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1 Introduction

Of all diagnosed medical conditions in Germany atrial flutter and atrial fibrillation are the fourth
most common. In 2013 alone, 280,900 cases were recorded [1]. Atrial fibrillation is characterized
by high-frequency chaotic electrical activation of the atria and an irregular ventricular response.
Atrial flutter, on the other hand, is based on repeating circuits of electrical activation resulting
in regular flutter waves [2].

Due to great differences in the treatment for both arrhythmias the right diagnosis is of
paramount importance. Evaluating the regularity of the atrial activation would simplify an
immediate diagnosis.

However, there exist only invasive methods which could reliably record the sinotrial conduc-
tion [3, p. 46]. Thus, detectection by easily measurable surface electrocardiogram (ECG) would
be a great improvement both for patients and physicians.

Yet, distinguishing between both arrhythmias with the help of ECG measurements still poses
great difficulties. This is because the distinct difference between atrial flutter and atrial fibrilla-
tion – the regular and the irregular atrial impulses respectively – does not at all times translate
to distinct ECG patterns.

Due to the chaotic atrial activation the ECG measurements of a patient with atrial fibrillation
show no predictable pattern. Despite regular flutter waves atrial flutter can also result in complex
disturbances of the ECG. Therefore, it is very difficult to distinguish between the two phenomena
by way of visual observation [2].

As for atrial flutter, this irregularity is caused by blocks within the atrioventricular (AV)
node impeding the impulse conduction in the heart. They cover the actual regular atrial rhythm
of atrial flutter. If this rhythm could be uncovered with the help of an algorithm, atrial flutter
and atrial fibrillation could probably be correctly diagnosed using ECG measurements.

A first attempt was made by Scholz et al. using findings of the cardiologists Woldemar
Mobitz and Karel Frederik Wenckebach. Mobitz and Wenckebach discovered that the ECG
pattern caused by a disturbed conduction in the AV-node follows certain rules. They described
two common phenomenological types of possible AV-blocks [4] [5] [3, p. 60].

Scholz et al. used these observations to develop an algorithm (MAVBA1) trying to reproduce
certain characteristics of a measured ECG sequence. The quality of this simulation then indicates
the proper diagnosis. This discrimination could be performed with a great accuracy so far [2].
However, the strict separation in Mobitz- and Wenckebach-type AV-blocks makes it difficult
to also explain rare physiological phenomena. The objective of this thesis is to formulate and
analyze the Q-model, a new approach which is not limited to two types of AV-blocks but rather
can accommodate a more general class of AV-blocks. This new characterization may be able to
further enhance the current diagnostic value of such decision support tools.

1Multi-level AV-block algorithm - labeling only valid within this thesis
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2 Physiological Background

The anatomic and functional structure of the cardiac cycle is important to understand the idea
behind MAVBA and the Q-model. Therefore, a small excursus to the physiological backgrounds
is necessary.

2.1 Cardiac Cycle

The electrical conduction system dictates the cardiac cycle by creating and propagating impulses
to the atria and the ventricles. The normal cardiac cycle, describing one complete beat of the
heart, follows a specific routine. This routine is described in Table 1. The sinoatrial node, located
in the right atrium, serves as a pacemaker. It provides the initial impulse. An emitted signal
first stimulates both atria to contract while traveling to the atrioventricular node. After a short
delay the impulse is transmitted through the His-bundle to the Purkinje fibers. These fibers are
directly to the cells within the ventricle-walls. This causes the large heart chambers to contract.
At the end of the cardiac cycle both chambers restore their resting state. This process is called
ventricular repolarization [3, p. 61] [6].

The electrical conduction regulating this process results in the characteristic surface ECG
intervals. In this thesis, the most important structure in these intervals is the easy recognizable
R-complex. It indicates the contraction of the ventricles. Figure 1 shows the partition of one
complete ECG interval.

Figure 1: Partition of an ECG interval2

The AV-node is the junction between the atrial and ventricular impulse conduction. It
therefore plays a critical role in the electrical conduction system. A dysfunction directly affects
the occurrence of ventricular response.

2Agateller, Wikimedia Commons, URL:http://en.wikipedia.org/wiki/File:SinusRhythmLabels.png
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Cycle begins at the sinoa-
trial node.

The sinus impulse is spread.
Conduction alongside the
atria.

Atrial contraction.

The AV-node receives the
impulse.

Short propagation de-
lay (location of possible
AV-blocks).

AV-node spreads the im-
pulse.

Propagation through the
His-bundle. Starting R-
complex on the ECG.

Impulse enters the Purkinje
fibers.

Beginning contraction. Ventricles contract.
Impulse to restore resting
state spreads.

Signal propagation. Ventricular repolarization. Ventricular repolarization. Resting state.

Table 1: Schematic Representation of the Cardiac Cycle3

3Kalumet, Wikimedia Commons, URL:http://commons.wikimedia.org/wiki/File:ECG Principle fast.gif, li-
censed under cc-by-sa-3.0, http://creativecommons.org/licenses/by-sa/3.0
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2.2 AV-Blocks

In cases of atrial flutter the atrial activation is regular due to regular flutter waves. However, the
conduction alongside the AV-node is disturbed. These blocks cause the irregularity in the ECG
and make atrial flutter difficult to distinguish from atrial fibrillation. Mobitz and Wenckebach
described such dysfunctions by observing characteristic patterns of R-R intervals in the ECG.
These dysfunctions are commonly referred as second degree AV-blocks.

Second degree AV-Block type Wenckebach

In case of an AV-block of the type Wenckebach, the propagation delay within the AV-node
increases with every completed beat. If the delay exceeds a certain duration the transmitted
impulse is dismissed upon receipt. This causes the cycle to reset itself and the aforementioned
pattern recommences. Listing 1 explains the basic behavior of this type of AV-blocks. With
every ventricular response the propagation delay increases. If the total delay oversteps a certain
limit τ ref , the following impulse fails. After that, the cycle resets itself. The Wenckebach-block
is described by the parameters τ con, τ inc and τ ref [7][8][3, p. 60].

1 % set initial values for counters

2 b = 0;

3 j = 1;

4
5 % go through every incomming beat

6 for i=1:K

7 % if possible , propagate the beat

8 if(tcon + b*tinc <= tref)

9 % safe the new level status

10 r[j] = t[i] + tcon + b*tinc;

11 b = b + 1;

12 j = j + 1;

13 else

14 b = 0;

15 end

16 end

Listing 1: Wenckebach-type AV-block

Second degree AV-Block type Mobitz

An AV-block of the type Mobitz causes a sudden failure of ventricular response for one single
input signal without previous increase of the propagation delay. This failure follows a certain
pattern (B : 1) meaning only every (B+1)th beat is successful propagated. The general behavior
is described by listing 2. After passing through an input signal a refractory period τ ref is initiated.
During this period the propagation of any input signal ceases. After the expiry of the refractory
period the next incoming signal is propagated again and the cycle resumes. The parameters τ con
and τ ref describe Mobitz-type AV-blocks[7][8][3, p. 60].
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1 % set initial values for counters

2 b = 0;

3 j = 1;

4
5 % go through every incomming beat

6 for i=1:K

7 % if possible , propagate the beat

8 if(t[i] >= b)

9 % safe the new level status

10 r[j] = t[i] + tcon;

11 b = t[i] + tref;

12 j = j + 1;

13 end

14 end

Listing 2: Mobitz-type AV-block
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3 MAVBA Algorithm

The MAVBA algorithm was developed by Scholz et al. to further faciliate the distinction of
atrial flutter and atrial fibrillation. The algorithm uses the length of R-R intervals4 to uncover
the source of irregular ventricular contraction.

Reconsidering the previous chapter, atrial flutter is characterized by regular atrial impulses
and conduction blocks within the AV-node. This is the key difference to atrial fibrillation. For
a measured set of R-R intervals the algorithm tries to emulate this given pattern. To do this,
it may only use a regular input signal and two levels of AV-blocks. The overall objective is to
minimize a least-squares error-function between the emulation and the measurements. A relative
small objective and therefore a successful simulation indicates atrial flutter. A high objective in
turn indicates atrial fibrillation.

The used multi-level AV-block consists of one Mobitz-level followed by a Wenckebach-level
or vice versa. The result after passing the first block is used as the input for the second block.
Each block-level is generated during runtime out of multiple sub-blocks of the corresponding
block-type. Each sub-block has individual combinations of the characterizing parameters. The
algorithm can adjust the combination of these modules and the input signal. This results in the
following general workflow:

1. Take the measured ECG as input.

2. Determine optimal block-composition per level and input pattern to emulate the ECG as
accurate as possible.

With this algorithm, based on a study with 100 patiens, 50 of whom with atrial flutter and 50
with atrial fibrillation, a high diagnostic accuracy with a sensitivity of 84% and a specificity of
74% was achieved. The highest accuracy was achieved on a time horizon containing 16 R-R
intervals.

Scholz et al. cite two reasons for still existing cases of atrial flutter with a high objective
value. First, the total separation in Mobitz- and Wenckebach-type AV-blocks makes it difficult
to explain rare electrophysiological phenomena that need a block-structure not supported by
either of the two. Second, in order to limit the amount of possible sub-blocks to a finite number,
all parameters only support discrete increments [2].

An approach supporting a broader range of phenomena could help to explain more cases
of atrial flutter and thereby decrease the simulation error. Furthermore, a suitable formulation
could then enable the use of continuous parameters to make even more accurate predictions. The
Q-model could be a first step towards formulating such a generalized approach accommodating
both of the mentioned problems [2].

4Interval between two consecutive R-complexes on the ECG
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4 The Q-Model

The simulation of MAVBA is based on the discrimination of a second-degree AV-block in Type
I (Wenckebach) and Type II (Mobitz). The idea of the Q-model is to formulate a new approach
based on a more general description of AV-blocks [7]. This model should explain both the
observations of Mobitz and Wenckebach as special cases.

4.1 Model Definition

The core idea is to relate a degree of exhaustion Q to every AV-level. An incoming impulse is only
propagated if this exhaustion observes a certain limit Qmax. Otherwise, the beat is discarded.
Every propagated signal lowers the potential of the level and therefore causes an increase of Q.
Over time the level regenerates to restore its propagation-ability.

Let s1, ..., sK be all points in time of incoming impulses and r1, ..., rnECG the resulting R-
complexes on the surface ECG. Listing 3 describes the general behavior of a single level simulated
with the Q-Model.

1 % set initial value of Q at t = 0

2 Q = Q0;

3 j = 1;

4
5 % regenerate to first beat

6 Q = regenerate(Q, 0, s[1]);

7
8 % go through every incomming beat

9 for i=1:K

10 % if possible , propagate the beat

11 if(Q <= Qmax)

12 % safe the new level status

13 [Q, r[j]] = propagate_beat(Q, s[i]);

14 j = j + 1;

15 end

16
17 if(i < K)

18 % regenerate to the next beat

19 Q = regenerate(Q, s[i], s[i+1]);

20 end

21 end

Listing 3: General behavior of the Q-model

The function propagate beat updates the state Q and returns the time-point at which the R-
complex occurs on the ECG. This simulates the propagation delay. This thesis is based on the
assumption of a constant and an additional linear delay which depends on Q. The rate of re-
generation Qreg depends linearly on the time. The resulting modifications are stated in listing 4
[7].
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1 % set initial value of Q at t = 0

2 Q = Q0;

3 j = 1;

4
5 % regenerate to first beat

6 Q = Q - s[1] * Qreg;

7
8 % go through every incomming beat

9 for i=1:K

10 % if possible , propagate the beat

11 if(Q <= Qmax)

12 % safe the new level status

13 r[j] = s[i] + tcon + Q*tinc;

14 Q = Q + dQ;

15 j = j + 1;

16 end

17
18 if(i < K)

19 % regenerate to the next beat

20 Q = Q - (s[i+1] - s[i]) * Qreg;

21 end

22 end

Listing 4: Q-model with linear regeneration and propagation delay

To describe the incoming impulses additional parameters are needed. It is first assumed that the
pattern occurs perfectly regular. Let therefore t0 be the input signal of the first impulse and ∆t

the constant time gap between two beats. In figure 2 the effect of each parameter is illustrated
using a simple forward-simulation.

s1 = t0 s2 s3

Qmax

Q0

Qreg

∆t

∆Q

time [t]

Q(t)

Figure 2: Q-Model Sample
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Explicit Form of Q

With the model-definition above, it is possible to state the trajectory Q : R→ R of the AV-level
status over the whole simulation interval. However, in order to do this, the time of every prop-
agated impulse t1, . . . , tnECG must be known over the complete time-horizon of nECG successful
beats. This knowledge assumed one can define an explicit notation of Q:

Q(t) =


Q0 − tQreg t ≤ t1
Q0 + (i− 1)∆Q − tQreg ∃i = 1 . . . nECG : t ∈ (ti−1, ti]

Q0 + nECG∆Q − tQreg t > tnECG

(4.1)

In the beginning, the AV-level regenerates to the first beat at t1. Then, the function enters the
second definition. The cell is still regenerating but the level of exhaustion increases at every
propagation by ∆Q. One can observe that the function is monotonically decreasing within every
definition. This can later be used to simplify the model constraints.

4.2 Behavior Analysis of the Q-Model

The parameters of the Q-Model should be chosen so that the resulting simulation produces a
feasible physiological pattern. While it is difficult to exactly define such valid patterns, at least
definitely unfeasible cases can be excluded. Through the definition above, the Q-Model depends
on the parameters Q0, Qreg, Qmax, ∆Q, τinc, τcon, t0 and ∆t. In general, the model must observe
the following constraints:

1. All parameters have to be non-negative. This follows directly from the directional definition
of every variable.

2. The propagation delay has to be non-negative. Hence, it must hold that

Q(ti)τinc ≥ 0 ∀i = 1 . . . nECG.

Since the degree of exhaustion has a local minimum at every beat ti by definition and τinc
is not negative, the function Q must observe the general constraint

Q(t) ≥ 0 ∀t ∈ [0, tnECG ].

To ensure that the second constraint is observed at every point in time during the simulation
multiple conditions need to be fulfilled.

Regeneration Rate

The trajectory of Q does not depend on the propagation delay and therefore only on Qreg, Qmax,
∆Q, Q0, t0 and ∆t. To avoid a decrease below zero the regeneration between two incoming beats
must not exceed ∆Q. If a higher rate was assumed so that Qreg∆t > ∆Q, the value of Q would
decrease between two input signal even if every beat was successful. It would then hold

lim
t→∞

Q(t) = −∞

so that the value of Q would drop below zero for a large enough time horizon. In order to avert
this it must hold:

Qreg∆t ≤ ∆Q (4.2)

9



Propagation Limit

Assuming that Q(t) > Qmax, the level of exhaustion at the next impulse is

Q(t+ ∆t) = Q(t)−Qreg∆t

≥ Q(t)−∆Q

> Qmax −∆Q.

To still ensure that Q(t+ ∆t) ≥ 0, the propagation limit Qmax must be at least ∆Q above zero:

Qmax ≥ ∆Q (4.3)

Value-range of Q

Before being able to set constraints for the start value Q0, the range that Q can display must be
examined. This can be done by reconsidering the previous results.

• A beat is only propagated if Q(t) ≤ Qmax. After that, Q increases by ∆Q. Since Q is
monotonically decreasing in every partial definition, the function has a local maximum
immediately after every propagation. It follows:

Q(t) ≤ Qmax + ∆Q ∀t ∈ [0, tnECG ].

• The regeneration rateQreg is limited by the constraint (4.2). Hence, between two attempted
propagations the cell restores at most ∆Q. Let t be a random beat and the value Q(t) be
already known. There are now two cases:

1. Let t be a not propagated impulse with Q(t) > Qmax. At the next beat t + ∆t the
value of Q holds

Q(t+ ∆t) = Q(t)−∆tQreg

> Qmax − dtQreg

≥ Qmax −∆Q.

2. Let now be Q(t) ≤ Qmax. Hence, the impulse at t is propagated. Reconsidering the
result (4.2), it follows

Q(t+ ∆t) = Q(t)−∆tQreg + ∆Q

≥ Q(t)−∆Q + ∆Q

= Q(t).

This can then be used recursively until a previous failed impulse. The first case can
then be used to also state

Q(t) > Qmax − dQ,

where t is the point of time of a failed or successful propagated impulse.

Since the function Q has a local minimum at every propagated impulse ti, this result can
be generalized to

0 ≤ Qmax −∆Q ≤ Q(t) ≤ Qmax + ∆Q ∀t ∈ [0, tnECG ]. (4.4)

10



t1 t2 t3 t4 t5 t6 t7 t8 t9

Qmax −∆Q

Qmax

Qmax + ∆Q

time [t]

Q(t)

Figure 3: Trajectory Bounds of Q

Initial Value Q0

The parameter Q0 must ensure a behavior at the start of the simulation that observes the
constraints. With the limitations above, the trajectory of Q can not fall below zero once the first
incoming beat at t0 is reached. Hence, only the time-span [0, t0] must be observed.

• Since Q0 cannot overstep the range of Q, it must hold:

Qmax −∆Q ≤ Q0 ≤ Qmax + ∆Q. (4.5)

• Case 1: Q(t0) = Q0−t0Qreg > Qmax. With condition (4.5) and Qreg ≥ 0 it directly follows,
that

Qmax −∆Q < Qmax < Q(t0) ≤ Qmax + ∆Q.

Therefore, this case is valid.

• Case 2: Q(t0) = Q0 − t0Qreg ≤ Qmax. The function still must not violate the constraint
Q(t0) ≥ Qmax −∆Q:

Q(t0) ≥ Qmax −∆Q

⇔ Q0 − t0Qreg ≥ Qmax −∆Q

⇔ Q0 ≥ Qmax −∆Q + t0Qreg (4.6)

The conditions (4.2), (4.3), (4.5) and (4.6) guarantee a behavior of the described AV-level,
that respects the above constraints. Nonetheless, the bounds for every parameter itself still have
to be chosen satisfactorily. Besides finding feasible parameter ranges, it is also desirable to reduce
the overall number of optimization variables. Through structure exploitation it is possible to
decrease this amount by fixing Qmax, ∆Q and t0 without loss of generality.

11



Fixing ∆Q

Let Q(t) be described with known parameters and Q : R→ R be defined as

Q(t) : =
Q(t)

∆Q

=


Q0

∆Q
− tQreg

∆Q
t ≤ t1

Q0

∆Q
+ (i− 1)

∆Q

∆Q
− tQreg

∆Q
∃i = 1 . . . nECG : t ∈ (ti−1, ti]

Q0

∆Q
+ nECG

∆Q

∆Q
− tQreg

∆Q
t > tnECG

=


Q0 − tQreg t ≤ t1
Q0 + (i− 1)− tQreg ∃i = 1 . . . nECG : t ∈ (ti−1, ti]

Q0 + nECG − tQreg t > tnECG

By fixing the remaining parameters to

Qmax :=
Qmax

∆Q

τ inc := τinc∆Q

τ con := τcon,

the AV-level described by Q(t) has the exact same pattern and propagation delay as Q(t). The
first can be shown by examining the following two cases.

1. Let t be the time of a silent beat:

Q(t) > Qmax

⇔ Q(t)

∆Q
>
Qmax

∆Q

⇔ Q(t) > Qmax

2. Let t be the time of a propagated beat:

Q(t) ≤ Qmax

⇔ Q(t)

∆Q
≤ Qmax

∆Q

⇔ Q(t) ≤ Qmax

Hence, Q(t) propagates a beat only if Q(t) propagates the beat as well. Assuming such a
propagated signal t, the resulting simulated beat r occurs at

r = t+ τcon +Q(t)τinc

= t+ τcon +
Q(t)

∆Q
∆Qτinc

= t+ τ con +Q(t)τ inc

It is therefore possible to describe the exact same pattern and delay by fixing ∆Q = 1.
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Fixing Qmax

Reconsidering the constraint (4.4), one already knows that

Qmax − 1 ≤ Q(t) ≤ Qmax + 1 ∀t ∈ [0, tnECG ].

Thus, Qmax has to be at least 1 to ensure that Q(t) is always greater or equal to 0. Let Q be a
known AV-Level trajectory and s = Qmax − 1 a constant shift. As above, one can now define a
new function Q : R→ R as

Q(t) : = Q(t)− s

=


(Q0 − s)− tQreg t ≤ t1
(Q0 − s) + (i− 1)− tQreg ∃i = 1 . . . nECG : t ∈ (ti−1, ti]

(Q0 − s) + nECG − tQreg t > tnECG

=


Q0 − tQreg ≤ t1
Q0 + (i− 1)− tQreg ∃i = 1 . . . nECG : t ∈ (ti−1, ti]

Q0 + nECG − tQreg t > tnECG

By also fixing

Qmax = Qmax − s = 1

Q0 = Q0 − s
τ inc = τinc

τ con = τcon + sτinc

there can be again the same pattern and propagation delay obtained as with Q. To show the
equivalent pattern, one must consider the same two cases as above:

1. Let t be the time of a silent beat:

Q(t) > Qmax

⇔ Q(t)− s > Qmax − s
⇔ Q(t) > Qmax

2. Let t be the time of a propagated beat:

Q(t) ≤ Qmax

⇔ Q(t)− s ≤ Qmax − s
⇔ Q(t) ≤ Qmax

A propagated impulse then occurs at

r = t+ τcon +Q(t)τinc

= t+ τcon + (Q(t)− s)τinc + sτinc

= t+ τcon + sτinc +Q(t)τinc

= t+ τ con +Q(t)τ inc

Hence, it is also possible to fix Qmax to 1 without a loss of generality of the simulation.
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Fixing t0

The parameter t0 describes the first beat after starting the simulation. After that, every following
beat occurs with a constant offset of ∆t. This initial timeshift t0 can be ignored while calculating
the input signals. Instead, it can be added right after the propagation. Let ti = t0 + k∆t, k ∈ N
be the input time of a propagated beat. One can now shift the input signal back by t0 to
ti = +k∆t with a new trajectory Q : R→ R, defined as

Q(t) := Q(t+ t0).

With τ con = τcon + t0 and τ inc = τinc, there can still be the same simulation result ri obtained:

ri = ti + tcon+Q(ti)τinc

= (ti − t0) + (t0 + τcon) +Q(ti − t0 + t0)τinc

= ti + τ con +Q(ti + t0)τinc

= ti + τ con +Q(ti)τ inc

For the new trajectory Q it holds

Q(0) = Q(t0).

Again, the trajectory Q can be stated explicitly as

Q(t) = Q(t+ t0)

=


Q0 − (t+ t0)Qreg t+ t0 ≤ t1
Q0 + (i− 1)− (t+ t0)Qreg ∃i = 1 . . . nECG : t+ t0 ∈ (ti−1, ti]

Q0 + nECG − (t+ t0)Qreg t+ t0 > tnECG

=


Q0 − tQreg − t0Qreg t ≤ t1 − t0
Q0 + (i− 1)− tQreg − t0Qreg ∃i = 1 . . . nECG : t ∈ (ti−1 − t0, ti − t0]

Q0 + nECG − tQreg − t0Qreg t > tnECG − t0

=


Q0 − t0Qreg − tQreg t ≤ t1
Q0 − t0Qreg + (i− 1)− tQreg ∃i = 1 . . . nECG : t ∈

(
ti−1, ti

]
Q0 − t0Qreg + nECG − tQreg t > tnECG

=


Q0 − (t+ t0)Qreg t ≤ t1
Q0 + (i− 1)− tQreg ∃i = 1 . . . nECG : t ∈

(
ti−1, ti

]
Q0 + nECG − tQreg t > tnECG

Hence, the parameter t0 can simply be ignored, if the constant shift τcon has a large enough value
range to represent both t0 and the constant propagation delay. Moreover, Q0 now equals the
value at Q(0).
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Summarizing the results

Combining all the simplifications, the simulation now only needs the parameters Q0, Qreg, τinc,
τcon and ∆t. Those must observe the constraints (4.3), (4.2), (4.5) and (4.6):

Qreg∆t ≤ ∆Q

Qmax −∆Q ≤ Q0 ≤ Qmax + ∆Q

Qmax −∆Q + t0Qreg ≤ Q0.

With Qmax = ∆Q = 1 and t0 = 0, this results in

Qreg∆t ≤ 1

0 ≤ Q0 ≤ 2

0 ≤ Q0.

With these simplifications, the last constraint is redundant. Let N : R5 → R3 be a constraint
function with

N(Q0, Qreg, τinc, τcon,∆t) :=

 Qreg∆t − 1
Q0 − 2
−Q0

 . (4.7)

A set of parameters, that fulfills the condition

N(Q0, Qreg, τinc, τcon,∆t) ≤

 0
0
0


now satisfies all the general requirements that were demanded at the beginning. Nonetheless,
every parameter still needs a feasible lower- and upper bound. Let Ω be the set of all valid
combinations of parameters by that meaning:

Ω =

ω =


Q0

Qreg

τinc
τcon
∆t

 : N(ω) ≤ 0, ωmin ≤ ω ≤ ωmax

 , (4.8)

where ωmin, ωmax ∈ R5 describe the parameter ranges. This is the overall set of all parameter
combinations which do not oppose the restrictions formulated at the beginning of this chapter.

Ω now characterizes all those parameters, over which a suitable algorithm has to find the
best behavior of the AV-Level subject to a suitable objective. The next step is to combine an
ω ∈ Ω with the resulting simulated pattern and define such an objective. This being done, the
problem can be formulated as a continuous differentiable MINLP.

4.3 MINLP Formulation

The algorithm described by Scholz et al. uses a least squares objective that evaluates the dif-
ference between the simulated and the measured ECG pattern. In order to perform such an
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evaluation, the amount of simulated propagations has to exactly correspond to the amount
nECG of measured beats. Let m ∈ ZnECG be a vector with

mi := Amount of impulses since ti−1 ∀i = 1, . . . , nECG, (4.9)

and

Mi :=
i∑

k=1

mk ∀i = 1, . . . , nECG.

Figure 4 illustrates the definition. There have to be exactly MnECG simulated incoming beats in
order to achieve the necessary nECG propagated beats. Assuming that the vector m is already
known, the time of every beat ti can now be directly specified with

ti = ∆t (Mi − 1) (4.10)

To allow a first impulse at t = 0 one must decrease the sum over all mi by 1. This causes the
first increase by ∆t to vanish.

Since the exact time of every attempted and propagated beat is fixed, one can now implicitly
state the behavior of the AV-level. The exhaustion Q has to be below Qmax = 1 at every ti and
above Qmax at every discarded beat. In the interest of perceptibility the parameter Qmax will
still be used as symbolic variable.

Q (ti) ≤ Qmax ∀i = 1 . . . nECG (4.11)

Q (ti + ∆t ·Qmax) > 1 ∀l = 1 . . .mi − 1, i = 0 . . . nECG − 1 (4.12)

These inequalities describe the constraints a trajectory Q respects if its output matches the
pattern of m. One can show later that this m is in fact the only vector which satisfies all these
conditions for a specific Q. Such an AV-Level then needs exactly MnECG incoming beats to
propagate nECG output signals.

t0 t1 t2 t3 t4

Qmax

m1 = 3 m2 = 1 m3 = 2 m4 = 1

time [t]

Q(t)

Figure 4: Pattern Representation with m
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The function Q depends on the amount of propagated beats, the time passed to regenerate
and the initial value Q0. Because m is assumed fix, one can again directly state Q at time t as

Q(t) =


Q0 − tQreg t ≤ t1
Q0 + (i− 1)− tQreg ∃i = 1 . . . nECG : t ∈ (ti−1, ti]

Q0 + nECG − tQreg t > tnECG

.

This means for the inequalities (4.11) and (4.12)

Q0 + (i− 1)− ti ·Qreg ≤ Qmax ∀i = 1 . . . nECG,

Q0 + (i− 1)− (ti−1 + ∆t · l) ·Qreg > Qmax ∀l = 1 . . .mi − 1,

i = 1 . . . nECG.

Reconsidering (4.10) from above, the explicit appearance of every ti can now be vanished by
replacing them with their definition:

Q0 + (i− 1)− (Mi − 1) ∆tQreg ≤ Qmax ∀i = 1 . . . nECG

Q0 + (i− 1)− (Mi−1 − 1 + l) ∆tQreg > Qmax ∀l = 1 . . .mi − 1,

i = 1 . . . nECG

These inequalities can be placed in constraint-functions which in turn determine whether a
combination (m, ω) results in exactly nECG propagations. The Model therefore needs two types
of constraints for the propagated and the silent impulses respectively.

Constraints for propagated beats

A suitable constraint should allow only a combination (m, ω) which satisfies the inequalities
(4.11). Let H : ZnECG × Rnω → RnECG be the function defined as

H(m,ω) :=


Q0 + 0− (M1 − 1) ∆tQreg −Qmax

Q0 + 1− (M2 − 1) ∆tQreg −Qmax
...

Q0 + (nECG − 1)− (MnECG − 1) ∆tQreg −Qmax


≤ 0

If this requirement is fulfilled, every beat at t1, . . . , tnECG is propagated.

Constraints for silent beats

The vector m describes the pattern of successful and failed propagations. To satisfy this pat-
tern the trajectory Q must be above Qmax at every silent beat and therefore fulfill the strict
inequalities (4.12).

The amount of constraints described by (4.12) depends on m. But since Q is monotoni-
cally decreasing within every partial definition, this amount can be reduced to at most nECG

constraints of the form

Q0 + (i− 1)− (ti −∆t)Qreg > Qmax

⇔ Q0 + (i− 1)− (Mi − 2) ∆tQreg > Qmax for certain i ∈ {1, . . . , nECG}

This results from considering the following two cases:
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1. Let mi be greater or equal to 2. There is now at least one silent beat between ti−1 and
ti. Hence, there is a definitely failed propagation at ti − ∆t. Since Q is monotonically
decreasing on the interval (ti−1, ti], it holds

Q(t) ≥ Q(ti −∆t) ∀t ∈ (ti−1, ti −∆t].

Therefore, if Q fulfills the condition

Q(ti −∆t) = Q0 + (i− 1)− (ti −∆t)Qreg > Qmax,

this also holds for every failed impulse between ti−1 and ti that occurs before ti − ∆t.
Hence, only the last impulse between two propagations needs two be constrained.

2. Let mi be 1. In this case, the beat ti follows directly after the previous propagation at
ti−1. The condition can simply be dropped.

The index-set
I := {i : i ∈ [1, . . . , nECG],mi ≥ 2} = {i1, . . . , i|I|}

indicates which inequalities need to be active. Let then JI : ZnECG ×Rnω → R|I| be the function
describing the strict inequality:

JI(m,ω) =


Q0 + (i1 − 1)− (Mi1 − 2) ∆tQreg −Qmax

Q0 + (i2 − 1)− (Mi2 − 2) ∆tQreg −Qmax
...

Q0 + (i|I| − 1)−
(
Mi|I| − 2

)
∆tQreg −Qmax

 > 0,

Fulfilling this condition, the trajectory Q is forced to be above the propagation limit Qmax at
every failed impulse. This ensures that there does not exist any additional propagation besides
the intentional t1, . . . , tnECG . For the sake of simplicity, the representation of J using I will be
used for the problem formulation. However, later in chapter 6.1 this will be dissolved in order
to implement the resulting optimization problem.

Combining both constraints

If Q respects all the constraints demanded in (4.11) and (4.12), the AV-level generates the
corresponding pattern m. Using H and JI , one can now abstract this property by joining the
results from above.

Lemma 4.1. Let (m, ω) ∈ ZnECG × Ω be chosen such that H(m,ω) ≤ 0 and JI(m,ω) > 0.
Then the AV-level and the input signal, both determined by ω, generates the unique pattern m
to simulate the first nECG propagations.

Proof. If the parameters ω ∈ Ω are fixed, the corresponding AV-level and the input signal are
uniquely determined. This can easily be proved by a simple forward-simulation of the Q-model
using the chosen parameters since this is an unique process.

Assuming this simulation would have proceeded long enough, the pattern m, which is gener-
ated within the time-horizon of the first nECG beats, is also uniquely determined. The constraints
H(m,ω) ≤ 0 and JI(m,ω) > 0 are only then true if the value of Q is below or equal to 1 at
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every successful and above 1 at every failed beat. Therefore, both conditions are fulfilled for the
fixed ω and the generated m.

On the other hand, these conditions are only fulfilled if m is in fact the pattern simulated
by using ω. Let m̄ be a pattern that fulfills both constraints but is not equal to the actual
pattern m generated by an explicit simulation. With both patterns, a set of beats t1, . . . , tnECG

and t̄1, . . . , t̄nECG is characterized. These are the first nECG beats that are passed through the
AV-block. There is at least one i with ti 6= t̄i. Since both m and m̄ fulfill the constraints H and
JI with ω, this beat must satisfy both of these conditions. Therefore, it must hold

Q(ti) ≤ 1 ∧ Q(ti) > 1

Q(t̄i) ≤ 1 ∧ Q(t̄i) > 1

since a failed impulse occurs at ti in m̄ and at t̄i in m. Hence, assuming such another m̄ leads
to a conflict.

Using a fixed ω, the only pattern m that fulfills H(m,ω) ≤ 0 and JI(m,ω) > 0 is the one
generated by a simple forward-simulation of the AV-level. Therefore, if m and ω do satisfy these
conditions, m must be the actual simulation pattern.

With this lemma it is possible to check whether a combination (m, ω) results in the desired
amount of output beats without an explicit simulation. On top of that, if a valid combination
is known, all the ti and therefore the complete trajectory Q is also evaluable over the complete
time horizon of the simulation.

Formulating the Objective

Assuming known m and ω, which satisfy lemma (4.1), every point in time ti is determined. In
order to evaluate the simulation as a least squares problem, the final ECG time-points ri must
be calculated. A certain simulated ECG signal depends on ti, the cell status Q(ti) and the
propagation delay, such as

ri = ti + τcon + τincQ(ti) ∀i = 1, . . . , nECG.

Since all these parameters are known and the trajectory Q can be evaluated, a function can
be defined which returns the vector of all ri, depending only on m and ω. Let therefore S :
ZnECG × Rnω → RnECG be defined as

S(m,ω) =


t1 + τcon + τincQ(t1)
t2 + τcon + τincQ(t2)

...
tnECG + τcon + τincQ(tnECG)

 .
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The vector r = S(m,ω) contains the final simulation result. As above, the value of Q(t) and ti
can be stated explicitly:

S(m,ω) =


t1 + τcon + τinc(Q0 + 0− t1Qreg)
t2 + τcon + τinc(Q0 + 1− t2Qreg)

...
tnECG + τcon + τinc(Q0 + (nECG − 1)− tnECGQreg)



=


t1(Qregτinc + 1) + τcon + τinc(Q0 + 0)
t2(Qregτinc + 1) + τcon + τinc(Q0 + 1)

...
tnECG(Qregτinc + 1) + τcon + τinc(Q0 + nECG − 1)



=


∆t(M1 − 1)(Qregτinc + 1) + τcon + τinc(Q0 + 0)
∆t(M2 − 1)(Qregτinc + 1) + τcon + τinc(Q0 + 1)

...
∆t(MnECG − 1)(Qregτinc + 1) + τcon + τinc(Q0 + nECG − 1)


Formulating the MINLP

Considering the previous results, the following components are now known:

• The set of all possible parameters ω ∈ Ω that lead to a general feasible behavior.

• The constraints H and JI which determine if a specific ω needs the pattern m ∈ ZnECG to
simulate exactly nECG beats.

• The function S, which determines all nECG time-points ri of the generated R-complexes.

Combining these components, a mixed-integer, non-linear optimization problem can be formu-
lated:

min
m,ω

‖S(m,ω)− ECG‖2

s.t. H(m,ω) ≤ 0

JI(m,ω) > 0

m ∈ ZnECG

ω ∈ Ω

(4.13)

This problem formulation avoids any explicit simulation of the AV-level. Using a suitable solving
algorithm, the best choice of ω can be found for the underlying Q-model.

4.4 Emulating Mobitz and Wenckebach AV-Blocks

Reconsidering chapter 3, two problems were mentioned by Scholz et al. that probably still
limit the diagnostic accuracy of their algorithm. First, the strict separation in Mobitz- and
Wenckebach-type blocks makes it difficult to describe rare phenomena. Second, the discrete
parameter step size limits the scope of the simulation. Using a suitable algorithm, the formulation
of MINLP (4.13) makes it possible to find the best choice for m and ω without actually simulating
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the explicit Q-model. This allows the use of continuous parameters. Thus, the second limitation
is eliminated.

The approach of the Q-model is more general then a strict decision between Mobitz and
Wenckebach. Furthermore, it can be shown that these two types of AV-blocks are in fact just
special cases within all possible simulations and can therefore be emulated by the Q-model.

Certainly, this does not state an explicit relation between MAVBA and the Q-model since
Scholz et at. build their blocks out of multiple block-modules. Nonetheless, this new approach
is capable of imitating the basic sub-blocks that MAVBA uses. Therefore, both algorithms have
a common intersection of possible simulations.

Emulating a Mobitz-block

As discussed in chapter 2.2, a Mobitz-type block satisfies a (B:1) pattern, meaning that only
every (B+1)th input signal excites a ventricular response. Using suitable parameters, the Q
-model is able to emulate the same behavior as a strict Mobitz-type AV-block.

Lemma 4.2. For every B:1 Mobitz-pattern exists a combination (m,ω) with H(m,ω) ≤ 0 and
J(m,ω) > 0 that emulates the behavior of the Mobitz AV-level.

Proof. Let t1 and t2 be the time points of a first and a second propagated beat. The Mobitz-
pattern repeats after every propagated beat. If one can show that the Q-Model simulation
behaves like the given Mobitz AV-block and it also holds Q(t1) = Q(t2), the Q-Model has to
emulate the Mobitz-pattern for every time-interval.

For the sake of simplicity, let the timespan of the simulation be shifted so that t1 = 0. This
can be done without a loss of generality, by adjusting Q0 and m1. Therefore, it holds Q(t1) = Q0.
The second beats occurs after B discarded beats. This results in the pattern m = (1, B + 1) for
the Q-level.

Since it is demanded that Q(t1) = Q(t2), one arrives at

Q(t1) = Q(t2)

⇔ Q0 = Q0 + 1− (B + 1)∆tQreg

⇔ 0 = 1− (B + 1)∆tQreg

⇔ (B + 1)∆tQreg = 1

⇔ ∆tQreg =
1

B + 1
(4.14)

With this fixed pattern, also the total regeneration between two received impulses must be fixed.
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To ensure that the beats t1 and t2 actually are propagated it must hold:

H(m,ω) =

(
Q0 + (M1 − 1)∆tQreg − 1

Q0 + 1− (M2 − 1)∆tQreg − 1

)
=

(
Q0 − 1

Q0 − (B + 1)∆tQreg

)
=

(
Q0 − 1

Q0 − B+1
B+1

)
=

(
Q0 − 1
Q0 − 1

)
≤ 0

Hence, if Q(t1) = Q0 is below or equal to Qmax = 1, all necessary impulses get successfully
propagated.

In order to prevent any additional propagation, the second constraint must also be respected.
Since m1 = 1, there are only two possibilities for the necessary index-set I:

1. B ≥ 1 and m2 ≥ 2. For the index set, this means:

I = {2}.

The corresponding constraint then is

JI(m,ω) = Q0 + (2− 1)− (M2 − 2)∆tQreg − 1

= Q0 + 1− B

B + 1
− 1

= Q0 −
B

B + 1
> 0.

With this, it directly follows

Q0 >
B

B + 1

Combining this and the previous result Q0 ≤ 1 the valid range for Q0 can be stated:

Q0 = Q(t1) ∈
(

B

B + 1
, 1

]
(4.15)

If such a Q0 is chosen, both H(m,ω) ≤ 0 and JI(, ω) > 0 are satisfied.

2. B = 0 and therefore m2 = 1. In this case, it holds

I = ∅.

Hence, Q0 can be chosen freely within the range

Q0 = Q(t1) ∈ (0, 1] =

(
B

B + 1
, 1

]
.
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It is therefore always possible to find suitable parameters for the Q-Model to match the pattern
of a general 1:B Mobitz block.

A Mobitz-level only has a constant propagation delay τcon,M . The delay of the Q-model must
equal this constant shift, to simulate the exact same behavior as a Mobitz block. Since the value
of Q is constant at every propagated beat with Q(t1) = Q(t2) = Q0, one must only look at the
first propagation at t1. The delay of the Q-model must hold

τcon +Q(t1)τinc = τcon,M . (4.16)

Hence, if the conditions (4.14), (4.15) and (4.16) are fulfilled, the AV-block, described by the
Q-model and the underlying parameters ω, emulates the exact same behavior of an 1:b Mobitz
block.

This result can be used, to declare additional model constraints for the MINLP (4.13). This
new conditions then force the Q-model to simulate a Mobitz block. Due to the proof of lemma
(4.2) the following constraints need to be added:

Q(t1)− 1 ≤ 0

Q(t1)− B

B + 1
> 0

∆tQreg −
1

B + 1
= 0

As shown in the proof above, the condition for the product ∆tQreg forces the value of Q to
be identical at every beat t1, . . . , tnECG . Therefore, only one beat, in this case the first, must
be observed. Moreover, such a chose of Q(t1) ensures that the conditions H(m,ω) ≤ 0 and
JI(m,ω) > 0 are satisfied. This is why the trajectory only needs to be evaluated at t1:

Q(t1) = Q0 − t1Qreg

= Q0 − (m1 − 1)∆tQreg

= Q0 − (m1 − 1)
1

B + 1

If the value of m1 and the Mobitz pattern 1 : B is known, every further mi is determined by
those two parameters. Hence, the overall number of integer variables can be fixed to only these
these two. For any mi, it now holds

mi = B + 1 ∀i ∈ {2, . . . , nECG},

and therefore

ti = (m1 + (i− 1)(B + 1)− 1)∆t ∀i ∈ {1, . . . , nECG}

If the delay of the desired Mobitz-block is already known, it is also needed to constraint the
delay with

τcon +Q(t1)τinc − τcon,M = 0.
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Either way, the delay is always constant since the value of Q is constant at every propagation.
Therefore only a constant delay parameter is needed and τinc can be ignored if τcon has been
chosen suitable.

The function S can now also be simplified by just depending on m1, B and ω. Let S :
Z2 × Rnω → RnECG be defined as

S(m1, B, ω) =


t1 + τcon
t2 + τcon

...
tnECG + τcon



=


(m1 − 1)∆t + τcon

(m1 + (B + 1)− 1)∆t + τcon
...

(m1 + (nECG − 1)(B + 1)− 1)∆t + τcon



=


(m1 − 1) 1

Qreg(B+1) + τcon

(m1 + (B + 1)− 1) 1
Qreg(B+1) + τcon

...
(m1 + (nECG − 1)(B + 1)− 1) 1

Qreg(B+1) + τcon

 .

The last transformation uses

∆tQreg −
1

B + 1
= 0

⇔ ∆t =
1

Qreg(B + 1)
.

The parameter ∆t is only used implicitly, both within the constraints and the objective. Hence,
it can be excluded from ω, which at this point only contains the parameters Q0, Qreg and τcon.
The set Ω can be simplified to

Ω :=

ω =

 Q0

Qreg

τcon

 : ωmin ≤ ω ≤ ωmax

 . (4.17)

The set of all possible ω is now only characterized by the value limits ωmin and ωmax. Using the
new definition of S, a MINLP can be formulated:

min
m1,B,ω

‖S(m1, B, ω)− ECG‖2

s.t. Q0 − (m1 − 1)
1

B + 1
− 1 ≤ 0

Q0 − (m1 − 1)
1

B + 1
− B

B + 1
> 0

(τcon = τcon,M )

m1, B ∈ Z
ω ∈ Ω

(4.18)
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This modification of the MINLP (4.13) forces the Q-model to emulate an 1:B Mobitz block.
Through structure exploitation the overall amount of optimization variables is reduced to only
5, including the two integer variables.

Emulating a Wenckebach-block

Reconsidering again chapter 2.2, a Wenckebach-type AV-block is characterized by a linear in-
creasing propagation delay τ con + bτ inc with every successful beat. If a certain propagation
limit τ ref is overstepped, the next impulse is dismissed and the cycle resets itself. Despite this
increasing propagation delay, every so defined Wenckebach-block can again be emulated by the
Q-Model.

Lemma 4.3. For every Wenckebach-type AV-block exists a combination (m,ω) with H(m,ω) ≤ 0
and J(m,ω) > 0 that emulates the behavior of the Wenckebach AV-level.

Proof. First, the regular input for the Q-model should be the same as the Wenckeback-levels
input. Therefore, the parameter ∆t is fixed.

Since the parameters τ con, τ inc and τ ref are known, the general pattern of the AV-block can
be specified. An impulse only is propagated if the condition

τ con + bτ inc ≤ τ ref

is respected. Let B be the first beat that violates this constraint. It holds

τ con + bτ inc ≤ τ ref ∀b = 0, . . . , B − 1

τ con +Bτ inc > τ ref .

After the impulse is dismissed, the Wenckebach-level resets. Therefore, this B : 1-pattern consists
of B propagations followed by one silent beat.

Let t1, . . . , tB be the points in time of the successful impulses and tB+1 the failed one. The
pattern restarts at tB+2. As already shown, it can be assumed that t1 = 0 and therefore
Q(t1) = Q0 without loss of generality. This results in a pattern m ∈ ZB+1, with

m = (1, . . . , 1, 2).

To ensure that this pattern repeats itself, it must hold:

Q(t1) = Q(tB+2)

⇔ Q0 = Q0 − (B + 1)∆tQreg +B

⇔ ∆tQreg =
B

B + 1
< 1 (4.19)

The regeneration rate per beat is fixed by the number of successfully propagated impulses. This
beats only occur if it holds H(m,ω) ≤ 0 and therefore

H(m,ω) =

 Q(t1)− 1
...

Q(tB)− 1

 ≤ 0
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Every beat immediately follows the previous one. Since the regeneration rate per beat ∆tQreg

is strict smaller than ∆Q = 1, it holds

Q(t1) < Q(t2) < · · · < Q(tB)

⇒ Q(t1)− 1 < Q(t2)− 1 < · · · < Q(tB)− 1.

One therefore must only ensure that the value of Q at the last beat is below Qmax to satisfy the
constraint H.

Q(tB)− 1 ≤ 0

⇔ Q0 − (B − 1)∆tQreg + (B − 1)− 1 ≤ 0

⇔ Q0 − (B − 1)∆tQreg +B − 2 ≤ 0

⇔ Q0 −
(B − 1)B

B + 1
+B − 2 ≤ 0

⇔ Q0 ≤
(B − 1)B

B + 1
−B + 2

⇔ Q0 ≤
2

B + 1
.

With the fixed regeneration per beat, the initial value of Q must not exceed the limit of 2
B+1 in

order to allow every beat t1, . . . , tB to get propagated. At the same time, the value of Q at the
dismissed beat at tB+1 must be above Qmax and therefore it must hold

JI(m,ω) = Q(tB+1)− 1 > 0.

Using the definition of Q, one gets

Q(tB+1)− 1 > 0

⇔ Q0 −B∆tQreg +B − 1 > 0

⇔ Q0 −
B2

B + 1
+B − 1 > 0

⇔ Q0 >
B2

B + 1
−B + 1

⇔ Q0 >
1

B + 1
.

Combining these two bounds, it must hold

Q0 ∈
(

1

B + 1
,

2

B + 1

]
. (4.20)

If conditions (4.19) and (4.20) are fulfilled, both constraints H(m,ω) ≤ 0 and JI(m,ω) > 0 are
satisfied and therefore the Q-level described by ω results in the desired pattern m.

In addition to this, the simulation must also match the propagation delay of the Wenckebach-
type AV-block:

τcon +Q(t1)τinc = τ con (4.21)

τcon +Q(t2)τinc = τ con + τ inc
...

τcon +Q(tB)τinc = τ con + (B − 1)τ inc
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In order to fulfill this equation, the propagation delay must increase by τ inc with every beat:

(τcon +Q(ti)τinc)− (τcon +Q(ti−1)τinc) = τ inc ∀i = 2, . . . , B

⇔ (Q(ti)−Q(ti−1))τinc = τ inc ∀i = 2, . . . , B

⇔ (1−∆tQreg)τinc = τ inc

⇔ (1− B

B + 1
)τinc = τ inc

⇔ 1

B + 1
τinc = τ inc

⇔ τinc = (B + 1)τ inc

Due to the fixed ∆tQreg, the linear propagation increase τinc is also fixed. This ensures an
increase of the delay by τ inc with every successful impulse. To also ensure the same value, the
initial delay at t1 must also be equal to the delay of the first beat in the Wenckebach-block.

Using the now fixed τcon in the condition (4.21), one arrives at

τcon +Q(t1)τinc = τ con

⇔ τcon +Q(t1)(B + 1)τ inc = τ con

⇔ τcon = τ con −Q(t1)(B + 1)τ inc

By fixing both parameters τcon and τinc in this way, the Q-model also has the exact same
propagation delay as the initial Wenckebach-type AV-block.

Combining both results, one can emulate the pattern as well as the propagation behavior of
such Wenckebach-levels.
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5 Extending the Model

Up to this point, the Q-model proved to be capable of emulating Mobitz- as well as Wenckebach-
type AV-blocks. As a result, every specific case of an AV-block, which can be described by either
phenomenon, can also be explained by the Q-model. Unfortunately, this relation between both
approaches so far only holds for a single level AV-block and requires perfectly equidistant input
signals.

Due to the usually non-constant pattern of the simulated ECG, this requirement renders it
impossible to set more than one Q-level in a row. In order to allow the simulation of AV-blocks
consisting of multiple levels, the constraint that ensures constant distances between incoming
impulses must be relaxed.

Since the condition of perfectly equidistant input signals is not always observed even in cases
of atrial flutter, allowing small variations in the input could also improve the quality of an
algorithmically generated pattern.

5.1 Interval Extension

So far, the input signal was characterized only by ∆t. Overall, MnECG impulses were needed to
simulate nECG successful beats. Let s1, . . . , sMnECG

be all of these impulses. To support varying
distances between these sj the parameter ∆t must be replaced by

∆t,j ∈ [∆tmin,∆tmax] ∀j = 1, . . . , nECG − 1.

The parameter ∆t,j should then describe the distance between sj and sj+1:

∆t,j = sj+1 − sj ∀j = 1, . . . , nECG − 1.

Assuming that the vector m and every ∆t,j are known, all successful beats t1, . . . , tnECG are
exactly determined. This pattern then has the following important characteristics.

1. Every beat ti is propagated. Therefore, it holds

Q(ti) ≤ 1 ∀i = 1, . . . , nECG.

2. Every beat between those propagations is silent:

Q(sj) > 1 ∀j = 1, . . . ,MnECG and sj 6= t1, . . . , tnECG .

Since Q is still monotonically decreasing between two beats, this condition can be reduced
to only the last failed beat before every propagation.

Q(ti −∆ti) > 1 ∀i ∈ I,

where ∆ti is the distance between ti and the previous attempted beat. I is again the set
of every successful propagation with a previous silent beat:

I := {i = 1, . . . , nECG|mi > 1}.
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If these constraints are satisfied, the AV-Level only let the necessary nECG beats pass. The
evaluation of these conditions depends on Q, the ti and the corresponding ∆ti . Unfortunately,
both the ti and ∆ti can occur in certain intervals due to the introduced variations in the impulse
distance. They are therefore not uniquely determined by m and ω. Rather, they must now also
be added as optimization variables. Let t,∆ ∈ RnECG be vectors containing these new variables
as

t := (t1, . . . , tnECG)

∆ := (∆t1 , . . . ,∆tnECG
).

Before setting up new constraints for these variables, the set of all possible model parameters must
first be reformulated. The set of model parameters increases by ∆tmin and ∆tmax, replacing ∆t.
To use this non-constant distances within the simulation, the set Ω must be updated to support
this new variables.

Updating Ω

The previous used ∆t in Ω is is replaced by the two parameters ∆tmin and ∆tmax determining
the range, in which the a new attempted beat occurs. It must hold

∆tmin ≤ ∆tmax. (5.1)

Since these two new parameters describe an important part of the input pattern, simply stating
the relation between ∆tmin and ∆tmax is insufficient. All previous characteristics established to
initially define Ω, must be reconsidered:

1. All parameters have to be non-negative.

2. The propagation delay has to be non-negative. Since the degree of exhaustion has a local
minimum at every beat ti by definition and τinc is not negative, the function Q must hold
the general constraint

Q(t) ≥ 0 ∀t ∈ [0, tnECG ].

This behavior has been ensured by using the following constraints:

Qreg∆t ≤ ∆Q = 1

0 ≤ Q0 ≤ 2.

Reconsidering the chapter 4.2, this forces the trajectory of the Q-model to only use the image
range [0, 2] and therefore ensure a positive propagation delay. The first constraint must be
replaced by a new one using the new definition of the input signal distance.

The constraint ensures that between two impulses there can be restored at most the potential
of one beat can be restored. If this condition is violated, the value of Q would step below 0 at
some point even if there is a propagated beat caused by every input signal. To limit the maximum
regeneration rate per beat and prevent such a decrease, it must hold

Qreg∆t,j ≤ 1 ∀j = 1, . . . , nECG − 1.
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Since every ∆t,j is within [∆tmin,∆tmax], a single constraint can ensure this behavior, with

Qreg∆tmax ≤ 1.

To therefore describe the needed relation between all parameters to describe the new Ω, the
constraints are:

Qreg∆tmax ≤ 1

∆tmin ≤ ∆tmax (5.2)

0 ≤ Q0 ≤ 2

Using this conditions, let N : R6 ⇒ R4 be defined as

N(Q0, Qreg, τinc, τcon,∆tmin,∆tmax) :=


Qreg∆tmax − 1
∆tmin −∆tmax

Q0 − 2
−Q0

 . (5.3)

Let (Q0, Qreg, τinc, τcon,∆tmin,∆tmax) be a set of parameters, that fulfill the condition

N(Q0, Qreg, τinc, τcon,∆tmin,∆tmax) ≤ 0.

These parameters describe again an AV-level and the corresponding trajectory Q, which only uses
values within the range [0, 2]. Hence, let Ω be the set of all in this meaning valid combinations
of parameters, defined as

Ω :=


ω =



Q0

Qreg

τinc
τcon

∆tmin

∆tmax

 : N(ω) ≤ 0, ωmin ≤ ω ≤ ωmax


, (5.4)

where ωmin, ωmax ∈ R6 describe the parameter ranges.

5.2 MINLP formulation

Having updated the set of all possible parameters Ω, also the model constraints must be refor-
mulated. It is necessary to ensure a valid distance between every propagation as well as a valid
value of Q at every successful and silent impulse.

Feasible Distance

The distance describes the relation between the pattern m, the propagation time-points ti, their
corresponding ∆ti and the two parameters ∆tmin and ∆tmax. Certain conditions must be satisfied
to ensure, that the model does not overstep the demanded range of variation regarding the
distance between two beats.

The ∆ti are simply constrained by ∆tmin and ∆tmax:

∆tmin ≤ ∆ti ≤ ∆tmax ∀i = 1, . . . , nECG (5.5)
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Since the distances ∆ti are not constant anymore, every ti occurs in a certain interval in spite
of known m and ω. These intervals depend on the time of the previous propagation and the
minimal respective maximal distances ∆tmin and ∆tmax. With t0 = 0 this means:

t1 − t0 ≤ (m1 − 1)(∆t,1 + (m1 − 2)∆tmax) (5.6)

ti − ti−1 ≤ ∆ti + (mi − 1)∆tmax ∀i = 2 . . . nECG

and

t1 − t0 ≥ (m1 − 1)(∆t,1 + (m1 − 2)∆tmin) (5.7)

ti − ti−1 ≥ ∆ti + (mi − 1)∆tmin ∀i = 2 . . . nECG

The distance between two beats minus the known ∆ti is less or equal to the maximal distance
∆tmax times every previous silent beat and greater or equal to the minimal distance ∆tmin times
every previous silent beat. Since the first impulse occurs at t0 = 0, m1 must be decreased by
2 instead of 1. Also, this condition only active if m1 > 1, otherwise it would hold t1 = t0 = 0.
Therefore, the factor (m1 − 1) deactivates the constraint in that case.

If the ti observe the constraints (5.6) and (5.7), they all occur in valid intervals and do not
violate the condition of the maximal respective minimal beat distance.

Using (5.5), (5.6) and (5.7), two new constraints can be formulated to ensure that every beat
occur only in its valid interval. Let H1 : ZnECG ×RnECG ×RnECG ×Rnω → R2nECG be defined as

H1(m, t,∆, ω) =


∆t,1 −∆tmax

∆tmin −∆t,1
...

∆t,nECG −∆tmax

∆tmin −∆t,nECG

 ≤ 0

Let then H2 : ZnECG × RnECG × RnECG × Rnω → R2nECG be defined as

H2(m, t,∆, ω) =



t1 − t0 − (m1 − 1)(∆t,1 + (m1 − 2)∆tmax)
t0 − t1 + (m1 − 1)(∆t,1 + (m1 − 2)∆tmin)

t2 − t1 −∆t,2 + (m2 − 1)∆tmax

t1 − t2 + ∆t,2 + (m2 − 1)∆tmin
...

tnECG − tnECG−1 −∆t,nECG + (mnECG − 1)∆tmax

tnECG−1 − tnECG + ∆t,nECG + (mnECG − 1)∆tmin


≤ 0

The time points ti and the corresponding ∆ti cannot overstep their feasible range while satisfying
these conditions.

Constraints for propagated beats

As in the previous approach, the value of Q must be below Qmax = 1 to propagate all necessary
beats:

Q(ti) ≤ 1 ∀i = 1, . . . , nECG
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The resulting constraint is very similar to the one needed by using a constant shift ∆t. In fact,
due to the explicit appearance of t, the formulation is even simplified. Let H3 : ZnECG×RnECG×
RnECG × Rnω → RnECG be the new constraint function with

H3(m, t,∆, ω) =


Q0 + 0− t1 ·Qreg − 1
Q0 + 1− t2 ·Qreg − 1

...
Q0 + (nECG − 1)− tnECG ·Qreg − 1

 ≤ 0

If H3 is satisfied, every beat t1, . . . , tnECG is successful. All constraints H1, H2 and H3 can
now be combined to one condition in the form of a weak inequality. Let H : ZnECG × RnECG ×
RnECG × Rnω → R5nECG be therefore defined as

H(m, t,∆, ω) =

 H1(m, t,∆, ω)
H2(m, t,∆, ω)
H3(m, t,∆, ω)

 ≤ 0.

Constraints for silent beats

The value of Q must be above Qmax = 1 at every silent beat:

Q0 + (i− 1)− (ti −∆ti)Qreg > 1 ∀i ∈ I,

where I is the index set containing every i, whose ti have a previous silent impulse:

I := {i : i ∈ [1, . . . , nECG],mi ≥ 2} = {i1, . . . , i|I|}.

Again, there are only slightly changes in this constraint compared to the equivalent one using a
constant ∆t. Let JI : ZnECG × RnECG × RnECG × Rnω → R|I| be defined as

JI(m, t,∆, ω) =


Q0 + (i1 − 1)− (ti1 −∆ti1

)Qreg − 1

Q0 + (i2 − 1)− (ti2 −∆ti2
)Qreg − 1

...
Q0 + (i|I| − 1)− (ti|I| −∆ti|I|

)Qreg − 1

 > 0.

Satisfying this constraint, every impulse between the desired beats is now silent.

Combining the Results

The defined constraints ensure all necessary properties to formulate a similar characterization as
in lemma 4.1 of an AV-Level, described by the Q-Model.

Lemma 5.1. Let (m, t, ∆, ω) ∈ ZnECG×RnECG×RnECG×Ω be chosen such that H(m, t,∆, ω) ≤
0 and JI(m, t,∆, ω) > 0. Then m is a feasible generated pattern for the AV-level, specified by ω,
t and ∆, to simulate nECG propagations.

Proof. Since the uniqueness of m is not guaranteed while using non-fixed time-shifts ∆t,j , it must
only be shown that the combination (m, t, ∆, ω) is in fact a valid characterization of an actual
simulation.
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To do this, one must only reconsider the previous results. First, the constraint H ensures that
the ti do not extend their feasible intervals, specified by ω, ∆ and m. If this is true, H further
ensures that the value of Q is below or equal to 1 at every demanded propagation t1, . . . , tnECG .
On the other hand, J prevents the value of Q to also be suitable for a propagation at the foregone
failed impulses. Therefore, all necessary properties of Q within this time-horizon are only fulfilled
if neither of those conditions is violated.

Using this lemma, one can again check whether a combination (m, t, ∆, ω) results in the
desired amount of output beats without an explicit simulation. Also, if such a valid combination
is known, the complete trajectory Q is again evaluable over the complete time horizon of the
simulation.

Formulating the Objective

Since the calculation of the propagation delay has not changed, also the objective need only be
slightly adapted. Reconsidering the formulation of the objective in chapter 4.3, the delay has
the form

ri = ti + τcon + τincQ(ti) ∀i = 1, . . . , nECG.

The ti are explicitly known and the value of Q is therefore easy to determine. Let S : ZnECG ×
RnECG × RnECG × Rnω → RnECG be defined as

S(m, t,∆, ω) =


t1 + τcon + τincQ(t1)
t2 + τcon + τincQ(t2)

...
tnECG + τcon + τincQ(tnECG)



=


t1 + τcon + τinc(Q0 + 0− t1Qreg)
t2 + τcon + τinc(Q0 + 1− t2Qreg)

...
tnECG + τcon + τinc(Q0 + (nECG − 1)− tnECGQreg)


Formulating the MINLP

The problem can now be formulated as a mixed-integer nonlinear problem with a least squares
objective function.

min
m,t,∆,ω

‖S(m, t,∆, ω), ECG‖2

s.t. H(m, t,∆, ω) ≤ 0

JI(m, t,∆, ω) > 0

m ∈ ZnECG

t,∆ ∈ RnECG

ω ∈ Ω

(5.8)
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6 Numerical Results

The previous theoretical results showed that both Mobitz- and Wenckebach-type AV-blocks can
be emulated by the Q-model using suitable parameters. Single Mobitz- and Wenckebach-type
AV-blocks can therefore only explain a real subset of possible simulation results of the Q-Model.
Assuming a measured sequence of R-R intervals, the Q-model can therefore always emulate this
pattern with an equal or even smaller error than an emulation only with static Mobitz- or and
Wenckebach-type blocks. However, Scholz et al. build their AV-blocks out of multiple singular
elements. This is also an extension of such static simulations. Hence, the exact relation between
MAVBA and the Q-Model cannot be stated trivially.

It is the overall ambition to improve the informative value of the generated simulations. In
this case, this means an increase of the sensitivity and specificity when discriminating atrial
flutter and atrial fibrillation. Since a small error value indicates atrial flutter, the quality of the
discrimination only rises if the improvement of the objective value, primarily affects these cases.
A sample solving algorithm to solve MINLP (4.13) was implemented to get first numerical results.
In the long term, the achieved performance will determine whether the Q-model is suitable to
discriminate between atrial flutter and atrial fibrillation.

The Q-model was tested on two sets of real ECG data5 [2]. Both datasets represent cases
of atrial flutter and consist of 20 ventricular contractions. The implementation in this thesis is
limited to the MINLP (4.13).

6.1 First Algorithmic Approach

In chapter 4.3 were defined two types of constraints for the MINLP using regular impulses:

1. Weak inequalities to describe the parameter set Ω and the constraint H.

2. Strict inequalities JI depending on a set I of active indices.

The first type can easily be formulated to match common solver requirements. On the other hand,
there are a few difficulties to directly apply the constraints JI without further modifications.

In general, the following is demanded:

JI(m,ω) > 0,

with

I := {i : i ∈ [1, . . . , nECG],mi ≥ 2} = {i1, . . . , i|I|}.

Using this constraint in common solvers requires formulations.

Relaxation As A Weak Inequality

Processing strict inequalities poses various computational difficulties. It is therefore desirable to
replace this condition by a more practical one. The constraint can be approximated by using

5The study design was approved by the ethics committee of the University of Heidelberg and conforms to the
standards defined in the Helsinki Declaration.
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the relaxation

JI(m,ω) ≥ ~ε
⇔ JI(m,ω)− ~ε ≥ 0,

for ~ε = (ε, . . . , ε)T ∈ R|I| and a suitable small ε > 0. Due to the non-exact arithmetic of computer-
based solvers, a tolerance ε near the machine-accuracy will only have a negligible influence on the
result quality. With this approximation, the explicit handling of the strict inequality is avoided.

Dissolving The Index Set I

The constraint JI should only be applied to those indices contained in I. Therefore, the constraint
corresponding to i 6∈ I is inactive if mi = 1. To ensure this behavior for all constraints, the
decisive term (mi − 1) can simply be added as a factor to disable unused conditions. Let J :
ZnECG × Rnω → RnECG describe this new requirement as

J(m,ω) :=


(m1 − 1)(Q(t1 −∆t)−Qmax − ε)
(m2 − 1)(Q(t2 −∆t)−Qmax − ε)

...
(mnECG − 1)(Q(tnECG −∆t)−Qmax − ε)



=


(m1 − 1)(Q0 − 1− (M1 − 2) ∆tQreg − ε)

(m2 − 1)(Q0 − (M2 − 2) ∆tQreg − ε)
...

(mnECG − 1)(Q0 + (nECG − 2)− (MnECG − 2) ∆tQreg − ε)


≥ 0.

Reconsidering the definition of JI , this constraint ensures that the value of Q is above Qmax = 1
at every silent beat that occurs directly before each propagation ti. If mi = 1, meaning there
is no silent beat between the two successful propagations ti−1 and ti, the factor (mi − 1) now
disables this constraint in J by fixing it to 0.

This approach does not further affect the possible accuracy.
However, in this thesis a slightly different condition is implemented to compute the numerical

results. The used alternative has the advantage reduced constraint complexity.
Let J̄ : ZnECG × Rnω → RnECG be defined as

J̄(m,ω) :=


Q0 − 1− (M1 − 2) ∆tQreg − ε
Q0 − (M2 − 2) ∆tQreg − ε

...
Q0 + (nECG − 2)− (MnECG − 2) ∆tQreg − ε


≥ 0.

In this case, the inequalities must be fulfilled regardless of whether such a silent beat actually
exists. Fortunately, this only has a minor bearing on cases without such silent impulses. To see
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this, let ti−1 and ti be two consecutive beat. Then it holds for the value of Q:

Q(ti−1) ∈ [0, 1]

Q(ti) ∈ [0, 1]

Since there is now silent impulse between ti−1 and ti, it follows

ti = ti−1 + ∆t

⇒ Q(ti) = Q(ti−1) + 1−∆tQreg

The condition described by J̄ constrains the value of Q(ti −∆t). This value of Q at ti can be
determined depending only on ti−1, as

Q(ti −∆t) = Q(ti) + ∆tQreg

= Q(ti−1) + 1−∆tQreg + ∆tQreg

= Q(ti−1) + 1.

J̄ now demands:

Q(ti −∆t)− 1− ε ≥ 0

⇔ Q(ti−1)ε ≥ 0

Therefore, using J̄ instead of J restricts the value range of Q(ti−1) to

Q(ti−1) ∈ [ε, 1].

This limitation only slightly reduces the interval, in which Q(ti−1) could possibly occur. There-
fore, the effect on the simulation quality is also negligible in the following test cases.

Parameter Ranges

Since Scholz et al. have obtained good results with MAVBA, the value range of the Q-model
parameters is based on their used bounds. In table (2) the used parameters are compared to the
one used by MAVBA. While the time shift ∆t and the cardiac circle length CL can directly be
adapted, a few adjustments are necessary to apply to the remaining variables.

The constant propagation delay τcon respective AVM/AVW is fixed to 50 ms. In the for-
mulation of the Q-model the parameter τcon also describes the offset of the first impulse in the

Parameter LB UB Parameter (MAVBA) LB (MAVBA) UB (MAVBA)

∆t 198 ms 350 ms CL 198 ms 350 ms
Q0 0 2 - - -
Qreg 0.001 1

198
- - -

τcon -300 ms 50 ms AVM/AVW 50 ms 50 ms
τinc 60 ms 300 ms ∆ 20 ms 100 ms
mi 1 5 - - -

LB = Lower Bound, UB = Upper Bound

Table 2: Parameter ranges
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simulation as described earlier in chapter 4.2. The first beat of the used test data always occurs
at t0. With a fixed constant shift of 50 ms and the maximal linear shift of 300 ms, the first
actual impulse could enter the AV-node up to 350 ms before this first beat. The variable τcon
must express this offset by allowing a negative time shift of up to 350 ms below the constant
shift of 50 ms, which results in the used -300 ms.

The linear delay τinc depends in the value of Q. This value is always within the interval [0, 1]
if an impulse is propagated. The dynamic delay can therefore vary within the range [0, 300].
The parameter ∆, used by MAVBA, is a constant delay that is added after every successful
propagation in a Wenckebach-type AV-block. In order to emulate a similar behavior, the maximal
delay of the Q-model must accommodate the maximal delay generated by a delay of multiple
times ∆.

The regeneration rate Qreg must observe the limit that would allow to restore more than one
whole beat within ∆t. Hence, the overall upper bound for this parameter is 1

198 , depending on
the smallest time shift ∆t. The lower bound allows a minimum regeneration to skip up to 4
impulses. The remaining Q0 must simply observe the general range of the trajectory Q.

The integer parameters mi must be at least 1. The upper bound is set to 4, allowing at most
4 failed impulses between two beats.

Experimental Implementation

Performing these reformulations, all constraints have the commonly used form of a weak inequal-
ity. These suitable constraints were used to implement a first solving routine in Matlab. The
core of this sample algorithm is the solver BONMIN6 as delivered within the OPTI Toolbox7.

The solver needs a feasible initial value for all optimization variables (m,ω) ∈ ZnECG ×Rnω .
This can be done by using the simple pattern of alternating successful and failed propagations:

m := (2, 2, . . . , 2)T

ω := (Q0, Qreg, τinc, τcon,∆t)
T = (1.5, 0.002, 0, 100, 250)T

Reconsidering the problem formulation of the MINLP (4.13), the objective is the least-squares
error between the simulated and the measured R-R intervals on the surface ECG:

min
m,ω

‖ECG− S(m,w)‖2

The objective can directly be implemented. This provides the last item to solve the problem
with BONMIN.

Dataset 1: Patient 21

Appendix (A.1) describes the dataset of patient 21. MAVBA was able to find an optimal emu-
lation with a scaled least-squares error of 0.0660. The simulation used a predicted cardiac cycle
length of 285 ms and a single level Wenckebach-type AV-block. The Q-Model, by contrast, fails
to achieve the desired result. Even with a feasible initial value, the solving-algorithm was only
able to find a feasible solution for a simulation horizon of eight beats. Figure 5 and table 5
illustrate the found solution.

6Basic Open-source Nonlinear Mixed INteger programming, http://www.coin-or.org/Bonmin/
7http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php
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Dataset 2: Patient 49

The dataset of patient 49, described in appendix (A.2), could be solved with a scaled error-value
of 0.0415 by MAVBA. The algorithm was able to determine a regular cardiac cycle length of 278
ms, using a single-level Wenckebach-block. The BONMIN-based solver could end with a feasible
result simulating up to nine beats. The optimal solution stated in table (4) and figure 6 shows
a very close approximation to the used 278 ms by MAVBA. Moreover, both simulated patterns
match within the time horizon.

6.2 Discussion

At this early stage, it is impossible to make accurate predictions regarding the potential of the
Q-model. To this end, further effort must be invested into finding a more stable solving algorithm
in order to obtain a significant amount of test results.

What can be noted, however, is that the single-level formulation seems to be unsuitable to
sufficiently describe the first dataset. While the Q-model performs well on smaller time horizons
for this example, a larger amount of beats cannot be emulated by a single block level. The
approach of building a single AV-block out of multiple elements has a clear advantage in this
scenario. A multi-level approach could provide the necessary generality to also successfully
emulate this case.

However, given the promising first numerical results of the second dataset and the theoretical
basis it is highly likely that the Q-model can perform well on certain cases. What is more, it is
also likely that these properties could be transferred to future multi-level approaches by using
the same Q-model definition as examined in this thesis.

On balance, it is a matter of debate whether the simulations of this more general approach
can successfully support the discrimination of atrial flutter and atrial fibrillation; or whether the
Q-model performs only well on an unspecific set of problems, including both cardiac arrhythmias.
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Figure 5: Best Found Emulation for Patient 21. A = Atria, AV = AV-node, V = Ventricles,
LSQ = 46218.4762

Parameter Value Parameter Value Result Value

Q0 0.6667 m1 1 r1 112.3333
Qreg 0.0021 m2 1 r2 507.5238
τinc 224.1905 m3 2 r3 1073.7142
τcon -37.1270 m4 2 r4 1639.9047
∆t 320.4603 m5 1 r5 2035.0952

m6 2 r6 2601.2857
m7 1 r7 2996.4761
m8 1 r8 3391.6667

Table 3: Optimal Solution for Patient 21
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Figure 6: Best Found Emulation for Patient 49. A = Atria, AV = AV-node, V = Ventricles,
LSQ = 970.4285

Parameter Value Parameter Value Result Value

Q0 0.6667 m1 1 r1 13.8095
Qreg 0.0024 m2 2 r2 535.7381
τinc 105.0714 m3 1 r3 849.2381
τcon -56.2381 m4 1 r4 1162.7381
∆t 278.4762 m5 2 r5 1684.6667

m6 2 r6 2206.5952
m7 1 r7 2520.0952
m8 1 r8 2833.5952
m9 2 r9 3355.5238

Table 4: Optimal Solution for Patient 49
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7 Recapitulation

Using the idea of a degree of exhaustion to describe the behavior of single AV-levels within mul-
tilevel AV-blocks, this thesis gives a first introduction in the Q-model as an unified approach to
describe Mobitz- and Wenckebach-type blocks. Starting with an easy comprehensible draft, all
redundant parameters were excluded. This led to a unique formulation and an understanding of
the model behavior. With this knowledge, an easy to use lemma could be stated to characterize
the feasibility of the parameters determining the models trajectory. The resulting MINLP for-
mulation is suitable for finding the best set of parameters to emulate measured R-R intervals.
This solving process completely avoids the use of any explicit simulation of the AV-level and is
able to handle continuous variables. The model was further expanded to allow variations within
the input signal.

In addition to these results, further effort is needed to determine whether this new approach
can enhance the accuracy of discriminating between atrial flutter and atrial fibrillation or is
unsuitable make reliable predictions.

Prospects

An important key-step to make actual statements about the accuracy of the Q-model is to further
analyze the problem of the formulated MINLP. This will help to better understand the resulting
problem dynamics and structure, for example the convexity of the constraints and the objective
function. This should then allow the finding or development of a suitable solving-algorithm. This
is necessary to evaluate the validity of the Q-model as an emulation for second-degree AV-blocks.
This evaluation will hopefully show that this new approach is a convenient alternative to serve
the mentioned problem of Scholz et al. of finding a more generalized and continuous formulation.

Moreover, an important point is a model-extension to also emulate complex multilevel blocks.
Besides understanding the resulting model dynamics, it is crucial to find a suitable problem ap-
proach. This formulation should still allow the use of continuous parameters. A major challenge
is the fixation of the number of parameters and therefore the problem dimension. Using only
single-level blocks, this was possible by implicitly handling the silent impulses with the vector
m. This was only possible due to the already known number of necessary propagations.

Using multiple AV-blocks, this fixation only applies to the last level. In such a model, the
result of the first level would serve as the input for the second one. A chance in the vector m
of the second block therefore changes the amount of necessary beats in the first block. Hence,
the formulation approach used so far cannot directly be adapted to also fit multi-level problem
structures.

A further understanding of consecutive AV-blocks could help finding a smart formulation
that exploits the problem structure and can handle these varying dimensions implicitly. The
analysis of single level AV-blocks with a non-constant time shift ∆t,j therefore hopefully is a first
step towards future extensions.
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A Appendix

A.1 Dataset Patient 21

Beat 1 2 3 4 5 6 7 8 9 10

Time [ms] 0 550 1080 1682 2190 2554 2958 3344 3790 4190

Beat 11 12 13 14 15 16 17 18 19 20

Time [ms] 4802 5316 5936 6504 7068 7632 8202 8748 9334 9904

Table 5: ECG Pattern Patient 21 [2]

A.2 Dataset Patient 49

Beat 1 2 3 4 5 6 7 8 9 10

Time [ms] 0 534 870 1168 1682 2200 2528 2820 3360 3882

Beat 11 12 13 14 15 16 17 18 19 20

Time [ms] 4436 4782 5296 5812 6152 6674 7194 7528 7886 8322

Table 6: ECG Pattern Patient 49 [2]

43



A.3 MAVBA Result Patient 21
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Figure 7: MAVBA Result Patient 21 [2]

44



A.4 MAVBA Result Patient 49
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Figure 8: MAVBA Result Patient 49 [2]
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