
nq
∑

k=1

α̂
q
i jk(qi,k − qk)(qi,k

− qi,k) +
np
∑

k=1

α̂
p
i jk(pk − pk)(pk

− pk) (4.63e)

0≤ ccc(t i , si , ũi(t i , qi), p) (4.63f)

0≤ req,cc(s0, . . . , sN , p) (4.63g)

0≤ −req,cv(s0, . . . , sN , p) (4.63h)

0≤ r ieq,cc(s0, . . . , sN , p) (4.63i)

∀i ∈ {0, . . . , N − 1}, j ∈ {0, . . . , nx} . (4.63j)

This is a heuristic for N > 2 and therefore, we use this reduced space approach only in the
two-point direct multiple shooting or when directly stated otherwise in Chapter 6.

For only partially fixed initial values, let n′p the number of free initial values. We parametrize
these free initial values, using an additional parameter vector p′ and define the augmented
parameter vector, including the original control values and the additional free initial values as

p̃ :=

�

p

p′

�

with dimension np̃. The solution trajectory of the ODE F(q, p̃) : Rnq ,np̃ → Rn
x is then

a function of q and p̃ only. For the details on such ODE reformulations, we refer to detailed
descriptions in textbooks such as [Har02].
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4.4.4 Fast Bounds on the Second-Order Sensitivities

One computationally expensive aspect of the αBB approach when applied to optimal control
problems is the necessity of bounds on the second-order sensitivities. One straight forward
method is to integrate the first- and second-order variational differential equations (2.9) and
(2.14) together with the differential equation itself.

To give an impression of the computational effort, using our novel direct multiple-shooting-
based global optimization algorithm with a piecewise constant control discretization per mul-
tiple shooting node and assuming that both, the control and the multiple shooting grid, are the
same, e.g. τ0 = t0,τ1 = t1, . . .τN = tN in Equations (2.2) and (2.5), we obtain that based on
the state dimension nx , the number of control functions nu and control parameters np, we de-
rive the number of first-order variational differential equations to be nfos = nx(nx+nu+np) and
the dimension of the second-order sensitivities as nsos =

1
2 nx(nx + nu + np)(nx + nu + np + 1)

as the latter are symmetric in each state dimension. The total number of trajectories to be
integrated to calculate the interval sensitivities is therefore the sum nvalint = nx + nfos + nsos.

A first straight forward approach to speed up the overall computational effort is based on
the observation that, based on Equation (3.4), it is obvious that the convex relaxations be-
come tighter by branching on the variables alone, resulting in improved bounds and therefore
smaller (x i − x i)(x i − x i) with a constant α. Reusing any valid α from the parent node, it is
possible to update α only after a finite amount of branches without interfering with the con-
vergence theory. Depending on the problem, the optimal number of updates may vary and
for the larger applications in Chapter 6, we test several different parameter sets regarding this
delayed α update in the context of global optimal control.

Another point of attack to improve the computational effort of the second-order sensitivi-
ties is the validated integrator. We are able to speed up the calculation of the corresponding
bounds significantly if we exploit the usage of Taylor-expansion-based validated integrators.
In [Bar06], the authors calculate first-order sensitivities using a Taylor-based integration. We
are interested in the bounds on first- and second-order sensitivities instead. Furthermore,
higher order enclosure methods [NJP01] such as the one implemented in VSPODE rely on the
first-order sensitivities already. Applying them to the system of second-order variational differ-
ential equations effectively results in third-order sensitivities being calculated where synergies
could be used. Although the application is straightforward using automatic differentiation
(AD) tools, the computational effort is significant. Therefore, we propose to integrate the
generation of second-order sensitivity bounds directly into the validated integrator, using the
Taylor model to not only provide validated bounds on the states, but also on the second-order
sensitivities.

Given the current integration time t j ∈ [t i , t i+1] together with a step size h j and using already
the final enclosure of k-th order, based on a-priori bounds X (t; t j , qi , p) on the solution x(t),
we obtain bounds on the solution trajectory using the high-order Taylor model as seen in
Equation (3.27b) as follows:
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x(t; si , qi , p) ⊆ x(t j) +
k−1
∑

l=1

(t − t j)
l f [l](x(t j)) + hk

j f [k](X (t j))

+

�

I +
k−1
∑

l=1

hl
j
∂ f [l]

∂ x
(X (t j))

�

(X (t j)− x(t j)) , (4.64)

x(t) ∈ X (t) ∀t ∈ [t j , t j+1] . (4.65)

To ease the notation, we combine the local control discretization qi and control values p into
a local parameter vector p̃i := (qi , p)T . We calculate the first and second-order derivatives
of the Taylor coefficients with respect to si and obtain for the first integration step at the
corresponding multiple shooting interval, e.g. t j = t i as

dx(t; si , qi , p)
dsi

⊆ I +
k−1
∑

l=1

(t − t j)
l
d f [l](x(t j))

dsi
+ hk

j

d f [k](X (t j))

dsi

+
d

dsi

��

I +
k−1
∑

l=1

hl
j
∂ f [l]

∂ x
(X (t j))

�

(X (t j)− x(t j))

�

, (4.66)

x(t) ∈ X (t) ∀t ∈ [t j , t j+1] (4.67)

and for t j ∈ (t i , t i+1]

dx(t; si , qi , p)
dsi

⊆
k−1
∑

l=1

(t − t j)
l
d f [l](x(t j))

dsi
+ hk

j

d f [k](X (t j))

dsi

+
d

dsi

�k−1
∑

l=1

hl
j
∂ f [l]

∂ x
(X (t j))

�

(X (t j)− x(t j)) , (4.68)

x(t) ∈ X (t) ∀t ∈ [t j , t j+1] . (4.69)

This distinction between the multiple shooting node itself at t i and the rest of interval is not
necessary for the first-order sensitivities with respect to p̃ and we derive

dx(t; si , qi , p)
dp̃

⊆
k−1
∑

l=1

(t − t j)
l
d f [l](x(t j))

dp̃
+ hk

j

d f [k](X (t j))

dp̃

+
d

dp̃

�k−1
∑

l=1

hl
j
∂ f [l]

∂ x
(X (t j))

�

(X (t j)− x(t j)) , (4.70)

x(t) ∈ X (t) ∀t ∈ [t j , t j+1] . (4.71)

Correspondingly the second-order sensitivities are
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d2 x(t; si , qi , p)
d(si , p̃)2

⊆
k−1
∑

l=1

(t − t j)
l
d2 f [l](x(t j))

d(si , p̃)2
+ hk

j

d2 f [k](X (t j))

d2(si , p̃)

+
d2

d(si , p̃)2

�k−1
∑

l=1

hl
j
∂ f [l]

∂ x
(X (t j))

�

(X (t j)− x(t j)) (4.72)

x(t) ∈ X (t) ∀t ∈ [t j , t j+1] . (4.73)

Using AD, the necessary derivatives of the right-hand side function f can be evaluated very
efficiently and accurately .
This method speeds up the single shooting algorithm as well as our multiple-shooting-based
approach and therefore it is not directly relevant for a comparison. Most results in Chapter 6
are obtained by integrating the full variational differential equations. The reason for this choice
is that to take advantage of these fast and efficient bounds on the second-order sensitivities,
the method should be integrated directly into the validated integrator. This allows to prevent
unnecessary higher-order derivatives by reusing them for different purposes and to take the
width of the remainder term into account during the step size control. Finally, most validated
integrators employ means to counteract the so-called wrapping effect. This is important for
the interval bounds of the sensitivities as well in a practical implementation. The numerical
results in Section 6.6 are obtained by a prototype implementation of the method above to
give a first impression of the efficiency, but we do not expect to reach the full potential with
respect to accuracy and computational time, compared to an implementation integrated into
the validated integrator itself.
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Chapter 5

The Software Package GloOptCon

In extension to the theoretical results from the last chapter, all proposed algorithms and meth-
ods are implemented in the novel software package GloOptCon in order to provide numerical
results that validate the theoretical predictions from Chapter 4 for a number of test exam-
ples from the literature, as well as for real-world problems. Furthermore, Algorithm 4 and 3
are implemented in GloOptCon as well. This allows a direct and close comparison with the
direct single shooting approach and is necessary as currently, there is no software package
freely available that solves OCPs using direct single-shooting-based on an αBB convexifica-
tion. Furthermore, other global optimal control packages such as [Sin04] are not maintained
anymore making a comparison difficult without a reimplementation of the global optimization
algorithms.
The goal of GloOptCon is to provide for the first time one efficient platform for global optimal
control algorithms that employ external state-of-the-art nonlinear program (NLP) solvers, in-
tegrators, validated integrators, automatic differentiation (AD) tools and interval arithmetic
libraries in a flexible way. As part of the algorithms, the software package includes fully fea-
tured efficient direct single and multiple shooting solvers for the local optimization of optimal
control problems (OCPs), which additionally supports parallelization. Furthermore, a number
of analysis and plotting capabilities ease the interpretation and visualization of the results.
Whereas this chapter focuses solely on the software package GloOptCon itself, Chapter 6 shows
the numerical results.

5.1 Goals and Structure

Our goal is to develop a novel software package that is able to efficiently solve OCPs of the form
presented in Equation (2.1) globally using direct single as well as multiple-shooting-based on
Algorithms 3, 4 and 5, which also features parallelization. This common code base allows
us to make a direct comparison of the computation time in absence of significant differences
resulting from more or less optimized implementations.
Furthermore, and especially due to the size of such a software project, it is important to reuse
as many state-of-the-art components developed and provided from other workgroups as pos-
sible. A common interface allows the usage of different NLP solvers, integrators, validated
integrators, AD tools and interval libraries. This allows to focus on implementing the multiple-
shooting-based algorithm and admits an interface verification by applying different external
libraries for a specific test problem. To allow a wide range of external libraries and a fast
code core, the programming language C++ is chosen. As it simplifies some code, the current
version uses the C++11 standard of the language.
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Last but not least, in the light of computationally expensive global optimal control and the
trend to more and more CPU cores, we want to show the advantages of multiple shooting
when parallelizing the method.
To summarize the demands on our software package, we require

• an efficient direct single and direct multiple-shooting based αBB implementations to
solve OCPs,

• interfaces to allow usage of standard components for NLP solvers, integrators, validated
integrators and AD tools,

• numerical verifications of the theoretical results from Chapter 4 and

• a parallelization for the direct multiple shooting version.

The software package has a class structure centered around a central class that reserves the
necessary memory, contains the implemented algorithms and interfaces to the user supplied
model and any external libraries necessary. Switching between single shooting, a different
number of multiple shooting nodes, another control discretization, an alternative integrator
or solvers and many more features is done by single calls of this central class.
Problems are set up through source files as shown in Figure 5.1. These user-generated source
files must supply template-based versions of their objective and right-hand side functions.
Those files set up the problem, reserve the necessary memory by suppling the dimensions and
set the function pointers afterwards. The next step is to supply bounds or fixed values for
the problem. Calling the member function solve() locally optimizes the problem, whereas
calling solve_global() starts the global optimization. A number of additional member func-
tions ease to choose a different solver, integrator or validated integrator or modify the method
of choice for obtaining the derivatives necessary during the optimization. Please note that it is
also possible to omit supplying differential equations and instead provide an objective function
and general nonlinear constraints depending on a control value vector p only, resulting in the
αBB-based global optimization of the NLP provided.
To visualize the results, GloOptCon features a number of plot capabilities ranging from a Gnu-
plot interface to visualize the solution trajectories as shown in Figure 5.2 to the possibility
to write the branch-and-bound structure into a GraphViz file that generates visualizations as
shown in Figure 5.3. More member functions to generate and control different plots are briefly
described in Figure 5.4.

5.2 Algorithms, Interfaces and Dependencies

One core principle of the development of GloOptCon is to use state-of-the art libraries for for
central necessary features. Therefore, the software package relies on a number of external li-
braries. Despite those dependencies compilation flags allow a fast deactivation of components
that are not necessary or available. It is possible to rely on external open source software only
by using Ipopt as the required NLP solver, the validated integrator from ACADO, CppAD for
automatic differentiation and the supplied Runge-Kutta method for integration. The following
sections give a brief overview of the core algorithms, as well as of the implemented interface
alternatives for every external component.

84



5.2 Algorithms, Interfaces and Dependencies

#include "dms.hpp"

const double a[5] = { 8.86, 24.25, 23.67, 18.75, 20.70 };
const double bR[5] = { 10215.4, 18820.5, 17008.9, 14190.8, 15599.8 };

template<typename T>
T mfcn(const T *t, const T *x, const T *p) {

return -x[1];
}

template<typename T>
void ffcn(const T *t, const T *x, const T *u, const T *p, T *xdot) {

T k[5];
for ( int i = 0; i < 5; ++i ) {

k[i] = exp( a[i] - bR[i] * u[0] / 698.15 );
}

xdot[0] = - k[0] * x[0] - ( k[2] + k[3] + k[4] ) * x[0] * x[1];
xdot[1] = k[0] * x[0] - k[1] * x[1] + k[2] * x[0] * x[1];

}

int main() {
int NX = 2;
int NU = 1;
int NP = 0;
int mshoot = 5;

dms global4(NX, NU, NP, mshoot, 0, 1, 0, 1);
SET_FCN( global4, mfcn, ffcn, nullptr )

global4.set_t(10.0);
global4.fix('x', 0, 0, 1.0);
global4.fix('x', 1, 0, 0.0);
global4.set_a('u', 0, 698.15/748.15, 698.15/748.15, 1.0);

// global4.solve();
global4.solve_global();

global4.plot_gnuplot();

return 0;
}

Figure 5.1: Minimal code example for the oil pyrolysis application described in Equation (6.7).

Global Optimization Framework

GloOptCon contains a deterministic global optimization framework including a spatial branch-
and-bound based on Algorithm 1. On each node the corresponding lower and upper bounds
of the variables and the α vector is saved. Optionally the solution, the relaxed solution and the
corresponding dual variables can be stored for warmstart purposes. Furthermore, there are
several branching heuristics and strategies available, especially the specialized treatment of
the additional multiple shooting variables as described in Section 4.4.1. As a heuristic for tests
of deterministic global optimization algorithms an implementation of a stochastic multistart
approach is available as well.

Direct Multiple-Shooting-Based αBB

The core of GloOptCon is the efficient implementation of the direct multiple-shooting-based
global optimization approach described in Algorithm 5. It is possible to include the matching
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Figure 5.2: The software package has a Gnuplot interface to visualize the solutions. In this
figure a local solution to Problem (6.7) is shown with trajectories x0 and x1 and
a control function u0 that is discretized locally constant on 30 intervals. Finally,
the trajectories of the local first-order sensitivities of the direct multiple shooting
approach are labeled with fos. Please note that the independent sensitivities over
successive multiple shooting intervals are combined into single jagged trajectories
to reduce the number of plots necessary.

conditions either as equality constraints for the non-relaxed problem or as inequality con-
straints with the αBB relaxations as seen in Equation 4.5. The same works for the treatment
of general nonlinear constraints and nonlinear Mayer-type objective functions. For all nec-
essary derivatives a fallback and crosscheck exists using finite differences. Furthermore, the
typical block structure of the derivatives if fully exposed to the NLP solver interface to make it
possible to exploit this pattern efficiently.

Direct Single Shooting Alternatives

With a single flag, it is possible to deactivate the multiple shooting discretization to obtain
the direct single-shooting-based optimal control algorithm for a comparison. Although there
are some significantly varying code parts, especially regarding the relaxation of a Mayer-type
objective function, the sensitivities and the missing matching conditions due to the differences
in the algorithms, all common parts share the same code, allowing a comparison with as little
influence from code optimizations as possible.
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1
branching on 7

-5 : 0 : 5
-10.2073 < -5.13737

2
branching on 7

-5 : -2.5 : 0
-8.46657 < -5.13737

3
fathomed

-5.15545, -8.23235

4
branching on 7
-5 : -3.75 : -2.5

-8.27934 < -8.23235

5
fathomed

-0.815641, -8.23235

6
branching on 7

-5 : -4.375 : -3.75
-8.23667 < -8.23235

7
fathomed

-1.59308, -8.23235

8
converged

-8.23292, -8.23235

9
fathomed

-3.78479, -8.23235

Figure 5.3: The software package GloOptCon is able to generate source files for GraphViz
[EGK+02] to visualize the Branch-and-Bound tree.

void plot_gnuplot(const std::string &filename = "");
void plot_write(const std::string &filename = "") const;

void plot_add(unsigned int index, const std::string &name = "");
void plot_add_xup();
void plot_add_fos();
void plot_add_sos();
void plot_remove(unsigned int index);

void plot_obj(int index_a, int index_b = -1, const std::string &name = "");
void plot_bnb();

Figure 5.4: Calling plot_gnuplot directly results in a standard plot including the state tra-
jectories and control functions over time. This can be adjusted to include any
trajectory, including first and second-order sensitivities. Furthermore, it is possi-
ble to visualize the branch-and-bound in up to two dimensions and the objective
function with respect to one or two variables.
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Adaptively Scaled Gershgorin Method

Our novel adaptively scaled Gershgorin technique presented in Section 4.4.2 is the method
of choice for the under- and overestimation of the eigenvalues of the second-order interval
sensitivities. To give a numerical performance comparison in this case as well, the scaled
Gershgorin method with different scaling choices and the first algorithm presented in [Hla15]
are provided by GloOptCon as well.

Nonlinear Program Solvers

Ipopt [WB06] as an interior point (IP) solver and filterSQP [FL98, FL02] from the class
of sequential quadratic programming (SQP) solvers provide means for solving the resulting
NLP after discretization in an efficient way. Both libraries allow the possibility to exploit the
highly structured problem from Equation (2.8) using a sparsity pattern. Despite the fact that
we are not able to apply the condensing technique [BP84] in the relaxed case, because the
matching constraints are split into inequality constraints in the relaxed problem as seen in
Equation (4.5), this allows a fast solution of both, the original as well as the relaxed problem
formulation. Figure 5.5 shows an unified modeling language (UML) diagram of the solver
interface.

Integrators

The integrator interface currently supplies a fast, self-written, error controlled, explicit Runge-
Kutta method for non-stiff problems, a Fortran routine from MUSCOD-II implementing an
explicit Runge-Kutta method [Lei99] and CVODES from the SUNDIALS suite [HBG+05b] for
stiff differential equations providing Adams-Moulton and backward-differentiation formula
(BDF) implementations. All interfaces are capable of not only providing the state trajecto-
ries, but also the corresponding first and second-order sensitivities based on different ways of
generating the derivatives. Furthermore, a dummy integrator is supplied to provide means
to disable time-dependent states and controls. This allows the user to supply only a Mayer-
type objective function and general nonlinear constraint based on control values p resulting
in an non-dynamic NLP that can be solved using αBB in combination with the different Gersh-
gorins methods including our novel suggestions from Section 4.4.2. Figure 5.6 shows an UML
diagram of the integrator interface of GloOptCon.

Validated Integrators

For the crucial validated integration of the states and the second-order sensitivities GloOptCon
provides interfaces to VSPODE [LS07b], VNODE [NJP01] and the method presented in [HVC13]
that is implemented in the ACADO toolkit [HFD11a]. All validated algorithms have different
advantages and disadvantages. As mentioned in Section 3.6, VSPODE usually provides the
tightest bounds at the cost of computational time, especically for a larger control discretiza-
tion. VNODE provides very good bounds as well and scales better for larger problems. The
bounds provided by the ACADO toolkit implementation where not as tight for our applications,
but reasonably fast and the implementation is available as open-source. As a crosscheck and
fallback method GloOptCon provides a sampling-based integrator that uses one of the stan-
dard integration methods to generate the necessary bounds on the states and second-order
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solver_base

# d : dms*

+ solve(warmstart : bool) : double

+ solver_base(_d : dms*)

+ ~ solver_base()

relaxed : bool

solver_filter

- n : int

- m : int

- kmax : int

- maxa : int

- l_hess : int

- mxwk : int

- mxiwk : int

- ws : double*

- a : double*

- c : double*

- blo : double*

- bup : double*

- s : double*

- lam : double*

- user : double*

- lws : int*

- la : int*

- iuser : int*

- cstype : char*

- rho : double

- fmin : double

- max_iter : int

- li_hess : int

- iprint : int

- nout : int

- maxf : int

- mlp : int

- ifail : int

- istat : int

- rstat : double

+ solver_filter(_d : dms*)

+ ~ solver_filter()

+ solve(warmstart : bool) : double

relaxed : bool

solver_ipopt

- nlp : SmartPtr< myTNLP < relaxed > >

- app : SmartPtr< IpoptApplication >

+ solver_ipopt(_d : dms*)

+ ~ solver_ipopt()

+ solve(warmstart : bool) : double

Figure 5.5: UML model of the NLP solver interface. The interface is implemented as a template
deciding that decides if it is a solver for the original or the relaxed problem that
has a different dimension and structure.

sensitivities. Please note that this approach is not validated and a heuristic only as the re-
sulting bounds may not include all possible values. Figure 5.7 shows an UML diagram of the
validated integrator interface.

Automatic Differentiation

The derivatives necessary for normal and interval-valued functions can be obtained using the
automatic differentiation tools CppAD [Bel15] and FADBAD++ [BS96]. The latter one is used
in VSPODE and VNODE as well to generate the necessary Taylor expansions. Both are available
as open-source and provide means for efficient and exact computation of the derivatives used
in the various global optimization algorithms, integrators and NLP solvers. As a fallback and
crosscheck method, finite difference approximations are available for all function evaluations
as well.
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Interval Arithmetic

Whereas the GloOptCon software package itself tries to limit the reliance on external interval
arithmetic tools, VNODE uses either PROFIL/BIAS [Knü94] or filib++ [LTW+06] for the
underlying interval arithmetic. Both are able to take into account potential rounding errors,
provide a large number of basic mathematical functions and are easy to combine with the
AD tools introduced above. In the presence of a nonlinear Mayer-type objective function or
general nonlinear constraints, we use filib++ in combination with CppAD or FADBAD++ to
evaluate the corresponding interval Hessians.

5.3 Verification

Significant care is utilized in GloOptCon to verify the results. As seen in the last section, most
interfaces have at least two different options to crosscheck the external results and interface
implementations themselves. Furthermore, the GloOptCon includes a number of tests to verify
the function evaluations and their derivatives. The test that can be applied to any implemented
model include

• test_int() to test the state integration with all linked integrators and their interfaces,

• test_fos() to test the first-order sensitivities with all linked integrators and their in-
terfaces,

• test_sos() to test the second-order sensitivities with all linked integrators and their
interfaces,

• test_con() to test the constraint evaluation and corresponding derivatives

• test_intstates() to compare the state bounds obtained through the linked validated
integrators with the result from the random sampling approach,

• test_intsos() to compare the interval sensitivity obtained through the linked vali-
dated integrators with the result from the random sampling approach and

• test_conv() to test all relaxations for convexity by calculating the eigenvalues of the
second derivative on a large number of random sampling points.

The sampling tests for the validated integrators utilize the custom valint_multi integrator.
With Nmultistart being the number of sampling points, Hmultistart

i the corresponding second-order
interval sensitivity and αmultistart

i the corresponding α obtained, and we have to check that

Hi ⊇ Hmultistart
i ∀i ∈ {1, . . . Nmultistart} and (5.1)

αi ≤ αmultistart
i ∀i ∈ {1, . . . Nmultistart} . (5.2)

A similar heuristic test is available for the global optimization algorithms itself. The results of
a multistart approach where a local optimization is started at random points over the domain
of s, q and p can be compared to the bounds on the true global optimum obtained with our
algorithms.
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5.4 Parallelization

The direct multiple shooting approach decouples the integration over several smaller time
intervals. Therefore, a parallel integration is possible on top of any other potential paralleliza-
tion, especially in the branch-and-bound [GC94]. The parallelization in GloOptCon is done
using OpenMP [Ope13] and the results in Table 5.1 and Figure 5.8 show the efficiency of our
parallel direct multiple shooting approach used in the local optimization of Problem (6.5) with
30 locally constant control discretizations.
Let tr

i be the runtime of the solution using i parallel cores, then we define the strong scaling
efficiency [Kam15] as the runtime speedup for the same problem divided by the number of
cores utilized, that is

tr
1

i tr
i

. (5.3)

number of cores mean value of runtime over 10 runs strong scaling efficiency

1 0.0972505 1.0
2 0.0523415 0.9289999331
3 0.0374260 0.8661581076
4 0.0316758 0.7675457289
5 0.0261216 0.7445983401
6 0.0238592 0.6793361331

Table 5.1: Efficiency of the parallelized direct multiple shooting approach tested on Problem
(6.4) with 30 locally constant control discretizations. The first column shows the
number of cores used, whereas the second row is the mean value of the computa-
tional time over 10 runs. The last row shows the strong scaling efficiency as defined
in Equation (5.3).

On top of the parallelization of the integration and with the price of more memory usage, it is
possible to parallelize the branch-and-bound as well. Please note that the maximum number
of straight forward usable threads is the product of both, the number of multiple shooting
intervals and the branch-and-bound threads, because the multiple shooting parallelization
takes place at each node individually.
Using our novel direct multiple shooting algorithm, we are able to parallelize the validated
integration of the second-order sensitivities as well. This can be done in two ways: a one-pass
method, where we reuse the bounds on s from the parent node and directly start the parallel
integration on each multiple shooting node individually, or a two-pass method, where we
integrate the states only at first in a serial fashion and then use these bounds in a second pass
to start the parallel second-order sensitivity integrations. As the integration of the full second-
order variational differential equations takes significant more time then the integration of the
states only, the second method still retains a high parallel efficiency.
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Figure 5.6: UML model of the integrator interface. Please note that the member variable en-
capsulation is not very strict due to limitations in the interface to external Fortran
code.
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5.4 Parallelization

valint_multi

- N_starts : int

- multi_x : double*

+ valint_multi(_d : dms*, N : int)

+ ~ valint_multi()

+ integrate(block : int, x_lb : double*, x_ub : double*) : bool

+ integrate_sos(block : int, x_lb : double*, x_ub : double*) : bool

valint_base

# d : dms*

# size_sos : const int

+ N_sens : const int

+ N_total : const int

+ h_min : double

+ order : double

+ order_model : double

+ tol_abs : double

+ tol_rel : double

+ valint_base(_d : dms*)

# valint_base( : const valint_base&)

+ ~ valint_base()

+ integrate(block : int, x_lb : double*, x_ub : double*) : bool

+ integrate_sos(block : int, x_lb : double*, x_ub : double*) : bool

+ set_h_min(_h_min : double)

+ set_tol(_tol_abs : double, _tol_rel : double)

+ set_order(_order : double, _order_model : double)

valint_acado

- acado_x : Tmatrix< T >

- acado_sos : Tmatrix< T >

- acado_p : Tmatrix< T >

- Mod : TaylorModel< Interval >

- integrator : EllipsoidalIntegrator*

- integrator_sos : EllipsoidalIntegrator*

- acado_t : TIME

+ valint_acado(_d : dms*)

+ ~ valint_acado()

+ integrate(block : int, x_lb : double*, x_ub : double*) : bool

+ integrate_sos(block : int, x_lb : double*, x_ub : double*) : bool

valint_vnodelp

- vnodelp_x : std::vector< v_bias :: interval >

- vnodelp_sos : std::vector< v_bias :: interval >

- info : vnodelp_info

- ad : vnodelp::FADBAD_AD*

- ad_sos : vnodelp::FADBAD_AD*

- solver : vnodelp::VNODE*

- solver_sos : vnodelp::VNODE*

+ valint_vnodelp(_d : dms*)

+ ~ valint_vnodelp()

+ integrate(block : int, x_lb : double*, x_ub : double*) : bool

+ integrate_sos(block : int, x_lb : double*, x_ub : double*) : bool

valint_vspode

- method : const int

- vspode_x0 : interval*

- vspode_x : interval*

- vspode_z : interval*

- vspode : VSPODE*

- vspode_sos : VSPODE*

- free_taylorpr()

+ valint_vspode(_d : dms*, method : int, enforce_ad : bool)

+ ~ valint_vspode()

+ integrate(block : int, x_lb : double*, x_ub : double*) : bool

+ integrate_sos(block : int, x_lb : double*, x_ub : double*) : bool

Figure 5.7: UML model of the validated integrator interface.
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Figure 5.8: Plots of the results from Table 5.1. The left plot shows the decreasing computa-
tional time with increasing number of cores and the right plot shows the strong
scaling efficiency of the direct multiple shooting approach with parallelized inte-
gration. The slight bumb in efficiency for four cores is due to the fact that the 30
multiple shooting nodes used in this test can not be distributed equally onto the
four cores.
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Chapter 6

Numerical Results

In this chapter, we use our software package GloOptCon from Chapter 5 to apply the algorithm
derived in Chapter 4 to various test problems from the global optimal control literature and
applications, where multiple local minima were observed.

We begin with two problems containing control values only. The analytical solution for the
first problem is known and therefore, we can verify our solutions with the exact one. Even
in the absence of discretized controls, we expect our direct multiple shooting algorithm to be
an improvement over the direct single shooting approach taking into account our theoretical
results in Section 4.3. Furthermore, the problems give an important indication on the compu-
tational overhead for solving the underlying nonlinear problems (NLPs) using direct multiple
shooting.

Afterwards, we apply our algorithms to two common test problems from the literature that
contain control functions and show that our theoretical results directly translate to a better
performance in practice. The theory from Section 4.3.3 predicts an increasing efficiency for
finer common control and multiple shooting grids. As those test problems are rather small, we
continue with the global optimization of a robot application where multiple local minima were
observed and which is novel in the context of global optimal control. Furthermore, it is the
first optimal control problem (OCP) in our tests with an underlying boundary value problem
(BVP), in contrast to the other problems from the literature containing no constraints on the
states at the final time.

The last application in this chapter is a mixed integer optimal control problem. This prob-
lem class is significantly more complicated and additionally the problem considered contains
boundary constraints at the end time as well, posing a significant challenge.

In the next sections, we take a closer look at our adaptively scaled Gershgorin method intro-
duced in Section 4.4.2. We furthermore quantify the potential gain of the fast bounds on the
second-order sensitivities derived in Section 4.4.4 using a special wrapper around a validated
integrator. We show that the bounds obtained using this method are significantly faster.

To sum up, the theoretically proven increase of efficiency is validated by the numerical results
in this chapter. Compared to the previous approach from the literature, the number of itera-
tions for typical problems is more than halved, meanwhile the computation time is reduced by
almost an order of magnitude. This in turn allows the global solution of larger optimal control
problems.
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Chapter 6 Numerical Results

6.1 Numerical Comparison

As presented in Chapter 5, the software implementation GloOptCon is a custom direct sin-
gle and multiple shooting code written in C++. To obtain the best possible comparison, no
other optimizations such as custom treatment of linear or bilinear terms are utilized. Further-
more, no special branching rules or heuristics were used, apart from the special branching for
multiple shooting as derived in Section 4.4.1.

We start by giving a short overview of the test problems and applications. Due to the first four
problems being common in the global optimization literature, we only state the formulation
and give references for further information on the particular problem. The robot application,
which is novel in the context of global optimal control and larger than the other problems, and
the aircraft model that is a mixed integer optimal control problem with boundary constraints
are described in more detail.

The numerical results in this chapter were obtained using our software implementation with
its custom direct single and multiple shooting code written in C++ as presented in Chapter 5.
If not stated otherwise, we apply the adaptively scaled Gershgorin method from Section 4.4.2
to the second-order interval sensitivities obtained using VSPODE 1.4 [LS07b]. In our direct
multiple shooting algorithm, we branch on the control parametrization vector and the con-
trol values only as described in Section 4.4.1. Regarding the choice of the branching index,
we use the largest interval widths. The regular integration and sensitivity generation is per-
formed using our custom AD-based explicit Runge-Kutta (RK) method for non-stiff problems
and with the backward differentiation formula (BDF) implementation from CVODES from the
SUNDIALS software suite in version 2.6.0 [HBG+05a] for all stiff differential equations. The
underlying nonlinear problems (NLP) are solved using Ipopt 3.12.3 [WB06] for the global op-
timal control algorithms and filterSQP during the multistart heuristics to identify different
local minima. The latter proved to be more robust with respect to bad initial values that occur
using random values within a large domain for the multiple shooting variables, discretized
controls and control values for the applications in Sections 6.3 and 6.4. The automatic differ-
entiation (AD) is performed using cppad [Bel15] and all computational times are measured
using an Intel Core i7-5820K at 4Ghz with 16GB of memory.

6.2 Test Problems From The Literature

We begin the presentation of our numerical results using several small test problems from the
global dynamic optimization literature. They range from containing only a single state and one
control value without a continuous control to larger ones based on several control variables.

The problem dimensions are based on the number of states nx , the number of control dis-
cretization parameters per multiple shooting node nq and the number of control values np.
The number of independent variables nvar is different for single shooting and multiple shoot-
ing. Any free initial value is contained in np̃ in addition to the control values in the single
shooting case, whereas they are automatically contained in nx in the multiple shooting case.
Finally, nfos is the size of the first-order sensitivities and nsos the dimension added by the
second-order of sensitivities. Please note that due to the symmetry of the second-order sensi-
tivities, the amount is reduced to the entries of the lower triangular matrices. The total number

98



6.2 Test Problems From The Literature

of trajectories to be integrated to calculate the interval sensitivities is therefore the sum nint.

nvar =







nu + np′ using single shooting

nx + nu + np using multiple shooting
(6.1a)

nfos = nx nsens (6.1b)

nsos = nx nsens(nsens + 1)/2 (6.1c)

nint = nx + nfos + nsos . (6.1d)

Table 6.1 gives an overview of the problem dimensions using multiple shooting with a piece-
wise constant control discretization per multiple shooting interval. Furthermore, we assume
that the control and the multiple shooting grid are identical, i.e. τ0 = t0,τ1 = t1, . . .τN = tN

in Equations (2.2) and (2.5).

nx nu np nfos nsos nint

Illustrative Example 1 0 1 2 3 6
Negative Resistance Circuit 2 0 2 8 20 30
Singular Control Problem 4 1 0 20 60 84
Oil Shale Pyrolysis 2 1 0 6 12 20
Robot Application 4 2 0 24 84 112
Aircraft Application 3 1 0 12 30 45

Table 6.1: First and second-order sensitivity system sizes for validated integration using our di-
rect multiple-shooting-based global optimal control algorithm with locally constant
control discretization q and equivalent control discretization and multiple shooting
grids.

6.2.1 Problems with Control Values

Illustrative Example

We start with a test problem from the literature containing only a single state x and a single
control value p where an analytical solution is still available. The following problem is consid-
ered among others in [CL04] and in [LS07a] as “Illustrative Example” and goes back to [PA02].
It is the smallest example we solve. It does not contain any time dependent controls, but only
one time independent control value p and therefore, it does not suffer from any discretization
error with respect to the control parametrization used in direct optimal control methods. Even
though it would be trivial to obtain exact bounds on the states, no manual optimizations were
performed to measure the performance of the algorithm as objective as possible. The algo-
rithms are applied without exploiting problem specific simplifications or optimizations often
used in global optimization.
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Chapter 6 Numerical Results

The problem formulation is the following:

min
p

− x(tN )
2 (6.2a)

s.t. ẋ(t) = −x(t)2 + p (6.2b)

x(t0) = 9 (6.2c)

t ∈ [t0, tN ] = [0,1] (6.2d)

p ∈ [−5,5] . (6.2e)

The problem is concave on p ∈ [−5,5] and therefore has two local minima Φ(−5)≈ −5.39433
and Φ(5) ≈ −8.23262 at the boundaries. Figure 6.1 shows an approximation of the state
bounds on the time interval from [t0, tN ] = [0, 1] as well as a visualization of the objective
function with respect to p. The global solution obtained using Algorithm 5 and an ε = 10−3

coincides with the lower bound of all trajectories over the domain of p in the left plot of
Figure 6.1 and trajectory based on the worse local solution at p = 5 is equivalent to the upper
bound.

t
0 0.2 0.4 0.6 0.8 1
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Figure 6.1: Approximation of the upper and lower state bounds of x(t) (left) and the concave
objective function (right) over the domain of p of Problem (6.2). The lower bound
in the left plot coincides with the trajectory of the globally optimal solution with
p∗0 = −5.

Figure 6.2 shows the branch-and-bound tree of the direct single shooting approach in a direct
comparison with the multiple shooting approach. Even if the objective function is not linear in
this case as assumed in Lemma 6, the additional bounds on the state at the end point improve
the lower bounds in the first iterations drastically. Nevertheless, both algorithms converge
rapidly.
The problem does not contain any control functions, but as mentioned in the introduction, our
theory in Section 4.3 indicates that the direct multiple shooting approach leads to an improved
convergence nevertheless. Because the convergence to the globally optimal objective function
is rapid with all tested methods, we take a closer look at the details. Figure 6.3 shows the
convergence of the lower bound to the global solution. For N = 2 and N = 3, we observe
slightly worse lower bounds and an additional iteration. This is explained by the fact that both
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1
branching on 1

-5 : 0 : 5
-406.865 < -5.13944

2
branching on 1

-5 : -2.5 : 0
-49.0666 < -5.13944

3
fathomed

-5.13944 < -8.2327

4
branching on 1
-5 : -3.75 : -2.5

-11.7917 < -8.2327

5
fathomed

-0.964567 < -8.2327

6
converged

-8.2327 < -8.2327

7
fathomed

-1.59309 < -8.2327

1
branching on 2

-5 : 0 : 5
-10.8527 < -5.13944

2
branching on 2

-5 : -2.5 : 0
-9.3898 < -5.13944

3
fathomed

-5.15936 < -8.2327

4
branching on 2
-5 : -3.75 : -2.5

-8.31867 < -8.2327

5
fathomed

-0.817155 < -8.2327

6
converged

-8.2397 < -8.2327

7
fathomed

-1.59324 < -8.2327

Figure 6.2: Branch-and-bound trees of the global optimal control algorithm for Problem (6.2)
using the single shooting approach (left) in comparison to the two point multiple
shooting method (right). We notice the same number of iterations and the rapid
convergence at the end, but the included state bounds in the two point multiple
shooting method improve the first lower bounds drastically.

need one iteration more than the rest. The reason is that in this test example, the validated
integrator performs a single step from t0 to tN . Therefore, we enforce additional stops to the
validated integrator at the multiple shooting nodes for N ≥ 2 and this may lead to slightly
worse relaxations as discussed in Section 4.3.2 and addressed in Corollary 18. The positive
effect of using more multiple shooting nodes seem to counteract this, such that for N ≥ 4 only
three iterations are needed and we obtain better bounds in each iteration for an increasing
amount of multiple shooting nodes.

Because the convergence behavior itself is similar between the problems, the problem gives
an indication of the computational overhead when using an increasing number of multiple
shooting intervals. This overhead is mainly due to larger, but sparse NLP problems. Table 6.2
shows the computational times for an increasing amount of multiple shooting nodes.

N 0 1 2 3 4 5 6

time [s] 0.2292 0.1212 0.1865 0.2043 0.1772 0.1902 0.1995

Table 6.2: Computational time for the global optimization of Problem (6.2) with an increasing
amount of multiple shooting nodes and 0 indicating single shooting usage.

We notice that for this problem the computational overhead of our algorithm is quite small
in comparison to single-shooting-based αBB and due to the efficient handling of the multiple
shooting structure, we expect this to be the case for larger problems as well and reinvestigate
this for the larger problems in the following sections.
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Figure 6.3: Convergence of the lower bound of the objective function over several iterations for
Problem (6.2). The lower bound for the single shooting approach is too bad during
the first two iterations to plot them in a reasonable way together with the rest,
compare the branch-and-bound trees in Figure 6.2 for the corresponding values.

Negative Resistance Circuit

Another test problem from the literature containing only control values, but having a higher
dimension than the first problem is the model of a small circuit described in [Kha02] and
considered for global optimal control in [Sco12]:

min
p

x0(tN ) (6.3a)

s.t. ẋ0(t) = p0 x1(t) (6.3b)

ẋ1(t) = −p1

�

x0(t)− x1(t) +
x1(t)3

3

�

(6.3c)

t ∈ [t0, tN ] = [0,5] (6.3d)

p0 ∈ [0.01,0.5], p1 ∈ [0.01, 0.5] . (6.3e)

The global solution is at (p0, p1) = (0.5,0.5) as shown in Figure 6.4 and an additional local
solution is reported at (p0, p1) = (0.01,0.01). This problem is interesting as it already poses
quite a challenge to our validated integrators on the initial domain. Whereas in the single-
shooting-based approach this results in several nodes without a valid lower bound as seen in
Figure 6.5, in the direct multiple-shooting-based global optimal control algorithm, we have to
branch several times prior to starting Algorithm 5 to obtain validated bounds on all additional
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6.2 Test Problems From The Literature

multiple shooting variables. This results in 11 root nodes till we are able to obtain state bounds
between [t0, tN ]. This special branch-and-bound structure is plotted in Figure 6.6.
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Figure 6.4: Trajectories of the global optimal solution of Problem (6.3) at (p0, p1) = (0.5, 0.5).

The computational runtimes of the different algorithms are once more very similar, as shown
in Table 6.3, but we notice that the pure single-shooting-based algorithm already performs far
worse, because the state bounds at the final time are not included, resulting in a worse relax-
ation and thus more nodes during the branch-and-bound. Therefore, we focus our comparison
on the difference between the direct multiple shooting approach with only two nodes, at t0

and tN and the effect of adding more nodes in between. For an increasing amount of multiple
shooting nodes, the same effects as for Problem (6.2) are observed.

N 0 1 2 3 4 5 6

time [s] 43.49 8.88 9.38 8.62 8.81 8.16 7.54
iterations 14 4 6 4 5 5 4

time / iteration [s] 3.11 2.22 1.56 2.16 1.76 1.63 1.89
number of nodes 29 29 33 29 31 29 29
time / node [s] 1.50 0.31 0.28 0.30 0.28 0.28 0.26

Table 6.3: Computational time for the global optimization of Problem (6.3) with an increasing
amount of multiple shooting nodes and 0 indicating single shooting usage.

Figure 6.7 shows the bounds on the states and the second-order interval sensitivities for an
increasing amount of multiple shooting nodes. Whereas the state bound naturally stay the
same, we notice the constant initial values of each local sensitivity improves the absolute value
of each interval significantly as exploited in Theorem 17.
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1
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3
branching on 3

0.01 : 0.255 : 0.5
-1e+20 < -0.0537934

4
fathomed

0.157101 < -0.0537934

5
branching on 2

0.01 : 0.1325 : 0.255
-1e+20 < -0.0537934

6
branching on 2

0.255 : 0.3775 : 0.5
-17.3362 < -0.0537934

7
branching on 2

0.255 : 0.3775 : 0.5
-1e+20 < -0.0537934

8
fathomed
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9
branching on 3
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-1e+20 < -0.0537934

18
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0.390379 < -0.0537934
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branching on 3

0.01 : 0.1325 : 0.255
-5.83611 < -0.0537934
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branching on 3

0.255 : 0.3775 : 0.5
-1e+20 < -0.0537934

11
branching on 3

0.255 : 0.3775 : 0.5
-1e+20 < -0.0537934

12
fathomed

0.784503 < -0.0537934

13
fathomed

0.665543 < -0.0537934

14
fathomed

0.982641 < -0.0537934

15
fathomed

0.25528 < -0.0537934

16
fathomed

0.653862 < -0.0537934

17
branching on 2

0.3775 : 0.43875 : 0.5
-0.154798 < -0.0537934

22
fathomed

0.145388 < -0.0537934

23
branching on 3

0.3775 : 0.43875 : 0.5
-0.105349 < -0.0537934

20
fathomed

2.29989 < -0.0537934

21
fathomed

1.56623 < -0.0537934

24
fathomed

0.286695 < -0.0537934

25
branching on 2

0.43875 : 0.469375 : 0.5
-0.0600613 < -0.0537934

26
fathomed

0.0621265 < -0.0537934

27
branching on 3

0.43875 : 0.469375 : 0.5
-0.0567043 < -0.0537934

28
discarded

0.111173 < -0.0537934

29
converged

-0.0542433 < -0.0537934

Figure 6.5: The branch-and-bound tree of global optimal control algorithm for Problem (6.3)
using the single shooting approach without an initial branching. This is not neces-
sary in this case, because all free variables are already bounded. Nevertheless no
valid lower bound is obtained on the first few nodes, because the validated integra-
tor fails to integrate the system and therefore, fails to calculate valid α necessary
for the underestimator.

4
fathomed

0.894647 < -0.0537941

8
fathomed

0.982094 < -0.0537941

16
fathomed

1.14954 < -0.0537941

15
fathomed

0.263969 < -0.0537941

20
fathomed

0.864297 < -0.0537941

21
fathomed

0.683229 < -0.0537941

10
fathomed

1.00603 < -0.0537941

14
fathomed

0.989111 < -0.0537941

19
branching on 14

0.3775 : 0.43875 : 0.5
-0.140054 < -0.0537941
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fathomed

0.153622 < -0.0537941
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branching on 15

0.3775 : 0.43875 : 0.5
-0.10619 < -0.0537941

24
fathomed

0.276922 < -0.0537941
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branching on 14

0.43875 : 0.469375 : 0.5
-0.10619 < -0.0537941

9
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0.837574 < -0.0537941
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0.0503576 < -0.0537941

27
branching on 15

0.43875 : 0.469375 : 0.5
-0.10619 < -0.0537941

17
fathomed

0.675747 < -0.0537941

28
discarded

0.11121 < -0.0537941

29
converged

-0.0542528 < -0.0537941

Figure 6.6: The branch-and-bound tree of global optimal control algorithm for Problem (6.3)
using the direct multiple-shooting-based method with equidistant multiple shoot-
ing intervals. Because there are no bounds given on s1, . . . s6, we have to integrate
the states at least once to obtain validated bounds on the multiple shooting vari-
ables. This fails for the initial domain. Therefore, we have to branch multiple
times before starting with the core algorithm. This results in the multiple root
nodes visualized above, from which all but one can be fathomed directly.
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Figure 6.7: Bounds on the states and second-order variational differential equations for an
increasing number of multiple shooting intervals N ∈ {1,2, 5}.
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6.2.2 Problems with Control Functions

Singular Control Problem

For a first comparison between the direct single shooting approach with the multiple-shooting-
based global optimal control algorithm on problems containing control functions and not only
control values, we use a common example from the literature that contains a single control
function. It is commonly referred to as “singular control problem” and considered for global
optimal control in [Luu90], [EF00a], [CL04] and [SB06].
One special property of the problem is the Lagrange type objective function.

min
u

∫ tN

t0

x0(t)
2 + x1(t)

2 + 0.0005
�

x1(t) + 16t − 8− 0.1x2(t)u(t)
2
�2

dt (6.4a)

s.t. ẋ0(t) = x1(t) (6.4b)

ẋ1(t) = −x2(t)u(t) + 16t − 8 (6.4c)

ẋ2(t) = u(t) (6.4d)

t ∈ [t0, tN ] = [0,1], u(t) ∈ [−4,10] (6.4e)

x(t0) = (0.0,−1.0,−
p

5.0)T . (6.4f)

Introducing the Lagrange objective function as additional state leads to

min
u

x3(tN ) (6.5a)

s.t. ẋ0(t) = x1(t) (6.5b)

ẋ1(t) = −x2(t)u(t) + 16t − 8 (6.5c)

ẋ2(t) = u(t) (6.5d)

ẋ3(t) = x0(t)
2 + x1(t)

2 + 0.0005
�

x1(t) + 16t − 8− 0.1x2(t)u(t)
2
�2

(6.5e)

t ∈ [t0, tN ] = [0, 1], u(t) ∈ [−4,10] (6.5f)

x(t0) = (0.0,−1.0,−
p

5.0,0.0)T . (6.5g)

The trajectories of the global optimal solution for different control discretizations are plotted in
Figures 6.8 and 6.9. Furthermore, the results from Table 6.4 coincide with the values reported
in [LS07a], verifying our implementation.
To get a numerical indication of the quality of the new relaxations based on direct multiple
shooting, we compare direct single shooting with state bounds only (DSS1), as described in
Algorithm 3, direct single shooting using α-BB relaxations (DSS2), as described in Algorithm
4, direct multiple shooting with only two nodes (DMS1), as described in Algorithm 5 with
N = 1 and a higher control discretization, and the full direct multiple shooting with several
artificial nodes (DMS2), as described in Algorithm 5 with the multiple shooting discretization
N equal to the control discretization.
Finally, we include the values for the direct multiple shooting, obtained using reduced space
relaxations heuristic described in Section 4.4.3. To validate the method, we compare not only
the global solution identified with the full-space-based result, but also the lower bound of the
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Figure 6.8: Trajectories of the global optimal solution of Problem (6.5) with different control
discretizations for udisc = 1, . . . , 3 (top to bottom).
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Figure 6.9: Trajectories of the global optimal solution of Problem (6.5) with different control
discretizations for udisc = 4, . . . , 6 (top to bottom).
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udisc Φ q∗T

1 0.4965 ( 4.0709 )
2 0.2771 ( 5.5748, -4.0000 )
3 0.1475 ( 8.0015, -1.9438, 6.0420)
4 0.1237 ( 9.7890, -1.1997, 1.2566, 6.3558 )
5 0.1236 ( 9.9998, 1.4939, -0.8144, 3.3540, 6.1514 )
6 0.1223 ( 9.9998, 3.7475, -0.2927, -0.5506, 5.4444, 5.7607 )

Table 6.4: Globally optimal objective function value Φ of Problem (6.5) for an increasing num-
ber of equidistant control discretization points together with the optimal control
parametrization vector q∗.

objective function obtained on each node in the branch-and-bound tree with the corresponding
value on the parent node. This test indicates that the parent node has a local minimum and the
heuristic failed. For this example, both tests are passed for any tested combination of multiple
shooting and control discretization.

Our results in Tables 6.5 and 6.6 show a significant runtime improvement of the direct multiple
shooting method presented over the αBB-based direct single shooting method. We abort the
iterations at 10000s and mark the corresponding values with “-” if another method is able to
obtain the result in the given time frame.

In comparison with the runtimes reported in [LS07a] for DSS1 with a constraint propagation
and a different parameter set for the validated integrator, including the order of the Taylor ex-
pansion, we note slightly more iterations. Nevertheless, it outperforms theαBB-based methods
in this example for the given control discretizations. Although the method needs significantly
more iterations, each iteration itself involves just a validated integration of the state bounds.
Compared to the αBB-based methods, we save the computational effort of validated integra-
tion of the variational differential equations, solving the relaxed NLP to obtain the lower bound
and at least periodically solving the original NLP to guarantee the best possible upper bound.
This leads to the lowest computational time per node of the methods compared here and this
is the reason that in this particular example the improved convex relaxations do not outweigh
the additional computational overhead of the αBB relaxation.

Another observation is the difference of DMS1 and DMS2 for one control discretization that
are equivalent in theory and the slightly worse performance for two control discretizations.
The reason for this effect is that our DMS2 implementation is based on the full space inter-
val sensitivities even on the first multiple shooting interval [t0, t1] with fixed initial value s0.
Although the corresponding αBB terms vanish in the under- and overestimations of the match-
ing conditions, using Gershgorin’s theorem nevertheless results in worse αq

0 and thus looser
constraints in a direct comparison. For more control discretizations, the influence of the first
interval becomes smaller and the theoretical advantages of the direct multiple shooting al-
gorithm with additional multiple shooting nodes dominate. As expected, we note the same
results for DMS1 and DMSR with udisc = 1.

Comparing DSS2, DMS1 and DMS2 for a higher number of control discretizations, we first
notice that the difference between DSS2 and DMS1 becomes smaller for an increasing qdisc.
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single shooting
control DSS1 DSS2

intervals iterations time [s] iterations time [s]

1 9 0.03 1 0.44
2 104 0.29 62 61.87
3 2312 12 1004 2702
4 40319 343 13904 84161
5 674102 18867 - -
6 - - - -

Table 6.5: Numerical results for different control discretizations of Problem (6.5) using two
direct single-shooting-based methods.

multiple shooting
control DMS1 DMS2 DMSR

intervals iterations time [s] iterations time [s] iterations time [s]

1 0 0.08 0 0.49 0 0.05
2 59 66.6 63 121.6 25 2.28
3 966 2844 782 2196 109 13.4
4 13183 81937 5902 22650 348 51.2
5 - - - - 1144 223
6 - - - - 3742 986

Table 6.6: Numerical results for different control discretizations of Problem (6.5) using the di-
rect multiple-shooting-based approach with a different number of multiple shooting
nodes and compared to the reduced space heuristic.

We observe that including the state bound at the final time tN helps to improve the early re-
laxations, but at some point the αBB relaxations are tighter and both methods result in the
same relaxation for those domains as shown in Lemma 6. This coincides with the experience
that αBB relaxations are potentially quite bad over large domains, but have a quadratic con-
vergence behavior near the solution. In contrast to this, the difference of both, DSS2 and
DMS1, to our novel multiple shooting algorithm DMS2 is increasing with more control dis-
cretizations and multiple shooting nodes. Our approach takes less than 50% of iterations and
almost a magnitude less computational time even compared to DMS1. Taking less iterations
validates our theoretical predictions from Chapter 4 regarding the tighter relaxations of our
direct multiple shooting algorithm and reduce the computational effort.

Regarding the computational effort, for finer control discretizations, we expect this gap to
widen further. We notice that a significant amount of the overall computational time is spent
on the validated integration of the second-order variational differential equations. We remark
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that for
nu + np ≥ nx + nq + np (6.6)

the first- and second-order interval sensitivities become larger for DSS1 and DMS1 compared
to DMS2 with an equivalent multiple shooting and control discretization grid. This has not
only a positive impact on the convex relaxations as seen in Section 4.3.3, but also reduces the
time to update α on each node.

Updating α based on the second-order interval sensitivities is significantly more expensive
in global optimal control compared to calculating an interval Hessian in non-dynamic global
optimization. Therefore, we investigate if we are able to speed up the runtime by skipping
updating α and instead only update the state bounds. This is a common method in αBB
literature, because sufficiently large α values remain sufficiently large and the under- and
overestimators are getting better in each iteration due to the tightened variables bounds. In
theory this may speed up the overall runtime at the expense of the number of iterations. To
obtain the results shown in Tables 6.7 and 6.8, we postponed the α updates an increasing
amount of times, depending on the number of branches already performed on a certain node,
up to a maximum number of ten update skips. To differentiate in the notation, we call them
DSS1s, DMS1s, DMS2s and DMSRs. Naturally, this is not an option for DSS1, as no αBB
relaxations are performed in this case.

single shooting
control DSS2s

intervals iterations time [s]

1 2 0.92
2 102 50.2
3 1521 1213
4 25483 34435
5 - -
6 - -

Table 6.7: Numerical results for different control discretizations of Problem (6.5) obtained
while delaying the α updates, resulting in faster runtimes at the expense of more
iterations.

Figures 6.10 and 6.11 visualize the significantly faster convergence rate of our direct multiple
shooting algorithm with three and four multiple shooting intervals compared to the two point
multiple shooting approach in both the original form and the variant with skipped α updates.

To compare the quality of the relaxations of Problem (6.5), Tables 6.9 and 6.10 provide more
insight by providing the lower bounds obtained for the objective functions for various different
domains, including the original one at the root node and various in an ε-box around the glob-
ally optimal solution obtained before and cut off at the original bound if necessary. The table
shows that the additional computational effort using αBB leads indeed to better lower bounds.
Furthermore, we observe as expected by our theoretical results that the bounds obtained by
the DMS2 method are significantly better than the bounds obtained through single shooting
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Figure 6.10: A direct comparison of the convergence of the lower bound for the global optimal
solution for Problem (6.5) with three (top) and four (bottom) equidistant control
discretizations between DMS1 and DMS2.
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multiple shooting
control DMS1s DMS2s DMSRs

intervals iterations time [s] iterations time [s] iterations time [s]

1 0 0.05 0 0.46 0 0.08
2 73 28.9 73 46.4 31 2.16
3 1272 927 995 729.9 167 14.0
4 20330 22145 9671 8925 596 55.2
5 - - 87028 98908 1716 179
6 - - - - 6984 980

Table 6.8: Numerical results for different control discretizations of Problem (6.5) obtained
while delaying the α updates, resulting in faster runtimes at the expense of more
iterations.

and the two point multiple shooting approach.

single shooting
control DSS1 DSS2

intervals componentwise domain lower bound lower bound

1 [−4.0, 10.0] -10.8183 -0.735976
[−4.0,−3.95] 128.981 128.981
[−9.95,10.0] 138.949 138.949

q∗i + [−1.0; 1.0] 0.236938 0.496545
q∗i + [−0.1; 0.1] 0.496285 0.496545

q∗i + [−0.01;0.01] 0.496544 0.496545

3 [−4.0, 10.0] -187.834 -906.238
[−4.0,−3.95] 128.969 128.981
[−9.95,10.0] 138.936 138.949

q∗i + [−1.0; 1.0] -0.319458 -0.767086
q∗i + [−0.1; 0.1] 0.145153 0.146103

q∗i + [−0.01;0.01] 0.147455 0.147468

6 [−4.0, 10.0] -252.515 -993.86
[−4.0,−3.95] 128.966 128.981
[−9.95,10.0] 138.932 138.949

q∗i + [−1.0; 1.0] -0.250874 -0.605863
q∗i + [−0.1; 0.1] 0.119893 0.120369

q∗i + [−0.01;0.01] 0.122351 0.122361

Table 6.9: Lower bounds on the solution of Problem (6.5) at the certain nodes of the branch-
and-bound tree.
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multiple shooting
control DMS1 DMS2 DMSR

intervals componentwise domain lower bound lower bound lower bounds

1 [−4.0, 10.0] 0.496546 0.496546 0.496546
[−4.0,−3.95] 128.981 128.981 128.981
[−9.95,10.0] 138.949 138.949 138.949

q∗i + [−1.0;1.0] 0.496546 0.496546 0.496546
q∗i + [−0.1;0.1] 0.496546 0.496546 0.496546

q∗i + [−0.01;0.01] 0.496545 0.496545 0.496545

3 [−4.0, 10.0] -187.834 -187.834 -55.3939
[−4.0,−3.95] 128.981 128.981 128.981
[−9.95,10.0] 138.949 138.949 138.949

q∗i + [−1.0;1.0] -0.319456 -0.312031 0.117835
q∗i + [−0.1;0.1] 0.146104 0.146709 0.147482

q∗i + [−0.01;0.01] 0.147469 0.147474 0.147479

6 [−4.0, 10.0] -252.515 -169.889 -17.7529
[−4.0,−3.95] 128.981 128.981 128.981
[−9.95,10.0] 138.949 138.949 138.949

q∗i + [−1.0;1.0] -0.250872 -0.0534457 0.117001
q∗i + [−0.1;0.1] 0.12037 0.12185 0.122393

q∗i + [−0.01;0.01] 0.122362 0.122381 0.122382

Table 6.10: Lower bounds on the solution of Problem (6.5) at the certain nodes of the branch-
and-bound tree.

The last numerical result based on this test example from the literature is the observation
of the so-called cluster effect that is described in [DK94] with potential remedies given in
[SN04, WSB14], where the global optimal solution is identified quite early, but it takes many
branches around this solution to verify the solution up to the desired accuracy. Using only two
control discretizations, we are able to visualize this effect, as shown in Figure 6.12.
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Figure 6.12: Visualization of the cluster effect on Problem (6.5). The global solution is identi-
fied early, but to achieve the desired accuracy, the algorithm has to branch a large
number of times in the vicinity of the global solution.
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Oil Shale Pyrolysis Problem

The last test problem from the global optimal control literature considered in this thesis is an
oil shale pyrolysis model introduced in [WY77] and subsequently considered for global opti-
mization in [Luu90] and others. [EF00a] reports eight known minima. We use the normalized
formulation from [LS07a]. With u(t) := 1

utemp
being the inverse of the controlled temperature

utemp ∈ [698.15,748.15], we obtain

min
u

− x1(tN )
2 (6.7a)

s.t. ẋ0(t) = −k0 x0(t)− (k2 + k3 + k4)x0(t)x1(t) (6.7b)

ẋ1(t) = k0 x0(t)− k1 x1(t) + k2 x0(t)x1(t) (6.7c)

ki = aie
−u(t) bi

R ∀i ∈ {1, . . . , 5} (6.7d)

t ∈ [t0, tN ] = [0, 10], u(t) ∈ [698.15/748.15,1] (6.7e)

x(t0) = (1.0, 0.0)T (6.7f)

with ai and bi as stated in Table 6.11 and R= 1.9872e− 3.

a1 a2 a3 a4 a5 b1 b2 b3 b4 b5

8.86 24.25 23.67 18.75 20.70 20.3 37.4 33.8 28.2 31.0

Table 6.11: Model parameters from [WY77] for Problem (6.7).

Algorithm DMS1 is for linear objective functions always as good as DSS2 as shown in Lemma 6
and we have seen in the numerical examples so far that with an increasing amount of con-
trol discretizations their convergence behavior is very similar. Therefore, we restrict further
comparisons to the DMS1, DMS2 and DMSR.
In this example, we observe that similar to Problem 6.3, the validated integrator fails to obtain
state bounds for the root node. Even with an increased order of the Taylor model, we have
9, 31, 132 and 625 root nodes for udisc = 1, . . . , 4 after branching till every node is bounded.
Furthermore, we observe that the validated integrator is not able to obtain a valid α for the
whole horizon and therefore, the derivation of an αBB underestimator fails for methods DSS2
and DMS1, whereas the DMS2 algorithm succeeds in calculating a valid underestimator. This
effect increases the runtime difference between the different approaches.
Figures 6.13 and 6.14 show the global optimal solution for different control discretizations.
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Figure 6.13: Trajectories of the global optimal solution of Problem (6.7) with different control
discretizations for udisc = 1, . . . , 3.
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Figure 6.14: Trajectories of the global optimal solution of Problem (6.7) with a different con-
trol discretizations of udisc = 4.
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6.3 Larger Optimal Control Application

In this section, we present an application where multiple local minima were observed, but
that was not tackled in the global optimal control literature so far. In contrast to the other
problems from the literature presented in the last section, the following robot model contains
two control functions and we use a higher dimensional control discretization to test the limits
of our method. Furthermore, it contains a free final time tN and fixed initial values as well as
fixed states at x(tN ), making it a boundary value problem and an additional challenge for the
global optimization.

2D Robot Arm

This planar robot arm is fully derived in [Ved11]. The application is interesting for global
optimal control, because even for such a small robotic model, the cited diploma thesis pointed
out many local minima. Some of these local minima are due to symmetric movements, but
a robust identification of the true global optimum is desirable. The challenges regarding this
model is a highly nonlinear behavior, a finer control discretization and boundary conditions at
the final free time tN .

min
tN ,u

tN (6.8a)

s.t. ẍ0(t) = x2(t) (6.8b)

ẍ1(t) = x3(t) (6.8c)

ẍ2(t) = B3(x)[J3B1(x , u) + B0(x)B2(x , u)] (6.8d)

ẍ3(t) = B3(x)[B0(x)B1(x , u) + J2B2(x , u)] (6.8e)

t ∈ [t0, tN ] = [0, tN ] (6.8f)

u0(t) ∈ [−800.0,800.0], u1(t) ∈ [−800.0, 800.0] (6.8g)

tN ∈ [0,1.0] (6.8h)

with

B0(x) = −k4 cos (x1(t)− x0(t))

B1(x , u) = k4 x3(t)
2 sin (x1(t)− x0(t))− k0 cos (x0(t)) + (u0(t)− u1(t))

B2(x , u) = −k4 x2(t)
2 sin (x1(t)− x0(t))− k1 cos (x1(t)) + u1(t)

B3(x) =
1

k3 − k2 cos 2(x1(t)− x0(t))

and constants

k0 = 470.88, k1 = 156.96, k2 = 163.84, k3 = 291.27+
1

900
, k4 = 12.8

J2 = 34.1+
1

30
, J3 = 8.5+

1
30

.

Apart from the two control functions, the end time tN is free in this application and we choose
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to minimize the time necessary for a certain maneuver by fixing the initial position and speed,
as well corresponding values at the final time:

x0(t0) = 0 x0(tN ) =
π

3

x1(t0) = 0 x1(tN ) =
π

3
x2(t0) = 0 x2(tN ) = 0

x3(t0) = 0 x3(tN ) = 0 .

We are not able to obtain validated bounds for the states and the variational differential equa-
tions in this case and have to resort to sample the second-order interval sensitivities in order
to determine α. This is common technique in αBB-based optimal control literature. We obtain
for this approximation H̃ that

H̃ ⊆ H . (6.9)

A different validated integrators may solve this in the future. Nevertheless, we continue to use
Gershgorin’s circle theorem to over- and underestimate the eigenvalues instead of calculating
the eigenvalues of the sampled sensitivites.
Although the problem proves to be too big for the full space approach, we are able to identify
the global optimal solution shown in Figure 6.15 for an equidistant piecewise constant con-
trol discretization in comparison to two other local minima using our reduced space heuristic
presented in Section 4.4.3.
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Figure 6.15: Trajectories of the global solution (top) in comparison to two worse local solutions
of Problem (6.8) with a control discretization of udisc = 5.
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6.4 Global Optimal Control for Problems Containing Integer
Decisions

One of our motivations for global optimal control are mixed integer optimal control problems
(MIOCP) [Sag06, SRB09]. Regarding global optimal control for MIOCPs, we refer to [CSB05,
CSB06, SCM15]. The synergy is to relax the integrality of any integer-valued control functions
or control parameters and convexify the problem at the same time and handling both aspects
in the same branch-and-bound tree to obtain convex lower bounds for the MIOCP.

Aircraft Model

The F8 aircraft model goes back to [KN03] and to [Sag05] in the optimal control formulation
that we use. It is fully described, including source code in several languages, on mintoc[Sag,
Sag12], which is a benchmark library for MIOCPs. There are multiple local minima reported
by different authors, including Schlueter et al in [SEG+13].

The model itself contains three state variables. x0(t) is the angle of attack in radians, x1(t)
the pitch angle and x2(t) is the pitch rate in rad/s. The time dependent control function w(t)
is the tail deflection angle in radians and is from a discrete set of two decisions.

The problem formulation is the following:

min
w,tN

tN

s.t. ẋ0(t) = −0.877x0(t) + x2(t)− 0.088x0(t)x2(t) + 0.47x0(t)2

−0.019x1(t)2 − x0(t)2 x2(t) + 3.846x0(t)3

−0.215w(t) + 0.28x0(t)2w(t) + 0.47x0(t)w(t)2 + 0.63w(t)3

ẋ1(t) = x2(t)

ẋ2(t) = −4.208x0(t)− 0.396x2(t)− 0.47x0(t)2 − 3.564x0(t)3

−20.967w(t) + 6.265x0(t)2w(t) + 46x0(t)w(t)2 + 61.4w(t)3

x(0) = (0.4655, 0,0)T ,

x(tN ) = (0, 0,0)T ,

w(t) ∈ {−0.05236,0.05236} .

(6.10)

Using the partial outer convexification approach from [Sag05, SRB09], we can obtain a for-
mulation that is linear in the control:
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min
w,tN

tN

s.t. ẋ0(t) = −0.877x0(t) + x2(t)− 0.088x0(t)x2(t) + 0.47x0(t)2

−0.019x1(t)2 − x0(t)2 x2(t) + 3.846x0(t)3

+0.215ξ− 0.28x0(t)2ξ+ 0.47x0(t)ξ2 − 0.63ξ3

−
�

0.215ξ− 0.28x0(t)2ξ− 0.63ξ3
�

2w(t)

ẋ1(t) = x2(t)

ẋ2(t) = −4.208x0(t)− 0.396x2(t)− 0.47x0(t)2 − 3.564x0(t)3

+20.967ξ− 6.265x0(t)2ξ+ 46x0(t)ξ2 − 61.4ξ3

−
�

20.967ξ− 6.265x0(t)2ξ− 61.4ξ3
�

2w(t)

x(0) = (0.4655, 0,0)T ,

x(tN ) = (0, 0,0)T ,

w(t) ∈ {0, 1}, ξ= 0.05236 .

(6.11)

Due to the usually relatively coarse control discretization in global optimal control, we use this
application as a numerical test for a global switching point optimization. Therefore, we split
the model into N model stages each with a free end time p j . For a given integral switching
structure of w(t), we obtain

min
p

∑N
j=0 p j

s.t. ẋ0(t) =
�

− 0.877x0(t) + x2(t)− 0.088x0(t)x2(t) + 0.47x0(t)2

−0.019x1(t)2 − x0(t)2 x2(t) + 3.846x0(t)3

+0.215ξ− 0.28x0(t)2ξ+ 0.47x0(t)ξ2 − 0.63ξ3

−
�

0.215ξ− 0.28x0(t)2ξ− 0.63ξ3
�

2w(t)
�

p j

ẋ1(t) = x2(t)p j

ẋ2(t) =
�

− 4.208x0(t)− 0.396x2(t)− 0.47x0(t)2 − 3.564x0(t)3

+20.967ξ− 6.265x0(t)2ξ+ 46x0(t)ξ2 − 61.4ξ3

−
�

20.967ξ− 6.265x0(t)2ξ− 61.4ξ3
�

2w(t)
�

p j ,

∀t ∈ [ j, j + 1), j ∈ {0, . . . , N − 1}
x(0) = (0.4655, 0,0)T ,

x(N) = (0, 0,0)T ,

w(t) = 1 , ∀t ∈ [0, 1), t ∈ [2,3), t ∈ [4,5]

w(t) = 0 , ∀t ∈ [1, 2), t ∈ [3,4), t ∈ [5,6] ξ= 0.05236

p j ∈ [0.01,3.0] , ∀ j ∈ {1, . . . , N} .

(6.12)

Furthermore, we introduce a safeguard at the lower bound of p to prevent numerical instabili-
ties. This small value should still be able to approximate solutions with less switches within the
solver accuracy and indeed, we identify the currently best reported objective function 3.78085
as the global optimimum within our tolerance of ε = 10−3 with two parameters at the lower
bound, approximating a switching structure with four switches. The upper bound is arbitrary
to speed up the convergence and may be relaxed further at the expense of computational time.

124



6.4 Global Optimal Control for Problems Containing Integer Decisions

With only four control values the problem is not as big as Problem 6.8, but inhibits some
interesting convergence behavior.
Table 6.12 lists the global solution and five more local solutions plotted in Figure 6.16 and 6.17
for the given switching structure and domain. We notice quite different solution trajectories.
The optimal switching times p j are marked in green.

3.78085 5.72864 6.32495 7.33704 9.40817 10.6945

Table 6.12: Observed objective function values of local minima during the branch-and-bound
for Problem (6.12).

Taking a closer look at the convergence behavior, visualized in Figure 6.18, we notice several
plateaus that are not present in the convergence plots so far. They occur when branching on
one the control values that enter the objective function directly and the solution is just the
lower bound of this value. This happens frequently at the beginning at improves at the end.
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Figure 6.16: Trajectories of the global solution (top) in comparison to two worse local solutions
of Problem (6.12) with six model stages and a fixed integer control. The switching
times are marked in green.126
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Figure 6.17: Three more local solutions and the corresponding trajectories of Problem (6.12)
with six model stages and a fixed integer control. The switching times are marked
in green. 127
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6.5 Adaptively Scaled Gershgorin for NLPs

In this section, we focus on the numerical results regarding our proposed adaptively scaled
Gershgorin method derived in Section 4.4.2. As the method itself is applicable for global op-
timization as well, we use this opportunity to showcase the flexibility of our software package
GloOptCon and apply it to a number of unconstrained test cases from [Hla15]. We verify the
theoretical result that the resulting convex relaxation is always at least as good and very often
significantly better than either no scaling or any other fixed scaling such as using the variable
interval widths.

We compare the adaptively scaled Gershgorin method for the following eight functions that
are used for comparison in [Hla15] and are original from [AMF04, GF08, SWMF12].

φ0(v0, v1) =v4
0 + v1 − (v0 + v2

1 )
2 (6.13a)

φ1(v0, v1) =(1.0+ v0 − ev1)2 (6.13b)

φ2(v0, v1, v2, v3) =(v0 + 10.0v1)
2 + 5.0(v2 − v3)

2

+ (v1 − 2.0v2)
4 + 10.0(v0 − v3)

4 (6.13c)

φ3(v0, v1) =(2.0 ∗ v0 + v1 − 3.0)2 + (v0v1 − 1.0)2 (6.13d)

φ4(v0, v1) =4.0v2
0 − 2.1v4

0 +
1.0
3.0

v6
0 + v0v1 − 4.0v2

1 + 4.0v4
1 (6.13e)

φ5(v0, v1, v2) =100.0(v1 − v2
0 )

2 + (1.0− v0)
2 + 90.0(v3 − v2

2 )
2 + (1.0− v2)

2

+ 10.1((1.0− v1)
2 + (1.0− v3)

2) + 19.8((1.0− v1) + (1.0− v3)) (6.13f)

φ6(v0, v1) =(v1 −
5.1

4.0π2
v2

0 +
5.0
π

v0 − 6.0)2

+ 10.0(1.0−
1.0

8.0π
cos v0 + 10.0 (6.13g)

φ7(v0, v1, v2) =4.0v2
0 − 2.1v4

0 +
1.0
6.0

v6
0 + v0v1 − 4.0v2

1 + 4.0v4
1

+ 4.0v2
1 − 2.1v4

1 +
1.0
6.0

v6
1 + v1v2 − 4.0v2

2 + 4.0v4
2 (6.13h)

with v0, v1, v2, v3 ∈ R.

Table 6.13 contains the results. We notice that our convex relaxations are not only always at
least as good as the results of the scaled Gershgorin method as predicted by our theoretical
results in Section 4.4.2, but even equal to the results obtained with the significantly more
expensive iterative bounds from [Hla15]. We note that for two-dimensional problems, the
latter follows from the fact that only a single Gershgorin disc may fulfill the assumption of
Lemma 22.

In higher dimensions, our specific choice of the scaling index results in an equally tight under-
estimator compared to the iterative method in the test cases. In comparison to the results in
[Hla15], there are some differences for Φ4 and Φ7 which both include integer exponents and
Φ6 with a trigonometric function. The reason for this disparity is most likely that the interval
library used in that paper provides a tighter evaluation of those functions.

Figure 6.19 visualized the adaptively scaled Gershgorin method for φ2.
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domain Φstd Φsca Φiter Φadasca

φ0 [−1.4,5.0]× [−1.6, 5.0] -2406.04 -2405.95 -2405.95 -2405.95
[1.0, 3.0]× [−1.0,1.0] -14.0208 -14.0208 -12.8232 -12.8232
[−4.0,−2.0]× [1.0, 3.0] -43.6462 -43.6462 -39.4774 -39.4774

φ1 [0.0,1.0]× [0.0,2.0] -14.4624 -12.6499 -12.6499 -12.6499
[−2.0,0.0]× [2.0,4.0] 0 0 24.4531 24.4531

[−9.0,−2.0]2 -0.648276 -0.648276 0.784573 0.784573

φ2 [0.0, 1.0]4 -85.1312 -85.1312 -80.2080 -80.2080
[0.0,0.2]× [0.0,1.0]3 -41.7115 -32.5334 -27.1639 -27.1639
[0.0, 1.0]× [0.0,0.2]× [0.0,1.0]2 -75.5903 -64.9597 -64.9597 -64.9597

φ3 [0.0, 4.0]2 -231.046 -231.046 -231.046 -231.046
[1.0,3.0]× [−10.0,−8.0] 136.220 136.220 142.995 142.995
[−1.0,1.0]× [7.0,9.0] 5.70217 5.70217 15.9564 15.9564

φ4 [−1.9,1.9]× [−1.1, 1.1] -427.382 -427.062 -427.062 -427.062
[−5.0,−3.0]× [0.0, 2.0] 101.125 101.125 101.617 101.617
[−2.0, 0.0]× [−4.0,−2.0] 5.25864 5.25864 5.75506 5.75506

φ5 [0.0, 1.0]4 -197.549 -197.549 -197.549 -197.549
[1.0,2.0]× [−0.5, 0.5]× [1.0, 2.0]2 -86.5569 -86.5569 -75.4872 -75.4872

[−2.0,−0.5]× [−2.0,−1.0]× [−1.5,−0.5]2 343.800 330.345 343.107 343.107

φ6 [−5.0,10.0]× [0.0,15.0] -1485.48 -1485.48 -1485.48 -1485.48
[7.0,10.0]× [0.0, 5.0] -15.1173 -16.5356 -15.1006 -15.1006

[−13.0,−6.0]× [4.0, 11.0] 99.5351 99.5351 103.859 103.859

φ7 [−2.0, 2.0]3 -1499.20 -1499.20 -1499.20 -1499.20
[2.0, 3.0]3 63.8959 63.8959 64.0163 64.0163

[−1.0, 1.0]× [3.0, 5.0]× [−1.0,1.0] 235.064 235.064 236.048 236.048

Table 6.13: Solutions of different convex relaxations of the functions φ0, . . . ,φ7 from Equa-
tions (6.13a) to (6.13h) over three different domains each. The column Φstd gives
the lower bound obtained using an αBB relaxation based on the unscaled Gersh-
gorin from Equation (3.20). The results from the column Φsca are obtained using
Equation (3.21) with the standard choice of d = v−v for the scaling vector d. Φiter

is the lower bound obtained based on the iterative method described in [Hla15].
The last column Φadasca contains the results of our efficient approach preserving
the sparsity pattern of the scaled version with d = v − v .

6.6 Fast Bounds on the Second Order Sensitivities

As a proof of concept for our theoretical results from Section 4.4.4, we give results for a wrap-
per around VSPODE. Our implementation of these fast bounds on the sensitivities performs
only a single integration step on the states. We calculate the intervals enclosing the remain-
der for the sensitivities based on the current Taylor model and the last sensitivity bounds and
perform the next single integration step. A better implementation would take the sensitiv-
ity remainder during the step size control into account and perform countermeasures to the
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Figure 6.19: Visualization of the adaptively scaled Gershgorin method for φ2.

wrapping effect on the remainder intervals. This requires a complete reimplementation of the
validated integration method. Therefore, the following results are an indicator for the poten-
tial speed up for both direct single and direct multiple shooting algorithms, but not for the
potential accuracy of those fast bounds.
We measure the computational time for calculating bounds for the full interval sensitivities for
Problem 6.5 on the initial domain from t0 to tN for an increasing amount of sensitivities. To
give a comparison on the overhead, we additionally give the runtime for determining the state
bounds only. Furthermore, because the computational effort for states only and the fast sos
method is very low, we take the median time of several runs for each multiple shooting dis-
cretization. The system size of the variational differential equations (VDE) does not increase,
instead the number of integrator steps increase, because there is a forced integration stop at
each multiple shooting node. The results are compiled in Table 6.14.

N 3 5 10

full VDE [s] 1.77565 3.57113 6.86278
fast sos method [s] 0.011910 0.015617 0.036301

states only [s] 0.003406 0.005124 0.030604

Table 6.14: Comparison of integrating the second-order VDEs with a validated integrator to
obtain the interval second-order sensitivities with the proposal from Section 4.4.4
to differentiate the Taylor model directly (fast sos method).

Even when accounting for additional matrix operations on the remainder term to counteract
the wrapping effect, the results are very promising.
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6.7 Conclusion

In this chapter, we presented a numerical comparison between direct single and multiple shoot-
ing in the context of deterministic global optimization using αBB-based convex relaxations. We
applied our novel multiple-shooting-based algorithm for global optimal control to a number
of test problems from literature and other challenging applications where multiple local min-
ima were observed. We verified the theoretical prediction from Chapter 4 that the relaxations
are improved which in turn resulted in less iterations and a reduced computational effort. Our
special branching strategy, theoretically motivated by our results in Section 4.3 and introduced
in Section 4.4.1 makes in unnecessary to branch on the multiple shooting variables.
The heuristic to convexify with respect to the control functions and the control parameters
only if the initial values for the states are fixed proved to be very successful in the sense that
it did not converge to a suboptimal local minima while providing a speedup of several orders
of magnitude on the test set.
We presented the adaptively scaled gershgorin method that provides us with fast means to
scale the convex and concave relaxations that occur in the relaxed matching conditions inde-
pendently on a number of nondynamic test problems from the literature.
The proposed method to obtain the necessary second-order sensitivities not by validated in-
tegration of the variational differential equation, but by modifying the validated integrator
such that it uses the Taylor model directly to obtain bounds on the sensitivities showed that a
significant speed up of αBB-based global optimization methods is possible using this approach.
Our software package GloOptCon was used on a wide array of test problem, including non-
dynamic problems, OCPs with boundary value constraints and multiple stages. The plotting
capabilities gave more insight into the global optimization of optimal control problems.
To sum up, the theoretically proven increase of efficiency is verified by our numerical results.
Compared to the previous direct single-shooting-based approach from the literature, the num-
ber of iterations for typical problems is more than halved. This has a positive effect on the
computation time, which is reduced by almost an order of magnitude in certain instances.
This in turn allows the global solution of larger optimal control problems.
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αBB α-Branch-and-Bound

AD Automatic Differentiation

BB Branch and Bound

BDF Backward Differentiation Formula

BVP Boundary Value Problem

DP Dynamic Programming

END External Numerical Differentiation

FOS First-Order Sensitivities

GA Genetic Algorithm

HJB Hamilton-Jacobi-Bellman

IP Interior Point

IND Internal Numerical Differentiation

IVP Initial Value Problem

MIOCP Mixed-Integer Optimal Control Problem

NLP Nonlinear Program

OCP Optimal Control Problem

ODE Ordinary Differential Equaion

PMP Pontryagin’s Maximum Principle

QM Quasi-Monotone

RHS Right-Hand Side

RK Runge-Kutta

SA Simulated Annealing

SOS Second-Order Sensitivities

SQP Sequential Quadratic Programming

UML Unified Modeling Language

VDE Variational Differential Equation
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Notation

R real numbers

[R] set of closed intervals over R
z lower bound of z

z upper bound of z

Z := [z, z] closed interval

(z, z) open interval

(]/[) half-open interval

w(Z) interval width

m(Z) interval midpoint

|Z | interval absolute value
d

dx total derivative
∂
∂ x partial derivative

In identity matrix

0n×m zero matrix

⊗ Kronecker product

� positive semi-definite

� positive definite

� negative semi-definite

≺ negative definite
⋃

union
˙⋃ disjoint union
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