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1 Introduction

One very intuitive way of understanding what this work is @tis to think of a
simple switch that can be either on or off. This switch is axted to a complex
system and influences it in a certain way. The question we tgariswer for such
systems is: given a mathematical model, constraints andopattive function,
how can we operate the switch in an optimal way/@ refer to problems of this
type agnixed—integer optimal control probleniBhe main focus of this paper lies
on the control functions(-). Typical examples are the choice of gears in transport,
[63], [25] or processes involving valves instead of pump8],[[29].

Whereas the term "optimal control” is commonly agreed toalerthe opti-
mization of processes that can be described by an underyistgm of (partial)
differential and algebraic equations with so—called aaritmctions, there are sev-
eral names for optimal control problems containing binarinteger variables in
the literature. Sometimesiitis referred taaixed—integer dynamic optimization
mixed-logic dynamic optimizatiofMIDO or MLDO, see, e.g., [44]), sometimes
ashybrid optimal control(e.qg., [3], [62] or [17]), sometimes as a special case of
mixed—integer nonlinear prografMINLP) optimization. As controls that take
only values at their boundaries are knownbasg—bang controlin the optimal
control community, very often expressions containing bdr@mng are used, too
(e.g., [40]). Although there may be good reasons for eachaxfé¢ names, we will
use the expressiomsixed—integer optimal contrgMIOC) andmixed—integer op-
timal control problem(MIOCP). The reason is that the expressinixed—integer
describes very well the nature of the variables involvedianeell-established in
the optimization community, whileptimal controlis used for the optimization of
control functions and parameters in dynamic systems, velsetree term dynamic
optimization might also refer tparameter estimatior optimal experimental
design

Although the first MIOCPs, namely the optimization of subwegins that
are equipped with discrete acceleration stages, weredgliszved in the early
eighties by [13] for the city of New York, the so—calléudirect methodsused
there do not seem appropriate for generic large—scale aptiontrol problems
with underlying nonlinear differential algebraic equatisystems. Insteadirect
methodsin particularall-at—once approache$14], [7], [10], have become the
methods of choice for most practical problems, see [11] foogerview.

Several authors treat optimal control problems in chengogineering where
binary parameters often occur as design alternatives teeglocation of the feed
tray for distillation columns or a mode of operation. Thisoften done by as-
suming phase equilibrium or a steady state of the procesksalving a static
optimization problem, e.g., [20], [27], or by solving tin@ependent dynamic sub-
problems, e.g., [56] or [44]. The algorithmic approachesextensions of the al-
gorithms developed for MINLPs, possibly in a form that isdé®n disjunctive
(or logic—based) programming, see [65] or [43]. A comparibetween results
from integer programming and from disjunctive programnimgiven in [27].

As most practical optimization problems in engineeringrameconvex, several
authors extended methods from static optimization that geeglobal optimum,
e.g., [21] and [45]. Both present spatial Branch & Bound &thms for dynamic
systems. For spatial Branch & Bound schemes that are buift ap underestima-
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tion of the objective function and an overestimation of tbadible set by appro-
priate convex functions, in [22] considerable progresdasmed. In [9] and [35]
theoretical results on when optimal control problems arever are determined.
In [18] a global solution for a special class of MIOCPs coutddiven.

In the theory of hybrid systems one distinguishes betvatate dependerind
controllable switchedor the first class, the switching between different moiels
caused by states of the optimization problem, e.g., groonthct of a robot leg or
overflow of weirs in a distillation column. For the secondssawhich is the one
we are interested in here, the switchings are degrees afdneeAlgorithms for
the first class are given in [8] and [15]. For the second cles$iterature, e.g., [61],
reports mainly on discrete time problems, for which the rojation problem
is equivalent to a finite—dimensional one which can be sobwedethods from
MINLP. However, this only works for small problems with lited time horizons,
see [64].

Theoretical results on hybrid systems have been determéngd in [62] and
[57]. Based orhybrid maximum principlesr extensions oBellman’s equation
approaches to treat switched systems have been propogedh €8], [4] or [1],
that extendndirect methodsr dynamic programmingn [30], [31], [36] and [47]
aswitching time approackhelated to the one described in section 4.4 is used.

Direct methods have also been applied to problems includiisgyete valued
control functions. A direct simultaneous method to solved@Ps has been con-
sidered, e.g., in [41]. A direct sequential approach, deect single shooting,
has been applied in [2] and [6]. In [16] a water distributiogtwork in Berlin
with on/off pumps is investigated, using a problem specifamlinear, continu-
ous reformulation of the control functions. In [25] an apgeb related to the one
proposed in section 4.4 is described, building upon a vhritilme transforma-
tion. In [63] powertrain control of heavy duty trucks is tted with a rounding
heuristics for the optimal gear choice on a fixed control @igzation in a model
predictive control context. [17] and [60] focus on probleimsobotics, applying
a combination oBranch and Boun@nddirect collocation

All named approaches to MIOCPs and in particular to the tneat of bi-
nary control functions are limited in their applicable pierh class or suffer from
excessive computing times. Especially brute—force ambres that apply tech-
niques likeNonlinear Branch and Boundr Outer Approximatioron models that
have been discretized in time, will fail because of the higimber of integer vari-
ables. This high number again is necessary as an adequadsasfation of the
dynamics of the processes requires a fine discretizatiameircontrol functions,
see [64].

We present theoretical results that guarantee the maxiaadrlbound, as-
sumed optimal control problems with purely continuous oarfinctions can be
solved to global optimality. Furthermore we propose a metthat can be ap-
plied to a broad class of mixed—integer optimal control peois, involving alge-
braic variables, continuous control functions, contiruamd binary parameters
and path as well as interior point constraints. It is meantadk for systems re-
gardless of the type of solution from a theoretical point iefw i.e., whether an
optimal trajectory contains bang—bang resp. constradetiag or compromise—
seeking arcs in the sense of [59]. And it shall solve problgtiisg into this prob-
lem class to optimality without any a priori assumptions loa $olution structure.
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Our method is based on an all-at—once approach, namebjirde multiple
shooting methofil4] that has been applied successfully to a huge variethalf-c
lenging problems in industry and research and has certaimnéages compared
to other methods of optimal control. We treat the binary marfunctions by it-
erating on an adaptive refinement of the control discrétmagrid, making use
of a convex (with respect to the binary control functiondgaxation of the orig-
inal optimal control problem. We prove that this reformathproblem yields an
objective value that can be reached up to any g&en0 by binary control func-
tions. Upper bounds are obtained by solution of intermediabblems with fixed
dimension on the given control discretization grids.

2 Problem formulation

Many dynamic process optimization problems of practiceEvance can be ex-
pressed as multistage optimal control problems in DAES,&sge [37]. We extend
awell established problem formulation by additional imégyariables. We are in-
terested in solvingnultistage mixed-integer optimal control proble((SMIOCP)
of the following form:

Nmos—1

min Ex (X (fier1), v, la
31z, v.p kZO k (X (tkr1), V> ) (1a)

subject to the DAE model stages (from nowlos: 0...Npmes— 1)

(1) = f(X(t), z(t), Wi (), U(t), v, p),  t € [fi,Tiral, (1b)
0 = g(Xk(t), Z(t), Wk(t), U(t), v, p), t € [, tiral, (1c)

control and path constraints
0< Ck(xk(t)>zk(t)>uk(t)7\/> p)7 te [fkafk%»l}v (1d)

interior point inequalities and equalities wikh denoting the index of a model
stage containing, thatist; € [yt 1],

0< rieq(xko (t0)7Xk1 (t1)7 -+ Xk (tnms),V, p)7 (le)
0= I‘eq(XkO (t0)7Xk1 (tl), . 7Xkﬂms (tnms),V, p), (1f)

binary admissibility of allw(-)
wi(t) € {0,1}™, t € [to,t1], (19)

integer constraints on some of the parameters
ve {01}, (1h)
and stage transition conditions in simplified form
X 1(tk1) = Xe(fern)- (1i)

1 We restrict ourselves to binary variables{i®, 1} as most relevant problems can be trans-
formed into such a formulation
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We introduced a finite numbei,os of intermediate time point whenever a new
model stage begins into the set of time poitthat are used for interior point
constraints, see (1le-1f). We obtain a sengf ordered time points

to <ty < <tppg =t (2)

and an ordered subsfb, {1, .. ., fn,ee} With fo = to, Thyee = thns = tt-

We assume that the Mayer terg(x«(fks1),V, p)? as well as the functions
fi(-), c(+), andr®d(.), réq(.) are twice differentiable.

The vectorxy, z, Wk, Uk for each stagk and the parameter vectorandp are
of dimensionsy, ng, ny, Ny, Ny andnp, respectively. If general transition functions
instead of (1i) are used, compare [37], these dimensionsdiffay from stage to
stage. As this is of no relevance for our considerations, lnezevill use the special
case.

We will need the notion of admissibility of trajectories.

Definition 1 (Admissibility)

A trajectory (X«(+), z(+), Wk(+),uk(+),Vv, p) is said to be admissible if all-) are
absolutely continuous, i) and y(-) are measurable and essentially bounded.
We will say it is binary admissible, whenever (1g) is fulfili@he trajectory is said

to be feasible if it is admissible and satisfies all constisof problem (1). We say
that control functiongwii(-), Uk(-)) are admissible resp. feasible, if there exists at
least one admissible resp. feasible trajectoy(-), z(-), Wk(+), Uk(-),V, p)-

We assume that the DAEs (1b-1c) are of index one, i.e., theadies of the
algebraic right hand side functiong : [fk, k1] x R™ x R x R™ x R™ x R™ x
R" — R" with respect taz, namelydgyx/dz € R"*", are non-singular. This
allows us to formally transform the DAE into an ODE. We wilktgct ourselves
in the following to the case where no algebraic variablespaesent to simplify
notation, but without loss of generality if the index onewmsption holds. For
problems involving algebraic variables and an efficientpcal treatment in the
context of convexifications we refer to [48] and an upcomiogljzation.

3 Determining lower bounds

In Integer Programming lower bounds play a crucial role.MM8MIOCPs heuris-
tics are available and will be presented in the next sechiattheir applicability
depends crucially on a lower bound that guarantees-aptimality of the solu-
tion. Relaxation of the integer requirements is one polisilib obtain such a
lower bound. Unfortunately such bounds are typically vegalweven in the case
of static mixed—integer linear programs. We present a nedication of the non-
linear MIOCP into a related problem without binary residos on the control
functions. An optimal solution, if it exists and can be foumdhich may still be a
very tackling problem, will yield the maximal lower bounch the following we
will assume that either optimal control problems with purebntinuous control

2 note that Lagrange '[ern)('é"+1 Lic (X (t),z(t), wi(t), u(t), v, p)dt as well as explicit depen-
dencies ort may be transformed by introduction of additional diffeiehstate variables
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functions can be solved to global optimality by approprigitebal approaches as
suggested, e.g., in [22,21,45,9,35, 18], or that we areecdntith a local mini-
mum, as is often the case in many practical applications.

3.1 Convexification with respect to the binary controls

To clarify the line of argument, we will consider a speciageaf (1) first and dis-
cuss extensions later in subsection 3.3. In particular s & singlestage problem
without path constraints and assume given initial vakges

Definition 2 (Nonlinear problem (BN) in binary form)
Problem (BN} is given by

Xl p EO(t) (3a)
subject to the ODE system
X(t) = f(x(t),w(t),u(t),v,p), teltots], (3b)
with initial values
X(to) = Xo, (3c)
binary admissibility of @),
w(-) € {0,1}"™, (3d)

and integer constraints on some of the parameters
v e {0,1}™. (3e)
We write®BN for the objective value obtained by a feasible solution.

Definition 3 (Nonlinear problem (RN) in relaxed form)

The relaxed problem is obtained by replacing constrainf (8dh w(-) € [0, 1]™
and will be denoted as problem (RNyith corresponding optimal objective value
®RN_ Note that constraint (3e) is not relaxed.

We will now convexify with respect to the binary control furomsw(-). Note that
whenever we use the expression "convex” from now on thigeslpurely to the
space of the binary control functions, while the optimaltcolrproblem may still
be nonconvex in all other variables. Again we consider btth,binary and the
relaxed case.

8 for binary, nonlinear
4 for relaxed, nonlinear
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Definition 4 (Convexified linear problem (BC) in binary form)
Problem (BCJ is given by

min  E(x(tf)) (4a)
XW,U,v,p
subject to the ODE system
. r‘V’\‘/ H
X(t) = Zif(X(t),W,U(t),v, p)Wi(t), te [to,tr], (4b)
i=
with initial values
X(to) = Xo, (4c)

binary admissibility of the new control function vecte= (Wi, ..., Wn,)T,
the special ordered set property

Ny

-Z\Wi (t) =1, te to,ts], (4e)

and integer constraints on some of the parameters
ve {0,1}™. (4f)

The vectors e R™ are fixed and enumerate all possible binary assignments of
w,i=1...ng = 2™, We write®BC for the objective value obtained by a feasible
solution.

Definition 5 (Convexified linear problem (RC) in relaxed form)

The relaxed problem is obtained by replacing constrain} 4ith W(-) € [0, 1]™
and will be denoted as problem (RGyith corresponding optimal objective value
PRC,

Remark 6 We assign one control functiofi (-) to every possible control 've
{0,1}"™. In the worst case, this corresponds {g & 2" vertices of the hypercube.
In practice however often there is a finite set of admissihlgices resp. most of
the vertices can be excluded logically. He{gwould correspond to the number of
these feasible choices. Examples are the selection of a[§8hrof a distillation
column tray [48] or of an inlet stream port [50]. In all examgs iy is linear
in the number of choices. Furthermore, in most practicalleggpions the binary
control functions enter linearly (such as valves that imdécwhether a certain
term is present or not). Therefore the drawback of an incedasumber of control
functions is outweighted by the advantages concerning tioédance of binary
variables associated with the discretization in time forstrapplications we know
of.

5 for binary, convex (with respect )
6 for relaxed, convex (with respect w9
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3.2 Bounds

We defined four problem classes in the preceding sectionelyanmary and re-
laxed optimal control problems that are either nonlinealiragar in the control
functionsw resp.w. We will now investigate how solutions of the different prob
lems correlate to one another.

Theorem 7 (Comparison of binary solutions)

If problem (BC) has an optimal solutiofx*, w*, u*, v*, p*) with objective value
®BC, then there exists anyadimensional control function ¥-) such that the
trajectory (x*, w*, u*, v*, p*) is an optimal solution of problem (BN) with objective
value ®EN and

®BC — BN
The converse holds as well.

Proof. Assume(x*,W*,u*,v*, p*) is a minimizer of (BC). As it is feasible, we
have the special ordered set property (4e) and wijth) € {0,1} for all i =
1...2™ it follows that there exists one index< j(t) < 2™ for all t € [to,tf]
such that/v‘}‘(t) (t) =21 andwi(t) =0 for alli # j(t). The binary control function

w(t) = wi® t € fto,te]

is therefore well-defined and yields for fix¢el',u*, p*) an identical right hand
side function value

FOC (1), W (1), 0" (1), v, p*) = 0 (1), WV, u(t), V", p*)

- %Nf(x*(t),w,u*(t),\fk, Y)W (t)

compared to the feasible and optimal solutiet, W*,u*,v*, p*) of (BC). Thus
the vecton(x*,w", u*,v*, p*) is a feasible solution of problem (BN) with objective
value®BC = ®BN_ Now assume there was a feasible solutitidv, 0, 7, p) of (BN)
with objective value®BN < ®BC, As the sef{w!,...,w?™ } contains all feasible
assighments ofl,"one has again an index functigf) such thaw’can be written

as

W(t) :=wil t € [to,tf].

With the same argument as abavel€fined as

0= { el =12 te o]

is feasible for (BC) with objective valu@®N < ®BC which contradicts the opti-

mality assumption. Thus<*, w*, u*, p*) is an optimal solution of problem (BN).
The converse of the statement is proven with the same argati@nstarting

from an optimal solution of (BN). [ |
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A relaxation of (BN) to (RN) may enlarge the reachable settgpitally yields a
large integer gap of the optimal objective function valueedrem 8 investigates
whether this is also the case for (RC) and (BC). For the prétiiie theorem we
will need the theorem of Krein—Milman and the Gronwall lemtath are given
in the appendix.

Theorem 8 (Comparison of solutions of the convexified probla)
LeRthrobIem (RC) have a feasible solutipti, w*, u*, v, p*) with objective value
o~

Let furthermore {x,w,u*,v*, p*) with fixed(u*,v*, p*) be globally Lipschitz
continuous with respect tq X for all admissible binary controls ().

Then for any giverg > 0 there exists a binary admissible control functian
and a state trajectory such thaix, w, u*, v, p*) is a feasible solution of problem
(BC) with objective valugB¢ and

PBC < pRC 4 ¢,

Proof. The proof can be split up in several elementary steps.

1. Assume we have a feasible solutipot, w*, u*, v*, p*) of (RC) that is feasible
and in particular fulfills

W'e Q= {WZ [to, ts] — [0, 1™ with _gwi (t)=1, te [to,tf}}. (5)

Q is weakx-compact in the weak-topology ofL”. We fix (x*,u*,v*, p*)’
and regard as a function ofv’only:

Ny
fW) == 5 fx',w,u",v", p*) i,
2, |

pointwise, all functions evaluated almost everywherégis]. We define the
sets

N (SR (SER
M = {WeQ : f(w)dt:/ FOw) o, kzO...N—l}
t

Jg

where the time point depend o\ and are given by

ty —t
tH4:w+iN£,k:0mN—L
2. The linear operatorg defined by
tiy1 W .
TW = Zlf(X*,W,U*,W,p*)Widt
L S ==

are continuous. Since for a continuous operator the invarage of a closed
set is closed and the intersection of finitely many closeslisatlosed, also

N-—-1
M=) T TW) = {(We Q| TelW) = Te(W),k=0,...,N -1}
k=0
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is closed. Furthermore it is convex and nonempty fo\alasw* € y. As

I'n C Q is closed, nonempty, and convex afdds weaksx-compact inL®, Ny

is weak=-compact as well.

. Since the weak-topology is a Hausdorff topology, the nonemptyness and
compactness ofy allows the application of the Krein—Milman theorem 12.
Hence [y has an extreme poimiy = (Wn 1, . . ., WN,ny)-

. The functionswy; : [to,tf] — [0, 1] take values almost everywhere {0, 1}.
Otherwise there is a contradiction v, being an extreme point as one can
construct two functions ifiy of whichwy is a nontrivial convex combination,
as follows.

Supposeny € Iy, butwy € {0,1}™ almost everywhere was not true. In this
case there exists a 98t C [tx, tk1] for an index 0< k < N and a functiort (-)
nonzero orE; and zero elsewhere dtp, t¢] with

/ rif(x*,w',u*,w,|o*>zi(r> dr =0, (6)
E1iS

andwy = ¢ fulfills (5).

The proof of this statement will be by induction on the diniengy of f(-)

(the dimension ok is kept fixed, though). Let us first consider the case- 1.

We write fJ! = fj(x*,w,u*,v*, p*) for the j—th entry of the function vectof.

As wy € {0,1}™ almost everywhere is not true, there is at least one index
0<k< N, one sek; C [tk, tk;1] with positive measure and&> 0 such that

[[Wn(t)—0'|[2>8>0, teEy, i=1...ng. 7)

Here theg' enumerate all vertices of the polytofiz 1] that are inQ, that
is, all unit vectors. LeE, C E; be such that botk, and its complemeri; :=

E; — E» have positive measure. This is possible for a nonatomic uneass
the Lebesgue measure. We partition theEseihto ny setsE; by defining

Ezi = {t € Ex with i = argminjwy(t) — a'|, smallest index if not unique

ObviouslylJ; Ezj = Ez, ExjNEyj = {} fori # j and eacli,; is measurable.
Next we define a functiody(-) : [to,t¢] — [0,1]™ by

0 t € [to,ts] — E2
1) = — i
() { F(W(t)—0') teEy,
Because of (7¥2 # 0. Furthermorewy + {> € Q, as{; is defined such that
Wi (t) £ {o(t) € [0,1]™ for all t € [to,tf] and it holds fott € Ep
N

_ W 1 Mo Ny
Wi (1) =0(t)) = ) wini(t) =5 Wni(t)— ) 67) =1
Zl( (t) £ 2i(t)) i; (t) 2(; (t) i; )=1

We define similarly a functiods(-) on Ez and{ (t) = a2{»(t) + az{s(t). Now
it is clearly possible to choos® andas such that

laz| < 1,|az| <1,|az| +|az| >0 (8)



Mixed—Integer Optimal Control Methods 11

and

~ Ny i - Ny i . NW i
/El;fl Gi(r)dr = ag/EZi;fl {2,i(1) dr+ag/ESiZfl Zai(T) dr
=0 (9)

The induction step is performed in a similar way. By inductitypothesis (6)
with E; replaced byE, resp.Es we have nonzero measurable functidpé )
andds(+) such that

rm .

/E > fimdr=o, 10
& i

/Es iZlfj 43i(1)dr =0, (1)

for j =1...nx—1, {»(-) and {3(-) are identical zero orjto,t;] — E, resp.
[to, tf] — E3 andwy + {2, wy £ {3 fulfill (5). Again we define (t) = a2{2(t) +

a3{3(t) and chooser; andas such that (8) and the integral of the last compo-

nent vanishes ovet;

/1Zf it dr_ag/ZanXQl dr+ag/321an53.

=0.

Because of (5) and

/tk“ Fi (Wi (1) £ 4(7) dr—/tk”nwfivv.(r)dr
e Zl N| i = e i; N.i

we havewy £ { € ly. This is a contradiction tavy being an extreme point.
Therefore the functionen; : [to,tf] — [0, 1] take values if{0,1} almost ev-
erywhere.

5. With fixed (W, u*, v¥, p*)T we definexy(-) as the unique solution of the ODE
(4b-4c). Unlqueness and existence follow from the Lipsotiintinuity of f (-)
and therewith also of (-). We write f (x, W) for S f(x,wut, v, p*) W and
| -| for the Euclidean norrfj - ||2. It remains to show that?N(tf) X (tf)| gets

arbitrarily small for increasing\ as this ensures that the continuous Mayer

term does so, too. We have

X' () = Su(t)] = | fxm (3, W) T

t —

(W) — (6, W)+ F (X, W) — F (%, W) dt
Jtp

t _ _

f(X, W) — (X", wy) dT

fo

t _ —
f(X*,VVN) — f()?N,VVN) dr

to

12)
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For a fixedN and a givert we define 0< k* < N as the unique index such that
te <t < ty=y 1. The first term of (12) can then be written as

t —
f(X, W) — (X", wy) dT

Jig

"t i L -
- /k f(x W) — F(x W) dr+ [ F(x, W) — F(x*, W) dr
to tye

't

_ /t:k* f(wr) — f(w) dr+ | F(w) — () dr

=0, aSWN e

< v [ [T+ f)| dr < VoM (t—t0) /N

M is the supremum off(-)| on the compact sé6,1]™ with all other argu-
ments fixed tax*, u*,v*, p*). AsN is free, it can be chosen such that

ot _
I/ f(x W) — F(x* Wiy) dr | < 8 vVPKlt ol (13)
to

for any givend > 0, whereK is the Lipschitz constant of(-) resp.f(-) with
respect to the state variableThe second term of (12), by Lipschitz continuity

t _
F(x" Vi) — f (X, W) T
Jig

t
< VRK [K-xldr (14)
Jto
depends on an estimation jof — xy|. With (13) we have
t
X (0) ~ Ru(t)| < B VN0l UK [ e () < u(T)| o (25)
to

An application of the Gronwall inequality 13 gives
X (1) — Xn (1) | < o™ VIKIti —tol @vMKit—tol < 5 (16)
for allt € [to, t7].
6. The Mayer ternE(X(t¢)) is a continuous function of, hence for ale > 0 we
can find ad > 0 such that
E(X(tr)) <E(X(tr))+e
for all x with |x(tf) — x*(tf)| < d. For thisd we find anN sufficiently large

such that there is a binary admissible functiea- wy and a state trajectory
X=Xy with |X(tf) — x*(ts)| < & and(x,w, u*,v*, p*) is a feasible trajectory.
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One of the main ideas of the proof is the approximation of thgnaal state tra-
jectoryx*(-). As shown in the proof¢*(-) can be approximated arbitrarily close,
uniformly. It is possible though that the state trajectofyacmon—bang—bang so-
lution cannot be obtained by a bang—bang solution, althdlglstate trajectories
obtained by bang—bang controls lie dense in the space eftst@tctories obtained
by relaxed controls. An example is given in [66].

Parts of the proof are similar to that of the bang—bang ppiecand can be
found, e.g., in [28]. [42] and [5] showed that the principtande generalized from
a linear system of the forre = Ax+ Bw to the convex hull of a function. We
extended this result to transfer the results to the cordffihe case needed for (4)
and the applications under consideration here. Subsurhagesults obtained so
far, we can now state the final result of this section.

Theorem 9 (Comparison of solutions)

If problem (RC) has an optimal solutiglx*, w*, u*, v*, p*) with objective value
®RC, then for any giver > 0 there exists a binary admissible control function
and a state trajectory such thaix, w, u*, v, p*) is a feasible solution of problem
(BC) with objective valu@BC and a r,—dimensional control function w such that
(X, w,u*,v*, p*) is a feasible solution of problem (BN) with objective vatbéN
and it holds

®RN < pRC « pBC _ pBN - HBN
and
®BN _ ¢BC < pRC ¢

where ®BN s the objective function value of any feasible solution tobfem
(BN).

Proof. Feasibility follows from the fact that is constructed as an extreme point
of a setly with values in{0, 1} and is therefore feasible. The corresponding state
trajectory is determined such as to guarantee admisgibdilitese results transfer
directly to the solutior{x,w, u*,v*, p*) of problem (BN), see theorem 7.

®RC < @B holds as the feasible set of the relaxed problem (RC) is arsepe
of the feasible set of problem (BC). The equalit§N = ®BC is given by theorem
7. The global minimum®BN is not larger by definition than any feasible solution
®BN. Theorem 8 states that®¢ < ®RC 1 ¢ for any givens > 0. It remaines to
show that®RN < @RC, AssumedRN > dRC, Sete = (RN — dRC) /2, then we
have

‘DBN — ‘DBC < (DRC+£ < ‘DRN,

which contradictspRN < @BN as the feasible set of problem (RN) is a superset of
the one of problem (BN). [ |

Theorem 9 is a theoretical result. If an optimal control pea has non—-bang—
bang arcs, a bang—bang solution may have to switch infingébn in a finite
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time interval to approximate it. This behavior is referredaschatteringin the
optimal control community, [66]. The first example of an opil control problem
exhibiting chattering behavior was given in [23]. In the iErgring community
this behavior is calle@eno’s phenomengre.g., [67]. For our purposes we do
not have to care about chattering resp. Zeno's phenomemomtizch, as we are
interested in an approximate, near—optimal solution onitefgontrol grid only.
Knowing the best objective value that can be achieved witaregbbang control,
we can stop an iterative process to adapt the control grichwieeget closer than a
prescribed tolerance to this optimal value, obtaining arobmith a desired finite
number of switches only.

3.3 Extensions

In the previous subsection we investigated a special capeobfem (1) for no-
tational simplicity. In this subsection we will deliver thesimple — arguments to
extend theorem 9 in a nonformal way.

If the initial valueXg is not fixed, but also free for optimization as in periodic
processes, then we fix this value obtained by the relaxetieolun the very same
way as(u*,v*, p*) before.

For the path constraints (1d) and the interior point coimstisg1e-1f) we need
to specify a priori additional toleranceg & > 0. These inequalities and equalities
can then only be guaranteed to be fulfilled up to these tobasmwhich is anyway
the case once numerical algorithms are applied. As all fonstare assumed to
be continuous, we can choode> 0 in

X(t) =X ()] < 3, tetoty]

in the proof of theorem 8 as a minimum of the values necessagdure that the
objective function, the path controls and the interior paionstraints are within
the prescribed tolerancese; resp.&;.

Note that the path constraints (1d) may not depend explioitlw(-) itself,
otherwise the result would not hold anymore. Consider thagbagical one—
dimensional example with control constraints given by

0< c(w) = ( L ;V(lt())j] 1’0‘1"§t) ) n>1 (17)

These constraints exclude all binary solutiars) € {0,1}, while relaxed controls
might still be feasible. Thus it is obvious that no generaldgzang theorems are
possible for general path and control constragft$ and open questions remain
that may be the topic of future research. As the main prob&e(ppintwise) de-
viation between a relaxed (optimal) and any binary contrithwespect to the
L”-norm that can not be driven to zero will be hard to overcomer@commend
problem—specific analysis as performed, e.g., in [50,51].

The singlestage case can be transferred directly to thestagje one, as the
optimal trajectory depends continuously differentialietioe initial values of the
state variables. These values again can be approximatichehpclose with the
same argument as above.



Mixed—Integer Optimal Control Methods 15

Theorem 9 has one very important consequence. To deterimneptimal
continuous controlsg(-)*, parameterp* and binary parametexs, it is sufficient
to solve an associated control problem with relaxed binantrol functions. For
v* fixed we may then in a second step find the optimal binary adlohéssontrol
functionsw*(+). This decoupling of the computationally expensive intgeb-
lems to determine binary parameters and binary controltiome is beneficial
with respect to the overall run time of a solution procedure.

4 Numerical methods

In this section we will present methods to solve MSMIOCPs arically. We
start with a very brief introduction of the direct multipleaoting method. Then
we present concepts and algorithms that are important sirobinary admissible
trajectories. They are heuristics that avoid the compjexite has to deal with if
one applies mixed—integer nonlinear programming tectesgj26]. Their combi-
nation and an iterative approach together with the maximaét bound, see the
previous section, work particularly well in practice, tiybw

4.1 Direct multiple shooting

To solve MSMIOCPSs one has to solve problems without integeables (think of
problem (1) with relaxed (1g-1h)). The direct multiple sting method [14] we
are using transforms the infinite dimensional optimizagooblem (1) into one
with finitely many degrees of freedom that can be treatedieffity with tailored
nonlinear optimization methods, e.g., sequential quadpabgramming (SQP).

To this end the time horizofi,t¢] is divided into a number ofi,,s multiple
shooting intervaldt;,ti 1] with to < t1 < -+ <ty = tf. On these intervals the
control functionau;(t) are approximated by basis functions with finitely many pa-
rameters. We discretize the binary control functiarig) with piecewise constant
functions. We restrict the optimization space thus to fioms that can be written
as

wt) =q, telttiya], i1=0,....,nps—1. (18)

The constant; € R™ have to take valueg € {0,1}™ or, for the relaxed problem,
gi € [0,1]"™ to be admissible. The continuous control functiafg are discretized
in a similar manner (not necessarily with constant funajpbut in the following
g will refer to a discretization ofv(-) exclusively for the sake of notational sim-
plicity. The underlying control discretization grid depisnupon the numbeatys
and positiong; of possible changes in the constant control function valuées
will refer to it as

G = {to,t1, ..., tne}-

The differential algebraic equations (DAE) are solved petedently on each of
the intervals. On intervalthe initial value for the DAE solution is given s/, &

for differential and algebraic states. Consistency of tfee( relaxed) algebraic
equations and continuity of the state trajectory at theiplelshooting grid points
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are incorporated as constraints into the nonlinear progfdi®). They are re-

quired to be satisfied only at the solution of the problem,neatessarily during

the SQP iterations. This allows to easily incorporate imfation about the trajec-
tory behavior into the initial guess and leads to good cayesece properties of the
multiple shooting method.

If the path constraints on the interval are relaxed to grichfsoonly, only
finitely many optimization variables remain. These are tagablesg; that pa-
rameterize the control functions on intervathe global parametens, the time
horizon lengthsy = {1 —fi and the node values/, <. If we write them in one
vector& = (g, p,h,s,s), rewrite the objective function a§ (&), subsume all
equality constraints with the consistency and continuityditions into a function
G(&) and all inequality constraints into a functiet(&), then the resulting NLP
can be written as

mEinF(E) subject to 0= G(&), 0< H(&). (19)

This NLP can be solved with tailored iterative methods, eijpig the structure
of the problem. For more details, see [14], [37] or [38].

There are several approaches to treat optimal control @nubinumerically,
see [11] for an overview. We will discuss briefly, why we chtsedirect multiple
shooting method.

Theoretical results on hybrid systems have been determingd by [62] and
[57]. Based on hybrid maximum principles or extensions dfrBan’s equation
approaches to treat switched systems have been propogedbyg58], [4] or [1],
that extend indirect methods or dynamic programming.,Stidlirect methods do
have severe disadvantages in practice compared to direbbdse The formula-
tion of the boundary value problem in a numerically stable wequires a lot of
know how and work. Furthermore already small changes in &hgevof a param-
eter or in the problem definition, e.g., an additional caist; may change the
switching structure completely. Start values for all valés have to be delivered,
which is often difficult especially for the adjoints. Thisdgicial, because one has
to start inside the convergence region of Newton’s method.

If path—constrained arcs are present, compare the examgaeiion 5, indirect
methods have difficulties to come up with solutions for bynaontrol functions.
[13] developed th&€ompeting Hamiltonianmethod in 1982 to solve an uncon-
strained subway operation problem. In the case of velouitid it is difficult to
identify the switching structure. This is usually done bylgmg a homotopy, but
this is costly as it has to be done anew for every change indahenpeters and no
optimal finite switching structure does exist.

Among the direct approaches we prefer direct multiple shgptas know-
ledge about the process behavior may be used for the indt&dn of the opti-
mization problem. Thus it is possible to treat highly noahnsystems efficiently.
The algorithm is stable if the problem is well-posed, e gymastable system with
a terminal constraint, because small perturbations do pretas over the whole
time horizon, but are damped out by the tolerances in the hirafcconditions.
Sequential approaches are only stable, if the system isssthble. Path and ter-
minal constraints are handled in a more robust way than actgingle shooting.
Although the optimization problem may get quite large inlaenber of variables,
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it has been applied successfully to large—scale probleraking use of structure
exploiting algorithms.

Condensing algorithms for the Hessian as proposed in [46][&4] reduce
the dimensions of the matrices in the quadratic programsiderably to the size
of those of the direct single shooting approach. Togethér high—rank block—
wise updates of the Hessian it reduces the computing timsiderably. Other
structure exploiting measures are the relaxed formulaifalgebraic conditions
and invariants that allows inconsistent iterates, [123],[and the projection onto
an invariant manifold to improve convergence and reducelégeees of freedom,
[54], [55] and [52]. Furthermore the intrinsic parallelwstture with decoupled
problems can be used for an efficient parallelization, [Z4le main difference
to the other all-at—once approach, collocation, lies inféloéthat the differential
equations are still solved by integration. This allows tkage of state—of-the—art
error—controlled DAE integrators.

For more details on direct multiple shooting, see one of foeeanentioned
works or in particular [14], [37] or [38]. An efficient impleemtation of the de-
scribed method is the software packawecoDp-11, see [19].

4.2 Control grid adaptivity

When control functions are discretized with piecewise tamsunctions (18), we
restrict the search for an optimal feasible trajectory talaspace. In this space
there may be no feasible trajectory at all. If a feasible roptisolution exists,
it typically has a higher objective value than the optimajdctory of the full,
relaxed, infinite—dimensional control space that will beated by.7* in the fol-
lowing. But the trajectories with piecewise constant colstrbeing a superset of
the trajectories with bang—bang controls, lie dense in plaes of all trajectories.
In other words, given a toleranee one can always find a control discretization
t1...tn, Such that the Euclidean distance between the correspongingal tra-
jectory and.7* is less tharg for each time € [to,ts]. The goal of this section is to
describe adaptivity in the control discretization gédthat serves two purposes:
first, we can use it to obtain an estimation for the optimagotiye function value
of 7* via extrapolationand second, we can use it to get a grid on which we may
approximateZ * arbitrarily close with a bang—bang solution.

The control grid can be modified in two different ways to geeétdr objective
function value. The first one is to change the position of il tpointst; where
jumps in the controls may occur. This approach correspanttgetswitching time
approach presented in subsection 4.4. The second way wélldllv here is to
insert additional time points.

When we add a time point where a control may change its consédne,
we enlarge the reachable set. In fact, the insertion of aitiaddl time point
T € [tj,ti11] is equivalent to leaving away the restriction

w(t7) =w(tt)

that enforces continuity of the constant contidl) on [t;, tj1].

To show that uniform convergence towards trajectgtyis possible, we used
an equidistant control parameterization with an incregaaismbem = nys of in-
tervals in section 3. For practical purposes this is not adgamproach for two
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(07} to+y(ts —t2)

0 .

to ST t3 to tt b t3
Fig. 1 The main idea of an adaptive control grid. By inserting anitamtthl time pointt, +
y(t3 —t2) wherew(-) may change its value, the noninteger contret G, < 1 is transformed to
two binary controlss {0,1} and the optimal objective value is reduced.

t 't

reasons. First, information from the previous solutionnedrbe reused directly
as the time points change in every iteration. Second, we dosgutational ef-
ficiency as the control discretization grid may be too fineagions where it is
not necessary, e.g., where the control is at its upper boumal donsiderable time
interval.

Let us consider two control discretization grig& and¢¥*1. If we keep all
time points when changing the grigt to a finer grids*t1, i.e., ¢k C ¥*+1 and
if we insert time points only in intervalgX,t< ,] if 0 < g < 1, wheregF is an
optimal solution of the relaxed problem with control digezation grid%*, both
drawbacks are avoided.

In optimal control theory one distinguishes between digjaitervals called
arcs, depending on whether the control functions are at tespective bounds
(bang—bang) or in the interior, either because they arepatistrained or because
they maximize the Hamiltonian ([59] use the term sensitisieeking).

Obviously this distinction is very important in our contelftan optimal con-
trol is bang—bang, the main task will be to determine a @fithat includes the
switching times from one bound to another. The optimal redesolution will then
be bang—bang and therefore binary admissible. If it is nethave to apply strate-
gies that depend on the underlying time grid — so we do refiisdithe grid, too,
but do not have to look for specific time points, but performsazbtion.

Depending on the value ofWwe proceed as follows

G =0= Weassume&(t) =0, t € [tj,ti ;1] (20a)
G=1= Weassume&(t) =1t € [tj,ti;1] (20b)
0 < G < 1= add an additional time poirtt€ [t;,ti+1], (20c)

i.e., if §is already integer on an interval, we do not refine the gridraoye. Other
approaches to automatically determine the switching siradake into account
the dual variables, see, e.g., [53], [33].

It remains to answer the question how to chobdeet us first consider a single
controlw(-) with value 0< § < 1 on an intervalt;,tj+1] anddgi-1 =1, G+1 =0,
as in figure 1. For this case we guess thdt consists of two bang—bang arcs on
[ti—1,ti+2] with the switching point

T=t+ytii—t), O<y<l (21)
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somewhere in the intervdth,t.1]. We write f(w) = f(x(t),z(t),w(t),u(t), p) to
determiney. We would like to have

LEE R t|+1
/ fa) dt = [ (1) 4+ /
Jt

on [ti,tiy1], compare the right diagram of figure 1. A first order approxiora
which is exact for linear systems, yields

i1 t|+1
/t_ f()+qu.dt/ +fW1ct+/ 0) ct

which is equivalent to
tit1 T
G / fudt= [ fudt. 22)
ti ti

T can thus be determined by integrationfgf For our purposes it turned out that
a further simplification yields good results. If we assufge= const on [tj, i 1]
for smalltj . ; —tj, we obtain an estimate

y ~ Gi (23)

for T from (22) that can be readily inserted without any additlaredculations.
This is the motivation for a choice gf based on an estimated-10 structure. If
we assume that the structure. &t is first 0 and then 1, (23) becomes

y~1-G. (24)

In all other cases, i.e., either0§_1 <1 or 0< §i;1 <1 ord_1 = i1 aguess
on the optimal switching structure is hardly possible. Efiere we do a bisection,

y=75 (25)

and rely on the iterative nature of the adaptivity to end ughwi0-1 resp. a 1-0
structure or a purely non—-binary arc with several conseetk ¢ < 1.

For the case, > 1 we have to extend the algorithm. There are at least two
reasonable ways to determine adequétéor an interval[tlk,t,ﬁl] if severalgj; ¢
{0,1}. The first is to add more than one time point by applying onenefrules
presented above to each control function. The second iglg &pnly to a control
functionw;: (-), if

min(Gj+i, 1—Gj+i) = mjaxmin(q“,lf Gji),
i.e., it has the maximum integer violation of §llAs the introduction of additional

time points is part of an iterative procedure, the otherfians are treated in future
iterations. The latter approach is the one we prefer.
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4.3 Rounding

Rounding strategies are based upon a fixed discretiz&iofhthe control space.
Despite the fact that we have a finite—dimensional binarjnapation problem,
there is a difference to generic static integer optimizagimblems, because there
is a "connection” between some of thg - nys variables. More precisely we have
ny sets ofnys variables that discretize the same control function, ohbjifferent
times.

The rounding approach to solve problem (1) consists of ne¢athe integer
requirementsy; € {0,1}™ to G € [0,1]™ and to solve a relaxed problem first.
The obtained solutioq €an then be investigated — in the best case it is an integer
feasible bang-bang solution and we have found an optimatisalfor the integer
problem. In case the relaxed solution is not integer, onbefdllowing rounding
strategies can be applied. The constant vatyg®f the control functions;(t),
j=1...nyandt € [tj,t,1], are fixed to

— Rounding strategy SR (standard rounding)
- J1 ifq“ > 0.5
4i=130 else :
— Rounding strategy SUR (sum up rounding)
g = {1 T Sicolix—Sico0ik=1,
I 0 else
— Rounding strategy SUR-0.5 (sum up rounding with a diffetergéshold)

gii=4 L I Skeofik — SicoTik > 05
I 0 else :

Reloxed solution Rounding strategy SR Rounding strategy SUR Rounding strategy SUR-0.5

INIEIREITRE

(£
0.5
0]

Ult)
0.5
0]

0.5

°

0 5 10 0 5 10 o B 10 o B 10
t t t t

Fig. 2 One-dimensional example of the rounding strategies. Fedtrtd right the relaxed
solutiond and solutiong obtained by rounding strategy SR, SUR and SUR-0.5.

Figure 2 shows an illustrative example of the effect of tHféedent rounding
strategies. For strategies SUR and SUR-0.5 the values d@j; {rere summed up
over the intervals to have

/tf w; (1) drz/tf W;j(T) dr

fo fo

forall j=1...ny.
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Special care has to be taken if the control functions haveulfdl the spe-
cial ordered set type one restriction (4€) as it arises framoraexification. Many
rounded solutions will violate it. Rounding strategy SRgameres this property
if and only if exactly one valug;; > 0.5 exists on each interval For the sum
up rounding strategies this is not enough, the sum of seerdtols may show
similar behavior over the multiple shooting intervals. posblems with the SOS1
property we therefore propose to use one of the followinghding strategies
that guarantee (4e). We fix the constant valggsof the control functionsv; (t),
j=1...nyandt € [tj,ti11], to

— Rounding strategy SR-SOSL1 (standard)

o J1ifg; >0k V k# jandj <kV k:§j; = Gk,
9i=130 else :

— Rounding strategy SUR-SOS1 (sum up rounding)

Gj = ki%qj,k - L;quj',k

o J1ifqi > Gk V k# jandj <KV K:Gji = ki
i =10 else ‘

Rounding strategies yield trajectories that fulfill thesigér requirements, but
are typically not optimal and often not even feasible. Nthaless rounding strate-
gies may be applied successfully to obtain upper bounds iraadd and Bound
scheme, to get a first understanding of a systems behavioryoeld initial val-
ues for the switching time optimization approach preseméiae next subsection.
Rounding strategy SUR-SOSL1 is specifically tailored to freeil ordered set re-
strictions that stem from the convexification and works v@lla suitably chosen
discretization grid, as it reflects the typical switchindgnaeior for non—bang—bang
arcs.

4.4 Switching time optimization

One possibility to solve problem (1) is motivated by the idesoptimize the
switching times and to take the values of the binary contiigesd on given in-
tervals, as is done for bang-bang arcs in indirect methoelisu& consider a sin-
glestage problem withyes = 1 and the one—dimensional casg,= 1. This sin-
glestage problem will be transformed into a multistage fmob Instead of the
controlw(+) : [to,tf] — {0, 1} we do getnes fixed constant control functions

Wi : [t fkya] — {0,1}
defined by

0 ifk even

Wk(t) = { 1 ifkodd ° te [fkafk+l] (26)

withk=0...nmes— L andtg =t <t <--- <&, =ts.
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we®)| o | o hp hs ha
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to 15 o I3 1y ts t
Fig. 3 Switching time optimization, one—dimensional examplehwajt,os = 5.

If we assume that an optimal binary control functief) switches only finitely
often, then the original problem is equivalent to optimgim,.s and the time
vectort in a multistage formulation (1) with a#(t) fixed to either 0 or 1 and and
for positivehy, > 0 the additional constraint

Nmos—1

S h=ti—to. (27)
k=0

In practice one will not optimize the switching points, bhgtscaled vectdn of
model stage lengthis, := fi, 1 — fx, see [37,25]. This approach is visualized in
figure 3 withnmes= 5.

For fixednhmes We have an optimal control problem that fits into the defimitio
of problem (1), where the stage lengthstake the role of parameters that have
to be determined. The approach can be extended in a stiaightd way to a
ny,—dimensional binary control function(-). Instead of (26) one defineg as

W) =w ifk=j2™+i—1 te k1] (28)

for somej € Ng and some K i < 2™, Thew' enumerate all? possible assign-
ments ofw(-) € {0,1}", compare section 3. A closer look at (28) shows some
intrinsic problems of the switching time approach. Firbe number of model
stages grows exponentially not only in the number of corftnattions, but also in
the number of expected switches of the binary control famsti Starting from a
given number of stages, allowing a small change in one ofdh&al functions re-
quires additional 2 stages. If it is indeed exactly one functiat(-) that changes
while all others stay fixed,"2 — 1 of the newly introduced stages will have length
0. This leads to a second drawback, namely a nonregulatisitudat may oc-
cur when stage lengths are reduced to zero. Assume the lehgthintermediate
stage, sayn, has been reduced to zero by the optimizer. Then the seatysitiv
the optimal control problem with respect kg and hs is given by the value of
their sumh; + hz only. Thus special care has to be taken to treat the case where
stage lengths diminish during the optimization procedurg30], [31] and [39]
an algorithm to eliminate such stages is proposed. Thisgsiple, still the stage
cannot be reinserted, as the time when to insert it is unahéited.

The third drawback is that the number of switches is typjcadit known, left
alone the precise switching structure. Some authors peofméterate ompes
until there is no further decrease in the objective functibithe corresponding
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optimal solution, [30,31,39]. But it should be stressed th&s can only be ap-
plied to more complex systems, if initial values for the lidga of the switching
points that are close to the optimum are available, as theyessential for the
convergence behavior of the underlying method. This isatjosonnected to the
fourth and most important drawback of the switching timerapph. The refor-
mulation yields additional nonconvexities in the optintiaa space. Even if the
optimization problem is convex in the optimization variedbtesulting from a con-
stant discretization of the control functier-), the reformulated problem may be
nonconvex.

The mentioned drawbacks of the switching time optimizasipproach can be
overcome, though, if it is combined with a bunch of other apts, compare [48,
25]. This includes rigorous lower and upper bounds, goddhinialues, a strategy
to deal with diminishing stage lengths and a direct all-ateapproach like direct
multiple shooting that helps when dealing with nonconvesitas discussed in
[48].

4.5 MS MINTOC

In this section we will bring together the concepts presgstefar and formulate
our novel algorithm to solve mixed—integer optimal confnablems. We will call

this algorithmmultiple shooting based mixed—integer optimal controbailigm,

in short MS MINTOC. The algorithm gets a user specified toleeee > 0 as
problem specific input determines how large the gap between relaxed and binary
solution may be. Furthermore an initial control discretimagrid 4° is supplied

for which a feasible trajectory of the relaxed problem exist

1. Convexify problem (1) with respect ta(-) as described in section 3.

2. Relax this problem ta/(*) € [0, 1]™.

3. Solve this problem for control discretizatiéff, obtain the grid—dependent
optimal value®§ of the trajectory7°.

4. Refine control discretization grioky times as described in subsection 4.2
and obtainCDg;‘,‘?ext as the objective function value on the finest gritkx. Set

®RC = PRC, to this upper bound o* and.7 = 7 Mex.,
. If the optimal trajectory o™ is binary admissible then STOP else- ngy;.

. Fix the variables*(-), p*,v* and the initial valuesy.

. REPEAT

(&) Apply a rounding heuristics t¢”, see section 4.3.

(b) Use switching time optimization, see section 4.4, aiited with the rounded
solution of the previous step. If the obtained trajectorfessible, obtain
upper boundpSTO, If @STO< @ORC 1 ¢ then STOP.

(c) Refine the control grigZk by a method described in section 4.2, based on
the control values of trajectory’.

(d) Solve relaxed problem7 = 7K, k =k+ 1.

The first four steps aim at finding a locally or globally optimelaxed solution. To
be able to compare this solution to binary admissible ondgengrids, we iterate
on a refinement of the underlying control discretizatiod ¢gpihave an appropriate

~N o ol

7 determined, e.g., by an extrapolation criterion
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discretization of the infinite—dimensional control spasenething one should do
anyway when applying direct methods for optimal controheTintention of the
loop in step 7. is a determination of feasible binary corfuinktionsw(-).

Note that the MS MINTOC algorithm is stated in a quite genaray, in par-
ticular nothing is said about the topic of how to solve thexeld problems that
may still be nonconvex in the variables$ ), z(-),u(-), p andv. This is done on
purpose to allow for both global as local approaches. Thermpaint following
from section 3 is that whatever relaxed solution is foundtaps 3. or 4., can
be approximated arbitrarily close by a binary solution.sTikiespecially valuable
in the case of nonconvex problems that have to be solved bgadstof global
optimization, as the main work to find a global optimum haseaadbne for the
continuous relaxation of(-) only and all other variables can be fixed afterwards
(step 6.). As these variables are fixed and the problem hasdwwexified with
respect ton(-), the resulting problems in step 7. will be convex. The maiesgu
tion to be answered therefore is how to get a relaxed refergagectory in the
first place.

While from a theoretical point of view the relaxed problemishaut binary
restrictions orw(-) are assumed to be solved globally by appropriate methods, in
practice we will follow an approach where local minima aresidered to be suf-
ficient. In the latter case, which is also the basis for ouctical implementation
used for the case study in section 5, the algorithm tendspgmajmate the locally
optimal relaxed trajectory.

For reasonable values efand all practical problems we investigated so far,
e.g., [34,48-51], only few iterations and the fast contimibeuristics were suffi-
cient to get convergence to a given tolerance. The followlegrem investigates
the convergence behavior in the more general case.

Theorem 10 (Behavior of the MS MINTOC algorithm)
If

— the relaxed control problem on grig® possesses an admissible optimal tra-
jectory

— bisection is used to adapt the control grid on all intervalgdgpendent of the
valuesg's)

— all considered problems can be solved precisely to globahmadity in a finite
number of iterations

then for alle > 0 algorithm MS MINTOC will terminate with a trajectory that is
binary admissible and a corresponding objective vafusuch that

o< Bk +¢

where':bgr%eXt is the objective value of the optimal trajectory for the redd prob-
lem with the grids™ex of the last iteration in the estimation @R

A proof is given in [48], page 104. Theorem 10 needs threeragdans. The
first one, the existence of an admissible optimal trajechmryhe relaxed optimal
control problem on a user specified grid, is an absolute mefstré wanting to
solve MIOCPs. The second one concerning bisection is mesgg to guarantee
that after a finite number of iterations the grid size is aabity small in contrast
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to possible pathological counter examples when using aquadistant partition
of the intervalgt;,ti+1] as discussed in section 4.2.

The third argument, however, is a very strong one and tylgidales not hold
for most (local) optimal control solvers, as many problemdar consideration
are nonconvex. One way to overcome this problem is to usewerstilat can
handle nonconvex problems. [48] gives additional infoiiorabn the topic of local
minima and how all-at—once approaches help to avoid gettingk in them. If, in
practice, a local solver is used, the algorithm may still kgeeted to converge, if
the quality of the solution given by the solver depends orutigerlying grid, as
should be expected. The algorithm will terminate then witbcal optimum on a
fine grid instead of a global solution on a coarser grid.

Remark 11 For some applications one may not want to fix the variablgs)u
and g in step 6., as the additional degrees of freedom on a givethrgay lead
to solutions with fewer switches.

The application of the MS MINTOC algorithm to several smiatlase studies
as well as to different applications are discussed in [48Fhke next section we
present its application to the optimization of subway tigeration.

5 Optimization of subway train operation

The optimal control problem we treat in this section goektiaavork of [13] for
the city of New York. Here we treat for the first time velocitynits that lead to
path—constrained arcs.

The aim is to minimize the energy used for a subway ride from station
to another, taking into account boundary conditions ands&iotion on the time.
The optimization problem is given by

. ‘T
min /0 L(x(t),w(t)) dt (29a)

subject to the ODE system
X(t) = f(x(t),w(t)), telto,T], (29b)
path constraints
0<x(t), telt,T], (29c)
interior point inequalities and equalities

0 < red(x(to), X(ta), ..., X(T),T), (290)
0 = r®(x(to), x(t1),...,x(T),T), (29¢)

and binary admissibility oWv(-)
w(t) € {1,2,3,4}. (29)
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The terminal timeT denotes the time of arrival of a subway train in the next
station. The differential stateg(-) andx;(-) describe position resp. velocity of
the train. The train can be operated in one of four differeoties,

1 Series
2 Parallel
w(t) =9 3 Coasting (299)

4 Braking

that accelerate or decelerate the train and have differemgyg consumption. The
latter is to be minimized and given by the Lagrange term

€p for x1(t) <wvi
L(x(t),1) = { R _ forvi <xu(t) <v2 | (29h)
e3P oc(D) (fHyxa®) "  forx(t) > v,
0 forxa(t) < v
L(x(t),2) = { € forve < x1(t) <wvg ., (29i)
e Y2 0Gi(2) (&yxa(t) —1) " for xq(t) > v
L(x(t),3) =0, (29))
L(x(t),4) = 0. (29k)

The right hand side functiofi(+) is dependent on the moaé-) and on the state
variablex; (-). For allt € [0, T] we have

Xo(t) = x4 (t). (291)
For operation in seriesy(t) = 1, we have
fIA(x) for xq(t) <wy
Xi(t) = fi(x,1) =< f1B(x) for vi < x(t) < vz , (29m)

f1C(x) for xq(t) > vz

with
(1400 =
1200 = S
10 — 9(eTOA(.1) ~ROa(t)

Wit
For operation in parallely(t) = 2, we have
f2A(x) for xq(t) < vz
X1(t) = f1(x,2) = { £2B(x) for vo < xq(t) <vs , (29n)

f2C(x) for xq(t) > v3
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with
fA(x) =0,
200 = S
T 2)—R
ffc(X) _ g (e (Xl(t\),;/efi (Xl(t))
For coastingw(t) = 3, we have
xaft) = f1(x,3) =~ IRaW) ¢ (290)
Wert

and for brakingw(t) = 4,
X1(t) = f1(x,4) = —u(t) = —Umax- (29p)

The braking deceleratiau(-) can be varied between 0 and a givgq. It can be
shown easily that for the problem at hand only maximal brgldan be optimal,
hence we fixu(+) to unax without loss of generality. The occurring forces are

R(xa(t)) = cay?xq(t)? +bWyx (t) + %(B;OWJr 116 (29q)
5 —i
Toa).0) = 3 b (zra-03) (291)
; 1 —i
T0a).2) = 3 0@ (grat-1) - (295)

The interior point equality constraint&(-) are given by initial and terminal con-
straints on the state trajectory,

x(0) = (0,0)T, x(T)=(S0)". (29t)

The interior point inequality constraint?q() consist of a maximal driving time
T to get fromx(0) = (0,0)T tox(T) = (S0)T,

T < TmaX (29u)

In the equations above the parameterp;, p2, ps, bi(w), ¢i(w), y, 9, a1, az, as,
Wi, C, €, b, W, Umax, T™®, v1, Vo andvs are fixed. They are given in the appendix.
Details about the derivation of this model and the assumptiwade can be found
in [13] or in [32].

[13] solved the problem at hand for different valuesSs&ndW already in
the early eighties by th€ompeting Hamiltonianapproach. This approach com-
putes the values of Hamiltonian functions for each possilbele of operation
and compares them in every time step. As the maximum priaatiplds also for
disjoint control sets, the maximum of these Hamiltoniartgrines the best pos-
sible choice. This approach is based on indirect methodgettre it suffers from
the disadvantages named in section 4.1 — in particular ipradems with path—
constrained arcs.
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We transform the problem with the discrete—valued functigr) to a partly
convexified one with a four—dimensional control functiore 70,1} that has to
fulfill the constrainty* , Wi (t) = 1 for allt € [0, T] as described in section 3. This
allows us to write the right hand side functiérand the Lagrange terinas

4
Ziw. (x,i) respectively L(x,W) Ziw. L(X,i).

Both functions still contain state—dependent discontiesi Recent work in the
area of such implicit discontinuities has been performed1%}, who proposes

a monitoring strategy combined with switching point detetion and Wron-
skian update techniques. The order of the discontinuiigsite clear in our case,
though. As the distanc8 that has to be covered in timME™® a certain mini-
mum velocity greater thawy is required for a given time and any feasible solution
has to accelerate at the beginning, keep a certain velauitylacelerate by either
coasting or braking towards the end of the time horizon. gtoee we assume that
every optimal feasible trajectory fits into the structureraf multistage problem

[to,ta] : 0 < x3(+) < g, only serieswz; =Wz =Ws =0
[t1, 1] 1 v <xa(+) < o, Only seriesw; = W3 =Wy =0
[.85] tv2 <xa(-) <vs
— Stage 3]t3,t4] : v3 < x1()
{ta,ts] ()
[ts, 1] : 0 < xl( ) < vz, only coasting or brakingy;™= W, =0

with f; = tg = 0 andfsg = T < T™® The fourth stage has been split up in two
stages, because we will insert additional constraints tateThe first two stages

are pure acceleration stages. &éx, 2) = 0 on the first two stages, we fixg =1

andw, = W3 = W4 = 0 on both. This allows us to compute the exact switching
timesf; andf, between these stages and fix them. On the sixth stage we assume
that no further acceleration is necessary once the thréskebbcity v has been
reached and allow only further deceleration by coastingrakihg. Therefore no
discontinuity will occur on this stage any more. As the caaistvs < x; () avoids
discontinuities, the only switching point to determin&isVe determinds by the
addition of an interior point constraint

x1(f3) = vs,

although this approach may yield numerical difficulties tzs todel is only ac-
curate when this condition is fulfilled. If, on the other hama: obtain a feasible
solution that fulfills the conditions oxy () given above, the model restrictions are
also fulfilled and the discontinuities take place at time®kehthe model stages
change and all derivative information is updated. For thispn all given solu-
tions are indeed local optima that are feasible, also in #mses that the model
discontinuities are treated correctly. Within our apptoa® use a line search in-
stead of a trust box or watchdog technique to globalize agevee. For the set of
parameters given in the appendix we determine the switdirimgs of the series
mode in stages 0 and 1 as

f, =0.631661 f, = 243955 (30)
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Fig. 4 The controls for operation in series; (%), in parallelw(+), coastingwa(-) and braking,
Wq(-), from left to right. The upper solution is optimal for thearéd problem on a given grid
%9, the middle one for a gri##* obtained fron#%° by grid refinement. The lowest row shows the
optimal solution on grid/? that is used to initialize the switching time optimizatidgarithm.

We will first have a look at a trajectory of a relaxation of thimblem. This so-
lution is optimal on a given gridZ° with nms = 34 intervals. This grid is not
equidistant, due to the multitude of stages that partly Hasgal stage lengths.
The obtained solutions for the binary control functioné )"on this and a refined
grid are shown in figure 4. The corresponding trajectorietdydbjective values
of 1.15086 resp. of 14611. Applying a second refinement the solution is al-
most completely integer witlp = 1.14596. We round this solution and initialize
a switching time optimization with it. The solution in abbiated fornf is

w(t) =.2(1,2,1,3,4; 3.643388.9636733.175711.37737.84002. (31)

In other words, first we operate in series ufiti= 3.64338¢ [f,, 5] with state—
dependent changes of the right hand side functiépaatdt;, as given by (30), then
we operate in parallel mode unfjl = 12.607 € [t3,{s], then again in series until
t3 =45.7827¢ [t3,T5). At f4 = 57.16 € [i3, 5] we stop coasting and brake urfil=
TMaX—= 65. All results are given as an overview in table 1. This sofuis identical
in structure to the one given in [32]. The switching times al#tle bit different,
though. This is connected to the phenomenon of multipld lmiaima that occur
when applying a switching time approach, compare [48]. Tagttory given in
[32] yields an energy consumption @f = 1.14780. If we use either this solution

8 the operation modes to be applied are given in order befersenicolon, the corresponding
stage lengthk; afterwards
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[ Timet | Mode] fi= [ xo®[ft] | xa(t)[mpH | x.(1)[ft/g | Energy |

0.0 S fiA 0.0 0.0 0.0 0.0
0.631661 S fiB 0.453711| 0.979474 | 1.43656 0.0186331
2.43955 S fic 10.6776 | 6.73211 9.87375 0.109518
3.64338 P 8 24.4836 | 8.65723 12.6973 0.147387
5.59988 P f 57.3729 | 14.2658 20.9232 0.339851

12.607 S fic 277.711 | 25.6452 37.6129 0.93519
457827 C f1(3) | 1556.5 26.8579 39.3915 1.14569
46.8938 C f1(3) | 1600 26.5306 38.9115 1.14569

57.16 B f1(4) | 1976.78 | 23.5201 34.4961 1.14569

65.00 - — 2112 0.0 0.0 1.14569

Table 1 Trajectory corresponding to the optimal solution (31). Tdwes of the table give typical
values for the different arcs.

or the rounded solution of the relaxed solution without didapefinement of the
control grid as an initialization of the switching time appch, we obtain

w(t) = .#(1,2,1,3,4; 3.64158.82654 34,5454 10.0309 7.95567),

which switches earlier into the parallel mode, has an augedenintime in series
and a shorter coasting arc. The objective function valu® ef 1.14661 is worse
than the one given above, but still close enough to the rdleakie that serves as
an estimate forb*.

Our algorithm has therefore the ability to reproduce thénogitresults of [13]
and [32]. But we can go further, as we can apply our algorittsn o extended
problems with additional constraints. To illustrate thi® will add constraints to
problem (29). First we consider the point constraint

X (t) <vaif xo(t) =S (32)

for a given distance & S; < Sand velocityvs > vs. Note that the statey(-) is
strictly monotonically increasing with time, ag(f) = x1(t) > O for allt € (0, T).
We include condition (32) by additional interior point ctnagnts

0 < r'*(x(f)) = va—xa(fa), (33a)

0 =r(x(ta)) = S —xo(fa), (33Db)
assuming that the point of the trakwill be reached within the stad®, {s]. For
a suitable choice of%, v4) this holds of course true. We do not change anything
in the initialization resp. in the parameters of our methiod abtain forS, = 1200

andvy = 22/y the optimal solution for problem (29) with the additionatdrior
point constraints (33) as

W(t) = y(]" 27 17 37 47 27 17 3)4;
2.8636210.722 15.3108 5.81821 (34)
1.183832.7245112.917,5.474027.98594)

with @ = 1.3978. Compared to (31), solution (34) has changed the swgch
structure. To meet the point constraint, the velocity hasetoeduced by an addi-
tional coasting and braking arc. After this track pdif the parallel mode speeds
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up as soon as possible and the series mode guarantees thatdtity is high
enough to reach the next station in time.

Not only the additional constraint influences the optimaitsiing structure,
but also the values of the parameters. For a speed limit atk point in the first
half of the way, says, = 700, we obtain the solution

w(t) = (1,2,1,3,2,1,3,4,
2.980846.2842811.0714 4.77575 (35)
6.0483 18.6081 6.4893 8.74202.

For this solution there is only one braking ar({) = 4) left. The reason is that
the speed limit comes early enough such that the main disteauwc be covered
afterwards and no high speed at the beginning, followed akibg, which is very
energy consuming, is necessary. On the other hand, thengrakc at the end
of the time horizon is longer, as we have an increased vgledgih respect to
solution (34) for allt > 40. This can be seen in a direct comparison in figure 6.
The energy consumption i® = 1.32518, thus lower than for the constraint at
S, =1200.

A more practical restriction are path constraints on suhsgthe track. We will
consider a problem with additional path constraints

xi(t) <vs if xo(t) > Ss. (36)
We include condition (36) by additional path and interioimp@onstraints

0 < c(xt)=vs—xi(t), te[s,T] (37a)
0 =r*(x(ta)) = S —xo({a), (37D)

assuming again that the point of the tr&kwill be reached within the stadg®, fs).
The additional path constraint changes the qualitativatieh of the relaxed so-
lution. While all solutions considered this far were barggadp and the main work
consisted in finding the switching points, we now have a cairgt-seeking arc.
Figure 5 (left) shows the relaxed solution. The path con#ti(@7) is active on
a certain arc and determines the values of series mode astingpal he sum of
these two yieldg; = 0, ensuring; (t) = vs. Any optimal solution will look similar
on this arc, no matter how often we refine the grid. We showesgation 3 that it
is possible to approximate this non—binary solution aalilty close. This implies
a fast switching between the two operation modes, thouglghis not suited for
practical purposes. Our algorithm allows to define a tolegansuch that a com-
promise is found between a more energy—consuming operatoie which needs
only few switches and is therefore more convenient for drared passengers and
an operation mode consuming less energy but switching nftee to stay closer
to the relaxed optimal solution.

By a refinement of the grid we get an estimate §@. The optimal solutions for
refined grids yield a series of monotonically decreasingatje function values

1.331081.310701.31058 1.31058.. .. (38)

We use the different grids to use rounding strategy SUR-S®@Shem and initial-
ize a switching time optimization with it. On the coarsestigve obtain a solution
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that may only switch once between acceleration in serieseraod coasting. The
velocity is reduced by braking strictly below the velocitgnstraint, such that it
touches the constraint exactly once before the final caasatia braking to come
to a hold begins. This solution is given by

w(t) = ¥(1,2,1,3,4,1,3,4;
2.6805413.825312.24124.03345 (39)
1.6500115.35437.991927.22329

and yields an energy consumption @f= 1.38367. This value is quite elevated
compared to (38). If we use the same approach on refined gadsotain

w(t) = .#(1,2,1,3,4,1,3,1,3,1,3,4;
2.7425812.7277,13.6654 4.57367 (40)
1.088971.777961.351816.41239
1.349936.403795.434397.47134

with @ = 1.32763 respectively

w(t) = .#(1,2,1,3,4,1,3,1,3,1,3,1,3,1,3,1,3,4;
2.7445812.5412 13.5547,5.08831,
0.9640070.05712190.7392123.56618 (41)
0.7441763.589630.7454543.59567
0.715663.454840.1119170.549478
4.694647.54318

with @ = 1.31822 depicted in figure 5 (right). An additional refinemeieigs a
solution with 51 switches an® = 1.31164 which is already quite close to the
limit of (38). The results show the strength of our approdtdglecting numerical
problems when stage lengths become too small, we may appateithe relaxed
solution arbitrarily close. As this often implies a largenmer of switches, one
may want to obtain a solution that switches less. Our apprafiows to generate
candidate solutions with a very precise estimation of thelggtween this candi-
date and an optimal solution.

The calculations were done under Linux on a Pentium 1.7 GKHinguthe
software packageS MINTOC that use$1UsSCOD-I1 [19] to solve continuous opti-
mal control problems. Computing times are in the range betv2® (pure relaxed
problem on gridz°) to 90 seconds (four adaptive refinements, solving relaxed
problems, rounding and switching time optimization).

6 Summary

The novelties presented in this paper include

— A rigorous proof that any solution of a convexified (with respto the bi-
nary control functionsv(-)) and relaxed control problem can be approximated
arbitrarily close by an integer solution. Therefore thebgllooptimum of the
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Fig. 5 Two columns to the left: the optimal trajectory for ttedaxedproblem (29) with the ad-
ditional path constraint (37). Note that this constrairgdsve on a certain arc and determines the
values of series mode and coasting. The sum of these twayigtd 0. The energy consumption
is @ = 1.33108. After one refinement it @ = 1.31070, after two refinement8 = 1.31058.

Two columns to the right: This is a feasible trajectory foe thtegerproblem (29). The path
constraint after three refinements of the @fitlis active on six touch points. The constraint-arc
is better approximated than before, therefore the energguroptiond® = 1.31822 is better
than®? = 1.32763 andd! = 1.38367.

first problem yields the best lower bound for the mixed—iptegptimal con-
trol problem under consideration. This is shown for a vergegal problem
class, in which the right hand side may depend nonlinearlgifi@rential and
algebraic states as on parameters and continuous contatidas.

— Novel heuristics that exploit the structure of optimal siwns of relaxed opti-
mal control problems.

— An algorithm based upon these heuristics that iterates oglypgontinuous
optimal control problems and avoids an enumeration of thegigr variables.
Making use of the maximal lower bound on the objective vathe,integer
gap is known precisely.

— The solution of a challenging control problem. As to our kiedge this is
the first MIOCP with a path—constrained arc in its relaxedfofior which an
integer solution with guaranteed integer gap could be given

Furthermore we showed thatlacouplingof the problems to find a (global) opti-
mal solution and the determination of optimal binary colfnactions is possible.
While the main work may still be to solve the first problem, §ibly involving bi-
nary parameters, suitable binary control functions mayeierechined in a second
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Fig. 6 Final comparison of the different stateg-). Top left: the state trajectory for problem
(29) without constraints on the velocity. Top right and twiotp in the middle: solutions for
the problem with path constraint, with increasing accurefcthe approximation of the relaxed
solution. Bottommost plots: optimal trajectories for godenstraint. The vertical dotted lines
show whenxy = 1200 respxy = 700 are reached. The horizontal lines show the velocities
resp.vs.

step. This will speed up the computing time for problems ivivg both types of
difficulties significantly.

Future research should look into several directions. Fiistbal methods to
solve optimal control problems including time—indepengerameters have to be
developed. Second, switching costs to favor practicalt&wia with less switches
should be included. The proposed algorithm naturally welgch solutions if one
starts on a coarse grid and chooses a not to semdiut a more rigorous ap-
proach would be helpful. The third line of investigation basleal with problem—
dependent and structure—exploiting analysis of path anttr@oconstraints that
explicitly depend on the binary control functions.
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7 Appendix
Theorem 12 (Krein—Milman, see, e.g., [28])
Let.Z be areal linear topological space with the property thatdow two distinct

points % and % of 2" there is a continuous linear functiondl with

X (x1) # X (X2)-
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Then each nonempty compact sétof 2" has at least one extreme point.

Theorem 13 (Gronwall inequality)
Let X(-) : [to,tf] — R be a continuous functionp Kt <t¢, a, e Randf > 0. If

X(t) < a+ B fg X(T) dT then Xt) < a €= for allt € [to, t].

Parameters of the subway optimization problem

TMmax — 65
S=2112
S = 700 or 1200
S = 1200
W = 78000
Wett = W +7200
y = 3600/5280

Maximal driving time, [sec]

Driving distance, [ft]

Distance for point constraint, [ft]
Distance for path constraint start, [ft]
Weight of the train, [Ibs]

Effective weight of the train, [Ibs]

Scaling factor for umts@sec/ém,e]
]

a =100 Front surface of the traipft
Nwag = 10 Number of wagons

b = 0.045

C = 0.24+ 207 ms Y

C =0.367 Constant braking when coasting

g=2322 Gravity, [ft/sec]

e=1.0 Percentage of working machines
vi = 0.979474  Velocity limits]mpH
v = 6.73211
vz = 14.2658
vy =220 Velocity limit point constraintmph
vs5 = 24.0 Velocity limit path constrainfmpHh

a; = 6017611205 Accelerationdbsg]

ay = 1234834865
az = 1112463729

Maximal deceleratiarift /sec]

p1 = 106.1951102 Energy consumption

P> = 1809758408
ps = 354136479

The coefficientd; (w(t)) andc;(w(t)) are given by

bo(1) = —0.198367041802, co(l) = 0.362973834H02,
bi(1) = 0.195273805E03, c1(1) = —0.211528104F03,
bp(1) = 0.206178997E04, c2(1) = 0.748895541H03,
bs(1) = —0.768440930803, c3(1) = —0.951107646E03,
bs(1) = 0.267786920E03, cs(1) = 0571001512803,
bs(1) = —0.315962968FE02, cs(1) = —0.122130646E03,
bo(2) = —0.157716993E03, co(2) = 0.412056888E02,
bi(2) = 0.338901033804, c1(2) = 0.340804920E03,
bp(2) = 0.620205461804, c2(2) = —0.143628327E03,
bs(2) = —0.460873445804, c3(2) = 0.810831658E02,
bs(2) = 0.220775706E04, c4(2) = —0.568970307801,
bs(2) = —0.367334416803, cs5(2) = —0.219190573E01L
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