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Abstract. We are interested in the optimal control of dynamic processes that can be described
by Differential Algebraic Equations (DAEs) and that include integer restrictions on some or all of
the control functions. We assume the DAE system to be of index 1. In our study we consider
necessary conditions of optimality for this specific case of a hybrid system and results on lower
bounds that are important in an algorithmic setting. Both results generalize previous work for the
case of Ordinary Differential Equations (ODE). Interestingly, the proofs for both analytical results are
based on constructive elements to obtain integer controls from reformulations or relaxations to purely
continuous control functions. These constructive elements can also be used for an efficient numerical
calculation of optimal solutions. We illustrate the theoretical results by means of a mixed–integer
nonlinear optimal control benchmark problem with algebraic variables.
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1. Introduction. Technical or economical processes often involve discrete con-
trol variables, which are used to model finitely many decisions, discrete resources, or
switching structures like gear shifts in a car or operating modes of a device. This
leads to optimal control problems with non-convex and partly discrete control set U .
More specifically, some of the control variables may still assume any real value within
a given convex set with non-empty interior, those are called continuous-valued control
variables in the sequel, while other control variables are restricted to a finite set of
values, those are called discrete control variables in the sequel.

An optimal control problem involving continuous-valued and discrete control vari-
ables is called mixed-integer optimal control problem (MIOCP). Mixed-integer optimal
control is a field of increasing importance and practical applications can be found in
[15, 11, 13, 34, 19]. For a web-site of further benchmark problems please refer to [27]
and the corresponding paper [30].

An approach to solve mixed-integer optimal control problems is by exploiting
necessary optimality conditions. A proof for index-one DAEs will be provided in
Section 3. The proof exploits an idea of Dubovitskii and Milyutin, see [8, 7], [14,
p. 95], [16, p. 148], who used a time transformation to transform the mixed-integer
optimal control problem into an equivalent optimal control problem without discrete
control variables. Necessary conditions are then obtained by applying suitable local
minimum principles to the transformed problem. The result are necessary conditions
in terms of global minimum principles.

A global minimum principle for disjoint control sets and (noncontinuous) ordi-
nary differential equations (ODEs) has been formulated and solved numerically via
the newly developed method of Competing Hamiltonians in the work of Bock and
Longman, [2, 3, 20]. To our knowledge this was the first time that a global minimum
principle has been applied to solve a MIOCP.

Global minimum principles for DAE optimal control problems can be found in
[26] for Hessenberg DAE optimal control problems, in [5] for semi-explicit index one
DAEs, in [6] for implicit control systems, in [1] for quasilinear DAEs, in [21] for
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nonlinear DAEs of arbitrary index, and in [36] for switched ODEs.
The global minimum principle can be exploited numerically using an indirect

first optimize, then discretize approach, but a very good initial guess of the problem’s
switching structure is needed. Such an initial guess is often not available for practical
applications.

The time transformation of Dubovitskii and Milyutin will be used in Section 3
as a theoretical tool to prove the global minimum principle. Interestingly, the same
variable time transformation can be used numerically to solve mixed-integer optimal
control problems, see [23, 24, 37, 34, 13], time optimal control problems, see [23],
and singular optimal control problems, see [35]. A method for solving nonlinear
mixed-integer programming problems based on a suitable formulation of an equivalent
optimal control problem was introduced in [22].

An alternative approach based on a partial outer convexification, relaxation, and
control grid adaptivity has been proposed in [28, 33, 31]. Extensions include the
explicit treatment of combinatorial [32] and vanishing constraints [18]. A crucial
ingredient are tight lower bounds. An extension of an important result to the DAE
case is deduced in Section 4. Again, parts of the proof are constructive in the sense
that they provide discrete control values.

We illustrate the global minimum principle for MIOCPs in DAE in Section 5 and
close with a summary.

Throughout, Ln∞(I) denotes the Banach space of essentially bounded n-vector
functions on the compact interval I ⊂ R and Wn

1,∞(I) denotes the Banach space of
absolutely continuous n-vector functions on the compact interval I with essentially
bounded first derivative.

2. Time Transformation. In this section we distinguish between continuous-
valued controls u with values in the closed convex set U ⊆ Rnu with int(U) 6= 0 and
discrete controls v with values in the discrete finite set

V := {v1, . . . , vnω} vi ∈ Rnv , nω ∈ N. (2.1)

We investigate
Problem 2.1 (Mixed-Integer Optimal Control Problem (MIOCP)). Let I :=

[t0, tf] be a non-empty compact time interval with t0 < tf fixed. Let

ϕ : Rnx × Rnx −→ R,
f : Rnx × Rny × Rnu × Rnv −→ Rnx ,
g : Rnx × Rny × Rnu × Rnv −→ Rny ,
s : Rnx −→ Rnx ,
ψ : Rnx × Rnx −→ Rnψ

be sufficiently smooth functions, U ⊆ Rnu closed and convex with non-empty interior,
and V as in (2.1).

Minimize the objective function

ϕ(x(t0), x(tf))

with respect to x ∈Wnx
1,∞(I), y ∈ Lny∞ (I), u ∈ Lnu∞ (I), v ∈ Lnv∞ (I) subject to the

semi-explicit DAE

ẋ(t) = f(x(t), y(t), u(t), v(t)) a.e. in I,
0Rny = g(x(t), y(t), u(t), v(t)) a.e. in I,
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the state constraint

s(x(t)) ≤ 0Rns ,

the boundary condition

ψ(x(t0), x(tf)) = 0Rnψ ,

and the set constraints

u(t) ∈ U a.e. in I,
v(t) ∈ V a.e. in I.

The variable time transformation method is based on a discretization. For sim-
plicity only equally spaced grids are discussed. Let the major grid

GN := {ti = t0 + ih | i = 0, . . . , N}, h =
tf − t0
N

with N ∈ N intervals be given. Each major grid interval is subdivided into nω equally
spaced subintervals, where nω denotes the number of values in the discrete control set
V in (2.1). This leads to the minor grid

GN,nω := {τi,j = ti + j
h

nω
| j = 0, . . . , nω, i = 0, . . . , N − 1}.

On the minor grid define the fixed and piecewise constant function

vGN,nω (τ) := vj for τ ∈ [τi,j−1, τi,j), i = 0, . . . , N − 1, j = 1, . . . , nω. (2.2)

Consider the time transformation

t(τ) := t0 +

∫ τ

t0

w(r)dr, τ ∈ I,

with ∫ tf

t0

w(r)dr = tf − t0 and w(τ) ≥ 0 for almost every τ ∈ I. (2.3)

The inverse mapping is defined by

τ(t) := inf{τ ∈ I | t(τ) = t}. (2.4)

The time transformation controls the length of the intervals [t(τi,j), t(τi,j+1)] by proper
choice of w according to ∫ τi,j+1

τi,j

w(τ)dτ = t(τi,j+1)− t(τi,j).

Note that the time transformation maps I onto itself but changes the speed of running
through this interval. In particular, it holds

dt

dτ
(τ) = w(τ) for τ ∈ I,
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and the interval [t(τi,j), t(τi,j+1)] shrinks to the point {t(τi,j)} if

w(τ) = 0 in [τi,j , τi,j+1).

State constraints s(x(t)) ≤ 0Rns will be evaluated at major grid points ti, i =
0, . . . , N , only, and hence we impose the additional constraints∫ ti+1

ti

w(τ)dτ = ti+1 − ti = h, i = 0, . . . , N − 1, (2.5)

which ensure that the transformed time points ti = t(ti), i = 1, . . . , N , are fixed
points. Without these constraints, the time transformation tends to optimize the
points t(ti) such that constraints can be fulfilled easily.

Joining the function vGN,nω from (2.2) and any w satisfying the conditions (2.3)
and (2.5), yields a feasible discrete control v(t) ∈ V defined by

v(t) := vGN,nω (τ(t)), t ∈ [t0, tf]

see Figure 2.1. Notice, that minor intervals with w(τ) = 0 do not contribute to v(t).

vGN,nω (τ): w(τ):

Corresponding control v(t) = vGN,nω (τ(t)):

ti−1 ti ti+1t(τi,1)
= t(τi,2)

t(τi+1,1)
= t(τi+1,2)

Fig. 2.1. Back-transformation v (bottom) of variable time transformation for given w and fixed
vGN,nω (top).

Vice versa, every piecewise constant discrete control v on the major grid GN can
be described by vGN,nω and some feasible w.

The preference of values given by the definition of the fixed function vGN,nω on
the minor grid GN,nω is arbitrary and any other order would be feasible as well. This
is not essential, as any discrete control with finitely many jumps can be approximated
arbitrarily close on the major grid for h sufficiently small.

Summarizing, the time transformation leads to the following partly discretized
optimal control problem:

Problem 2.2.

Minimize

ϕ(x(t0), x(tf))
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with respect to x ∈Wnx
1,∞(I), y ∈ Lny∞ (I), u ∈ Lnu∞ (I), w ∈ L∞(I) subject to

ẋ(τ) = w(τ)f(x(τ), y(τ), u(τ), vGN,nω (τ)) a.e. in I,
0Rny = g(x(τ), y(τ), u(τ), vGN,nω (τ)) a.e. in I,

s(x(τ)) ≤ 0Rns in I,
ψ(x(t0), x(tf)) = 0Rnψ ,

u(τ) ∈ U a.e. in I,
w ∈ W.

Herein, W is defined by

W :=

w ∈ L∞(I)

∣∣∣∣∣∣∣∣
w(τ) ≥ 0,
w piecewise constant on GN,nω ,∫ ti+1

ti

w(τ)dτ = ti+1 − ti, i = 0, . . . , N

 .

Problem 2.2 has only continuous-valued controls and can be solved by a direct
discretization method. Application of the inverse time transformation

x(t) := x̂(τ(t)), y(t) := ŷ(τ(t)), u(t) := û(τ(t)), v(t) := vGN,nω (τ(t))

with τ(t) according to (2.4) to an optimal solution (x̂, ŷ, û, ŵ) of Problem 2.2 yields
an approximate solution of Problem 2.1.

3. Necessary conditions for optimality. We exploit the time transformation
in Section 2 in order to prove a global minimum principle. To this end we consider the
following autonomous optimal control problem on a fixed time interval [t0, tf] subject
to an index one DAE with general set constraints for the control:

Problem 3.1 (Optimal Control Problem). Let I := [t0, tf] be a non-empty
compact time interval with t0 < tf fixed. Let

ϕ : Rnx × Rnx −→ R,
f0 : Rnx × Rny × Rnu −→ R,
f : Rnx × Rny × Rnu −→ Rnx ,
g : Rnx × Rny × Rnu −→ Rny ,
ψ : Rnx × Rnx −→ Rnψ

be sufficiently smooth functions and U ⊆ Rnu a non-empty set.

Minimize the objective function

ϕ(x(t0), x(tf)) +

∫ tf

t0

f0(x(t), y(t), u(t))dt

with respect to x ∈Wnx
1,∞(I), y ∈ Lny∞ (I), u ∈ Lnu∞ (I), subject to the DAE

ẋ(t) = f(x(t), y(t), u(t)) a.e. in I,
0Rny = g(x(t), y(t), u(t)) a.e. in I,

the boundary condition

ψ(x(t0), x(tf)) = 0Rnψ ,
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and the set constraint

u(t) ∈ U a.e. in I.

The set U in Problem 3.1 is supposed to be an arbitrary set. We particularly
allow that U may only contain finitely many vectors so that Problem 3.1 contains
problems with discrete controls.

In proving necessary conditions we cannot exploit a special structure of U as it
was done in the local minimum principles in [12, 10, p. 95] by assuming that the set
was convex with non-empty interior. Hence, these necessary optimality conditions do
not hold for Problem 3.1, but they are not worthless. A special time transformation
similar to the one in Section 2 is used to transform Problem 3.1 into an equivalent
problem with a nice convex control set with non-empty interior for which the local
minimum principles are valid. This time transformation is due to Dubovitskii and
Milyutin and the following proof techniques in the case of ODEs can be found in [16,
p. 148] and [14, p. 95]. The results are extended to the DAE setting in Problem 3.1.
To this end let

H(x, y, u, λf , λg, `0) := `0f0(x, y, u) + λ>f f(x, y, u) + λ>g g(x, y, u)

denote the Hamilton function (also called Hamiltonian) for Problem 3.1, let

H̃(x, y, u, λf , `0) := `0f0(x, y, u) + λ>f f(x, y, u)

denote the reduced Hamilton function, and let (x̂, ŷ, û) be a solution of Problem 3.1.
Moreover, let the DAE have index one:

Assumption 3.2. Let the matrix g′y be uniformly non-singular in the solution

(x̂, ŷ, û) and let the inverse matrix
(
g′y
)−1

be essentially bounded.
As in Section 2 we use the time transformation

t(τ) := t0 +

∫ τ

0

w(r)dr, t(0) = t0, t(1) = tf, w(τ) ≥ 0, (3.1)

for τ ∈ [0, 1]. For any function w ∈ L∞([0, 1]) satisfying (3.1) define

ũ(τ) :=

{
û(t(τ)), for τ ∈ ∆w,
arbitrary, for τ ∈ [0, 1] \∆w,

x̃(τ) := x̂(t(τ)),

ỹ(τ) :=

{
ŷ(t(τ)), for τ ∈ ∆w,
suitable, for τ ∈ [0, 1] \∆w,

where

∆w := {τ ∈ [0, 1] | w(τ) > 0}.

Suitable values for ỹ on [0, 1] \∆w will be provided later.
The functions x̃, ỹ, ũ are feasible for the following auxiliary DAE optimal control

problem in which w is considered a control and ũ a fixed function:
Problem 3.3 (Auxiliary DAE Optimal Control Problem).

Minimize

ϕ(x(0), x(1)) +

∫ 1

0

w(τ)f0(x(τ), y(τ), ũ(τ))dτ
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with respect to x ∈Wnx
1,∞([0, 1]), y ∈ Lny∞ ([0, 1]), t ∈W1,∞([0, 1]), w ∈ L∞([0, 1])

subject to the constraints

ẋ(τ) = w(τ)f(x(τ), y(τ), ũ(τ)) a.e. in [0, 1],

0Rny = g(x(τ), y(τ), ũ(τ)) a.e. in [0, 1],

ṫ(τ) = w(τ) a.e. in [0, 1],

0Rnψ = ψ(x(0), x(1)),

t(0) = t0,

t(1) = tf,

w(τ) ≥ 0 a.e. in [0, 1]!

Note that the control w in Problem 3.3 is only restricted by the control constraint
w(τ) ≥ 0. Consequently, the necessary optimality conditions in [10] hold for Prob-
lem 3.3. A formal proof similarly to [16, pp. 149-156] shows that x̃ and ỹ are actually
optimal for Problem 3.3 for any feasible control w.

Remark 3.4.
(a) Note: If w ≡ 0 on some interval, then on this interval

ẋ(τ) ≡ 0 =⇒ x(τ) ≡ const,

ṫ(τ) ≡ 0 =⇒ t(τ) ≡ const.

(b) The necessary conditions in [10] require the functions

f̃0(τ, x, y, w) := wf0(x, y, ũ(τ)),

f̃(τ, x, y, w) := wf(x, y, ũ(τ)),

g̃(τ, x, y) := g(x, y, ũ(τ))

to be continuous with respect to the component τ and continuously differen-
tiable with respect to x, y, and w. This assumption is not satisfied in general
for Problem 3.3 as ũ is not continuous in general, but it can be relaxed ap-
propriately for measurable w.r.t. τ functions.

First order necessary optimality conditions for Problem 3.3 with the augmented
Hamilton function

H̄(τ, x, y, t, w, λf , λg, λt, η, `0)

:= w
(
`0f0(x, y, ũ(τ)) + λ>f f(x, y, ũ(τ)) + λt − η

)
+ λ>g g(x, y, ũ(τ))

= w
(
H̃(x, y, ũ(τ), λf , `0) + λt − η

)
+ λ>g g(x, y, ũ(τ))

read as follows: There exist multipliers ˜̀
0 ∈ R, λ̃f ∈ Wnx

1,∞([0, 1]), λ̃g ∈ L
ny
∞ ([0, 1]),

λ̃t ∈W1,∞([0, 1]), η̃ ∈ L∞([0, 1]), and σ̃ ∈ Rnψ , not all zero, with

(a) ˜̀
0 ≥ 0

(b) In [0, 1] we have the adjoint equation

d

dτ
λ̃f (τ) = −w(τ)H̃′x(x̃(τ), ỹ(τ), ũ(τ), λ̃f (τ), ˜̀

0)> − g′x(x̃(τ), ỹ(τ), ũ(τ))>λ̃g(τ),

0Rny = w(τ)H̃′y(x̃(τ), ỹ(τ), ũ(τ), λ̃f (τ), ˜̀
0)> + g′y(x̃(τ), ỹ(τ), ũ(τ))>λ̃g(τ),

d

dτ
λ̃t(τ) = 0.
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In particular, λ̃t is constant.
(c) Transversality conditions:

λ̃f (0)> = −
(

˜̀
0ϕ
′
x0

+ σ̃>ψ′x0

)
, λ̃f (1)> = ˜̀

0ϕ
′
xf

+ σ̃>ψ′xf .

(d) Almost everywhere in [0, 1] it holds

0 = H̃(x̃(τ), ỹ(τ), ũ(τ), λ̃f (τ), ˜̀
0) + λ̃t(τ)− η̃(τ).

Owing to the complementarity condition in (e) we thus have

H̃(x̃(τ), ỹ(τ), ũ(τ), λ̃f (τ), ˜̀
0) + λ̃t(τ)

{
= 0, if τ ∈ ∆w,
≥ 0, if τ 6∈ ∆w.

(e) Almost everywhere in [0, 1] it holds

η̃(τ)w(τ) = 0 and η̃(t) ≥ 0.

Using the inverse time transformation defined in (2.4) we may define `0 := ˜̀
0, σ := σ̃,

λf (t) := λ̃f (τ(t)), λt(t) := λ̃t(τ(t)), and in addition

λg(t)
> := −H̃′y(x̂(t), ŷ(t), û(t), λf (t), `0)

(
g′y(x̂(t), ŷ(t), û(t))

)−1
.

Then, for almost every τ ∈ ∆w it holds

λf (t(τ)) = λ̃f (τ), λt(t(τ)) = λ̃t(τ),

and λf and λg satisfy the adjoint equation

λ̇f (t) = −H′x(x̂(t), ŷ(t), û(t), λf (t), λg(t), `0)>

0Rny = H′y(x̂(t), ŷ(t), û(t), λf (t), λg(t), `0)>,

and the transversality conditions

λf (t0)> = −
(
`0ϕ
′
x0

+ σ>ψ′x0

)
, λf (tf)

> = `0ϕ
′
xf

+ σ>ψ′xf .

The above conditions hold for every w. Now, we will choose w in a special way in
order to exploit this degree of freedom. The following construction follows [16, p.
157], compare Figure 3.1, and was exploited numerically in Section 2.

Let w(τ) vanish on the intervals Ik := (τk, τk + βk], k = 1, 2, . . ., which are to
be constructed such that the image of

⋃
k Ik under the mapping τ 7→ t(τ) is dense in

I. To this end let {ξ1, ξ2, . . .} be a countable dense subset of I. Choose βk > 0 with∑
k βk = 1

2 and let

τk :=
ξk − t0

2(tf − t0)
+

∑
j:ξj<ξk

βj .

Then, the intervals Ik = (τk, τk + βk] are pairwise disjoint. Define

w(τ) :=

{
0, if τ ∈

⋃
k Ik,

2(tf − t0), if τ 6∈
⋃
k Ik.
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t(τ)

tf

t0

τ

τ

ξ`

ξk

Ik I`
τk τ`τk + βk τ` + β`

u3

u2

u1

Ik I`
τk τ`τk + βk τ` + β`

Fig. 3.1. Construction principle of w.

We will show that t(τ) = ξk for any τ ∈ Ik. As {ξk} was chosen to be dense in I, so
is the image of

⋃
k Ik under the mapping τ 7→ t(τ).

We note that τj < τk if and only if ξj < ξk and t(τ) = t(τk) for all τ ∈ Ik. For
τ ∈ Ik we find

t(τ) = t0 +

∫ τ

0

w(ξ)dξ

= t0 + 2(tf − t0)

τk − ∑
j:τj<τk

βj


= t0 + 2(tf − t0)

τk − ∑
j:ξj<ξk

βj


= t0 + (tf − t0)

ξk − t0
tf − t0

= ξk.

Now let
(i) Ik =

⋃
j Ikj , where Ikj are nonempty closed from the right intervals;

(ii) {u1, u2, . . .} be a countable dense subset of U ;
(iii) ũ(τ) := uj if τ ∈ Ikj ;
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(iv) ỹ(τ) := yj with 0Rny = g(x̃(τ), yj , uj) if τ ∈ Ikj ;
According to (d) we have for almost every τ ∈

⋃
k Ik the inequality

H̃(x̃(τ), ỹ(τ), ũ(τ), λ̃f (τ), ˜̀
0) + λ̃t(τ) ≥ 0.

As every interval Ikj has a positive measure, there exists τ ∈ Ikj with t(τ) = ξk such
that

H̃(x̃(τ), ỹ(τ), ũ(τ), λ̃f (τ), ˜̀
0) + λ̃t(τ)

= H̃(x̂(ξk), yj , uj , λf (ξk), `0) + λt(ξk) ≥ 0.

Since the set {ξ1, ξ2, . . .} is dense in I, {u1, u2, . . .} is dense in U , and

h(t, y, u) := H̃(x̂(t), y, u, λf (t), `0)

is continuous, it follows for almost all t ∈ I that

H̃(x̂(t), y, u, λf (t), `0) + λt(t) ≥ 0

for all

(u, y) ∈M(x̂(t)) := {(u, y) ∈ U × Rny | 0Rny = g(x̂(t), y, u)}.

Note, that H ≡ H̃ whenever (u, y) ∈M(x̂(t)).
On the other hand, according to (d) for almost every τ ∈ ∆w and thus for almost

every t ∈ I it holds

H̃(x̂(t), ŷ(t), û(t), λf (t), `0) + λt(t) = 0.

Putting both relations together yields in the minimality of the reduced Hamilton
function for almost every t ∈ I:

H̃(x̂(t), ŷ(t), û(t), λf (t), `0)

≤ H̃(x̂(t), y, u, λf (t), `0) for all (u, y) ∈M(x̂(t)).

Moreover, since û is essentially bounded and h(t, y, u) is continuous, it follows

H̃(x̂(t), ŷ(t), û(t), λf (t), `0) + λt(t) ≡ 0

almost everywhere. Since λt is continuous and constant according to (b), so is H̃ as
a function of time. Exploiting H̃ ≡ H for every (u, y) ∈M(x̂(t)) we have thus proved
the following global minimum principle:

Theorem 3.5 (Global Minimum Principle). Let the following assumptions be
fulfilled for the optimal control problem 3.1.

(i) Let the functions ϕ, f0, f, g, ψ be continuous with respect to all arguments and
continuously differentiable with respect to x and y.

(ii) Let (x̂, ŷ, û) be a strong local minimum of the optimal control problem 3.1.
(iii) Let Assumption 3.2 be valid.

Then there exist multipliers `0 ∈ R, λf ∈ Wnx
1,∞(I), λg ∈ L

ny
∞ (I), σ ∈ Rnψ such that

the following conditions are satisfied:
(a) `0 ≥ 0, (`0, σ, λf , λg) 6= Θ,
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(b) Adjoint equations: Almost everywhere in I it holds

λ̇f (t) = −H′x(x̂(t), ŷ(t), û(t), λf (t), λg(t), `0)>,

0Rny = H′y(x̂(t), ŷ(t), û(t), λf (t), λg(t), `0)>.

(c) Transversality conditions:

λf (t0)> = −
(
`0ϕ
′
x0

(x̂(t0), x̂(tf)) + σ>ψ′x0
(x̂(t0), x̂(tf))

)
,

λf (tf)
> = `0ϕ

′
xf

(x̂(t0), x̂(tf)) + σ>ψ′xf (x̂(t0), x̂(tf)).

(d) Optimality condition: Almost everywhere in I it holds

H(x̂(t), ŷ(t), û(t), λf (t), λg(t), `0) ≤ H(x̂(t), y, u, λf (t), λg(t), `0)

for all (u, y) ∈M(x̂(t)), where

M(x) := {(u, y) ∈ U × Rny | g(x, y, u) = 0Rny }.

(e) The Hamilton function is constant w.r.t. time:

H(x̂(t), ŷ(t), û(t), λf (t), λg(t), `0) ≡ const.

Herein, (x̂, ŷ, û) is called strong local minimum, if (x̂, ŷ, û) minimizes the objective
function among all feasible functions with ‖x− x̂‖∞ < ε for some ε > 0.

Example 3.6 ([26, p. 620]). Consider the following optimal control problem:

Minimize ∫ 1

0

x(t)2 + α(y(t)− u(t))2dt

subject to the constraints

ẋ(t) = y(t)− u(t), x(0) = 0,

0 = y(t)− u(t),

u(t) ∈ U := [−1, 1].

Apparently, every feasible control is optimal!
Hamilton function:

H(x, y, u, λf , λg, `0) = `0x
2 + α(y − u)2 + λf (y − u) + λg(y − u)

Minimization of H with respect to

(u, y) ∈M = {(u, y) ∈ U × R | y − u = 0}

yields that every u satisfies the global minimum principle.
Please note that the simultaneous coupling between u and y by means of the set M

is important in the global minimum principle. A wrong condition would be obtained,
if the Hamilton function was firstly minimized with respect to u (assuming y to be
fixed) and the consistent algebraic variable y corresponding to the minimizing u was
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determined afterwards. For instance consider the case α = −1 and û ≡ 0. The
algebraic equation, the adjoint equation and the transversality condition yield

λ̇f (t) = −`0x̂(t) = 0, λf (1) = 0 =⇒ λf (t) ≡ 0.

Moreover, g(x̂(t), ŷ(t), û(t)) ≡ 0 and hence

H(x̂, ŷ, û, λf , λg, `0) = α(ŷ − û)2 = −(ŷ − û)2.

Minimizing H with respect to u ∈ [−1, 1] yields either û = +1 or û = −1 depending
on ŷ ∈ [−1, 1]. This contradicts û ≡ 0.

The global minimum principle allows to prove additional properties of the Hamil-
ton function in the case of a free final time. In this case, the Hamilton function
vanishes almost everywhere.

Theorem 3.7. Let the assumptions of Theorem 3.5 hold and let the final time
in Problem 3.1 be free. Then, H vanishes almost everywhere and

H(x̂(tf), ŷ(tf), û(tf), λf (tf), λg(tf), `0) = 0.

Proof. We use standard transformation techniques to transform the problem to an
equivalent problem on a fixed time interval:

Minimize

ϕ(x̄(0), x̄(1)) +

∫ 1

0

(tf(τ)− t0)f0(x̄(τ), ȳ(τ), ū(τ))dτ

subject to the constraints

d

dτ
x̄(τ) = (tf(τ)− t0)f(x̄(τ), ȳ(τ), ū(τ)) a.e. in [0, 1],

0Rny = (tf(τ)− t0)g(x̄(τ), ȳ(τ), ū(τ)) a.e. in [0, 1],

d

dτ
tf(τ) = 0 in [0, 1],

ψ(x̄(0), x̄(1)) = 0nψ ,

ū(τ) ∈ U a.e. in [0, 1].

The Hamilton function for the transformed problem reads as

H̄(x̄, ȳ, tf, ū, λ̄f , λ̄g, λ̄t, ¯̀
0) = (tf − t0)H(x̄, ȳ, ū, λ̄f , λ̄g, ¯̀

0),

where H denotes the Hamilton function of the original problem. Theorem 3.5 yields
the following adjoint equation and transversality conditions for the adjoint λ̄t:

d

dτ
λ̄t(τ) = −H̄′tf [τ ] = −H[τ ], λ̄t(0) = λ̄t(1) = 0. (3.2)

According to part (e) of Theorem 3.5 the Hamilton function H̄ is constant almost
everywhere and thusH is constant almost everywhere as well since tf is constant. From
(3.2) it followsH[τ ] = 0 almost everywhere and particularly after back-transformation
H(x̂(tf), ŷ(tf), û(tf), λf (tf), λg(tf), `0) = 0.
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4. On the relation between relaxed and integer solutions. The necessary
conditions of optimality that have been derived in the previous section are important,
as they can be used from an algorithmical point of view and to gain analytical in-
sight in solution structures. In practice, however, often first discretize, then optimize
methods are used, compare [29] for an overview. Whenever integer programming is
applied, lower bounds obtained from relaxations are crucial. In this context a partial
outer convexification has been proposed for mixed–integer optimal control problems
in ordinary differential equations, [28]. We are going to extend this to the case of
MIOCP in DAE as formulated in Problem 2.1.

Problem 4.1 (MIOCP after Outer Convexification). Let I, ϕ, f, g, s, ψ,U ,V be
defined as in Problem 2.1.

Let the matrix g′y(x, y, u, vi) be uniformly non-singular for all arguments and let

the inverse matrix
(
g′y(x, y, u, vi)

)−1
be essentially bounded for all i = 1 . . . nω.

Minimize the objective function

ϕ(x(t0), x(tf))

with respect to x ∈Wnx
1,∞(I), u ∈ Lnu∞ (I), ω ∈ Lnω∞ (I) subject to the system of

ODEs

ẋ(t) =

nω∑
i=1

ωi(t) f
(
x(t), θi,t (x(t), u(t)) , u(t), vi

)
a.e. in I,

with continuous mappings θi,t : Rnx × Rnu −→ Rny for i = 1 . . . nω and t ∈ I
a.e., to the state constraint

s(x(t)) ≤ 0Rns ,

the boundary conditions

ψ(x(t0), x(tf)) = 0Rnψ ,

the set constraints

u(t) ∈ U a.e. in I,
ω(t) ∈ {0, 1}nω a.e. in I,

and the special ordered set type 1 condition

nω∑
i=1

ωi(t) = 1 a.e. in I. (4.1)

Theorem 4.2. Let (x∗, y∗, u∗, v∗)(·) be an optimal solution of Problem 2.1.
Define ω∗ : I −→ {0, 1}nω as

ω∗i (t) :=

{
1 if v∗(t) = vi

0 else

Then continuous mappings θi,t : Rnx × Rnu −→ Rny exist such that

y∗(t) =

nω∑
i=1

ω∗i (t) θi,t (x∗(t), u∗(t)) a.e. in I (4.2)
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and (x∗, u∗, ω∗)(·) is an optimal solution of Problem 4.1.
If, conversely, (x∗, u∗, ω∗)(·) is an optimal solution of Problem 4.1 for mappings

θi,t(·) that fulfill

0Rny =

nω∑
i=1

ω∗i (t) g
(
x∗(t), θi,t (x∗(t), u∗(t)) , u∗(t), vi

)
(4.3)

a.e. in I and we define

v∗(t) = vi if and only if ω∗i (t) = 1, (4.4)

then also (x∗, y∗, u∗, v∗)(·) with y∗(·) given by (4.2) is an optimal solution of Prob-
lem 2.1.
Proof. Assume (x∗, y∗, u∗, v∗) to be a feasible solution of Problem 2.1. By construc-
tion it holds

v∗(t) =

nω∑
i=1

ω∗i (t) vi (4.5)

for a.e. t in I. As (x∗, y∗, u∗, v∗) is feasible, in particular

0Rny = g(x∗(t), y∗(t), u∗(t), v∗(t))

holds. Because of the index one assumption the matrices

∂g(x∗(t), y∗(t), u∗(t), vi)

∂y

are invertible for all i = 1 . . . nω. Hence the implicit function theorem states for
all i = 1 . . . nω and t ∈ I a.e. the existence of open sets S1,i,t ⊂ Rnx × Rnu and
S2,i,t ⊂ Rny with s1,i,∗(t) := (x∗, u∗)(t) ∈ S1,i,t and s2,i,∗(t) := y∗(t) ∈ S2,i,t and
continuous mappings θi,t : S1,i,t −→ S2,i,t exist such that

0Rny = g(s1, θi,t(s1), vi) (4.6)

for all (s1, s2) ∈ S1,i,t × S2,i,t with a slight abuse of notation in the order of the
arguments. In particular, it holds (4.3) for s1 = (x∗, u∗)(t).

Hence it is possible to pointwise replace y∗(t) in Problem 2.1 by

y∗(t) =

nω∑
i=1

ω∗i (t) θi,t (x∗(t), u∗(t)) . (4.7)

Substituting (4.5) and (4.7) into the right hand side function f(·) yields equivalence,

ẋ(t) = f(x∗(t), y∗(t), u∗(t), v∗(t))

= f

(
x∗(t),

nω∑
i=1

ω∗i (t) θi,t (x∗(t), u∗(t)) , u∗(t),

nω∑
i=1

ω∗i (t) vi

)

=

nω∑
i=1

ω∗i (t) f
(
x∗(t), θi,t (x∗(t), u∗(t)) , u∗(t), vi

)
,

making use of ω∗i ∈ {0, 1} and
∑nω
i=1 ω

∗
i (t) = 1. Hence (x∗, u∗, ω∗) is also a feasible

solution of Problem 4.1. This solution is also optimal, because any better trajectory
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(x∗, u∗, ω∗) can be mapped via (4.4) and (4.7) to a feasible trajectory of Problem 2.1
with the same objective function value, contradicting the original optimality assump-
tion.

Let us now assume (x∗, u∗, ω∗) to be an optimal solution of Problem 4.1 for
mappings θi,t(·) that fulfill (4.3) a.e. in I. We define v∗(·) via (4.4) and y∗(·) via
(4.7) and again have an equivalence of the right hand sides of the differential equations,
which results in identical feasibility and optimality.

Note that the proof is similar to the one in [28] for the ODE case. The main
extension is the equivalence of the ODE formulation to the DAE in Problem 2.1.
It follows from the index 1 assumption which allows to apply the implicit function
theorem.

Theorem 4.2 allows us to transfer formally a MIOCP in DAE in which the discrete
controls v(·) enter in an arbitrary manner to a MIOCP in ODE in which the discrete
controls ω(·) enter linearly. This is important, as it allows to apply the integer gap
theorem from [31] to Problem 4.1. It states that for any given tolerance ε a control
discretization grid size can be determined, such that the difference of norms of the
optimal trajectory of a relaxed (ωi(t) ∈ [0, 1]) and an integer valued (ωi(t) ∈ {0, 1})
trajectory is smaller than ε. This property carries over by continuity arguments to
the objective function and state constraints.

Corollary 4.3. If f(·) and g(·) are sufficiently smooth, the optimal objective
function value of Problem 2.1 is given by the optimal objective function value of Prob-
lem 4.1, where the requirements ωi(t) ∈ {0, 1} have been relaxed to ωi(t) ∈ [0, 1].

The proof is a simple combination of Theorem 4.2 and [31, Corollary 8], in which
also precise assumptions on the smoothness of f(·) are formulated.

It also allows to apply the Sum Up Rounding strategy to calculate integer controls
from relaxed controls in linear time, compare also [31]. Interestingly, also the Sum
Up Rounding strategy is a constructive element of a theoretical proof, similar to the
time transformation in the previous sections.

From a practical point of view, however, it is not always desirable or even possible
to explicitly calculate the mappings θi,t(·). The question how the algebraic equations
can be altered to maintain a DAE formulation with a property similar to Corollary 4.3
is an open question, like the extension to DAE systems for which the index one
assumption does not hold.

5. Numerical benchmark. We will illustrate the results from the previous
sections with a MIOC benchmark example from the literature. Our focus is not on
efficient numerical methods for MIOCPs, which have been described, e.g., in [13, 33].
Rather we give an example of a boundary value problem that is deduced directly
from the necessary conditions of optimality and follow a first optimize, then discretize
approach.

We choose a control problem motivated by F8 aircraft control. It is based on
ordinary differential equations (ODE), but we reformulate it with the help of two
artificial algebraic variables. This is not necessarily helpful from a computational
point of view, but will allow us to compare the results to published results for this
benchmark problem [30], and we can be certain that for this test problem the index
one assumption 3.2 is always valid.

The differential equations were introduced by Garrard [9]. The differential states
consist of x1(·) as the angle of attack in radians, x2(·) as the pitch angle, and x3(·) as
the pitch rate in rad/s. The F-8 aircraft control problem was introduced by Kaya and
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Noakes [17] and aims at controlling an aircraft in a time-optimal way from an initial
state to a terminal state. The only control function v(·) is the tail deflection angle in
radians which may attain only two different values. For t ∈ [0, tf] almost everywhere
the mixed-integer optimal control problem is given by

Problem 5.1 (F-8 Aircraft Control with algebraic variables).

Minimize
∫ tf
0

1 dt
with respect to x ∈W 3

1,∞(I), y ∈ L2
∞(I), v ∈ L1

∞(I) subject to

ẋ1(t) = y1(t)x1(t) + x3(t)− 0.019x2(t)2 − 0.215v(t) + 0.63v(t)3, (5.1)

ẋ2(t) = x3(t), (5.2)

ẋ3(t) = −4.208x1(t)− 0.396x3(t)− 0.47x1(t)2 − 3.564x1(t)3 (5.3)

−20.967v(t) + 6.265x1(t)y2(t) + 46y2(t)v(t) + 61.4v(t)3, (5.4)

0 = −y1(t)− 0.877− 0.088x3(t) + 0.47x1(t)− x1(t)x3(t) (5.5)

+3.846x1(t)2 + 0.28y2(t) + 0.47v(t)2, (5.6)

0 = −y2(t) + x1(t)v(t), (5.7)

v(t) ∈ {−0.05236, 0.05236}, (5.8)

x(0) = (0.4655, 0, 0)>, x(tf) = (0, 0, 0)>. (5.9)

Note that the problem formulation in [17, 30] can be easily regained by substituting
first y2(·) and then y1(·) back in the differential equations. In the following we leave
the time argument (t) away for notational simplicity. We look at the necessary con-
ditions of optimality for the case without time transformation, which we apply in our
numerical scheme.

With `0 = 1, the Hamiltonian of Problem 5.1 is given by

H(·) = 1 + λ>f f(x, y, u) + λ>g g(x, y, u)

= 1 + λf1(y1x1 + x3 − 0.019x22 − 0.215v + 0.63v3) (5.10)

+λf2x3

+λf3(−4.208x1 − 0.396x3 − 0.47x21 − 3.564x31

−20.967v + 6.265x1y2 + 46y2v + 61.4v3)

+λg1(−y1 − 0.877− 0.088x3 + 0.47x1

−x1x3 + 3.846x21 + 0.28y2 + 0.47v2)

+λg2(−y2 + x1v)

The adjoint equations read

− ˙λf1 =
∂H(·)
∂x1

= λf3(−4.208− 2 · 0.47x1 − 3 · 3.564x21 + 6.265y2) (5.11)

+λf1y1 + λg1(0.47− x3 + 2 · 3.846x1) + λg2v

− ˙λf2 =
∂H(·)
∂x2

= −0.038λf1x2 (5.12)

− ˙λf3 =
∂H(·)
∂x3

= λf1 + λf2 − 0.396λf3 + λg1(−0.088− x1) (5.13)

0 =
∂H(·)
∂y1

= λf1x1 − λg1 (5.14)

0 =
∂H(·)
∂y2

= λf3(6.265x1 + 46v) + 0.28λg1 − λg2 (5.15)
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with the transversality conditions

λfi(t0) = −∂ϕ(·) + σ>ψ(·)
∂xi(t0)

= σ0i, λfi(tf) = −∂ϕ(·) + σ>ψ(·)
∂xi(tf)

= σfi, (5.16)

for i = 1 . . . 3. In other words, the initial and terminal values of the differential adjoint
states are free, because all initial and terminal values of the differential states xi(·)
are fixed. However, the value of the Hamiltonian at the free end time is fixed to 0,

H(·, tf) = 0. (5.17)

The value of the optimal control v(t) is determined according to the global minimum
principle in Theorem 3.5 as the pointwise minimizer

v∗(t) = arg min{H(·, v ≡ −0.05236),H(·, v ≡ 0.05236)}. (5.18)

Fast and reliable methods for mixed-integer optimal control problems have been
developed recently [13, 33]. They are based, among others, on the transformations
that have been described in the previous sections. For illustration and validation, how-
ever, we solve the boundary problem that results from the global minimum principle
at this point. As a numerical solution we apply the method of Competing Hamilto-
nians that to our knowledge was first proposed in [3]. It enumerates the values of the
Hamiltonian for all discrete control choices and chooses the pointwise minimizer, in
our case as (5.18). Note that this approach is restricted to optimal control problems
that have optimal bang-bang solutions for their relaxations, [33].

The resulting boundary value problem consists of determining (x∗, y∗, λ∗f , λ
∗
g, v
∗)(·)

and a final time tf such that (5.1–5.9, 5.11–5.15, 5.16, 5.17, 5.18) are fulfilled.

We need good initial guesses for the switching structure and for the differential and
algebraic variables. We obtain them by running the MS MINTOC algorithm [28, 33].
It is based on a first discretize, then optimize approach, in particular on Bock’s direct
multiple shooting method [4]. We can directly read of the optimal switching structure
and the values of differential and algebraic variables. For the adjoint variables λf (·)
we take Lagrange multipliers of the matching conditions as a discrete approximation.
This pretty accurate initialization allows us to solve the DAE boundary value problem
despite its well known small region of convergence. We use the software MUSCOD-II,
again based on direct multiple shooting, [25]. Note that the F8 control problem has
several local minima, several are listed on [27]. We use the best known solution as
initialization for our study. It results in an optimal integer control

v∗(t) =

{
0.05236 if t ∈ [0, τ1] ∪ [τ2, τ3]
−0.05236 if t ∈ [τ1, τ2] ∪ [τ3, tf]

with τ1 = 1.135007, τ2 = 1.482512, τ3 = 3.088809, tf = 3.780858. Figures 5.1 and 5.2
show the optimal trajectories and the competing Hamiltonians.

It is interesting to note that Outer Convexification can be applied to Problem 5.1.
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Fig. 5.1. Left: differential states of the optimal trajectory. Right: the two competing Hamil-
tonians and the optimal control. Note that the minimizing Hamiltonian (5.18) is identical 0, in
accordance to its end value (5.17) and the requirement to be constant, Theorem 3.5 e).
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Fig. 5.2. Left: the adjoint states plotted over time. Right: the algebraic states. The disconti-
nuity in v∗(·) is accounted for by jumps in y2(·).

With γ = 0.05236, the constraints (5.1–5.9) become

ẋ1 = −0.877 x1 + x3 − 0.088 x1 x3 + 0.47 x21 − 0.019 x22 − x21 x3 (5.19)

+3.846 x31 + 0.215 γ − 0.28 x21 γ + 0.47 x1 γ
2 − 0.63 γ3 (5.20)

−
(
0.215 γ − 0.28 x21 γ − 0.63 γ3

)
2ω (5.21)

ẋ2 = x3 (5.22)

ẋ3 = −4.208 x1 − 0.396 x3 − 0.47 x21 − 3.564 x31 (5.23)

+20.967 γ − 6.265 x21 γ + 46 x1 γ
2 − 61.4 γ3 (5.24)

−
(
20.967 γ − 6.265 x21 γ − 61.4 γ3

)
2ω (5.25)

ω(t) ∈ {0, 1}, (5.26)

x(0) = (0.4655, 0, 0)>, x(tf) = (0, 0, 0)> (5.27)

Any trajectory that minimizes tf subject to (5.19–5.27) is also an optimal solution



MIOCP for DAEs 19

to Problem 5.1. According to Corollary 4.3 the objective function value is identical
to the one of the relaxed version with ω(t) ∈ [0, 1]. In this particular case, there
doesn’t seem to be an integer gap to the nonlinear relaxation (Problem 5.1 with
v(t) ∈ [−0.05236, 0.05236]). Examples for integer gaps can be found in [28, 31].

6. Summary. We discussed mixed–integer optimal control problems constrained
by differential-algebraic equations of index one. We derived a global minimum prin-
ciple, making use of a time transformation technique. We also established theoretical
results on the integer gap between the objective function value of the original MIOCP
and of a relaxed, convexified version which is easier to solve with gradient–based
methods. We illustrated the theoretical results by means of a challenging MIOCP
benchmark problem. Future work is necessary for DAE systems that do not have
index one.
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