
Complementary Condensing for the Direct Multiple
Shooting Method

Christian Kirches, Hans Georg Bock, Johannes P. Schlöder, Sebastian Sager
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Summary. In this contribution we address the efficient solution of optimal control problems
of dynamic processes with many controls. Such problems typically arise from the convexifica-
tion of integer control decisions. We treat this problem class using the direct multiple shooting
method to discretize the optimal control problem. The resulting nonlinear problems are solved
using an SQP method. Concerning the solution of the quadratic subproblems we present a
factorization of the QP’s KKT system, based on a combined null–space range–space approach
exploiting the problem’s block sparse structure. We demonstrate the merit of this approach for
a vehicle control problem in which the integer gear decision is convexified.

1 Introduction

Mixed–integer optimal control problems (MIOCPs) in ordinary differential equa-
tions (ODEs) have a high potential for optimization. A typical example is the choice
of gears in transport [6, 8, 9, 14, 19].

Direct methods, in particular all–at–once approaches, [3, 2], have become the
methods of choice for most practical OCPs. The drawback of direct methods with
binary control functions is that they lead to high–dimensional vectors of binary vari-
ables. Because of the exponentially growing complexity of the problem, techniques
from mixed–integer nonlinear programming will work only for small instances [20].

In past contributions [9, 12, 15, 13] we proposed to use an outer convexification
with respect to the binary controls, which has several main advantages over stan-
dard formulations or convexifications, cf. [12, 13]. In an SQP framework for the
solution of the discretized MICOP, the outer convexification approach results in QPs
with many control parameters. Classical methods [3] for exploiting the block sparse
structure of the discretized OCP leave room for improvement.

In [16, 17], structured interior point methods for solving QP subproblems aris-
ing in SQP methods for the solution of discretized nonlinear OCPs are studied. A
family of block structured factorizations for the arising KKT systems is presented.
Extensions to tree–sparse convex programs can be found in [18].

In this contribution we present an alternative approach at solving these QPs aris-
ing from outer convexification of MIOCPs, showing that a certain factorization from
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[16] ideally lends itself to the case of many control parameters. We employ this fac-
torization for the first time inside an active–set method. Comparisons of run times
and complexity to classical condensing methods are presented.

2 Direct Multiple Shooting for Optimal Control

2.1 Optimal Control Problem Formulation

In this section we describe the direct multiple shooting method [3] as an efficient tool
for the discretization and parameterization of a broad class of OCPs. We consider the
following general class (1) of optimal control problems

min
x(·),u(·)

l(x(·),u(·)) (1a)

s.t. ẋ(t) = f (t,x(t),u(t)) ∀t ∈T (1b)
0≤ c(t,x(t),u(t)) ∀t ∈T (1c)
0 5 r(ti,x(ti)) 0≤ i≤ m (1d)

in which we strive to minimize objective function l(·) depending on the trajectory
x(·) of a dynamic process described in terms of a system f of ordinary differential
equations the time horizon T := [t0, tf] ⊂ R, and governed by a control trajectory
u(·) subject to optimization. The process trajectory x(·) and the control trajectory
u(·) shall satisfy certain inequality path constraints c on the time horizon T , as well
as (in-)equality point constraints ri on a grid of m+1 grid points on T ,

t0 < t1 < .. . < tm−1 < tm := tf, m ∈ N, m≥ 1. (2)

The direct multiple shooting method is applied to discretize the control trajectory
u(·) to make this infinite dimensional problem computationally accessible.

2.2 Direct Multiple Shooting Discretization

Control Discretization A discretization of the control trajectory u(·) on the shooting
grid (2) is introduced, using control parametersqi ∈Rnq

i and base functions bi : T ×
Rnq

i → Rnu
. Examples are piecewise constant or linear functions.

u(t) := ∑
nq

i
j=1 bi j(t,qi j), t ∈ [ti, ti+1]⊆T , 0≤ i≤ m−1. (3)

State Parameterization In addition to the control parameter vectors, we introduce
state vectors si ∈ Rnx

in all shooting nodes serving as initial values for m IVPs

ẋi(t) = f (t,xi(t),qi), xi(ti) = si t ∈ [ti, ti+1]⊆T , 0≤ i≤ m−1. (4)

This parameterization of the process trajectory x(·) will in general be discontinuous
on T . Continuity is ensured by introduction of additional matching conditions

xi(ti+1; ti,si,qi)− si+1 = 0, 0≤ i≤ m−1, (5)

where xi(ti+1; ti,si,qi) denotes the evaluation of the i-th state trajectory xi(·) at time
ti+1 depending on the start time ti, initial value si, and control parameters qi.
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Constraint Discretization The path constraints of problem (1) are enforced on the
nodes of the shooting grid (2) only. It can be observed that in general this formulation
already leads to a solution that satisfies the path constraints on the whole of T .

0 5 ri(ti,si,qi), 0≤ i≤ m−1, 0 5 rm(tm,sm). (6)

Separable Objective The objective function shall be separable with respect to the
shooting grid structure,

l(x(·),u(·)) = ∑
m
i=0 li(si,qi). (7)

In general, l(·) will be a Mayer type function or a Lagrange type integral function.
For both types, a separable formulation is easily found.

Summarizing, the discretized multiple shooting optimal control problem can be
cast as a nonlinear problem

min
w ∑

m
i=0 li(wi) (8a)

s.t. 0 = xi(ti+1; ti,wi)− si+1 0≤ i≤ m−1 (8b)
0 5 ri(wi) 0≤ i≤ m (8c)

with the vector of unknowns w := (s1,q1, . . . ,sm−1,qm−1,sm) and subvectors wi :=
(si,qi) for 0≤ i≤ m−1, and wm := (sm). The evaluation of the matching condition
constraint (8b) requires the solution of the initial value problem (4).

2.3 Block Sparse Quadratic Subproblem

For solving the highly structured NLP (8) we employ methods of SQP type, a long–
standing and highly effective method for the solution of NLPs that also allow for
much flexibility in exploiting the problem’s special structure. SQP methods itera-
tively progress towards a KKT point of the NLP by solving a linearly constrained
local quadratic model of the NLP’s Lagrangian [11]. For NLP (8) the local quadratic
model of the Lagrangian, to be solved in each step of the SQP method, reads

min
δw

1
2 ∑

m
i=0 δw′iBiδwi +g′iδwi (9a)

s.t. 0 = Xi(wi)δwi−δ si+1−hi(wi), 0≤ i≤ m−1, (9b)
0 5 Ri(wi)δwi− ri(wi), 0≤ i≤ m, (9c)

with the following notations for vector of unknowns δw and its components

δwi := (δ si,δqi) , 0≤ i≤ m−1, δwm := δ sm, (10)

reflecting the notation used in (8), and with vectors hi denoting the residuals

hi(wi) := xi(ti+1; ti,wi)− si+1. (11)
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The matrices Bi denote the node Hessians or suitable approximations, cf. [3], and
the vectors gi denotes the node gradients of the objective function, while matrices Xi,
Req

i , and Rin
i denote linearizations of the constraint functions obtained in wi,

Bi ≈
d2li(wi)

dw2
i

, gi :=
dli(wi)

dwi
, Ri :=

dri(wi)
dwi

, Xi :=
∂xi(ti+1; ti,wi)

∂wi
. (12)

The computation of the sensitivity matrices Xi requires the computation of derivatives
of the solution of IVP (4) with respect to the wi. Consistency of the derivatives is
ensured by applying the principle of internal numerical differentiation (IND) [1].

3 Block Sparse Quadratic Programming

3.1 Classical Condensing

In the classical condensing algorithm [3, 10] that works as a preprocessing step to
obtain a small dense QP from the block sparse one, the matching conditions (9b) are
used for block Gaussian elimination of the steps of the additionally introduced state
variables (δ s1, . . . ,δ sm). The resulting dense QP has nx + mnq unknowns instead
of m(nx + nq) ones, is usually densely populated, and suited for solution with any
standard QP code such as the null–space active–set codes QPOPT [7], qpOASES [4],
or BQPD [5]. As we will see in section 4, for MIOCPs with many controls parameters
(i.e. large dimension nq) resulting from the outer convexification of integer control
functions, the achieved reduction of the QP’s size is marginal, however.

3.2 The KKT System’s Block Sparse Structure

In this section we present an alternative approach at solving the KKT system of QP
(9) found in [16, 17] where it was employed inside an interior–point method. We
derive in detail the necessary elimination steps that will ultimately retain the duals
of the matching conditions only. In this sense, the approach is complementary to
the classical condensing algorithm. For optimal control problems with dimensions
nq ≥ nx, the presented approach obviously is computationally more favorable than
retaining unknowns of dimension nq. In contrast to [16, 17] we employ this factor-
ization approach inside an active–set method, and intend to further adapt it to this
case by exploitation of simple bounds and derivation of matrix updates in a further
publication.

For a given active set, the KKT system of the QP (9) to be solved for the primal
step δwi and the dual step (δλ ,δ µ) reads for 0≤ i≤ m

P′i δλi−1 +Bi(−δwi)+R′iδ µi +X ′i δλi = Biwi +gi =: gi, (13a)
Ri(−δwi) = Riwi− ri =: ri, (13b)

Xi(−δwi)+Pi+1(−δwi+1) = Xiwi +Pi+1si+1−hi =: hi. (13c)
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with multipliers δλ ∈ Rnx
for the matching conditions (9b) and δ µ ∈ Rnr

i for the
active point constraints (9c). The projection matrices Pi are defined as

Pi :=
(
−I 0

)
∈ Rnx×(nx+nq), 1≤ i≤ m, (14)

and as P0 := 0∈Rnx×(nx+nq), Pm+1 := 0∈Rnx×nx
for the first and last shooting nodes,

respectively. In the following, all matrices and vectors are assumed to comprise the
components of the active set only. To avoid the need for repeated special treatment
of the first and last shooting node throughout this paper, we introduce the following
conventions that make equation (13) hold also for the border cases i = 0 and i = m:

δλ−1 := 0 ∈ Rnx
, λ−1 := 0 ∈ Rnx , δλm := 0 ∈ Rnx

, λm := 0 ∈ Rnx
, (15a)

δwm+1 := 0 ∈ Rnx
, wm+1 := 0 ∈ Rnx

, hm := 0 ∈ Rnx
, Xm := 0 ∈ Rnx×nx

. (15b)

3.3 Hessian Projection Schur Complement factorization

Hessian Projection Step Under the assumption that the number of active point con-
straints does not exceed the number of unknowns, i.e. the active set is not degenerate,
we can perform QR factorizations of the point constraints matrices Ri,

RiQi =
(

RR
i
′ 0

)
, Qi :=

(
Yi Zi

)
. (16)

Here Qi are a unitary matrices and RR
i is upper triangular. We partition δwi into its

range space part δwY
i and its null space part δwZ

i , where the identity δwi = YiδwY
i +

ZiδwZ
i holds. We find δwY

i from the range space projection of (13b)

Ri(−δwi) =−RR
i δwY

i = ri. (17)

We transform the KKT system onto the null space of Ri by substituting YiδwY
i +

ZiδwZ
i for δwi and solving for δwZ

i . We find for the matching conditions (13c)

−XiZiδwZ
i −Pi+1ZiδwZ

i+1 = hi +XiYiδwY
i +Pi+1YiδwY

i+1 (18)

to be solved for δwZ
i once δwZ

i+1 is known. For stationarity (13a) we find

Z′iPi
′
δλi−1−Z′iBiZiδwZ

i +Z′iR
′
iµi +Z′iX

′
i δλi = Z′igi +Z′iBiYiδwY

i (19)

and Y ′i R′iδ µi =−Y ′i (Biδwi +Pi
′
δλi−1−X ′i δλi +gi). (20)

Therein, Z′iRi = 0 and Y ′i R′i = RR
i Thus (19) can be solved for δλi once δwi and δλi−1

are known, while (20) can be used to determine the point constraints multipliers δ µi.
Let thus null space projections be defined as follows:

B̃i := Z′iBiZi, g̃i := Z′igi +Z′iBiYiδwY
i , 0≤ i≤ m, (21a)

X̃i := XiZi, h̃i := hi +XiYiδwY
i +Pi+1YiδwY

i+1, 0≤ i≤ m−1, (21b)
P̃i := PiZi, 0≤ i≤ m−1. (21c)

With this notation the projection of the KKT system on the null space of the point
constraints can be read from equations (18) and (19) for 0≤ i≤ m−1 as

P̃′i δλi−1 + B̃i(−δwZ
i )+ X̃ ′i δλi = g̃i, (22a)

X̃i(−δwZ
i )+ P̃i+1(−δwZ

i+1) = h̃i. (22b)
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Schur Complement Step In (22a) the elimination of δwZ is possible using a Schur
complement step, provided that the reduced Hessians B̃i are positive definite. We find

(−δwZ
i ) = B̃−1

i (g̃i− P̃′i δλi−1− X̃ ′i δλi) (23)

depending on the knowledge of δλi. Inserting into (22b) and collecting for δλi yields

X̃iB̃−1
i P̃′i δλi−1 +(X̃iB̃−1

i X̃ ′i + P̃i+1B̃−1
i+1P̃′i+1)δλi + P̃i+1B̃−1

i+1X̃ ′i+1δλi+1 (24)

=− h̃i + X̃iB̃−1
i g̃i + P̃i+1B̃−1

i+1g̃i+1

With Cholesky factorizations B̃i = RB
i
′RB

i we define the following symbols

X̂i := X̃iRB
i
−1

, Ai := X̃iB̃−1
i X̃ ′i + P̃i+1B̃−1

i+1P̃′i+1 = X̂iX̂ ′i + P̂i+1P̂′i+1,

P̂i := P̃iRB
i
−1

, Bi := X̃iB̃−1
i P̃′i = X̂iP̂′i , (25)

ĝ := RB
i
−T

g̃i, ai :=−h̃i + X̃iB̃−1
i g̃i + P̃i+1B̃−1

i+1g̃i+1 =−h̃i + X̂iĝi + P̂i+1ĝi+1.

Equation (24) may then be written in terms of these values for 0≤ i≤ m−1 as

Biδλi−1 +Aiδλi +B′i+1δλi+1 = ai. (26)

Solving the Block Tridiagonal System In the symmetric positive definite banded sys-
tem (26), only the matching condition duals δλi ∈Rnx

remain as unknowns. In clas-
sical condensing, exactly these matching conditions were used for elimination of a
part of the primal unknowns. System (26) can be solved for δλ by means of a block
tridiagonal Cholesky factorization and two backsolves.

Recovering the Block Sparse QP’s Solution Once δλ is known, the step δwZ can
be recovered using equation (23). The full primal step δw is then obtained from
δw = Y δwY +ZδwZ . The constraint multipliers step δ µ is recovered using (20).

3.4 Computational Complexity

In the left part of table 1 a detailed list of the linear algebra operations required
to carry out the individual steps of the complementary condensing method can be
found. The number of floating point operations (FLOPs) required per shooting node,
depending on the system’s dimensions n = nx + nq and nr

i , is given in the right part
of table 1. The numbers ny and nz with ny +nz = nr

i denote the range–space and null-
space dimension in (16), respectively. The proposed method’s runtime complexity is
O(m), in sharp contrast to the classical condensing method’s O(m2), as the shooting
grid length m does not appear explicitly in table 1.

4 Example: A Vehicle Mixed–Integer Optimal Control Problem

In this section we formulate a vehicle control problem as a test bed for the presented
approach to solving the block sparse QPs.
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Table 1. Left: Number of factorizations (dc), backsolves (bs), multiplications (*), and addi-
tions (+) required per shooting node. Right: Number of FLOPs required per shooting node.

Matrix Vector
Action dc bs * + bs * +
Decompose Ri 1 – – –
Solve for δwY , Y δwY 1 1 –
Build B̃i – – 2 –
Build X̃i, P̃i – – 2 –
Build g̃i, h̃i – 4 3
Decompose B̃i 1 – – –
Build X̂i, P̂i – 1 1 –
Build Ai, Bi – – 3 1
Build ĝi, ai – 3 2
Decompose (26) 1 – – –
Solve for δλi 2 – –
Solve for δwZ

i , ZδwZ
i 2 3 2

Solve for δ µi 1 4 3

Action Floating point operations

Decompose Ri nr
i
2(n− 1

3 nr
i)

Solve for Y δwY nr
in

y +nyn
Build B̃i nz2n+nzn2

Build X̃i, P̃i 2nxnzn
Build g̃i, h̃i 2nxn+nzn+n2 +2nx +n

Decompose B̃i
1
3 nz3

Build X̂i, P̂i 2nxnz2

Build Ai, Bi 3nx2nz +nx2

Build ĝi, ai nz2 + 2nxnz +2nx

Decompose (26) 4
3 nx3

Solve for δλi 2 ·2nx2

Solve for ZδwZ
i nz2 +2nxnz +nzn+2nz

Solve for δ µi nr
iny +2nxn+nyn+n2 +3n

Exemplary Vehicle Mixed–Integer Optimal Control Problem We consider a simple
dynamic model of a car driving with velocity v on a straight lane with varying slope
γ . The optimizer excerts control over the engine and brake torque rates of change
Reng and Rbrk, and the gear choice y. The state dimension is nx = 3, and we consider
different numbers of available gears to scale the problems control dimension nq ≥ 3.

v̇(t) =
1
m

(
iA
r

(
iT(y)ηT(y)Meng−Mbrk− iT(y)Mfric

)
−Mair−Mroad

)
(27a)

Ṁeng(t) = Racc(t), Ṁbrk(t) = Rbrk(t) (27b)

Herein m is the vehicle’s mass, iA and iT(y) are the rear axle and gearbox transmis-
sion ratios. The amount of engine friction is denoted by Mfric, a nonlinear function
of the engine speed. By Mair := 1

2 cwAρairv2(t) we denote air resistance, cw being
the aerodynamic shape coefficient, A the effective flow surface, and ρair the air den-
sity. Finally Mroad = mg(sinγ(t)+ fr cosγ(t)) accounts for downhill force and tyre
friction, g being the gravity constant and fr the coefficient of rolling friction.

On a predefined track with varying slope, we minimize a weighted sum of travel
time and fuel consumption, subject to velocity and engine speed constraints making
the gear choice nontrivial.

Run Time Complexity Clearly from table 2 it can be seen that the classical condens-
ing algorithm will be suitable for problems with limited grid lengths m and with
considerably less controls than states, i.e. nq� nx, which is exactly contrary to the
situation encountered when applying outer convexification to MIOCPs. Nonetheless,
using this approach we could solve several challenging mixed–integer optimal con-
trol problems to optimality with little computational effort, as reported in [9, 12, 14].
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Table 2. Run time complexity of classical condensing and a dense active–set QP solver.

Action Run time complexity
Computing the Hessian B O(m2n3)
Computing the Constraints X , R O(m2n3)
Dense QP solver, startup O((mnq +nx)3)
Dense QP solver, per iteration O((mnq +nx)2)
Recovering δv O(mnx2)

Sparsity In table 3 the dimensions and amount of sparsity present in the Hessian
and constraints matrices are given for the exemplary problem for 6 and 16 available
gears. A grid length of m = 20 was used. As can be seen in the left part, the QP (9)
is only sparsely populated for this example problem, with the number of nonzero
elements (nnz) never exceeding 3 percent. After classical condensing, sparsity has
been lost as expected. Had the overall dimension of the QP reduced considerably, as
is the case for optimal control problems with nx� nq, that would be of no concern.
For our MIOCP with outer convexification, however, the results shown in tables 2
and 3 indicate a considerable run time increase for larger m or nq is to be expected.

Table 3. Dimensions and number of nonzero elements (nnz) of the block structured QP (9)
and the condensed QP for the exemplary vehicle control problem. Here m = 20, nx = 3.

Block sparse Condensed Dense QP solver
nq Matrix Size nnz Size nnz nnz seen
2+6 Hessian 223×223 1,419 163×163 13,366 13,366 (27%)

Constraints 438×223 1,535 378×163 13,591 61,614 (63%)
2+16 Hessian 423×423 6,623 363×363 66,066 66,066 (37%)

Constraints 858×423 3,731 798×363 131,769 289,674 (80%)

Implementation Run Times The classical condensing algorithm as well as the QP
solver QPOPT [7] are implemented in ANSI C and translated using gcc 4.3.3 with
optimization level -O3. The linear algebra package ATLAS was used for BLAS op-
erations. The proposed complementary condensing algorithm was preliminarily im-
plemented in MATLAB c© (Release 2008b). All run times have been obtained on a
Pentium 4 machine at 3 GHz under SuSE Linux 10.3. The resulting run times shown
in table 4 support our conclusions drawn from table 3. For m = 30 as well as for
m = 20 and nq ≥ 14 the MATLAB code of our proposed methods beats an optimized
C implementation of classical condensing plus QPOPT. In addition, we could solve
four instances with m = 30 or nq = 18 that could not be solved before due to active
set cycling of the QPOPT solver.



Complementary Condensing for the Direct Multiple Shooting Method 9

Table 4. Average run time per iteration of the QP solver QPOPT on the condensed QPs
(left, condensing run times excluded), and of a preliminary MATLAB code running proposed
method on the block sparse QPs (right). “–” indicates cycling of the active set.

m
nq 10 20 30
2+6 6 ms 31 ms 103 ms
2+8 11 ms 58 ms 467 ms
2+12 18 ms 226 ms –
2+16 – – –

m
nq 10 20 30
2+6 40 ms 65 ms 100 ms
2+8 42 ms 75 ms 110 ms
2+12 50 ms 95 ms 140 ms
2+16 60 ms 115 ms 170 ms

5 Summary and Future Work

Summarizing the results presented in tables 3 and 4, we have seen that for OCPs with
larger dimension nq, the classical O(m2n3) condensing algorithm is unable to signif-
icantly reduce the QPs size. Worse yet, the condensed QP is densely populated. As a
consequence, the dense QP solver’s performance, exemplarily tested using QPOPT,
is worse than what can be achieved by a suitable exploitation of the sparse block
structure for the case nq ≥ nx.

We presented an alternative O(mn3) factorization of the block sparse KKT sys-
tem due to [16, 17], named complementary condensing in the context of MIOCPs.
By theoretical analysis as well as by preliminary implementation we provided evi-
dence that the proposed approach is able to challenge the run times of the classical
condensing algorithm.

The complementary condensing approach for solving the QP’s KKT system is
embedded in an active set loop. In our preliminary implementation, a new factoriza-
tion of the KKT system is computed in O(mn3) time in every iteration of the active
set loop. Nonetheless, the achieved computation times are attractive for larger val-
ues of m or nq. To improve the efficiency of this active set method further, several
issues have to be addressed. Exploiting simple bounds on the unknowns will reduce
the size of the matrices Bi, Ri, and Xi involved. For dense null–space and range–
space methods it is common knowledge that certain factorizations can be updated
after an active set change in O(n2) time. Such techniques would essentially relieve
the active–set loop from all matrix-only operations, yielding O(mn2) active set it-
erations with only an initial factorization in O(mn3) time necessary. A forthcoming
publication shall investigate into this topic.
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