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1 Introduction

Many intertemporal economic applications exhibit the mathematical form of optimal
control problems, where an objective function (e.g., intertemporal welfare, profit, costs,
etc.) is sought to be maximized or minimized subject to a system of equations of motion,
which determine the interaction of the stock and the control variables. Recently, econo-
mists consider increasingly models, where economic systems do not react instantly but
with a delay to changes in external influences (e.g., investment-lags, transportation-lags,
lags in habit formation, etc.).

One way to deal with such a delayed structure in continuous time is the use of de-
layed differential equations. However, the use of delayed differential equations in optimal
control frameworks exhibits severe analytical and numerical difficulties. In general, even
the linear approximation of the system dynamics around the stationary state is gover-
ned by a system of differential-difference equations of neutral type, which is, in general,
not analytically solvable. As a consequence, numerical optimization methods play an
important role in analyzing and understanding the behavior of delayed optimal control
problems.

In this paper we show how optimal control problems in continuous time with one
stock and one control variable with a constant time delay can be solved numerically. We
reformulate the original problem in two different ways into constrained control problems
in ordinary differential equations with higher dimensional control functions respectively
state variables. Thus, we avoid the solution of the delayed system at the cost of higher
dimensionality. Furthermore, we show how to solve the reformulated control problems
by Bock’s direct multiple shooting method. The power of the solution method is demon-
strated by treating two typical economic examples. Furthermore, we discuss how our
framework relates to the following different classes of economic problems discussed in
the literature.

One strand of economic literature, where delayed structures play a crucial role are
investment gestation lags. Following a denotation, which is, for example, used by Altug
(1993) and Peeters (1996), one can further distinguish between delivery lags (i.e., invest-
ment for new capital goods is made at time ¢ but the new capital goods need some time
o to be delivered and, thus, to be used productively), and time-to-build (i.e., capital
goods need some time o over which they require investments in their production). To
the best of our knowledge, El-Hodiri et al. (1972), who derive a generalized maximum
principle for a growth model with heterogeneous capital goods and exogenously given
and constant delays between control and state variables, is the only contribution of the
former class applying delayed differential equations in a continuous time framework.
However, more recent model specifications in discrete time include, for example, Altug
(1993) and Peeters (1996).

The term time-to-build was coined by Kydland & Prescott (1982) who, following an
idea first posed by Kalecki (1935), empirically analyzed in how far time-to-build could
explain real business cycles observed in reality. Rustichini (1989) and Asea & Zak (1999)
showed in simple delayed continuous time optimal control models with one capital good
(but a different lag structure) that the time-to-build feature is the driving force for the



oscillatory system dynamics.’

Another strand of the literature where delayed differential equations were successfully
applied are vintage capital growth models. In vintage capital models, capital of different
age may exhibit different productivity due to technical progress and/or effects of non-
exponential depreciation. The general problem in vintage capital models is keeping track
of the capital goods of different ages, which can be formalized by using delayed differen-
tial equations. Benhabib & Rustichini (1991), Boucekkine et al. (1997a) and Boucekkine
et al. (1997b) assume linear utility and, thus, avoid the problem of functional differential
equations of neutral type. This assumption is relaxed in Boucekkine et al. (1998, 2001)
and Boucekkine et al. (2005). While Boucekkine et al. (1998, 2001) rather concentrate on
the numerical solution of specific vintage capital specifications, Boucekkine et al. (2005)
characterize analytically the complete dynamics of a simple AK vintage capital model
with constant lifetime of the capital good (i.e., one-hoss shay depreciation). Analogously
to age structures in physical capital, one can explicitly consider age structures in human
capital, which are generated by endogenous schooling and retirement decisions of the
economic agents. De la Croix & Licandro (1999), Boucekkine et al. (2002) and Boucek-
kine et al. (2004) investigate age structures in delayed continuous time optimal control
problems.

In addition, delayed optimal control in continuous time can contribute to strands of
economic literature, where it has not been applied so far. As an example think of habit
formation, where time lags also play a crucial role. With habit formation, utility depends
not only on current outcomes but also on a stock of habits, which is in general some
weighted average of previous outcomes (e.g., Boyer 1978, Carroll et al. 2000). Although
delayed differential equations have, to the best of our knowledge, not been used so far
in the economic literature to investigate habit formation,? we briefly discuss this issue
in section 5.

Other potential applications are in the field of environmental economics, where dama-
ges from stocks of pollution are considered. Often these stocks do not instantaneously
accumulate to the emission of the pollutants but need some time due to transportation
processes. Prime examples include ground water contamination by excessive fertilizing
and the destruction of the ozone layer by the emission of CFCs. One of our examples in
section 4 refers to the CFC case.

The remainder of the paper is structured as follows. Section 2 defines the class of
delayed optimal control problems we seek to solve numerically. Furthermore, we review
some qualitative properties of the optimal path and outline the difficulties for numerical
solution methods. In section 3 we reformulate the optimal control problem in a suita-
ble way to allow an application of the direct multiple shooting method. Two examples
demonstrate the range of application for the solution method in section 4. In section 5,
we discuss the robustness of our approach to changes in the model specifications and
show how our approach can be applied to different classes of economic problems. Finally,

! However, we will argue in section 5 that in the denotation of Altug (1993) and Peeters (1996) their
formulation is rather of the delivery lag than the time-to-build type.

2 In Collard et al. (2004) it is mentioned as an example for the application of delayed differential
equations in economic optimization models but not further investigated.



section 6 concludes.

2 A generic optimal control problem with delayed equation of
motion

We investigate a class of optimal control problems with one stock and one control variable
and a control-delayed equation of motion of the stock variable. As usual in economic
applications, we consider the maximization of an objective functional W, which is the
discounted infinite integral over an autonomous felicity function F'. With a stock variable
x and a control variable u, the optimal control problem reads

o0

xg)l’egé)W: i F(xz(t),u(t)) exp[—pt] dt (1a)

subject to

t)y=<&@), tel-00),

where p denotes the constant and positive discount rate, o is a constant delay or time-
lag, and v is a constant decay rate. In addition, F'is assumed to be twice continuously
differentiable with respect to both arguments.

The crucial feature is that the control u(-) enters with a delay o as u(t — o) in cons-
traint (1b), while it is evaluated at time ¢ as u(t) in the objective functional (1a). In
general, a differential equation with a delay in the state variables or control functions is
referred to as a delayed differential-difference equation (DDE). Other common terms are
retarded linear functional differential equation or differential-difference equation of re-
tarded type. For an introduction to DDEs see Asea & Zak (1999: section 2) and Gandolfo
(1996: chapter 27). A detailed exposition of (linear) functional differential equations is
given in Bellman & Cooke (1963), Driver (1977), Hale (1977), Kolmanovskii & Nosov
(1986) and Kolmanovskii & Myshkis (1999).

In contrast to models with instantaneous equations of motion, besides an initial value
xq for the stock z, also an initial path £ for the control u(-) in the time interval [—o,0)
has to be specified (or also optimized). Note that the path of the stock x in the time
interval t € [0, 0] is completely determined by the initial stock zy, the initial path £(-),
and the retarded equation of motion in (1). Thus, optimal control problems which are
governed by a retarded equation of motion exhibit an additional moment of inertia, as
the variation of the stock reacts with a delay to the control. Although the equation of
motion is very specific, the maximization problem (1) represents numerous economic
models as we outline by two examples in section 4 and discuss further in section 5.

Given that the felicity function F is strictly concave and the restrictions (1c) on the
control u are not binding, one obtains the following system of differential equations for



an optimal solution from the necessary conditions and the equation of motion for the
stock = (1b):

F.(t+o0)
Fouu(t)

at) = (v+p)+ exp[—po] +

(t) = u(t—o)—~yx(t) .

Note that @ and Z also depend on advanced (i.e., at a later time) and on retarded (i.e., at
an earlier time) variables. Hence, (2) forms a system of functional differential equations
of neutral type. Obviously, a possible approach to numerically solve the optimization
problem (1) is to numerically solve the system of functional differential equations (2).
However, recall that the system (2) is only the solution of the original optimization pro-
blem (1) in the case of an interior solution. Moreover, to determine a unique solution for
(2), additional information about the first derivatives © and % at some point ¢ is needed
a priori. Therefore, we shall introduce a direct approach in this paper to numerically
solve the original control problem (1) directly.

Before we show how to reformulate the optimization problem (1) in order to derive a
numerical solution, we briefly recall some of its analytical properties, which are derived
in detail in Winkler (2004).

First, the stationary state (z*,u*) of the system of functional differential equations
(2), which can be be shown to exist and is also unique if the felicity function F satisfies
Inada conditions, is given by the following (implicit) equations:

Fy(a*u*)
e (v + p) explpo] , (3)
u o= oyt

Second, linearizing the system of functional differential equations (2) around the sta-
tionary state (x*,u*) yields a quasi-polynomial as characteristic equation, which has in
general an infinite number of (complex) roots. However, the characteristic equation redu-
ces to a simple quadratic equation with one positive and one negative real characteristic
root for the special case that the partial derivative Fj,(z*,u*) = 0.

Although the characteristic roots are not analytically solvable, the characteristic equa-
tion can be shown to exhibit an infinite number of complex solutions with positive real
parts and an infinite number of complex solutions with negative real parts. As a con-
sequence, the stationary state (z*,u*) is a saddle point and, thus, for all initial stocks
xo and all initial control paths &, there exists a unique optimal path which converges
asymptotically towards the stationary state.?

In summary, we have monotonic convergence if the felicity function F' is additively
separable, otherwise oscillations may occur.

3 If the characteristic equation exhibits purely imaginary roots (i.e., complex roots with vanishing real
parts), the system dynamics may exhibit so called limit-cycles. That is, the optimal paths oscillate
around the stationary state without converging towards or diverging from it. Limit-cycles in the case
of delayed optimal control problems have been discussed by Rustichini (1989) and Asea & Zak (1999).



3 Numerical solution of the optimal control problem

Despite the analytical derivation of the qualitative properties of the optimal path, even
the linearized approximation around the stationary state of the system of functional
differential equations (2) is not analytically solvable. As a consequence, numerical op-
timization methods play an important role to analyze and understand the behavior of
delayed optimal control problems. In the following section we show two ways how to
reformulate the original problem in order to make it tractable for Bock’s direct multiple
shooting method, a highly efficient algorithm for the numerical solution of constrained op-
timal control problems in ordinary differential equations (ODE) and differential-algebraic
equations (DAE).

3.1 Reformulation of the delayed optimal control problem

First, we have to restrict the time horizon for the numerical optimization to a finite
value ¢y, a caveat every numerical algorithm has to deal with. This poses no major
problems as, according to the stability properties of the optimal solution outlined in
the previous section, the results will be arbitrarily close to the problem with an infinite
time horizon if ¢; is sufficiently large. As we shall see, it is most convenient to set t; to
be a (large) multiple of the time-lag o. In the delayed control problem (1), the delay
o solely appears in the control variable in the equation of motion (1b). Hence, it is
possible to reformulate this delayed optimal control problem with one state variable into
an instantaneous optimal control problem with several state variables. Thus, we can
avoid to explicitly numerically treat the time-lag at the cost of higher dimensionality.*

To see this, we split the time horizon t; into n parts each the length of the delay o
and formulate the equation of motion separately in each of the resulting intervals. Thus,
we obtain for the first interval ¢ € [0, o)

#(t) =&(t—0) —qzx(t) ,  te0,0), (4)

where ¢ is the initial control path in the time interval ¢ € [—0,0). In the second interval
t € [0,20) the equation of motion yields

(t) =u(t—o) —ya(t) , t€lo,20), (5)

and so on.
The clue is to interpret each of the resulting DDEs as an independent differential
equation. By introducing n new stock variables z; and n—1 new control variables u; with

() =z(t+(-1o), wt)=ult+(-1)o), tel0,0), (6)

4 This method is a straightforward generalization of the well-known method of steps in Bellman &
Cooke (1963) to solve delayed differential-difference equations. The method of steps is also applied in
Boucekkine et al. (1997a) to numerically solve a system of delayed differential-difference equations.



we achieve the following system of ordinary differential equations:

@(t) = &(t—o)—qyz(t), te0,0),
I‘Q(t) = ’Uq(t) — ’}/l’g(t) y t € [O, 0') s
: (7)
Tno1(t) = up_o(t) — yru_1(t) , te|0,0),
zn(t) = un—l(t) - 'Vxn(t) ) le [Oa U) )

Thus, we can reformulate the original optimization problem (1) as:

1 (t),u (t)

Inwc(AUEZJWxxﬂﬂuﬁ»emﬂ—p@—Fa@—l»]&: (8a)

subject to

#n(t) = &(t—o) —yn(l),

: (8b)
Tn(t) = tun-1(t) —yza(t) ,
and the restrictions for the control variables wu;:
w(t) € o, 0], a,BER. (8c)

Furthermore we have to introduce additional coupled boundary conditions for the stock
variables x; at time t = 0 and t = ¢ to ensure the continuity of the stock variable x of
the original problem:

(o) =x110), l=1,...,n—1. (8d)
Finally, the condition (1d) for the initial stock z translates into
1’1(0) = X . (Se)

Note that we need only to determine n — 1 control paths in the interval [0,0] as the
optimal path for the stock in the interval t € [(n—1)o, no) is completely determined by
the stock at t = (n—1)o, z,_1(0), the control u,_;(t) and the equation of motion.

Remark 1. In addition to transforming the retarded optimization problem in a suita-
ble form for numerical solution methods, the reformulation (8) also gives an intuitive
explanation why the optimal control problem (1)

(i) exhibits an infinite number of characteristic roots in general, and

(ii) exhibits only two characteristic roots in the case that the felicity function F' is
additively separable.



To see (i), recall that the characteristic equation for an optimal control problem with n
stock variables is a polynomial of order 2n, which has in general 2n characteristic roots
(although it may be less than 2n distinct roots as there may be multiple roots). Indepen-
dent of the time-lag o, n tends to infinity if we extend the time horizon ¢y — oo. Thus,
for an infinite time horizon t;, the retarded optimization problem (1) with one stock
variable is equivalent to an ordinary optimal control with an infinite number of stock
variables, resulting in a characteristic equation with an infinite number of characteristic
roots.

To see (ii), recall that F' is additively separable is equivalent to F'(z,u) = G(x)+ H (u).
Thus, the objective functional (8a) yields for an infinite time horizon

i / )+ H ()] expl—p(t + o(1—1))] dt . (9)

o7 (t),up (t

G(x1(t)) is independent of variations in the control variables u;, [ > 1, as it is completely
determined by the initial path &, the initial stock x5 and the equation of motion. The-
refore, it is sufficient to maximize the objective functional without the term exhibiting
G(z1(t)). Hence, we can rearrange the remaining terms to yield:

max / )+ H(u;_1(t)) explpo]] exp[—p(t + o(l—1))] dt (10)

:cl(t ul

Transforming the objective function back to one stock and one control variable yields:

max) /OOO |G(z(t+0)) exp[—po| + H(u(t))] exp[—pt] dt (11)

z(t),u(t

Introducing a new stock variable Z(t) = x(t+0) we achieve the following ordinary optimal
control problem:

z?%}é / (G(2(t)) exp[—po] + H(u(t))] exp[—pt] dt (12a)
subject to

2(t) = ult) —y2(t), (12b)

u(t) € [o,f, a,BER, (12¢)

2(0) = z,, (12d)

where z, is the value of the original stock variable z at time o (which is completely
determined by zy, £ and the original equation of motion). Thus, the retarded optimal
control problem (1) is formally equivalent to the ordinary optimal control problem (12)
with one stock and one control variable. As a consequence, its characteristic equation is
a polynomial of second order, which is known to exhibit two characteristic roots.



Remark 2. Despite the intuitive explanation for the qualitative system dynamics in the
general case and in the case of an additively separable felicity function F', the reformula-
tion (8) does not promote the analytical derivation of the optimal solution in the general
case. This holds as the additional coupled boundary constraints (8d), which guarantee
the continuity of the original stock variable x, pose severe obstacles for an analytical
solution.

Problem (8) is useful for analytical considerations as outlined in Remark 1 and can be
solved by the direct multiple shooting method as will be shown in section 3.2. However,
for a given time horizon t;, the number n of differential state and control functions
becomes quite large for small values of the time-lag o. Therefore, we also consider another
reformulation of the problem (1) with fixed dimension of state and controls.

To this end we introduce an additional control function. While uy(t) is the same as u(t)
before and denotes the control at time ¢, u;(t) represents the retarded control u(t—o).
Thus, uy and uy are coupled by uy(t) = ug(t—o) for t > o and uy (t) = £(t) for 0 <t < 0.
Then, problem (1) is equivalent to

:c(t)vﬁl}llg)}v{uz (t) A F(I(t>’ 2 (t)) exp[_pt] dt (13&)
subject to

£(t) = ui(t) — yz(t) (13b)

w(t), us(t) € [0, 8], @, R (130

2(0) = 2o , (13d)

u(t)=¢&(t—0), 0<t<o, (13e)

ui(t) =us(t — o), t>o. 13f)

Problem (13) still contains a retarded term, but it has moved from the differential
equation (13b) to a constraint on the controls (13f), that can be dealt with efficiently
by the direct multiple shooting method. In contrast to the reformulation (8), only one
additional control variable has been introduced independently of the time horizon ¢; and
the time-lag o.

3.2 Bock’s direct multiple shooting method

In order to solve the reformulated optimal control problems (8) and (13) numerically, we
apply the direct multiple shooting method originally developed by Bock and his coworker
Plitt (1981), Bock & Plitt (1984). Let us consider an optimal control problem of the form

max /t " L), u(t)) dt (14a)

2(Du(t) Jy,



subject to

a(t) = fla@) u)), e lt,ty], (14b)
0 < c(z(t),ult), telto,tsl, (14c)
0 = r*Ya(mn),z(11),. .., 2(Tm)), (14d)
0 < rz(mn),z(m),...,2(Tm)), (14e)

with all occurring functions twice differentiable.
We approximate the n,-dimensional control function wu(-) by functions with local sup-
port and finitely many parameters. To this end we introduce a time grid

t0:T0<T1<"'<Tm:tf (15)

and split the time horizon [ty, ] into m so called multiple shooting intervals [1;_1, 7],
where j = 1,...,m. On each multiple shooting interval we define a typically low dimen-

sional control parameterization, e.g., a linear approximation ¢’(t) of the controls wu(t)
by

Pty =g +q@t, telr T, (16)

with vector valued parameters ¢.

We introduce m variables s/ € R™ as initial values for the differential states on each
multiple shooting interval [7;_;,7;]. The ODE (14b) is solved independently on every
interval with initial values

z(r)) =8, j=0,....m—1. (17)

To ensure continuous state trajectories z(+), the values at the end of interval j, obtained
by integration with initial value s/ and control parameter ¢/, have to coincide with the
initial state vector of the next interval 7 + 1:

(87, ¢) =T, j=0,....om—1. (18)
These so-called matching conditions (18) allow to eliminate the additional degrees of
freedom introduced by the supplementary optimization parameters s’ by condensing (for
details see Bock & Plitt 1984). Note that the conditions (18) are required to be satisfied
only at the final solution of the problem and not during intermediate iterations of the
optimization algorithm. Therefore, the direct multiple shooting method is also referred
to as an all-at-once-approach, solving the simulation and optimization task at the same
time. This allows to incorporate expert knowledge about the trajectory behavior into the
initial values of the state trajectory and typically leads to good convergence properties
of the method. The path and control constraints (14c) have to hold on the whole time
interval [tg,tf]. To deal with this numerically, in the direct multiple shooting method
these constraints are formulated as point constraints on a suitable finite time grid.

Following these lines, problem (14) is now an optimization problem in the variables
¢’ and s’. It contains equality constraints that stem from the interior point equality



constraints (14d) and the matching conditions (18), and inequality constraints that stem
from the interior point equality constraints (14e) and the discretized path constraints
(14c).

Subsuming all variables s/ and ¢’ into w € R™ and rewriting the objective function
as well as the constraints in adequate functions F,G and H, we obtain a non-linear
program (NLP)

0
- (19)

w

min F'(w) subject to {

=
g
vl

that can be solved by tailored methods. For example, by sequential quadratic program-
ming (SQP) in combination with an efficient evaluation of all occurring functions, and
the generation of derivatives, for example, by internal numerical differentiation. See Lei-
neweber et al. (2003) for details and further references.

Now, let us consider an application of the direct multiple shooting method to the
reformulations (8) and (13) of the original problem (1). Obviously, (8) is of the form
(14) and can, thus, be solved with the direct multiple shooting method as described
above. However, reformulation (13) contains an additional constraint (13f), which is not
contained in the standard problem formulation (14).

Here, the approximation of the control functions allows to guarantee (13f) — if the
corresponding entries of u;(¢) in ¢ and the ones of uy(t) in ¢~ match at all times 7,
then the equation holds on the whole time horizon (as each piecewise linear control is
uniquely determined by two points). If we extend the interior point equality constraint
(14d) to allow also for arguments wu(7;) (which is typically omitted, as only measurable
influence of a control function shall be considered), then the direct multiple shooting
method can be applied to solve both problems (8) and (13).

4 Examples

In the following we illustrate the potential of the numerical solution method described in
the previous section by two examples, which stem from our research on delayed optimal
control problems. The first example shows how numerical optimization can be used to
analyze the transition from instantaneous to delayed stock accumulation. The second
example focuses on the influence of the initial path £ on the optimal paths of a delayed
optimal control problem.

4.1 The transition from instantaneous to delayed capital accumulation

The first example is an optimal control capital accumulation model with an investment
gestation lag. In fact, we consider a delivery lag, i.e., an exogenously given delay between
investment and capital accumulation, which is discussed in detail in Winkler et al. (2005).

Consider an economy with one non-producible input factor, for example, labor, which
is given in constant amount [ and distributed to three linear-limitational production
processes. The first process produces one unit of the consumption good with one unit

10



of labor. The second process combines A units of labor together with s units of capital
to produce one unit of the consumption good. The third process creates one unit of
investment from one unit of labor. Thus, we derive

alt) = hLt), (20)

(21)
ity = Is(t), (22)

where [; denote the amount of labor employed in process i (i = 1,2, 3). Assuming efficient

production (i.e., lo(t) /A = k(t)/r), and that the labor restriction holds with equality (i.e.,

> Li(t) =1 V1), total consumption ¢(t) = ¢;1(t) + co(t) yields:

1—A

K

c(t) =1+ k(t) —i(t) . (23)

Further, we assume that investment at time ¢ increases the capital stock k delayed at
time t4 o0, and that the capital stock deteriorates at the positive and constant rate -~y

k(t) = i(t—o) — yk(t) . (24)

In addition, we assume that the capital stock k cannot be consumed (i.e., i(t) > 0). As-
suming that the objective is to maximize intertemporal welfare, which is the discounted
infinite integral of instantaneous welfare V(¢(t)), the optimal control problem reads:

o - 1=A .
k{giﬁ)/g 1% (l + - k(t) — Z(t)) exp|—pt] dt (25a)
subject to
k(t) =i(t—o) — vk(t) | (25b)
i(t) >0, (25¢)
[ %k:(t) —i(t) = c(t) — lk(t) >0, (25d)
i(t)=¢,(1t) =0, te[—00), (25¢€)
k(0)=0. (25f)

The restriction (25d) ensures that ¢; > 0. When it is binding, all labor is used to employ
and maintain the capital stock. This implies that the consumption good is exclusively
produced by the capital intensive process (21). For the following calculations we choose
V(c(t)) =Inc(t), l =262, A= 0.8, k = 0.3,y = 0.15, p = 0.1, t = 60, ko = 0 and the
initial path £(-) = 0.

The resulting optimization problem (25) is almost equivalent to the problem (1) dis-
cussed in section 2. As the additional inequality constraint (25d) fits directly into the
definition of path and control constraints (14c), both reformulations (8) and (13) of (25)
can be solved by the direct multiple shooting method.

11



Delay o (8) dense (8) sparse (13)
T ‘ iters ‘ time ow ‘ iters ‘ time T ‘ iters ‘ time
0.5 605 47 | 208 | 605 47| 110 | 724 20 10
0.4 755 o0 | 419 | 755 o0 | 224 | 904 23 24
0.3 1005 50 | 1094 | 1005 o0 | 521 | 1204 23 53
0.2 1505 — — | 1505 — — | 1804 23| 287
0.1 3005 — — | 3005 — — | 3604 14 | 1331

Tabelle 1: Comparison of the number of variables n,, of the resulting NLP, number of
SQP iterations and computing time in seconds needed to reach a KKT tolerance of 1075.

Action (8) dense (8) sparse (13)
time ‘ percent | time ‘ percent | time ‘ percent

Sensitivity generation || 122 | 60.4% | 30.0 | 26.7% | 2.2 9.9%
State integration 0.7 0.3% | 0.5 04% | 0.8 4.1%
Condensing 3.2 1.6% | 3.3 3.0% | 88| 39.8%
Solution of QPs 744 36.8% | 745 | 685% | 7.6 355%
Rest 1.76 0.9% 1.6 1.4% 2.3 10.5%

Tabelle 2: A typical distribution of computing times. The absolute times given in se-
conds have been scaled to be independent of the number of iterations.

Whereas the optimal solutions of the two different reformulations are, of course, iden-
tical, they exhibit different computational performance. Table 1 shows a comparison
between the two approaches. All computations have been performed with the state-
of-the-art optimal control software package MUSCOD-II, see Leineweber (1999), on a
Pentium notebook with 1.5 GHz. Note that for the calculations the underlying control
discretization grid has been chosen identical to the equidistant grid with distance o. The
computation times are given in seconds and describe how long it took before an accuracy
of 1079 of the Karush-Kuhn-Tucker (KKT) conditions was achieved. Obviously, problem
reformulation (13) is much more suited for small time lags 0. The number of variables
n,, of the non-linear program (NLP) is not the crucial indicator, though, as can be seen
in table 1. Let us investigate in more detail what happens. Table 2 shows the distribu-
tion of the computing times for specific tasks. The times spent on condensing, online
graphics, constraint reductions and other calculations are more or less the same. Also
the time spent on state integration is compared to the rest.

The main difference is in the required time for calculating derivative information by
internal numerical differentiation and the solution of the condensed quadratic programs
(QPs). The size of the Jacobian matrix needed to calculate the sensitivities depends on
the number of variables and is, thus, much higher for (8) than for (13). This effect can
be reduced by a factor of about four by exploiting sparsity® (compare middle column in
tables 1 and 2) with an advanced solver such as DAESOL (see Bauer 1999), but there is

5 A matrix is called sparse if it contains only few nonzero entries, otherwise it is called dense.
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still a considerable difference to the formulation (13) with only one state and two control
variables.

The solution of the QPs in the SQP scheme is also much more expensive for problem
(8), as condensing does not reduce the number of variables actually given to the QP.
If we do not perform condensing for problem (13), the computing time for “Solution of
QPs” goes up to 68 seconds and almost reaches the level of problem (8).

To sum up, reformulation (13) is better suited for numerical calculations than (8),
as it has a structure that can be better exploited by standard direct multiple shooting
methods. Hence, in the following we will only use this formulation for our calculations.

We now solve the model to investigate the system dynamics dependent on the time-lag
o. In particular, we analyze the transition between instantaneous and delayed capital
accumulation by solving (25) respectively (13) for different time-lags o. Figure 1 shows
optimized paths for time-lags ¢ ranging from 0 to 0.5. Consistent with the findings in
section 2 the optimal paths converge monotonically towards the stationary state for
o = 0 and oscillatory and exponentially damped for o > 0.

The continuous transition from monotonic to increasingly oscillatory optimal paths
for increasing time-lags o can be seen in figure 2. The exogenous parameters are identical
to the calculations for figure 1. The interval for the time-lag o € [0.1,0.5] has been split
into a grid of 400 equidistant points. For each of these os the optimal control problem
has been solved and the resulting graphs have been composed to the 3-dimensional plots
in figure 2. They show how the optimal paths evolve from monotonic to oscillatory paths
for increasing time-lag o.

4.2 The influence of the initial path on the optimal control of delayed pollution
stock accumulation

The second model, first introduced in Winkler (2004), discusses the case of delayed pol-
lution accumulation. The idea is that a joint output of production, which is released
into the environment, accumulates there to a pollutant stock, which exhibits a negative
effect on the economy. Although the following model has been inspired by the environ-
mental problem of the emission of chlorofluorocarbons (CFCs), it is applicable to various
stock pollutants. CFCs are a prime example of delayed accumulating stock pollutants.
They have been widely used as cooling agents in refrigeration and air conditioning, as
propellants in aerosols sprays and foamed plastics, and as solvents for organic matters
and compounds. The CFCs have been valued because of their favorable chemical and
biological characteristics. They are chemically inert, not inflammable and non-toxic. Un-
fortunately, in the stratosphere the CFCs cause the depletion of the ozone layer, which
shields the earth’s surface from ultraviolet radiation. Once released, the CFCs need 5 10
years to reach a height of about 30 km, where the depletion of the ozone layer starts.
Hence, the stock of stratospheric CFCs reacts to the emissions of CFCs with a delay of
510 years.

Consider an economy with one non-producible input of production, for example, labor,
which is given in a constant maximal amount [ and distributed among two production
processes in the economy. The first production process produces a consumption good ¢
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with constant returns to labor

c(t) = h(t), (26)

where [; denotes the amount of labor employed to the consumption good production. In
addition, the production of each unit of consumption good gives rise to one unit of gross
emissions e9"%%%:

eI (t) = c(t) = 11(t) . (27)
The second production process is an abatement process, which reduces net emissions e
e(t) = e9"%(t) — a(t) , (28)

where a denotes the amount of emissions abated. Denoting the amount of labor employed
to the abatement process by Iy, the amount of abated emissions is given by:

a(t) =/ aly(t), a>0. (29)

The net emissions e are considered to accumulate the pollution stock s with a time-lag
0. In addition, the pollution stock s decays at a constant rate vy

5(t) =e(t—a) —ys(t) . (30)

The stock of pollutant s exhibits a negative external effect on the economy, as it reduces
the effective labor force :

I(t)=1-8s(t)*, B>0. (31)

In the case of CFCs, one might think of an increase in the rate of skin cancer with
increasing stock of the pollutant, which prevents increasingly more people from working.
Note that the pollution stock s exhibits increasing marginal damage. Given efficient
production (i.e., the labor constraint holds with equality I(t) = [;(t)+I2()), consumption
is given by

c(t) = c(e(t), s(t)) = % [26(t> —a+/da (A — Bs(t)2 —e(t)) + 042} . (32)

Again, we assume that the objective is to maximize intertemporal welfare, which is the
discounted infinite integral of instantaneous welfare V' (¢(t)). Thus, the optimal control
problem reads:

max) /000 1% (% [Qe(t) —a+/4a (X —Bs(t)? —e(t)) + aZ]) exp|—pt] dt  (33a)

s(t),e(t

subject to

5(t) =e(t—o) —ys(t) (33b)
€(t) = f(t) SRS [_07 0) ) (33C)
s(0) = so . (33d)
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Again, the optimization problem (33) is of the form (1) and will be solved by the
direct multiple shooting method. Here, the focus is on the dependence of the optimal
paths on the initial path £. In particular, this is relevant in the context of pollution
control, as the pollutant has in general already been emitted before pollution control
becomes affective. Due to the additional moment of inertia of delayed control problems,
the past emission path has to be taken into account. In the following we show the optimal
emission paths for a numerical example of the optimization problem (33) for a constant,
a linear, and a cyclical initial path. We choose V = Inc(t), [ = 1, a = 1, 8 = 0.005,
v =0.1, p = 0.03, t; = 200, 5o = 10, {const = 1.47459, &y = 1 4 0.0815485(¢ + 10) and
Eeye = 1.39815 + sin[0.97(t 4+ 10)]. To be able to compare the results for these different
initial paths, they have been chosen in such a way that the stock of pollution at time
t = o = 10 is identical for all three of them (s(10) = s, = 13).

Figure 3 shows the optimal paths of the pollution stock and the emissions in the case
of delayed stock accumulation (o = 10) for the three different initial paths . The initial
paths & are shown as the emission paths in the time interval ¢t € [—10, 0] in figure 3. As
already mentioned earlier, the path for the pollution stock in the time interval ¢ € [0, 10]
is completely determined by the initial value sg, the initial path £ and the equation
of motion (33b). Hence, pollution control from time ¢ = 0 on only affects the pollution
stock after time ¢ = 0 = 10. This shows a fundamental feature of delayed optimal control
problems: the system dynamics exhibits an additional moment of inertia as the stock
reacts with a delay to the control.

In all three scenarios the pollution stock rises from their initial value s = 10 to
S, = 13 in the time interval ¢ € [0,10]. Nevertheless, because of the different initial
paths &, the path of the pollution stock is concave (£ constant), convex (£ linear) or
oscillatory (¢ cyclical). Variations in the initial path £ cause variations in the optimal
system dynamics, although the pollution stock s, = 13 and the long-run stationary state
remains unaltered. This is best seen in the case of a cyclical initial path, which induces
corresponding oscillations in the optimal emission path (figure 3 bottom).

5 Discussion

In this section we discuss the robustness of our numerical approach with respect to
changes in model specifications and outline how the approach can be generalized. Fur-
thermore, we show how our approach can be applied to numerically solve models which
are discussed in the economic literature on investment gestation lags, vintage capital
accumulation and habit formation.

5.1 Robustness and possible extensions of the numerical procedure

The optimization problem (1) that we discussed so far is limited in the sense that it
exhibits just one state and one control variable and that the equation of motion is of a
particular simple form, exhibiting just one constant delay in the control variable. In the
following, we discuss how robust our approach is to more general model specifications.
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Considering optimal control problems, which exhibit additional “unlagged” state and
control variables poses no problem from a numerical point of view. However, compu-
ting time may increase with increasing number of state and control variables. Also the
consideration of additional lagged control variables is straightforward. For each lagged
control variable, we have to introduce an additional control variable and an additional
constraint as described in section 3.1 problem (13), no matter if it is different control
variables which exhibit one lag each or just one control variable that enters the control
problem with different constant lags. However, the numerical realization requires that
the different delays are multiples of one common factor.

The treatment of lagged state variables can be performed similar to the procedure
described in section 3.1 problem (8), again provided that the delays in the state variables
as well as in the controls are multiples of one common factor. The dimension of the
resulting nonlinear optimization problems may be very large, in particular if the common
factor is small compared to the time horizon t;.

In the optimization problem (1) we assumed a particular simple equation of motion
which was linear in the state and the lagged control variables. From a numerical point
of view, considering non-linear equations of motion poses no additional problems as the
felicity function f(-) is in general non-linear and, thus, we have a non-linear optimization
problem anyway.

Problems with time or state-dependent delays normally cannot be reformulated in the
way discussed in 3.1. For approaches to their treatment see, e.g., Bock & Schléder (1984),
where a direct approach is compared to an indirect approach resulting in nonlinear
boundary value problems with retarded and advanced terms. Numerical results using a
shooting method are reported.

For the aforementioned cases in which our approach is applicable, and for an increasing
number of unknowns, the Newton-type based direct multiple shooting method can be
expected to outperform algorithms that are built upon a componentwise optimization,
as proposed, e.g., in Boucekkine et al. (2001) in the context of a relaxed Gauf-Seidel
iteration scheme. Another advantage of our approach compared to discrete-time schemes
is the possible use of fast error-controlled adaptive integrators.

5.2 Applications to economic problems with delayed problem structures

In the introduction we briefly outlined the economic literature on investment gestation
lags, vintage (human) capital accumulation and habit formation. In the following we
discuss how our approach can contribute to this literature.

Investment gestation lags

As already mentioned in the introduction, the literature on investment gestation lags
can be further divided in delivery lags and time-to-build. By modeling investment as a
control variable, the numeric procedure developed in this paper can directly be applied
to the problem of delivery lags, as discussed by one of our examples. However, it seems
that, as our approach can only handle lags in the control variables, it is not suited for
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the numerical solution of time-to-build models which exhibit a delay in the state variable
(e.g., Asea & Zak 1999). In fact, we cannot numerically solve Asea & Zak’s (1999) model
specification, but we argue that this is rather due to their specific assumption about
depreciation than to the time-to-build feature in general. To see this we recall their
model structure in our notation. The objective is to maximize the discounted infinite
integral over instantaneous utility u(-) derived from consumption ¢(t) given the following
equation of motion:

k(t) = f(k(t = o)) = 0k(t — o) = (1) , (34)

where k(t) denotes the capital stock, f(+) is a neoclassical production function and § is the
constant rate of depreciation. By introducing the productive capital stock x(t) = k(t—o)
and investment i(t) = f(k(t — o)) — c(t), we can write the equation of motion (34) as:

#(t) = i(t — o) — 6x(t — o) . (35)

In this notation, we see that Asea & Zak’s (1999) model specification is in fact rather
a delivery lag than a time-to-build specification with a rather unusual depreciation rule
(i.e., the productive capital stock depreciates time-lagged). Applying the standard eco-
nomic depreciation rule would yield an equation of motion with a delay in the control
variable investment only, which is exactly of the type (1b).°

Moreover, we argue that our approach can be used for the analysis of more general
time-to-build specifications. As mentioned in the introduction, the difference between
delivery lags and time-to-build is that in the former case all investment is made in
advance, while in the latter case investment is distributed over the process of creation
of new capital goods. Thus, a more general time-to-build specification would be:

z(t) = i(t—o)—0x(t), (36a)
ct) = f(z(t) —/t_ m(t — s)i(s) ds . (36b)

The interpretation is straightforward. The creation of capital goods needs the fixed
time-span o. Denoting by i(¢) the amount of new capital goods of which the production
started at time ¢ and assuming depreciation of the capital stock at the constant rate 9,
the accumulation of capital is governed by the delayed differential-difference equation
(36a). The function m(t), with carrier [0, 0|, denotes the resource input needed at time
t for new capital goods which were started to produce at time 0. Assuming only one
commodity that can be both consumed and used for capital production, we achieve
equation (36b). By discretization of the integral in equation (36b), we can achieve a
form which is solvable by our numerical approach. If we divide the production process

of new capital, which needs the time-span o, into N steps, each of the same duration §,

6 In their introduction Asea & Zak (1999) justify their model specification by analytical tractability.
Ironically, their specification (34) is easier to analyze analytically, while it poses more difficulties
numerically.
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we can write (36b):

[y

N—
o

c(t) ~ fa(t) = S mai (t —o+ n%) = (37)

I
o

n

where m, =m (O’ — n%) is the amount of resource input needed at the time n$: of the
production process of new capital goods. Thus, we achieve an optimal control problem
with one stock and one control variable, where the control variable appears with N

different but constant lags.

Vintage (human) capital accumulation

For the sake of simplicity we only consider physical capital. However, there is a strong
formal correspondence between vintage physical and vintage human capital (compare,
e.g., Boucekkine et al. 2004).

As outlined by Benhabib & Rustichini (1991), vintage capital models can be charac-
terized by general, non-exponential rates of depreciation, which can include learning by
using or gestation lags. Denoting the productive capital stock at time ¢ by k(t) and
investment at time ¢ by i(¢), the objective is once again to maximize the discounted
infinite integral over instantaneous utility u(-) derived from consumption c¢(t), where
c(t) = f(k(t)) —i(t), with f(-) being a neoclassical production function. The capital
stock k(t) is given by:

k(t) = / i(s)m(t — s)ds (38)

—00
where m(t) (t > 0) denotes the depreciation schedule. Differentiating with respect to
time yields the following equation of motion:

k= / z(s)% (m(t —s)) ds+i(t)m(0) . (39)

The specification with a constant rate of depreciation § is achieved by setting m(t) =
exp|—at].

In the case that capital does not depreciate but has a constant lifetime o (i.e., the
one-hoss shay depreciation), m(t) = (o —t), with 0(t) the Heaviside step function (i.e.,
O(t) =1,if t > 0, and 6(t) = 0, else) and, thus, the equation of motion yields

k(t) =1i(t) —i(t — o), (40)
which results in an optimal control problem that can be solved directly by our numerical
algorithm.

In the general case of equation (39), we can approximate the integral analogously to
the case of investment gestation lags, if lim,__o, <m(t) = 0:

(m(t—s)) ds+ /t z(s)% (m(t—s)) ds
(

t—

JARCT
| i

—0

Q

k(t) = i(t)m(0) +
i(t)m(0) + m(t —s)) ds, for o sufficiently large . (41)

—0
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The integral in equation (41) is of the same form as the integral in equation (36b) and
can be discretized analogously yielding

i (42)

sz«wmm+§§mMG—a+”%>

where 1, = Lm(t)| . Again, we achieve an optimal control problem with one

dt
stock and one control variable, where the control variable appears with N different but

constant lags.

(o)

Habit formation

In models of habit formation, instantaneous utility u(-) is derived not only from consump-
tion at time ¢ but also depends on some stock of habits A(¢). In general, instantaneous
utility depends negatively on the stock of habits (i.e., % < 0). As an example consider
the specification of instantaneous utility of Carroll et al. (2000):

( c(t) )1—9
h(t)7
u(c(t), h(t)) = ~———7—, (43)
1-0

where 6 is the coefficient of relative risk aversion and v measure how much weight is given
to the absolute level of consumption in comparison to the consumption level relative to
the habit stock.

The habit stock is some general mean of past consumption levels. In the most general
form we can write h(t) as

t

h(t) = / c(s)m(t —s)ds , (44)
—0o0

where m(t) denotes the weighting function. Obviously, equation (44) is formally identical

to equation (38) and, thus, following the same line of argument all weighting functions

m(t) with lim_._ 4m(t) = 0 can be approximated in a way to be numerically solvable

with our approach.

A special case, for which our numerical algorithm is directly applicable, is achieved
by the weighting function m(t) = 16(c —t). This is the direct analogon to the one-hoss
shay depreciation rule in the vintage capital context and means that the habit stock at
time ¢ is the average of consumption over the interval [t — o, t], which yields the following
equation of motion for the habit stock:

h:%k@—f@—@]. (45)

6 Conclusions

As well known from the literature, delayed optimal control problems with one stock
and one control variable exhibit in general a qualitatively different system dynamics
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compared to instantaneous optimal control problems. While the optimal paths of the
latter converge strictly monotonically towards the stationary state, the former exhibit
oscillatory and exponentially damped optimal paths.

In this paper, we have drawn attention to the numerical solution of optimal control
problems with a delay in the control variable. We have shown how a simple delayed
optimal control problem can be reformulated such that direct state-of-the-art methods
can be applied. In particular, we presented two different problem reformulations and
compared the performance of Bock’s direct multiple shooting algorithm, implemented in
the software package MUSCOD-II. While the first reformulation increases the dimensiona-
lity of the resulting optimization problem drastically by introducing as many new stock
and control variables as the time horizon ¢;, over which is optimized, is a multiple of
the time-lag o, the second reformulation only introduces one additional control variable,
irrespective of the time horizon t; and the time-lag o. While the latter reformulation
exhibits better computational performance, the former allows for intuitive explanations
of some standard analytic results of the control-delayed optimal control problem.

Numerical optimization plays a crucial part in the analysis and understanding of de-
layed optimal control problems, as even the linear approximation of the system dynamics
around the stationary state is not analytically tractable. As we understand the lack of
application of delayed optimal control in economics to be (at least partly) a consequence
of the analytical and numerical difficulties, we hope that this paper encourages broader
research in this area. In fact, there a numerous applications in the field of economics
alone. With two examples we have shown how to apply the method for the rigorous
analysis of the transition from instantaneous to delayed capital accumulation and for
the analysis of the influence of the initial path on the optimal time-lagged accumula-
tion of a pollution stock. Further, we have discussed how general investment gestation
lag, vintage capital accumulation and habit formation models can be reformulated to
be tractable by our algorithm. However, we also expect our numeric approach to be
valuable for other fields of scientific endeavor.
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