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1 Introdu
tionMany intertemporal e
onomi
 appli
ations exhibit the mathemati
al form of optimal
ontrol problems, where an obje
tive fun
tion (e.g., intertemporal welfare, pro�t, 
osts,et
.) is sought to be maximized or minimized subje
t to a system of equations of motion,whi
h determine the intera
tion of the sto
k and the 
ontrol variables. Re
ently, e
ono-mists 
onsider in
reasingly models, where e
onomi
 systems do not rea
t instantly butwith a delay to 
hanges in external in�uen
es (e.g., investment-lags, transportation-lags,lags in habit formation, et
.).One way to deal with su
h a delayed stru
ture in 
ontinuous time is the use of de-layed di�erential equations. However, the use of delayed di�erential equations in optimal
ontrol frameworks exhibits severe analyti
al and numeri
al di�
ulties. In general, eventhe linear approximation of the system dynami
s around the stationary state is gover-ned by a system of di�erential-di�eren
e equations of neutral type, whi
h is, in general,not analyti
ally solvable. As a 
onsequen
e, numeri
al optimization methods play animportant role in analyzing and understanding the behavior of delayed optimal 
ontrolproblems.In this paper we show how optimal 
ontrol problems in 
ontinuous time with onesto
k and one 
ontrol variable with a 
onstant time delay 
an be solved numeri
ally. Wereformulate the original problem in two di�erent ways into 
onstrained 
ontrol problemsin ordinary di�erential equations with higher dimensional 
ontrol fun
tions respe
tivelystate variables. Thus, we avoid the solution of the delayed system at the 
ost of higherdimensionality. Furthermore, we show how to solve the reformulated 
ontrol problemsby Bo
k's dire
t multiple shooting method. The power of the solution method is demon-strated by treating two typi
al e
onomi
 examples. Furthermore, we dis
uss how ourframework relates to the following di�erent 
lasses of e
onomi
 problems dis
ussed inthe literature.One strand of e
onomi
 literature, where delayed stru
tures play a 
ru
ial role areinvestment gestation lags. Following a denotation, whi
h is, for example, used by Altu�g(1993) and Peeters (1996), one 
an further distinguish between delivery lags (i.e., invest-ment for new 
apital goods is made at time t but the new 
apital goods need some time
σ to be delivered and, thus, to be used produ
tively), and time-to-build (i.e., 
apitalgoods need some time σ over whi
h they require investments in their produ
tion). Tothe best of our knowledge, El-Hodiri et al. (1972), who derive a generalized maximumprin
iple for a growth model with heterogeneous 
apital goods and exogenously givenand 
onstant delays between 
ontrol and state variables, is the only 
ontribution of theformer 
lass applying delayed di�erential equations in a 
ontinuous time framework.However, more re
ent model spe
i�
ations in dis
rete time in
lude, for example, Altu�g(1993) and Peeters (1996).The term time-to-build was 
oined by Kydland & Pres
ott (1982) who, following anidea �rst posed by Kale
ki (1935), empiri
ally analyzed in how far time-to-build 
ouldexplain real business 
y
les observed in reality. Rusti
hini (1989) and Asea & Zak (1999)showed in simple delayed 
ontinuous time optimal 
ontrol models with one 
apital good(but a di�erent lag stru
ture) that the time-to-build feature is the driving for
e for the1



os
illatory system dynami
s.1Another strand of the literature where delayed di�erential equations were su

essfullyapplied are vintage 
apital growth models. In vintage 
apital models, 
apital of di�erentage may exhibit di�erent produ
tivity due to te
hni
al progress and/or e�e
ts of non-exponential depre
iation. The general problem in vintage 
apital models is keeping tra
kof the 
apital goods of di�erent ages, whi
h 
an be formalized by using delayed di�eren-tial equations. Benhabib & Rusti
hini (1991), Bou
ekkine et al. (1997a) and Bou
ekkineet al. (1997b) assume linear utility and, thus, avoid the problem of fun
tional di�erentialequations of neutral type. This assumption is relaxed in Bou
ekkine et al. (1998, 2001)and Bou
ekkine et al. (2005). While Bou
ekkine et al. (1998, 2001) rather 
on
entrate onthe numeri
al solution of spe
i�
 vintage 
apital spe
i�
ations, Bou
ekkine et al. (2005)
hara
terize analyti
ally the 
omplete dynami
s of a simple AK vintage 
apital modelwith 
onstant lifetime of the 
apital good (i.e., one-hoss shay depre
iation). Analogouslyto age stru
tures in physi
al 
apital, one 
an expli
itly 
onsider age stru
tures in human
apital, whi
h are generated by endogenous s
hooling and retirement de
isions of thee
onomi
 agents. De la Croix & Li
andro (1999), Bou
ekkine et al. (2002) and Bou
ek-kine et al. (2004) investigate age stru
tures in delayed 
ontinuous time optimal 
ontrolproblems.In addition, delayed optimal 
ontrol in 
ontinuous time 
an 
ontribute to strands ofe
onomi
 literature, where it has not been applied so far. As an example think of habitformation, where time lags also play a 
ru
ial role. With habit formation, utility dependsnot only on 
urrent out
omes but also on a sto
k of habits, whi
h is in general someweighted average of previous out
omes (e.g., Boyer 1978, Carroll et al. 2000). Althoughdelayed di�erential equations have, to the best of our knowledge, not been used so farin the e
onomi
 literature to investigate habit formation,2 we brie�y dis
uss this issuein se
tion 5.Other potential appli
ations are in the �eld of environmental e
onomi
s, where dama-ges from sto
ks of pollution are 
onsidered. Often these sto
ks do not instantaneouslya

umulate to the emission of the pollutants but need some time due to transportationpro
esses. Prime examples in
lude ground water 
ontamination by ex
essive fertilizingand the destru
tion of the ozone layer by the emission of CFCs. One of our examples inse
tion 4 refers to the CFC 
ase.The remainder of the paper is stru
tured as follows. Se
tion 2 de�nes the 
lass ofdelayed optimal 
ontrol problems we seek to solve numeri
ally. Furthermore, we reviewsome qualitative properties of the optimal path and outline the di�
ulties for numeri
alsolution methods. In se
tion 3 we reformulate the optimal 
ontrol problem in a suita-ble way to allow an appli
ation of the dire
t multiple shooting method. Two examplesdemonstrate the range of appli
ation for the solution method in se
tion 4. In se
tion 5,we dis
uss the robustness of our approa
h to 
hanges in the model spe
i�
ations andshow how our approa
h 
an be applied to di�erent 
lasses of e
onomi
 problems. Finally,1 However, we will argue in se
tion 5 that in the denotation of Altu�g (1993) and Peeters (1996) theirformulation is rather of the delivery lag than the time-to-build type.2 In Collard et al. (2004) it is mentioned as an example for the appli
ation of delayed di�erentialequations in e
onomi
 optimization models but not further investigated.2



se
tion 6 
on
ludes.2 A generi
 optimal 
ontrol problem with delayed equation ofmotionWe investigate a 
lass of optimal 
ontrol problems with one sto
k and one 
ontrol variableand a 
ontrol-delayed equation of motion of the sto
k variable. As usual in e
onomi
appli
ations, we 
onsider the maximization of an obje
tive fun
tional W , whi
h is thedis
ounted in�nite integral over an autonomous feli
ity fun
tion F . With a sto
k variable
x and a 
ontrol variable u, the optimal 
ontrol problem reads

max
x(t),u(t)

W =

∫ ∞

0

F (x(t), u(t)) exp[−ρt] dt (1a)subje
t to
ẋ(t) = u(t−σ) − γx(t) , (1b)
u(t) ∈ [α, β], α, β ∈ R , (1
)
x(0) = x0 , (1d)
u(t) = ξ(t) , t ∈ [−σ, 0) , (1e)where ρ denotes the 
onstant and positive dis
ount rate, σ is a 
onstant delay or time-lag, and γ is a 
onstant de
ay rate. In addition, F is assumed to be twi
e 
ontinuouslydi�erentiable with respe
t to both arguments.The 
ru
ial feature is that the 
ontrol u(·) enters with a delay σ as u(t − σ) in 
ons-traint (1b), while it is evaluated at time t as u(t) in the obje
tive fun
tional (1a). Ingeneral, a di�erential equation with a delay in the state variables or 
ontrol fun
tions isreferred to as a delayed di�erential-di�eren
e equation (DDE). Other 
ommon terms areretarded linear fun
tional di�erential equation or di�erential-di�eren
e equation of re-tarded type. For an introdu
tion to DDEs see Asea & Zak (1999: se
tion 2) and Gandolfo(1996: 
hapter 27). A detailed exposition of (linear) fun
tional di�erential equations isgiven in Bellman & Cooke (1963), Driver (1977), Hale (1977), Kolmanovskii & Nosov(1986) and Kolmanovskii & Myshkis (1999).In 
ontrast to models with instantaneous equations of motion, besides an initial value

x0 for the sto
k x, also an initial path ξ for the 
ontrol u(·) in the time interval [−σ, 0)has to be spe
i�ed (or also optimized). Note that the path of the sto
k x in the timeinterval t ∈ [0, σ] is 
ompletely determined by the initial sto
k x0, the initial path ξ(·),and the retarded equation of motion in (1). Thus, optimal 
ontrol problems whi
h aregoverned by a retarded equation of motion exhibit an additional moment of inertia, asthe variation of the sto
k rea
ts with a delay to the 
ontrol. Although the equation ofmotion is very spe
i�
, the maximization problem (1) represents numerous e
onomi
models as we outline by two examples in se
tion 4 and dis
uss further in se
tion 5.Given that the feli
ity fun
tion F is stri
tly 
on
ave and the restri
tions (1
) on the
ontrol u are not binding, one obtains the following system of di�erential equations for3



an optimal solution from the ne
essary 
onditions and the equation of motion for thesto
k x (1b):
u̇(t) =

Fu(t)

Fuu(t)
(γ + ρ) +

Fx(t+σ)

Fuu(t)
exp[−ρσ] +

Fxu(t)

Fxx(t)
(γx(t) − u(t−σ)) ,

ẋ(t) = u(t−σ) − γx(t) .

(2)Note that u̇ and ẋ also depend on advan
ed (i.e., at a later time) and on retarded (i.e., atan earlier time) variables. Hen
e, (2) forms a system of fun
tional di�erential equationsof neutral type. Obviously, a possible approa
h to numeri
ally solve the optimizationproblem (1) is to numeri
ally solve the system of fun
tional di�erential equations (2).However, re
all that the system (2) is only the solution of the original optimization pro-blem (1) in the 
ase of an interior solution. Moreover, to determine a unique solution for(2), additional information about the �rst derivatives ẋ and u̇ at some point t is neededa priori. Therefore, we shall introdu
e a dire
t approa
h in this paper to numeri
allysolve the original 
ontrol problem (1) dire
tly.Before we show how to reformulate the optimization problem (1) in order to derive anumeri
al solution, we brie�y re
all some of its analyti
al properties, whi
h are derivedin detail in Winkler (2004).First, the stationary state (x⋆, u⋆) of the system of fun
tional di�erential equations(2), whi
h 
an be be shown to exist and is also unique if the feli
ity fun
tion F satis�esInada 
onditions, is given by the following (impli
it) equations:
−

Fx(x
⋆, u⋆)

Fu(x⋆, u⋆)
= (γ + ρ) exp[ρσ] ,

u⋆ = γx⋆ .

(3)Se
ond, linearizing the system of fun
tional di�erential equations (2) around the sta-tionary state (x⋆, u⋆) yields a quasi-polynomial as 
hara
teristi
 equation, whi
h has ingeneral an in�nite number of (
omplex) roots. However, the 
hara
teristi
 equation redu-
es to a simple quadrati
 equation with one positive and one negative real 
hara
teristi
root for the spe
ial 
ase that the partial derivative Fxu(x
⋆, u⋆) = 0.Although the 
hara
teristi
 roots are not analyti
ally solvable, the 
hara
teristi
 equa-tion 
an be shown to exhibit an in�nite number of 
omplex solutions with positive realparts and an in�nite number of 
omplex solutions with negative real parts. As a 
on-sequen
e, the stationary state (x⋆, u⋆) is a saddle point and, thus, for all initial sto
ks

x0 and all initial 
ontrol paths ξ, there exists a unique optimal path whi
h 
onvergesasymptoti
ally towards the stationary state.3In summary, we have monotoni
 
onvergen
e if the feli
ity fun
tion F is additivelyseparable, otherwise os
illations may o

ur.3 If the 
hara
teristi
 equation exhibits purely imaginary roots (i.e., 
omplex roots with vanishing realparts), the system dynami
s may exhibit so 
alled limit-
y
les. That is, the optimal paths os
illatearound the stationary state without 
onverging towards or diverging from it. Limit-
y
les in the 
aseof delayed optimal 
ontrol problems have been dis
ussed by Rusti
hini (1989) and Asea & Zak (1999).4



3 Numeri
al solution of the optimal 
ontrol problemDespite the analyti
al derivation of the qualitative properties of the optimal path, eventhe linearized approximation around the stationary state of the system of fun
tionaldi�erential equations (2) is not analyti
ally solvable. As a 
onsequen
e, numeri
al op-timization methods play an important role to analyze and understand the behavior ofdelayed optimal 
ontrol problems. In the following se
tion we show two ways how toreformulate the original problem in order to make it tra
table for Bo
k's dire
t multipleshooting method, a highly e�
ient algorithm for the numeri
al solution of 
onstrained op-timal 
ontrol problems in ordinary di�erential equations (ODE) and di�erential-algebrai
equations (DAE).3.1 Reformulation of the delayed optimal 
ontrol problemFirst, we have to restri
t the time horizon for the numeri
al optimization to a �nitevalue tf , a 
aveat every numeri
al algorithm has to deal with. This poses no majorproblems as, a

ording to the stability properties of the optimal solution outlined inthe previous se
tion, the results will be arbitrarily 
lose to the problem with an in�nitetime horizon if tf is su�
iently large. As we shall see, it is most 
onvenient to set tf tobe a (large) multiple of the time-lag σ. In the delayed 
ontrol problem (1), the delay
σ solely appears in the 
ontrol variable in the equation of motion (1b). Hen
e, it ispossible to reformulate this delayed optimal 
ontrol problem with one state variable intoan instantaneous optimal 
ontrol problem with several state variables. Thus, we 
anavoid to expli
itly numeri
ally treat the time-lag at the 
ost of higher dimensionality.4To see this, we split the time horizon tf into n parts ea
h the length of the delay σand formulate the equation of motion separately in ea
h of the resulting intervals. Thus,we obtain for the �rst interval t ∈ [0, σ)

ẋ(t) = ξ(t−σ) − γx(t) , t ∈ [0, σ) , (4)where ξ is the initial 
ontrol path in the time interval t ∈ [−σ, 0). In the se
ond interval
t ∈ [σ, 2σ) the equation of motion yields

ẋ(t) = u(t−σ) − γx(t) , t ∈ [σ, 2σ) , (5)and so on.The 
lue is to interpret ea
h of the resulting DDEs as an independent di�erentialequation. By introdu
ing n new sto
k variables xl and n−1 new 
ontrol variables ul with
xl(t) = x(t+(l−1)σ) , ul(t) = u(t+(l−1)σ) , t ∈ [0, σ) , (6)4 This method is a straightforward generalization of the well-known method of steps in Bellman &Cooke (1963) to solve delayed di�erential-di�eren
e equations. The method of steps is also applied inBou
ekkine et al. (1997a) to numeri
ally solve a system of delayed di�erential-di�eren
e equations.5



we a
hieve the following system of ordinary di�erential equations:
ẋ1(t) = ξ(t−σ) − γx1(t) , t ∈ [0, σ) ,

ẋ2(t) = u1(t) − γx2(t) , t ∈ [0, σ) ,... (7)
ẋn−1(t) = un−2(t) − γxn−1(t) , t ∈ [0, σ) ,

ẋn(t) = un−1(t) − γxn(t) , t ∈ [0, σ) ,Thus, we 
an reformulate the original optimization problem (1) as:
max

xl(t),ul(t)

∫ σ

0

n
∑

l=1

F (xl(t), ul(t)) exp[−ρ(t + σ(l−1))] dt (8a)subje
t to
ẋ1(t) = ξ(t−σ) − γx1(t) ,... (8b)
ẋn(t) = un−1(t) − γxn(t) ,and the restri
tions for the 
ontrol variables ul:
ul(t) ∈ [α, β], α, β ∈ R . (8
)Furthermore we have to introdu
e additional 
oupled boundary 
onditions for the sto
kvariables xl at time t = 0 and t = σ to ensure the 
ontinuity of the sto
k variable x ofthe original problem:
xl(σ) = xl+1(0) , l = 1, . . . , n − 1 . (8d)Finally, the 
ondition (1d) for the initial sto
k x0 translates into
x1(0) = x0 . (8e)Note that we need only to determine n − 1 
ontrol paths in the interval [0, σ] as theoptimal path for the sto
k in the interval t ∈ [(n−1)σ, nσ) is 
ompletely determined bythe sto
k at t = (n−1)σ, xn−1(σ), the 
ontrol un−1(t) and the equation of motion.Remark 1. In addition to transforming the retarded optimization problem in a suita-ble form for numeri
al solution methods, the reformulation (8) also gives an intuitiveexplanation why the optimal 
ontrol problem (1)(i) exhibits an in�nite number of 
hara
teristi
 roots in general, and(ii) exhibits only two 
hara
teristi
 roots in the 
ase that the feli
ity fun
tion F isadditively separable. 6



To see (i), re
all that the 
hara
teristi
 equation for an optimal 
ontrol problem with nsto
k variables is a polynomial of order 2n, whi
h has in general 2n 
hara
teristi
 roots(although it may be less than 2n distin
t roots as there may be multiple roots). Indepen-dent of the time-lag σ, n tends to in�nity if we extend the time horizon tf → ∞. Thus,for an in�nite time horizon tf , the retarded optimization problem (1) with one sto
kvariable is equivalent to an ordinary optimal 
ontrol with an in�nite number of sto
kvariables, resulting in a 
hara
teristi
 equation with an in�nite number of 
hara
teristi
roots.To see (ii), re
all that F is additively separable is equivalent to F (x, u) = G(x)+H(u).Thus, the obje
tive fun
tional (8a) yields for an in�nite time horizon
max

xl(t),ul(t)

∫ σ

0

∞
∑

l=1

[G(xl(t)) + H(ul(t))] exp[−ρ(t + σ(l−1))] dt . (9)
G(x1(t)) is independent of variations in the 
ontrol variables ul, l ≥ 1, as it is 
ompletelydetermined by the initial path ξ, the initial sto
k x0 and the equation of motion. The-refore, it is su�
ient to maximize the obje
tive fun
tional without the term exhibiting
G(x1(t)). Hen
e, we 
an rearrange the remaining terms to yield:

max
xl(t),ul(t)

∫ σ

0

∞
∑

l=2

[G(xl(t)) + H(ul−1(t)) exp[ρσ]] exp[−ρ(t + σ(l−1))] dt (10)Transforming the obje
tive fun
tion ba
k to one sto
k and one 
ontrol variable yields:
max

x(t),u(t)

∫ ∞

0

[G(x(t+σ)) exp[−ρσ] + H(u(t))] exp[−ρt] dt (11)Introdu
ing a new sto
k variable x̂(t) = x(t+σ) we a
hieve the following ordinary optimal
ontrol problem:
max

x(t),u(t)

∫ ∞

0

[G(x̂(t)) exp[−ρσ] + H(u(t))] exp[−ρt] dt (12a)subje
t to
˙̂x(t) = u(t) − γx̂(t) , (12b)
u(t) ∈ [α, β], α, β ∈ R , (12
)
x̂(0) = xσ , (12d)where xσ is the value of the original sto
k variable x at time σ (whi
h is 
ompletelydetermined by x0, ξ and the original equation of motion). Thus, the retarded optimal
ontrol problem (1) is formally equivalent to the ordinary optimal 
ontrol problem (12)with one sto
k and one 
ontrol variable. As a 
onsequen
e, its 
hara
teristi
 equation isa polynomial of se
ond order, whi
h is known to exhibit two 
hara
teristi
 roots.

7



Remark 2. Despite the intuitive explanation for the qualitative system dynami
s in thegeneral 
ase and in the 
ase of an additively separable feli
ity fun
tion F , the reformula-tion (8) does not promote the analyti
al derivation of the optimal solution in the general
ase. This holds as the additional 
oupled boundary 
onstraints (8d), whi
h guaranteethe 
ontinuity of the original sto
k variable x, pose severe obsta
les for an analyti
alsolution.Problem (8) is useful for analyti
al 
onsiderations as outlined in Remark 1 and 
an besolved by the dire
t multiple shooting method as will be shown in se
tion 3.2. However,for a given time horizon tf , the number n of di�erential state and 
ontrol fun
tionsbe
omes quite large for small values of the time-lag σ. Therefore, we also 
onsider anotherreformulation of the problem (1) with �xed dimension of state and 
ontrols.To this end we introdu
e an additional 
ontrol fun
tion. While u2(t) is the same as u(t)before and denotes the 
ontrol at time t, u1(t) represents the retarded 
ontrol u(t−σ).Thus, u1 and u2 are 
oupled by u1(t) = u2(t−σ) for t ≥ σ and u1(t) = ξ(t) for 0 ≤ t ≤ σ.Then, problem (1) is equivalent to
max

x(t),u1(t),u2(t)

∫ ∞

0

F (x(t), u2(t)) exp[−ρt] dt (13a)subje
t to
ẋ(t) = u1(t) − γx(t) (13b)
u1(t), u2(t) ∈ [α, β], α, β ∈ R (13
)
x(0) = x0 , (13d)
u1(t) = ξ(t − σ), 0 ≤ t < σ, (13e)
u1(t) = u2(t − σ), t ≥ σ. (13f)Problem (13) still 
ontains a retarded term, but it has moved from the di�erentialequation (13b) to a 
onstraint on the 
ontrols (13f), that 
an be dealt with e�
ientlyby the dire
t multiple shooting method. In 
ontrast to the reformulation (8), only oneadditional 
ontrol variable has been introdu
ed independently of the time horizon tf andthe time-lag σ.3.2 Bo
k's dire
t multiple shooting methodIn order to solve the reformulated optimal 
ontrol problems (8) and (13) numeri
ally, weapply the dire
t multiple shooting method originally developed by Bo
k and his 
oworkerPlitt (1981), Bo
k & Plitt (1984). Let us 
onsider an optimal 
ontrol problem of the form
max

x(t),u(t)

∫ tf

t0

L(x(t), u(t)) dt (14a)
8



subje
t to
ẋ(t) = f(x(t), u(t)), t ∈ [t0, tf ], (14b)

0 ≤ c(x(t), u(t)), t ∈ [t0, tf ], (14
)
0 = req(x(τ0), x(τ1), . . . , x(τm)), (14d)
0 ≤ rieq(x(τ0), x(τ1), . . . , x(τm)), (14e)with all o

urring fun
tions twi
e di�erentiable.We approximate the nu-dimensional 
ontrol fun
tion u(·) by fun
tions with lo
al sup-port and �nitely many parameters. To this end we introdu
e a time grid

t0 = τ0 < τ1 < · · · < τm = tf (15)and split the time horizon [t0, tf ] into m so 
alled multiple shooting intervals [τj−1, τj],where j = 1, . . . , m. On ea
h multiple shooting interval we de�ne a typi
ally low dimen-sional 
ontrol parameterization, e.g., a linear approximation φj(t) of the 
ontrols u(t)by
φj(t) := qj

1 + qj
2t , t ∈ [τj−1, τj] , (16)with ve
tor valued parameters qj .We introdu
e m variables sj ∈ Rnx as initial values for the di�erential states on ea
hmultiple shooting interval [τj−1, τj]. The ODE (14b) is solved independently on everyinterval with initial values

x(τj) = sj , j = 0, . . . , m − 1 . (17)To ensure 
ontinuous state traje
tories x(·), the values at the end of interval j, obtainedby integration with initial value sj and 
ontrol parameter qj , have to 
oin
ide with theinitial state ve
tor of the next interval j + 1:
x(τj+1; s

j , qj) = sj+1 , j = 0, . . . , m − 1 . (18)These so-
alled mat
hing 
onditions (18) allow to eliminate the additional degrees offreedom introdu
ed by the supplementary optimization parameters sj by 
ondensing (fordetails see Bo
k & Plitt 1984). Note that the 
onditions (18) are required to be satis�edonly at the �nal solution of the problem and not during intermediate iterations of theoptimization algorithm. Therefore, the dire
t multiple shooting method is also referredto as an all-at-on
e-approa
h, solving the simulation and optimization task at the sametime. This allows to in
orporate expert knowledge about the traje
tory behavior into theinitial values of the state traje
tory and typi
ally leads to good 
onvergen
e propertiesof the method. The path and 
ontrol 
onstraints (14
) have to hold on the whole timeinterval [t0, tf ]. To deal with this numeri
ally, in the dire
t multiple shooting methodthese 
onstraints are formulated as point 
onstraints on a suitable �nite time grid.Following these lines, problem (14) is now an optimization problem in the variables
qj and sj. It 
ontains equality 
onstraints that stem from the interior point equality9




onstraints (14d) and the mat
hing 
onditions (18), and inequality 
onstraints that stemfrom the interior point equality 
onstraints (14e) and the dis
retized path 
onstraints(14
).Subsuming all variables sj and qj into w ∈ Rnw and rewriting the obje
tive fun
tionas well as the 
onstraints in adequate fun
tions F, G and H , we obtain a non-linearprogram (NLP)
min

w
F (w) subje
t to {

G(w) = 0
H(w) ≥ 0

, (19)that 
an be solved by tailored methods. For example, by sequential quadrati
 program-ming (SQP) in 
ombination with an e�
ient evaluation of all o

urring fun
tions, andthe generation of derivatives, for example, by internal numeri
al di�erentiation. See Lei-neweber et al. (2003) for details and further referen
es.Now, let us 
onsider an appli
ation of the dire
t multiple shooting method to thereformulations (8) and (13) of the original problem (1). Obviously, (8) is of the form(14) and 
an, thus, be solved with the dire
t multiple shooting method as des
ribedabove. However, reformulation (13) 
ontains an additional 
onstraint (13f), whi
h is not
ontained in the standard problem formulation (14).Here, the approximation of the 
ontrol fun
tions allows to guarantee (13f) � if the
orresponding entries of u1(t) in qj and the ones of u2(t) in qj−1 mat
h at all times τj,then the equation holds on the whole time horizon (as ea
h pie
ewise linear 
ontrol isuniquely determined by two points). If we extend the interior point equality 
onstraint(14d) to allow also for arguments u(τj) (whi
h is typi
ally omitted, as only measurablein�uen
e of a 
ontrol fun
tion shall be 
onsidered), then the dire
t multiple shootingmethod 
an be applied to solve both problems (8) and (13).4 ExamplesIn the following we illustrate the potential of the numeri
al solution method des
ribed inthe previous se
tion by two examples, whi
h stem from our resear
h on delayed optimal
ontrol problems. The �rst example shows how numeri
al optimization 
an be used toanalyze the transition from instantaneous to delayed sto
k a

umulation. The se
ondexample fo
uses on the in�uen
e of the initial path ξ on the optimal paths of a delayedoptimal 
ontrol problem.4.1 The transition from instantaneous to delayed 
apital a

umulationThe �rst example is an optimal 
ontrol 
apital a

umulation model with an investmentgestation lag. In fa
t, we 
onsider a delivery lag, i.e., an exogenously given delay betweeninvestment and 
apital a

umulation, whi
h is dis
ussed in detail in Winkler et al. (2005).Consider an e
onomy with one non-produ
ible input fa
tor, for example, labor, whi
his given in 
onstant amount l̄ and distributed to three linear-limitational produ
tionpro
esses. The �rst pro
ess produ
es one unit of the 
onsumption good with one unit10



of labor. The se
ond pro
ess 
ombines λ units of labor together with κ units of 
apitalto produ
e one unit of the 
onsumption good. The third pro
ess 
reates one unit ofinvestment from one unit of labor. Thus, we derive
c1(t) = l1(t) , (20)
c2(t) = min

[

l2(t)

λ
,
k(t)

κ

]

, (21)
i(t) = l3(t) , (22)where li denote the amount of labor employed in pro
ess i (i = 1, 2, 3). Assuming e�
ientprodu
tion (i.e., l2(t)/λ = k(t)/κ), and that the labor restri
tion holds with equality (i.e.,

∑

i li(t) = l̄ ∀ t), total 
onsumption c(t) = c1(t) + c2(t) yields:
c(t) = l̄ +

1 − λ

κ
k(t) − i(t) . (23)Further, we assume that investment at time t in
reases the 
apital sto
k k delayed attime t+σ, and that the 
apital sto
k deteriorates at the positive and 
onstant rate γ

k̇(t) = i(t−σ) − γk(t) . (24)In addition, we assume that the 
apital sto
k k 
annot be 
onsumed (i.e., i(t) ≥ 0). As-suming that the obje
tive is to maximize intertemporal welfare, whi
h is the dis
ountedin�nite integral of instantaneous welfare V (c(t)), the optimal 
ontrol problem reads:
max

k(t),i(t)

∫ ∞

0

V

(

l̄ +
1 − λ

κ
k(t) − i(t)

)

exp[−ρt] dt (25a)subje
t to
k̇(t) = i(t−σ) − γk(t) , (25b)
i(t) ≥ 0 , (25
)
l̄ −

λ

κ
k(t) − i(t) = c(t) −

1

κ
k(t) ≥ 0 , (25d)

i(t) = ξ(t) = 0 , t ∈ [−σ, 0) , (25e)
k(0) = 0 . (25f)The restri
tion (25d) ensures that c1 ≥ 0. When it is binding, all labor is used to employand maintain the 
apital sto
k. This implies that the 
onsumption good is ex
lusivelyprodu
ed by the 
apital intensive pro
ess (21). For the following 
al
ulations we 
hoose

V (c(t)) = ln c(t), l̄ = 262
3
, λ = 0.8, κ = 0.3, γ = 0.15, ρ = 0.1, tf = 60, k0 = 0 and theinitial path ξ(·) ≡ 0.The resulting optimization problem (25) is almost equivalent to the problem (1) dis-
ussed in se
tion 2. As the additional inequality 
onstraint (25d) �ts dire
tly into thede�nition of path and 
ontrol 
onstraints (14
), both reformulations (8) and (13) of (25)
an be solved by the dire
t multiple shooting method.11



Delay σ (8) dense (8) sparse (13)
nw iters time nw iters time nw iters time0.5 605 47 208 605 47 110 724 20 100.4 755 50 419 755 50 224 904 23 240.3 1005 50 1094 1005 50 521 1204 23 530.2 1505 � � 1505 � � 1804 23 2870.1 3005 � � 3005 � � 3604 14 1331Tabelle 1: Comparison of the number of variables nw of the resulting NLP, number ofSQP iterations and 
omputing time in se
onds needed to rea
h a KKT toleran
e of 10−6.A
tion (8) dense (8) sparse (13)time per
ent time per
ent time per
entSensitivity generation 122 60.4% 30.0 26.7% 2.2 9.9%State integration 0.7 0.3% 0.5 0.4% 0.8 4.1%Condensing 3.2 1.6% 3.3 3.0% 8.8 39.8%Solution of QPs 74.4 36.8% 74.5 68.5% 7.6 35.5%Rest 1.76 0.9% 1.6 1.4% 2.3 10.5%Tabelle 2: A typi
al distribution of 
omputing times. The absolute times given in se-
onds have been s
aled to be independent of the number of iterations.Whereas the optimal solutions of the two di�erent reformulations are, of 
ourse, iden-ti
al, they exhibit di�erent 
omputational performan
e. Table 1 shows a 
omparisonbetween the two approa
hes. All 
omputations have been performed with the state-of-the-art optimal 
ontrol software pa
kage MUSCOD-II, see Leineweber (1999), on aPentium notebook with 1.5 GHz. Note that for the 
al
ulations the underlying 
ontroldis
retization grid has been 
hosen identi
al to the equidistant grid with distan
e σ. The
omputation times are given in se
onds and des
ribe how long it took before an a

ura
yof 10−6 of the Karush-Kuhn-Tu
ker (KKT) 
onditions was a
hieved. Obviously, problemreformulation (13) is mu
h more suited for small time lags σ. The number of variables

nw of the non-linear program (NLP) is not the 
ru
ial indi
ator, though, as 
an be seenin table 1. Let us investigate in more detail what happens. Table 2 shows the distribu-tion of the 
omputing times for spe
i�
 tasks. The times spent on 
ondensing, onlinegraphi
s, 
onstraint redu
tions and other 
al
ulations are more or less the same. Alsothe time spent on state integration is 
ompared to the rest.The main di�eren
e is in the required time for 
al
ulating derivative information byinternal numeri
al di�erentiation and the solution of the 
ondensed quadrati
 programs(QPs). The size of the Ja
obian matrix needed to 
al
ulate the sensitivities depends onthe number of variables and is, thus, mu
h higher for (8) than for (13). This e�e
t 
anbe redu
ed by a fa
tor of about four by exploiting sparsity5 (
ompare middle 
olumn intables 1 and 2) with an advan
ed solver su
h as DAESOL (see Bauer 1999), but there is5 A matrix is 
alled sparse if it 
ontains only few nonzero entries, otherwise it is 
alled dense.12



still a 
onsiderable di�eren
e to the formulation (13) with only one state and two 
ontrolvariables.The solution of the QPs in the SQP s
heme is also mu
h more expensive for problem(8), as 
ondensing does not redu
e the number of variables a
tually given to the QP.If we do not perform 
ondensing for problem (13), the 
omputing time for �Solution ofQPs� goes up to 68 se
onds and almost rea
hes the level of problem (8).To sum up, reformulation (13) is better suited for numeri
al 
al
ulations than (8),as it has a stru
ture that 
an be better exploited by standard dire
t multiple shootingmethods. Hen
e, in the following we will only use this formulation for our 
al
ulations.We now solve the model to investigate the system dynami
s dependent on the time-lag
σ. In parti
ular, we analyze the transition between instantaneous and delayed 
apitala

umulation by solving (25) respe
tively (13) for di�erent time-lags σ. Figure 1 showsoptimized paths for time-lags σ ranging from 0 to 0.5. Consistent with the �ndings inse
tion 2 the optimal paths 
onverge monotoni
ally towards the stationary state for
σ = 0 and os
illatory and exponentially damped for σ > 0.The 
ontinuous transition from monotoni
 to in
reasingly os
illatory optimal pathsfor in
reasing time-lags σ 
an be seen in �gure 2. The exogenous parameters are identi
alto the 
al
ulations for �gure 1. The interval for the time-lag σ ∈ [0.1, 0.5] has been splitinto a grid of 400 equidistant points. For ea
h of these σs the optimal 
ontrol problemhas been solved and the resulting graphs have been 
omposed to the 3-dimensional plotsin �gure 2. They show how the optimal paths evolve from monotoni
 to os
illatory pathsfor in
reasing time-lag σ.4.2 The in�uen
e of the initial path on the optimal 
ontrol of delayed pollutionsto
k a

umulationThe se
ond model, �rst introdu
ed in Winkler (2004), dis
usses the 
ase of delayed pol-lution a

umulation. The idea is that a joint output of produ
tion, whi
h is releasedinto the environment, a

umulates there to a pollutant sto
k, whi
h exhibits a negativee�e
t on the e
onomy. Although the following model has been inspired by the environ-mental problem of the emission of 
hloro�uoro
arbons (CFCs), it is appli
able to varioussto
k pollutants. CFCs are a prime example of delayed a

umulating sto
k pollutants.They have been widely used as 
ooling agents in refrigeration and air 
onditioning, aspropellants in aerosols sprays and foamed plasti
s, and as solvents for organi
 mattersand 
ompounds. The CFCs have been valued be
ause of their favorable 
hemi
al andbiologi
al 
hara
teristi
s. They are 
hemi
ally inert, not in�ammable and non-toxi
. Un-fortunately, in the stratosphere the CFCs 
ause the depletion of the ozone layer, whi
hshields the earth's surfa
e from ultraviolet radiation. On
e released, the CFCs need 5�10years to rea
h a height of about 30 km, where the depletion of the ozone layer starts.Hen
e, the sto
k of stratospheri
 CFCs rea
ts to the emissions of CFCs with a delay of5�10 years.Consider an e
onomy with one non-produ
ible input of produ
tion, for example, labor,whi
h is given in a 
onstant maximal amount l̄ and distributed among two produ
tionpro
esses in the e
onomy. The �rst produ
tion pro
ess produ
es a 
onsumption good c13
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with 
onstant returns to labor
c(t) = l1(t) , (26)where l1 denotes the amount of labor employed to the 
onsumption good produ
tion. Inaddition, the produ
tion of ea
h unit of 
onsumption good gives rise to one unit of grossemissions egross:
egross(t) = c(t) = l1(t) . (27)The se
ond produ
tion pro
ess is an abatement pro
ess, whi
h redu
es net emissions e

e(t) = egross(t) − a(t) , (28)where a denotes the amount of emissions abated. Denoting the amount of labor employedto the abatement pro
ess by l2, the amount of abated emissions is given by:
a(t) =

√

αl2(t) , α > 0 . (29)The net emissions e are 
onsidered to a

umulate the pollution sto
k s with a time-lag
σ. In addition, the pollution sto
k s de
ays at a 
onstant rate γ

ṡ(t) = e(t−σ) − γs(t) . (30)The sto
k of pollutant s exhibits a negative external e�e
t on the e
onomy, as it redu
esthe e�e
tive labor for
e l:
l(t) = l̄ − βs(t)2 , β > 0 . (31)In the 
ase of CFCs, one might think of an in
rease in the rate of skin 
an
er within
reasing sto
k of the pollutant, whi
h prevents in
reasingly more people from working.Note that the pollution sto
k s exhibits in
reasing marginal damage. Given e�
ientprodu
tion (i.e., the labor 
onstraint holds with equality l(t) = l1(t)+l2(t)), 
onsumptionis given by
c(t) = c(e(t), s(t)) =

1

2

[

2e(t) − α +
√

4α (λ − βs(t)2 − e(t)) + α2
]

. (32)Again, we assume that the obje
tive is to maximize intertemporal welfare, whi
h is thedis
ounted in�nite integral of instantaneous welfare V (c(t)). Thus, the optimal 
ontrolproblem reads:
max

s(t),e(t)

∫ ∞

0

V

(

1

2

[

2e(t) − α +
√

4α (λ − βs(t)2 − e(t)) + α2
]

)

exp[−ρt] dt (33a)subje
t to
ṡ(t) = e(t−σ) − γs(t) , (33b)
e(t) = ξ(t) , t ∈ [−σ, 0) , (33
)
s(0) = s0 . (33d)16



Again, the optimization problem (33) is of the form (1) and will be solved by thedire
t multiple shooting method. Here, the fo
us is on the dependen
e of the optimalpaths on the initial path ξ. In parti
ular, this is relevant in the 
ontext of pollution
ontrol, as the pollutant has in general already been emitted before pollution 
ontrolbe
omes a�e
tive. Due to the additional moment of inertia of delayed 
ontrol problems,the past emission path has to be taken into a

ount. In the following we show the optimalemission paths for a numeri
al example of the optimization problem (33) for a 
onstant,a linear, and a 
y
li
al initial path. We 
hoose V = ln c(t), l̄ = 1, α = 1, β = 0.005,
γ = 0.1, ρ = 0.03, tf = 200, s0 = 10, ξconst = 1.47459, ξlin = 1 + 0.0815485(t + 10) and
ξcyc = 1.39815 + sin[0.9π(t + 10)]. To be able to 
ompare the results for these di�erentinitial paths, they have been 
hosen in su
h a way that the sto
k of pollution at time
t = σ = 10 is identi
al for all three of them (s(10) = sσ = 13).Figure 3 shows the optimal paths of the pollution sto
k and the emissions in the 
aseof delayed sto
k a

umulation (σ = 10) for the three di�erent initial paths ξ. The initialpaths ξ are shown as the emission paths in the time interval t ∈ [−10, 0] in �gure 3. Asalready mentioned earlier, the path for the pollution sto
k in the time interval t ∈ [0, 10]is 
ompletely determined by the initial value s0, the initial path ξ and the equationof motion (33b). Hen
e, pollution 
ontrol from time t = 0 on only a�e
ts the pollutionsto
k after time t = σ = 10. This shows a fundamental feature of delayed optimal 
ontrolproblems: the system dynami
s exhibits an additional moment of inertia as the sto
krea
ts with a delay to the 
ontrol.In all three s
enarios the pollution sto
k rises from their initial value s0 = 10 to
sσ = 13 in the time interval t ∈ [0, 10]. Nevertheless, be
ause of the di�erent initialpaths ξ, the path of the pollution sto
k is 
on
ave (ξ 
onstant), 
onvex (ξ linear) oros
illatory (ξ 
y
li
al). Variations in the initial path ξ 
ause variations in the optimalsystem dynami
s, although the pollution sto
k sσ = 13 and the long-run stationary stateremains unaltered. This is best seen in the 
ase of a 
y
li
al initial path, whi
h indu
es
orresponding os
illations in the optimal emission path (�gure 3 bottom).5 Dis
ussionIn this se
tion we dis
uss the robustness of our numeri
al approa
h with respe
t to
hanges in model spe
i�
ations and outline how the approa
h 
an be generalized. Fur-thermore, we show how our approa
h 
an be applied to numeri
ally solve models whi
hare dis
ussed in the e
onomi
 literature on investment gestation lags, vintage 
apitala

umulation and habit formation.5.1 Robustness and possible extensions of the numeri
al pro
edureThe optimization problem (1) that we dis
ussed so far is limited in the sense that itexhibits just one state and one 
ontrol variable and that the equation of motion is of aparti
ular simple form, exhibiting just one 
onstant delay in the 
ontrol variable. In thefollowing, we dis
uss how robust our approa
h is to more general model spe
i�
ations.

17
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Considering optimal 
ontrol problems, whi
h exhibit additional �unlagged� state and
ontrol variables poses no problem from a numeri
al point of view. However, 
ompu-ting time may in
rease with in
reasing number of state and 
ontrol variables. Also the
onsideration of additional lagged 
ontrol variables is straightforward. For ea
h lagged
ontrol variable, we have to introdu
e an additional 
ontrol variable and an additional
onstraint as des
ribed in se
tion 3.1 problem (13), no matter if it is di�erent 
ontrolvariables whi
h exhibit one lag ea
h or just one 
ontrol variable that enters the 
ontrolproblem with di�erent 
onstant lags. However, the numeri
al realization requires thatthe di�erent delays are multiples of one 
ommon fa
tor.The treatment of lagged state variables 
an be performed similar to the pro
eduredes
ribed in se
tion 3.1 problem (8), again provided that the delays in the state variablesas well as in the 
ontrols are multiples of one 
ommon fa
tor. The dimension of theresulting nonlinear optimization problems may be very large, in parti
ular if the 
ommonfa
tor is small 
ompared to the time horizon tf .In the optimization problem (1) we assumed a parti
ular simple equation of motionwhi
h was linear in the state and the lagged 
ontrol variables. From a numeri
al pointof view, 
onsidering non-linear equations of motion poses no additional problems as thefeli
ity fun
tion f(·) is in general non-linear and, thus, we have a non-linear optimizationproblem anyway.Problems with time or state-dependent delays normally 
annot be reformulated in theway dis
ussed in 3.1. For approa
hes to their treatment see, e.g., Bo
k & S
hlöder (1984),where a dire
t approa
h is 
ompared to an indire
t approa
h resulting in nonlinearboundary value problems with retarded and advan
ed terms. Numeri
al results using ashooting method are reported.For the aforementioned 
ases in whi
h our approa
h is appli
able, and for an in
reasingnumber of unknowns, the Newton-type based dire
t multiple shooting method 
an beexpe
ted to outperform algorithms that are built upon a 
omponentwise optimization,as proposed, e.g., in Bou
ekkine et al. (2001) in the 
ontext of a relaxed Gauÿ-Seideliteration s
heme. Another advantage of our approa
h 
ompared to dis
rete-time s
hemesis the possible use of fast error-
ontrolled adaptive integrators.5.2 Appli
ations to e
onomi
 problems with delayed problem stru
turesIn the introdu
tion we brie�y outlined the e
onomi
 literature on investment gestationlags, vintage (human) 
apital a

umulation and habit formation. In the following wedis
uss how our approa
h 
an 
ontribute to this literature.Investment gestation lagsAs already mentioned in the introdu
tion, the literature on investment gestation lags
an be further divided in delivery lags and time-to-build. By modeling investment as a
ontrol variable, the numeri
 pro
edure developed in this paper 
an dire
tly be appliedto the problem of delivery lags, as dis
ussed by one of our examples. However, it seemsthat, as our approa
h 
an only handle lags in the 
ontrol variables, it is not suited for19



the numeri
al solution of time-to-build models whi
h exhibit a delay in the state variable(e.g., Asea & Zak 1999). In fa
t, we 
annot numeri
ally solve Asea & Zak's (1999) modelspe
i�
ation, but we argue that this is rather due to their spe
i�
 assumption aboutdepre
iation than to the time-to-build feature in general. To see this we re
all theirmodel stru
ture in our notation. The obje
tive is to maximize the dis
ounted in�niteintegral over instantaneous utility u(·) derived from 
onsumption c(t) given the followingequation of motion:
k̇(t) = f(k(t − σ)) − δk(t − σ) − c(t) , (34)where k(t) denotes the 
apital sto
k, f(·) is a neo
lassi
al produ
tion fun
tion and δ is the
onstant rate of depre
iation. By introdu
ing the produ
tive 
apital sto
k x(t) = k(t−σ)and investment i(t) = f(k(t − σ)) − c(t), we 
an write the equation of motion (34) as:
ẋ(t) = i(t − σ) − δx(t − σ) . (35)In this notation, we see that Asea & Zak's (1999) model spe
i�
ation is in fa
t rathera delivery lag than a time-to-build spe
i�
ation with a rather unusual depre
iation rule(i.e., the produ
tive 
apital sto
k depre
iates time-lagged). Applying the standard e
o-nomi
 depre
iation rule would yield an equation of motion with a delay in the 
ontrolvariable investment only, whi
h is exa
tly of the type (1b).6Moreover, we argue that our approa
h 
an be used for the analysis of more generaltime-to-build spe
i�
ations. As mentioned in the introdu
tion, the di�eren
e betweendelivery lags and time-to-build is that in the former 
ase all investment is made inadvan
e, while in the latter 
ase investment is distributed over the pro
ess of 
reationof new 
apital goods. Thus, a more general time-to-build spe
i�
ation would be:
ẋ(t) = i(t − σ) − δx(t) , (36a)
c(t) = f(x(t)) −

∫ t

t−σ

m(t − s)i(s) ds . (36b)The interpretation is straightforward. The 
reation of 
apital goods needs the �xedtime-span σ. Denoting by i(t) the amount of new 
apital goods of whi
h the produ
tionstarted at time t and assuming depre
iation of the 
apital sto
k at the 
onstant rate δ,the a

umulation of 
apital is governed by the delayed di�erential-di�eren
e equation(36a). The fun
tion m(t), with 
arrier [0, σ], denotes the resour
e input needed at time
t for new 
apital goods whi
h were started to produ
e at time 0. Assuming only one
ommodity that 
an be both 
onsumed and used for 
apital produ
tion, we a
hieveequation (36b). By dis
retization of the integral in equation (36b), we 
an a
hieve aform whi
h is solvable by our numeri
al approa
h. If we divide the produ
tion pro
essof new 
apital, whi
h needs the time-span σ, into N steps, ea
h of the same duration σ

N
,6 In their introdu
tion Asea & Zak (1999) justify their model spe
i�
ation by analyti
al tra
tability.Ironi
ally, their spe
i�
ation (34) is easier to analyze analyti
ally, while it poses more di�
ultiesnumeri
ally. 20



we 
an write (36b):
c(t) ≈ f(x(t)) −

N−1
∑

n=0

mni
(

t − σ + n
σ

N

) σ

N
, (37)where mn = m

(

σ − n σ
N

) is the amount of resour
e input needed at the time n σ
N
of theprodu
tion pro
ess of new 
apital goods. Thus, we a
hieve an optimal 
ontrol problemwith one sto
k and one 
ontrol variable, where the 
ontrol variable appears with Ndi�erent but 
onstant lags.Vintage (human) 
apital a

umulationFor the sake of simpli
ity we only 
onsider physi
al 
apital. However, there is a strongformal 
orresponden
e between vintage physi
al and vintage human 
apital (
ompare,e.g., Bou
ekkine et al. 2004).As outlined by Benhabib & Rusti
hini (1991), vintage 
apital models 
an be 
hara
-terized by general, non-exponential rates of depre
iation, whi
h 
an in
lude learning byusing or gestation lags. Denoting the produ
tive 
apital sto
k at time t by k(t) andinvestment at time t by i(t), the obje
tive is on
e again to maximize the dis
ountedin�nite integral over instantaneous utility u(·) derived from 
onsumption c(t), where

c(t) = f(k(t)) − i(t), with f(·) being a neo
lassi
al produ
tion fun
tion. The 
apitalsto
k k(t) is given by:
k(t) =

∫ t

−∞

i(s)m(t − s) ds , (38)where m(t) (t ≥ 0) denotes the depre
iation s
hedule. Di�erentiating with respe
t totime yields the following equation of motion:
k̇ =

∫ t

−∞

i(s)
d

dt
(m(t − s)) ds + i(t)m(0) . (39)The spe
i�
ation with a 
onstant rate of depre
iation δ is a
hieved by setting m(t) =

exp[−δt].In the 
ase that 
apital does not depre
iate but has a 
onstant lifetime σ (i.e., theone-hoss shay depre
iation), m(t) = θ(σ− t), with θ(t) the Heaviside step fun
tion (i.e.,
θ(t) = 1, if t ≥ 0, and θ(t) = 0, else) and, thus, the equation of motion yields

k̇(t) = i(t) − i(t − σ) , (40)whi
h results in an optimal 
ontrol problem that 
an be solved dire
tly by our numeri
alalgorithm.In the general 
ase of equation (39), we 
an approximate the integral analogously tothe 
ase of investment gestation lags, if limt→−∞
d
dt

m(t) = 0:
k̇(t) = i(t)m(0) +

∫ t−σ

−∞

i(s)
d

dt
(m(t − s)) ds +

∫ t

t−σ

i(s)
d

dt
(m(t − s)) ds

≈ i(t)m(0) +

∫ t

t−σ

i(s)
d

dt
(m(t − s)) ds , for σ su�
iently large . (41)21



The integral in equation (41) is of the same form as the integral in equation (36b) and
an be dis
retized analogously yielding
k̇(t) ≈ i(t)m(0) +

N−1
∑

n=0

ṁni
(

t − σ + n
σ

N

) σ

N
, (42)where ṁn = d

dt
m(t)|(σ−n σ

N ). Again, we a
hieve an optimal 
ontrol problem with onesto
k and one 
ontrol variable, where the 
ontrol variable appears with N di�erent but
onstant lags.Habit formationIn models of habit formation, instantaneous utility u(·) is derived not only from 
onsump-tion at time t but also depends on some sto
k of habits h(t). In general, instantaneousutility depends negatively on the sto
k of habits (i.e., ∂u
∂h

< 0). As an example 
onsiderthe spe
i�
ation of instantaneous utility of Carroll et al. (2000):
u(c(t), h(t)) =

(

c(t)
h(t)γ

)1−θ

1 − θ
, (43)where θ is the 
oe�
ient of relative risk aversion and γ measure how mu
h weight is givento the absolute level of 
onsumption in 
omparison to the 
onsumption level relative tothe habit sto
k.The habit sto
k is some general mean of past 
onsumption levels. In the most generalform we 
an write h(t) as

h(t) =

∫ t

−∞

c(s)m(t − s) ds , (44)where m(t) denotes the weighting fun
tion. Obviously, equation (44) is formally identi
alto equation (38) and, thus, following the same line of argument all weighting fun
tions
m(t) with limt→−∞

d
dt

m(t) = 0 
an be approximated in a way to be numeri
ally solvablewith our approa
h.A spe
ial 
ase, for whi
h our numeri
al algorithm is dire
tly appli
able, is a
hievedby the weighting fun
tion m(t) = 1
σ
θ(σ − t). This is the dire
t analogon to the one-hossshay depre
iation rule in the vintage 
apital 
ontext and means that the habit sto
k attime t is the average of 
onsumption over the interval [t−σ, t], whi
h yields the followingequation of motion for the habit sto
k:

ḣ =
1

σ
[c(t) − c(t − σ)] . (45)6 Con
lusionsAs well known from the literature, delayed optimal 
ontrol problems with one sto
kand one 
ontrol variable exhibit in general a qualitatively di�erent system dynami
s22




ompared to instantaneous optimal 
ontrol problems. While the optimal paths of thelatter 
onverge stri
tly monotoni
ally towards the stationary state, the former exhibitos
illatory and exponentially damped optimal paths.In this paper, we have drawn attention to the numeri
al solution of optimal 
ontrolproblems with a delay in the 
ontrol variable. We have shown how a simple delayedoptimal 
ontrol problem 
an be reformulated su
h that dire
t state-of-the-art methods
an be applied. In parti
ular, we presented two di�erent problem reformulations and
ompared the performan
e of Bo
k's dire
t multiple shooting algorithm, implemented inthe software pa
kage MUSCOD-II. While the �rst reformulation in
reases the dimensiona-lity of the resulting optimization problem drasti
ally by introdu
ing as many new sto
kand 
ontrol variables as the time horizon tf , over whi
h is optimized, is a multiple ofthe time-lag σ, the se
ond reformulation only introdu
es one additional 
ontrol variable,irrespe
tive of the time horizon tf and the time-lag σ. While the latter reformulationexhibits better 
omputational performan
e, the former allows for intuitive explanationsof some standard analyti
 results of the 
ontrol-delayed optimal 
ontrol problem.Numeri
al optimization plays a 
ru
ial part in the analysis and understanding of de-layed optimal 
ontrol problems, as even the linear approximation of the system dynami
saround the stationary state is not analyti
ally tra
table. As we understand the la
k ofappli
ation of delayed optimal 
ontrol in e
onomi
s to be (at least partly) a 
onsequen
eof the analyti
al and numeri
al di�
ulties, we hope that this paper en
ourages broaderresear
h in this area. In fa
t, there a numerous appli
ations in the �eld of e
onomi
salone. With two examples we have shown how to apply the method for the rigorousanalysis of the transition from instantaneous to delayed 
apital a

umulation and forthe analysis of the in�uen
e of the initial path on the optimal time-lagged a

umula-tion of a pollution sto
k. Further, we have dis
ussed how general investment gestationlag, vintage 
apital a

umulation and habit formation models 
an be reformulated tobe tra
table by our algorithm. However, we also expe
t our numeri
 approa
h to bevaluable for other �elds of s
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