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1 IntrodutionMany intertemporal eonomi appliations exhibit the mathematial form of optimalontrol problems, where an objetive funtion (e.g., intertemporal welfare, pro�t, osts,et.) is sought to be maximized or minimized subjet to a system of equations of motion,whih determine the interation of the stok and the ontrol variables. Reently, eono-mists onsider inreasingly models, where eonomi systems do not reat instantly butwith a delay to hanges in external in�uenes (e.g., investment-lags, transportation-lags,lags in habit formation, et.).One way to deal with suh a delayed struture in ontinuous time is the use of de-layed di�erential equations. However, the use of delayed di�erential equations in optimalontrol frameworks exhibits severe analytial and numerial di�ulties. In general, eventhe linear approximation of the system dynamis around the stationary state is gover-ned by a system of di�erential-di�erene equations of neutral type, whih is, in general,not analytially solvable. As a onsequene, numerial optimization methods play animportant role in analyzing and understanding the behavior of delayed optimal ontrolproblems.In this paper we show how optimal ontrol problems in ontinuous time with onestok and one ontrol variable with a onstant time delay an be solved numerially. Wereformulate the original problem in two di�erent ways into onstrained ontrol problemsin ordinary di�erential equations with higher dimensional ontrol funtions respetivelystate variables. Thus, we avoid the solution of the delayed system at the ost of higherdimensionality. Furthermore, we show how to solve the reformulated ontrol problemsby Bok's diret multiple shooting method. The power of the solution method is demon-strated by treating two typial eonomi examples. Furthermore, we disuss how ourframework relates to the following di�erent lasses of eonomi problems disussed inthe literature.One strand of eonomi literature, where delayed strutures play a ruial role areinvestment gestation lags. Following a denotation, whih is, for example, used by Altu�g(1993) and Peeters (1996), one an further distinguish between delivery lags (i.e., invest-ment for new apital goods is made at time t but the new apital goods need some time
σ to be delivered and, thus, to be used produtively), and time-to-build (i.e., apitalgoods need some time σ over whih they require investments in their prodution). Tothe best of our knowledge, El-Hodiri et al. (1972), who derive a generalized maximumpriniple for a growth model with heterogeneous apital goods and exogenously givenand onstant delays between ontrol and state variables, is the only ontribution of theformer lass applying delayed di�erential equations in a ontinuous time framework.However, more reent model spei�ations in disrete time inlude, for example, Altu�g(1993) and Peeters (1996).The term time-to-build was oined by Kydland & Presott (1982) who, following anidea �rst posed by Kaleki (1935), empirially analyzed in how far time-to-build ouldexplain real business yles observed in reality. Rustihini (1989) and Asea & Zak (1999)showed in simple delayed ontinuous time optimal ontrol models with one apital good(but a di�erent lag struture) that the time-to-build feature is the driving fore for the1



osillatory system dynamis.1Another strand of the literature where delayed di�erential equations were suessfullyapplied are vintage apital growth models. In vintage apital models, apital of di�erentage may exhibit di�erent produtivity due to tehnial progress and/or e�ets of non-exponential depreiation. The general problem in vintage apital models is keeping trakof the apital goods of di�erent ages, whih an be formalized by using delayed di�eren-tial equations. Benhabib & Rustihini (1991), Bouekkine et al. (1997a) and Bouekkineet al. (1997b) assume linear utility and, thus, avoid the problem of funtional di�erentialequations of neutral type. This assumption is relaxed in Bouekkine et al. (1998, 2001)and Bouekkine et al. (2005). While Bouekkine et al. (1998, 2001) rather onentrate onthe numerial solution of spei� vintage apital spei�ations, Bouekkine et al. (2005)haraterize analytially the omplete dynamis of a simple AK vintage apital modelwith onstant lifetime of the apital good (i.e., one-hoss shay depreiation). Analogouslyto age strutures in physial apital, one an expliitly onsider age strutures in humanapital, whih are generated by endogenous shooling and retirement deisions of theeonomi agents. De la Croix & Liandro (1999), Bouekkine et al. (2002) and Bouek-kine et al. (2004) investigate age strutures in delayed ontinuous time optimal ontrolproblems.In addition, delayed optimal ontrol in ontinuous time an ontribute to strands ofeonomi literature, where it has not been applied so far. As an example think of habitformation, where time lags also play a ruial role. With habit formation, utility dependsnot only on urrent outomes but also on a stok of habits, whih is in general someweighted average of previous outomes (e.g., Boyer 1978, Carroll et al. 2000). Althoughdelayed di�erential equations have, to the best of our knowledge, not been used so farin the eonomi literature to investigate habit formation,2 we brie�y disuss this issuein setion 5.Other potential appliations are in the �eld of environmental eonomis, where dama-ges from stoks of pollution are onsidered. Often these stoks do not instantaneouslyaumulate to the emission of the pollutants but need some time due to transportationproesses. Prime examples inlude ground water ontamination by exessive fertilizingand the destrution of the ozone layer by the emission of CFCs. One of our examples insetion 4 refers to the CFC ase.The remainder of the paper is strutured as follows. Setion 2 de�nes the lass ofdelayed optimal ontrol problems we seek to solve numerially. Furthermore, we reviewsome qualitative properties of the optimal path and outline the di�ulties for numerialsolution methods. In setion 3 we reformulate the optimal ontrol problem in a suita-ble way to allow an appliation of the diret multiple shooting method. Two examplesdemonstrate the range of appliation for the solution method in setion 4. In setion 5,we disuss the robustness of our approah to hanges in the model spei�ations andshow how our approah an be applied to di�erent lasses of eonomi problems. Finally,1 However, we will argue in setion 5 that in the denotation of Altu�g (1993) and Peeters (1996) theirformulation is rather of the delivery lag than the time-to-build type.2 In Collard et al. (2004) it is mentioned as an example for the appliation of delayed di�erentialequations in eonomi optimization models but not further investigated.2



setion 6 onludes.2 A generi optimal ontrol problem with delayed equation ofmotionWe investigate a lass of optimal ontrol problems with one stok and one ontrol variableand a ontrol-delayed equation of motion of the stok variable. As usual in eonomiappliations, we onsider the maximization of an objetive funtional W , whih is thedisounted in�nite integral over an autonomous feliity funtion F . With a stok variable
x and a ontrol variable u, the optimal ontrol problem reads

max
x(t),u(t)

W =

∫ ∞

0

F (x(t), u(t)) exp[−ρt] dt (1a)subjet to
ẋ(t) = u(t−σ) − γx(t) , (1b)
u(t) ∈ [α, β], α, β ∈ R , (1)
x(0) = x0 , (1d)
u(t) = ξ(t) , t ∈ [−σ, 0) , (1e)where ρ denotes the onstant and positive disount rate, σ is a onstant delay or time-lag, and γ is a onstant deay rate. In addition, F is assumed to be twie ontinuouslydi�erentiable with respet to both arguments.The ruial feature is that the ontrol u(·) enters with a delay σ as u(t − σ) in ons-traint (1b), while it is evaluated at time t as u(t) in the objetive funtional (1a). Ingeneral, a di�erential equation with a delay in the state variables or ontrol funtions isreferred to as a delayed di�erential-di�erene equation (DDE). Other ommon terms areretarded linear funtional di�erential equation or di�erential-di�erene equation of re-tarded type. For an introdution to DDEs see Asea & Zak (1999: setion 2) and Gandolfo(1996: hapter 27). A detailed exposition of (linear) funtional di�erential equations isgiven in Bellman & Cooke (1963), Driver (1977), Hale (1977), Kolmanovskii & Nosov(1986) and Kolmanovskii & Myshkis (1999).In ontrast to models with instantaneous equations of motion, besides an initial value

x0 for the stok x, also an initial path ξ for the ontrol u(·) in the time interval [−σ, 0)has to be spei�ed (or also optimized). Note that the path of the stok x in the timeinterval t ∈ [0, σ] is ompletely determined by the initial stok x0, the initial path ξ(·),and the retarded equation of motion in (1). Thus, optimal ontrol problems whih aregoverned by a retarded equation of motion exhibit an additional moment of inertia, asthe variation of the stok reats with a delay to the ontrol. Although the equation ofmotion is very spei�, the maximization problem (1) represents numerous eonomimodels as we outline by two examples in setion 4 and disuss further in setion 5.Given that the feliity funtion F is stritly onave and the restritions (1) on theontrol u are not binding, one obtains the following system of di�erential equations for3



an optimal solution from the neessary onditions and the equation of motion for thestok x (1b):
u̇(t) =

Fu(t)

Fuu(t)
(γ + ρ) +

Fx(t+σ)

Fuu(t)
exp[−ρσ] +

Fxu(t)

Fxx(t)
(γx(t) − u(t−σ)) ,

ẋ(t) = u(t−σ) − γx(t) .

(2)Note that u̇ and ẋ also depend on advaned (i.e., at a later time) and on retarded (i.e., atan earlier time) variables. Hene, (2) forms a system of funtional di�erential equationsof neutral type. Obviously, a possible approah to numerially solve the optimizationproblem (1) is to numerially solve the system of funtional di�erential equations (2).However, reall that the system (2) is only the solution of the original optimization pro-blem (1) in the ase of an interior solution. Moreover, to determine a unique solution for(2), additional information about the �rst derivatives ẋ and u̇ at some point t is neededa priori. Therefore, we shall introdue a diret approah in this paper to numeriallysolve the original ontrol problem (1) diretly.Before we show how to reformulate the optimization problem (1) in order to derive anumerial solution, we brie�y reall some of its analytial properties, whih are derivedin detail in Winkler (2004).First, the stationary state (x⋆, u⋆) of the system of funtional di�erential equations(2), whih an be be shown to exist and is also unique if the feliity funtion F satis�esInada onditions, is given by the following (impliit) equations:
−

Fx(x
⋆, u⋆)

Fu(x⋆, u⋆)
= (γ + ρ) exp[ρσ] ,

u⋆ = γx⋆ .

(3)Seond, linearizing the system of funtional di�erential equations (2) around the sta-tionary state (x⋆, u⋆) yields a quasi-polynomial as harateristi equation, whih has ingeneral an in�nite number of (omplex) roots. However, the harateristi equation redu-es to a simple quadrati equation with one positive and one negative real harateristiroot for the speial ase that the partial derivative Fxu(x
⋆, u⋆) = 0.Although the harateristi roots are not analytially solvable, the harateristi equa-tion an be shown to exhibit an in�nite number of omplex solutions with positive realparts and an in�nite number of omplex solutions with negative real parts. As a on-sequene, the stationary state (x⋆, u⋆) is a saddle point and, thus, for all initial stoks

x0 and all initial ontrol paths ξ, there exists a unique optimal path whih onvergesasymptotially towards the stationary state.3In summary, we have monotoni onvergene if the feliity funtion F is additivelyseparable, otherwise osillations may our.3 If the harateristi equation exhibits purely imaginary roots (i.e., omplex roots with vanishing realparts), the system dynamis may exhibit so alled limit-yles. That is, the optimal paths osillatearound the stationary state without onverging towards or diverging from it. Limit-yles in the aseof delayed optimal ontrol problems have been disussed by Rustihini (1989) and Asea & Zak (1999).4



3 Numerial solution of the optimal ontrol problemDespite the analytial derivation of the qualitative properties of the optimal path, eventhe linearized approximation around the stationary state of the system of funtionaldi�erential equations (2) is not analytially solvable. As a onsequene, numerial op-timization methods play an important role to analyze and understand the behavior ofdelayed optimal ontrol problems. In the following setion we show two ways how toreformulate the original problem in order to make it tratable for Bok's diret multipleshooting method, a highly e�ient algorithm for the numerial solution of onstrained op-timal ontrol problems in ordinary di�erential equations (ODE) and di�erential-algebraiequations (DAE).3.1 Reformulation of the delayed optimal ontrol problemFirst, we have to restrit the time horizon for the numerial optimization to a �nitevalue tf , a aveat every numerial algorithm has to deal with. This poses no majorproblems as, aording to the stability properties of the optimal solution outlined inthe previous setion, the results will be arbitrarily lose to the problem with an in�nitetime horizon if tf is su�iently large. As we shall see, it is most onvenient to set tf tobe a (large) multiple of the time-lag σ. In the delayed ontrol problem (1), the delay
σ solely appears in the ontrol variable in the equation of motion (1b). Hene, it ispossible to reformulate this delayed optimal ontrol problem with one state variable intoan instantaneous optimal ontrol problem with several state variables. Thus, we anavoid to expliitly numerially treat the time-lag at the ost of higher dimensionality.4To see this, we split the time horizon tf into n parts eah the length of the delay σand formulate the equation of motion separately in eah of the resulting intervals. Thus,we obtain for the �rst interval t ∈ [0, σ)

ẋ(t) = ξ(t−σ) − γx(t) , t ∈ [0, σ) , (4)where ξ is the initial ontrol path in the time interval t ∈ [−σ, 0). In the seond interval
t ∈ [σ, 2σ) the equation of motion yields

ẋ(t) = u(t−σ) − γx(t) , t ∈ [σ, 2σ) , (5)and so on.The lue is to interpret eah of the resulting DDEs as an independent di�erentialequation. By introduing n new stok variables xl and n−1 new ontrol variables ul with
xl(t) = x(t+(l−1)σ) , ul(t) = u(t+(l−1)σ) , t ∈ [0, σ) , (6)4 This method is a straightforward generalization of the well-known method of steps in Bellman &Cooke (1963) to solve delayed di�erential-di�erene equations. The method of steps is also applied inBouekkine et al. (1997a) to numerially solve a system of delayed di�erential-di�erene equations.5



we ahieve the following system of ordinary di�erential equations:
ẋ1(t) = ξ(t−σ) − γx1(t) , t ∈ [0, σ) ,

ẋ2(t) = u1(t) − γx2(t) , t ∈ [0, σ) ,... (7)
ẋn−1(t) = un−2(t) − γxn−1(t) , t ∈ [0, σ) ,

ẋn(t) = un−1(t) − γxn(t) , t ∈ [0, σ) ,Thus, we an reformulate the original optimization problem (1) as:
max

xl(t),ul(t)

∫ σ

0

n
∑

l=1

F (xl(t), ul(t)) exp[−ρ(t + σ(l−1))] dt (8a)subjet to
ẋ1(t) = ξ(t−σ) − γx1(t) ,... (8b)
ẋn(t) = un−1(t) − γxn(t) ,and the restritions for the ontrol variables ul:
ul(t) ∈ [α, β], α, β ∈ R . (8)Furthermore we have to introdue additional oupled boundary onditions for the stokvariables xl at time t = 0 and t = σ to ensure the ontinuity of the stok variable x ofthe original problem:
xl(σ) = xl+1(0) , l = 1, . . . , n − 1 . (8d)Finally, the ondition (1d) for the initial stok x0 translates into
x1(0) = x0 . (8e)Note that we need only to determine n − 1 ontrol paths in the interval [0, σ] as theoptimal path for the stok in the interval t ∈ [(n−1)σ, nσ) is ompletely determined bythe stok at t = (n−1)σ, xn−1(σ), the ontrol un−1(t) and the equation of motion.Remark 1. In addition to transforming the retarded optimization problem in a suita-ble form for numerial solution methods, the reformulation (8) also gives an intuitiveexplanation why the optimal ontrol problem (1)(i) exhibits an in�nite number of harateristi roots in general, and(ii) exhibits only two harateristi roots in the ase that the feliity funtion F isadditively separable. 6



To see (i), reall that the harateristi equation for an optimal ontrol problem with nstok variables is a polynomial of order 2n, whih has in general 2n harateristi roots(although it may be less than 2n distint roots as there may be multiple roots). Indepen-dent of the time-lag σ, n tends to in�nity if we extend the time horizon tf → ∞. Thus,for an in�nite time horizon tf , the retarded optimization problem (1) with one stokvariable is equivalent to an ordinary optimal ontrol with an in�nite number of stokvariables, resulting in a harateristi equation with an in�nite number of harateristiroots.To see (ii), reall that F is additively separable is equivalent to F (x, u) = G(x)+H(u).Thus, the objetive funtional (8a) yields for an in�nite time horizon
max

xl(t),ul(t)

∫ σ

0

∞
∑

l=1

[G(xl(t)) + H(ul(t))] exp[−ρ(t + σ(l−1))] dt . (9)
G(x1(t)) is independent of variations in the ontrol variables ul, l ≥ 1, as it is ompletelydetermined by the initial path ξ, the initial stok x0 and the equation of motion. The-refore, it is su�ient to maximize the objetive funtional without the term exhibiting
G(x1(t)). Hene, we an rearrange the remaining terms to yield:

max
xl(t),ul(t)

∫ σ

0

∞
∑

l=2

[G(xl(t)) + H(ul−1(t)) exp[ρσ]] exp[−ρ(t + σ(l−1))] dt (10)Transforming the objetive funtion bak to one stok and one ontrol variable yields:
max

x(t),u(t)

∫ ∞

0

[G(x(t+σ)) exp[−ρσ] + H(u(t))] exp[−ρt] dt (11)Introduing a new stok variable x̂(t) = x(t+σ) we ahieve the following ordinary optimalontrol problem:
max

x(t),u(t)

∫ ∞

0

[G(x̂(t)) exp[−ρσ] + H(u(t))] exp[−ρt] dt (12a)subjet to
˙̂x(t) = u(t) − γx̂(t) , (12b)
u(t) ∈ [α, β], α, β ∈ R , (12)
x̂(0) = xσ , (12d)where xσ is the value of the original stok variable x at time σ (whih is ompletelydetermined by x0, ξ and the original equation of motion). Thus, the retarded optimalontrol problem (1) is formally equivalent to the ordinary optimal ontrol problem (12)with one stok and one ontrol variable. As a onsequene, its harateristi equation isa polynomial of seond order, whih is known to exhibit two harateristi roots.

7



Remark 2. Despite the intuitive explanation for the qualitative system dynamis in thegeneral ase and in the ase of an additively separable feliity funtion F , the reformula-tion (8) does not promote the analytial derivation of the optimal solution in the generalase. This holds as the additional oupled boundary onstraints (8d), whih guaranteethe ontinuity of the original stok variable x, pose severe obstales for an analytialsolution.Problem (8) is useful for analytial onsiderations as outlined in Remark 1 and an besolved by the diret multiple shooting method as will be shown in setion 3.2. However,for a given time horizon tf , the number n of di�erential state and ontrol funtionsbeomes quite large for small values of the time-lag σ. Therefore, we also onsider anotherreformulation of the problem (1) with �xed dimension of state and ontrols.To this end we introdue an additional ontrol funtion. While u2(t) is the same as u(t)before and denotes the ontrol at time t, u1(t) represents the retarded ontrol u(t−σ).Thus, u1 and u2 are oupled by u1(t) = u2(t−σ) for t ≥ σ and u1(t) = ξ(t) for 0 ≤ t ≤ σ.Then, problem (1) is equivalent to
max

x(t),u1(t),u2(t)

∫ ∞

0

F (x(t), u2(t)) exp[−ρt] dt (13a)subjet to
ẋ(t) = u1(t) − γx(t) (13b)
u1(t), u2(t) ∈ [α, β], α, β ∈ R (13)
x(0) = x0 , (13d)
u1(t) = ξ(t − σ), 0 ≤ t < σ, (13e)
u1(t) = u2(t − σ), t ≥ σ. (13f)Problem (13) still ontains a retarded term, but it has moved from the di�erentialequation (13b) to a onstraint on the ontrols (13f), that an be dealt with e�ientlyby the diret multiple shooting method. In ontrast to the reformulation (8), only oneadditional ontrol variable has been introdued independently of the time horizon tf andthe time-lag σ.3.2 Bok's diret multiple shooting methodIn order to solve the reformulated optimal ontrol problems (8) and (13) numerially, weapply the diret multiple shooting method originally developed by Bok and his oworkerPlitt (1981), Bok & Plitt (1984). Let us onsider an optimal ontrol problem of the form
max

x(t),u(t)

∫ tf

t0

L(x(t), u(t)) dt (14a)
8



subjet to
ẋ(t) = f(x(t), u(t)), t ∈ [t0, tf ], (14b)

0 ≤ c(x(t), u(t)), t ∈ [t0, tf ], (14)
0 = req(x(τ0), x(τ1), . . . , x(τm)), (14d)
0 ≤ rieq(x(τ0), x(τ1), . . . , x(τm)), (14e)with all ourring funtions twie di�erentiable.We approximate the nu-dimensional ontrol funtion u(·) by funtions with loal sup-port and �nitely many parameters. To this end we introdue a time grid

t0 = τ0 < τ1 < · · · < τm = tf (15)and split the time horizon [t0, tf ] into m so alled multiple shooting intervals [τj−1, τj],where j = 1, . . . , m. On eah multiple shooting interval we de�ne a typially low dimen-sional ontrol parameterization, e.g., a linear approximation φj(t) of the ontrols u(t)by
φj(t) := qj

1 + qj
2t , t ∈ [τj−1, τj] , (16)with vetor valued parameters qj .We introdue m variables sj ∈ Rnx as initial values for the di�erential states on eahmultiple shooting interval [τj−1, τj]. The ODE (14b) is solved independently on everyinterval with initial values

x(τj) = sj , j = 0, . . . , m − 1 . (17)To ensure ontinuous state trajetories x(·), the values at the end of interval j, obtainedby integration with initial value sj and ontrol parameter qj , have to oinide with theinitial state vetor of the next interval j + 1:
x(τj+1; s

j , qj) = sj+1 , j = 0, . . . , m − 1 . (18)These so-alled mathing onditions (18) allow to eliminate the additional degrees offreedom introdued by the supplementary optimization parameters sj by ondensing (fordetails see Bok & Plitt 1984). Note that the onditions (18) are required to be satis�edonly at the �nal solution of the problem and not during intermediate iterations of theoptimization algorithm. Therefore, the diret multiple shooting method is also referredto as an all-at-one-approah, solving the simulation and optimization task at the sametime. This allows to inorporate expert knowledge about the trajetory behavior into theinitial values of the state trajetory and typially leads to good onvergene propertiesof the method. The path and ontrol onstraints (14) have to hold on the whole timeinterval [t0, tf ]. To deal with this numerially, in the diret multiple shooting methodthese onstraints are formulated as point onstraints on a suitable �nite time grid.Following these lines, problem (14) is now an optimization problem in the variables
qj and sj. It ontains equality onstraints that stem from the interior point equality9



onstraints (14d) and the mathing onditions (18), and inequality onstraints that stemfrom the interior point equality onstraints (14e) and the disretized path onstraints(14).Subsuming all variables sj and qj into w ∈ Rnw and rewriting the objetive funtionas well as the onstraints in adequate funtions F, G and H , we obtain a non-linearprogram (NLP)
min

w
F (w) subjet to {

G(w) = 0
H(w) ≥ 0

, (19)that an be solved by tailored methods. For example, by sequential quadrati program-ming (SQP) in ombination with an e�ient evaluation of all ourring funtions, andthe generation of derivatives, for example, by internal numerial di�erentiation. See Lei-neweber et al. (2003) for details and further referenes.Now, let us onsider an appliation of the diret multiple shooting method to thereformulations (8) and (13) of the original problem (1). Obviously, (8) is of the form(14) and an, thus, be solved with the diret multiple shooting method as desribedabove. However, reformulation (13) ontains an additional onstraint (13f), whih is notontained in the standard problem formulation (14).Here, the approximation of the ontrol funtions allows to guarantee (13f) � if theorresponding entries of u1(t) in qj and the ones of u2(t) in qj−1 math at all times τj,then the equation holds on the whole time horizon (as eah pieewise linear ontrol isuniquely determined by two points). If we extend the interior point equality onstraint(14d) to allow also for arguments u(τj) (whih is typially omitted, as only measurablein�uene of a ontrol funtion shall be onsidered), then the diret multiple shootingmethod an be applied to solve both problems (8) and (13).4 ExamplesIn the following we illustrate the potential of the numerial solution method desribed inthe previous setion by two examples, whih stem from our researh on delayed optimalontrol problems. The �rst example shows how numerial optimization an be used toanalyze the transition from instantaneous to delayed stok aumulation. The seondexample fouses on the in�uene of the initial path ξ on the optimal paths of a delayedoptimal ontrol problem.4.1 The transition from instantaneous to delayed apital aumulationThe �rst example is an optimal ontrol apital aumulation model with an investmentgestation lag. In fat, we onsider a delivery lag, i.e., an exogenously given delay betweeninvestment and apital aumulation, whih is disussed in detail in Winkler et al. (2005).Consider an eonomy with one non-produible input fator, for example, labor, whihis given in onstant amount l̄ and distributed to three linear-limitational produtionproesses. The �rst proess produes one unit of the onsumption good with one unit10



of labor. The seond proess ombines λ units of labor together with κ units of apitalto produe one unit of the onsumption good. The third proess reates one unit ofinvestment from one unit of labor. Thus, we derive
c1(t) = l1(t) , (20)
c2(t) = min

[

l2(t)

λ
,
k(t)

κ

]

, (21)
i(t) = l3(t) , (22)where li denote the amount of labor employed in proess i (i = 1, 2, 3). Assuming e�ientprodution (i.e., l2(t)/λ = k(t)/κ), and that the labor restrition holds with equality (i.e.,

∑

i li(t) = l̄ ∀ t), total onsumption c(t) = c1(t) + c2(t) yields:
c(t) = l̄ +

1 − λ

κ
k(t) − i(t) . (23)Further, we assume that investment at time t inreases the apital stok k delayed attime t+σ, and that the apital stok deteriorates at the positive and onstant rate γ

k̇(t) = i(t−σ) − γk(t) . (24)In addition, we assume that the apital stok k annot be onsumed (i.e., i(t) ≥ 0). As-suming that the objetive is to maximize intertemporal welfare, whih is the disountedin�nite integral of instantaneous welfare V (c(t)), the optimal ontrol problem reads:
max

k(t),i(t)

∫ ∞

0

V

(

l̄ +
1 − λ

κ
k(t) − i(t)

)

exp[−ρt] dt (25a)subjet to
k̇(t) = i(t−σ) − γk(t) , (25b)
i(t) ≥ 0 , (25)
l̄ −

λ

κ
k(t) − i(t) = c(t) −

1

κ
k(t) ≥ 0 , (25d)

i(t) = ξ(t) = 0 , t ∈ [−σ, 0) , (25e)
k(0) = 0 . (25f)The restrition (25d) ensures that c1 ≥ 0. When it is binding, all labor is used to employand maintain the apital stok. This implies that the onsumption good is exlusivelyprodued by the apital intensive proess (21). For the following alulations we hoose

V (c(t)) = ln c(t), l̄ = 262
3
, λ = 0.8, κ = 0.3, γ = 0.15, ρ = 0.1, tf = 60, k0 = 0 and theinitial path ξ(·) ≡ 0.The resulting optimization problem (25) is almost equivalent to the problem (1) dis-ussed in setion 2. As the additional inequality onstraint (25d) �ts diretly into thede�nition of path and ontrol onstraints (14), both reformulations (8) and (13) of (25)an be solved by the diret multiple shooting method.11



Delay σ (8) dense (8) sparse (13)
nw iters time nw iters time nw iters time0.5 605 47 208 605 47 110 724 20 100.4 755 50 419 755 50 224 904 23 240.3 1005 50 1094 1005 50 521 1204 23 530.2 1505 � � 1505 � � 1804 23 2870.1 3005 � � 3005 � � 3604 14 1331Tabelle 1: Comparison of the number of variables nw of the resulting NLP, number ofSQP iterations and omputing time in seonds needed to reah a KKT tolerane of 10−6.Ation (8) dense (8) sparse (13)time perent time perent time perentSensitivity generation 122 60.4% 30.0 26.7% 2.2 9.9%State integration 0.7 0.3% 0.5 0.4% 0.8 4.1%Condensing 3.2 1.6% 3.3 3.0% 8.8 39.8%Solution of QPs 74.4 36.8% 74.5 68.5% 7.6 35.5%Rest 1.76 0.9% 1.6 1.4% 2.3 10.5%Tabelle 2: A typial distribution of omputing times. The absolute times given in se-onds have been saled to be independent of the number of iterations.Whereas the optimal solutions of the two di�erent reformulations are, of ourse, iden-tial, they exhibit di�erent omputational performane. Table 1 shows a omparisonbetween the two approahes. All omputations have been performed with the state-of-the-art optimal ontrol software pakage MUSCOD-II, see Leineweber (1999), on aPentium notebook with 1.5 GHz. Note that for the alulations the underlying ontroldisretization grid has been hosen idential to the equidistant grid with distane σ. Theomputation times are given in seonds and desribe how long it took before an aurayof 10−6 of the Karush-Kuhn-Tuker (KKT) onditions was ahieved. Obviously, problemreformulation (13) is muh more suited for small time lags σ. The number of variables

nw of the non-linear program (NLP) is not the ruial indiator, though, as an be seenin table 1. Let us investigate in more detail what happens. Table 2 shows the distribu-tion of the omputing times for spei� tasks. The times spent on ondensing, onlinegraphis, onstraint redutions and other alulations are more or less the same. Alsothe time spent on state integration is ompared to the rest.The main di�erene is in the required time for alulating derivative information byinternal numerial di�erentiation and the solution of the ondensed quadrati programs(QPs). The size of the Jaobian matrix needed to alulate the sensitivities depends onthe number of variables and is, thus, muh higher for (8) than for (13). This e�et anbe redued by a fator of about four by exploiting sparsity5 (ompare middle olumn intables 1 and 2) with an advaned solver suh as DAESOL (see Bauer 1999), but there is5 A matrix is alled sparse if it ontains only few nonzero entries, otherwise it is alled dense.12



still a onsiderable di�erene to the formulation (13) with only one state and two ontrolvariables.The solution of the QPs in the SQP sheme is also muh more expensive for problem(8), as ondensing does not redue the number of variables atually given to the QP.If we do not perform ondensing for problem (13), the omputing time for �Solution ofQPs� goes up to 68 seonds and almost reahes the level of problem (8).To sum up, reformulation (13) is better suited for numerial alulations than (8),as it has a struture that an be better exploited by standard diret multiple shootingmethods. Hene, in the following we will only use this formulation for our alulations.We now solve the model to investigate the system dynamis dependent on the time-lag
σ. In partiular, we analyze the transition between instantaneous and delayed apitalaumulation by solving (25) respetively (13) for di�erent time-lags σ. Figure 1 showsoptimized paths for time-lags σ ranging from 0 to 0.5. Consistent with the �ndings insetion 2 the optimal paths onverge monotonially towards the stationary state for
σ = 0 and osillatory and exponentially damped for σ > 0.The ontinuous transition from monotoni to inreasingly osillatory optimal pathsfor inreasing time-lags σ an be seen in �gure 2. The exogenous parameters are identialto the alulations for �gure 1. The interval for the time-lag σ ∈ [0.1, 0.5] has been splitinto a grid of 400 equidistant points. For eah of these σs the optimal ontrol problemhas been solved and the resulting graphs have been omposed to the 3-dimensional plotsin �gure 2. They show how the optimal paths evolve from monotoni to osillatory pathsfor inreasing time-lag σ.4.2 The in�uene of the initial path on the optimal ontrol of delayed pollutionstok aumulationThe seond model, �rst introdued in Winkler (2004), disusses the ase of delayed pol-lution aumulation. The idea is that a joint output of prodution, whih is releasedinto the environment, aumulates there to a pollutant stok, whih exhibits a negativee�et on the eonomy. Although the following model has been inspired by the environ-mental problem of the emission of hloro�uoroarbons (CFCs), it is appliable to variousstok pollutants. CFCs are a prime example of delayed aumulating stok pollutants.They have been widely used as ooling agents in refrigeration and air onditioning, aspropellants in aerosols sprays and foamed plastis, and as solvents for organi mattersand ompounds. The CFCs have been valued beause of their favorable hemial andbiologial harateristis. They are hemially inert, not in�ammable and non-toxi. Un-fortunately, in the stratosphere the CFCs ause the depletion of the ozone layer, whihshields the earth's surfae from ultraviolet radiation. One released, the CFCs need 5�10years to reah a height of about 30 km, where the depletion of the ozone layer starts.Hene, the stok of stratospheri CFCs reats to the emissions of CFCs with a delay of5�10 years.Consider an eonomy with one non-produible input of prodution, for example, labor,whih is given in a onstant maximal amount l̄ and distributed among two produtionproesses in the eonomy. The �rst prodution proess produes a onsumption good c13
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with onstant returns to labor
c(t) = l1(t) , (26)where l1 denotes the amount of labor employed to the onsumption good prodution. Inaddition, the prodution of eah unit of onsumption good gives rise to one unit of grossemissions egross:
egross(t) = c(t) = l1(t) . (27)The seond prodution proess is an abatement proess, whih redues net emissions e

e(t) = egross(t) − a(t) , (28)where a denotes the amount of emissions abated. Denoting the amount of labor employedto the abatement proess by l2, the amount of abated emissions is given by:
a(t) =

√

αl2(t) , α > 0 . (29)The net emissions e are onsidered to aumulate the pollution stok s with a time-lag
σ. In addition, the pollution stok s deays at a onstant rate γ

ṡ(t) = e(t−σ) − γs(t) . (30)The stok of pollutant s exhibits a negative external e�et on the eonomy, as it reduesthe e�etive labor fore l:
l(t) = l̄ − βs(t)2 , β > 0 . (31)In the ase of CFCs, one might think of an inrease in the rate of skin aner withinreasing stok of the pollutant, whih prevents inreasingly more people from working.Note that the pollution stok s exhibits inreasing marginal damage. Given e�ientprodution (i.e., the labor onstraint holds with equality l(t) = l1(t)+l2(t)), onsumptionis given by
c(t) = c(e(t), s(t)) =

1

2

[

2e(t) − α +
√

4α (λ − βs(t)2 − e(t)) + α2
]

. (32)Again, we assume that the objetive is to maximize intertemporal welfare, whih is thedisounted in�nite integral of instantaneous welfare V (c(t)). Thus, the optimal ontrolproblem reads:
max

s(t),e(t)

∫ ∞

0

V

(

1

2

[

2e(t) − α +
√

4α (λ − βs(t)2 − e(t)) + α2
]

)

exp[−ρt] dt (33a)subjet to
ṡ(t) = e(t−σ) − γs(t) , (33b)
e(t) = ξ(t) , t ∈ [−σ, 0) , (33)
s(0) = s0 . (33d)16



Again, the optimization problem (33) is of the form (1) and will be solved by thediret multiple shooting method. Here, the fous is on the dependene of the optimalpaths on the initial path ξ. In partiular, this is relevant in the ontext of pollutionontrol, as the pollutant has in general already been emitted before pollution ontrolbeomes a�etive. Due to the additional moment of inertia of delayed ontrol problems,the past emission path has to be taken into aount. In the following we show the optimalemission paths for a numerial example of the optimization problem (33) for a onstant,a linear, and a ylial initial path. We hoose V = ln c(t), l̄ = 1, α = 1, β = 0.005,
γ = 0.1, ρ = 0.03, tf = 200, s0 = 10, ξconst = 1.47459, ξlin = 1 + 0.0815485(t + 10) and
ξcyc = 1.39815 + sin[0.9π(t + 10)]. To be able to ompare the results for these di�erentinitial paths, they have been hosen in suh a way that the stok of pollution at time
t = σ = 10 is idential for all three of them (s(10) = sσ = 13).Figure 3 shows the optimal paths of the pollution stok and the emissions in the aseof delayed stok aumulation (σ = 10) for the three di�erent initial paths ξ. The initialpaths ξ are shown as the emission paths in the time interval t ∈ [−10, 0] in �gure 3. Asalready mentioned earlier, the path for the pollution stok in the time interval t ∈ [0, 10]is ompletely determined by the initial value s0, the initial path ξ and the equationof motion (33b). Hene, pollution ontrol from time t = 0 on only a�ets the pollutionstok after time t = σ = 10. This shows a fundamental feature of delayed optimal ontrolproblems: the system dynamis exhibits an additional moment of inertia as the stokreats with a delay to the ontrol.In all three senarios the pollution stok rises from their initial value s0 = 10 to
sσ = 13 in the time interval t ∈ [0, 10]. Nevertheless, beause of the di�erent initialpaths ξ, the path of the pollution stok is onave (ξ onstant), onvex (ξ linear) orosillatory (ξ ylial). Variations in the initial path ξ ause variations in the optimalsystem dynamis, although the pollution stok sσ = 13 and the long-run stationary stateremains unaltered. This is best seen in the ase of a ylial initial path, whih induesorresponding osillations in the optimal emission path (�gure 3 bottom).5 DisussionIn this setion we disuss the robustness of our numerial approah with respet tohanges in model spei�ations and outline how the approah an be generalized. Fur-thermore, we show how our approah an be applied to numerially solve models whihare disussed in the eonomi literature on investment gestation lags, vintage apitalaumulation and habit formation.5.1 Robustness and possible extensions of the numerial proedureThe optimization problem (1) that we disussed so far is limited in the sense that itexhibits just one state and one ontrol variable and that the equation of motion is of apartiular simple form, exhibiting just one onstant delay in the ontrol variable. In thefollowing, we disuss how robust our approah is to more general model spei�ations.
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Considering optimal ontrol problems, whih exhibit additional �unlagged� state andontrol variables poses no problem from a numerial point of view. However, ompu-ting time may inrease with inreasing number of state and ontrol variables. Also theonsideration of additional lagged ontrol variables is straightforward. For eah laggedontrol variable, we have to introdue an additional ontrol variable and an additionalonstraint as desribed in setion 3.1 problem (13), no matter if it is di�erent ontrolvariables whih exhibit one lag eah or just one ontrol variable that enters the ontrolproblem with di�erent onstant lags. However, the numerial realization requires thatthe di�erent delays are multiples of one ommon fator.The treatment of lagged state variables an be performed similar to the proeduredesribed in setion 3.1 problem (8), again provided that the delays in the state variablesas well as in the ontrols are multiples of one ommon fator. The dimension of theresulting nonlinear optimization problems may be very large, in partiular if the ommonfator is small ompared to the time horizon tf .In the optimization problem (1) we assumed a partiular simple equation of motionwhih was linear in the state and the lagged ontrol variables. From a numerial pointof view, onsidering non-linear equations of motion poses no additional problems as thefeliity funtion f(·) is in general non-linear and, thus, we have a non-linear optimizationproblem anyway.Problems with time or state-dependent delays normally annot be reformulated in theway disussed in 3.1. For approahes to their treatment see, e.g., Bok & Shlöder (1984),where a diret approah is ompared to an indiret approah resulting in nonlinearboundary value problems with retarded and advaned terms. Numerial results using ashooting method are reported.For the aforementioned ases in whih our approah is appliable, and for an inreasingnumber of unknowns, the Newton-type based diret multiple shooting method an beexpeted to outperform algorithms that are built upon a omponentwise optimization,as proposed, e.g., in Bouekkine et al. (2001) in the ontext of a relaxed Gauÿ-Seideliteration sheme. Another advantage of our approah ompared to disrete-time shemesis the possible use of fast error-ontrolled adaptive integrators.5.2 Appliations to eonomi problems with delayed problem struturesIn the introdution we brie�y outlined the eonomi literature on investment gestationlags, vintage (human) apital aumulation and habit formation. In the following wedisuss how our approah an ontribute to this literature.Investment gestation lagsAs already mentioned in the introdution, the literature on investment gestation lagsan be further divided in delivery lags and time-to-build. By modeling investment as aontrol variable, the numeri proedure developed in this paper an diretly be appliedto the problem of delivery lags, as disussed by one of our examples. However, it seemsthat, as our approah an only handle lags in the ontrol variables, it is not suited for19



the numerial solution of time-to-build models whih exhibit a delay in the state variable(e.g., Asea & Zak 1999). In fat, we annot numerially solve Asea & Zak's (1999) modelspei�ation, but we argue that this is rather due to their spei� assumption aboutdepreiation than to the time-to-build feature in general. To see this we reall theirmodel struture in our notation. The objetive is to maximize the disounted in�niteintegral over instantaneous utility u(·) derived from onsumption c(t) given the followingequation of motion:
k̇(t) = f(k(t − σ)) − δk(t − σ) − c(t) , (34)where k(t) denotes the apital stok, f(·) is a neolassial prodution funtion and δ is theonstant rate of depreiation. By introduing the produtive apital stok x(t) = k(t−σ)and investment i(t) = f(k(t − σ)) − c(t), we an write the equation of motion (34) as:
ẋ(t) = i(t − σ) − δx(t − σ) . (35)In this notation, we see that Asea & Zak's (1999) model spei�ation is in fat rathera delivery lag than a time-to-build spei�ation with a rather unusual depreiation rule(i.e., the produtive apital stok depreiates time-lagged). Applying the standard eo-nomi depreiation rule would yield an equation of motion with a delay in the ontrolvariable investment only, whih is exatly of the type (1b).6Moreover, we argue that our approah an be used for the analysis of more generaltime-to-build spei�ations. As mentioned in the introdution, the di�erene betweendelivery lags and time-to-build is that in the former ase all investment is made inadvane, while in the latter ase investment is distributed over the proess of reationof new apital goods. Thus, a more general time-to-build spei�ation would be:
ẋ(t) = i(t − σ) − δx(t) , (36a)
c(t) = f(x(t)) −

∫ t

t−σ

m(t − s)i(s) ds . (36b)The interpretation is straightforward. The reation of apital goods needs the �xedtime-span σ. Denoting by i(t) the amount of new apital goods of whih the produtionstarted at time t and assuming depreiation of the apital stok at the onstant rate δ,the aumulation of apital is governed by the delayed di�erential-di�erene equation(36a). The funtion m(t), with arrier [0, σ], denotes the resoure input needed at time
t for new apital goods whih were started to produe at time 0. Assuming only oneommodity that an be both onsumed and used for apital prodution, we ahieveequation (36b). By disretization of the integral in equation (36b), we an ahieve aform whih is solvable by our numerial approah. If we divide the prodution proessof new apital, whih needs the time-span σ, into N steps, eah of the same duration σ

N
,6 In their introdution Asea & Zak (1999) justify their model spei�ation by analytial tratability.Ironially, their spei�ation (34) is easier to analyze analytially, while it poses more di�ultiesnumerially. 20



we an write (36b):
c(t) ≈ f(x(t)) −

N−1
∑

n=0

mni
(

t − σ + n
σ

N

) σ

N
, (37)where mn = m

(

σ − n σ
N

) is the amount of resoure input needed at the time n σ
N
of theprodution proess of new apital goods. Thus, we ahieve an optimal ontrol problemwith one stok and one ontrol variable, where the ontrol variable appears with Ndi�erent but onstant lags.Vintage (human) apital aumulationFor the sake of simpliity we only onsider physial apital. However, there is a strongformal orrespondene between vintage physial and vintage human apital (ompare,e.g., Bouekkine et al. 2004).As outlined by Benhabib & Rustihini (1991), vintage apital models an be hara-terized by general, non-exponential rates of depreiation, whih an inlude learning byusing or gestation lags. Denoting the produtive apital stok at time t by k(t) andinvestment at time t by i(t), the objetive is one again to maximize the disountedin�nite integral over instantaneous utility u(·) derived from onsumption c(t), where

c(t) = f(k(t)) − i(t), with f(·) being a neolassial prodution funtion. The apitalstok k(t) is given by:
k(t) =

∫ t

−∞

i(s)m(t − s) ds , (38)where m(t) (t ≥ 0) denotes the depreiation shedule. Di�erentiating with respet totime yields the following equation of motion:
k̇ =

∫ t

−∞

i(s)
d

dt
(m(t − s)) ds + i(t)m(0) . (39)The spei�ation with a onstant rate of depreiation δ is ahieved by setting m(t) =

exp[−δt].In the ase that apital does not depreiate but has a onstant lifetime σ (i.e., theone-hoss shay depreiation), m(t) = θ(σ− t), with θ(t) the Heaviside step funtion (i.e.,
θ(t) = 1, if t ≥ 0, and θ(t) = 0, else) and, thus, the equation of motion yields

k̇(t) = i(t) − i(t − σ) , (40)whih results in an optimal ontrol problem that an be solved diretly by our numerialalgorithm.In the general ase of equation (39), we an approximate the integral analogously tothe ase of investment gestation lags, if limt→−∞
d
dt

m(t) = 0:
k̇(t) = i(t)m(0) +

∫ t−σ

−∞

i(s)
d

dt
(m(t − s)) ds +

∫ t

t−σ

i(s)
d

dt
(m(t − s)) ds

≈ i(t)m(0) +

∫ t

t−σ

i(s)
d

dt
(m(t − s)) ds , for σ su�iently large . (41)21



The integral in equation (41) is of the same form as the integral in equation (36b) andan be disretized analogously yielding
k̇(t) ≈ i(t)m(0) +

N−1
∑

n=0

ṁni
(

t − σ + n
σ

N

) σ

N
, (42)where ṁn = d

dt
m(t)|(σ−n σ

N ). Again, we ahieve an optimal ontrol problem with onestok and one ontrol variable, where the ontrol variable appears with N di�erent butonstant lags.Habit formationIn models of habit formation, instantaneous utility u(·) is derived not only from onsump-tion at time t but also depends on some stok of habits h(t). In general, instantaneousutility depends negatively on the stok of habits (i.e., ∂u
∂h

< 0). As an example onsiderthe spei�ation of instantaneous utility of Carroll et al. (2000):
u(c(t), h(t)) =

(

c(t)
h(t)γ

)1−θ

1 − θ
, (43)where θ is the oe�ient of relative risk aversion and γ measure how muh weight is givento the absolute level of onsumption in omparison to the onsumption level relative tothe habit stok.The habit stok is some general mean of past onsumption levels. In the most generalform we an write h(t) as

h(t) =

∫ t

−∞

c(s)m(t − s) ds , (44)where m(t) denotes the weighting funtion. Obviously, equation (44) is formally identialto equation (38) and, thus, following the same line of argument all weighting funtions
m(t) with limt→−∞

d
dt

m(t) = 0 an be approximated in a way to be numerially solvablewith our approah.A speial ase, for whih our numerial algorithm is diretly appliable, is ahievedby the weighting funtion m(t) = 1
σ
θ(σ − t). This is the diret analogon to the one-hossshay depreiation rule in the vintage apital ontext and means that the habit stok attime t is the average of onsumption over the interval [t−σ, t], whih yields the followingequation of motion for the habit stok:

ḣ =
1

σ
[c(t) − c(t − σ)] . (45)6 ConlusionsAs well known from the literature, delayed optimal ontrol problems with one stokand one ontrol variable exhibit in general a qualitatively di�erent system dynamis22
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